brcmsmac: rework of mac80211 .flush() callback operation
[pandora-kernel.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER |    */
58     NETIF_MSG_IFDOWN |
59     NETIF_MSG_IFUP |
60     NETIF_MSG_RX_ERR |
61     NETIF_MSG_TX_ERR |
62 /*  NETIF_MSG_TX_QUEUED | */
63 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1;  /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81                 "Option to enable MPI firmware dump. "
82                 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87                 "Option to allow force of firmware core dump. "
88                 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93         /* required last entry */
94         {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *qdev);
100 static void qlge_set_multicast_list(struct net_device *ndev);
101
102 /* This hardware semaphore causes exclusive access to
103  * resources shared between the NIC driver, MPI firmware,
104  * FCOE firmware and the FC driver.
105  */
106 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107 {
108         u32 sem_bits = 0;
109
110         switch (sem_mask) {
111         case SEM_XGMAC0_MASK:
112                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113                 break;
114         case SEM_XGMAC1_MASK:
115                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116                 break;
117         case SEM_ICB_MASK:
118                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119                 break;
120         case SEM_MAC_ADDR_MASK:
121                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122                 break;
123         case SEM_FLASH_MASK:
124                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125                 break;
126         case SEM_PROBE_MASK:
127                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128                 break;
129         case SEM_RT_IDX_MASK:
130                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131                 break;
132         case SEM_PROC_REG_MASK:
133                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134                 break;
135         default:
136                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
137                 return -EINVAL;
138         }
139
140         ql_write32(qdev, SEM, sem_bits | sem_mask);
141         return !(ql_read32(qdev, SEM) & sem_bits);
142 }
143
144 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145 {
146         unsigned int wait_count = 30;
147         do {
148                 if (!ql_sem_trylock(qdev, sem_mask))
149                         return 0;
150                 udelay(100);
151         } while (--wait_count);
152         return -ETIMEDOUT;
153 }
154
155 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156 {
157         ql_write32(qdev, SEM, sem_mask);
158         ql_read32(qdev, SEM);   /* flush */
159 }
160
161 /* This function waits for a specific bit to come ready
162  * in a given register.  It is used mostly by the initialize
163  * process, but is also used in kernel thread API such as
164  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165  */
166 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167 {
168         u32 temp;
169         int count = UDELAY_COUNT;
170
171         while (count) {
172                 temp = ql_read32(qdev, reg);
173
174                 /* check for errors */
175                 if (temp & err_bit) {
176                         netif_alert(qdev, probe, qdev->ndev,
177                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
178                                     reg, temp);
179                         return -EIO;
180                 } else if (temp & bit)
181                         return 0;
182                 udelay(UDELAY_DELAY);
183                 count--;
184         }
185         netif_alert(qdev, probe, qdev->ndev,
186                     "Timed out waiting for reg %x to come ready.\n", reg);
187         return -ETIMEDOUT;
188 }
189
190 /* The CFG register is used to download TX and RX control blocks
191  * to the chip. This function waits for an operation to complete.
192  */
193 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194 {
195         int count = UDELAY_COUNT;
196         u32 temp;
197
198         while (count) {
199                 temp = ql_read32(qdev, CFG);
200                 if (temp & CFG_LE)
201                         return -EIO;
202                 if (!(temp & bit))
203                         return 0;
204                 udelay(UDELAY_DELAY);
205                 count--;
206         }
207         return -ETIMEDOUT;
208 }
209
210
211 /* Used to issue init control blocks to hw. Maps control block,
212  * sets address, triggers download, waits for completion.
213  */
214 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215                  u16 q_id)
216 {
217         u64 map;
218         int status = 0;
219         int direction;
220         u32 mask;
221         u32 value;
222
223         direction =
224             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225             PCI_DMA_FROMDEVICE;
226
227         map = pci_map_single(qdev->pdev, ptr, size, direction);
228         if (pci_dma_mapping_error(qdev->pdev, map)) {
229                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
230                 return -ENOMEM;
231         }
232
233         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234         if (status)
235                 return status;
236
237         status = ql_wait_cfg(qdev, bit);
238         if (status) {
239                 netif_err(qdev, ifup, qdev->ndev,
240                           "Timed out waiting for CFG to come ready.\n");
241                 goto exit;
242         }
243
244         ql_write32(qdev, ICB_L, (u32) map);
245         ql_write32(qdev, ICB_H, (u32) (map >> 32));
246
247         mask = CFG_Q_MASK | (bit << 16);
248         value = bit | (q_id << CFG_Q_SHIFT);
249         ql_write32(qdev, CFG, (mask | value));
250
251         /*
252          * Wait for the bit to clear after signaling hw.
253          */
254         status = ql_wait_cfg(qdev, bit);
255 exit:
256         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
257         pci_unmap_single(qdev->pdev, map, size, direction);
258         return status;
259 }
260
261 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
262 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263                         u32 *value)
264 {
265         u32 offset = 0;
266         int status;
267
268         switch (type) {
269         case MAC_ADDR_TYPE_MULTI_MAC:
270         case MAC_ADDR_TYPE_CAM_MAC:
271                 {
272                         status =
273                             ql_wait_reg_rdy(qdev,
274                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
275                         if (status)
276                                 goto exit;
277                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
279                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280                         status =
281                             ql_wait_reg_rdy(qdev,
282                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
283                         if (status)
284                                 goto exit;
285                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286                         status =
287                             ql_wait_reg_rdy(qdev,
288                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289                         if (status)
290                                 goto exit;
291                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
293                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294                         status =
295                             ql_wait_reg_rdy(qdev,
296                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
297                         if (status)
298                                 goto exit;
299                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
301                                 status =
302                                     ql_wait_reg_rdy(qdev,
303                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
304                                 if (status)
305                                         goto exit;
306                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
308                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309                                 status =
310                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
311                                                     MAC_ADDR_MR, 0);
312                                 if (status)
313                                         goto exit;
314                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315                         }
316                         break;
317                 }
318         case MAC_ADDR_TYPE_VLAN:
319         case MAC_ADDR_TYPE_MULTI_FLTR:
320         default:
321                 netif_crit(qdev, ifup, qdev->ndev,
322                            "Address type %d not yet supported.\n", type);
323                 status = -EPERM;
324         }
325 exit:
326         return status;
327 }
328
329 /* Set up a MAC, multicast or VLAN address for the
330  * inbound frame matching.
331  */
332 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333                                u16 index)
334 {
335         u32 offset = 0;
336         int status = 0;
337
338         switch (type) {
339         case MAC_ADDR_TYPE_MULTI_MAC:
340                 {
341                         u32 upper = (addr[0] << 8) | addr[1];
342                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343                                         (addr[4] << 8) | (addr[5]);
344
345                         status =
346                                 ql_wait_reg_rdy(qdev,
347                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348                         if (status)
349                                 goto exit;
350                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351                                 (index << MAC_ADDR_IDX_SHIFT) |
352                                 type | MAC_ADDR_E);
353                         ql_write32(qdev, MAC_ADDR_DATA, lower);
354                         status =
355                                 ql_wait_reg_rdy(qdev,
356                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357                         if (status)
358                                 goto exit;
359                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360                                 (index << MAC_ADDR_IDX_SHIFT) |
361                                 type | MAC_ADDR_E);
362
363                         ql_write32(qdev, MAC_ADDR_DATA, upper);
364                         status =
365                                 ql_wait_reg_rdy(qdev,
366                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367                         if (status)
368                                 goto exit;
369                         break;
370                 }
371         case MAC_ADDR_TYPE_CAM_MAC:
372                 {
373                         u32 cam_output;
374                         u32 upper = (addr[0] << 8) | addr[1];
375                         u32 lower =
376                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377                             (addr[5]);
378                         status =
379                             ql_wait_reg_rdy(qdev,
380                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381                         if (status)
382                                 goto exit;
383                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
385                                    type);       /* type */
386                         ql_write32(qdev, MAC_ADDR_DATA, lower);
387                         status =
388                             ql_wait_reg_rdy(qdev,
389                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390                         if (status)
391                                 goto exit;
392                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
394                                    type);       /* type */
395                         ql_write32(qdev, MAC_ADDR_DATA, upper);
396                         status =
397                             ql_wait_reg_rdy(qdev,
398                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
399                         if (status)
400                                 goto exit;
401                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
402                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
403                                    type);       /* type */
404                         /* This field should also include the queue id
405                            and possibly the function id.  Right now we hardcode
406                            the route field to NIC core.
407                          */
408                         cam_output = (CAM_OUT_ROUTE_NIC |
409                                       (qdev->
410                                        func << CAM_OUT_FUNC_SHIFT) |
411                                         (0 << CAM_OUT_CQ_ID_SHIFT));
412                         if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
413                                 cam_output |= CAM_OUT_RV;
414                         /* route to NIC core */
415                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
416                         break;
417                 }
418         case MAC_ADDR_TYPE_VLAN:
419                 {
420                         u32 enable_bit = *((u32 *) &addr[0]);
421                         /* For VLAN, the addr actually holds a bit that
422                          * either enables or disables the vlan id we are
423                          * addressing. It's either MAC_ADDR_E on or off.
424                          * That's bit-27 we're talking about.
425                          */
426                         status =
427                             ql_wait_reg_rdy(qdev,
428                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
429                         if (status)
430                                 goto exit;
431                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
433                                    type |       /* type */
434                                    enable_bit); /* enable/disable */
435                         break;
436                 }
437         case MAC_ADDR_TYPE_MULTI_FLTR:
438         default:
439                 netif_crit(qdev, ifup, qdev->ndev,
440                            "Address type %d not yet supported.\n", type);
441                 status = -EPERM;
442         }
443 exit:
444         return status;
445 }
446
447 /* Set or clear MAC address in hardware. We sometimes
448  * have to clear it to prevent wrong frame routing
449  * especially in a bonding environment.
450  */
451 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452 {
453         int status;
454         char zero_mac_addr[ETH_ALEN];
455         char *addr;
456
457         if (set) {
458                 addr = &qdev->current_mac_addr[0];
459                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460                              "Set Mac addr %pM\n", addr);
461         } else {
462                 memset(zero_mac_addr, 0, ETH_ALEN);
463                 addr = &zero_mac_addr[0];
464                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465                              "Clearing MAC address\n");
466         }
467         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468         if (status)
469                 return status;
470         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473         if (status)
474                 netif_err(qdev, ifup, qdev->ndev,
475                           "Failed to init mac address.\n");
476         return status;
477 }
478
479 void ql_link_on(struct ql_adapter *qdev)
480 {
481         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
482         netif_carrier_on(qdev->ndev);
483         ql_set_mac_addr(qdev, 1);
484 }
485
486 void ql_link_off(struct ql_adapter *qdev)
487 {
488         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
489         netif_carrier_off(qdev->ndev);
490         ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494  * Used for debug and reg dump.
495  */
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498         int status = 0;
499
500         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501         if (status)
502                 goto exit;
503
504         ql_write32(qdev, RT_IDX,
505                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507         if (status)
508                 goto exit;
509         *value = ql_read32(qdev, RT_DATA);
510 exit:
511         return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
515  * to route different frame types to various inbound queues.  We send broadcast/
516  * multicast/error frames to the default queue for slow handling,
517  * and CAM hit/RSS frames to the fast handling queues.
518  */
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520                               int enable)
521 {
522         int status = -EINVAL; /* Return error if no mask match. */
523         u32 value = 0;
524
525         switch (mask) {
526         case RT_IDX_CAM_HIT:
527                 {
528                         value = RT_IDX_DST_CAM_Q |      /* dest */
529                             RT_IDX_TYPE_NICQ |  /* type */
530                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531                         break;
532                 }
533         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
534                 {
535                         value = RT_IDX_DST_DFLT_Q |     /* dest */
536                             RT_IDX_TYPE_NICQ |  /* type */
537                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538                         break;
539                 }
540         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
541                 {
542                         value = RT_IDX_DST_DFLT_Q |     /* dest */
543                             RT_IDX_TYPE_NICQ |  /* type */
544                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545                         break;
546                 }
547         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548                 {
549                         value = RT_IDX_DST_DFLT_Q | /* dest */
550                                 RT_IDX_TYPE_NICQ | /* type */
551                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
552                                 RT_IDX_IDX_SHIFT); /* index */
553                         break;
554                 }
555         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556                 {
557                         value = RT_IDX_DST_DFLT_Q | /* dest */
558                                 RT_IDX_TYPE_NICQ | /* type */
559                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560                                 RT_IDX_IDX_SHIFT); /* index */
561                         break;
562                 }
563         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
564                 {
565                         value = RT_IDX_DST_DFLT_Q |     /* dest */
566                             RT_IDX_TYPE_NICQ |  /* type */
567                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568                         break;
569                 }
570         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
571                 {
572                         value = RT_IDX_DST_DFLT_Q |     /* dest */
573                             RT_IDX_TYPE_NICQ |  /* type */
574                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575                         break;
576                 }
577         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
578                 {
579                         value = RT_IDX_DST_DFLT_Q |     /* dest */
580                             RT_IDX_TYPE_NICQ |  /* type */
581                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582                         break;
583                 }
584         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
585                 {
586                         value = RT_IDX_DST_RSS |        /* dest */
587                             RT_IDX_TYPE_NICQ |  /* type */
588                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589                         break;
590                 }
591         case 0:         /* Clear the E-bit on an entry. */
592                 {
593                         value = RT_IDX_DST_DFLT_Q |     /* dest */
594                             RT_IDX_TYPE_NICQ |  /* type */
595                             (index << RT_IDX_IDX_SHIFT);/* index */
596                         break;
597                 }
598         default:
599                 netif_err(qdev, ifup, qdev->ndev,
600                           "Mask type %d not yet supported.\n", mask);
601                 status = -EPERM;
602                 goto exit;
603         }
604
605         if (value) {
606                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607                 if (status)
608                         goto exit;
609                 value |= (enable ? RT_IDX_E : 0);
610                 ql_write32(qdev, RT_IDX, value);
611                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612         }
613 exit:
614         return status;
615 }
616
617 static void ql_enable_interrupts(struct ql_adapter *qdev)
618 {
619         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620 }
621
622 static void ql_disable_interrupts(struct ql_adapter *qdev)
623 {
624         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625 }
626
627 /* If we're running with multiple MSI-X vectors then we enable on the fly.
628  * Otherwise, we may have multiple outstanding workers and don't want to
629  * enable until the last one finishes. In this case, the irq_cnt gets
630  * incremented every time we queue a worker and decremented every time
631  * a worker finishes.  Once it hits zero we enable the interrupt.
632  */
633 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
634 {
635         u32 var = 0;
636         unsigned long hw_flags = 0;
637         struct intr_context *ctx = qdev->intr_context + intr;
638
639         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640                 /* Always enable if we're MSIX multi interrupts and
641                  * it's not the default (zeroeth) interrupt.
642                  */
643                 ql_write32(qdev, INTR_EN,
644                            ctx->intr_en_mask);
645                 var = ql_read32(qdev, STS);
646                 return var;
647         }
648
649         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650         if (atomic_dec_and_test(&ctx->irq_cnt)) {
651                 ql_write32(qdev, INTR_EN,
652                            ctx->intr_en_mask);
653                 var = ql_read32(qdev, STS);
654         }
655         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656         return var;
657 }
658
659 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660 {
661         u32 var = 0;
662         struct intr_context *ctx;
663
664         /* HW disables for us if we're MSIX multi interrupts and
665          * it's not the default (zeroeth) interrupt.
666          */
667         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668                 return 0;
669
670         ctx = qdev->intr_context + intr;
671         spin_lock(&qdev->hw_lock);
672         if (!atomic_read(&ctx->irq_cnt)) {
673                 ql_write32(qdev, INTR_EN,
674                 ctx->intr_dis_mask);
675                 var = ql_read32(qdev, STS);
676         }
677         atomic_inc(&ctx->irq_cnt);
678         spin_unlock(&qdev->hw_lock);
679         return var;
680 }
681
682 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683 {
684         int i;
685         for (i = 0; i < qdev->intr_count; i++) {
686                 /* The enable call does a atomic_dec_and_test
687                  * and enables only if the result is zero.
688                  * So we precharge it here.
689                  */
690                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691                         i == 0))
692                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
693                 ql_enable_completion_interrupt(qdev, i);
694         }
695
696 }
697
698 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699 {
700         int status, i;
701         u16 csum = 0;
702         __le16 *flash = (__le16 *)&qdev->flash;
703
704         status = strncmp((char *)&qdev->flash, str, 4);
705         if (status) {
706                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
707                 return  status;
708         }
709
710         for (i = 0; i < size; i++)
711                 csum += le16_to_cpu(*flash++);
712
713         if (csum)
714                 netif_err(qdev, ifup, qdev->ndev,
715                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
716
717         return csum;
718 }
719
720 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
721 {
722         int status = 0;
723         /* wait for reg to come ready */
724         status = ql_wait_reg_rdy(qdev,
725                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726         if (status)
727                 goto exit;
728         /* set up for reg read */
729         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730         /* wait for reg to come ready */
731         status = ql_wait_reg_rdy(qdev,
732                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733         if (status)
734                 goto exit;
735          /* This data is stored on flash as an array of
736          * __le32.  Since ql_read32() returns cpu endian
737          * we need to swap it back.
738          */
739         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
740 exit:
741         return status;
742 }
743
744 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745 {
746         u32 i, size;
747         int status;
748         __le32 *p = (__le32 *)&qdev->flash;
749         u32 offset;
750         u8 mac_addr[6];
751
752         /* Get flash offset for function and adjust
753          * for dword access.
754          */
755         if (!qdev->port)
756                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757         else
758                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761                 return -ETIMEDOUT;
762
763         size = sizeof(struct flash_params_8000) / sizeof(u32);
764         for (i = 0; i < size; i++, p++) {
765                 status = ql_read_flash_word(qdev, i+offset, p);
766                 if (status) {
767                         netif_err(qdev, ifup, qdev->ndev,
768                                   "Error reading flash.\n");
769                         goto exit;
770                 }
771         }
772
773         status = ql_validate_flash(qdev,
774                         sizeof(struct flash_params_8000) / sizeof(u16),
775                         "8000");
776         if (status) {
777                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
778                 status = -EINVAL;
779                 goto exit;
780         }
781
782         /* Extract either manufacturer or BOFM modified
783          * MAC address.
784          */
785         if (qdev->flash.flash_params_8000.data_type1 == 2)
786                 memcpy(mac_addr,
787                         qdev->flash.flash_params_8000.mac_addr1,
788                         qdev->ndev->addr_len);
789         else
790                 memcpy(mac_addr,
791                         qdev->flash.flash_params_8000.mac_addr,
792                         qdev->ndev->addr_len);
793
794         if (!is_valid_ether_addr(mac_addr)) {
795                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
796                 status = -EINVAL;
797                 goto exit;
798         }
799
800         memcpy(qdev->ndev->dev_addr,
801                 mac_addr,
802                 qdev->ndev->addr_len);
803
804 exit:
805         ql_sem_unlock(qdev, SEM_FLASH_MASK);
806         return status;
807 }
808
809 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
810 {
811         int i;
812         int status;
813         __le32 *p = (__le32 *)&qdev->flash;
814         u32 offset = 0;
815         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
816
817         /* Second function's parameters follow the first
818          * function's.
819          */
820         if (qdev->port)
821                 offset = size;
822
823         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824                 return -ETIMEDOUT;
825
826         for (i = 0; i < size; i++, p++) {
827                 status = ql_read_flash_word(qdev, i+offset, p);
828                 if (status) {
829                         netif_err(qdev, ifup, qdev->ndev,
830                                   "Error reading flash.\n");
831                         goto exit;
832                 }
833
834         }
835
836         status = ql_validate_flash(qdev,
837                         sizeof(struct flash_params_8012) / sizeof(u16),
838                         "8012");
839         if (status) {
840                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
841                 status = -EINVAL;
842                 goto exit;
843         }
844
845         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846                 status = -EINVAL;
847                 goto exit;
848         }
849
850         memcpy(qdev->ndev->dev_addr,
851                 qdev->flash.flash_params_8012.mac_addr,
852                 qdev->ndev->addr_len);
853
854 exit:
855         ql_sem_unlock(qdev, SEM_FLASH_MASK);
856         return status;
857 }
858
859 /* xgmac register are located behind the xgmac_addr and xgmac_data
860  * register pair.  Each read/write requires us to wait for the ready
861  * bit before reading/writing the data.
862  */
863 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864 {
865         int status;
866         /* wait for reg to come ready */
867         status = ql_wait_reg_rdy(qdev,
868                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869         if (status)
870                 return status;
871         /* write the data to the data reg */
872         ql_write32(qdev, XGMAC_DATA, data);
873         /* trigger the write */
874         ql_write32(qdev, XGMAC_ADDR, reg);
875         return status;
876 }
877
878 /* xgmac register are located behind the xgmac_addr and xgmac_data
879  * register pair.  Each read/write requires us to wait for the ready
880  * bit before reading/writing the data.
881  */
882 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883 {
884         int status = 0;
885         /* wait for reg to come ready */
886         status = ql_wait_reg_rdy(qdev,
887                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888         if (status)
889                 goto exit;
890         /* set up for reg read */
891         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892         /* wait for reg to come ready */
893         status = ql_wait_reg_rdy(qdev,
894                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895         if (status)
896                 goto exit;
897         /* get the data */
898         *data = ql_read32(qdev, XGMAC_DATA);
899 exit:
900         return status;
901 }
902
903 /* This is used for reading the 64-bit statistics regs. */
904 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905 {
906         int status = 0;
907         u32 hi = 0;
908         u32 lo = 0;
909
910         status = ql_read_xgmac_reg(qdev, reg, &lo);
911         if (status)
912                 goto exit;
913
914         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915         if (status)
916                 goto exit;
917
918         *data = (u64) lo | ((u64) hi << 32);
919
920 exit:
921         return status;
922 }
923
924 static int ql_8000_port_initialize(struct ql_adapter *qdev)
925 {
926         int status;
927         /*
928          * Get MPI firmware version for driver banner
929          * and ethool info.
930          */
931         status = ql_mb_about_fw(qdev);
932         if (status)
933                 goto exit;
934         status = ql_mb_get_fw_state(qdev);
935         if (status)
936                 goto exit;
937         /* Wake up a worker to get/set the TX/RX frame sizes. */
938         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939 exit:
940         return status;
941 }
942
943 /* Take the MAC Core out of reset.
944  * Enable statistics counting.
945  * Take the transmitter/receiver out of reset.
946  * This functionality may be done in the MPI firmware at a
947  * later date.
948  */
949 static int ql_8012_port_initialize(struct ql_adapter *qdev)
950 {
951         int status = 0;
952         u32 data;
953
954         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955                 /* Another function has the semaphore, so
956                  * wait for the port init bit to come ready.
957                  */
958                 netif_info(qdev, link, qdev->ndev,
959                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
960                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961                 if (status) {
962                         netif_crit(qdev, link, qdev->ndev,
963                                    "Port initialize timed out.\n");
964                 }
965                 return status;
966         }
967
968         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
969         /* Set the core reset. */
970         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971         if (status)
972                 goto end;
973         data |= GLOBAL_CFG_RESET;
974         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975         if (status)
976                 goto end;
977
978         /* Clear the core reset and turn on jumbo for receiver. */
979         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
980         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
981         data |= GLOBAL_CFG_TX_STAT_EN;
982         data |= GLOBAL_CFG_RX_STAT_EN;
983         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984         if (status)
985                 goto end;
986
987         /* Enable transmitter, and clear it's reset. */
988         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989         if (status)
990                 goto end;
991         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
992         data |= TX_CFG_EN;      /* Enable the transmitter. */
993         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994         if (status)
995                 goto end;
996
997         /* Enable receiver and clear it's reset. */
998         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999         if (status)
1000                 goto end;
1001         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1002         data |= RX_CFG_EN;      /* Enable the receiver. */
1003         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004         if (status)
1005                 goto end;
1006
1007         /* Turn on jumbo. */
1008         status =
1009             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010         if (status)
1011                 goto end;
1012         status =
1013             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014         if (status)
1015                 goto end;
1016
1017         /* Signal to the world that the port is enabled.        */
1018         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019 end:
1020         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021         return status;
1022 }
1023
1024 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025 {
1026         return PAGE_SIZE << qdev->lbq_buf_order;
1027 }
1028
1029 /* Get the next large buffer. */
1030 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031 {
1032         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033         rx_ring->lbq_curr_idx++;
1034         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035                 rx_ring->lbq_curr_idx = 0;
1036         rx_ring->lbq_free_cnt++;
1037         return lbq_desc;
1038 }
1039
1040 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041                 struct rx_ring *rx_ring)
1042 {
1043         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045         pci_dma_sync_single_for_cpu(qdev->pdev,
1046                                         dma_unmap_addr(lbq_desc, mapaddr),
1047                                     rx_ring->lbq_buf_size,
1048                                         PCI_DMA_FROMDEVICE);
1049
1050         /* If it's the last chunk of our master page then
1051          * we unmap it.
1052          */
1053         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054                                         == ql_lbq_block_size(qdev))
1055                 pci_unmap_page(qdev->pdev,
1056                                 lbq_desc->p.pg_chunk.map,
1057                                 ql_lbq_block_size(qdev),
1058                                 PCI_DMA_FROMDEVICE);
1059         return lbq_desc;
1060 }
1061
1062 /* Get the next small buffer. */
1063 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1064 {
1065         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066         rx_ring->sbq_curr_idx++;
1067         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068                 rx_ring->sbq_curr_idx = 0;
1069         rx_ring->sbq_free_cnt++;
1070         return sbq_desc;
1071 }
1072
1073 /* Update an rx ring index. */
1074 static void ql_update_cq(struct rx_ring *rx_ring)
1075 {
1076         rx_ring->cnsmr_idx++;
1077         rx_ring->curr_entry++;
1078         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079                 rx_ring->cnsmr_idx = 0;
1080                 rx_ring->curr_entry = rx_ring->cq_base;
1081         }
1082 }
1083
1084 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085 {
1086         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087 }
1088
1089 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090                                                 struct bq_desc *lbq_desc)
1091 {
1092         if (!rx_ring->pg_chunk.page) {
1093                 u64 map;
1094                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095                                                 GFP_ATOMIC,
1096                                                 qdev->lbq_buf_order);
1097                 if (unlikely(!rx_ring->pg_chunk.page)) {
1098                         netif_err(qdev, drv, qdev->ndev,
1099                                   "page allocation failed.\n");
1100                         return -ENOMEM;
1101                 }
1102                 rx_ring->pg_chunk.offset = 0;
1103                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104                                         0, ql_lbq_block_size(qdev),
1105                                         PCI_DMA_FROMDEVICE);
1106                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107                         __free_pages(rx_ring->pg_chunk.page,
1108                                         qdev->lbq_buf_order);
1109                         netif_err(qdev, drv, qdev->ndev,
1110                                   "PCI mapping failed.\n");
1111                         return -ENOMEM;
1112                 }
1113                 rx_ring->pg_chunk.map = map;
1114                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115         }
1116
1117         /* Copy the current master pg_chunk info
1118          * to the current descriptor.
1119          */
1120         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122         /* Adjust the master page chunk for next
1123          * buffer get.
1124          */
1125         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127                 rx_ring->pg_chunk.page = NULL;
1128                 lbq_desc->p.pg_chunk.last_flag = 1;
1129         } else {
1130                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131                 get_page(rx_ring->pg_chunk.page);
1132                 lbq_desc->p.pg_chunk.last_flag = 0;
1133         }
1134         return 0;
1135 }
1136 /* Process (refill) a large buffer queue. */
1137 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138 {
1139         u32 clean_idx = rx_ring->lbq_clean_idx;
1140         u32 start_idx = clean_idx;
1141         struct bq_desc *lbq_desc;
1142         u64 map;
1143         int i;
1144
1145         while (rx_ring->lbq_free_cnt > 32) {
1146                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1147                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148                                      "lbq: try cleaning clean_idx = %d.\n",
1149                                      clean_idx);
1150                         lbq_desc = &rx_ring->lbq[clean_idx];
1151                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1152                                 rx_ring->lbq_clean_idx = clean_idx;
1153                                 netif_err(qdev, ifup, qdev->ndev,
1154                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155                                                 i, clean_idx);
1156                                 return;
1157                         }
1158
1159                         map = lbq_desc->p.pg_chunk.map +
1160                                 lbq_desc->p.pg_chunk.offset;
1161                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162                         dma_unmap_len_set(lbq_desc, maplen,
1163                                         rx_ring->lbq_buf_size);
1164                                 *lbq_desc->addr = cpu_to_le64(map);
1165
1166                         pci_dma_sync_single_for_device(qdev->pdev, map,
1167                                                 rx_ring->lbq_buf_size,
1168                                                 PCI_DMA_FROMDEVICE);
1169                         clean_idx++;
1170                         if (clean_idx == rx_ring->lbq_len)
1171                                 clean_idx = 0;
1172                 }
1173
1174                 rx_ring->lbq_clean_idx = clean_idx;
1175                 rx_ring->lbq_prod_idx += 16;
1176                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177                         rx_ring->lbq_prod_idx = 0;
1178                 rx_ring->lbq_free_cnt -= 16;
1179         }
1180
1181         if (start_idx != clean_idx) {
1182                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183                              "lbq: updating prod idx = %d.\n",
1184                              rx_ring->lbq_prod_idx);
1185                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186                                 rx_ring->lbq_prod_idx_db_reg);
1187         }
1188 }
1189
1190 /* Process (refill) a small buffer queue. */
1191 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192 {
1193         u32 clean_idx = rx_ring->sbq_clean_idx;
1194         u32 start_idx = clean_idx;
1195         struct bq_desc *sbq_desc;
1196         u64 map;
1197         int i;
1198
1199         while (rx_ring->sbq_free_cnt > 16) {
1200                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1201                         sbq_desc = &rx_ring->sbq[clean_idx];
1202                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203                                      "sbq: try cleaning clean_idx = %d.\n",
1204                                      clean_idx);
1205                         if (sbq_desc->p.skb == NULL) {
1206                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1207                                              qdev->ndev,
1208                                              "sbq: getting new skb for index %d.\n",
1209                                              sbq_desc->index);
1210                                 sbq_desc->p.skb =
1211                                     netdev_alloc_skb(qdev->ndev,
1212                                                      SMALL_BUFFER_SIZE);
1213                                 if (sbq_desc->p.skb == NULL) {
1214                                         netif_err(qdev, probe, qdev->ndev,
1215                                                   "Couldn't get an skb.\n");
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err)
1438 {
1439         struct nic_stats *stats = &qdev->nic_stats;
1440
1441         stats->rx_err_count++;
1442
1443         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1444         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1445                 stats->rx_code_err++;
1446                 break;
1447         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1448                 stats->rx_oversize_err++;
1449                 break;
1450         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1451                 stats->rx_undersize_err++;
1452                 break;
1453         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1454                 stats->rx_preamble_err++;
1455                 break;
1456         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1457                 stats->rx_frame_len_err++;
1458                 break;
1459         case IB_MAC_IOCB_RSP_ERR_CRC:
1460                 stats->rx_crc_err++;
1461         default:
1462                 break;
1463         }
1464 }
1465
1466 /* Process an inbound completion from an rx ring. */
1467 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1468                                         struct rx_ring *rx_ring,
1469                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1470                                         u32 length,
1471                                         u16 vlan_id)
1472 {
1473         struct sk_buff *skb;
1474         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1475         struct napi_struct *napi = &rx_ring->napi;
1476
1477         napi->dev = qdev->ndev;
1478
1479         skb = napi_get_frags(napi);
1480         if (!skb) {
1481                 netif_err(qdev, drv, qdev->ndev,
1482                           "Couldn't get an skb, exiting.\n");
1483                 rx_ring->rx_dropped++;
1484                 put_page(lbq_desc->p.pg_chunk.page);
1485                 return;
1486         }
1487         prefetch(lbq_desc->p.pg_chunk.va);
1488         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1489                              lbq_desc->p.pg_chunk.page,
1490                              lbq_desc->p.pg_chunk.offset,
1491                              length);
1492
1493         skb->len += length;
1494         skb->data_len += length;
1495         skb->truesize += length;
1496         skb_shinfo(skb)->nr_frags++;
1497
1498         rx_ring->rx_packets++;
1499         rx_ring->rx_bytes += length;
1500         skb->ip_summed = CHECKSUM_UNNECESSARY;
1501         skb_record_rx_queue(skb, rx_ring->cq_id);
1502         if (vlan_id != 0xffff)
1503                 __vlan_hwaccel_put_tag(skb, vlan_id);
1504         napi_gro_frags(napi);
1505 }
1506
1507 /* Process an inbound completion from an rx ring. */
1508 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1509                                         struct rx_ring *rx_ring,
1510                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1511                                         u32 length,
1512                                         u16 vlan_id)
1513 {
1514         struct net_device *ndev = qdev->ndev;
1515         struct sk_buff *skb = NULL;
1516         void *addr;
1517         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1518         struct napi_struct *napi = &rx_ring->napi;
1519
1520         skb = netdev_alloc_skb(ndev, length);
1521         if (!skb) {
1522                 netif_err(qdev, drv, qdev->ndev,
1523                           "Couldn't get an skb, need to unwind!.\n");
1524                 rx_ring->rx_dropped++;
1525                 put_page(lbq_desc->p.pg_chunk.page);
1526                 return;
1527         }
1528
1529         addr = lbq_desc->p.pg_chunk.va;
1530         prefetch(addr);
1531
1532         /* The max framesize filter on this chip is set higher than
1533          * MTU since FCoE uses 2k frames.
1534          */
1535         if (skb->len > ndev->mtu + ETH_HLEN) {
1536                 netif_err(qdev, drv, qdev->ndev,
1537                           "Segment too small, dropping.\n");
1538                 rx_ring->rx_dropped++;
1539                 goto err_out;
1540         }
1541         memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1542         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1543                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1544                      length);
1545         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1546                                 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1547                                 length-ETH_HLEN);
1548         skb->len += length-ETH_HLEN;
1549         skb->data_len += length-ETH_HLEN;
1550         skb->truesize += length-ETH_HLEN;
1551
1552         rx_ring->rx_packets++;
1553         rx_ring->rx_bytes += skb->len;
1554         skb->protocol = eth_type_trans(skb, ndev);
1555         skb_checksum_none_assert(skb);
1556
1557         if ((ndev->features & NETIF_F_RXCSUM) &&
1558                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1559                 /* TCP frame. */
1560                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1561                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1562                                      "TCP checksum done!\n");
1563                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1564                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1565                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1566                         /* Unfragmented ipv4 UDP frame. */
1567                         struct iphdr *iph =
1568                                 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
1569                         if (!(iph->frag_off &
1570                                 htons(IP_MF|IP_OFFSET))) {
1571                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1572                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1573                                              qdev->ndev,
1574                                              "UDP checksum done!\n");
1575                         }
1576                 }
1577         }
1578
1579         skb_record_rx_queue(skb, rx_ring->cq_id);
1580         if (vlan_id != 0xffff)
1581                 __vlan_hwaccel_put_tag(skb, vlan_id);
1582         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1583                 napi_gro_receive(napi, skb);
1584         else
1585                 netif_receive_skb(skb);
1586         return;
1587 err_out:
1588         dev_kfree_skb_any(skb);
1589         put_page(lbq_desc->p.pg_chunk.page);
1590 }
1591
1592 /* Process an inbound completion from an rx ring. */
1593 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1594                                         struct rx_ring *rx_ring,
1595                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1596                                         u32 length,
1597                                         u16 vlan_id)
1598 {
1599         struct net_device *ndev = qdev->ndev;
1600         struct sk_buff *skb = NULL;
1601         struct sk_buff *new_skb = NULL;
1602         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1603
1604         skb = sbq_desc->p.skb;
1605         /* Allocate new_skb and copy */
1606         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1607         if (new_skb == NULL) {
1608                 netif_err(qdev, probe, qdev->ndev,
1609                           "No skb available, drop the packet.\n");
1610                 rx_ring->rx_dropped++;
1611                 return;
1612         }
1613         skb_reserve(new_skb, NET_IP_ALIGN);
1614         memcpy(skb_put(new_skb, length), skb->data, length);
1615         skb = new_skb;
1616
1617         /* loopback self test for ethtool */
1618         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1619                 ql_check_lb_frame(qdev, skb);
1620                 dev_kfree_skb_any(skb);
1621                 return;
1622         }
1623
1624         /* The max framesize filter on this chip is set higher than
1625          * MTU since FCoE uses 2k frames.
1626          */
1627         if (skb->len > ndev->mtu + ETH_HLEN) {
1628                 dev_kfree_skb_any(skb);
1629                 rx_ring->rx_dropped++;
1630                 return;
1631         }
1632
1633         prefetch(skb->data);
1634         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1635                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1636                              "%s Multicast.\n",
1637                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1638                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1639                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1640                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1641                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1642                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1643         }
1644         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1645                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1646                              "Promiscuous Packet.\n");
1647
1648         rx_ring->rx_packets++;
1649         rx_ring->rx_bytes += skb->len;
1650         skb->protocol = eth_type_trans(skb, ndev);
1651         skb_checksum_none_assert(skb);
1652
1653         /* If rx checksum is on, and there are no
1654          * csum or frame errors.
1655          */
1656         if ((ndev->features & NETIF_F_RXCSUM) &&
1657                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1658                 /* TCP frame. */
1659                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1660                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1661                                      "TCP checksum done!\n");
1662                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1663                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1664                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1665                         /* Unfragmented ipv4 UDP frame. */
1666                         struct iphdr *iph = (struct iphdr *) skb->data;
1667                         if (!(iph->frag_off &
1668                                 htons(IP_MF|IP_OFFSET))) {
1669                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1670                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1671                                              qdev->ndev,
1672                                              "UDP checksum done!\n");
1673                         }
1674                 }
1675         }
1676
1677         skb_record_rx_queue(skb, rx_ring->cq_id);
1678         if (vlan_id != 0xffff)
1679                 __vlan_hwaccel_put_tag(skb, vlan_id);
1680         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1681                 napi_gro_receive(&rx_ring->napi, skb);
1682         else
1683                 netif_receive_skb(skb);
1684 }
1685
1686 static void ql_realign_skb(struct sk_buff *skb, int len)
1687 {
1688         void *temp_addr = skb->data;
1689
1690         /* Undo the skb_reserve(skb,32) we did before
1691          * giving to hardware, and realign data on
1692          * a 2-byte boundary.
1693          */
1694         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1695         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1696         skb_copy_to_linear_data(skb, temp_addr,
1697                 (unsigned int)len);
1698 }
1699
1700 /*
1701  * This function builds an skb for the given inbound
1702  * completion.  It will be rewritten for readability in the near
1703  * future, but for not it works well.
1704  */
1705 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1706                                        struct rx_ring *rx_ring,
1707                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1708 {
1709         struct bq_desc *lbq_desc;
1710         struct bq_desc *sbq_desc;
1711         struct sk_buff *skb = NULL;
1712         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1713        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1714
1715         /*
1716          * Handle the header buffer if present.
1717          */
1718         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1719             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1720                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1721                              "Header of %d bytes in small buffer.\n", hdr_len);
1722                 /*
1723                  * Headers fit nicely into a small buffer.
1724                  */
1725                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1726                 pci_unmap_single(qdev->pdev,
1727                                 dma_unmap_addr(sbq_desc, mapaddr),
1728                                 dma_unmap_len(sbq_desc, maplen),
1729                                 PCI_DMA_FROMDEVICE);
1730                 skb = sbq_desc->p.skb;
1731                 ql_realign_skb(skb, hdr_len);
1732                 skb_put(skb, hdr_len);
1733                 sbq_desc->p.skb = NULL;
1734         }
1735
1736         /*
1737          * Handle the data buffer(s).
1738          */
1739         if (unlikely(!length)) {        /* Is there data too? */
1740                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1741                              "No Data buffer in this packet.\n");
1742                 return skb;
1743         }
1744
1745         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1746                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1747                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1748                                      "Headers in small, data of %d bytes in small, combine them.\n",
1749                                      length);
1750                         /*
1751                          * Data is less than small buffer size so it's
1752                          * stuffed in a small buffer.
1753                          * For this case we append the data
1754                          * from the "data" small buffer to the "header" small
1755                          * buffer.
1756                          */
1757                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1758                         pci_dma_sync_single_for_cpu(qdev->pdev,
1759                                                     dma_unmap_addr
1760                                                     (sbq_desc, mapaddr),
1761                                                     dma_unmap_len
1762                                                     (sbq_desc, maplen),
1763                                                     PCI_DMA_FROMDEVICE);
1764                         memcpy(skb_put(skb, length),
1765                                sbq_desc->p.skb->data, length);
1766                         pci_dma_sync_single_for_device(qdev->pdev,
1767                                                        dma_unmap_addr
1768                                                        (sbq_desc,
1769                                                         mapaddr),
1770                                                        dma_unmap_len
1771                                                        (sbq_desc,
1772                                                         maplen),
1773                                                        PCI_DMA_FROMDEVICE);
1774                 } else {
1775                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1776                                      "%d bytes in a single small buffer.\n",
1777                                      length);
1778                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1779                         skb = sbq_desc->p.skb;
1780                         ql_realign_skb(skb, length);
1781                         skb_put(skb, length);
1782                         pci_unmap_single(qdev->pdev,
1783                                          dma_unmap_addr(sbq_desc,
1784                                                         mapaddr),
1785                                          dma_unmap_len(sbq_desc,
1786                                                        maplen),
1787                                          PCI_DMA_FROMDEVICE);
1788                         sbq_desc->p.skb = NULL;
1789                 }
1790         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1791                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793                                      "Header in small, %d bytes in large. Chain large to small!\n",
1794                                      length);
1795                         /*
1796                          * The data is in a single large buffer.  We
1797                          * chain it to the header buffer's skb and let
1798                          * it rip.
1799                          */
1800                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1801                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1802                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1803                                      lbq_desc->p.pg_chunk.offset, length);
1804                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1805                                                 lbq_desc->p.pg_chunk.offset,
1806                                                 length);
1807                         skb->len += length;
1808                         skb->data_len += length;
1809                         skb->truesize += length;
1810                 } else {
1811                         /*
1812                          * The headers and data are in a single large buffer. We
1813                          * copy it to a new skb and let it go. This can happen with
1814                          * jumbo mtu on a non-TCP/UDP frame.
1815                          */
1816                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1817                         skb = netdev_alloc_skb(qdev->ndev, length);
1818                         if (skb == NULL) {
1819                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1820                                              "No skb available, drop the packet.\n");
1821                                 return NULL;
1822                         }
1823                         pci_unmap_page(qdev->pdev,
1824                                        dma_unmap_addr(lbq_desc,
1825                                                       mapaddr),
1826                                        dma_unmap_len(lbq_desc, maplen),
1827                                        PCI_DMA_FROMDEVICE);
1828                         skb_reserve(skb, NET_IP_ALIGN);
1829                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1830                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1831                                      length);
1832                         skb_fill_page_desc(skb, 0,
1833                                                 lbq_desc->p.pg_chunk.page,
1834                                                 lbq_desc->p.pg_chunk.offset,
1835                                                 length);
1836                         skb->len += length;
1837                         skb->data_len += length;
1838                         skb->truesize += length;
1839                         length -= length;
1840                         __pskb_pull_tail(skb,
1841                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1842                                 VLAN_ETH_HLEN : ETH_HLEN);
1843                 }
1844         } else {
1845                 /*
1846                  * The data is in a chain of large buffers
1847                  * pointed to by a small buffer.  We loop
1848                  * thru and chain them to the our small header
1849                  * buffer's skb.
1850                  * frags:  There are 18 max frags and our small
1851                  *         buffer will hold 32 of them. The thing is,
1852                  *         we'll use 3 max for our 9000 byte jumbo
1853                  *         frames.  If the MTU goes up we could
1854                  *          eventually be in trouble.
1855                  */
1856                 int size, i = 0;
1857                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1858                 pci_unmap_single(qdev->pdev,
1859                                  dma_unmap_addr(sbq_desc, mapaddr),
1860                                  dma_unmap_len(sbq_desc, maplen),
1861                                  PCI_DMA_FROMDEVICE);
1862                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1863                         /*
1864                          * This is an non TCP/UDP IP frame, so
1865                          * the headers aren't split into a small
1866                          * buffer.  We have to use the small buffer
1867                          * that contains our sg list as our skb to
1868                          * send upstairs. Copy the sg list here to
1869                          * a local buffer and use it to find the
1870                          * pages to chain.
1871                          */
1872                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1873                                      "%d bytes of headers & data in chain of large.\n",
1874                                      length);
1875                         skb = sbq_desc->p.skb;
1876                         sbq_desc->p.skb = NULL;
1877                         skb_reserve(skb, NET_IP_ALIGN);
1878                 }
1879                 while (length > 0) {
1880                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1881                         size = (length < rx_ring->lbq_buf_size) ? length :
1882                                 rx_ring->lbq_buf_size;
1883
1884                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1885                                      "Adding page %d to skb for %d bytes.\n",
1886                                      i, size);
1887                         skb_fill_page_desc(skb, i,
1888                                                 lbq_desc->p.pg_chunk.page,
1889                                                 lbq_desc->p.pg_chunk.offset,
1890                                                 size);
1891                         skb->len += size;
1892                         skb->data_len += size;
1893                         skb->truesize += size;
1894                         length -= size;
1895                         i++;
1896                 }
1897                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1898                                 VLAN_ETH_HLEN : ETH_HLEN);
1899         }
1900         return skb;
1901 }
1902
1903 /* Process an inbound completion from an rx ring. */
1904 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1905                                    struct rx_ring *rx_ring,
1906                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1907                                    u16 vlan_id)
1908 {
1909         struct net_device *ndev = qdev->ndev;
1910         struct sk_buff *skb = NULL;
1911
1912         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1913
1914         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1915         if (unlikely(!skb)) {
1916                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1917                              "No skb available, drop packet.\n");
1918                 rx_ring->rx_dropped++;
1919                 return;
1920         }
1921
1922         /* The max framesize filter on this chip is set higher than
1923          * MTU since FCoE uses 2k frames.
1924          */
1925         if (skb->len > ndev->mtu + ETH_HLEN) {
1926                 dev_kfree_skb_any(skb);
1927                 rx_ring->rx_dropped++;
1928                 return;
1929         }
1930
1931         /* loopback self test for ethtool */
1932         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1933                 ql_check_lb_frame(qdev, skb);
1934                 dev_kfree_skb_any(skb);
1935                 return;
1936         }
1937
1938         prefetch(skb->data);
1939         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1940                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1941                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1942                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1943                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1944                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1945                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1946                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1947                 rx_ring->rx_multicast++;
1948         }
1949         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1950                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1951                              "Promiscuous Packet.\n");
1952         }
1953
1954         skb->protocol = eth_type_trans(skb, ndev);
1955         skb_checksum_none_assert(skb);
1956
1957         /* If rx checksum is on, and there are no
1958          * csum or frame errors.
1959          */
1960         if ((ndev->features & NETIF_F_RXCSUM) &&
1961                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1962                 /* TCP frame. */
1963                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1964                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1965                                      "TCP checksum done!\n");
1966                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1967                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1968                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1969                 /* Unfragmented ipv4 UDP frame. */
1970                         struct iphdr *iph = (struct iphdr *) skb->data;
1971                         if (!(iph->frag_off &
1972                                 htons(IP_MF|IP_OFFSET))) {
1973                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1974                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1975                                              "TCP checksum done!\n");
1976                         }
1977                 }
1978         }
1979
1980         rx_ring->rx_packets++;
1981         rx_ring->rx_bytes += skb->len;
1982         skb_record_rx_queue(skb, rx_ring->cq_id);
1983         if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1984                 __vlan_hwaccel_put_tag(skb, vlan_id);
1985         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1986                 napi_gro_receive(&rx_ring->napi, skb);
1987         else
1988                 netif_receive_skb(skb);
1989 }
1990
1991 /* Process an inbound completion from an rx ring. */
1992 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1993                                         struct rx_ring *rx_ring,
1994                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
1995 {
1996         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1997         u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1998                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
1999                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2000
2001         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2002
2003         /* Frame error, so drop the packet. */
2004         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
2005                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2);
2006                 return (unsigned long)length;
2007         }
2008
2009         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2010                 /* The data and headers are split into
2011                  * separate buffers.
2012                  */
2013                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2014                                                 vlan_id);
2015         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2016                 /* The data fit in a single small buffer.
2017                  * Allocate a new skb, copy the data and
2018                  * return the buffer to the free pool.
2019                  */
2020                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2021                                                 length, vlan_id);
2022         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2023                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2024                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2025                 /* TCP packet in a page chunk that's been checksummed.
2026                  * Tack it on to our GRO skb and let it go.
2027                  */
2028                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2029                                                 length, vlan_id);
2030         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2031                 /* Non-TCP packet in a page chunk. Allocate an
2032                  * skb, tack it on frags, and send it up.
2033                  */
2034                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2035                                                 length, vlan_id);
2036         } else {
2037                 /* Non-TCP/UDP large frames that span multiple buffers
2038                  * can be processed corrrectly by the split frame logic.
2039                  */
2040                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2041                                                 vlan_id);
2042         }
2043
2044         return (unsigned long)length;
2045 }
2046
2047 /* Process an outbound completion from an rx ring. */
2048 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2049                                    struct ob_mac_iocb_rsp *mac_rsp)
2050 {
2051         struct tx_ring *tx_ring;
2052         struct tx_ring_desc *tx_ring_desc;
2053
2054         QL_DUMP_OB_MAC_RSP(mac_rsp);
2055         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2056         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2057         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2058         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2059         tx_ring->tx_packets++;
2060         dev_kfree_skb(tx_ring_desc->skb);
2061         tx_ring_desc->skb = NULL;
2062
2063         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2064                                         OB_MAC_IOCB_RSP_S |
2065                                         OB_MAC_IOCB_RSP_L |
2066                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2067                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2068                         netif_warn(qdev, tx_done, qdev->ndev,
2069                                    "Total descriptor length did not match transfer length.\n");
2070                 }
2071                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2072                         netif_warn(qdev, tx_done, qdev->ndev,
2073                                    "Frame too short to be valid, not sent.\n");
2074                 }
2075                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2076                         netif_warn(qdev, tx_done, qdev->ndev,
2077                                    "Frame too long, but sent anyway.\n");
2078                 }
2079                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2080                         netif_warn(qdev, tx_done, qdev->ndev,
2081                                    "PCI backplane error. Frame not sent.\n");
2082                 }
2083         }
2084         atomic_inc(&tx_ring->tx_count);
2085 }
2086
2087 /* Fire up a handler to reset the MPI processor. */
2088 void ql_queue_fw_error(struct ql_adapter *qdev)
2089 {
2090         ql_link_off(qdev);
2091         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2092 }
2093
2094 void ql_queue_asic_error(struct ql_adapter *qdev)
2095 {
2096         ql_link_off(qdev);
2097         ql_disable_interrupts(qdev);
2098         /* Clear adapter up bit to signal the recovery
2099          * process that it shouldn't kill the reset worker
2100          * thread
2101          */
2102         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2103         /* Set asic recovery bit to indicate reset process that we are
2104          * in fatal error recovery process rather than normal close
2105          */
2106         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2107         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2108 }
2109
2110 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2111                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2112 {
2113         switch (ib_ae_rsp->event) {
2114         case MGMT_ERR_EVENT:
2115                 netif_err(qdev, rx_err, qdev->ndev,
2116                           "Management Processor Fatal Error.\n");
2117                 ql_queue_fw_error(qdev);
2118                 return;
2119
2120         case CAM_LOOKUP_ERR_EVENT:
2121                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2122                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2123                 ql_queue_asic_error(qdev);
2124                 return;
2125
2126         case SOFT_ECC_ERROR_EVENT:
2127                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2128                 ql_queue_asic_error(qdev);
2129                 break;
2130
2131         case PCI_ERR_ANON_BUF_RD:
2132                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2133                                         "anonymous buffers from rx_ring %d.\n",
2134                                         ib_ae_rsp->q_id);
2135                 ql_queue_asic_error(qdev);
2136                 break;
2137
2138         default:
2139                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2140                           ib_ae_rsp->event);
2141                 ql_queue_asic_error(qdev);
2142                 break;
2143         }
2144 }
2145
2146 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2147 {
2148         struct ql_adapter *qdev = rx_ring->qdev;
2149         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2150         struct ob_mac_iocb_rsp *net_rsp = NULL;
2151         int count = 0;
2152
2153         struct tx_ring *tx_ring;
2154         /* While there are entries in the completion queue. */
2155         while (prod != rx_ring->cnsmr_idx) {
2156
2157                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2158                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2159                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2160
2161                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2162                 rmb();
2163                 switch (net_rsp->opcode) {
2164
2165                 case OPCODE_OB_MAC_TSO_IOCB:
2166                 case OPCODE_OB_MAC_IOCB:
2167                         ql_process_mac_tx_intr(qdev, net_rsp);
2168                         break;
2169                 default:
2170                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2171                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2172                                      net_rsp->opcode);
2173                 }
2174                 count++;
2175                 ql_update_cq(rx_ring);
2176                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2177         }
2178         if (!net_rsp)
2179                 return 0;
2180         ql_write_cq_idx(rx_ring);
2181         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2182         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2183                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2184                         /*
2185                          * The queue got stopped because the tx_ring was full.
2186                          * Wake it up, because it's now at least 25% empty.
2187                          */
2188                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2189         }
2190
2191         return count;
2192 }
2193
2194 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2195 {
2196         struct ql_adapter *qdev = rx_ring->qdev;
2197         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2198         struct ql_net_rsp_iocb *net_rsp;
2199         int count = 0;
2200
2201         /* While there are entries in the completion queue. */
2202         while (prod != rx_ring->cnsmr_idx) {
2203
2204                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2205                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2206                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2207
2208                 net_rsp = rx_ring->curr_entry;
2209                 rmb();
2210                 switch (net_rsp->opcode) {
2211                 case OPCODE_IB_MAC_IOCB:
2212                         ql_process_mac_rx_intr(qdev, rx_ring,
2213                                                (struct ib_mac_iocb_rsp *)
2214                                                net_rsp);
2215                         break;
2216
2217                 case OPCODE_IB_AE_IOCB:
2218                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2219                                                 net_rsp);
2220                         break;
2221                 default:
2222                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2223                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2224                                      net_rsp->opcode);
2225                         break;
2226                 }
2227                 count++;
2228                 ql_update_cq(rx_ring);
2229                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2230                 if (count == budget)
2231                         break;
2232         }
2233         ql_update_buffer_queues(qdev, rx_ring);
2234         ql_write_cq_idx(rx_ring);
2235         return count;
2236 }
2237
2238 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2239 {
2240         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2241         struct ql_adapter *qdev = rx_ring->qdev;
2242         struct rx_ring *trx_ring;
2243         int i, work_done = 0;
2244         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2245
2246         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2247                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2248
2249         /* Service the TX rings first.  They start
2250          * right after the RSS rings. */
2251         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2252                 trx_ring = &qdev->rx_ring[i];
2253                 /* If this TX completion ring belongs to this vector and
2254                  * it's not empty then service it.
2255                  */
2256                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2257                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2258                                         trx_ring->cnsmr_idx)) {
2259                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2260                                      "%s: Servicing TX completion ring %d.\n",
2261                                      __func__, trx_ring->cq_id);
2262                         ql_clean_outbound_rx_ring(trx_ring);
2263                 }
2264         }
2265
2266         /*
2267          * Now service the RSS ring if it's active.
2268          */
2269         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2270                                         rx_ring->cnsmr_idx) {
2271                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2272                              "%s: Servicing RX completion ring %d.\n",
2273                              __func__, rx_ring->cq_id);
2274                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2275         }
2276
2277         if (work_done < budget) {
2278                 napi_complete(napi);
2279                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2280         }
2281         return work_done;
2282 }
2283
2284 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2285 {
2286         struct ql_adapter *qdev = netdev_priv(ndev);
2287
2288         if (features & NETIF_F_HW_VLAN_RX) {
2289                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2290                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2291         } else {
2292                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2293         }
2294 }
2295
2296 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2297         netdev_features_t features)
2298 {
2299         /*
2300          * Since there is no support for separate rx/tx vlan accel
2301          * enable/disable make sure tx flag is always in same state as rx.
2302          */
2303         if (features & NETIF_F_HW_VLAN_RX)
2304                 features |= NETIF_F_HW_VLAN_TX;
2305         else
2306                 features &= ~NETIF_F_HW_VLAN_TX;
2307
2308         return features;
2309 }
2310
2311 static int qlge_set_features(struct net_device *ndev,
2312         netdev_features_t features)
2313 {
2314         netdev_features_t changed = ndev->features ^ features;
2315
2316         if (changed & NETIF_F_HW_VLAN_RX)
2317                 qlge_vlan_mode(ndev, features);
2318
2319         return 0;
2320 }
2321
2322 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2323 {
2324         u32 enable_bit = MAC_ADDR_E;
2325         int err;
2326
2327         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2328                                   MAC_ADDR_TYPE_VLAN, vid);
2329         if (err)
2330                 netif_err(qdev, ifup, qdev->ndev,
2331                           "Failed to init vlan address.\n");
2332         return err;
2333 }
2334
2335 static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2336 {
2337         struct ql_adapter *qdev = netdev_priv(ndev);
2338         int status;
2339         int err;
2340
2341         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2342         if (status)
2343                 return status;
2344
2345         err = __qlge_vlan_rx_add_vid(qdev, vid);
2346         set_bit(vid, qdev->active_vlans);
2347
2348         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2349
2350         return err;
2351 }
2352
2353 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2354 {
2355         u32 enable_bit = 0;
2356         int err;
2357
2358         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2359                                   MAC_ADDR_TYPE_VLAN, vid);
2360         if (err)
2361                 netif_err(qdev, ifup, qdev->ndev,
2362                           "Failed to clear vlan address.\n");
2363         return err;
2364 }
2365
2366 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2367 {
2368         struct ql_adapter *qdev = netdev_priv(ndev);
2369         int status;
2370         int err;
2371
2372         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2373         if (status)
2374                 return status;
2375
2376         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2377         clear_bit(vid, qdev->active_vlans);
2378
2379         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2380
2381         return err;
2382 }
2383
2384 static void qlge_restore_vlan(struct ql_adapter *qdev)
2385 {
2386         int status;
2387         u16 vid;
2388
2389         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2390         if (status)
2391                 return;
2392
2393         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2394                 __qlge_vlan_rx_add_vid(qdev, vid);
2395
2396         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2397 }
2398
2399 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2400 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2401 {
2402         struct rx_ring *rx_ring = dev_id;
2403         napi_schedule(&rx_ring->napi);
2404         return IRQ_HANDLED;
2405 }
2406
2407 /* This handles a fatal error, MPI activity, and the default
2408  * rx_ring in an MSI-X multiple vector environment.
2409  * In MSI/Legacy environment it also process the rest of
2410  * the rx_rings.
2411  */
2412 static irqreturn_t qlge_isr(int irq, void *dev_id)
2413 {
2414         struct rx_ring *rx_ring = dev_id;
2415         struct ql_adapter *qdev = rx_ring->qdev;
2416         struct intr_context *intr_context = &qdev->intr_context[0];
2417         u32 var;
2418         int work_done = 0;
2419
2420         spin_lock(&qdev->hw_lock);
2421         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2422                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2423                              "Shared Interrupt, Not ours!\n");
2424                 spin_unlock(&qdev->hw_lock);
2425                 return IRQ_NONE;
2426         }
2427         spin_unlock(&qdev->hw_lock);
2428
2429         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2430
2431         /*
2432          * Check for fatal error.
2433          */
2434         if (var & STS_FE) {
2435                 ql_queue_asic_error(qdev);
2436                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2437                 var = ql_read32(qdev, ERR_STS);
2438                 netdev_err(qdev->ndev, "Resetting chip. "
2439                                         "Error Status Register = 0x%x\n", var);
2440                 return IRQ_HANDLED;
2441         }
2442
2443         /*
2444          * Check MPI processor activity.
2445          */
2446         if ((var & STS_PI) &&
2447                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2448                 /*
2449                  * We've got an async event or mailbox completion.
2450                  * Handle it and clear the source of the interrupt.
2451                  */
2452                 netif_err(qdev, intr, qdev->ndev,
2453                           "Got MPI processor interrupt.\n");
2454                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2455                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2456                 queue_delayed_work_on(smp_processor_id(),
2457                                 qdev->workqueue, &qdev->mpi_work, 0);
2458                 work_done++;
2459         }
2460
2461         /*
2462          * Get the bit-mask that shows the active queues for this
2463          * pass.  Compare it to the queues that this irq services
2464          * and call napi if there's a match.
2465          */
2466         var = ql_read32(qdev, ISR1);
2467         if (var & intr_context->irq_mask) {
2468                 netif_info(qdev, intr, qdev->ndev,
2469                            "Waking handler for rx_ring[0].\n");
2470                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2471                 napi_schedule(&rx_ring->napi);
2472                 work_done++;
2473         }
2474         ql_enable_completion_interrupt(qdev, intr_context->intr);
2475         return work_done ? IRQ_HANDLED : IRQ_NONE;
2476 }
2477
2478 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2479 {
2480
2481         if (skb_is_gso(skb)) {
2482                 int err;
2483                 if (skb_header_cloned(skb)) {
2484                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2485                         if (err)
2486                                 return err;
2487                 }
2488
2489                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2490                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2491                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2492                 mac_iocb_ptr->total_hdrs_len =
2493                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2494                 mac_iocb_ptr->net_trans_offset =
2495                     cpu_to_le16(skb_network_offset(skb) |
2496                                 skb_transport_offset(skb)
2497                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2498                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2499                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2500                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2501                         struct iphdr *iph = ip_hdr(skb);
2502                         iph->check = 0;
2503                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2504                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2505                                                                  iph->daddr, 0,
2506                                                                  IPPROTO_TCP,
2507                                                                  0);
2508                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2509                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2510                         tcp_hdr(skb)->check =
2511                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2512                                              &ipv6_hdr(skb)->daddr,
2513                                              0, IPPROTO_TCP, 0);
2514                 }
2515                 return 1;
2516         }
2517         return 0;
2518 }
2519
2520 static void ql_hw_csum_setup(struct sk_buff *skb,
2521                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2522 {
2523         int len;
2524         struct iphdr *iph = ip_hdr(skb);
2525         __sum16 *check;
2526         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2527         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2528         mac_iocb_ptr->net_trans_offset =
2529                 cpu_to_le16(skb_network_offset(skb) |
2530                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2531
2532         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2533         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2534         if (likely(iph->protocol == IPPROTO_TCP)) {
2535                 check = &(tcp_hdr(skb)->check);
2536                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2537                 mac_iocb_ptr->total_hdrs_len =
2538                     cpu_to_le16(skb_transport_offset(skb) +
2539                                 (tcp_hdr(skb)->doff << 2));
2540         } else {
2541                 check = &(udp_hdr(skb)->check);
2542                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2543                 mac_iocb_ptr->total_hdrs_len =
2544                     cpu_to_le16(skb_transport_offset(skb) +
2545                                 sizeof(struct udphdr));
2546         }
2547         *check = ~csum_tcpudp_magic(iph->saddr,
2548                                     iph->daddr, len, iph->protocol, 0);
2549 }
2550
2551 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2552 {
2553         struct tx_ring_desc *tx_ring_desc;
2554         struct ob_mac_iocb_req *mac_iocb_ptr;
2555         struct ql_adapter *qdev = netdev_priv(ndev);
2556         int tso;
2557         struct tx_ring *tx_ring;
2558         u32 tx_ring_idx = (u32) skb->queue_mapping;
2559
2560         tx_ring = &qdev->tx_ring[tx_ring_idx];
2561
2562         if (skb_padto(skb, ETH_ZLEN))
2563                 return NETDEV_TX_OK;
2564
2565         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2566                 netif_info(qdev, tx_queued, qdev->ndev,
2567                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2568                            __func__, tx_ring_idx);
2569                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2570                 tx_ring->tx_errors++;
2571                 return NETDEV_TX_BUSY;
2572         }
2573         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2574         mac_iocb_ptr = tx_ring_desc->queue_entry;
2575         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2576
2577         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2578         mac_iocb_ptr->tid = tx_ring_desc->index;
2579         /* We use the upper 32-bits to store the tx queue for this IO.
2580          * When we get the completion we can use it to establish the context.
2581          */
2582         mac_iocb_ptr->txq_idx = tx_ring_idx;
2583         tx_ring_desc->skb = skb;
2584
2585         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2586
2587         if (vlan_tx_tag_present(skb)) {
2588                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2589                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2590                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2591                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2592         }
2593         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2594         if (tso < 0) {
2595                 dev_kfree_skb_any(skb);
2596                 return NETDEV_TX_OK;
2597         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2598                 ql_hw_csum_setup(skb,
2599                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2600         }
2601         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2602                         NETDEV_TX_OK) {
2603                 netif_err(qdev, tx_queued, qdev->ndev,
2604                           "Could not map the segments.\n");
2605                 tx_ring->tx_errors++;
2606                 return NETDEV_TX_BUSY;
2607         }
2608         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2609         tx_ring->prod_idx++;
2610         if (tx_ring->prod_idx == tx_ring->wq_len)
2611                 tx_ring->prod_idx = 0;
2612         wmb();
2613
2614         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2615         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2616                      "tx queued, slot %d, len %d\n",
2617                      tx_ring->prod_idx, skb->len);
2618
2619         atomic_dec(&tx_ring->tx_count);
2620
2621         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2622                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2623                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2624                         /*
2625                          * The queue got stopped because the tx_ring was full.
2626                          * Wake it up, because it's now at least 25% empty.
2627                          */
2628                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2629         }
2630         return NETDEV_TX_OK;
2631 }
2632
2633
2634 static void ql_free_shadow_space(struct ql_adapter *qdev)
2635 {
2636         if (qdev->rx_ring_shadow_reg_area) {
2637                 pci_free_consistent(qdev->pdev,
2638                                     PAGE_SIZE,
2639                                     qdev->rx_ring_shadow_reg_area,
2640                                     qdev->rx_ring_shadow_reg_dma);
2641                 qdev->rx_ring_shadow_reg_area = NULL;
2642         }
2643         if (qdev->tx_ring_shadow_reg_area) {
2644                 pci_free_consistent(qdev->pdev,
2645                                     PAGE_SIZE,
2646                                     qdev->tx_ring_shadow_reg_area,
2647                                     qdev->tx_ring_shadow_reg_dma);
2648                 qdev->tx_ring_shadow_reg_area = NULL;
2649         }
2650 }
2651
2652 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2653 {
2654         qdev->rx_ring_shadow_reg_area =
2655             pci_alloc_consistent(qdev->pdev,
2656                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2657         if (qdev->rx_ring_shadow_reg_area == NULL) {
2658                 netif_err(qdev, ifup, qdev->ndev,
2659                           "Allocation of RX shadow space failed.\n");
2660                 return -ENOMEM;
2661         }
2662         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2663         qdev->tx_ring_shadow_reg_area =
2664             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2665                                  &qdev->tx_ring_shadow_reg_dma);
2666         if (qdev->tx_ring_shadow_reg_area == NULL) {
2667                 netif_err(qdev, ifup, qdev->ndev,
2668                           "Allocation of TX shadow space failed.\n");
2669                 goto err_wqp_sh_area;
2670         }
2671         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2672         return 0;
2673
2674 err_wqp_sh_area:
2675         pci_free_consistent(qdev->pdev,
2676                             PAGE_SIZE,
2677                             qdev->rx_ring_shadow_reg_area,
2678                             qdev->rx_ring_shadow_reg_dma);
2679         return -ENOMEM;
2680 }
2681
2682 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2683 {
2684         struct tx_ring_desc *tx_ring_desc;
2685         int i;
2686         struct ob_mac_iocb_req *mac_iocb_ptr;
2687
2688         mac_iocb_ptr = tx_ring->wq_base;
2689         tx_ring_desc = tx_ring->q;
2690         for (i = 0; i < tx_ring->wq_len; i++) {
2691                 tx_ring_desc->index = i;
2692                 tx_ring_desc->skb = NULL;
2693                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2694                 mac_iocb_ptr++;
2695                 tx_ring_desc++;
2696         }
2697         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2698 }
2699
2700 static void ql_free_tx_resources(struct ql_adapter *qdev,
2701                                  struct tx_ring *tx_ring)
2702 {
2703         if (tx_ring->wq_base) {
2704                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2705                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2706                 tx_ring->wq_base = NULL;
2707         }
2708         kfree(tx_ring->q);
2709         tx_ring->q = NULL;
2710 }
2711
2712 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2713                                  struct tx_ring *tx_ring)
2714 {
2715         tx_ring->wq_base =
2716             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2717                                  &tx_ring->wq_base_dma);
2718
2719         if ((tx_ring->wq_base == NULL) ||
2720             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2721                 goto pci_alloc_err;
2722
2723         tx_ring->q =
2724             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2725         if (tx_ring->q == NULL)
2726                 goto err;
2727
2728         return 0;
2729 err:
2730         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2731                             tx_ring->wq_base, tx_ring->wq_base_dma);
2732         tx_ring->wq_base = NULL;
2733 pci_alloc_err:
2734         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2735         return -ENOMEM;
2736 }
2737
2738 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2739 {
2740         struct bq_desc *lbq_desc;
2741
2742         uint32_t  curr_idx, clean_idx;
2743
2744         curr_idx = rx_ring->lbq_curr_idx;
2745         clean_idx = rx_ring->lbq_clean_idx;
2746         while (curr_idx != clean_idx) {
2747                 lbq_desc = &rx_ring->lbq[curr_idx];
2748
2749                 if (lbq_desc->p.pg_chunk.last_flag) {
2750                         pci_unmap_page(qdev->pdev,
2751                                 lbq_desc->p.pg_chunk.map,
2752                                 ql_lbq_block_size(qdev),
2753                                        PCI_DMA_FROMDEVICE);
2754                         lbq_desc->p.pg_chunk.last_flag = 0;
2755                 }
2756
2757                 put_page(lbq_desc->p.pg_chunk.page);
2758                 lbq_desc->p.pg_chunk.page = NULL;
2759
2760                 if (++curr_idx == rx_ring->lbq_len)
2761                         curr_idx = 0;
2762
2763         }
2764 }
2765
2766 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2767 {
2768         int i;
2769         struct bq_desc *sbq_desc;
2770
2771         for (i = 0; i < rx_ring->sbq_len; i++) {
2772                 sbq_desc = &rx_ring->sbq[i];
2773                 if (sbq_desc == NULL) {
2774                         netif_err(qdev, ifup, qdev->ndev,
2775                                   "sbq_desc %d is NULL.\n", i);
2776                         return;
2777                 }
2778                 if (sbq_desc->p.skb) {
2779                         pci_unmap_single(qdev->pdev,
2780                                          dma_unmap_addr(sbq_desc, mapaddr),
2781                                          dma_unmap_len(sbq_desc, maplen),
2782                                          PCI_DMA_FROMDEVICE);
2783                         dev_kfree_skb(sbq_desc->p.skb);
2784                         sbq_desc->p.skb = NULL;
2785                 }
2786         }
2787 }
2788
2789 /* Free all large and small rx buffers associated
2790  * with the completion queues for this device.
2791  */
2792 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2793 {
2794         int i;
2795         struct rx_ring *rx_ring;
2796
2797         for (i = 0; i < qdev->rx_ring_count; i++) {
2798                 rx_ring = &qdev->rx_ring[i];
2799                 if (rx_ring->lbq)
2800                         ql_free_lbq_buffers(qdev, rx_ring);
2801                 if (rx_ring->sbq)
2802                         ql_free_sbq_buffers(qdev, rx_ring);
2803         }
2804 }
2805
2806 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2807 {
2808         struct rx_ring *rx_ring;
2809         int i;
2810
2811         for (i = 0; i < qdev->rx_ring_count; i++) {
2812                 rx_ring = &qdev->rx_ring[i];
2813                 if (rx_ring->type != TX_Q)
2814                         ql_update_buffer_queues(qdev, rx_ring);
2815         }
2816 }
2817
2818 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2819                                 struct rx_ring *rx_ring)
2820 {
2821         int i;
2822         struct bq_desc *lbq_desc;
2823         __le64 *bq = rx_ring->lbq_base;
2824
2825         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2826         for (i = 0; i < rx_ring->lbq_len; i++) {
2827                 lbq_desc = &rx_ring->lbq[i];
2828                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2829                 lbq_desc->index = i;
2830                 lbq_desc->addr = bq;
2831                 bq++;
2832         }
2833 }
2834
2835 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2836                                 struct rx_ring *rx_ring)
2837 {
2838         int i;
2839         struct bq_desc *sbq_desc;
2840         __le64 *bq = rx_ring->sbq_base;
2841
2842         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2843         for (i = 0; i < rx_ring->sbq_len; i++) {
2844                 sbq_desc = &rx_ring->sbq[i];
2845                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2846                 sbq_desc->index = i;
2847                 sbq_desc->addr = bq;
2848                 bq++;
2849         }
2850 }
2851
2852 static void ql_free_rx_resources(struct ql_adapter *qdev,
2853                                  struct rx_ring *rx_ring)
2854 {
2855         /* Free the small buffer queue. */
2856         if (rx_ring->sbq_base) {
2857                 pci_free_consistent(qdev->pdev,
2858                                     rx_ring->sbq_size,
2859                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2860                 rx_ring->sbq_base = NULL;
2861         }
2862
2863         /* Free the small buffer queue control blocks. */
2864         kfree(rx_ring->sbq);
2865         rx_ring->sbq = NULL;
2866
2867         /* Free the large buffer queue. */
2868         if (rx_ring->lbq_base) {
2869                 pci_free_consistent(qdev->pdev,
2870                                     rx_ring->lbq_size,
2871                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2872                 rx_ring->lbq_base = NULL;
2873         }
2874
2875         /* Free the large buffer queue control blocks. */
2876         kfree(rx_ring->lbq);
2877         rx_ring->lbq = NULL;
2878
2879         /* Free the rx queue. */
2880         if (rx_ring->cq_base) {
2881                 pci_free_consistent(qdev->pdev,
2882                                     rx_ring->cq_size,
2883                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2884                 rx_ring->cq_base = NULL;
2885         }
2886 }
2887
2888 /* Allocate queues and buffers for this completions queue based
2889  * on the values in the parameter structure. */
2890 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2891                                  struct rx_ring *rx_ring)
2892 {
2893
2894         /*
2895          * Allocate the completion queue for this rx_ring.
2896          */
2897         rx_ring->cq_base =
2898             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2899                                  &rx_ring->cq_base_dma);
2900
2901         if (rx_ring->cq_base == NULL) {
2902                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2903                 return -ENOMEM;
2904         }
2905
2906         if (rx_ring->sbq_len) {
2907                 /*
2908                  * Allocate small buffer queue.
2909                  */
2910                 rx_ring->sbq_base =
2911                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2912                                          &rx_ring->sbq_base_dma);
2913
2914                 if (rx_ring->sbq_base == NULL) {
2915                         netif_err(qdev, ifup, qdev->ndev,
2916                                   "Small buffer queue allocation failed.\n");
2917                         goto err_mem;
2918                 }
2919
2920                 /*
2921                  * Allocate small buffer queue control blocks.
2922                  */
2923                 rx_ring->sbq =
2924                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2925                             GFP_KERNEL);
2926                 if (rx_ring->sbq == NULL) {
2927                         netif_err(qdev, ifup, qdev->ndev,
2928                                   "Small buffer queue control block allocation failed.\n");
2929                         goto err_mem;
2930                 }
2931
2932                 ql_init_sbq_ring(qdev, rx_ring);
2933         }
2934
2935         if (rx_ring->lbq_len) {
2936                 /*
2937                  * Allocate large buffer queue.
2938                  */
2939                 rx_ring->lbq_base =
2940                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2941                                          &rx_ring->lbq_base_dma);
2942
2943                 if (rx_ring->lbq_base == NULL) {
2944                         netif_err(qdev, ifup, qdev->ndev,
2945                                   "Large buffer queue allocation failed.\n");
2946                         goto err_mem;
2947                 }
2948                 /*
2949                  * Allocate large buffer queue control blocks.
2950                  */
2951                 rx_ring->lbq =
2952                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2953                             GFP_KERNEL);
2954                 if (rx_ring->lbq == NULL) {
2955                         netif_err(qdev, ifup, qdev->ndev,
2956                                   "Large buffer queue control block allocation failed.\n");
2957                         goto err_mem;
2958                 }
2959
2960                 ql_init_lbq_ring(qdev, rx_ring);
2961         }
2962
2963         return 0;
2964
2965 err_mem:
2966         ql_free_rx_resources(qdev, rx_ring);
2967         return -ENOMEM;
2968 }
2969
2970 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2971 {
2972         struct tx_ring *tx_ring;
2973         struct tx_ring_desc *tx_ring_desc;
2974         int i, j;
2975
2976         /*
2977          * Loop through all queues and free
2978          * any resources.
2979          */
2980         for (j = 0; j < qdev->tx_ring_count; j++) {
2981                 tx_ring = &qdev->tx_ring[j];
2982                 for (i = 0; i < tx_ring->wq_len; i++) {
2983                         tx_ring_desc = &tx_ring->q[i];
2984                         if (tx_ring_desc && tx_ring_desc->skb) {
2985                                 netif_err(qdev, ifdown, qdev->ndev,
2986                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
2987                                           tx_ring_desc->skb, j,
2988                                           tx_ring_desc->index);
2989                                 ql_unmap_send(qdev, tx_ring_desc,
2990                                               tx_ring_desc->map_cnt);
2991                                 dev_kfree_skb(tx_ring_desc->skb);
2992                                 tx_ring_desc->skb = NULL;
2993                         }
2994                 }
2995         }
2996 }
2997
2998 static void ql_free_mem_resources(struct ql_adapter *qdev)
2999 {
3000         int i;
3001
3002         for (i = 0; i < qdev->tx_ring_count; i++)
3003                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3004         for (i = 0; i < qdev->rx_ring_count; i++)
3005                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3006         ql_free_shadow_space(qdev);
3007 }
3008
3009 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3010 {
3011         int i;
3012
3013         /* Allocate space for our shadow registers and such. */
3014         if (ql_alloc_shadow_space(qdev))
3015                 return -ENOMEM;
3016
3017         for (i = 0; i < qdev->rx_ring_count; i++) {
3018                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3019                         netif_err(qdev, ifup, qdev->ndev,
3020                                   "RX resource allocation failed.\n");
3021                         goto err_mem;
3022                 }
3023         }
3024         /* Allocate tx queue resources */
3025         for (i = 0; i < qdev->tx_ring_count; i++) {
3026                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3027                         netif_err(qdev, ifup, qdev->ndev,
3028                                   "TX resource allocation failed.\n");
3029                         goto err_mem;
3030                 }
3031         }
3032         return 0;
3033
3034 err_mem:
3035         ql_free_mem_resources(qdev);
3036         return -ENOMEM;
3037 }
3038
3039 /* Set up the rx ring control block and pass it to the chip.
3040  * The control block is defined as
3041  * "Completion Queue Initialization Control Block", or cqicb.
3042  */
3043 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3044 {
3045         struct cqicb *cqicb = &rx_ring->cqicb;
3046         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3047                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3048         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3049                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3050         void __iomem *doorbell_area =
3051             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3052         int err = 0;
3053         u16 bq_len;
3054         u64 tmp;
3055         __le64 *base_indirect_ptr;
3056         int page_entries;
3057
3058         /* Set up the shadow registers for this ring. */
3059         rx_ring->prod_idx_sh_reg = shadow_reg;
3060         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3061         *rx_ring->prod_idx_sh_reg = 0;
3062         shadow_reg += sizeof(u64);
3063         shadow_reg_dma += sizeof(u64);
3064         rx_ring->lbq_base_indirect = shadow_reg;
3065         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3066         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3067         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3068         rx_ring->sbq_base_indirect = shadow_reg;
3069         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3070
3071         /* PCI doorbell mem area + 0x00 for consumer index register */
3072         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3073         rx_ring->cnsmr_idx = 0;
3074         rx_ring->curr_entry = rx_ring->cq_base;
3075
3076         /* PCI doorbell mem area + 0x04 for valid register */
3077         rx_ring->valid_db_reg = doorbell_area + 0x04;
3078
3079         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3080         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3081
3082         /* PCI doorbell mem area + 0x1c */
3083         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3084
3085         memset((void *)cqicb, 0, sizeof(struct cqicb));
3086         cqicb->msix_vect = rx_ring->irq;
3087
3088         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3089         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3090
3091         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3092
3093         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3094
3095         /*
3096          * Set up the control block load flags.
3097          */
3098         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3099             FLAGS_LV |          /* Load MSI-X vector */
3100             FLAGS_LI;           /* Load irq delay values */
3101         if (rx_ring->lbq_len) {
3102                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3103                 tmp = (u64)rx_ring->lbq_base_dma;
3104                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3105                 page_entries = 0;
3106                 do {
3107                         *base_indirect_ptr = cpu_to_le64(tmp);
3108                         tmp += DB_PAGE_SIZE;
3109                         base_indirect_ptr++;
3110                         page_entries++;
3111                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3112                 cqicb->lbq_addr =
3113                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3114                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3115                         (u16) rx_ring->lbq_buf_size;
3116                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3117                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3118                         (u16) rx_ring->lbq_len;
3119                 cqicb->lbq_len = cpu_to_le16(bq_len);
3120                 rx_ring->lbq_prod_idx = 0;
3121                 rx_ring->lbq_curr_idx = 0;
3122                 rx_ring->lbq_clean_idx = 0;
3123                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3124         }
3125         if (rx_ring->sbq_len) {
3126                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3127                 tmp = (u64)rx_ring->sbq_base_dma;
3128                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3129                 page_entries = 0;
3130                 do {
3131                         *base_indirect_ptr = cpu_to_le64(tmp);
3132                         tmp += DB_PAGE_SIZE;
3133                         base_indirect_ptr++;
3134                         page_entries++;
3135                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3136                 cqicb->sbq_addr =
3137                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3138                 cqicb->sbq_buf_size =
3139                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3140                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3141                         (u16) rx_ring->sbq_len;
3142                 cqicb->sbq_len = cpu_to_le16(bq_len);
3143                 rx_ring->sbq_prod_idx = 0;
3144                 rx_ring->sbq_curr_idx = 0;
3145                 rx_ring->sbq_clean_idx = 0;
3146                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3147         }
3148         switch (rx_ring->type) {
3149         case TX_Q:
3150                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3151                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3152                 break;
3153         case RX_Q:
3154                 /* Inbound completion handling rx_rings run in
3155                  * separate NAPI contexts.
3156                  */
3157                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3158                                64);
3159                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3160                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3161                 break;
3162         default:
3163                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3164                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3165         }
3166         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3167                            CFG_LCQ, rx_ring->cq_id);
3168         if (err) {
3169                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3170                 return err;
3171         }
3172         return err;
3173 }
3174
3175 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3176 {
3177         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3178         void __iomem *doorbell_area =
3179             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3180         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3181             (tx_ring->wq_id * sizeof(u64));
3182         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3183             (tx_ring->wq_id * sizeof(u64));
3184         int err = 0;
3185
3186         /*
3187          * Assign doorbell registers for this tx_ring.
3188          */
3189         /* TX PCI doorbell mem area for tx producer index */
3190         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3191         tx_ring->prod_idx = 0;
3192         /* TX PCI doorbell mem area + 0x04 */
3193         tx_ring->valid_db_reg = doorbell_area + 0x04;
3194
3195         /*
3196          * Assign shadow registers for this tx_ring.
3197          */
3198         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3199         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3200
3201         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3202         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3203                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3204         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3205         wqicb->rid = 0;
3206         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3207
3208         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3209
3210         ql_init_tx_ring(qdev, tx_ring);
3211
3212         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3213                            (u16) tx_ring->wq_id);
3214         if (err) {
3215                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3216                 return err;
3217         }
3218         return err;
3219 }
3220
3221 static void ql_disable_msix(struct ql_adapter *qdev)
3222 {
3223         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3224                 pci_disable_msix(qdev->pdev);
3225                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3226                 kfree(qdev->msi_x_entry);
3227                 qdev->msi_x_entry = NULL;
3228         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3229                 pci_disable_msi(qdev->pdev);
3230                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3231         }
3232 }
3233
3234 /* We start by trying to get the number of vectors
3235  * stored in qdev->intr_count. If we don't get that
3236  * many then we reduce the count and try again.
3237  */
3238 static void ql_enable_msix(struct ql_adapter *qdev)
3239 {
3240         int i, err;
3241
3242         /* Get the MSIX vectors. */
3243         if (qlge_irq_type == MSIX_IRQ) {
3244                 /* Try to alloc space for the msix struct,
3245                  * if it fails then go to MSI/legacy.
3246                  */
3247                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3248                                             sizeof(struct msix_entry),
3249                                             GFP_KERNEL);
3250                 if (!qdev->msi_x_entry) {
3251                         qlge_irq_type = MSI_IRQ;
3252                         goto msi;
3253                 }
3254
3255                 for (i = 0; i < qdev->intr_count; i++)
3256                         qdev->msi_x_entry[i].entry = i;
3257
3258                 /* Loop to get our vectors.  We start with
3259                  * what we want and settle for what we get.
3260                  */
3261                 do {
3262                         err = pci_enable_msix(qdev->pdev,
3263                                 qdev->msi_x_entry, qdev->intr_count);
3264                         if (err > 0)
3265                                 qdev->intr_count = err;
3266                 } while (err > 0);
3267
3268                 if (err < 0) {
3269                         kfree(qdev->msi_x_entry);
3270                         qdev->msi_x_entry = NULL;
3271                         netif_warn(qdev, ifup, qdev->ndev,
3272                                    "MSI-X Enable failed, trying MSI.\n");
3273                         qdev->intr_count = 1;
3274                         qlge_irq_type = MSI_IRQ;
3275                 } else if (err == 0) {
3276                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3277                         netif_info(qdev, ifup, qdev->ndev,
3278                                    "MSI-X Enabled, got %d vectors.\n",
3279                                    qdev->intr_count);
3280                         return;
3281                 }
3282         }
3283 msi:
3284         qdev->intr_count = 1;
3285         if (qlge_irq_type == MSI_IRQ) {
3286                 if (!pci_enable_msi(qdev->pdev)) {
3287                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3288                         netif_info(qdev, ifup, qdev->ndev,
3289                                    "Running with MSI interrupts.\n");
3290                         return;
3291                 }
3292         }
3293         qlge_irq_type = LEG_IRQ;
3294         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3295                      "Running with legacy interrupts.\n");
3296 }
3297
3298 /* Each vector services 1 RSS ring and and 1 or more
3299  * TX completion rings.  This function loops through
3300  * the TX completion rings and assigns the vector that
3301  * will service it.  An example would be if there are
3302  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3303  * This would mean that vector 0 would service RSS ring 0
3304  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3305  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3306  */
3307 static void ql_set_tx_vect(struct ql_adapter *qdev)
3308 {
3309         int i, j, vect;
3310         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3311
3312         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3313                 /* Assign irq vectors to TX rx_rings.*/
3314                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3315                                          i < qdev->rx_ring_count; i++) {
3316                         if (j == tx_rings_per_vector) {
3317                                 vect++;
3318                                 j = 0;
3319                         }
3320                         qdev->rx_ring[i].irq = vect;
3321                         j++;
3322                 }
3323         } else {
3324                 /* For single vector all rings have an irq
3325                  * of zero.
3326                  */
3327                 for (i = 0; i < qdev->rx_ring_count; i++)
3328                         qdev->rx_ring[i].irq = 0;
3329         }
3330 }
3331
3332 /* Set the interrupt mask for this vector.  Each vector
3333  * will service 1 RSS ring and 1 or more TX completion
3334  * rings.  This function sets up a bit mask per vector
3335  * that indicates which rings it services.
3336  */
3337 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3338 {
3339         int j, vect = ctx->intr;
3340         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3341
3342         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3343                 /* Add the RSS ring serviced by this vector
3344                  * to the mask.
3345                  */
3346                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3347                 /* Add the TX ring(s) serviced by this vector
3348                  * to the mask. */
3349                 for (j = 0; j < tx_rings_per_vector; j++) {
3350                         ctx->irq_mask |=
3351                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3352                         (vect * tx_rings_per_vector) + j].cq_id);
3353                 }
3354         } else {
3355                 /* For single vector we just shift each queue's
3356                  * ID into the mask.
3357                  */
3358                 for (j = 0; j < qdev->rx_ring_count; j++)
3359                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3360         }
3361 }
3362
3363 /*
3364  * Here we build the intr_context structures based on
3365  * our rx_ring count and intr vector count.
3366  * The intr_context structure is used to hook each vector
3367  * to possibly different handlers.
3368  */
3369 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3370 {
3371         int i = 0;
3372         struct intr_context *intr_context = &qdev->intr_context[0];
3373
3374         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3375                 /* Each rx_ring has it's
3376                  * own intr_context since we have separate
3377                  * vectors for each queue.
3378                  */
3379                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3380                         qdev->rx_ring[i].irq = i;
3381                         intr_context->intr = i;
3382                         intr_context->qdev = qdev;
3383                         /* Set up this vector's bit-mask that indicates
3384                          * which queues it services.
3385                          */
3386                         ql_set_irq_mask(qdev, intr_context);
3387                         /*
3388                          * We set up each vectors enable/disable/read bits so
3389                          * there's no bit/mask calculations in the critical path.
3390                          */
3391                         intr_context->intr_en_mask =
3392                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3393                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3394                             | i;
3395                         intr_context->intr_dis_mask =
3396                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3397                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3398                             INTR_EN_IHD | i;
3399                         intr_context->intr_read_mask =
3400                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3401                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3402                             i;
3403                         if (i == 0) {
3404                                 /* The first vector/queue handles
3405                                  * broadcast/multicast, fatal errors,
3406                                  * and firmware events.  This in addition
3407                                  * to normal inbound NAPI processing.
3408                                  */
3409                                 intr_context->handler = qlge_isr;
3410                                 sprintf(intr_context->name, "%s-rx-%d",
3411                                         qdev->ndev->name, i);
3412                         } else {
3413                                 /*
3414                                  * Inbound queues handle unicast frames only.
3415                                  */
3416                                 intr_context->handler = qlge_msix_rx_isr;
3417                                 sprintf(intr_context->name, "%s-rx-%d",
3418                                         qdev->ndev->name, i);
3419                         }
3420                 }
3421         } else {
3422                 /*
3423                  * All rx_rings use the same intr_context since
3424                  * there is only one vector.
3425                  */
3426                 intr_context->intr = 0;
3427                 intr_context->qdev = qdev;
3428                 /*
3429                  * We set up each vectors enable/disable/read bits so
3430                  * there's no bit/mask calculations in the critical path.
3431                  */
3432                 intr_context->intr_en_mask =
3433                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3434                 intr_context->intr_dis_mask =
3435                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3436                     INTR_EN_TYPE_DISABLE;
3437                 intr_context->intr_read_mask =
3438                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3439                 /*
3440                  * Single interrupt means one handler for all rings.
3441                  */
3442                 intr_context->handler = qlge_isr;
3443                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3444                 /* Set up this vector's bit-mask that indicates
3445                  * which queues it services. In this case there is
3446                  * a single vector so it will service all RSS and
3447                  * TX completion rings.
3448                  */
3449                 ql_set_irq_mask(qdev, intr_context);
3450         }
3451         /* Tell the TX completion rings which MSIx vector
3452          * they will be using.
3453          */
3454         ql_set_tx_vect(qdev);
3455 }
3456
3457 static void ql_free_irq(struct ql_adapter *qdev)
3458 {
3459         int i;
3460         struct intr_context *intr_context = &qdev->intr_context[0];
3461
3462         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3463                 if (intr_context->hooked) {
3464                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3465                                 free_irq(qdev->msi_x_entry[i].vector,
3466                                          &qdev->rx_ring[i]);
3467                         } else {
3468                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3469                         }
3470                 }
3471         }
3472         ql_disable_msix(qdev);
3473 }
3474
3475 static int ql_request_irq(struct ql_adapter *qdev)
3476 {
3477         int i;
3478         int status = 0;
3479         struct pci_dev *pdev = qdev->pdev;
3480         struct intr_context *intr_context = &qdev->intr_context[0];
3481
3482         ql_resolve_queues_to_irqs(qdev);
3483
3484         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3485                 atomic_set(&intr_context->irq_cnt, 0);
3486                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3487                         status = request_irq(qdev->msi_x_entry[i].vector,
3488                                              intr_context->handler,
3489                                              0,
3490                                              intr_context->name,
3491                                              &qdev->rx_ring[i]);
3492                         if (status) {
3493                                 netif_err(qdev, ifup, qdev->ndev,
3494                                           "Failed request for MSIX interrupt %d.\n",
3495                                           i);
3496                                 goto err_irq;
3497                         }
3498                 } else {
3499                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3500                                      "trying msi or legacy interrupts.\n");
3501                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3502                                      "%s: irq = %d.\n", __func__, pdev->irq);
3503                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3504                                      "%s: context->name = %s.\n", __func__,
3505                                      intr_context->name);
3506                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3507                                      "%s: dev_id = 0x%p.\n", __func__,
3508                                      &qdev->rx_ring[0]);
3509                         status =
3510                             request_irq(pdev->irq, qlge_isr,
3511                                         test_bit(QL_MSI_ENABLED,
3512                                                  &qdev->
3513                                                  flags) ? 0 : IRQF_SHARED,
3514                                         intr_context->name, &qdev->rx_ring[0]);
3515                         if (status)
3516                                 goto err_irq;
3517
3518                         netif_err(qdev, ifup, qdev->ndev,
3519                                   "Hooked intr %d, queue type %s, with name %s.\n",
3520                                   i,
3521                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3522                                   "DEFAULT_Q" :
3523                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3524                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3525                                   intr_context->name);
3526                 }
3527                 intr_context->hooked = 1;
3528         }
3529         return status;
3530 err_irq:
3531         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3532         ql_free_irq(qdev);
3533         return status;
3534 }
3535
3536 static int ql_start_rss(struct ql_adapter *qdev)
3537 {
3538         static const u8 init_hash_seed[] = {
3539                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3540                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3541                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3542                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3543                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3544         };
3545         struct ricb *ricb = &qdev->ricb;
3546         int status = 0;
3547         int i;
3548         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3549
3550         memset((void *)ricb, 0, sizeof(*ricb));
3551
3552         ricb->base_cq = RSS_L4K;
3553         ricb->flags =
3554                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3555         ricb->mask = cpu_to_le16((u16)(0x3ff));
3556
3557         /*
3558          * Fill out the Indirection Table.
3559          */
3560         for (i = 0; i < 1024; i++)
3561                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3562
3563         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3564         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3565
3566         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3567         if (status) {
3568                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3569                 return status;
3570         }
3571         return status;
3572 }
3573
3574 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3575 {
3576         int i, status = 0;
3577
3578         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3579         if (status)
3580                 return status;
3581         /* Clear all the entries in the routing table. */
3582         for (i = 0; i < 16; i++) {
3583                 status = ql_set_routing_reg(qdev, i, 0, 0);
3584                 if (status) {
3585                         netif_err(qdev, ifup, qdev->ndev,
3586                                   "Failed to init routing register for CAM packets.\n");
3587                         break;
3588                 }
3589         }
3590         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3591         return status;
3592 }
3593
3594 /* Initialize the frame-to-queue routing. */
3595 static int ql_route_initialize(struct ql_adapter *qdev)
3596 {
3597         int status = 0;
3598
3599         /* Clear all the entries in the routing table. */
3600         status = ql_clear_routing_entries(qdev);
3601         if (status)
3602                 return status;
3603
3604         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3605         if (status)
3606                 return status;
3607
3608         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3609                                                 RT_IDX_IP_CSUM_ERR, 1);
3610         if (status) {
3611                 netif_err(qdev, ifup, qdev->ndev,
3612                         "Failed to init routing register "
3613                         "for IP CSUM error packets.\n");
3614                 goto exit;
3615         }
3616         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3617                                                 RT_IDX_TU_CSUM_ERR, 1);
3618         if (status) {
3619                 netif_err(qdev, ifup, qdev->ndev,
3620                         "Failed to init routing register "
3621                         "for TCP/UDP CSUM error packets.\n");
3622                 goto exit;
3623         }
3624         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3625         if (status) {
3626                 netif_err(qdev, ifup, qdev->ndev,
3627                           "Failed to init routing register for broadcast packets.\n");
3628                 goto exit;
3629         }
3630         /* If we have more than one inbound queue, then turn on RSS in the
3631          * routing block.
3632          */
3633         if (qdev->rss_ring_count > 1) {
3634                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3635                                         RT_IDX_RSS_MATCH, 1);
3636                 if (status) {
3637                         netif_err(qdev, ifup, qdev->ndev,
3638                                   "Failed to init routing register for MATCH RSS packets.\n");
3639                         goto exit;
3640                 }
3641         }
3642
3643         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3644                                     RT_IDX_CAM_HIT, 1);
3645         if (status)
3646                 netif_err(qdev, ifup, qdev->ndev,
3647                           "Failed to init routing register for CAM packets.\n");
3648 exit:
3649         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3650         return status;
3651 }
3652
3653 int ql_cam_route_initialize(struct ql_adapter *qdev)
3654 {
3655         int status, set;
3656
3657         /* If check if the link is up and use to
3658          * determine if we are setting or clearing
3659          * the MAC address in the CAM.
3660          */
3661         set = ql_read32(qdev, STS);
3662         set &= qdev->port_link_up;
3663         status = ql_set_mac_addr(qdev, set);
3664         if (status) {
3665                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3666                 return status;
3667         }
3668
3669         status = ql_route_initialize(qdev);
3670         if (status)
3671                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3672
3673         return status;
3674 }
3675
3676 static int ql_adapter_initialize(struct ql_adapter *qdev)
3677 {
3678         u32 value, mask;
3679         int i;
3680         int status = 0;
3681
3682         /*
3683          * Set up the System register to halt on errors.
3684          */
3685         value = SYS_EFE | SYS_FAE;
3686         mask = value << 16;
3687         ql_write32(qdev, SYS, mask | value);
3688
3689         /* Set the default queue, and VLAN behavior. */
3690         value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3691         mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3692         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3693
3694         /* Set the MPI interrupt to enabled. */
3695         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3696
3697         /* Enable the function, set pagesize, enable error checking. */
3698         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3699             FSC_EC | FSC_VM_PAGE_4K;
3700         value |= SPLT_SETTING;
3701
3702         /* Set/clear header splitting. */
3703         mask = FSC_VM_PAGESIZE_MASK |
3704             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3705         ql_write32(qdev, FSC, mask | value);
3706
3707         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3708
3709         /* Set RX packet routing to use port/pci function on which the
3710          * packet arrived on in addition to usual frame routing.
3711          * This is helpful on bonding where both interfaces can have
3712          * the same MAC address.
3713          */
3714         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3715         /* Reroute all packets to our Interface.
3716          * They may have been routed to MPI firmware
3717          * due to WOL.
3718          */
3719         value = ql_read32(qdev, MGMT_RCV_CFG);
3720         value &= ~MGMT_RCV_CFG_RM;
3721         mask = 0xffff0000;
3722
3723         /* Sticky reg needs clearing due to WOL. */
3724         ql_write32(qdev, MGMT_RCV_CFG, mask);
3725         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3726
3727         /* Default WOL is enable on Mezz cards */
3728         if (qdev->pdev->subsystem_device == 0x0068 ||
3729                         qdev->pdev->subsystem_device == 0x0180)
3730                 qdev->wol = WAKE_MAGIC;
3731
3732         /* Start up the rx queues. */
3733         for (i = 0; i < qdev->rx_ring_count; i++) {
3734                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3735                 if (status) {
3736                         netif_err(qdev, ifup, qdev->ndev,
3737                                   "Failed to start rx ring[%d].\n", i);
3738                         return status;
3739                 }
3740         }
3741
3742         /* If there is more than one inbound completion queue
3743          * then download a RICB to configure RSS.
3744          */
3745         if (qdev->rss_ring_count > 1) {
3746                 status = ql_start_rss(qdev);
3747                 if (status) {
3748                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3749                         return status;
3750                 }
3751         }
3752
3753         /* Start up the tx queues. */
3754         for (i = 0; i < qdev->tx_ring_count; i++) {
3755                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3756                 if (status) {
3757                         netif_err(qdev, ifup, qdev->ndev,
3758                                   "Failed to start tx ring[%d].\n", i);
3759                         return status;
3760                 }
3761         }
3762
3763         /* Initialize the port and set the max framesize. */
3764         status = qdev->nic_ops->port_initialize(qdev);
3765         if (status)
3766                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3767
3768         /* Set up the MAC address and frame routing filter. */
3769         status = ql_cam_route_initialize(qdev);
3770         if (status) {
3771                 netif_err(qdev, ifup, qdev->ndev,
3772                           "Failed to init CAM/Routing tables.\n");
3773                 return status;
3774         }
3775
3776         /* Start NAPI for the RSS queues. */
3777         for (i = 0; i < qdev->rss_ring_count; i++)
3778                 napi_enable(&qdev->rx_ring[i].napi);
3779
3780         return status;
3781 }
3782
3783 /* Issue soft reset to chip. */
3784 static int ql_adapter_reset(struct ql_adapter *qdev)
3785 {
3786         u32 value;
3787         int status = 0;
3788         unsigned long end_jiffies;
3789
3790         /* Clear all the entries in the routing table. */
3791         status = ql_clear_routing_entries(qdev);
3792         if (status) {
3793                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3794                 return status;
3795         }
3796
3797         end_jiffies = jiffies +
3798                 max((unsigned long)1, usecs_to_jiffies(30));
3799
3800         /* Check if bit is set then skip the mailbox command and
3801          * clear the bit, else we are in normal reset process.
3802          */
3803         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3804                 /* Stop management traffic. */
3805                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3806
3807                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3808                 ql_wait_fifo_empty(qdev);
3809         } else
3810                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3811
3812         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3813
3814         do {
3815                 value = ql_read32(qdev, RST_FO);
3816                 if ((value & RST_FO_FR) == 0)
3817                         break;
3818                 cpu_relax();
3819         } while (time_before(jiffies, end_jiffies));
3820
3821         if (value & RST_FO_FR) {
3822                 netif_err(qdev, ifdown, qdev->ndev,
3823                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3824                 status = -ETIMEDOUT;
3825         }
3826
3827         /* Resume management traffic. */
3828         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3829         return status;
3830 }
3831
3832 static void ql_display_dev_info(struct net_device *ndev)
3833 {
3834         struct ql_adapter *qdev = netdev_priv(ndev);
3835
3836         netif_info(qdev, probe, qdev->ndev,
3837                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3838                    "XG Roll = %d, XG Rev = %d.\n",
3839                    qdev->func,
3840                    qdev->port,
3841                    qdev->chip_rev_id & 0x0000000f,
3842                    qdev->chip_rev_id >> 4 & 0x0000000f,
3843                    qdev->chip_rev_id >> 8 & 0x0000000f,
3844                    qdev->chip_rev_id >> 12 & 0x0000000f);
3845         netif_info(qdev, probe, qdev->ndev,
3846                    "MAC address %pM\n", ndev->dev_addr);
3847 }
3848
3849 static int ql_wol(struct ql_adapter *qdev)
3850 {
3851         int status = 0;
3852         u32 wol = MB_WOL_DISABLE;
3853
3854         /* The CAM is still intact after a reset, but if we
3855          * are doing WOL, then we may need to program the
3856          * routing regs. We would also need to issue the mailbox
3857          * commands to instruct the MPI what to do per the ethtool
3858          * settings.
3859          */
3860
3861         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3862                         WAKE_MCAST | WAKE_BCAST)) {
3863                 netif_err(qdev, ifdown, qdev->ndev,
3864                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3865                           qdev->wol);
3866                 return -EINVAL;
3867         }
3868
3869         if (qdev->wol & WAKE_MAGIC) {
3870                 status = ql_mb_wol_set_magic(qdev, 1);
3871                 if (status) {
3872                         netif_err(qdev, ifdown, qdev->ndev,
3873                                   "Failed to set magic packet on %s.\n",
3874                                   qdev->ndev->name);
3875                         return status;
3876                 } else
3877                         netif_info(qdev, drv, qdev->ndev,
3878                                    "Enabled magic packet successfully on %s.\n",
3879                                    qdev->ndev->name);
3880
3881                 wol |= MB_WOL_MAGIC_PKT;
3882         }
3883
3884         if (qdev->wol) {
3885                 wol |= MB_WOL_MODE_ON;
3886                 status = ql_mb_wol_mode(qdev, wol);
3887                 netif_err(qdev, drv, qdev->ndev,
3888                           "WOL %s (wol code 0x%x) on %s\n",
3889                           (status == 0) ? "Successfully set" : "Failed",
3890                           wol, qdev->ndev->name);
3891         }
3892
3893         return status;
3894 }
3895
3896 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3897 {
3898
3899         /* Don't kill the reset worker thread if we
3900          * are in the process of recovery.
3901          */
3902         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3903                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3904         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3905         cancel_delayed_work_sync(&qdev->mpi_work);
3906         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3907         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3908         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3909 }
3910
3911 static int ql_adapter_down(struct ql_adapter *qdev)
3912 {
3913         int i, status = 0;
3914
3915         ql_link_off(qdev);
3916
3917         ql_cancel_all_work_sync(qdev);
3918
3919         for (i = 0; i < qdev->rss_ring_count; i++)
3920                 napi_disable(&qdev->rx_ring[i].napi);
3921
3922         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3923
3924         ql_disable_interrupts(qdev);
3925
3926         ql_tx_ring_clean(qdev);
3927
3928         /* Call netif_napi_del() from common point.
3929          */
3930         for (i = 0; i < qdev->rss_ring_count; i++)
3931                 netif_napi_del(&qdev->rx_ring[i].napi);
3932
3933         status = ql_adapter_reset(qdev);
3934         if (status)
3935                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3936                           qdev->func);
3937         ql_free_rx_buffers(qdev);
3938
3939         return status;
3940 }
3941
3942 static int ql_adapter_up(struct ql_adapter *qdev)
3943 {
3944         int err = 0;
3945
3946         err = ql_adapter_initialize(qdev);
3947         if (err) {
3948                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3949                 goto err_init;
3950         }
3951         set_bit(QL_ADAPTER_UP, &qdev->flags);
3952         ql_alloc_rx_buffers(qdev);
3953         /* If the port is initialized and the
3954          * link is up the turn on the carrier.
3955          */
3956         if ((ql_read32(qdev, STS) & qdev->port_init) &&
3957                         (ql_read32(qdev, STS) & qdev->port_link_up))
3958                 ql_link_on(qdev);
3959         /* Restore rx mode. */
3960         clear_bit(QL_ALLMULTI, &qdev->flags);
3961         clear_bit(QL_PROMISCUOUS, &qdev->flags);
3962         qlge_set_multicast_list(qdev->ndev);
3963
3964         /* Restore vlan setting. */
3965         qlge_restore_vlan(qdev);
3966
3967         ql_enable_interrupts(qdev);
3968         ql_enable_all_completion_interrupts(qdev);
3969         netif_tx_start_all_queues(qdev->ndev);
3970
3971         return 0;
3972 err_init:
3973         ql_adapter_reset(qdev);
3974         return err;
3975 }
3976
3977 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3978 {
3979         ql_free_mem_resources(qdev);
3980         ql_free_irq(qdev);
3981 }
3982
3983 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3984 {
3985         int status = 0;
3986
3987         if (ql_alloc_mem_resources(qdev)) {
3988                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
3989                 return -ENOMEM;
3990         }
3991         status = ql_request_irq(qdev);
3992         return status;
3993 }
3994
3995 static int qlge_close(struct net_device *ndev)
3996 {
3997         struct ql_adapter *qdev = netdev_priv(ndev);
3998
3999         /* If we hit pci_channel_io_perm_failure
4000          * failure condition, then we already
4001          * brought the adapter down.
4002          */
4003         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4004                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4005                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4006                 return 0;
4007         }
4008
4009         /*
4010          * Wait for device to recover from a reset.
4011          * (Rarely happens, but possible.)
4012          */
4013         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4014                 msleep(1);
4015         ql_adapter_down(qdev);
4016         ql_release_adapter_resources(qdev);
4017         return 0;
4018 }
4019
4020 static int ql_configure_rings(struct ql_adapter *qdev)
4021 {
4022         int i;
4023         struct rx_ring *rx_ring;
4024         struct tx_ring *tx_ring;
4025         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4026         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4027                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4028
4029         qdev->lbq_buf_order = get_order(lbq_buf_len);
4030
4031         /* In a perfect world we have one RSS ring for each CPU
4032          * and each has it's own vector.  To do that we ask for
4033          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4034          * vector count to what we actually get.  We then
4035          * allocate an RSS ring for each.
4036          * Essentially, we are doing min(cpu_count, msix_vector_count).
4037          */
4038         qdev->intr_count = cpu_cnt;
4039         ql_enable_msix(qdev);
4040         /* Adjust the RSS ring count to the actual vector count. */
4041         qdev->rss_ring_count = qdev->intr_count;
4042         qdev->tx_ring_count = cpu_cnt;
4043         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4044
4045         for (i = 0; i < qdev->tx_ring_count; i++) {
4046                 tx_ring = &qdev->tx_ring[i];
4047                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4048                 tx_ring->qdev = qdev;
4049                 tx_ring->wq_id = i;
4050                 tx_ring->wq_len = qdev->tx_ring_size;
4051                 tx_ring->wq_size =
4052                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4053
4054                 /*
4055                  * The completion queue ID for the tx rings start
4056                  * immediately after the rss rings.
4057                  */
4058                 tx_ring->cq_id = qdev->rss_ring_count + i;
4059         }
4060
4061         for (i = 0; i < qdev->rx_ring_count; i++) {
4062                 rx_ring = &qdev->rx_ring[i];
4063                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4064                 rx_ring->qdev = qdev;
4065                 rx_ring->cq_id = i;
4066                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4067                 if (i < qdev->rss_ring_count) {
4068                         /*
4069                          * Inbound (RSS) queues.
4070                          */
4071                         rx_ring->cq_len = qdev->rx_ring_size;
4072                         rx_ring->cq_size =
4073                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4074                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4075                         rx_ring->lbq_size =
4076                             rx_ring->lbq_len * sizeof(__le64);
4077                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4078                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4079                         rx_ring->sbq_size =
4080                             rx_ring->sbq_len * sizeof(__le64);
4081                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4082                         rx_ring->type = RX_Q;
4083                 } else {
4084                         /*
4085                          * Outbound queue handles outbound completions only.
4086                          */
4087                         /* outbound cq is same size as tx_ring it services. */
4088                         rx_ring->cq_len = qdev->tx_ring_size;
4089                         rx_ring->cq_size =
4090                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4091                         rx_ring->lbq_len = 0;
4092                         rx_ring->lbq_size = 0;
4093                         rx_ring->lbq_buf_size = 0;
4094                         rx_ring->sbq_len = 0;
4095                         rx_ring->sbq_size = 0;
4096                         rx_ring->sbq_buf_size = 0;
4097                         rx_ring->type = TX_Q;
4098                 }
4099         }
4100         return 0;
4101 }
4102
4103 static int qlge_open(struct net_device *ndev)
4104 {
4105         int err = 0;
4106         struct ql_adapter *qdev = netdev_priv(ndev);
4107
4108         err = ql_adapter_reset(qdev);
4109         if (err)
4110                 return err;
4111
4112         err = ql_configure_rings(qdev);
4113         if (err)
4114                 return err;
4115
4116         err = ql_get_adapter_resources(qdev);
4117         if (err)
4118                 goto error_up;
4119
4120         err = ql_adapter_up(qdev);
4121         if (err)
4122                 goto error_up;
4123
4124         return err;
4125
4126 error_up:
4127         ql_release_adapter_resources(qdev);
4128         return err;
4129 }
4130
4131 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4132 {
4133         struct rx_ring *rx_ring;
4134         int i, status;
4135         u32 lbq_buf_len;
4136
4137         /* Wait for an outstanding reset to complete. */
4138         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4139                 int i = 3;
4140                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4141                         netif_err(qdev, ifup, qdev->ndev,
4142                                   "Waiting for adapter UP...\n");
4143                         ssleep(1);
4144                 }
4145
4146                 if (!i) {
4147                         netif_err(qdev, ifup, qdev->ndev,
4148                                   "Timed out waiting for adapter UP\n");
4149                         return -ETIMEDOUT;
4150                 }
4151         }
4152
4153         status = ql_adapter_down(qdev);
4154         if (status)
4155                 goto error;
4156
4157         /* Get the new rx buffer size. */
4158         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4159                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4160         qdev->lbq_buf_order = get_order(lbq_buf_len);
4161
4162         for (i = 0; i < qdev->rss_ring_count; i++) {
4163                 rx_ring = &qdev->rx_ring[i];
4164                 /* Set the new size. */
4165                 rx_ring->lbq_buf_size = lbq_buf_len;
4166         }
4167
4168         status = ql_adapter_up(qdev);
4169         if (status)
4170                 goto error;
4171
4172         return status;
4173 error:
4174         netif_alert(qdev, ifup, qdev->ndev,
4175                     "Driver up/down cycle failed, closing device.\n");
4176         set_bit(QL_ADAPTER_UP, &qdev->flags);
4177         dev_close(qdev->ndev);
4178         return status;
4179 }
4180
4181 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4182 {
4183         struct ql_adapter *qdev = netdev_priv(ndev);
4184         int status;
4185
4186         if (ndev->mtu == 1500 && new_mtu == 9000) {
4187                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4188         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4189                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4190         } else
4191                 return -EINVAL;
4192
4193         queue_delayed_work(qdev->workqueue,
4194                         &qdev->mpi_port_cfg_work, 3*HZ);
4195
4196         ndev->mtu = new_mtu;
4197
4198         if (!netif_running(qdev->ndev)) {
4199                 return 0;
4200         }
4201
4202         status = ql_change_rx_buffers(qdev);
4203         if (status) {
4204                 netif_err(qdev, ifup, qdev->ndev,
4205                           "Changing MTU failed.\n");
4206         }
4207
4208         return status;
4209 }
4210
4211 static struct net_device_stats *qlge_get_stats(struct net_device
4212                                                *ndev)
4213 {
4214         struct ql_adapter *qdev = netdev_priv(ndev);
4215         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4216         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4217         unsigned long pkts, mcast, dropped, errors, bytes;
4218         int i;
4219
4220         /* Get RX stats. */
4221         pkts = mcast = dropped = errors = bytes = 0;
4222         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4223                         pkts += rx_ring->rx_packets;
4224                         bytes += rx_ring->rx_bytes;
4225                         dropped += rx_ring->rx_dropped;
4226                         errors += rx_ring->rx_errors;
4227                         mcast += rx_ring->rx_multicast;
4228         }
4229         ndev->stats.rx_packets = pkts;
4230         ndev->stats.rx_bytes = bytes;
4231         ndev->stats.rx_dropped = dropped;
4232         ndev->stats.rx_errors = errors;
4233         ndev->stats.multicast = mcast;
4234
4235         /* Get TX stats. */
4236         pkts = errors = bytes = 0;
4237         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4238                         pkts += tx_ring->tx_packets;
4239                         bytes += tx_ring->tx_bytes;
4240                         errors += tx_ring->tx_errors;
4241         }
4242         ndev->stats.tx_packets = pkts;
4243         ndev->stats.tx_bytes = bytes;
4244         ndev->stats.tx_errors = errors;
4245         return &ndev->stats;
4246 }
4247
4248 static void qlge_set_multicast_list(struct net_device *ndev)
4249 {
4250         struct ql_adapter *qdev = netdev_priv(ndev);
4251         struct netdev_hw_addr *ha;
4252         int i, status;
4253
4254         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4255         if (status)
4256                 return;
4257         /*
4258          * Set or clear promiscuous mode if a
4259          * transition is taking place.
4260          */
4261         if (ndev->flags & IFF_PROMISC) {
4262                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4263                         if (ql_set_routing_reg
4264                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4265                                 netif_err(qdev, hw, qdev->ndev,
4266                                           "Failed to set promiscuous mode.\n");
4267                         } else {
4268                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4269                         }
4270                 }
4271         } else {
4272                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4273                         if (ql_set_routing_reg
4274                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4275                                 netif_err(qdev, hw, qdev->ndev,
4276                                           "Failed to clear promiscuous mode.\n");
4277                         } else {
4278                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4279                         }
4280                 }
4281         }
4282
4283         /*
4284          * Set or clear all multicast mode if a
4285          * transition is taking place.
4286          */
4287         if ((ndev->flags & IFF_ALLMULTI) ||
4288             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4289                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4290                         if (ql_set_routing_reg
4291                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4292                                 netif_err(qdev, hw, qdev->ndev,
4293                                           "Failed to set all-multi mode.\n");
4294                         } else {
4295                                 set_bit(QL_ALLMULTI, &qdev->flags);
4296                         }
4297                 }
4298         } else {
4299                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4300                         if (ql_set_routing_reg
4301                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4302                                 netif_err(qdev, hw, qdev->ndev,
4303                                           "Failed to clear all-multi mode.\n");
4304                         } else {
4305                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4306                         }
4307                 }
4308         }
4309
4310         if (!netdev_mc_empty(ndev)) {
4311                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4312                 if (status)
4313                         goto exit;
4314                 i = 0;
4315                 netdev_for_each_mc_addr(ha, ndev) {
4316                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4317                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4318                                 netif_err(qdev, hw, qdev->ndev,
4319                                           "Failed to loadmulticast address.\n");
4320                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4321                                 goto exit;
4322                         }
4323                         i++;
4324                 }
4325                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4326                 if (ql_set_routing_reg
4327                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4328                         netif_err(qdev, hw, qdev->ndev,
4329                                   "Failed to set multicast match mode.\n");
4330                 } else {
4331                         set_bit(QL_ALLMULTI, &qdev->flags);
4332                 }
4333         }
4334 exit:
4335         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4336 }
4337
4338 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4339 {
4340         struct ql_adapter *qdev = netdev_priv(ndev);
4341         struct sockaddr *addr = p;
4342         int status;
4343
4344         if (!is_valid_ether_addr(addr->sa_data))
4345                 return -EADDRNOTAVAIL;
4346         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4347         /* Update local copy of current mac address. */
4348         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4349
4350         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4351         if (status)
4352                 return status;
4353         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4354                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4355         if (status)
4356                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4357         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4358         return status;
4359 }
4360
4361 static void qlge_tx_timeout(struct net_device *ndev)
4362 {
4363         struct ql_adapter *qdev = netdev_priv(ndev);
4364         ql_queue_asic_error(qdev);
4365 }
4366
4367 static void ql_asic_reset_work(struct work_struct *work)
4368 {
4369         struct ql_adapter *qdev =
4370             container_of(work, struct ql_adapter, asic_reset_work.work);
4371         int status;
4372         rtnl_lock();
4373         status = ql_adapter_down(qdev);
4374         if (status)
4375                 goto error;
4376
4377         status = ql_adapter_up(qdev);
4378         if (status)
4379                 goto error;
4380
4381         /* Restore rx mode. */
4382         clear_bit(QL_ALLMULTI, &qdev->flags);
4383         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4384         qlge_set_multicast_list(qdev->ndev);
4385
4386         rtnl_unlock();
4387         return;
4388 error:
4389         netif_alert(qdev, ifup, qdev->ndev,
4390                     "Driver up/down cycle failed, closing device\n");
4391
4392         set_bit(QL_ADAPTER_UP, &qdev->flags);
4393         dev_close(qdev->ndev);
4394         rtnl_unlock();
4395 }
4396
4397 static const struct nic_operations qla8012_nic_ops = {
4398         .get_flash              = ql_get_8012_flash_params,
4399         .port_initialize        = ql_8012_port_initialize,
4400 };
4401
4402 static const struct nic_operations qla8000_nic_ops = {
4403         .get_flash              = ql_get_8000_flash_params,
4404         .port_initialize        = ql_8000_port_initialize,
4405 };
4406
4407 /* Find the pcie function number for the other NIC
4408  * on this chip.  Since both NIC functions share a
4409  * common firmware we have the lowest enabled function
4410  * do any common work.  Examples would be resetting
4411  * after a fatal firmware error, or doing a firmware
4412  * coredump.
4413  */
4414 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4415 {
4416         int status = 0;
4417         u32 temp;
4418         u32 nic_func1, nic_func2;
4419
4420         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4421                         &temp);
4422         if (status)
4423                 return status;
4424
4425         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4426                         MPI_TEST_NIC_FUNC_MASK);
4427         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4428                         MPI_TEST_NIC_FUNC_MASK);
4429
4430         if (qdev->func == nic_func1)
4431                 qdev->alt_func = nic_func2;
4432         else if (qdev->func == nic_func2)
4433                 qdev->alt_func = nic_func1;
4434         else
4435                 status = -EIO;
4436
4437         return status;
4438 }
4439
4440 static int ql_get_board_info(struct ql_adapter *qdev)
4441 {
4442         int status;
4443         qdev->func =
4444             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4445         if (qdev->func > 3)
4446                 return -EIO;
4447
4448         status = ql_get_alt_pcie_func(qdev);
4449         if (status)
4450                 return status;
4451
4452         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4453         if (qdev->port) {
4454                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4455                 qdev->port_link_up = STS_PL1;
4456                 qdev->port_init = STS_PI1;
4457                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4458                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4459         } else {
4460                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4461                 qdev->port_link_up = STS_PL0;
4462                 qdev->port_init = STS_PI0;
4463                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4464                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4465         }
4466         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4467         qdev->device_id = qdev->pdev->device;
4468         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4469                 qdev->nic_ops = &qla8012_nic_ops;
4470         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4471                 qdev->nic_ops = &qla8000_nic_ops;
4472         return status;
4473 }
4474
4475 static void ql_release_all(struct pci_dev *pdev)
4476 {
4477         struct net_device *ndev = pci_get_drvdata(pdev);
4478         struct ql_adapter *qdev = netdev_priv(ndev);
4479
4480         if (qdev->workqueue) {
4481                 destroy_workqueue(qdev->workqueue);
4482                 qdev->workqueue = NULL;
4483         }
4484
4485         if (qdev->reg_base)
4486                 iounmap(qdev->reg_base);
4487         if (qdev->doorbell_area)
4488                 iounmap(qdev->doorbell_area);
4489         vfree(qdev->mpi_coredump);
4490         pci_release_regions(pdev);
4491         pci_set_drvdata(pdev, NULL);
4492 }
4493
4494 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4495                           int cards_found)
4496 {
4497         struct ql_adapter *qdev = netdev_priv(ndev);
4498         int err = 0;
4499
4500         memset((void *)qdev, 0, sizeof(*qdev));
4501         err = pci_enable_device(pdev);
4502         if (err) {
4503                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4504                 return err;
4505         }
4506
4507         qdev->ndev = ndev;
4508         qdev->pdev = pdev;
4509         pci_set_drvdata(pdev, ndev);
4510
4511         /* Set PCIe read request size */
4512         err = pcie_set_readrq(pdev, 4096);
4513         if (err) {
4514                 dev_err(&pdev->dev, "Set readrq failed.\n");
4515                 goto err_out1;
4516         }
4517
4518         err = pci_request_regions(pdev, DRV_NAME);
4519         if (err) {
4520                 dev_err(&pdev->dev, "PCI region request failed.\n");
4521                 return err;
4522         }
4523
4524         pci_set_master(pdev);
4525         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4526                 set_bit(QL_DMA64, &qdev->flags);
4527                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4528         } else {
4529                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4530                 if (!err)
4531                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4532         }
4533
4534         if (err) {
4535                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4536                 goto err_out2;
4537         }
4538
4539         /* Set PCIe reset type for EEH to fundamental. */
4540         pdev->needs_freset = 1;
4541         pci_save_state(pdev);
4542         qdev->reg_base =
4543             ioremap_nocache(pci_resource_start(pdev, 1),
4544                             pci_resource_len(pdev, 1));
4545         if (!qdev->reg_base) {
4546                 dev_err(&pdev->dev, "Register mapping failed.\n");
4547                 err = -ENOMEM;
4548                 goto err_out2;
4549         }
4550
4551         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4552         qdev->doorbell_area =
4553             ioremap_nocache(pci_resource_start(pdev, 3),
4554                             pci_resource_len(pdev, 3));
4555         if (!qdev->doorbell_area) {
4556                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4557                 err = -ENOMEM;
4558                 goto err_out2;
4559         }
4560
4561         err = ql_get_board_info(qdev);
4562         if (err) {
4563                 dev_err(&pdev->dev, "Register access failed.\n");
4564                 err = -EIO;
4565                 goto err_out2;
4566         }
4567         qdev->msg_enable = netif_msg_init(debug, default_msg);
4568         spin_lock_init(&qdev->hw_lock);
4569         spin_lock_init(&qdev->stats_lock);
4570
4571         if (qlge_mpi_coredump) {
4572                 qdev->mpi_coredump =
4573                         vmalloc(sizeof(struct ql_mpi_coredump));
4574                 if (qdev->mpi_coredump == NULL) {
4575                         dev_err(&pdev->dev, "Coredump alloc failed.\n");
4576                         err = -ENOMEM;
4577                         goto err_out2;
4578                 }
4579                 if (qlge_force_coredump)
4580                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4581         }
4582         /* make sure the EEPROM is good */
4583         err = qdev->nic_ops->get_flash(qdev);
4584         if (err) {
4585                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4586                 goto err_out2;
4587         }
4588
4589         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4590         /* Keep local copy of current mac address. */
4591         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4592
4593         /* Set up the default ring sizes. */
4594         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4595         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4596
4597         /* Set up the coalescing parameters. */
4598         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4599         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4600         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4601         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4602
4603         /*
4604          * Set up the operating parameters.
4605          */
4606         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4607         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4608         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4609         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4610         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4611         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4612         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4613         init_completion(&qdev->ide_completion);
4614         mutex_init(&qdev->mpi_mutex);
4615
4616         if (!cards_found) {
4617                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4618                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4619                          DRV_NAME, DRV_VERSION);
4620         }
4621         return 0;
4622 err_out2:
4623         ql_release_all(pdev);
4624 err_out1:
4625         pci_disable_device(pdev);
4626         return err;
4627 }
4628
4629 static const struct net_device_ops qlge_netdev_ops = {
4630         .ndo_open               = qlge_open,
4631         .ndo_stop               = qlge_close,
4632         .ndo_start_xmit         = qlge_send,
4633         .ndo_change_mtu         = qlge_change_mtu,
4634         .ndo_get_stats          = qlge_get_stats,
4635         .ndo_set_rx_mode        = qlge_set_multicast_list,
4636         .ndo_set_mac_address    = qlge_set_mac_address,
4637         .ndo_validate_addr      = eth_validate_addr,
4638         .ndo_tx_timeout         = qlge_tx_timeout,
4639         .ndo_fix_features       = qlge_fix_features,
4640         .ndo_set_features       = qlge_set_features,
4641         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4642         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4643 };
4644
4645 static void ql_timer(unsigned long data)
4646 {
4647         struct ql_adapter *qdev = (struct ql_adapter *)data;
4648         u32 var = 0;
4649
4650         var = ql_read32(qdev, STS);
4651         if (pci_channel_offline(qdev->pdev)) {
4652                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4653                 return;
4654         }
4655
4656         mod_timer(&qdev->timer, jiffies + (5*HZ));
4657 }
4658
4659 static int qlge_probe(struct pci_dev *pdev,
4660                       const struct pci_device_id *pci_entry)
4661 {
4662         struct net_device *ndev = NULL;
4663         struct ql_adapter *qdev = NULL;
4664         static int cards_found = 0;
4665         int err = 0;
4666
4667         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4668                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4669         if (!ndev)
4670                 return -ENOMEM;
4671
4672         err = ql_init_device(pdev, ndev, cards_found);
4673         if (err < 0) {
4674                 free_netdev(ndev);
4675                 return err;
4676         }
4677
4678         qdev = netdev_priv(ndev);
4679         SET_NETDEV_DEV(ndev, &pdev->dev);
4680         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4681                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4682                 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4683         ndev->features = ndev->hw_features |
4684                 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
4685         ndev->vlan_features = ndev->hw_features;
4686
4687         if (test_bit(QL_DMA64, &qdev->flags))
4688                 ndev->features |= NETIF_F_HIGHDMA;
4689
4690         /*
4691          * Set up net_device structure.
4692          */
4693         ndev->tx_queue_len = qdev->tx_ring_size;
4694         ndev->irq = pdev->irq;
4695
4696         ndev->netdev_ops = &qlge_netdev_ops;
4697         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4698         ndev->watchdog_timeo = 10 * HZ;
4699
4700         err = register_netdev(ndev);
4701         if (err) {
4702                 dev_err(&pdev->dev, "net device registration failed.\n");
4703                 ql_release_all(pdev);
4704                 pci_disable_device(pdev);
4705                 return err;
4706         }
4707         /* Start up the timer to trigger EEH if
4708          * the bus goes dead
4709          */
4710         init_timer_deferrable(&qdev->timer);
4711         qdev->timer.data = (unsigned long)qdev;
4712         qdev->timer.function = ql_timer;
4713         qdev->timer.expires = jiffies + (5*HZ);
4714         add_timer(&qdev->timer);
4715         ql_link_off(qdev);
4716         ql_display_dev_info(ndev);
4717         atomic_set(&qdev->lb_count, 0);
4718         cards_found++;
4719         return 0;
4720 }
4721
4722 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4723 {
4724         return qlge_send(skb, ndev);
4725 }
4726
4727 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4728 {
4729         return ql_clean_inbound_rx_ring(rx_ring, budget);
4730 }
4731
4732 static void qlge_remove(struct pci_dev *pdev)
4733 {
4734         struct net_device *ndev = pci_get_drvdata(pdev);
4735         struct ql_adapter *qdev = netdev_priv(ndev);
4736         del_timer_sync(&qdev->timer);
4737         ql_cancel_all_work_sync(qdev);
4738         unregister_netdev(ndev);
4739         ql_release_all(pdev);
4740         pci_disable_device(pdev);
4741         free_netdev(ndev);
4742 }
4743
4744 /* Clean up resources without touching hardware. */
4745 static void ql_eeh_close(struct net_device *ndev)
4746 {
4747         int i;
4748         struct ql_adapter *qdev = netdev_priv(ndev);
4749
4750         if (netif_carrier_ok(ndev)) {
4751                 netif_carrier_off(ndev);
4752                 netif_stop_queue(ndev);
4753         }
4754
4755         /* Disabling the timer */
4756         del_timer_sync(&qdev->timer);
4757         ql_cancel_all_work_sync(qdev);
4758
4759         for (i = 0; i < qdev->rss_ring_count; i++)
4760                 netif_napi_del(&qdev->rx_ring[i].napi);
4761
4762         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4763         ql_tx_ring_clean(qdev);
4764         ql_free_rx_buffers(qdev);
4765         ql_release_adapter_resources(qdev);
4766 }
4767
4768 /*
4769  * This callback is called by the PCI subsystem whenever
4770  * a PCI bus error is detected.
4771  */
4772 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4773                                                enum pci_channel_state state)
4774 {
4775         struct net_device *ndev = pci_get_drvdata(pdev);
4776         struct ql_adapter *qdev = netdev_priv(ndev);
4777
4778         switch (state) {
4779         case pci_channel_io_normal:
4780                 return PCI_ERS_RESULT_CAN_RECOVER;
4781         case pci_channel_io_frozen:
4782                 netif_device_detach(ndev);
4783                 if (netif_running(ndev))
4784                         ql_eeh_close(ndev);
4785                 pci_disable_device(pdev);
4786                 return PCI_ERS_RESULT_NEED_RESET;
4787         case pci_channel_io_perm_failure:
4788                 dev_err(&pdev->dev,
4789                         "%s: pci_channel_io_perm_failure.\n", __func__);
4790                 ql_eeh_close(ndev);
4791                 set_bit(QL_EEH_FATAL, &qdev->flags);
4792                 return PCI_ERS_RESULT_DISCONNECT;
4793         }
4794
4795         /* Request a slot reset. */
4796         return PCI_ERS_RESULT_NEED_RESET;
4797 }
4798
4799 /*
4800  * This callback is called after the PCI buss has been reset.
4801  * Basically, this tries to restart the card from scratch.
4802  * This is a shortened version of the device probe/discovery code,
4803  * it resembles the first-half of the () routine.
4804  */
4805 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4806 {
4807         struct net_device *ndev = pci_get_drvdata(pdev);
4808         struct ql_adapter *qdev = netdev_priv(ndev);
4809
4810         pdev->error_state = pci_channel_io_normal;
4811
4812         pci_restore_state(pdev);
4813         if (pci_enable_device(pdev)) {
4814                 netif_err(qdev, ifup, qdev->ndev,
4815                           "Cannot re-enable PCI device after reset.\n");
4816                 return PCI_ERS_RESULT_DISCONNECT;
4817         }
4818         pci_set_master(pdev);
4819
4820         if (ql_adapter_reset(qdev)) {
4821                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4822                 set_bit(QL_EEH_FATAL, &qdev->flags);
4823                 return PCI_ERS_RESULT_DISCONNECT;
4824         }
4825
4826         return PCI_ERS_RESULT_RECOVERED;
4827 }
4828
4829 static void qlge_io_resume(struct pci_dev *pdev)
4830 {
4831         struct net_device *ndev = pci_get_drvdata(pdev);
4832         struct ql_adapter *qdev = netdev_priv(ndev);
4833         int err = 0;
4834
4835         if (netif_running(ndev)) {
4836                 err = qlge_open(ndev);
4837                 if (err) {
4838                         netif_err(qdev, ifup, qdev->ndev,
4839                                   "Device initialization failed after reset.\n");
4840                         return;
4841                 }
4842         } else {
4843                 netif_err(qdev, ifup, qdev->ndev,
4844                           "Device was not running prior to EEH.\n");
4845         }
4846         mod_timer(&qdev->timer, jiffies + (5*HZ));
4847         netif_device_attach(ndev);
4848 }
4849
4850 static const struct pci_error_handlers qlge_err_handler = {
4851         .error_detected = qlge_io_error_detected,
4852         .slot_reset = qlge_io_slot_reset,
4853         .resume = qlge_io_resume,
4854 };
4855
4856 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4857 {
4858         struct net_device *ndev = pci_get_drvdata(pdev);
4859         struct ql_adapter *qdev = netdev_priv(ndev);
4860         int err;
4861
4862         netif_device_detach(ndev);
4863         del_timer_sync(&qdev->timer);
4864
4865         if (netif_running(ndev)) {
4866                 err = ql_adapter_down(qdev);
4867                 if (!err)
4868                         return err;
4869         }
4870
4871         ql_wol(qdev);
4872         err = pci_save_state(pdev);
4873         if (err)
4874                 return err;
4875
4876         pci_disable_device(pdev);
4877
4878         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4879
4880         return 0;
4881 }
4882
4883 #ifdef CONFIG_PM
4884 static int qlge_resume(struct pci_dev *pdev)
4885 {
4886         struct net_device *ndev = pci_get_drvdata(pdev);
4887         struct ql_adapter *qdev = netdev_priv(ndev);
4888         int err;
4889
4890         pci_set_power_state(pdev, PCI_D0);
4891         pci_restore_state(pdev);
4892         err = pci_enable_device(pdev);
4893         if (err) {
4894                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4895                 return err;
4896         }
4897         pci_set_master(pdev);
4898
4899         pci_enable_wake(pdev, PCI_D3hot, 0);
4900         pci_enable_wake(pdev, PCI_D3cold, 0);
4901
4902         if (netif_running(ndev)) {
4903                 err = ql_adapter_up(qdev);
4904                 if (err)
4905                         return err;
4906         }
4907
4908         mod_timer(&qdev->timer, jiffies + (5*HZ));
4909         netif_device_attach(ndev);
4910
4911         return 0;
4912 }
4913 #endif /* CONFIG_PM */
4914
4915 static void qlge_shutdown(struct pci_dev *pdev)
4916 {
4917         qlge_suspend(pdev, PMSG_SUSPEND);
4918 }
4919
4920 static struct pci_driver qlge_driver = {
4921         .name = DRV_NAME,
4922         .id_table = qlge_pci_tbl,
4923         .probe = qlge_probe,
4924         .remove = qlge_remove,
4925 #ifdef CONFIG_PM
4926         .suspend = qlge_suspend,
4927         .resume = qlge_resume,
4928 #endif
4929         .shutdown = qlge_shutdown,
4930         .err_handler = &qlge_err_handler
4931 };
4932
4933 static int __init qlge_init_module(void)
4934 {
4935         return pci_register_driver(&qlge_driver);
4936 }
4937
4938 static void __exit qlge_exit(void)
4939 {
4940         pci_unregister_driver(&qlge_driver);
4941 }
4942
4943 module_init(qlge_init_module);
4944 module_exit(qlge_exit);