Merge tag 'xtensa-for-next-20140815' into for_next
[pandora-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72
73 #include <../drivers/net/bonding/bonding.h>
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82  * Max interrupt hold-off timer value in us.  Queues fall back to this value
83  * under extreme memory pressure so it's largish to give the system time to
84  * recover.
85  */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89         /*
90          * Physical Function provisioning constants.
91          */
92         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
93         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
94         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
95                                          */
96         PFRES_NEQ = 256,                /* # of egress queues */
97         PFRES_NIQ = 0,                  /* # of ingress queues */
98         PFRES_TC = 0,                   /* PCI-E traffic class */
99         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
100
101         PFRES_R_CAPS = FW_CMD_CAP_PF,
102         PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105         /*
106          * Virtual Function provisioning constants.  We need two extra Ingress
107          * Queues with Interrupt capability to serve as the VF's Firmware
108          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109          * neither will have Free Lists associated with them).  For each
110          * Ethernet/Control Egress Queue and for each Free List, we need an
111          * Egress Context.
112          */
113         VFRES_NPORTS = 1,               /* # of "ports" per VF */
114         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
115
116         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
117         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
118         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
120         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
121         VFRES_TC = 0,                   /* PCI-E traffic class */
122         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
123
124         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
131  * static and likely not to be useful in the long run.  We really need to
132  * implement some form of persistent configuration which the firmware
133  * controls.
134  */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136                                   unsigned int pf, unsigned int vf)
137 {
138         unsigned int portn, portvec;
139
140         /*
141          * Give PF's access to all of the ports.
142          */
143         if (vf == 0)
144                 return FW_PFVF_CMD_PMASK_MASK;
145
146         /*
147          * For VFs, we'll assign them access to the ports based purely on the
148          * PF.  We assign active ports in order, wrapping around if there are
149          * fewer active ports than PFs: e.g. active port[pf % nports].
150          * Unfortunately the adapter's port_info structs haven't been
151          * initialized yet so we have to compute this.
152          */
153         if (adapter->params.nports == 0)
154                 return 0;
155
156         portn = pf % adapter->params.nports;
157         portvec = adapter->params.portvec;
158         for (;;) {
159                 /*
160                  * Isolate the lowest set bit in the port vector.  If we're at
161                  * the port number that we want, return that as the pmask.
162                  * otherwise mask that bit out of the port vector and
163                  * decrement our port number ...
164                  */
165                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166                 if (portn == 0)
167                         return pmask;
168                 portn--;
169                 portvec &= ~pmask;
170         }
171         /*NOTREACHED*/
172 }
173
174 enum {
175         MAX_TXQ_ENTRIES      = 16384,
176         MAX_CTRL_TXQ_ENTRIES = 1024,
177         MAX_RSPQ_ENTRIES     = 16384,
178         MAX_RX_BUFFERS       = 16384,
179         MIN_TXQ_ENTRIES      = 32,
180         MIN_CTRL_TXQ_ENTRIES = 32,
181         MIN_RSPQ_ENTRIES     = 128,
182         MIN_FL_ENTRIES       = 16
183 };
184
185 /* Host shadow copy of ingress filter entry.  This is in host native format
186  * and doesn't match the ordering or bit order, etc. of the hardware of the
187  * firmware command.  The use of bit-field structure elements is purely to
188  * remind ourselves of the field size limitations and save memory in the case
189  * where the filter table is large.
190  */
191 struct filter_entry {
192         /* Administrative fields for filter.
193          */
194         u32 valid:1;            /* filter allocated and valid */
195         u32 locked:1;           /* filter is administratively locked */
196
197         u32 pending:1;          /* filter action is pending firmware reply */
198         u32 smtidx:8;           /* Source MAC Table index for smac */
199         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
200
201         /* The filter itself.  Most of this is a straight copy of information
202          * provided by the extended ioctl().  Some fields are translated to
203          * internal forms -- for instance the Ingress Queue ID passed in from
204          * the ioctl() is translated into the Absolute Ingress Queue ID.
205          */
206         struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216         CH_DEVICE(0xa000, 0),  /* PE10K */
217         CH_DEVICE(0x4001, -1),
218         CH_DEVICE(0x4002, -1),
219         CH_DEVICE(0x4003, -1),
220         CH_DEVICE(0x4004, -1),
221         CH_DEVICE(0x4005, -1),
222         CH_DEVICE(0x4006, -1),
223         CH_DEVICE(0x4007, -1),
224         CH_DEVICE(0x4008, -1),
225         CH_DEVICE(0x4009, -1),
226         CH_DEVICE(0x400a, -1),
227         CH_DEVICE(0x400d, -1),
228         CH_DEVICE(0x400e, -1),
229         CH_DEVICE(0x4080, -1),
230         CH_DEVICE(0x4081, -1),
231         CH_DEVICE(0x4082, -1),
232         CH_DEVICE(0x4083, -1),
233         CH_DEVICE(0x4084, -1),
234         CH_DEVICE(0x4085, -1),
235         CH_DEVICE(0x4086, -1),
236         CH_DEVICE(0x4087, -1),
237         CH_DEVICE(0x4088, -1),
238         CH_DEVICE(0x4401, 4),
239         CH_DEVICE(0x4402, 4),
240         CH_DEVICE(0x4403, 4),
241         CH_DEVICE(0x4404, 4),
242         CH_DEVICE(0x4405, 4),
243         CH_DEVICE(0x4406, 4),
244         CH_DEVICE(0x4407, 4),
245         CH_DEVICE(0x4408, 4),
246         CH_DEVICE(0x4409, 4),
247         CH_DEVICE(0x440a, 4),
248         CH_DEVICE(0x440d, 4),
249         CH_DEVICE(0x440e, 4),
250         CH_DEVICE(0x4480, 4),
251         CH_DEVICE(0x4481, 4),
252         CH_DEVICE(0x4482, 4),
253         CH_DEVICE(0x4483, 4),
254         CH_DEVICE(0x4484, 4),
255         CH_DEVICE(0x4485, 4),
256         CH_DEVICE(0x4486, 4),
257         CH_DEVICE(0x4487, 4),
258         CH_DEVICE(0x4488, 4),
259         CH_DEVICE(0x5001, 4),
260         CH_DEVICE(0x5002, 4),
261         CH_DEVICE(0x5003, 4),
262         CH_DEVICE(0x5004, 4),
263         CH_DEVICE(0x5005, 4),
264         CH_DEVICE(0x5006, 4),
265         CH_DEVICE(0x5007, 4),
266         CH_DEVICE(0x5008, 4),
267         CH_DEVICE(0x5009, 4),
268         CH_DEVICE(0x500A, 4),
269         CH_DEVICE(0x500B, 4),
270         CH_DEVICE(0x500C, 4),
271         CH_DEVICE(0x500D, 4),
272         CH_DEVICE(0x500E, 4),
273         CH_DEVICE(0x500F, 4),
274         CH_DEVICE(0x5010, 4),
275         CH_DEVICE(0x5011, 4),
276         CH_DEVICE(0x5012, 4),
277         CH_DEVICE(0x5013, 4),
278         CH_DEVICE(0x5014, 4),
279         CH_DEVICE(0x5015, 4),
280         CH_DEVICE(0x5080, 4),
281         CH_DEVICE(0x5081, 4),
282         CH_DEVICE(0x5082, 4),
283         CH_DEVICE(0x5083, 4),
284         CH_DEVICE(0x5084, 4),
285         CH_DEVICE(0x5085, 4),
286         CH_DEVICE(0x5401, 4),
287         CH_DEVICE(0x5402, 4),
288         CH_DEVICE(0x5403, 4),
289         CH_DEVICE(0x5404, 4),
290         CH_DEVICE(0x5405, 4),
291         CH_DEVICE(0x5406, 4),
292         CH_DEVICE(0x5407, 4),
293         CH_DEVICE(0x5408, 4),
294         CH_DEVICE(0x5409, 4),
295         CH_DEVICE(0x540A, 4),
296         CH_DEVICE(0x540B, 4),
297         CH_DEVICE(0x540C, 4),
298         CH_DEVICE(0x540D, 4),
299         CH_DEVICE(0x540E, 4),
300         CH_DEVICE(0x540F, 4),
301         CH_DEVICE(0x5410, 4),
302         CH_DEVICE(0x5411, 4),
303         CH_DEVICE(0x5412, 4),
304         CH_DEVICE(0x5413, 4),
305         CH_DEVICE(0x5414, 4),
306         CH_DEVICE(0x5415, 4),
307         CH_DEVICE(0x5480, 4),
308         CH_DEVICE(0x5481, 4),
309         CH_DEVICE(0x5482, 4),
310         CH_DEVICE(0x5483, 4),
311         CH_DEVICE(0x5484, 4),
312         CH_DEVICE(0x5485, 4),
313         { 0, }
314 };
315
316 #define FW4_FNAME "cxgb4/t4fw.bin"
317 #define FW5_FNAME "cxgb4/t5fw.bin"
318 #define FW4_CFNAME "cxgb4/t4-config.txt"
319 #define FW5_CFNAME "cxgb4/t5-config.txt"
320
321 MODULE_DESCRIPTION(DRV_DESC);
322 MODULE_AUTHOR("Chelsio Communications");
323 MODULE_LICENSE("Dual BSD/GPL");
324 MODULE_VERSION(DRV_VERSION);
325 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
326 MODULE_FIRMWARE(FW4_FNAME);
327 MODULE_FIRMWARE(FW5_FNAME);
328
329 /*
330  * Normally we're willing to become the firmware's Master PF but will be happy
331  * if another PF has already become the Master and initialized the adapter.
332  * Setting "force_init" will cause this driver to forcibly establish itself as
333  * the Master PF and initialize the adapter.
334  */
335 static uint force_init;
336
337 module_param(force_init, uint, 0644);
338 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
339
340 /*
341  * Normally if the firmware we connect to has Configuration File support, we
342  * use that and only fall back to the old Driver-based initialization if the
343  * Configuration File fails for some reason.  If force_old_init is set, then
344  * we'll always use the old Driver-based initialization sequence.
345  */
346 static uint force_old_init;
347
348 module_param(force_old_init, uint, 0644);
349 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
350
351 static int dflt_msg_enable = DFLT_MSG_ENABLE;
352
353 module_param(dflt_msg_enable, int, 0644);
354 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
355
356 /*
357  * The driver uses the best interrupt scheme available on a platform in the
358  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
359  * of these schemes the driver may consider as follows:
360  *
361  * msi = 2: choose from among all three options
362  * msi = 1: only consider MSI and INTx interrupts
363  * msi = 0: force INTx interrupts
364  */
365 static int msi = 2;
366
367 module_param(msi, int, 0644);
368 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
369
370 /*
371  * Queue interrupt hold-off timer values.  Queues default to the first of these
372  * upon creation.
373  */
374 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
375
376 module_param_array(intr_holdoff, uint, NULL, 0644);
377 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
378                  "0..4 in microseconds");
379
380 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
381
382 module_param_array(intr_cnt, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_cnt,
384                  "thresholds 1..3 for queue interrupt packet counters");
385
386 /*
387  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
388  * offset by 2 bytes in order to have the IP headers line up on 4-byte
389  * boundaries.  This is a requirement for many architectures which will throw
390  * a machine check fault if an attempt is made to access one of the 4-byte IP
391  * header fields on a non-4-byte boundary.  And it's a major performance issue
392  * even on some architectures which allow it like some implementations of the
393  * x86 ISA.  However, some architectures don't mind this and for some very
394  * edge-case performance sensitive applications (like forwarding large volumes
395  * of small packets), setting this DMA offset to 0 will decrease the number of
396  * PCI-E Bus transfers enough to measurably affect performance.
397  */
398 static int rx_dma_offset = 2;
399
400 static bool vf_acls;
401
402 #ifdef CONFIG_PCI_IOV
403 module_param(vf_acls, bool, 0644);
404 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
405
406 /* Configure the number of PCI-E Virtual Function which are to be instantiated
407  * on SR-IOV Capable Physical Functions.
408  */
409 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
410
411 module_param_array(num_vf, uint, NULL, 0644);
412 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
413 #endif
414
415 /* TX Queue select used to determine what algorithm to use for selecting TX
416  * queue. Select between the kernel provided function (select_queue=0) or user
417  * cxgb_select_queue function (select_queue=1)
418  *
419  * Default: select_queue=0
420  */
421 static int select_queue;
422 module_param(select_queue, int, 0644);
423 MODULE_PARM_DESC(select_queue,
424                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
425
426 /*
427  * The filter TCAM has a fixed portion and a variable portion.  The fixed
428  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
429  * ports.  The variable portion is 36 bits which can include things like Exact
430  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
431  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
432  * far exceed the 36-bit budget for this "compressed" header portion of the
433  * filter.  Thus, we have a scarce resource which must be carefully managed.
434  *
435  * By default we set this up to mostly match the set of filter matching
436  * capabilities of T3 but with accommodations for some of T4's more
437  * interesting features:
438  *
439  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
440  *     [Inner] VLAN (17), Port (3), FCoE (1) }
441  */
442 enum {
443         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
444         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
445         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
446 };
447
448 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
449
450 module_param(tp_vlan_pri_map, uint, 0644);
451 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
452
453 static struct dentry *cxgb4_debugfs_root;
454
455 static LIST_HEAD(adapter_list);
456 static DEFINE_MUTEX(uld_mutex);
457 /* Adapter list to be accessed from atomic context */
458 static LIST_HEAD(adap_rcu_list);
459 static DEFINE_SPINLOCK(adap_rcu_lock);
460 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
461 static const char *uld_str[] = { "RDMA", "iSCSI" };
462
463 static void link_report(struct net_device *dev)
464 {
465         if (!netif_carrier_ok(dev))
466                 netdev_info(dev, "link down\n");
467         else {
468                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
469
470                 const char *s = "10Mbps";
471                 const struct port_info *p = netdev_priv(dev);
472
473                 switch (p->link_cfg.speed) {
474                 case 10000:
475                         s = "10Gbps";
476                         break;
477                 case 1000:
478                         s = "1000Mbps";
479                         break;
480                 case 100:
481                         s = "100Mbps";
482                         break;
483                 case 40000:
484                         s = "40Gbps";
485                         break;
486                 }
487
488                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
489                             fc[p->link_cfg.fc]);
490         }
491 }
492
493 #ifdef CONFIG_CHELSIO_T4_DCB
494 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
495 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
496 {
497         struct port_info *pi = netdev_priv(dev);
498         struct adapter *adap = pi->adapter;
499         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
500         int i;
501
502         /* We use a simple mapping of Port TX Queue Index to DCB
503          * Priority when we're enabling DCB.
504          */
505         for (i = 0; i < pi->nqsets; i++, txq++) {
506                 u32 name, value;
507                 int err;
508
509                 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
510                         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
511                         FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
512                 value = enable ? i : 0xffffffff;
513
514                 /* Since we can be called while atomic (from "interrupt
515                  * level") we need to issue the Set Parameters Commannd
516                  * without sleeping (timeout < 0).
517                  */
518                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
519                                             &name, &value);
520
521                 if (err)
522                         dev_err(adap->pdev_dev,
523                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
524                                 enable ? "set" : "unset", pi->port_id, i, -err);
525                 else
526                         txq->dcb_prio = value;
527         }
528 }
529 #endif /* CONFIG_CHELSIO_T4_DCB */
530
531 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
532 {
533         struct net_device *dev = adapter->port[port_id];
534
535         /* Skip changes from disabled ports. */
536         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
537                 if (link_stat)
538                         netif_carrier_on(dev);
539                 else {
540 #ifdef CONFIG_CHELSIO_T4_DCB
541                         cxgb4_dcb_state_init(dev);
542                         dcb_tx_queue_prio_enable(dev, false);
543 #endif /* CONFIG_CHELSIO_T4_DCB */
544                         netif_carrier_off(dev);
545                 }
546
547                 link_report(dev);
548         }
549 }
550
551 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
552 {
553         static const char *mod_str[] = {
554                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
555         };
556
557         const struct net_device *dev = adap->port[port_id];
558         const struct port_info *pi = netdev_priv(dev);
559
560         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
561                 netdev_info(dev, "port module unplugged\n");
562         else if (pi->mod_type < ARRAY_SIZE(mod_str))
563                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
564 }
565
566 /*
567  * Configure the exact and hash address filters to handle a port's multicast
568  * and secondary unicast MAC addresses.
569  */
570 static int set_addr_filters(const struct net_device *dev, bool sleep)
571 {
572         u64 mhash = 0;
573         u64 uhash = 0;
574         bool free = true;
575         u16 filt_idx[7];
576         const u8 *addr[7];
577         int ret, naddr = 0;
578         const struct netdev_hw_addr *ha;
579         int uc_cnt = netdev_uc_count(dev);
580         int mc_cnt = netdev_mc_count(dev);
581         const struct port_info *pi = netdev_priv(dev);
582         unsigned int mb = pi->adapter->fn;
583
584         /* first do the secondary unicast addresses */
585         netdev_for_each_uc_addr(ha, dev) {
586                 addr[naddr++] = ha->addr;
587                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
588                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
589                                         naddr, addr, filt_idx, &uhash, sleep);
590                         if (ret < 0)
591                                 return ret;
592
593                         free = false;
594                         naddr = 0;
595                 }
596         }
597
598         /* next set up the multicast addresses */
599         netdev_for_each_mc_addr(ha, dev) {
600                 addr[naddr++] = ha->addr;
601                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
602                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
603                                         naddr, addr, filt_idx, &mhash, sleep);
604                         if (ret < 0)
605                                 return ret;
606
607                         free = false;
608                         naddr = 0;
609                 }
610         }
611
612         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
613                                 uhash | mhash, sleep);
614 }
615
616 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
617 module_param(dbfifo_int_thresh, int, 0644);
618 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
619
620 /*
621  * usecs to sleep while draining the dbfifo
622  */
623 static int dbfifo_drain_delay = 1000;
624 module_param(dbfifo_drain_delay, int, 0644);
625 MODULE_PARM_DESC(dbfifo_drain_delay,
626                  "usecs to sleep while draining the dbfifo");
627
628 /*
629  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
630  * If @mtu is -1 it is left unchanged.
631  */
632 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
633 {
634         int ret;
635         struct port_info *pi = netdev_priv(dev);
636
637         ret = set_addr_filters(dev, sleep_ok);
638         if (ret == 0)
639                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
640                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
641                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
642                                     sleep_ok);
643         return ret;
644 }
645
646 static struct workqueue_struct *workq;
647
648 /**
649  *      link_start - enable a port
650  *      @dev: the port to enable
651  *
652  *      Performs the MAC and PHY actions needed to enable a port.
653  */
654 static int link_start(struct net_device *dev)
655 {
656         int ret;
657         struct port_info *pi = netdev_priv(dev);
658         unsigned int mb = pi->adapter->fn;
659
660         /*
661          * We do not set address filters and promiscuity here, the stack does
662          * that step explicitly.
663          */
664         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
665                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
666         if (ret == 0) {
667                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
668                                     pi->xact_addr_filt, dev->dev_addr, true,
669                                     true);
670                 if (ret >= 0) {
671                         pi->xact_addr_filt = ret;
672                         ret = 0;
673                 }
674         }
675         if (ret == 0)
676                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
677                                     &pi->link_cfg);
678         if (ret == 0) {
679                 local_bh_disable();
680                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
681                                           true, CXGB4_DCB_ENABLED);
682                 local_bh_enable();
683         }
684
685         return ret;
686 }
687
688 int cxgb4_dcb_enabled(const struct net_device *dev)
689 {
690 #ifdef CONFIG_CHELSIO_T4_DCB
691         struct port_info *pi = netdev_priv(dev);
692
693         return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
694 #else
695         return 0;
696 #endif
697 }
698 EXPORT_SYMBOL(cxgb4_dcb_enabled);
699
700 #ifdef CONFIG_CHELSIO_T4_DCB
701 /* Handle a Data Center Bridging update message from the firmware. */
702 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
703 {
704         int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
705         struct net_device *dev = adap->port[port];
706         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
707         int new_dcb_enabled;
708
709         cxgb4_dcb_handle_fw_update(adap, pcmd);
710         new_dcb_enabled = cxgb4_dcb_enabled(dev);
711
712         /* If the DCB has become enabled or disabled on the port then we're
713          * going to need to set up/tear down DCB Priority parameters for the
714          * TX Queues associated with the port.
715          */
716         if (new_dcb_enabled != old_dcb_enabled)
717                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
718 }
719 #endif /* CONFIG_CHELSIO_T4_DCB */
720
721 /* Clear a filter and release any of its resources that we own.  This also
722  * clears the filter's "pending" status.
723  */
724 static void clear_filter(struct adapter *adap, struct filter_entry *f)
725 {
726         /* If the new or old filter have loopback rewriteing rules then we'll
727          * need to free any existing Layer Two Table (L2T) entries of the old
728          * filter rule.  The firmware will handle freeing up any Source MAC
729          * Table (SMT) entries used for rewriting Source MAC Addresses in
730          * loopback rules.
731          */
732         if (f->l2t)
733                 cxgb4_l2t_release(f->l2t);
734
735         /* The zeroing of the filter rule below clears the filter valid,
736          * pending, locked flags, l2t pointer, etc. so it's all we need for
737          * this operation.
738          */
739         memset(f, 0, sizeof(*f));
740 }
741
742 /* Handle a filter write/deletion reply.
743  */
744 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
745 {
746         unsigned int idx = GET_TID(rpl);
747         unsigned int nidx = idx - adap->tids.ftid_base;
748         unsigned int ret;
749         struct filter_entry *f;
750
751         if (idx >= adap->tids.ftid_base && nidx <
752            (adap->tids.nftids + adap->tids.nsftids)) {
753                 idx = nidx;
754                 ret = GET_TCB_COOKIE(rpl->cookie);
755                 f = &adap->tids.ftid_tab[idx];
756
757                 if (ret == FW_FILTER_WR_FLT_DELETED) {
758                         /* Clear the filter when we get confirmation from the
759                          * hardware that the filter has been deleted.
760                          */
761                         clear_filter(adap, f);
762                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
763                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
764                                 idx);
765                         clear_filter(adap, f);
766                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
767                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
768                         f->pending = 0;  /* asynchronous setup completed */
769                         f->valid = 1;
770                 } else {
771                         /* Something went wrong.  Issue a warning about the
772                          * problem and clear everything out.
773                          */
774                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
775                                 idx, ret);
776                         clear_filter(adap, f);
777                 }
778         }
779 }
780
781 /* Response queue handler for the FW event queue.
782  */
783 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
784                           const struct pkt_gl *gl)
785 {
786         u8 opcode = ((const struct rss_header *)rsp)->opcode;
787
788         rsp++;                                          /* skip RSS header */
789
790         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
791          */
792         if (unlikely(opcode == CPL_FW4_MSG &&
793            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
794                 rsp++;
795                 opcode = ((const struct rss_header *)rsp)->opcode;
796                 rsp++;
797                 if (opcode != CPL_SGE_EGR_UPDATE) {
798                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
799                                 , opcode);
800                         goto out;
801                 }
802         }
803
804         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
805                 const struct cpl_sge_egr_update *p = (void *)rsp;
806                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
807                 struct sge_txq *txq;
808
809                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
810                 txq->restarts++;
811                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
812                         struct sge_eth_txq *eq;
813
814                         eq = container_of(txq, struct sge_eth_txq, q);
815                         netif_tx_wake_queue(eq->txq);
816                 } else {
817                         struct sge_ofld_txq *oq;
818
819                         oq = container_of(txq, struct sge_ofld_txq, q);
820                         tasklet_schedule(&oq->qresume_tsk);
821                 }
822         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
823                 const struct cpl_fw6_msg *p = (void *)rsp;
824
825 #ifdef CONFIG_CHELSIO_T4_DCB
826                 const struct fw_port_cmd *pcmd = (const void *)p->data;
827                 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
828                 unsigned int action =
829                         FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
830
831                 if (cmd == FW_PORT_CMD &&
832                     action == FW_PORT_ACTION_GET_PORT_INFO) {
833                         int port = FW_PORT_CMD_PORTID_GET(
834                                         be32_to_cpu(pcmd->op_to_portid));
835                         struct net_device *dev = q->adap->port[port];
836                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
837                                             FW_PORT_CMD_DCBXDIS)
838                                            ? CXGB4_DCB_INPUT_FW_DISABLED
839                                            : CXGB4_DCB_INPUT_FW_ENABLED);
840
841                         cxgb4_dcb_state_fsm(dev, state_input);
842                 }
843
844                 if (cmd == FW_PORT_CMD &&
845                     action == FW_PORT_ACTION_L2_DCB_CFG)
846                         dcb_rpl(q->adap, pcmd);
847                 else
848 #endif
849                         if (p->type == 0)
850                                 t4_handle_fw_rpl(q->adap, p->data);
851         } else if (opcode == CPL_L2T_WRITE_RPL) {
852                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
853
854                 do_l2t_write_rpl(q->adap, p);
855         } else if (opcode == CPL_SET_TCB_RPL) {
856                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
857
858                 filter_rpl(q->adap, p);
859         } else
860                 dev_err(q->adap->pdev_dev,
861                         "unexpected CPL %#x on FW event queue\n", opcode);
862 out:
863         return 0;
864 }
865
866 /**
867  *      uldrx_handler - response queue handler for ULD queues
868  *      @q: the response queue that received the packet
869  *      @rsp: the response queue descriptor holding the offload message
870  *      @gl: the gather list of packet fragments
871  *
872  *      Deliver an ingress offload packet to a ULD.  All processing is done by
873  *      the ULD, we just maintain statistics.
874  */
875 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
876                          const struct pkt_gl *gl)
877 {
878         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
879
880         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
881          */
882         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
883             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
884                 rsp += 2;
885
886         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
887                 rxq->stats.nomem++;
888                 return -1;
889         }
890         if (gl == NULL)
891                 rxq->stats.imm++;
892         else if (gl == CXGB4_MSG_AN)
893                 rxq->stats.an++;
894         else
895                 rxq->stats.pkts++;
896         return 0;
897 }
898
899 static void disable_msi(struct adapter *adapter)
900 {
901         if (adapter->flags & USING_MSIX) {
902                 pci_disable_msix(adapter->pdev);
903                 adapter->flags &= ~USING_MSIX;
904         } else if (adapter->flags & USING_MSI) {
905                 pci_disable_msi(adapter->pdev);
906                 adapter->flags &= ~USING_MSI;
907         }
908 }
909
910 /*
911  * Interrupt handler for non-data events used with MSI-X.
912  */
913 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
914 {
915         struct adapter *adap = cookie;
916
917         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
918         if (v & PFSW) {
919                 adap->swintr = 1;
920                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
921         }
922         t4_slow_intr_handler(adap);
923         return IRQ_HANDLED;
924 }
925
926 /*
927  * Name the MSI-X interrupts.
928  */
929 static void name_msix_vecs(struct adapter *adap)
930 {
931         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
932
933         /* non-data interrupts */
934         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
935
936         /* FW events */
937         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
938                  adap->port[0]->name);
939
940         /* Ethernet queues */
941         for_each_port(adap, j) {
942                 struct net_device *d = adap->port[j];
943                 const struct port_info *pi = netdev_priv(d);
944
945                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
946                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
947                                  d->name, i);
948         }
949
950         /* offload queues */
951         for_each_ofldrxq(&adap->sge, i)
952                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
953                          adap->port[0]->name, i);
954
955         for_each_rdmarxq(&adap->sge, i)
956                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
957                          adap->port[0]->name, i);
958
959         for_each_rdmaciq(&adap->sge, i)
960                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
961                          adap->port[0]->name, i);
962 }
963
964 static int request_msix_queue_irqs(struct adapter *adap)
965 {
966         struct sge *s = &adap->sge;
967         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
968         int msi_index = 2;
969
970         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
971                           adap->msix_info[1].desc, &s->fw_evtq);
972         if (err)
973                 return err;
974
975         for_each_ethrxq(s, ethqidx) {
976                 err = request_irq(adap->msix_info[msi_index].vec,
977                                   t4_sge_intr_msix, 0,
978                                   adap->msix_info[msi_index].desc,
979                                   &s->ethrxq[ethqidx].rspq);
980                 if (err)
981                         goto unwind;
982                 msi_index++;
983         }
984         for_each_ofldrxq(s, ofldqidx) {
985                 err = request_irq(adap->msix_info[msi_index].vec,
986                                   t4_sge_intr_msix, 0,
987                                   adap->msix_info[msi_index].desc,
988                                   &s->ofldrxq[ofldqidx].rspq);
989                 if (err)
990                         goto unwind;
991                 msi_index++;
992         }
993         for_each_rdmarxq(s, rdmaqidx) {
994                 err = request_irq(adap->msix_info[msi_index].vec,
995                                   t4_sge_intr_msix, 0,
996                                   adap->msix_info[msi_index].desc,
997                                   &s->rdmarxq[rdmaqidx].rspq);
998                 if (err)
999                         goto unwind;
1000                 msi_index++;
1001         }
1002         for_each_rdmaciq(s, rdmaciqqidx) {
1003                 err = request_irq(adap->msix_info[msi_index].vec,
1004                                   t4_sge_intr_msix, 0,
1005                                   adap->msix_info[msi_index].desc,
1006                                   &s->rdmaciq[rdmaciqqidx].rspq);
1007                 if (err)
1008                         goto unwind;
1009                 msi_index++;
1010         }
1011         return 0;
1012
1013 unwind:
1014         while (--rdmaciqqidx >= 0)
1015                 free_irq(adap->msix_info[--msi_index].vec,
1016                          &s->rdmaciq[rdmaciqqidx].rspq);
1017         while (--rdmaqidx >= 0)
1018                 free_irq(adap->msix_info[--msi_index].vec,
1019                          &s->rdmarxq[rdmaqidx].rspq);
1020         while (--ofldqidx >= 0)
1021                 free_irq(adap->msix_info[--msi_index].vec,
1022                          &s->ofldrxq[ofldqidx].rspq);
1023         while (--ethqidx >= 0)
1024                 free_irq(adap->msix_info[--msi_index].vec,
1025                          &s->ethrxq[ethqidx].rspq);
1026         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1027         return err;
1028 }
1029
1030 static void free_msix_queue_irqs(struct adapter *adap)
1031 {
1032         int i, msi_index = 2;
1033         struct sge *s = &adap->sge;
1034
1035         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1036         for_each_ethrxq(s, i)
1037                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1038         for_each_ofldrxq(s, i)
1039                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1040         for_each_rdmarxq(s, i)
1041                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1042         for_each_rdmaciq(s, i)
1043                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1044 }
1045
1046 /**
1047  *      write_rss - write the RSS table for a given port
1048  *      @pi: the port
1049  *      @queues: array of queue indices for RSS
1050  *
1051  *      Sets up the portion of the HW RSS table for the port's VI to distribute
1052  *      packets to the Rx queues in @queues.
1053  */
1054 static int write_rss(const struct port_info *pi, const u16 *queues)
1055 {
1056         u16 *rss;
1057         int i, err;
1058         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1059
1060         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1061         if (!rss)
1062                 return -ENOMEM;
1063
1064         /* map the queue indices to queue ids */
1065         for (i = 0; i < pi->rss_size; i++, queues++)
1066                 rss[i] = q[*queues].rspq.abs_id;
1067
1068         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1069                                   pi->rss_size, rss, pi->rss_size);
1070         kfree(rss);
1071         return err;
1072 }
1073
1074 /**
1075  *      setup_rss - configure RSS
1076  *      @adap: the adapter
1077  *
1078  *      Sets up RSS for each port.
1079  */
1080 static int setup_rss(struct adapter *adap)
1081 {
1082         int i, err;
1083
1084         for_each_port(adap, i) {
1085                 const struct port_info *pi = adap2pinfo(adap, i);
1086
1087                 err = write_rss(pi, pi->rss);
1088                 if (err)
1089                         return err;
1090         }
1091         return 0;
1092 }
1093
1094 /*
1095  * Return the channel of the ingress queue with the given qid.
1096  */
1097 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1098 {
1099         qid -= p->ingr_start;
1100         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1101 }
1102
1103 /*
1104  * Wait until all NAPI handlers are descheduled.
1105  */
1106 static void quiesce_rx(struct adapter *adap)
1107 {
1108         int i;
1109
1110         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1111                 struct sge_rspq *q = adap->sge.ingr_map[i];
1112
1113                 if (q && q->handler)
1114                         napi_disable(&q->napi);
1115         }
1116 }
1117
1118 /*
1119  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1120  */
1121 static void enable_rx(struct adapter *adap)
1122 {
1123         int i;
1124
1125         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1126                 struct sge_rspq *q = adap->sge.ingr_map[i];
1127
1128                 if (!q)
1129                         continue;
1130                 if (q->handler)
1131                         napi_enable(&q->napi);
1132                 /* 0-increment GTS to start the timer and enable interrupts */
1133                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1134                              SEINTARM(q->intr_params) |
1135                              INGRESSQID(q->cntxt_id));
1136         }
1137 }
1138
1139 /**
1140  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1141  *      @adap: the adapter
1142  *
1143  *      Determines how many sets of SGE queues to use and initializes them.
1144  *      We support multiple queue sets per port if we have MSI-X, otherwise
1145  *      just one queue set per port.
1146  */
1147 static int setup_sge_queues(struct adapter *adap)
1148 {
1149         int err, msi_idx, i, j;
1150         struct sge *s = &adap->sge;
1151
1152         bitmap_zero(s->starving_fl, MAX_EGRQ);
1153         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1154
1155         if (adap->flags & USING_MSIX)
1156                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1157         else {
1158                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1159                                        NULL, NULL);
1160                 if (err)
1161                         return err;
1162                 msi_idx = -((int)s->intrq.abs_id + 1);
1163         }
1164
1165         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1166                                msi_idx, NULL, fwevtq_handler);
1167         if (err) {
1168 freeout:        t4_free_sge_resources(adap);
1169                 return err;
1170         }
1171
1172         for_each_port(adap, i) {
1173                 struct net_device *dev = adap->port[i];
1174                 struct port_info *pi = netdev_priv(dev);
1175                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1176                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1177
1178                 for (j = 0; j < pi->nqsets; j++, q++) {
1179                         if (msi_idx > 0)
1180                                 msi_idx++;
1181                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1182                                                msi_idx, &q->fl,
1183                                                t4_ethrx_handler);
1184                         if (err)
1185                                 goto freeout;
1186                         q->rspq.idx = j;
1187                         memset(&q->stats, 0, sizeof(q->stats));
1188                 }
1189                 for (j = 0; j < pi->nqsets; j++, t++) {
1190                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1191                                         netdev_get_tx_queue(dev, j),
1192                                         s->fw_evtq.cntxt_id);
1193                         if (err)
1194                                 goto freeout;
1195                 }
1196         }
1197
1198         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1199         for_each_ofldrxq(s, i) {
1200                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1201                 struct net_device *dev = adap->port[i / j];
1202
1203                 if (msi_idx > 0)
1204                         msi_idx++;
1205                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1206                                        q->fl.size ? &q->fl : NULL,
1207                                        uldrx_handler);
1208                 if (err)
1209                         goto freeout;
1210                 memset(&q->stats, 0, sizeof(q->stats));
1211                 s->ofld_rxq[i] = q->rspq.abs_id;
1212                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1213                                             s->fw_evtq.cntxt_id);
1214                 if (err)
1215                         goto freeout;
1216         }
1217
1218         for_each_rdmarxq(s, i) {
1219                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1220
1221                 if (msi_idx > 0)
1222                         msi_idx++;
1223                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1224                                        msi_idx, q->fl.size ? &q->fl : NULL,
1225                                        uldrx_handler);
1226                 if (err)
1227                         goto freeout;
1228                 memset(&q->stats, 0, sizeof(q->stats));
1229                 s->rdma_rxq[i] = q->rspq.abs_id;
1230         }
1231
1232         for_each_rdmaciq(s, i) {
1233                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1234
1235                 if (msi_idx > 0)
1236                         msi_idx++;
1237                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1238                                        msi_idx, q->fl.size ? &q->fl : NULL,
1239                                        uldrx_handler);
1240                 if (err)
1241                         goto freeout;
1242                 memset(&q->stats, 0, sizeof(q->stats));
1243                 s->rdma_ciq[i] = q->rspq.abs_id;
1244         }
1245
1246         for_each_port(adap, i) {
1247                 /*
1248                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1249                  * have RDMA queues, and that's the right value.
1250                  */
1251                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1252                                             s->fw_evtq.cntxt_id,
1253                                             s->rdmarxq[i].rspq.cntxt_id);
1254                 if (err)
1255                         goto freeout;
1256         }
1257
1258         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1259                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1260                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1261         return 0;
1262 }
1263
1264 /*
1265  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1266  * The allocated memory is cleared.
1267  */
1268 void *t4_alloc_mem(size_t size)
1269 {
1270         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1271
1272         if (!p)
1273                 p = vzalloc(size);
1274         return p;
1275 }
1276
1277 /*
1278  * Free memory allocated through alloc_mem().
1279  */
1280 static void t4_free_mem(void *addr)
1281 {
1282         if (is_vmalloc_addr(addr))
1283                 vfree(addr);
1284         else
1285                 kfree(addr);
1286 }
1287
1288 /* Send a Work Request to write the filter at a specified index.  We construct
1289  * a Firmware Filter Work Request to have the work done and put the indicated
1290  * filter into "pending" mode which will prevent any further actions against
1291  * it till we get a reply from the firmware on the completion status of the
1292  * request.
1293  */
1294 static int set_filter_wr(struct adapter *adapter, int fidx)
1295 {
1296         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1297         struct sk_buff *skb;
1298         struct fw_filter_wr *fwr;
1299         unsigned int ftid;
1300
1301         /* If the new filter requires loopback Destination MAC and/or VLAN
1302          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1303          * the filter.
1304          */
1305         if (f->fs.newdmac || f->fs.newvlan) {
1306                 /* allocate L2T entry for new filter */
1307                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1308                 if (f->l2t == NULL)
1309                         return -EAGAIN;
1310                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1311                                         f->fs.eport, f->fs.dmac)) {
1312                         cxgb4_l2t_release(f->l2t);
1313                         f->l2t = NULL;
1314                         return -ENOMEM;
1315                 }
1316         }
1317
1318         ftid = adapter->tids.ftid_base + fidx;
1319
1320         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1321         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1322         memset(fwr, 0, sizeof(*fwr));
1323
1324         /* It would be nice to put most of the following in t4_hw.c but most
1325          * of the work is translating the cxgbtool ch_filter_specification
1326          * into the Work Request and the definition of that structure is
1327          * currently in cxgbtool.h which isn't appropriate to pull into the
1328          * common code.  We may eventually try to come up with a more neutral
1329          * filter specification structure but for now it's easiest to simply
1330          * put this fairly direct code in line ...
1331          */
1332         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1333         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1334         fwr->tid_to_iq =
1335                 htonl(V_FW_FILTER_WR_TID(ftid) |
1336                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1337                       V_FW_FILTER_WR_NOREPLY(0) |
1338                       V_FW_FILTER_WR_IQ(f->fs.iq));
1339         fwr->del_filter_to_l2tix =
1340                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1341                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1342                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1343                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1344                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1345                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1346                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1347                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1348                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1349                                              f->fs.newvlan == VLAN_REWRITE) |
1350                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1351                                             f->fs.newvlan == VLAN_REWRITE) |
1352                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1353                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1354                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1355                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1356         fwr->ethtype = htons(f->fs.val.ethtype);
1357         fwr->ethtypem = htons(f->fs.mask.ethtype);
1358         fwr->frag_to_ovlan_vldm =
1359                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1360                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1361                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1362                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1363                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1364                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1365         fwr->smac_sel = 0;
1366         fwr->rx_chan_rx_rpl_iq =
1367                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1368                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1369         fwr->maci_to_matchtypem =
1370                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1371                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1372                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1373                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1374                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1375                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1376                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1377                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1378         fwr->ptcl = f->fs.val.proto;
1379         fwr->ptclm = f->fs.mask.proto;
1380         fwr->ttyp = f->fs.val.tos;
1381         fwr->ttypm = f->fs.mask.tos;
1382         fwr->ivlan = htons(f->fs.val.ivlan);
1383         fwr->ivlanm = htons(f->fs.mask.ivlan);
1384         fwr->ovlan = htons(f->fs.val.ovlan);
1385         fwr->ovlanm = htons(f->fs.mask.ovlan);
1386         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1387         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1388         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1389         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1390         fwr->lp = htons(f->fs.val.lport);
1391         fwr->lpm = htons(f->fs.mask.lport);
1392         fwr->fp = htons(f->fs.val.fport);
1393         fwr->fpm = htons(f->fs.mask.fport);
1394         if (f->fs.newsmac)
1395                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1396
1397         /* Mark the filter as "pending" and ship off the Filter Work Request.
1398          * When we get the Work Request Reply we'll clear the pending status.
1399          */
1400         f->pending = 1;
1401         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1402         t4_ofld_send(adapter, skb);
1403         return 0;
1404 }
1405
1406 /* Delete the filter at a specified index.
1407  */
1408 static int del_filter_wr(struct adapter *adapter, int fidx)
1409 {
1410         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1411         struct sk_buff *skb;
1412         struct fw_filter_wr *fwr;
1413         unsigned int len, ftid;
1414
1415         len = sizeof(*fwr);
1416         ftid = adapter->tids.ftid_base + fidx;
1417
1418         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1419         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1420         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1421
1422         /* Mark the filter as "pending" and ship off the Filter Work Request.
1423          * When we get the Work Request Reply we'll clear the pending status.
1424          */
1425         f->pending = 1;
1426         t4_mgmt_tx(adapter, skb);
1427         return 0;
1428 }
1429
1430 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1431                              void *accel_priv, select_queue_fallback_t fallback)
1432 {
1433         int txq;
1434
1435 #ifdef CONFIG_CHELSIO_T4_DCB
1436         /* If a Data Center Bridging has been successfully negotiated on this
1437          * link then we'll use the skb's priority to map it to a TX Queue.
1438          * The skb's priority is determined via the VLAN Tag Priority Code
1439          * Point field.
1440          */
1441         if (cxgb4_dcb_enabled(dev)) {
1442                 u16 vlan_tci;
1443                 int err;
1444
1445                 err = vlan_get_tag(skb, &vlan_tci);
1446                 if (unlikely(err)) {
1447                         if (net_ratelimit())
1448                                 netdev_warn(dev,
1449                                             "TX Packet without VLAN Tag on DCB Link\n");
1450                         txq = 0;
1451                 } else {
1452                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1453                 }
1454                 return txq;
1455         }
1456 #endif /* CONFIG_CHELSIO_T4_DCB */
1457
1458         if (select_queue) {
1459                 txq = (skb_rx_queue_recorded(skb)
1460                         ? skb_get_rx_queue(skb)
1461                         : smp_processor_id());
1462
1463                 while (unlikely(txq >= dev->real_num_tx_queues))
1464                         txq -= dev->real_num_tx_queues;
1465
1466                 return txq;
1467         }
1468
1469         return fallback(dev, skb) % dev->real_num_tx_queues;
1470 }
1471
1472 static inline int is_offload(const struct adapter *adap)
1473 {
1474         return adap->params.offload;
1475 }
1476
1477 /*
1478  * Implementation of ethtool operations.
1479  */
1480
1481 static u32 get_msglevel(struct net_device *dev)
1482 {
1483         return netdev2adap(dev)->msg_enable;
1484 }
1485
1486 static void set_msglevel(struct net_device *dev, u32 val)
1487 {
1488         netdev2adap(dev)->msg_enable = val;
1489 }
1490
1491 static char stats_strings[][ETH_GSTRING_LEN] = {
1492         "TxOctetsOK         ",
1493         "TxFramesOK         ",
1494         "TxBroadcastFrames  ",
1495         "TxMulticastFrames  ",
1496         "TxUnicastFrames    ",
1497         "TxErrorFrames      ",
1498
1499         "TxFrames64         ",
1500         "TxFrames65To127    ",
1501         "TxFrames128To255   ",
1502         "TxFrames256To511   ",
1503         "TxFrames512To1023  ",
1504         "TxFrames1024To1518 ",
1505         "TxFrames1519ToMax  ",
1506
1507         "TxFramesDropped    ",
1508         "TxPauseFrames      ",
1509         "TxPPP0Frames       ",
1510         "TxPPP1Frames       ",
1511         "TxPPP2Frames       ",
1512         "TxPPP3Frames       ",
1513         "TxPPP4Frames       ",
1514         "TxPPP5Frames       ",
1515         "TxPPP6Frames       ",
1516         "TxPPP7Frames       ",
1517
1518         "RxOctetsOK         ",
1519         "RxFramesOK         ",
1520         "RxBroadcastFrames  ",
1521         "RxMulticastFrames  ",
1522         "RxUnicastFrames    ",
1523
1524         "RxFramesTooLong    ",
1525         "RxJabberErrors     ",
1526         "RxFCSErrors        ",
1527         "RxLengthErrors     ",
1528         "RxSymbolErrors     ",
1529         "RxRuntFrames       ",
1530
1531         "RxFrames64         ",
1532         "RxFrames65To127    ",
1533         "RxFrames128To255   ",
1534         "RxFrames256To511   ",
1535         "RxFrames512To1023  ",
1536         "RxFrames1024To1518 ",
1537         "RxFrames1519ToMax  ",
1538
1539         "RxPauseFrames      ",
1540         "RxPPP0Frames       ",
1541         "RxPPP1Frames       ",
1542         "RxPPP2Frames       ",
1543         "RxPPP3Frames       ",
1544         "RxPPP4Frames       ",
1545         "RxPPP5Frames       ",
1546         "RxPPP6Frames       ",
1547         "RxPPP7Frames       ",
1548
1549         "RxBG0FramesDropped ",
1550         "RxBG1FramesDropped ",
1551         "RxBG2FramesDropped ",
1552         "RxBG3FramesDropped ",
1553         "RxBG0FramesTrunc   ",
1554         "RxBG1FramesTrunc   ",
1555         "RxBG2FramesTrunc   ",
1556         "RxBG3FramesTrunc   ",
1557
1558         "TSO                ",
1559         "TxCsumOffload      ",
1560         "RxCsumGood         ",
1561         "VLANextractions    ",
1562         "VLANinsertions     ",
1563         "GROpackets         ",
1564         "GROmerged          ",
1565         "WriteCoalSuccess   ",
1566         "WriteCoalFail      ",
1567 };
1568
1569 static int get_sset_count(struct net_device *dev, int sset)
1570 {
1571         switch (sset) {
1572         case ETH_SS_STATS:
1573                 return ARRAY_SIZE(stats_strings);
1574         default:
1575                 return -EOPNOTSUPP;
1576         }
1577 }
1578
1579 #define T4_REGMAP_SIZE (160 * 1024)
1580 #define T5_REGMAP_SIZE (332 * 1024)
1581
1582 static int get_regs_len(struct net_device *dev)
1583 {
1584         struct adapter *adap = netdev2adap(dev);
1585         if (is_t4(adap->params.chip))
1586                 return T4_REGMAP_SIZE;
1587         else
1588                 return T5_REGMAP_SIZE;
1589 }
1590
1591 static int get_eeprom_len(struct net_device *dev)
1592 {
1593         return EEPROMSIZE;
1594 }
1595
1596 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1597 {
1598         struct adapter *adapter = netdev2adap(dev);
1599
1600         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1601         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1602         strlcpy(info->bus_info, pci_name(adapter->pdev),
1603                 sizeof(info->bus_info));
1604
1605         if (adapter->params.fw_vers)
1606                 snprintf(info->fw_version, sizeof(info->fw_version),
1607                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1608                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1609                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1610                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1611                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1612                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1613                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1614                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1615                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1616 }
1617
1618 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1619 {
1620         if (stringset == ETH_SS_STATS)
1621                 memcpy(data, stats_strings, sizeof(stats_strings));
1622 }
1623
1624 /*
1625  * port stats maintained per queue of the port.  They should be in the same
1626  * order as in stats_strings above.
1627  */
1628 struct queue_port_stats {
1629         u64 tso;
1630         u64 tx_csum;
1631         u64 rx_csum;
1632         u64 vlan_ex;
1633         u64 vlan_ins;
1634         u64 gro_pkts;
1635         u64 gro_merged;
1636 };
1637
1638 static void collect_sge_port_stats(const struct adapter *adap,
1639                 const struct port_info *p, struct queue_port_stats *s)
1640 {
1641         int i;
1642         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1643         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1644
1645         memset(s, 0, sizeof(*s));
1646         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1647                 s->tso += tx->tso;
1648                 s->tx_csum += tx->tx_cso;
1649                 s->rx_csum += rx->stats.rx_cso;
1650                 s->vlan_ex += rx->stats.vlan_ex;
1651                 s->vlan_ins += tx->vlan_ins;
1652                 s->gro_pkts += rx->stats.lro_pkts;
1653                 s->gro_merged += rx->stats.lro_merged;
1654         }
1655 }
1656
1657 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1658                       u64 *data)
1659 {
1660         struct port_info *pi = netdev_priv(dev);
1661         struct adapter *adapter = pi->adapter;
1662         u32 val1, val2;
1663
1664         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1665
1666         data += sizeof(struct port_stats) / sizeof(u64);
1667         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1668         data += sizeof(struct queue_port_stats) / sizeof(u64);
1669         if (!is_t4(adapter->params.chip)) {
1670                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1671                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1672                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1673                 *data = val1 - val2;
1674                 data++;
1675                 *data = val2;
1676                 data++;
1677         } else {
1678                 memset(data, 0, 2 * sizeof(u64));
1679                 *data += 2;
1680         }
1681 }
1682
1683 /*
1684  * Return a version number to identify the type of adapter.  The scheme is:
1685  * - bits 0..9: chip version
1686  * - bits 10..15: chip revision
1687  * - bits 16..23: register dump version
1688  */
1689 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1690 {
1691         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1692                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1693 }
1694
1695 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1696                            unsigned int end)
1697 {
1698         u32 *p = buf + start;
1699
1700         for ( ; start <= end; start += sizeof(u32))
1701                 *p++ = t4_read_reg(ap, start);
1702 }
1703
1704 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1705                      void *buf)
1706 {
1707         static const unsigned int t4_reg_ranges[] = {
1708                 0x1008, 0x1108,
1709                 0x1180, 0x11b4,
1710                 0x11fc, 0x123c,
1711                 0x1300, 0x173c,
1712                 0x1800, 0x18fc,
1713                 0x3000, 0x30d8,
1714                 0x30e0, 0x5924,
1715                 0x5960, 0x59d4,
1716                 0x5a00, 0x5af8,
1717                 0x6000, 0x6098,
1718                 0x6100, 0x6150,
1719                 0x6200, 0x6208,
1720                 0x6240, 0x6248,
1721                 0x6280, 0x6338,
1722                 0x6370, 0x638c,
1723                 0x6400, 0x643c,
1724                 0x6500, 0x6524,
1725                 0x6a00, 0x6a38,
1726                 0x6a60, 0x6a78,
1727                 0x6b00, 0x6b84,
1728                 0x6bf0, 0x6c84,
1729                 0x6cf0, 0x6d84,
1730                 0x6df0, 0x6e84,
1731                 0x6ef0, 0x6f84,
1732                 0x6ff0, 0x7084,
1733                 0x70f0, 0x7184,
1734                 0x71f0, 0x7284,
1735                 0x72f0, 0x7384,
1736                 0x73f0, 0x7450,
1737                 0x7500, 0x7530,
1738                 0x7600, 0x761c,
1739                 0x7680, 0x76cc,
1740                 0x7700, 0x7798,
1741                 0x77c0, 0x77fc,
1742                 0x7900, 0x79fc,
1743                 0x7b00, 0x7c38,
1744                 0x7d00, 0x7efc,
1745                 0x8dc0, 0x8e1c,
1746                 0x8e30, 0x8e78,
1747                 0x8ea0, 0x8f6c,
1748                 0x8fc0, 0x9074,
1749                 0x90fc, 0x90fc,
1750                 0x9400, 0x9458,
1751                 0x9600, 0x96bc,
1752                 0x9800, 0x9808,
1753                 0x9820, 0x983c,
1754                 0x9850, 0x9864,
1755                 0x9c00, 0x9c6c,
1756                 0x9c80, 0x9cec,
1757                 0x9d00, 0x9d6c,
1758                 0x9d80, 0x9dec,
1759                 0x9e00, 0x9e6c,
1760                 0x9e80, 0x9eec,
1761                 0x9f00, 0x9f6c,
1762                 0x9f80, 0x9fec,
1763                 0xd004, 0xd03c,
1764                 0xdfc0, 0xdfe0,
1765                 0xe000, 0xea7c,
1766                 0xf000, 0x11190,
1767                 0x19040, 0x1906c,
1768                 0x19078, 0x19080,
1769                 0x1908c, 0x19124,
1770                 0x19150, 0x191b0,
1771                 0x191d0, 0x191e8,
1772                 0x19238, 0x1924c,
1773                 0x193f8, 0x19474,
1774                 0x19490, 0x194f8,
1775                 0x19800, 0x19f30,
1776                 0x1a000, 0x1a06c,
1777                 0x1a0b0, 0x1a120,
1778                 0x1a128, 0x1a138,
1779                 0x1a190, 0x1a1c4,
1780                 0x1a1fc, 0x1a1fc,
1781                 0x1e040, 0x1e04c,
1782                 0x1e284, 0x1e28c,
1783                 0x1e2c0, 0x1e2c0,
1784                 0x1e2e0, 0x1e2e0,
1785                 0x1e300, 0x1e384,
1786                 0x1e3c0, 0x1e3c8,
1787                 0x1e440, 0x1e44c,
1788                 0x1e684, 0x1e68c,
1789                 0x1e6c0, 0x1e6c0,
1790                 0x1e6e0, 0x1e6e0,
1791                 0x1e700, 0x1e784,
1792                 0x1e7c0, 0x1e7c8,
1793                 0x1e840, 0x1e84c,
1794                 0x1ea84, 0x1ea8c,
1795                 0x1eac0, 0x1eac0,
1796                 0x1eae0, 0x1eae0,
1797                 0x1eb00, 0x1eb84,
1798                 0x1ebc0, 0x1ebc8,
1799                 0x1ec40, 0x1ec4c,
1800                 0x1ee84, 0x1ee8c,
1801                 0x1eec0, 0x1eec0,
1802                 0x1eee0, 0x1eee0,
1803                 0x1ef00, 0x1ef84,
1804                 0x1efc0, 0x1efc8,
1805                 0x1f040, 0x1f04c,
1806                 0x1f284, 0x1f28c,
1807                 0x1f2c0, 0x1f2c0,
1808                 0x1f2e0, 0x1f2e0,
1809                 0x1f300, 0x1f384,
1810                 0x1f3c0, 0x1f3c8,
1811                 0x1f440, 0x1f44c,
1812                 0x1f684, 0x1f68c,
1813                 0x1f6c0, 0x1f6c0,
1814                 0x1f6e0, 0x1f6e0,
1815                 0x1f700, 0x1f784,
1816                 0x1f7c0, 0x1f7c8,
1817                 0x1f840, 0x1f84c,
1818                 0x1fa84, 0x1fa8c,
1819                 0x1fac0, 0x1fac0,
1820                 0x1fae0, 0x1fae0,
1821                 0x1fb00, 0x1fb84,
1822                 0x1fbc0, 0x1fbc8,
1823                 0x1fc40, 0x1fc4c,
1824                 0x1fe84, 0x1fe8c,
1825                 0x1fec0, 0x1fec0,
1826                 0x1fee0, 0x1fee0,
1827                 0x1ff00, 0x1ff84,
1828                 0x1ffc0, 0x1ffc8,
1829                 0x20000, 0x2002c,
1830                 0x20100, 0x2013c,
1831                 0x20190, 0x201c8,
1832                 0x20200, 0x20318,
1833                 0x20400, 0x20528,
1834                 0x20540, 0x20614,
1835                 0x21000, 0x21040,
1836                 0x2104c, 0x21060,
1837                 0x210c0, 0x210ec,
1838                 0x21200, 0x21268,
1839                 0x21270, 0x21284,
1840                 0x212fc, 0x21388,
1841                 0x21400, 0x21404,
1842                 0x21500, 0x21518,
1843                 0x2152c, 0x2153c,
1844                 0x21550, 0x21554,
1845                 0x21600, 0x21600,
1846                 0x21608, 0x21628,
1847                 0x21630, 0x2163c,
1848                 0x21700, 0x2171c,
1849                 0x21780, 0x2178c,
1850                 0x21800, 0x21c38,
1851                 0x21c80, 0x21d7c,
1852                 0x21e00, 0x21e04,
1853                 0x22000, 0x2202c,
1854                 0x22100, 0x2213c,
1855                 0x22190, 0x221c8,
1856                 0x22200, 0x22318,
1857                 0x22400, 0x22528,
1858                 0x22540, 0x22614,
1859                 0x23000, 0x23040,
1860                 0x2304c, 0x23060,
1861                 0x230c0, 0x230ec,
1862                 0x23200, 0x23268,
1863                 0x23270, 0x23284,
1864                 0x232fc, 0x23388,
1865                 0x23400, 0x23404,
1866                 0x23500, 0x23518,
1867                 0x2352c, 0x2353c,
1868                 0x23550, 0x23554,
1869                 0x23600, 0x23600,
1870                 0x23608, 0x23628,
1871                 0x23630, 0x2363c,
1872                 0x23700, 0x2371c,
1873                 0x23780, 0x2378c,
1874                 0x23800, 0x23c38,
1875                 0x23c80, 0x23d7c,
1876                 0x23e00, 0x23e04,
1877                 0x24000, 0x2402c,
1878                 0x24100, 0x2413c,
1879                 0x24190, 0x241c8,
1880                 0x24200, 0x24318,
1881                 0x24400, 0x24528,
1882                 0x24540, 0x24614,
1883                 0x25000, 0x25040,
1884                 0x2504c, 0x25060,
1885                 0x250c0, 0x250ec,
1886                 0x25200, 0x25268,
1887                 0x25270, 0x25284,
1888                 0x252fc, 0x25388,
1889                 0x25400, 0x25404,
1890                 0x25500, 0x25518,
1891                 0x2552c, 0x2553c,
1892                 0x25550, 0x25554,
1893                 0x25600, 0x25600,
1894                 0x25608, 0x25628,
1895                 0x25630, 0x2563c,
1896                 0x25700, 0x2571c,
1897                 0x25780, 0x2578c,
1898                 0x25800, 0x25c38,
1899                 0x25c80, 0x25d7c,
1900                 0x25e00, 0x25e04,
1901                 0x26000, 0x2602c,
1902                 0x26100, 0x2613c,
1903                 0x26190, 0x261c8,
1904                 0x26200, 0x26318,
1905                 0x26400, 0x26528,
1906                 0x26540, 0x26614,
1907                 0x27000, 0x27040,
1908                 0x2704c, 0x27060,
1909                 0x270c0, 0x270ec,
1910                 0x27200, 0x27268,
1911                 0x27270, 0x27284,
1912                 0x272fc, 0x27388,
1913                 0x27400, 0x27404,
1914                 0x27500, 0x27518,
1915                 0x2752c, 0x2753c,
1916                 0x27550, 0x27554,
1917                 0x27600, 0x27600,
1918                 0x27608, 0x27628,
1919                 0x27630, 0x2763c,
1920                 0x27700, 0x2771c,
1921                 0x27780, 0x2778c,
1922                 0x27800, 0x27c38,
1923                 0x27c80, 0x27d7c,
1924                 0x27e00, 0x27e04
1925         };
1926
1927         static const unsigned int t5_reg_ranges[] = {
1928                 0x1008, 0x1148,
1929                 0x1180, 0x11b4,
1930                 0x11fc, 0x123c,
1931                 0x1280, 0x173c,
1932                 0x1800, 0x18fc,
1933                 0x3000, 0x3028,
1934                 0x3060, 0x30d8,
1935                 0x30e0, 0x30fc,
1936                 0x3140, 0x357c,
1937                 0x35a8, 0x35cc,
1938                 0x35ec, 0x35ec,
1939                 0x3600, 0x5624,
1940                 0x56cc, 0x575c,
1941                 0x580c, 0x5814,
1942                 0x5890, 0x58bc,
1943                 0x5940, 0x59dc,
1944                 0x59fc, 0x5a18,
1945                 0x5a60, 0x5a9c,
1946                 0x5b9c, 0x5bfc,
1947                 0x6000, 0x6040,
1948                 0x6058, 0x614c,
1949                 0x7700, 0x7798,
1950                 0x77c0, 0x78fc,
1951                 0x7b00, 0x7c54,
1952                 0x7d00, 0x7efc,
1953                 0x8dc0, 0x8de0,
1954                 0x8df8, 0x8e84,
1955                 0x8ea0, 0x8f84,
1956                 0x8fc0, 0x90f8,
1957                 0x9400, 0x9470,
1958                 0x9600, 0x96f4,
1959                 0x9800, 0x9808,
1960                 0x9820, 0x983c,
1961                 0x9850, 0x9864,
1962                 0x9c00, 0x9c6c,
1963                 0x9c80, 0x9cec,
1964                 0x9d00, 0x9d6c,
1965                 0x9d80, 0x9dec,
1966                 0x9e00, 0x9e6c,
1967                 0x9e80, 0x9eec,
1968                 0x9f00, 0x9f6c,
1969                 0x9f80, 0xa020,
1970                 0xd004, 0xd03c,
1971                 0xdfc0, 0xdfe0,
1972                 0xe000, 0x11088,
1973                 0x1109c, 0x1117c,
1974                 0x11190, 0x11204,
1975                 0x19040, 0x1906c,
1976                 0x19078, 0x19080,
1977                 0x1908c, 0x19124,
1978                 0x19150, 0x191b0,
1979                 0x191d0, 0x191e8,
1980                 0x19238, 0x19290,
1981                 0x193f8, 0x19474,
1982                 0x19490, 0x194cc,
1983                 0x194f0, 0x194f8,
1984                 0x19c00, 0x19c60,
1985                 0x19c94, 0x19e10,
1986                 0x19e50, 0x19f34,
1987                 0x19f40, 0x19f50,
1988                 0x19f90, 0x19fe4,
1989                 0x1a000, 0x1a06c,
1990                 0x1a0b0, 0x1a120,
1991                 0x1a128, 0x1a138,
1992                 0x1a190, 0x1a1c4,
1993                 0x1a1fc, 0x1a1fc,
1994                 0x1e008, 0x1e00c,
1995                 0x1e040, 0x1e04c,
1996                 0x1e284, 0x1e290,
1997                 0x1e2c0, 0x1e2c0,
1998                 0x1e2e0, 0x1e2e0,
1999                 0x1e300, 0x1e384,
2000                 0x1e3c0, 0x1e3c8,
2001                 0x1e408, 0x1e40c,
2002                 0x1e440, 0x1e44c,
2003                 0x1e684, 0x1e690,
2004                 0x1e6c0, 0x1e6c0,
2005                 0x1e6e0, 0x1e6e0,
2006                 0x1e700, 0x1e784,
2007                 0x1e7c0, 0x1e7c8,
2008                 0x1e808, 0x1e80c,
2009                 0x1e840, 0x1e84c,
2010                 0x1ea84, 0x1ea90,
2011                 0x1eac0, 0x1eac0,
2012                 0x1eae0, 0x1eae0,
2013                 0x1eb00, 0x1eb84,
2014                 0x1ebc0, 0x1ebc8,
2015                 0x1ec08, 0x1ec0c,
2016                 0x1ec40, 0x1ec4c,
2017                 0x1ee84, 0x1ee90,
2018                 0x1eec0, 0x1eec0,
2019                 0x1eee0, 0x1eee0,
2020                 0x1ef00, 0x1ef84,
2021                 0x1efc0, 0x1efc8,
2022                 0x1f008, 0x1f00c,
2023                 0x1f040, 0x1f04c,
2024                 0x1f284, 0x1f290,
2025                 0x1f2c0, 0x1f2c0,
2026                 0x1f2e0, 0x1f2e0,
2027                 0x1f300, 0x1f384,
2028                 0x1f3c0, 0x1f3c8,
2029                 0x1f408, 0x1f40c,
2030                 0x1f440, 0x1f44c,
2031                 0x1f684, 0x1f690,
2032                 0x1f6c0, 0x1f6c0,
2033                 0x1f6e0, 0x1f6e0,
2034                 0x1f700, 0x1f784,
2035                 0x1f7c0, 0x1f7c8,
2036                 0x1f808, 0x1f80c,
2037                 0x1f840, 0x1f84c,
2038                 0x1fa84, 0x1fa90,
2039                 0x1fac0, 0x1fac0,
2040                 0x1fae0, 0x1fae0,
2041                 0x1fb00, 0x1fb84,
2042                 0x1fbc0, 0x1fbc8,
2043                 0x1fc08, 0x1fc0c,
2044                 0x1fc40, 0x1fc4c,
2045                 0x1fe84, 0x1fe90,
2046                 0x1fec0, 0x1fec0,
2047                 0x1fee0, 0x1fee0,
2048                 0x1ff00, 0x1ff84,
2049                 0x1ffc0, 0x1ffc8,
2050                 0x30000, 0x30030,
2051                 0x30100, 0x30144,
2052                 0x30190, 0x301d0,
2053                 0x30200, 0x30318,
2054                 0x30400, 0x3052c,
2055                 0x30540, 0x3061c,
2056                 0x30800, 0x30834,
2057                 0x308c0, 0x30908,
2058                 0x30910, 0x309ac,
2059                 0x30a00, 0x30a04,
2060                 0x30a0c, 0x30a2c,
2061                 0x30a44, 0x30a50,
2062                 0x30a74, 0x30c24,
2063                 0x30d08, 0x30d14,
2064                 0x30d1c, 0x30d20,
2065                 0x30d3c, 0x30d50,
2066                 0x31200, 0x3120c,
2067                 0x31220, 0x31220,
2068                 0x31240, 0x31240,
2069                 0x31600, 0x31600,
2070                 0x31608, 0x3160c,
2071                 0x31a00, 0x31a1c,
2072                 0x31e04, 0x31e20,
2073                 0x31e38, 0x31e3c,
2074                 0x31e80, 0x31e80,
2075                 0x31e88, 0x31ea8,
2076                 0x31eb0, 0x31eb4,
2077                 0x31ec8, 0x31ed4,
2078                 0x31fb8, 0x32004,
2079                 0x32208, 0x3223c,
2080                 0x32600, 0x32630,
2081                 0x32a00, 0x32abc,
2082                 0x32b00, 0x32b70,
2083                 0x33000, 0x33048,
2084                 0x33060, 0x3309c,
2085                 0x330f0, 0x33148,
2086                 0x33160, 0x3319c,
2087                 0x331f0, 0x332e4,
2088                 0x332f8, 0x333e4,
2089                 0x333f8, 0x33448,
2090                 0x33460, 0x3349c,
2091                 0x334f0, 0x33548,
2092                 0x33560, 0x3359c,
2093                 0x335f0, 0x336e4,
2094                 0x336f8, 0x337e4,
2095                 0x337f8, 0x337fc,
2096                 0x33814, 0x33814,
2097                 0x3382c, 0x3382c,
2098                 0x33880, 0x3388c,
2099                 0x338e8, 0x338ec,
2100                 0x33900, 0x33948,
2101                 0x33960, 0x3399c,
2102                 0x339f0, 0x33ae4,
2103                 0x33af8, 0x33b10,
2104                 0x33b28, 0x33b28,
2105                 0x33b3c, 0x33b50,
2106                 0x33bf0, 0x33c10,
2107                 0x33c28, 0x33c28,
2108                 0x33c3c, 0x33c50,
2109                 0x33cf0, 0x33cfc,
2110                 0x34000, 0x34030,
2111                 0x34100, 0x34144,
2112                 0x34190, 0x341d0,
2113                 0x34200, 0x34318,
2114                 0x34400, 0x3452c,
2115                 0x34540, 0x3461c,
2116                 0x34800, 0x34834,
2117                 0x348c0, 0x34908,
2118                 0x34910, 0x349ac,
2119                 0x34a00, 0x34a04,
2120                 0x34a0c, 0x34a2c,
2121                 0x34a44, 0x34a50,
2122                 0x34a74, 0x34c24,
2123                 0x34d08, 0x34d14,
2124                 0x34d1c, 0x34d20,
2125                 0x34d3c, 0x34d50,
2126                 0x35200, 0x3520c,
2127                 0x35220, 0x35220,
2128                 0x35240, 0x35240,
2129                 0x35600, 0x35600,
2130                 0x35608, 0x3560c,
2131                 0x35a00, 0x35a1c,
2132                 0x35e04, 0x35e20,
2133                 0x35e38, 0x35e3c,
2134                 0x35e80, 0x35e80,
2135                 0x35e88, 0x35ea8,
2136                 0x35eb0, 0x35eb4,
2137                 0x35ec8, 0x35ed4,
2138                 0x35fb8, 0x36004,
2139                 0x36208, 0x3623c,
2140                 0x36600, 0x36630,
2141                 0x36a00, 0x36abc,
2142                 0x36b00, 0x36b70,
2143                 0x37000, 0x37048,
2144                 0x37060, 0x3709c,
2145                 0x370f0, 0x37148,
2146                 0x37160, 0x3719c,
2147                 0x371f0, 0x372e4,
2148                 0x372f8, 0x373e4,
2149                 0x373f8, 0x37448,
2150                 0x37460, 0x3749c,
2151                 0x374f0, 0x37548,
2152                 0x37560, 0x3759c,
2153                 0x375f0, 0x376e4,
2154                 0x376f8, 0x377e4,
2155                 0x377f8, 0x377fc,
2156                 0x37814, 0x37814,
2157                 0x3782c, 0x3782c,
2158                 0x37880, 0x3788c,
2159                 0x378e8, 0x378ec,
2160                 0x37900, 0x37948,
2161                 0x37960, 0x3799c,
2162                 0x379f0, 0x37ae4,
2163                 0x37af8, 0x37b10,
2164                 0x37b28, 0x37b28,
2165                 0x37b3c, 0x37b50,
2166                 0x37bf0, 0x37c10,
2167                 0x37c28, 0x37c28,
2168                 0x37c3c, 0x37c50,
2169                 0x37cf0, 0x37cfc,
2170                 0x38000, 0x38030,
2171                 0x38100, 0x38144,
2172                 0x38190, 0x381d0,
2173                 0x38200, 0x38318,
2174                 0x38400, 0x3852c,
2175                 0x38540, 0x3861c,
2176                 0x38800, 0x38834,
2177                 0x388c0, 0x38908,
2178                 0x38910, 0x389ac,
2179                 0x38a00, 0x38a04,
2180                 0x38a0c, 0x38a2c,
2181                 0x38a44, 0x38a50,
2182                 0x38a74, 0x38c24,
2183                 0x38d08, 0x38d14,
2184                 0x38d1c, 0x38d20,
2185                 0x38d3c, 0x38d50,
2186                 0x39200, 0x3920c,
2187                 0x39220, 0x39220,
2188                 0x39240, 0x39240,
2189                 0x39600, 0x39600,
2190                 0x39608, 0x3960c,
2191                 0x39a00, 0x39a1c,
2192                 0x39e04, 0x39e20,
2193                 0x39e38, 0x39e3c,
2194                 0x39e80, 0x39e80,
2195                 0x39e88, 0x39ea8,
2196                 0x39eb0, 0x39eb4,
2197                 0x39ec8, 0x39ed4,
2198                 0x39fb8, 0x3a004,
2199                 0x3a208, 0x3a23c,
2200                 0x3a600, 0x3a630,
2201                 0x3aa00, 0x3aabc,
2202                 0x3ab00, 0x3ab70,
2203                 0x3b000, 0x3b048,
2204                 0x3b060, 0x3b09c,
2205                 0x3b0f0, 0x3b148,
2206                 0x3b160, 0x3b19c,
2207                 0x3b1f0, 0x3b2e4,
2208                 0x3b2f8, 0x3b3e4,
2209                 0x3b3f8, 0x3b448,
2210                 0x3b460, 0x3b49c,
2211                 0x3b4f0, 0x3b548,
2212                 0x3b560, 0x3b59c,
2213                 0x3b5f0, 0x3b6e4,
2214                 0x3b6f8, 0x3b7e4,
2215                 0x3b7f8, 0x3b7fc,
2216                 0x3b814, 0x3b814,
2217                 0x3b82c, 0x3b82c,
2218                 0x3b880, 0x3b88c,
2219                 0x3b8e8, 0x3b8ec,
2220                 0x3b900, 0x3b948,
2221                 0x3b960, 0x3b99c,
2222                 0x3b9f0, 0x3bae4,
2223                 0x3baf8, 0x3bb10,
2224                 0x3bb28, 0x3bb28,
2225                 0x3bb3c, 0x3bb50,
2226                 0x3bbf0, 0x3bc10,
2227                 0x3bc28, 0x3bc28,
2228                 0x3bc3c, 0x3bc50,
2229                 0x3bcf0, 0x3bcfc,
2230                 0x3c000, 0x3c030,
2231                 0x3c100, 0x3c144,
2232                 0x3c190, 0x3c1d0,
2233                 0x3c200, 0x3c318,
2234                 0x3c400, 0x3c52c,
2235                 0x3c540, 0x3c61c,
2236                 0x3c800, 0x3c834,
2237                 0x3c8c0, 0x3c908,
2238                 0x3c910, 0x3c9ac,
2239                 0x3ca00, 0x3ca04,
2240                 0x3ca0c, 0x3ca2c,
2241                 0x3ca44, 0x3ca50,
2242                 0x3ca74, 0x3cc24,
2243                 0x3cd08, 0x3cd14,
2244                 0x3cd1c, 0x3cd20,
2245                 0x3cd3c, 0x3cd50,
2246                 0x3d200, 0x3d20c,
2247                 0x3d220, 0x3d220,
2248                 0x3d240, 0x3d240,
2249                 0x3d600, 0x3d600,
2250                 0x3d608, 0x3d60c,
2251                 0x3da00, 0x3da1c,
2252                 0x3de04, 0x3de20,
2253                 0x3de38, 0x3de3c,
2254                 0x3de80, 0x3de80,
2255                 0x3de88, 0x3dea8,
2256                 0x3deb0, 0x3deb4,
2257                 0x3dec8, 0x3ded4,
2258                 0x3dfb8, 0x3e004,
2259                 0x3e208, 0x3e23c,
2260                 0x3e600, 0x3e630,
2261                 0x3ea00, 0x3eabc,
2262                 0x3eb00, 0x3eb70,
2263                 0x3f000, 0x3f048,
2264                 0x3f060, 0x3f09c,
2265                 0x3f0f0, 0x3f148,
2266                 0x3f160, 0x3f19c,
2267                 0x3f1f0, 0x3f2e4,
2268                 0x3f2f8, 0x3f3e4,
2269                 0x3f3f8, 0x3f448,
2270                 0x3f460, 0x3f49c,
2271                 0x3f4f0, 0x3f548,
2272                 0x3f560, 0x3f59c,
2273                 0x3f5f0, 0x3f6e4,
2274                 0x3f6f8, 0x3f7e4,
2275                 0x3f7f8, 0x3f7fc,
2276                 0x3f814, 0x3f814,
2277                 0x3f82c, 0x3f82c,
2278                 0x3f880, 0x3f88c,
2279                 0x3f8e8, 0x3f8ec,
2280                 0x3f900, 0x3f948,
2281                 0x3f960, 0x3f99c,
2282                 0x3f9f0, 0x3fae4,
2283                 0x3faf8, 0x3fb10,
2284                 0x3fb28, 0x3fb28,
2285                 0x3fb3c, 0x3fb50,
2286                 0x3fbf0, 0x3fc10,
2287                 0x3fc28, 0x3fc28,
2288                 0x3fc3c, 0x3fc50,
2289                 0x3fcf0, 0x3fcfc,
2290                 0x40000, 0x4000c,
2291                 0x40040, 0x40068,
2292                 0x40080, 0x40144,
2293                 0x40180, 0x4018c,
2294                 0x40200, 0x40298,
2295                 0x402ac, 0x4033c,
2296                 0x403f8, 0x403fc,
2297                 0x41304, 0x413c4,
2298                 0x41400, 0x4141c,
2299                 0x41480, 0x414d0,
2300                 0x44000, 0x44078,
2301                 0x440c0, 0x44278,
2302                 0x442c0, 0x44478,
2303                 0x444c0, 0x44678,
2304                 0x446c0, 0x44878,
2305                 0x448c0, 0x449fc,
2306                 0x45000, 0x45068,
2307                 0x45080, 0x45084,
2308                 0x450a0, 0x450b0,
2309                 0x45200, 0x45268,
2310                 0x45280, 0x45284,
2311                 0x452a0, 0x452b0,
2312                 0x460c0, 0x460e4,
2313                 0x47000, 0x4708c,
2314                 0x47200, 0x47250,
2315                 0x47400, 0x47420,
2316                 0x47600, 0x47618,
2317                 0x47800, 0x47814,
2318                 0x48000, 0x4800c,
2319                 0x48040, 0x48068,
2320                 0x48080, 0x48144,
2321                 0x48180, 0x4818c,
2322                 0x48200, 0x48298,
2323                 0x482ac, 0x4833c,
2324                 0x483f8, 0x483fc,
2325                 0x49304, 0x493c4,
2326                 0x49400, 0x4941c,
2327                 0x49480, 0x494d0,
2328                 0x4c000, 0x4c078,
2329                 0x4c0c0, 0x4c278,
2330                 0x4c2c0, 0x4c478,
2331                 0x4c4c0, 0x4c678,
2332                 0x4c6c0, 0x4c878,
2333                 0x4c8c0, 0x4c9fc,
2334                 0x4d000, 0x4d068,
2335                 0x4d080, 0x4d084,
2336                 0x4d0a0, 0x4d0b0,
2337                 0x4d200, 0x4d268,
2338                 0x4d280, 0x4d284,
2339                 0x4d2a0, 0x4d2b0,
2340                 0x4e0c0, 0x4e0e4,
2341                 0x4f000, 0x4f08c,
2342                 0x4f200, 0x4f250,
2343                 0x4f400, 0x4f420,
2344                 0x4f600, 0x4f618,
2345                 0x4f800, 0x4f814,
2346                 0x50000, 0x500cc,
2347                 0x50400, 0x50400,
2348                 0x50800, 0x508cc,
2349                 0x50c00, 0x50c00,
2350                 0x51000, 0x5101c,
2351                 0x51300, 0x51308,
2352         };
2353
2354         int i;
2355         struct adapter *ap = netdev2adap(dev);
2356         static const unsigned int *reg_ranges;
2357         int arr_size = 0, buf_size = 0;
2358
2359         if (is_t4(ap->params.chip)) {
2360                 reg_ranges = &t4_reg_ranges[0];
2361                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2362                 buf_size = T4_REGMAP_SIZE;
2363         } else {
2364                 reg_ranges = &t5_reg_ranges[0];
2365                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2366                 buf_size = T5_REGMAP_SIZE;
2367         }
2368
2369         regs->version = mk_adap_vers(ap);
2370
2371         memset(buf, 0, buf_size);
2372         for (i = 0; i < arr_size; i += 2)
2373                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2374 }
2375
2376 static int restart_autoneg(struct net_device *dev)
2377 {
2378         struct port_info *p = netdev_priv(dev);
2379
2380         if (!netif_running(dev))
2381                 return -EAGAIN;
2382         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2383                 return -EINVAL;
2384         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2385         return 0;
2386 }
2387
2388 static int identify_port(struct net_device *dev,
2389                          enum ethtool_phys_id_state state)
2390 {
2391         unsigned int val;
2392         struct adapter *adap = netdev2adap(dev);
2393
2394         if (state == ETHTOOL_ID_ACTIVE)
2395                 val = 0xffff;
2396         else if (state == ETHTOOL_ID_INACTIVE)
2397                 val = 0;
2398         else
2399                 return -EINVAL;
2400
2401         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2402 }
2403
2404 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2405 {
2406         unsigned int v = 0;
2407
2408         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2409             type == FW_PORT_TYPE_BT_XAUI) {
2410                 v |= SUPPORTED_TP;
2411                 if (caps & FW_PORT_CAP_SPEED_100M)
2412                         v |= SUPPORTED_100baseT_Full;
2413                 if (caps & FW_PORT_CAP_SPEED_1G)
2414                         v |= SUPPORTED_1000baseT_Full;
2415                 if (caps & FW_PORT_CAP_SPEED_10G)
2416                         v |= SUPPORTED_10000baseT_Full;
2417         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2418                 v |= SUPPORTED_Backplane;
2419                 if (caps & FW_PORT_CAP_SPEED_1G)
2420                         v |= SUPPORTED_1000baseKX_Full;
2421                 if (caps & FW_PORT_CAP_SPEED_10G)
2422                         v |= SUPPORTED_10000baseKX4_Full;
2423         } else if (type == FW_PORT_TYPE_KR)
2424                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2425         else if (type == FW_PORT_TYPE_BP_AP)
2426                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2427                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2428         else if (type == FW_PORT_TYPE_BP4_AP)
2429                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2430                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2431                      SUPPORTED_10000baseKX4_Full;
2432         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2433                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2434                 v |= SUPPORTED_FIBRE;
2435         else if (type == FW_PORT_TYPE_BP40_BA)
2436                 v |= SUPPORTED_40000baseSR4_Full;
2437
2438         if (caps & FW_PORT_CAP_ANEG)
2439                 v |= SUPPORTED_Autoneg;
2440         return v;
2441 }
2442
2443 static unsigned int to_fw_linkcaps(unsigned int caps)
2444 {
2445         unsigned int v = 0;
2446
2447         if (caps & ADVERTISED_100baseT_Full)
2448                 v |= FW_PORT_CAP_SPEED_100M;
2449         if (caps & ADVERTISED_1000baseT_Full)
2450                 v |= FW_PORT_CAP_SPEED_1G;
2451         if (caps & ADVERTISED_10000baseT_Full)
2452                 v |= FW_PORT_CAP_SPEED_10G;
2453         if (caps & ADVERTISED_40000baseSR4_Full)
2454                 v |= FW_PORT_CAP_SPEED_40G;
2455         return v;
2456 }
2457
2458 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2459 {
2460         const struct port_info *p = netdev_priv(dev);
2461
2462         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2463             p->port_type == FW_PORT_TYPE_BT_XFI ||
2464             p->port_type == FW_PORT_TYPE_BT_XAUI)
2465                 cmd->port = PORT_TP;
2466         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2467                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2468                 cmd->port = PORT_FIBRE;
2469         else if (p->port_type == FW_PORT_TYPE_SFP ||
2470                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2471                  p->port_type == FW_PORT_TYPE_QSFP) {
2472                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2473                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2474                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2475                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2476                         cmd->port = PORT_FIBRE;
2477                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2478                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2479                         cmd->port = PORT_DA;
2480                 else
2481                         cmd->port = PORT_OTHER;
2482         } else
2483                 cmd->port = PORT_OTHER;
2484
2485         if (p->mdio_addr >= 0) {
2486                 cmd->phy_address = p->mdio_addr;
2487                 cmd->transceiver = XCVR_EXTERNAL;
2488                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2489                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2490         } else {
2491                 cmd->phy_address = 0;  /* not really, but no better option */
2492                 cmd->transceiver = XCVR_INTERNAL;
2493                 cmd->mdio_support = 0;
2494         }
2495
2496         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2497         cmd->advertising = from_fw_linkcaps(p->port_type,
2498                                             p->link_cfg.advertising);
2499         ethtool_cmd_speed_set(cmd,
2500                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2501         cmd->duplex = DUPLEX_FULL;
2502         cmd->autoneg = p->link_cfg.autoneg;
2503         cmd->maxtxpkt = 0;
2504         cmd->maxrxpkt = 0;
2505         return 0;
2506 }
2507
2508 static unsigned int speed_to_caps(int speed)
2509 {
2510         if (speed == 100)
2511                 return FW_PORT_CAP_SPEED_100M;
2512         if (speed == 1000)
2513                 return FW_PORT_CAP_SPEED_1G;
2514         if (speed == 10000)
2515                 return FW_PORT_CAP_SPEED_10G;
2516         if (speed == 40000)
2517                 return FW_PORT_CAP_SPEED_40G;
2518         return 0;
2519 }
2520
2521 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2522 {
2523         unsigned int cap;
2524         struct port_info *p = netdev_priv(dev);
2525         struct link_config *lc = &p->link_cfg;
2526         u32 speed = ethtool_cmd_speed(cmd);
2527
2528         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2529                 return -EINVAL;
2530
2531         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2532                 /*
2533                  * PHY offers a single speed.  See if that's what's
2534                  * being requested.
2535                  */
2536                 if (cmd->autoneg == AUTONEG_DISABLE &&
2537                     (lc->supported & speed_to_caps(speed)))
2538                         return 0;
2539                 return -EINVAL;
2540         }
2541
2542         if (cmd->autoneg == AUTONEG_DISABLE) {
2543                 cap = speed_to_caps(speed);
2544
2545                 if (!(lc->supported & cap) ||
2546                     (speed == 1000) ||
2547                     (speed == 10000) ||
2548                     (speed == 40000))
2549                         return -EINVAL;
2550                 lc->requested_speed = cap;
2551                 lc->advertising = 0;
2552         } else {
2553                 cap = to_fw_linkcaps(cmd->advertising);
2554                 if (!(lc->supported & cap))
2555                         return -EINVAL;
2556                 lc->requested_speed = 0;
2557                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2558         }
2559         lc->autoneg = cmd->autoneg;
2560
2561         if (netif_running(dev))
2562                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2563                                      lc);
2564         return 0;
2565 }
2566
2567 static void get_pauseparam(struct net_device *dev,
2568                            struct ethtool_pauseparam *epause)
2569 {
2570         struct port_info *p = netdev_priv(dev);
2571
2572         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2573         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2574         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2575 }
2576
2577 static int set_pauseparam(struct net_device *dev,
2578                           struct ethtool_pauseparam *epause)
2579 {
2580         struct port_info *p = netdev_priv(dev);
2581         struct link_config *lc = &p->link_cfg;
2582
2583         if (epause->autoneg == AUTONEG_DISABLE)
2584                 lc->requested_fc = 0;
2585         else if (lc->supported & FW_PORT_CAP_ANEG)
2586                 lc->requested_fc = PAUSE_AUTONEG;
2587         else
2588                 return -EINVAL;
2589
2590         if (epause->rx_pause)
2591                 lc->requested_fc |= PAUSE_RX;
2592         if (epause->tx_pause)
2593                 lc->requested_fc |= PAUSE_TX;
2594         if (netif_running(dev))
2595                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2596                                      lc);
2597         return 0;
2598 }
2599
2600 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2601 {
2602         const struct port_info *pi = netdev_priv(dev);
2603         const struct sge *s = &pi->adapter->sge;
2604
2605         e->rx_max_pending = MAX_RX_BUFFERS;
2606         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2607         e->rx_jumbo_max_pending = 0;
2608         e->tx_max_pending = MAX_TXQ_ENTRIES;
2609
2610         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2611         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2612         e->rx_jumbo_pending = 0;
2613         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2614 }
2615
2616 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2617 {
2618         int i;
2619         const struct port_info *pi = netdev_priv(dev);
2620         struct adapter *adapter = pi->adapter;
2621         struct sge *s = &adapter->sge;
2622
2623         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2624             e->tx_pending > MAX_TXQ_ENTRIES ||
2625             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2626             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2627             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2628                 return -EINVAL;
2629
2630         if (adapter->flags & FULL_INIT_DONE)
2631                 return -EBUSY;
2632
2633         for (i = 0; i < pi->nqsets; ++i) {
2634                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2635                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2636                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2637         }
2638         return 0;
2639 }
2640
2641 static int closest_timer(const struct sge *s, int time)
2642 {
2643         int i, delta, match = 0, min_delta = INT_MAX;
2644
2645         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2646                 delta = time - s->timer_val[i];
2647                 if (delta < 0)
2648                         delta = -delta;
2649                 if (delta < min_delta) {
2650                         min_delta = delta;
2651                         match = i;
2652                 }
2653         }
2654         return match;
2655 }
2656
2657 static int closest_thres(const struct sge *s, int thres)
2658 {
2659         int i, delta, match = 0, min_delta = INT_MAX;
2660
2661         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2662                 delta = thres - s->counter_val[i];
2663                 if (delta < 0)
2664                         delta = -delta;
2665                 if (delta < min_delta) {
2666                         min_delta = delta;
2667                         match = i;
2668                 }
2669         }
2670         return match;
2671 }
2672
2673 /*
2674  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2675  */
2676 static unsigned int qtimer_val(const struct adapter *adap,
2677                                const struct sge_rspq *q)
2678 {
2679         unsigned int idx = q->intr_params >> 1;
2680
2681         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2682 }
2683
2684 /**
2685  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2686  *      @q: the Rx queue
2687  *      @us: the hold-off time in us, or 0 to disable timer
2688  *      @cnt: the hold-off packet count, or 0 to disable counter
2689  *
2690  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2691  *      one of the two needs to be enabled for the queue to generate interrupts.
2692  */
2693 static int set_rspq_intr_params(struct sge_rspq *q,
2694                                 unsigned int us, unsigned int cnt)
2695 {
2696         struct adapter *adap = q->adap;
2697
2698         if ((us | cnt) == 0)
2699                 cnt = 1;
2700
2701         if (cnt) {
2702                 int err;
2703                 u32 v, new_idx;
2704
2705                 new_idx = closest_thres(&adap->sge, cnt);
2706                 if (q->desc && q->pktcnt_idx != new_idx) {
2707                         /* the queue has already been created, update it */
2708                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2709                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2710                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2711                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2712                                             &new_idx);
2713                         if (err)
2714                                 return err;
2715                 }
2716                 q->pktcnt_idx = new_idx;
2717         }
2718
2719         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2720         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2721         return 0;
2722 }
2723
2724 /**
2725  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2726  * @dev: the network device
2727  * @us: the hold-off time in us, or 0 to disable timer
2728  * @cnt: the hold-off packet count, or 0 to disable counter
2729  *
2730  * Set the RX interrupt hold-off parameters for a network device.
2731  */
2732 static int set_rx_intr_params(struct net_device *dev,
2733                               unsigned int us, unsigned int cnt)
2734 {
2735         int i, err;
2736         struct port_info *pi = netdev_priv(dev);
2737         struct adapter *adap = pi->adapter;
2738         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2739
2740         for (i = 0; i < pi->nqsets; i++, q++) {
2741                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2742                 if (err)
2743                         return err;
2744         }
2745         return 0;
2746 }
2747
2748 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2749 {
2750         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2751                                   c->rx_max_coalesced_frames);
2752 }
2753
2754 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2755 {
2756         const struct port_info *pi = netdev_priv(dev);
2757         const struct adapter *adap = pi->adapter;
2758         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2759
2760         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2761         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2762                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2763         return 0;
2764 }
2765
2766 /**
2767  *      eeprom_ptov - translate a physical EEPROM address to virtual
2768  *      @phys_addr: the physical EEPROM address
2769  *      @fn: the PCI function number
2770  *      @sz: size of function-specific area
2771  *
2772  *      Translate a physical EEPROM address to virtual.  The first 1K is
2773  *      accessed through virtual addresses starting at 31K, the rest is
2774  *      accessed through virtual addresses starting at 0.
2775  *
2776  *      The mapping is as follows:
2777  *      [0..1K) -> [31K..32K)
2778  *      [1K..1K+A) -> [31K-A..31K)
2779  *      [1K+A..ES) -> [0..ES-A-1K)
2780  *
2781  *      where A = @fn * @sz, and ES = EEPROM size.
2782  */
2783 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2784 {
2785         fn *= sz;
2786         if (phys_addr < 1024)
2787                 return phys_addr + (31 << 10);
2788         if (phys_addr < 1024 + fn)
2789                 return 31744 - fn + phys_addr - 1024;
2790         if (phys_addr < EEPROMSIZE)
2791                 return phys_addr - 1024 - fn;
2792         return -EINVAL;
2793 }
2794
2795 /*
2796  * The next two routines implement eeprom read/write from physical addresses.
2797  */
2798 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2799 {
2800         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2801
2802         if (vaddr >= 0)
2803                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2804         return vaddr < 0 ? vaddr : 0;
2805 }
2806
2807 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2808 {
2809         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2810
2811         if (vaddr >= 0)
2812                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2813         return vaddr < 0 ? vaddr : 0;
2814 }
2815
2816 #define EEPROM_MAGIC 0x38E2F10C
2817
2818 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2819                       u8 *data)
2820 {
2821         int i, err = 0;
2822         struct adapter *adapter = netdev2adap(dev);
2823
2824         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2825         if (!buf)
2826                 return -ENOMEM;
2827
2828         e->magic = EEPROM_MAGIC;
2829         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2830                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2831
2832         if (!err)
2833                 memcpy(data, buf + e->offset, e->len);
2834         kfree(buf);
2835         return err;
2836 }
2837
2838 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2839                       u8 *data)
2840 {
2841         u8 *buf;
2842         int err = 0;
2843         u32 aligned_offset, aligned_len, *p;
2844         struct adapter *adapter = netdev2adap(dev);
2845
2846         if (eeprom->magic != EEPROM_MAGIC)
2847                 return -EINVAL;
2848
2849         aligned_offset = eeprom->offset & ~3;
2850         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2851
2852         if (adapter->fn > 0) {
2853                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2854
2855                 if (aligned_offset < start ||
2856                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2857                         return -EPERM;
2858         }
2859
2860         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2861                 /*
2862                  * RMW possibly needed for first or last words.
2863                  */
2864                 buf = kmalloc(aligned_len, GFP_KERNEL);
2865                 if (!buf)
2866                         return -ENOMEM;
2867                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2868                 if (!err && aligned_len > 4)
2869                         err = eeprom_rd_phys(adapter,
2870                                              aligned_offset + aligned_len - 4,
2871                                              (u32 *)&buf[aligned_len - 4]);
2872                 if (err)
2873                         goto out;
2874                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2875         } else
2876                 buf = data;
2877
2878         err = t4_seeprom_wp(adapter, false);
2879         if (err)
2880                 goto out;
2881
2882         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2883                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2884                 aligned_offset += 4;
2885         }
2886
2887         if (!err)
2888                 err = t4_seeprom_wp(adapter, true);
2889 out:
2890         if (buf != data)
2891                 kfree(buf);
2892         return err;
2893 }
2894
2895 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2896 {
2897         int ret;
2898         const struct firmware *fw;
2899         struct adapter *adap = netdev2adap(netdev);
2900
2901         ef->data[sizeof(ef->data) - 1] = '\0';
2902         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2903         if (ret < 0)
2904                 return ret;
2905
2906         ret = t4_load_fw(adap, fw->data, fw->size);
2907         release_firmware(fw);
2908         if (!ret)
2909                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2910         return ret;
2911 }
2912
2913 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2914 #define BCAST_CRC 0xa0ccc1a6
2915
2916 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2917 {
2918         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2919         wol->wolopts = netdev2adap(dev)->wol;
2920         memset(&wol->sopass, 0, sizeof(wol->sopass));
2921 }
2922
2923 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2924 {
2925         int err = 0;
2926         struct port_info *pi = netdev_priv(dev);
2927
2928         if (wol->wolopts & ~WOL_SUPPORTED)
2929                 return -EINVAL;
2930         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2931                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2932         if (wol->wolopts & WAKE_BCAST) {
2933                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2934                                         ~0ULL, 0, false);
2935                 if (!err)
2936                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2937                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2938         } else
2939                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2940         return err;
2941 }
2942
2943 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2944 {
2945         const struct port_info *pi = netdev_priv(dev);
2946         netdev_features_t changed = dev->features ^ features;
2947         int err;
2948
2949         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2950                 return 0;
2951
2952         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2953                             -1, -1, -1,
2954                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2955         if (unlikely(err))
2956                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2957         return err;
2958 }
2959
2960 static u32 get_rss_table_size(struct net_device *dev)
2961 {
2962         const struct port_info *pi = netdev_priv(dev);
2963
2964         return pi->rss_size;
2965 }
2966
2967 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
2968 {
2969         const struct port_info *pi = netdev_priv(dev);
2970         unsigned int n = pi->rss_size;
2971
2972         while (n--)
2973                 p[n] = pi->rss[n];
2974         return 0;
2975 }
2976
2977 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
2978 {
2979         unsigned int i;
2980         struct port_info *pi = netdev_priv(dev);
2981
2982         for (i = 0; i < pi->rss_size; i++)
2983                 pi->rss[i] = p[i];
2984         if (pi->adapter->flags & FULL_INIT_DONE)
2985                 return write_rss(pi, pi->rss);
2986         return 0;
2987 }
2988
2989 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2990                      u32 *rules)
2991 {
2992         const struct port_info *pi = netdev_priv(dev);
2993
2994         switch (info->cmd) {
2995         case ETHTOOL_GRXFH: {
2996                 unsigned int v = pi->rss_mode;
2997
2998                 info->data = 0;
2999                 switch (info->flow_type) {
3000                 case TCP_V4_FLOW:
3001                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3002                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3003                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3004                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3005                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3006                         break;
3007                 case UDP_V4_FLOW:
3008                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3009                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3010                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3011                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3012                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3013                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3014                         break;
3015                 case SCTP_V4_FLOW:
3016                 case AH_ESP_V4_FLOW:
3017                 case IPV4_FLOW:
3018                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3019                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3020                         break;
3021                 case TCP_V6_FLOW:
3022                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3023                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3024                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3025                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3026                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3027                         break;
3028                 case UDP_V6_FLOW:
3029                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3030                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3031                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3032                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3033                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3034                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3035                         break;
3036                 case SCTP_V6_FLOW:
3037                 case AH_ESP_V6_FLOW:
3038                 case IPV6_FLOW:
3039                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3040                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3041                         break;
3042                 }
3043                 return 0;
3044         }
3045         case ETHTOOL_GRXRINGS:
3046                 info->data = pi->nqsets;
3047                 return 0;
3048         }
3049         return -EOPNOTSUPP;
3050 }
3051
3052 static const struct ethtool_ops cxgb_ethtool_ops = {
3053         .get_settings      = get_settings,
3054         .set_settings      = set_settings,
3055         .get_drvinfo       = get_drvinfo,
3056         .get_msglevel      = get_msglevel,
3057         .set_msglevel      = set_msglevel,
3058         .get_ringparam     = get_sge_param,
3059         .set_ringparam     = set_sge_param,
3060         .get_coalesce      = get_coalesce,
3061         .set_coalesce      = set_coalesce,
3062         .get_eeprom_len    = get_eeprom_len,
3063         .get_eeprom        = get_eeprom,
3064         .set_eeprom        = set_eeprom,
3065         .get_pauseparam    = get_pauseparam,
3066         .set_pauseparam    = set_pauseparam,
3067         .get_link          = ethtool_op_get_link,
3068         .get_strings       = get_strings,
3069         .set_phys_id       = identify_port,
3070         .nway_reset        = restart_autoneg,
3071         .get_sset_count    = get_sset_count,
3072         .get_ethtool_stats = get_stats,
3073         .get_regs_len      = get_regs_len,
3074         .get_regs          = get_regs,
3075         .get_wol           = get_wol,
3076         .set_wol           = set_wol,
3077         .get_rxnfc         = get_rxnfc,
3078         .get_rxfh_indir_size = get_rss_table_size,
3079         .get_rxfh          = get_rss_table,
3080         .set_rxfh          = set_rss_table,
3081         .flash_device      = set_flash,
3082 };
3083
3084 /*
3085  * debugfs support
3086  */
3087 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3088                         loff_t *ppos)
3089 {
3090         loff_t pos = *ppos;
3091         loff_t avail = file_inode(file)->i_size;
3092         unsigned int mem = (uintptr_t)file->private_data & 3;
3093         struct adapter *adap = file->private_data - mem;
3094         __be32 *data;
3095         int ret;
3096
3097         if (pos < 0)
3098                 return -EINVAL;
3099         if (pos >= avail)
3100                 return 0;
3101         if (count > avail - pos)
3102                 count = avail - pos;
3103
3104         data = t4_alloc_mem(count);
3105         if (!data)
3106                 return -ENOMEM;
3107
3108         spin_lock(&adap->win0_lock);
3109         ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3110         spin_unlock(&adap->win0_lock);
3111         if (ret) {
3112                 t4_free_mem(data);
3113                 return ret;
3114         }
3115         ret = copy_to_user(buf, data, count);
3116
3117         t4_free_mem(data);
3118         if (ret)
3119                 return -EFAULT;
3120
3121         *ppos = pos + count;
3122         return count;
3123 }
3124
3125 static const struct file_operations mem_debugfs_fops = {
3126         .owner   = THIS_MODULE,
3127         .open    = simple_open,
3128         .read    = mem_read,
3129         .llseek  = default_llseek,
3130 };
3131
3132 static void add_debugfs_mem(struct adapter *adap, const char *name,
3133                             unsigned int idx, unsigned int size_mb)
3134 {
3135         struct dentry *de;
3136
3137         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3138                                  (void *)adap + idx, &mem_debugfs_fops);
3139         if (de && de->d_inode)
3140                 de->d_inode->i_size = size_mb << 20;
3141 }
3142
3143 static int setup_debugfs(struct adapter *adap)
3144 {
3145         int i;
3146         u32 size;
3147
3148         if (IS_ERR_OR_NULL(adap->debugfs_root))
3149                 return -1;
3150
3151         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3152         if (i & EDRAM0_ENABLE) {
3153                 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3154                 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3155         }
3156         if (i & EDRAM1_ENABLE) {
3157                 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3158                 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3159         }
3160         if (is_t4(adap->params.chip)) {
3161                 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3162                 if (i & EXT_MEM_ENABLE)
3163                         add_debugfs_mem(adap, "mc", MEM_MC,
3164                                         EXT_MEM_SIZE_GET(size));
3165         } else {
3166                 if (i & EXT_MEM_ENABLE) {
3167                         size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3168                         add_debugfs_mem(adap, "mc0", MEM_MC0,
3169                                         EXT_MEM_SIZE_GET(size));
3170                 }
3171                 if (i & EXT_MEM1_ENABLE) {
3172                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3173                         add_debugfs_mem(adap, "mc1", MEM_MC1,
3174                                         EXT_MEM_SIZE_GET(size));
3175                 }
3176         }
3177         if (adap->l2t)
3178                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3179                                     &t4_l2t_fops);
3180         return 0;
3181 }
3182
3183 /*
3184  * upper-layer driver support
3185  */
3186
3187 /*
3188  * Allocate an active-open TID and set it to the supplied value.
3189  */
3190 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3191 {
3192         int atid = -1;
3193
3194         spin_lock_bh(&t->atid_lock);
3195         if (t->afree) {
3196                 union aopen_entry *p = t->afree;
3197
3198                 atid = (p - t->atid_tab) + t->atid_base;
3199                 t->afree = p->next;
3200                 p->data = data;
3201                 t->atids_in_use++;
3202         }
3203         spin_unlock_bh(&t->atid_lock);
3204         return atid;
3205 }
3206 EXPORT_SYMBOL(cxgb4_alloc_atid);
3207
3208 /*
3209  * Release an active-open TID.
3210  */
3211 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3212 {
3213         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3214
3215         spin_lock_bh(&t->atid_lock);
3216         p->next = t->afree;
3217         t->afree = p;
3218         t->atids_in_use--;
3219         spin_unlock_bh(&t->atid_lock);
3220 }
3221 EXPORT_SYMBOL(cxgb4_free_atid);
3222
3223 /*
3224  * Allocate a server TID and set it to the supplied value.
3225  */
3226 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3227 {
3228         int stid;
3229
3230         spin_lock_bh(&t->stid_lock);
3231         if (family == PF_INET) {
3232                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3233                 if (stid < t->nstids)
3234                         __set_bit(stid, t->stid_bmap);
3235                 else
3236                         stid = -1;
3237         } else {
3238                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3239                 if (stid < 0)
3240                         stid = -1;
3241         }
3242         if (stid >= 0) {
3243                 t->stid_tab[stid].data = data;
3244                 stid += t->stid_base;
3245                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3246                  * This is equivalent to 4 TIDs. With CLIP enabled it
3247                  * needs 2 TIDs.
3248                  */
3249                 if (family == PF_INET)
3250                         t->stids_in_use++;
3251                 else
3252                         t->stids_in_use += 4;
3253         }
3254         spin_unlock_bh(&t->stid_lock);
3255         return stid;
3256 }
3257 EXPORT_SYMBOL(cxgb4_alloc_stid);
3258
3259 /* Allocate a server filter TID and set it to the supplied value.
3260  */
3261 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3262 {
3263         int stid;
3264
3265         spin_lock_bh(&t->stid_lock);
3266         if (family == PF_INET) {
3267                 stid = find_next_zero_bit(t->stid_bmap,
3268                                 t->nstids + t->nsftids, t->nstids);
3269                 if (stid < (t->nstids + t->nsftids))
3270                         __set_bit(stid, t->stid_bmap);
3271                 else
3272                         stid = -1;
3273         } else {
3274                 stid = -1;
3275         }
3276         if (stid >= 0) {
3277                 t->stid_tab[stid].data = data;
3278                 stid -= t->nstids;
3279                 stid += t->sftid_base;
3280                 t->stids_in_use++;
3281         }
3282         spin_unlock_bh(&t->stid_lock);
3283         return stid;
3284 }
3285 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3286
3287 /* Release a server TID.
3288  */
3289 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3290 {
3291         /* Is it a server filter TID? */
3292         if (t->nsftids && (stid >= t->sftid_base)) {
3293                 stid -= t->sftid_base;
3294                 stid += t->nstids;
3295         } else {
3296                 stid -= t->stid_base;
3297         }
3298
3299         spin_lock_bh(&t->stid_lock);
3300         if (family == PF_INET)
3301                 __clear_bit(stid, t->stid_bmap);
3302         else
3303                 bitmap_release_region(t->stid_bmap, stid, 2);
3304         t->stid_tab[stid].data = NULL;
3305         if (family == PF_INET)
3306                 t->stids_in_use--;
3307         else
3308                 t->stids_in_use -= 4;
3309         spin_unlock_bh(&t->stid_lock);
3310 }
3311 EXPORT_SYMBOL(cxgb4_free_stid);
3312
3313 /*
3314  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3315  */
3316 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3317                            unsigned int tid)
3318 {
3319         struct cpl_tid_release *req;
3320
3321         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3322         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3323         INIT_TP_WR(req, tid);
3324         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3325 }
3326
3327 /*
3328  * Queue a TID release request and if necessary schedule a work queue to
3329  * process it.
3330  */
3331 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3332                                     unsigned int tid)
3333 {
3334         void **p = &t->tid_tab[tid];
3335         struct adapter *adap = container_of(t, struct adapter, tids);
3336
3337         spin_lock_bh(&adap->tid_release_lock);
3338         *p = adap->tid_release_head;
3339         /* Low 2 bits encode the Tx channel number */
3340         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3341         if (!adap->tid_release_task_busy) {
3342                 adap->tid_release_task_busy = true;
3343                 queue_work(workq, &adap->tid_release_task);
3344         }
3345         spin_unlock_bh(&adap->tid_release_lock);
3346 }
3347
3348 /*
3349  * Process the list of pending TID release requests.
3350  */
3351 static void process_tid_release_list(struct work_struct *work)
3352 {
3353         struct sk_buff *skb;
3354         struct adapter *adap;
3355
3356         adap = container_of(work, struct adapter, tid_release_task);
3357
3358         spin_lock_bh(&adap->tid_release_lock);
3359         while (adap->tid_release_head) {
3360                 void **p = adap->tid_release_head;
3361                 unsigned int chan = (uintptr_t)p & 3;
3362                 p = (void *)p - chan;
3363
3364                 adap->tid_release_head = *p;
3365                 *p = NULL;
3366                 spin_unlock_bh(&adap->tid_release_lock);
3367
3368                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3369                                          GFP_KERNEL)))
3370                         schedule_timeout_uninterruptible(1);
3371
3372                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3373                 t4_ofld_send(adap, skb);
3374                 spin_lock_bh(&adap->tid_release_lock);
3375         }
3376         adap->tid_release_task_busy = false;
3377         spin_unlock_bh(&adap->tid_release_lock);
3378 }
3379
3380 /*
3381  * Release a TID and inform HW.  If we are unable to allocate the release
3382  * message we defer to a work queue.
3383  */
3384 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3385 {
3386         void *old;
3387         struct sk_buff *skb;
3388         struct adapter *adap = container_of(t, struct adapter, tids);
3389
3390         old = t->tid_tab[tid];
3391         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3392         if (likely(skb)) {
3393                 t->tid_tab[tid] = NULL;
3394                 mk_tid_release(skb, chan, tid);
3395                 t4_ofld_send(adap, skb);
3396         } else
3397                 cxgb4_queue_tid_release(t, chan, tid);
3398         if (old)
3399                 atomic_dec(&t->tids_in_use);
3400 }
3401 EXPORT_SYMBOL(cxgb4_remove_tid);
3402
3403 /*
3404  * Allocate and initialize the TID tables.  Returns 0 on success.
3405  */
3406 static int tid_init(struct tid_info *t)
3407 {
3408         size_t size;
3409         unsigned int stid_bmap_size;
3410         unsigned int natids = t->natids;
3411         struct adapter *adap = container_of(t, struct adapter, tids);
3412
3413         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3414         size = t->ntids * sizeof(*t->tid_tab) +
3415                natids * sizeof(*t->atid_tab) +
3416                t->nstids * sizeof(*t->stid_tab) +
3417                t->nsftids * sizeof(*t->stid_tab) +
3418                stid_bmap_size * sizeof(long) +
3419                t->nftids * sizeof(*t->ftid_tab) +
3420                t->nsftids * sizeof(*t->ftid_tab);
3421
3422         t->tid_tab = t4_alloc_mem(size);
3423         if (!t->tid_tab)
3424                 return -ENOMEM;
3425
3426         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3427         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3428         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3429         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3430         spin_lock_init(&t->stid_lock);
3431         spin_lock_init(&t->atid_lock);
3432
3433         t->stids_in_use = 0;
3434         t->afree = NULL;
3435         t->atids_in_use = 0;
3436         atomic_set(&t->tids_in_use, 0);
3437
3438         /* Setup the free list for atid_tab and clear the stid bitmap. */
3439         if (natids) {
3440                 while (--natids)
3441                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3442                 t->afree = t->atid_tab;
3443         }
3444         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3445         /* Reserve stid 0 for T4/T5 adapters */
3446         if (!t->stid_base &&
3447             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3448                 __set_bit(0, t->stid_bmap);
3449
3450         return 0;
3451 }
3452
3453 int cxgb4_clip_get(const struct net_device *dev,
3454                    const struct in6_addr *lip)
3455 {
3456         struct adapter *adap;
3457         struct fw_clip_cmd c;
3458
3459         adap = netdev2adap(dev);
3460         memset(&c, 0, sizeof(c));
3461         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3462                         FW_CMD_REQUEST | FW_CMD_WRITE);
3463         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3464         c.ip_hi = *(__be64 *)(lip->s6_addr);
3465         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3466         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3467 }
3468 EXPORT_SYMBOL(cxgb4_clip_get);
3469
3470 int cxgb4_clip_release(const struct net_device *dev,
3471                        const struct in6_addr *lip)
3472 {
3473         struct adapter *adap;
3474         struct fw_clip_cmd c;
3475
3476         adap = netdev2adap(dev);
3477         memset(&c, 0, sizeof(c));
3478         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3479                         FW_CMD_REQUEST | FW_CMD_READ);
3480         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3481         c.ip_hi = *(__be64 *)(lip->s6_addr);
3482         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3483         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3484 }
3485 EXPORT_SYMBOL(cxgb4_clip_release);
3486
3487 /**
3488  *      cxgb4_create_server - create an IP server
3489  *      @dev: the device
3490  *      @stid: the server TID
3491  *      @sip: local IP address to bind server to
3492  *      @sport: the server's TCP port
3493  *      @queue: queue to direct messages from this server to
3494  *
3495  *      Create an IP server for the given port and address.
3496  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3497  */
3498 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3499                         __be32 sip, __be16 sport, __be16 vlan,
3500                         unsigned int queue)
3501 {
3502         unsigned int chan;
3503         struct sk_buff *skb;
3504         struct adapter *adap;
3505         struct cpl_pass_open_req *req;
3506         int ret;
3507
3508         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3509         if (!skb)
3510                 return -ENOMEM;
3511
3512         adap = netdev2adap(dev);
3513         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3514         INIT_TP_WR(req, 0);
3515         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3516         req->local_port = sport;
3517         req->peer_port = htons(0);
3518         req->local_ip = sip;
3519         req->peer_ip = htonl(0);
3520         chan = rxq_to_chan(&adap->sge, queue);
3521         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3522         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3523                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3524         ret = t4_mgmt_tx(adap, skb);
3525         return net_xmit_eval(ret);
3526 }
3527 EXPORT_SYMBOL(cxgb4_create_server);
3528
3529 /*      cxgb4_create_server6 - create an IPv6 server
3530  *      @dev: the device
3531  *      @stid: the server TID
3532  *      @sip: local IPv6 address to bind server to
3533  *      @sport: the server's TCP port
3534  *      @queue: queue to direct messages from this server to
3535  *
3536  *      Create an IPv6 server for the given port and address.
3537  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3538  */
3539 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3540                          const struct in6_addr *sip, __be16 sport,
3541                          unsigned int queue)
3542 {
3543         unsigned int chan;
3544         struct sk_buff *skb;
3545         struct adapter *adap;
3546         struct cpl_pass_open_req6 *req;
3547         int ret;
3548
3549         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3550         if (!skb)
3551                 return -ENOMEM;
3552
3553         adap = netdev2adap(dev);
3554         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3555         INIT_TP_WR(req, 0);
3556         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3557         req->local_port = sport;
3558         req->peer_port = htons(0);
3559         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3560         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3561         req->peer_ip_hi = cpu_to_be64(0);
3562         req->peer_ip_lo = cpu_to_be64(0);
3563         chan = rxq_to_chan(&adap->sge, queue);
3564         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3565         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3566                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3567         ret = t4_mgmt_tx(adap, skb);
3568         return net_xmit_eval(ret);
3569 }
3570 EXPORT_SYMBOL(cxgb4_create_server6);
3571
3572 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3573                         unsigned int queue, bool ipv6)
3574 {
3575         struct sk_buff *skb;
3576         struct adapter *adap;
3577         struct cpl_close_listsvr_req *req;
3578         int ret;
3579
3580         adap = netdev2adap(dev);
3581
3582         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3583         if (!skb)
3584                 return -ENOMEM;
3585
3586         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3587         INIT_TP_WR(req, 0);
3588         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3589         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3590                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3591         ret = t4_mgmt_tx(adap, skb);
3592         return net_xmit_eval(ret);
3593 }
3594 EXPORT_SYMBOL(cxgb4_remove_server);
3595
3596 /**
3597  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3598  *      @mtus: the HW MTU table
3599  *      @mtu: the target MTU
3600  *      @idx: index of selected entry in the MTU table
3601  *
3602  *      Returns the index and the value in the HW MTU table that is closest to
3603  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3604  *      table, in which case that smallest available value is selected.
3605  */
3606 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3607                             unsigned int *idx)
3608 {
3609         unsigned int i = 0;
3610
3611         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3612                 ++i;
3613         if (idx)
3614                 *idx = i;
3615         return mtus[i];
3616 }
3617 EXPORT_SYMBOL(cxgb4_best_mtu);
3618
3619 /**
3620  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3621  *     @mtus: the HW MTU table
3622  *     @header_size: Header Size
3623  *     @data_size_max: maximum Data Segment Size
3624  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3625  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3626  *
3627  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3628  *     MTU Table based solely on a Maximum MTU parameter, we break that
3629  *     parameter up into a Header Size and Maximum Data Segment Size, and
3630  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3631  *     the Hardware MTU Table which will result in a Data Segment Size with
3632  *     the requested alignment _and_ that MTU isn't "too far" from the
3633  *     closest MTU, then we'll return that rather than the closest MTU.
3634  */
3635 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3636                                     unsigned short header_size,
3637                                     unsigned short data_size_max,
3638                                     unsigned short data_size_align,
3639                                     unsigned int *mtu_idxp)
3640 {
3641         unsigned short max_mtu = header_size + data_size_max;
3642         unsigned short data_size_align_mask = data_size_align - 1;
3643         int mtu_idx, aligned_mtu_idx;
3644
3645         /* Scan the MTU Table till we find an MTU which is larger than our
3646          * Maximum MTU or we reach the end of the table.  Along the way,
3647          * record the last MTU found, if any, which will result in a Data
3648          * Segment Length matching the requested alignment.
3649          */
3650         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3651                 unsigned short data_size = mtus[mtu_idx] - header_size;
3652
3653                 /* If this MTU minus the Header Size would result in a
3654                  * Data Segment Size of the desired alignment, remember it.
3655                  */
3656                 if ((data_size & data_size_align_mask) == 0)
3657                         aligned_mtu_idx = mtu_idx;
3658
3659                 /* If we're not at the end of the Hardware MTU Table and the
3660                  * next element is larger than our Maximum MTU, drop out of
3661                  * the loop.
3662                  */
3663                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3664                         break;
3665         }
3666
3667         /* If we fell out of the loop because we ran to the end of the table,
3668          * then we just have to use the last [largest] entry.
3669          */
3670         if (mtu_idx == NMTUS)
3671                 mtu_idx--;
3672
3673         /* If we found an MTU which resulted in the requested Data Segment
3674          * Length alignment and that's "not far" from the largest MTU which is
3675          * less than or equal to the maximum MTU, then use that.
3676          */
3677         if (aligned_mtu_idx >= 0 &&
3678             mtu_idx - aligned_mtu_idx <= 1)
3679                 mtu_idx = aligned_mtu_idx;
3680
3681         /* If the caller has passed in an MTU Index pointer, pass the
3682          * MTU Index back.  Return the MTU value.
3683          */
3684         if (mtu_idxp)
3685                 *mtu_idxp = mtu_idx;
3686         return mtus[mtu_idx];
3687 }
3688 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3689
3690 /**
3691  *      cxgb4_port_chan - get the HW channel of a port
3692  *      @dev: the net device for the port
3693  *
3694  *      Return the HW Tx channel of the given port.
3695  */
3696 unsigned int cxgb4_port_chan(const struct net_device *dev)
3697 {
3698         return netdev2pinfo(dev)->tx_chan;
3699 }
3700 EXPORT_SYMBOL(cxgb4_port_chan);
3701
3702 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3703 {
3704         struct adapter *adap = netdev2adap(dev);
3705         u32 v1, v2, lp_count, hp_count;
3706
3707         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3708         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3709         if (is_t4(adap->params.chip)) {
3710                 lp_count = G_LP_COUNT(v1);
3711                 hp_count = G_HP_COUNT(v1);
3712         } else {
3713                 lp_count = G_LP_COUNT_T5(v1);
3714                 hp_count = G_HP_COUNT_T5(v2);
3715         }
3716         return lpfifo ? lp_count : hp_count;
3717 }
3718 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3719
3720 /**
3721  *      cxgb4_port_viid - get the VI id of a port
3722  *      @dev: the net device for the port
3723  *
3724  *      Return the VI id of the given port.
3725  */
3726 unsigned int cxgb4_port_viid(const struct net_device *dev)
3727 {
3728         return netdev2pinfo(dev)->viid;
3729 }
3730 EXPORT_SYMBOL(cxgb4_port_viid);
3731
3732 /**
3733  *      cxgb4_port_idx - get the index of a port
3734  *      @dev: the net device for the port
3735  *
3736  *      Return the index of the given port.
3737  */
3738 unsigned int cxgb4_port_idx(const struct net_device *dev)
3739 {
3740         return netdev2pinfo(dev)->port_id;
3741 }
3742 EXPORT_SYMBOL(cxgb4_port_idx);
3743
3744 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3745                          struct tp_tcp_stats *v6)
3746 {
3747         struct adapter *adap = pci_get_drvdata(pdev);
3748
3749         spin_lock(&adap->stats_lock);
3750         t4_tp_get_tcp_stats(adap, v4, v6);
3751         spin_unlock(&adap->stats_lock);
3752 }
3753 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3754
3755 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3756                       const unsigned int *pgsz_order)
3757 {
3758         struct adapter *adap = netdev2adap(dev);
3759
3760         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3761         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3762                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3763                      HPZ3(pgsz_order[3]));
3764 }
3765 EXPORT_SYMBOL(cxgb4_iscsi_init);
3766
3767 int cxgb4_flush_eq_cache(struct net_device *dev)
3768 {
3769         struct adapter *adap = netdev2adap(dev);
3770         int ret;
3771
3772         ret = t4_fwaddrspace_write(adap, adap->mbox,
3773                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3774         return ret;
3775 }
3776 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3777
3778 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3779 {
3780         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3781         __be64 indices;
3782         int ret;
3783
3784         spin_lock(&adap->win0_lock);
3785         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3786                            sizeof(indices), (__be32 *)&indices,
3787                            T4_MEMORY_READ);
3788         spin_unlock(&adap->win0_lock);
3789         if (!ret) {
3790                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3791                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3792         }
3793         return ret;
3794 }
3795
3796 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3797                         u16 size)
3798 {
3799         struct adapter *adap = netdev2adap(dev);
3800         u16 hw_pidx, hw_cidx;
3801         int ret;
3802
3803         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3804         if (ret)
3805                 goto out;
3806
3807         if (pidx != hw_pidx) {
3808                 u16 delta;
3809
3810                 if (pidx >= hw_pidx)
3811                         delta = pidx - hw_pidx;
3812                 else
3813                         delta = size - hw_pidx + pidx;
3814                 wmb();
3815                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3816                              QID(qid) | PIDX(delta));
3817         }
3818 out:
3819         return ret;
3820 }
3821 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3822
3823 void cxgb4_disable_db_coalescing(struct net_device *dev)
3824 {
3825         struct adapter *adap;
3826
3827         adap = netdev2adap(dev);
3828         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3829                          F_NOCOALESCE);
3830 }
3831 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3832
3833 void cxgb4_enable_db_coalescing(struct net_device *dev)
3834 {
3835         struct adapter *adap;
3836
3837         adap = netdev2adap(dev);
3838         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3839 }
3840 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3841
3842 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3843 {
3844         struct adapter *adap;
3845         u32 offset, memtype, memaddr;
3846         u32 edc0_size, edc1_size, mc0_size, mc1_size;
3847         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3848         int ret;
3849
3850         adap = netdev2adap(dev);
3851
3852         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3853
3854         /* Figure out where the offset lands in the Memory Type/Address scheme.
3855          * This code assumes that the memory is laid out starting at offset 0
3856          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3857          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3858          * MC0, and some have both MC0 and MC1.
3859          */
3860         edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3861         edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3862         mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3863
3864         edc0_end = edc0_size;
3865         edc1_end = edc0_end + edc1_size;
3866         mc0_end = edc1_end + mc0_size;
3867
3868         if (offset < edc0_end) {
3869                 memtype = MEM_EDC0;
3870                 memaddr = offset;
3871         } else if (offset < edc1_end) {
3872                 memtype = MEM_EDC1;
3873                 memaddr = offset - edc0_end;
3874         } else {
3875                 if (offset < mc0_end) {
3876                         memtype = MEM_MC0;
3877                         memaddr = offset - edc1_end;
3878                 } else if (is_t4(adap->params.chip)) {
3879                         /* T4 only has a single memory channel */
3880                         goto err;
3881                 } else {
3882                         mc1_size = EXT_MEM_SIZE_GET(
3883                                         t4_read_reg(adap,
3884                                                     MA_EXT_MEMORY1_BAR)) << 20;
3885                         mc1_end = mc0_end + mc1_size;
3886                         if (offset < mc1_end) {
3887                                 memtype = MEM_MC1;
3888                                 memaddr = offset - mc0_end;
3889                         } else {
3890                                 /* offset beyond the end of any memory */
3891                                 goto err;
3892                         }
3893                 }
3894         }
3895
3896         spin_lock(&adap->win0_lock);
3897         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3898         spin_unlock(&adap->win0_lock);
3899         return ret;
3900
3901 err:
3902         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3903                 stag, offset);
3904         return -EINVAL;
3905 }
3906 EXPORT_SYMBOL(cxgb4_read_tpte);
3907
3908 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3909 {
3910         u32 hi, lo;
3911         struct adapter *adap;
3912
3913         adap = netdev2adap(dev);
3914         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3915         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3916
3917         return ((u64)hi << 32) | (u64)lo;
3918 }
3919 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3920
3921 static struct pci_driver cxgb4_driver;
3922
3923 static void check_neigh_update(struct neighbour *neigh)
3924 {
3925         const struct device *parent;
3926         const struct net_device *netdev = neigh->dev;
3927
3928         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3929                 netdev = vlan_dev_real_dev(netdev);
3930         parent = netdev->dev.parent;
3931         if (parent && parent->driver == &cxgb4_driver.driver)
3932                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3933 }
3934
3935 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3936                        void *data)
3937 {
3938         switch (event) {
3939         case NETEVENT_NEIGH_UPDATE:
3940                 check_neigh_update(data);
3941                 break;
3942         case NETEVENT_REDIRECT:
3943         default:
3944                 break;
3945         }
3946         return 0;
3947 }
3948
3949 static bool netevent_registered;
3950 static struct notifier_block cxgb4_netevent_nb = {
3951         .notifier_call = netevent_cb
3952 };
3953
3954 static void drain_db_fifo(struct adapter *adap, int usecs)
3955 {
3956         u32 v1, v2, lp_count, hp_count;
3957
3958         do {
3959                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3960                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3961                 if (is_t4(adap->params.chip)) {
3962                         lp_count = G_LP_COUNT(v1);
3963                         hp_count = G_HP_COUNT(v1);
3964                 } else {
3965                         lp_count = G_LP_COUNT_T5(v1);
3966                         hp_count = G_HP_COUNT_T5(v2);
3967                 }
3968
3969                 if (lp_count == 0 && hp_count == 0)
3970                         break;
3971                 set_current_state(TASK_UNINTERRUPTIBLE);
3972                 schedule_timeout(usecs_to_jiffies(usecs));
3973         } while (1);
3974 }
3975
3976 static void disable_txq_db(struct sge_txq *q)
3977 {
3978         unsigned long flags;
3979
3980         spin_lock_irqsave(&q->db_lock, flags);
3981         q->db_disabled = 1;
3982         spin_unlock_irqrestore(&q->db_lock, flags);
3983 }
3984
3985 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3986 {
3987         spin_lock_irq(&q->db_lock);
3988         if (q->db_pidx_inc) {
3989                 /* Make sure that all writes to the TX descriptors
3990                  * are committed before we tell HW about them.
3991                  */
3992                 wmb();
3993                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3994                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3995                 q->db_pidx_inc = 0;
3996         }
3997         q->db_disabled = 0;
3998         spin_unlock_irq(&q->db_lock);
3999 }
4000
4001 static void disable_dbs(struct adapter *adap)
4002 {
4003         int i;
4004
4005         for_each_ethrxq(&adap->sge, i)
4006                 disable_txq_db(&adap->sge.ethtxq[i].q);
4007         for_each_ofldrxq(&adap->sge, i)
4008                 disable_txq_db(&adap->sge.ofldtxq[i].q);
4009         for_each_port(adap, i)
4010                 disable_txq_db(&adap->sge.ctrlq[i].q);
4011 }
4012
4013 static void enable_dbs(struct adapter *adap)
4014 {
4015         int i;
4016
4017         for_each_ethrxq(&adap->sge, i)
4018                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4019         for_each_ofldrxq(&adap->sge, i)
4020                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4021         for_each_port(adap, i)
4022                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4023 }
4024
4025 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4026 {
4027         if (adap->uld_handle[CXGB4_ULD_RDMA])
4028                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4029                                 cmd);
4030 }
4031
4032 static void process_db_full(struct work_struct *work)
4033 {
4034         struct adapter *adap;
4035
4036         adap = container_of(work, struct adapter, db_full_task);
4037
4038         drain_db_fifo(adap, dbfifo_drain_delay);
4039         enable_dbs(adap);
4040         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4041         t4_set_reg_field(adap, SGE_INT_ENABLE3,
4042                          DBFIFO_HP_INT | DBFIFO_LP_INT,
4043                          DBFIFO_HP_INT | DBFIFO_LP_INT);
4044 }
4045
4046 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4047 {
4048         u16 hw_pidx, hw_cidx;
4049         int ret;
4050
4051         spin_lock_irq(&q->db_lock);
4052         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4053         if (ret)
4054                 goto out;
4055         if (q->db_pidx != hw_pidx) {
4056                 u16 delta;
4057
4058                 if (q->db_pidx >= hw_pidx)
4059                         delta = q->db_pidx - hw_pidx;
4060                 else
4061                         delta = q->size - hw_pidx + q->db_pidx;
4062                 wmb();
4063                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4064                              QID(q->cntxt_id) | PIDX(delta));
4065         }
4066 out:
4067         q->db_disabled = 0;
4068         q->db_pidx_inc = 0;
4069         spin_unlock_irq(&q->db_lock);
4070         if (ret)
4071                 CH_WARN(adap, "DB drop recovery failed.\n");
4072 }
4073 static void recover_all_queues(struct adapter *adap)
4074 {
4075         int i;
4076
4077         for_each_ethrxq(&adap->sge, i)
4078                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4079         for_each_ofldrxq(&adap->sge, i)
4080                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4081         for_each_port(adap, i)
4082                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4083 }
4084
4085 static void process_db_drop(struct work_struct *work)
4086 {
4087         struct adapter *adap;
4088
4089         adap = container_of(work, struct adapter, db_drop_task);
4090
4091         if (is_t4(adap->params.chip)) {
4092                 drain_db_fifo(adap, dbfifo_drain_delay);
4093                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4094                 drain_db_fifo(adap, dbfifo_drain_delay);
4095                 recover_all_queues(adap);
4096                 drain_db_fifo(adap, dbfifo_drain_delay);
4097                 enable_dbs(adap);
4098                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4099         } else {
4100                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4101                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4102                 u16 pidx_inc = dropped_db & 0x1fff;
4103                 unsigned int s_qpp;
4104                 unsigned short udb_density;
4105                 unsigned long qpshift;
4106                 int page;
4107                 u32 udb;
4108
4109                 dev_warn(adap->pdev_dev,
4110                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4111                          dropped_db, qid,
4112                          (dropped_db >> 14) & 1,
4113                          (dropped_db >> 13) & 1,
4114                          pidx_inc);
4115
4116                 drain_db_fifo(adap, 1);
4117
4118                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4119                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4120                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4121                 qpshift = PAGE_SHIFT - ilog2(udb_density);
4122                 udb = qid << qpshift;
4123                 udb &= PAGE_MASK;
4124                 page = udb / PAGE_SIZE;
4125                 udb += (qid - (page * udb_density)) * 128;
4126
4127                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4128
4129                 /* Re-enable BAR2 WC */
4130                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4131         }
4132
4133         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4134 }
4135
4136 void t4_db_full(struct adapter *adap)
4137 {
4138         if (is_t4(adap->params.chip)) {
4139                 disable_dbs(adap);
4140                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4141                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4142                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4143                 queue_work(workq, &adap->db_full_task);
4144         }
4145 }
4146
4147 void t4_db_dropped(struct adapter *adap)
4148 {
4149         if (is_t4(adap->params.chip)) {
4150                 disable_dbs(adap);
4151                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4152         }
4153         queue_work(workq, &adap->db_drop_task);
4154 }
4155
4156 static void uld_attach(struct adapter *adap, unsigned int uld)
4157 {
4158         void *handle;
4159         struct cxgb4_lld_info lli;
4160         unsigned short i;
4161
4162         lli.pdev = adap->pdev;
4163         lli.pf = adap->fn;
4164         lli.l2t = adap->l2t;
4165         lli.tids = &adap->tids;
4166         lli.ports = adap->port;
4167         lli.vr = &adap->vres;
4168         lli.mtus = adap->params.mtus;
4169         if (uld == CXGB4_ULD_RDMA) {
4170                 lli.rxq_ids = adap->sge.rdma_rxq;
4171                 lli.ciq_ids = adap->sge.rdma_ciq;
4172                 lli.nrxq = adap->sge.rdmaqs;
4173                 lli.nciq = adap->sge.rdmaciqs;
4174         } else if (uld == CXGB4_ULD_ISCSI) {
4175                 lli.rxq_ids = adap->sge.ofld_rxq;
4176                 lli.nrxq = adap->sge.ofldqsets;
4177         }
4178         lli.ntxq = adap->sge.ofldqsets;
4179         lli.nchan = adap->params.nports;
4180         lli.nports = adap->params.nports;
4181         lli.wr_cred = adap->params.ofldq_wr_cred;
4182         lli.adapter_type = adap->params.chip;
4183         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4184         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4185         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4186                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4187                         (adap->fn * 4));
4188         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4189                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4190                         (adap->fn * 4));
4191         lli.filt_mode = adap->params.tp.vlan_pri_map;
4192         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4193         for (i = 0; i < NCHAN; i++)
4194                 lli.tx_modq[i] = i;
4195         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4196         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4197         lli.fw_vers = adap->params.fw_vers;
4198         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4199         lli.sge_ingpadboundary = adap->sge.fl_align;
4200         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4201         lli.sge_pktshift = adap->sge.pktshift;
4202         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4203         lli.max_ordird_qp = adap->params.max_ordird_qp;
4204         lli.max_ird_adapter = adap->params.max_ird_adapter;
4205         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4206
4207         handle = ulds[uld].add(&lli);
4208         if (IS_ERR(handle)) {
4209                 dev_warn(adap->pdev_dev,
4210                          "could not attach to the %s driver, error %ld\n",
4211                          uld_str[uld], PTR_ERR(handle));
4212                 return;
4213         }
4214
4215         adap->uld_handle[uld] = handle;
4216
4217         if (!netevent_registered) {
4218                 register_netevent_notifier(&cxgb4_netevent_nb);
4219                 netevent_registered = true;
4220         }
4221
4222         if (adap->flags & FULL_INIT_DONE)
4223                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4224 }
4225
4226 static void attach_ulds(struct adapter *adap)
4227 {
4228         unsigned int i;
4229
4230         spin_lock(&adap_rcu_lock);
4231         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4232         spin_unlock(&adap_rcu_lock);
4233
4234         mutex_lock(&uld_mutex);
4235         list_add_tail(&adap->list_node, &adapter_list);
4236         for (i = 0; i < CXGB4_ULD_MAX; i++)
4237                 if (ulds[i].add)
4238                         uld_attach(adap, i);
4239         mutex_unlock(&uld_mutex);
4240 }
4241
4242 static void detach_ulds(struct adapter *adap)
4243 {
4244         unsigned int i;
4245
4246         mutex_lock(&uld_mutex);
4247         list_del(&adap->list_node);
4248         for (i = 0; i < CXGB4_ULD_MAX; i++)
4249                 if (adap->uld_handle[i]) {
4250                         ulds[i].state_change(adap->uld_handle[i],
4251                                              CXGB4_STATE_DETACH);
4252                         adap->uld_handle[i] = NULL;
4253                 }
4254         if (netevent_registered && list_empty(&adapter_list)) {
4255                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4256                 netevent_registered = false;
4257         }
4258         mutex_unlock(&uld_mutex);
4259
4260         spin_lock(&adap_rcu_lock);
4261         list_del_rcu(&adap->rcu_node);
4262         spin_unlock(&adap_rcu_lock);
4263 }
4264
4265 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4266 {
4267         unsigned int i;
4268
4269         mutex_lock(&uld_mutex);
4270         for (i = 0; i < CXGB4_ULD_MAX; i++)
4271                 if (adap->uld_handle[i])
4272                         ulds[i].state_change(adap->uld_handle[i], new_state);
4273         mutex_unlock(&uld_mutex);
4274 }
4275
4276 /**
4277  *      cxgb4_register_uld - register an upper-layer driver
4278  *      @type: the ULD type
4279  *      @p: the ULD methods
4280  *
4281  *      Registers an upper-layer driver with this driver and notifies the ULD
4282  *      about any presently available devices that support its type.  Returns
4283  *      %-EBUSY if a ULD of the same type is already registered.
4284  */
4285 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4286 {
4287         int ret = 0;
4288         struct adapter *adap;
4289
4290         if (type >= CXGB4_ULD_MAX)
4291                 return -EINVAL;
4292         mutex_lock(&uld_mutex);
4293         if (ulds[type].add) {
4294                 ret = -EBUSY;
4295                 goto out;
4296         }
4297         ulds[type] = *p;
4298         list_for_each_entry(adap, &adapter_list, list_node)
4299                 uld_attach(adap, type);
4300 out:    mutex_unlock(&uld_mutex);
4301         return ret;
4302 }
4303 EXPORT_SYMBOL(cxgb4_register_uld);
4304
4305 /**
4306  *      cxgb4_unregister_uld - unregister an upper-layer driver
4307  *      @type: the ULD type
4308  *
4309  *      Unregisters an existing upper-layer driver.
4310  */
4311 int cxgb4_unregister_uld(enum cxgb4_uld type)
4312 {
4313         struct adapter *adap;
4314
4315         if (type >= CXGB4_ULD_MAX)
4316                 return -EINVAL;
4317         mutex_lock(&uld_mutex);
4318         list_for_each_entry(adap, &adapter_list, list_node)
4319                 adap->uld_handle[type] = NULL;
4320         ulds[type].add = NULL;
4321         mutex_unlock(&uld_mutex);
4322         return 0;
4323 }
4324 EXPORT_SYMBOL(cxgb4_unregister_uld);
4325
4326 /* Check if netdev on which event is occured belongs to us or not. Return
4327  * success (true) if it belongs otherwise failure (false).
4328  * Called with rcu_read_lock() held.
4329  */
4330 static bool cxgb4_netdev(const struct net_device *netdev)
4331 {
4332         struct adapter *adap;
4333         int i;
4334
4335         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4336                 for (i = 0; i < MAX_NPORTS; i++)
4337                         if (adap->port[i] == netdev)
4338                                 return true;
4339         return false;
4340 }
4341
4342 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4343                     unsigned long event)
4344 {
4345         int ret = NOTIFY_DONE;
4346
4347         rcu_read_lock();
4348         if (cxgb4_netdev(event_dev)) {
4349                 switch (event) {
4350                 case NETDEV_UP:
4351                         ret = cxgb4_clip_get(event_dev,
4352                                 (const struct in6_addr *)ifa->addr.s6_addr);
4353                         if (ret < 0) {
4354                                 rcu_read_unlock();
4355                                 return ret;
4356                         }
4357                         ret = NOTIFY_OK;
4358                         break;
4359                 case NETDEV_DOWN:
4360                         cxgb4_clip_release(event_dev,
4361                                 (const struct in6_addr *)ifa->addr.s6_addr);
4362                         ret = NOTIFY_OK;
4363                         break;
4364                 default:
4365                         break;
4366                 }
4367         }
4368         rcu_read_unlock();
4369         return ret;
4370 }
4371
4372 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4373                 unsigned long event, void *data)
4374 {
4375         struct inet6_ifaddr *ifa = data;
4376         struct net_device *event_dev;
4377         int ret = NOTIFY_DONE;
4378         struct bonding *bond = netdev_priv(ifa->idev->dev);
4379         struct list_head *iter;
4380         struct slave *slave;
4381         struct pci_dev *first_pdev = NULL;
4382
4383         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4384                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4385                 ret = clip_add(event_dev, ifa, event);
4386         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4387                 /* It is possible that two different adapters are bonded in one
4388                  * bond. We need to find such different adapters and add clip
4389                  * in all of them only once.
4390                  */
4391                 read_lock(&bond->lock);
4392                 bond_for_each_slave(bond, slave, iter) {
4393                         if (!first_pdev) {
4394                                 ret = clip_add(slave->dev, ifa, event);
4395                                 /* If clip_add is success then only initialize
4396                                  * first_pdev since it means it is our device
4397                                  */
4398                                 if (ret == NOTIFY_OK)
4399                                         first_pdev = to_pci_dev(
4400                                                         slave->dev->dev.parent);
4401                         } else if (first_pdev !=
4402                                    to_pci_dev(slave->dev->dev.parent))
4403                                         ret = clip_add(slave->dev, ifa, event);
4404                 }
4405                 read_unlock(&bond->lock);
4406         } else
4407                 ret = clip_add(ifa->idev->dev, ifa, event);
4408
4409         return ret;
4410 }
4411
4412 static struct notifier_block cxgb4_inet6addr_notifier = {
4413         .notifier_call = cxgb4_inet6addr_handler
4414 };
4415
4416 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4417  * a physical device.
4418  * The physical device reference is needed to send the actul CLIP command.
4419  */
4420 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4421 {
4422         struct inet6_dev *idev = NULL;
4423         struct inet6_ifaddr *ifa;
4424         int ret = 0;
4425
4426         idev = __in6_dev_get(root_dev);
4427         if (!idev)
4428                 return ret;
4429
4430         read_lock_bh(&idev->lock);
4431         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4432                 ret = cxgb4_clip_get(dev,
4433                                 (const struct in6_addr *)ifa->addr.s6_addr);
4434                 if (ret < 0)
4435                         break;
4436         }
4437         read_unlock_bh(&idev->lock);
4438
4439         return ret;
4440 }
4441
4442 static int update_root_dev_clip(struct net_device *dev)
4443 {
4444         struct net_device *root_dev = NULL;
4445         int i, ret = 0;
4446
4447         /* First populate the real net device's IPv6 addresses */
4448         ret = update_dev_clip(dev, dev);
4449         if (ret)
4450                 return ret;
4451
4452         /* Parse all bond and vlan devices layered on top of the physical dev */
4453         for (i = 0; i < VLAN_N_VID; i++) {
4454                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4455                 if (!root_dev)
4456                         continue;
4457
4458                 ret = update_dev_clip(root_dev, dev);
4459                 if (ret)
4460                         break;
4461         }
4462         return ret;
4463 }
4464
4465 static void update_clip(const struct adapter *adap)
4466 {
4467         int i;
4468         struct net_device *dev;
4469         int ret;
4470
4471         rcu_read_lock();
4472
4473         for (i = 0; i < MAX_NPORTS; i++) {
4474                 dev = adap->port[i];
4475                 ret = 0;
4476
4477                 if (dev)
4478                         ret = update_root_dev_clip(dev);
4479
4480                 if (ret < 0)
4481                         break;
4482         }
4483         rcu_read_unlock();
4484 }
4485
4486 /**
4487  *      cxgb_up - enable the adapter
4488  *      @adap: adapter being enabled
4489  *
4490  *      Called when the first port is enabled, this function performs the
4491  *      actions necessary to make an adapter operational, such as completing
4492  *      the initialization of HW modules, and enabling interrupts.
4493  *
4494  *      Must be called with the rtnl lock held.
4495  */
4496 static int cxgb_up(struct adapter *adap)
4497 {
4498         int err;
4499
4500         err = setup_sge_queues(adap);
4501         if (err)
4502                 goto out;
4503         err = setup_rss(adap);
4504         if (err)
4505                 goto freeq;
4506
4507         if (adap->flags & USING_MSIX) {
4508                 name_msix_vecs(adap);
4509                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4510                                   adap->msix_info[0].desc, adap);
4511                 if (err)
4512                         goto irq_err;
4513
4514                 err = request_msix_queue_irqs(adap);
4515                 if (err) {
4516                         free_irq(adap->msix_info[0].vec, adap);
4517                         goto irq_err;
4518                 }
4519         } else {
4520                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4521                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4522                                   adap->port[0]->name, adap);
4523                 if (err)
4524                         goto irq_err;
4525         }
4526         enable_rx(adap);
4527         t4_sge_start(adap);
4528         t4_intr_enable(adap);
4529         adap->flags |= FULL_INIT_DONE;
4530         notify_ulds(adap, CXGB4_STATE_UP);
4531         update_clip(adap);
4532  out:
4533         return err;
4534  irq_err:
4535         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4536  freeq:
4537         t4_free_sge_resources(adap);
4538         goto out;
4539 }
4540
4541 static void cxgb_down(struct adapter *adapter)
4542 {
4543         t4_intr_disable(adapter);
4544         cancel_work_sync(&adapter->tid_release_task);
4545         cancel_work_sync(&adapter->db_full_task);
4546         cancel_work_sync(&adapter->db_drop_task);
4547         adapter->tid_release_task_busy = false;
4548         adapter->tid_release_head = NULL;
4549
4550         if (adapter->flags & USING_MSIX) {
4551                 free_msix_queue_irqs(adapter);
4552                 free_irq(adapter->msix_info[0].vec, adapter);
4553         } else
4554                 free_irq(adapter->pdev->irq, adapter);
4555         quiesce_rx(adapter);
4556         t4_sge_stop(adapter);
4557         t4_free_sge_resources(adapter);
4558         adapter->flags &= ~FULL_INIT_DONE;
4559 }
4560
4561 /*
4562  * net_device operations
4563  */
4564 static int cxgb_open(struct net_device *dev)
4565 {
4566         int err;
4567         struct port_info *pi = netdev_priv(dev);
4568         struct adapter *adapter = pi->adapter;
4569
4570         netif_carrier_off(dev);
4571
4572         if (!(adapter->flags & FULL_INIT_DONE)) {
4573                 err = cxgb_up(adapter);
4574                 if (err < 0)
4575                         return err;
4576         }
4577
4578         err = link_start(dev);
4579         if (!err)
4580                 netif_tx_start_all_queues(dev);
4581         return err;
4582 }
4583
4584 static int cxgb_close(struct net_device *dev)
4585 {
4586         struct port_info *pi = netdev_priv(dev);
4587         struct adapter *adapter = pi->adapter;
4588
4589         netif_tx_stop_all_queues(dev);
4590         netif_carrier_off(dev);
4591         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4592 }
4593
4594 /* Return an error number if the indicated filter isn't writable ...
4595  */
4596 static int writable_filter(struct filter_entry *f)
4597 {
4598         if (f->locked)
4599                 return -EPERM;
4600         if (f->pending)
4601                 return -EBUSY;
4602
4603         return 0;
4604 }
4605
4606 /* Delete the filter at the specified index (if valid).  The checks for all
4607  * the common problems with doing this like the filter being locked, currently
4608  * pending in another operation, etc.
4609  */
4610 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4611 {
4612         struct filter_entry *f;
4613         int ret;
4614
4615         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4616                 return -EINVAL;
4617
4618         f = &adapter->tids.ftid_tab[fidx];
4619         ret = writable_filter(f);
4620         if (ret)
4621                 return ret;
4622         if (f->valid)
4623                 return del_filter_wr(adapter, fidx);
4624
4625         return 0;
4626 }
4627
4628 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4629                 __be32 sip, __be16 sport, __be16 vlan,
4630                 unsigned int queue, unsigned char port, unsigned char mask)
4631 {
4632         int ret;
4633         struct filter_entry *f;
4634         struct adapter *adap;
4635         int i;
4636         u8 *val;
4637
4638         adap = netdev2adap(dev);
4639
4640         /* Adjust stid to correct filter index */
4641         stid -= adap->tids.sftid_base;
4642         stid += adap->tids.nftids;
4643
4644         /* Check to make sure the filter requested is writable ...
4645          */
4646         f = &adap->tids.ftid_tab[stid];
4647         ret = writable_filter(f);
4648         if (ret)
4649                 return ret;
4650
4651         /* Clear out any old resources being used by the filter before
4652          * we start constructing the new filter.
4653          */
4654         if (f->valid)
4655                 clear_filter(adap, f);
4656
4657         /* Clear out filter specifications */
4658         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4659         f->fs.val.lport = cpu_to_be16(sport);
4660         f->fs.mask.lport  = ~0;
4661         val = (u8 *)&sip;
4662         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4663                 for (i = 0; i < 4; i++) {
4664                         f->fs.val.lip[i] = val[i];
4665                         f->fs.mask.lip[i] = ~0;
4666                 }
4667                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4668                         f->fs.val.iport = port;
4669                         f->fs.mask.iport = mask;
4670                 }
4671         }
4672
4673         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4674                 f->fs.val.proto = IPPROTO_TCP;
4675                 f->fs.mask.proto = ~0;
4676         }
4677
4678         f->fs.dirsteer = 1;
4679         f->fs.iq = queue;
4680         /* Mark filter as locked */
4681         f->locked = 1;
4682         f->fs.rpttid = 1;
4683
4684         ret = set_filter_wr(adap, stid);
4685         if (ret) {
4686                 clear_filter(adap, f);
4687                 return ret;
4688         }
4689
4690         return 0;
4691 }
4692 EXPORT_SYMBOL(cxgb4_create_server_filter);
4693
4694 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4695                 unsigned int queue, bool ipv6)
4696 {
4697         int ret;
4698         struct filter_entry *f;
4699         struct adapter *adap;
4700
4701         adap = netdev2adap(dev);
4702
4703         /* Adjust stid to correct filter index */
4704         stid -= adap->tids.sftid_base;
4705         stid += adap->tids.nftids;
4706
4707         f = &adap->tids.ftid_tab[stid];
4708         /* Unlock the filter */
4709         f->locked = 0;
4710
4711         ret = delete_filter(adap, stid);
4712         if (ret)
4713                 return ret;
4714
4715         return 0;
4716 }
4717 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4718
4719 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4720                                                 struct rtnl_link_stats64 *ns)
4721 {
4722         struct port_stats stats;
4723         struct port_info *p = netdev_priv(dev);
4724         struct adapter *adapter = p->adapter;
4725
4726         /* Block retrieving statistics during EEH error
4727          * recovery. Otherwise, the recovery might fail
4728          * and the PCI device will be removed permanently
4729          */
4730         spin_lock(&adapter->stats_lock);
4731         if (!netif_device_present(dev)) {
4732                 spin_unlock(&adapter->stats_lock);
4733                 return ns;
4734         }
4735         t4_get_port_stats(adapter, p->tx_chan, &stats);
4736         spin_unlock(&adapter->stats_lock);
4737
4738         ns->tx_bytes   = stats.tx_octets;
4739         ns->tx_packets = stats.tx_frames;
4740         ns->rx_bytes   = stats.rx_octets;
4741         ns->rx_packets = stats.rx_frames;
4742         ns->multicast  = stats.rx_mcast_frames;
4743
4744         /* detailed rx_errors */
4745         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4746                                stats.rx_runt;
4747         ns->rx_over_errors   = 0;
4748         ns->rx_crc_errors    = stats.rx_fcs_err;
4749         ns->rx_frame_errors  = stats.rx_symbol_err;
4750         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4751                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4752                                stats.rx_trunc0 + stats.rx_trunc1 +
4753                                stats.rx_trunc2 + stats.rx_trunc3;
4754         ns->rx_missed_errors = 0;
4755
4756         /* detailed tx_errors */
4757         ns->tx_aborted_errors   = 0;
4758         ns->tx_carrier_errors   = 0;
4759         ns->tx_fifo_errors      = 0;
4760         ns->tx_heartbeat_errors = 0;
4761         ns->tx_window_errors    = 0;
4762
4763         ns->tx_errors = stats.tx_error_frames;
4764         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4765                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4766         return ns;
4767 }
4768
4769 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4770 {
4771         unsigned int mbox;
4772         int ret = 0, prtad, devad;
4773         struct port_info *pi = netdev_priv(dev);
4774         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4775
4776         switch (cmd) {
4777         case SIOCGMIIPHY:
4778                 if (pi->mdio_addr < 0)
4779                         return -EOPNOTSUPP;
4780                 data->phy_id = pi->mdio_addr;
4781                 break;
4782         case SIOCGMIIREG:
4783         case SIOCSMIIREG:
4784                 if (mdio_phy_id_is_c45(data->phy_id)) {
4785                         prtad = mdio_phy_id_prtad(data->phy_id);
4786                         devad = mdio_phy_id_devad(data->phy_id);
4787                 } else if (data->phy_id < 32) {
4788                         prtad = data->phy_id;
4789                         devad = 0;
4790                         data->reg_num &= 0x1f;
4791                 } else
4792                         return -EINVAL;
4793
4794                 mbox = pi->adapter->fn;
4795                 if (cmd == SIOCGMIIREG)
4796                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4797                                          data->reg_num, &data->val_out);
4798                 else
4799                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4800                                          data->reg_num, data->val_in);
4801                 break;
4802         default:
4803                 return -EOPNOTSUPP;
4804         }
4805         return ret;
4806 }
4807
4808 static void cxgb_set_rxmode(struct net_device *dev)
4809 {
4810         /* unfortunately we can't return errors to the stack */
4811         set_rxmode(dev, -1, false);
4812 }
4813
4814 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4815 {
4816         int ret;
4817         struct port_info *pi = netdev_priv(dev);
4818
4819         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4820                 return -EINVAL;
4821         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4822                             -1, -1, -1, true);
4823         if (!ret)
4824                 dev->mtu = new_mtu;
4825         return ret;
4826 }
4827
4828 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4829 {
4830         int ret;
4831         struct sockaddr *addr = p;
4832         struct port_info *pi = netdev_priv(dev);
4833
4834         if (!is_valid_ether_addr(addr->sa_data))
4835                 return -EADDRNOTAVAIL;
4836
4837         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4838                             pi->xact_addr_filt, addr->sa_data, true, true);
4839         if (ret < 0)
4840                 return ret;
4841
4842         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4843         pi->xact_addr_filt = ret;
4844         return 0;
4845 }
4846
4847 #ifdef CONFIG_NET_POLL_CONTROLLER
4848 static void cxgb_netpoll(struct net_device *dev)
4849 {
4850         struct port_info *pi = netdev_priv(dev);
4851         struct adapter *adap = pi->adapter;
4852
4853         if (adap->flags & USING_MSIX) {
4854                 int i;
4855                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4856
4857                 for (i = pi->nqsets; i; i--, rx++)
4858                         t4_sge_intr_msix(0, &rx->rspq);
4859         } else
4860                 t4_intr_handler(adap)(0, adap);
4861 }
4862 #endif
4863
4864 static const struct net_device_ops cxgb4_netdev_ops = {
4865         .ndo_open             = cxgb_open,
4866         .ndo_stop             = cxgb_close,
4867         .ndo_start_xmit       = t4_eth_xmit,
4868         .ndo_select_queue     = cxgb_select_queue,
4869         .ndo_get_stats64      = cxgb_get_stats,
4870         .ndo_set_rx_mode      = cxgb_set_rxmode,
4871         .ndo_set_mac_address  = cxgb_set_mac_addr,
4872         .ndo_set_features     = cxgb_set_features,
4873         .ndo_validate_addr    = eth_validate_addr,
4874         .ndo_do_ioctl         = cxgb_ioctl,
4875         .ndo_change_mtu       = cxgb_change_mtu,
4876 #ifdef CONFIG_NET_POLL_CONTROLLER
4877         .ndo_poll_controller  = cxgb_netpoll,
4878 #endif
4879 };
4880
4881 void t4_fatal_err(struct adapter *adap)
4882 {
4883         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4884         t4_intr_disable(adap);
4885         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4886 }
4887
4888 /* Return the specified PCI-E Configuration Space register from our Physical
4889  * Function.  We try first via a Firmware LDST Command since we prefer to let
4890  * the firmware own all of these registers, but if that fails we go for it
4891  * directly ourselves.
4892  */
4893 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4894 {
4895         struct fw_ldst_cmd ldst_cmd;
4896         u32 val;
4897         int ret;
4898
4899         /* Construct and send the Firmware LDST Command to retrieve the
4900          * specified PCI-E Configuration Space register.
4901          */
4902         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4903         ldst_cmd.op_to_addrspace =
4904                 htonl(FW_CMD_OP(FW_LDST_CMD) |
4905                       FW_CMD_REQUEST |
4906                       FW_CMD_READ |
4907                       FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4908         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4909         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4910         ldst_cmd.u.pcie.ctrl_to_fn =
4911                 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4912         ldst_cmd.u.pcie.r = reg;
4913         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4914                          &ldst_cmd);
4915
4916         /* If the LDST Command suucceeded, exctract the returned register
4917          * value.  Otherwise read it directly ourself.
4918          */
4919         if (ret == 0)
4920                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4921         else
4922                 t4_hw_pci_read_cfg4(adap, reg, &val);
4923
4924         return val;
4925 }
4926
4927 static void setup_memwin(struct adapter *adap)
4928 {
4929         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4930
4931         if (is_t4(adap->params.chip)) {
4932                 u32 bar0;
4933
4934                 /* Truncation intentional: we only read the bottom 32-bits of
4935                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4936                  * mechanism to read BAR0 instead of using
4937                  * pci_resource_start() because we could be operating from
4938                  * within a Virtual Machine which is trapping our accesses to
4939                  * our Configuration Space and we need to set up the PCI-E
4940                  * Memory Window decoders with the actual addresses which will
4941                  * be coming across the PCI-E link.
4942                  */
4943                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4944                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4945                 adap->t4_bar0 = bar0;
4946
4947                 mem_win0_base = bar0 + MEMWIN0_BASE;
4948                 mem_win1_base = bar0 + MEMWIN1_BASE;
4949                 mem_win2_base = bar0 + MEMWIN2_BASE;
4950                 mem_win2_aperture = MEMWIN2_APERTURE;
4951         } else {
4952                 /* For T5, only relative offset inside the PCIe BAR is passed */
4953                 mem_win0_base = MEMWIN0_BASE;
4954                 mem_win1_base = MEMWIN1_BASE;
4955                 mem_win2_base = MEMWIN2_BASE_T5;
4956                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4957         }
4958         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4959                      mem_win0_base | BIR(0) |
4960                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4961         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4962                      mem_win1_base | BIR(0) |
4963                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4964         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4965                      mem_win2_base | BIR(0) |
4966                      WINDOW(ilog2(mem_win2_aperture) - 10));
4967         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4968 }
4969
4970 static void setup_memwin_rdma(struct adapter *adap)
4971 {
4972         if (adap->vres.ocq.size) {
4973                 u32 start;
4974                 unsigned int sz_kb;
4975
4976                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4977                 start &= PCI_BASE_ADDRESS_MEM_MASK;
4978                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4979                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4980                 t4_write_reg(adap,
4981                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4982                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4983                 t4_write_reg(adap,
4984                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4985                              adap->vres.ocq.start);
4986                 t4_read_reg(adap,
4987                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4988         }
4989 }
4990
4991 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4992 {
4993         u32 v;
4994         int ret;
4995
4996         /* get device capabilities */
4997         memset(c, 0, sizeof(*c));
4998         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4999                                FW_CMD_REQUEST | FW_CMD_READ);
5000         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
5001         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5002         if (ret < 0)
5003                 return ret;
5004
5005         /* select capabilities we'll be using */
5006         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5007                 if (!vf_acls)
5008                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5009                 else
5010                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5011         } else if (vf_acls) {
5012                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5013                 return ret;
5014         }
5015         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5016                                FW_CMD_REQUEST | FW_CMD_WRITE);
5017         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5018         if (ret < 0)
5019                 return ret;
5020
5021         ret = t4_config_glbl_rss(adap, adap->fn,
5022                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5023                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5024                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5025         if (ret < 0)
5026                 return ret;
5027
5028         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5029                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5030         if (ret < 0)
5031                 return ret;
5032
5033         t4_sge_init(adap);
5034
5035         /* tweak some settings */
5036         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5037         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5038         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5039         v = t4_read_reg(adap, TP_PIO_DATA);
5040         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5041
5042         /* first 4 Tx modulation queues point to consecutive Tx channels */
5043         adap->params.tp.tx_modq_map = 0xE4;
5044         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5045                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5046
5047         /* associate each Tx modulation queue with consecutive Tx channels */
5048         v = 0x84218421;
5049         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5050                           &v, 1, A_TP_TX_SCHED_HDR);
5051         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5052                           &v, 1, A_TP_TX_SCHED_FIFO);
5053         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5054                           &v, 1, A_TP_TX_SCHED_PCMD);
5055
5056 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5057         if (is_offload(adap)) {
5058                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5059                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5060                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5061                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5062                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5063                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5064                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5065                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5066                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5067                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5068         }
5069
5070         /* get basic stuff going */
5071         return t4_early_init(adap, adap->fn);
5072 }
5073
5074 /*
5075  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5076  */
5077 #define MAX_ATIDS 8192U
5078
5079 /*
5080  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5081  *
5082  * If the firmware we're dealing with has Configuration File support, then
5083  * we use that to perform all configuration
5084  */
5085
5086 /*
5087  * Tweak configuration based on module parameters, etc.  Most of these have
5088  * defaults assigned to them by Firmware Configuration Files (if we're using
5089  * them) but need to be explicitly set if we're using hard-coded
5090  * initialization.  But even in the case of using Firmware Configuration
5091  * Files, we'd like to expose the ability to change these via module
5092  * parameters so these are essentially common tweaks/settings for
5093  * Configuration Files and hard-coded initialization ...
5094  */
5095 static int adap_init0_tweaks(struct adapter *adapter)
5096 {
5097         /*
5098          * Fix up various Host-Dependent Parameters like Page Size, Cache
5099          * Line Size, etc.  The firmware default is for a 4KB Page Size and
5100          * 64B Cache Line Size ...
5101          */
5102         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5103
5104         /*
5105          * Process module parameters which affect early initialization.
5106          */
5107         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5108                 dev_err(&adapter->pdev->dev,
5109                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5110                         rx_dma_offset);
5111                 rx_dma_offset = 2;
5112         }
5113         t4_set_reg_field(adapter, SGE_CONTROL,
5114                          PKTSHIFT_MASK,
5115                          PKTSHIFT(rx_dma_offset));
5116
5117         /*
5118          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5119          * adds the pseudo header itself.
5120          */
5121         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5122                                CSUM_HAS_PSEUDO_HDR, 0);
5123
5124         return 0;
5125 }
5126
5127 /*
5128  * Attempt to initialize the adapter via a Firmware Configuration File.
5129  */
5130 static int adap_init0_config(struct adapter *adapter, int reset)
5131 {
5132         struct fw_caps_config_cmd caps_cmd;
5133         const struct firmware *cf;
5134         unsigned long mtype = 0, maddr = 0;
5135         u32 finiver, finicsum, cfcsum;
5136         int ret;
5137         int config_issued = 0;
5138         char *fw_config_file, fw_config_file_path[256];
5139         char *config_name = NULL;
5140
5141         /*
5142          * Reset device if necessary.
5143          */
5144         if (reset) {
5145                 ret = t4_fw_reset(adapter, adapter->mbox,
5146                                   PIORSTMODE | PIORST);
5147                 if (ret < 0)
5148                         goto bye;
5149         }
5150
5151         /*
5152          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5153          * then use that.  Otherwise, use the configuration file stored
5154          * in the adapter flash ...
5155          */
5156         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5157         case CHELSIO_T4:
5158                 fw_config_file = FW4_CFNAME;
5159                 break;
5160         case CHELSIO_T5:
5161                 fw_config_file = FW5_CFNAME;
5162                 break;
5163         default:
5164                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5165                        adapter->pdev->device);
5166                 ret = -EINVAL;
5167                 goto bye;
5168         }
5169
5170         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5171         if (ret < 0) {
5172                 config_name = "On FLASH";
5173                 mtype = FW_MEMTYPE_CF_FLASH;
5174                 maddr = t4_flash_cfg_addr(adapter);
5175         } else {
5176                 u32 params[7], val[7];
5177
5178                 sprintf(fw_config_file_path,
5179                         "/lib/firmware/%s", fw_config_file);
5180                 config_name = fw_config_file_path;
5181
5182                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5183                         ret = -ENOMEM;
5184                 else {
5185                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5186                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5187                         ret = t4_query_params(adapter, adapter->mbox,
5188                                               adapter->fn, 0, 1, params, val);
5189                         if (ret == 0) {
5190                                 /*
5191                                  * For t4_memory_rw() below addresses and
5192                                  * sizes have to be in terms of multiples of 4
5193                                  * bytes.  So, if the Configuration File isn't
5194                                  * a multiple of 4 bytes in length we'll have
5195                                  * to write that out separately since we can't
5196                                  * guarantee that the bytes following the
5197                                  * residual byte in the buffer returned by
5198                                  * request_firmware() are zeroed out ...
5199                                  */
5200                                 size_t resid = cf->size & 0x3;
5201                                 size_t size = cf->size & ~0x3;
5202                                 __be32 *data = (__be32 *)cf->data;
5203
5204                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5205                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5206
5207                                 spin_lock(&adapter->win0_lock);
5208                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5209                                                    size, data, T4_MEMORY_WRITE);
5210                                 if (ret == 0 && resid != 0) {
5211                                         union {
5212                                                 __be32 word;
5213                                                 char buf[4];
5214                                         } last;
5215                                         int i;
5216
5217                                         last.word = data[size >> 2];
5218                                         for (i = resid; i < 4; i++)
5219                                                 last.buf[i] = 0;
5220                                         ret = t4_memory_rw(adapter, 0, mtype,
5221                                                            maddr + size,
5222                                                            4, &last.word,
5223                                                            T4_MEMORY_WRITE);
5224                                 }
5225                                 spin_unlock(&adapter->win0_lock);
5226                         }
5227                 }
5228
5229                 release_firmware(cf);
5230                 if (ret)
5231                         goto bye;
5232         }
5233
5234         /*
5235          * Issue a Capability Configuration command to the firmware to get it
5236          * to parse the Configuration File.  We don't use t4_fw_config_file()
5237          * because we want the ability to modify various features after we've
5238          * processed the configuration file ...
5239          */
5240         memset(&caps_cmd, 0, sizeof(caps_cmd));
5241         caps_cmd.op_to_write =
5242                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5243                       FW_CMD_REQUEST |
5244                       FW_CMD_READ);
5245         caps_cmd.cfvalid_to_len16 =
5246                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5247                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5248                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5249                       FW_LEN16(caps_cmd));
5250         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5251                          &caps_cmd);
5252
5253         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5254          * Configuration File in FLASH), our last gasp effort is to use the
5255          * Firmware Configuration File which is embedded in the firmware.  A
5256          * very few early versions of the firmware didn't have one embedded
5257          * but we can ignore those.
5258          */
5259         if (ret == -ENOENT) {
5260                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5261                 caps_cmd.op_to_write =
5262                         htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5263                                         FW_CMD_REQUEST |
5264                                         FW_CMD_READ);
5265                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5266                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5267                                 sizeof(caps_cmd), &caps_cmd);
5268                 config_name = "Firmware Default";
5269         }
5270
5271         config_issued = 1;
5272         if (ret < 0)
5273                 goto bye;
5274
5275         finiver = ntohl(caps_cmd.finiver);
5276         finicsum = ntohl(caps_cmd.finicsum);
5277         cfcsum = ntohl(caps_cmd.cfcsum);
5278         if (finicsum != cfcsum)
5279                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5280                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5281                          finicsum, cfcsum);
5282
5283         /*
5284          * And now tell the firmware to use the configuration we just loaded.
5285          */
5286         caps_cmd.op_to_write =
5287                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5288                       FW_CMD_REQUEST |
5289                       FW_CMD_WRITE);
5290         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5291         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5292                          NULL);
5293         if (ret < 0)
5294                 goto bye;
5295
5296         /*
5297          * Tweak configuration based on system architecture, module
5298          * parameters, etc.
5299          */
5300         ret = adap_init0_tweaks(adapter);
5301         if (ret < 0)
5302                 goto bye;
5303
5304         /*
5305          * And finally tell the firmware to initialize itself using the
5306          * parameters from the Configuration File.
5307          */
5308         ret = t4_fw_initialize(adapter, adapter->mbox);
5309         if (ret < 0)
5310                 goto bye;
5311
5312         /*
5313          * Return successfully and note that we're operating with parameters
5314          * not supplied by the driver, rather than from hard-wired
5315          * initialization constants burried in the driver.
5316          */
5317         adapter->flags |= USING_SOFT_PARAMS;
5318         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5319                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5320                  config_name, finiver, cfcsum);
5321         return 0;
5322
5323         /*
5324          * Something bad happened.  Return the error ...  (If the "error"
5325          * is that there's no Configuration File on the adapter we don't
5326          * want to issue a warning since this is fairly common.)
5327          */
5328 bye:
5329         if (config_issued && ret != -ENOENT)
5330                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5331                          config_name, -ret);
5332         return ret;
5333 }
5334
5335 /*
5336  * Attempt to initialize the adapter via hard-coded, driver supplied
5337  * parameters ...
5338  */
5339 static int adap_init0_no_config(struct adapter *adapter, int reset)
5340 {
5341         struct sge *s = &adapter->sge;
5342         struct fw_caps_config_cmd caps_cmd;
5343         u32 v;
5344         int i, ret;
5345
5346         /*
5347          * Reset device if necessary
5348          */
5349         if (reset) {
5350                 ret = t4_fw_reset(adapter, adapter->mbox,
5351                                   PIORSTMODE | PIORST);
5352                 if (ret < 0)
5353                         goto bye;
5354         }
5355
5356         /*
5357          * Get device capabilities and select which we'll be using.
5358          */
5359         memset(&caps_cmd, 0, sizeof(caps_cmd));
5360         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5361                                      FW_CMD_REQUEST | FW_CMD_READ);
5362         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5363         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5364                          &caps_cmd);
5365         if (ret < 0)
5366                 goto bye;
5367
5368         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5369                 if (!vf_acls)
5370                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5371                 else
5372                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5373         } else if (vf_acls) {
5374                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5375                 goto bye;
5376         }
5377         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5378                               FW_CMD_REQUEST | FW_CMD_WRITE);
5379         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5380                          NULL);
5381         if (ret < 0)
5382                 goto bye;
5383
5384         /*
5385          * Tweak configuration based on system architecture, module
5386          * parameters, etc.
5387          */
5388         ret = adap_init0_tweaks(adapter);
5389         if (ret < 0)
5390                 goto bye;
5391
5392         /*
5393          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5394          * mode which maps each Virtual Interface to its own section of
5395          * the RSS Table and we turn on all map and hash enables ...
5396          */
5397         adapter->flags |= RSS_TNLALLLOOKUP;
5398         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5399                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5400                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5401                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5402                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5403                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5404         if (ret < 0)
5405                 goto bye;
5406
5407         /*
5408          * Set up our own fundamental resource provisioning ...
5409          */
5410         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5411                           PFRES_NEQ, PFRES_NETHCTRL,
5412                           PFRES_NIQFLINT, PFRES_NIQ,
5413                           PFRES_TC, PFRES_NVI,
5414                           FW_PFVF_CMD_CMASK_MASK,
5415                           pfvfres_pmask(adapter, adapter->fn, 0),
5416                           PFRES_NEXACTF,
5417                           PFRES_R_CAPS, PFRES_WX_CAPS);
5418         if (ret < 0)
5419                 goto bye;
5420
5421         /*
5422          * Perform low level SGE initialization.  We need to do this before we
5423          * send the firmware the INITIALIZE command because that will cause
5424          * any other PF Drivers which are waiting for the Master
5425          * Initialization to proceed forward.
5426          */
5427         for (i = 0; i < SGE_NTIMERS - 1; i++)
5428                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5429         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5430         s->counter_val[0] = 1;
5431         for (i = 1; i < SGE_NCOUNTERS; i++)
5432                 s->counter_val[i] = min(intr_cnt[i - 1],
5433                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5434         t4_sge_init(adapter);
5435
5436 #ifdef CONFIG_PCI_IOV
5437         /*
5438          * Provision resource limits for Virtual Functions.  We currently
5439          * grant them all the same static resource limits except for the Port
5440          * Access Rights Mask which we're assigning based on the PF.  All of
5441          * the static provisioning stuff for both the PF and VF really needs
5442          * to be managed in a persistent manner for each device which the
5443          * firmware controls.
5444          */
5445         {
5446                 int pf, vf;
5447
5448                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5449                         if (num_vf[pf] <= 0)
5450                                 continue;
5451
5452                         /* VF numbering starts at 1! */
5453                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5454                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5455                                                   pf, vf,
5456                                                   VFRES_NEQ, VFRES_NETHCTRL,
5457                                                   VFRES_NIQFLINT, VFRES_NIQ,
5458                                                   VFRES_TC, VFRES_NVI,
5459                                                   FW_PFVF_CMD_CMASK_MASK,
5460                                                   pfvfres_pmask(
5461                                                   adapter, pf, vf),
5462                                                   VFRES_NEXACTF,
5463                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5464                                 if (ret < 0)
5465                                         dev_warn(adapter->pdev_dev,
5466                                                  "failed to "\
5467                                                  "provision pf/vf=%d/%d; "
5468                                                  "err=%d\n", pf, vf, ret);
5469                         }
5470                 }
5471         }
5472 #endif
5473
5474         /*
5475          * Set up the default filter mode.  Later we'll want to implement this
5476          * via a firmware command, etc. ...  This needs to be done before the
5477          * firmare initialization command ...  If the selected set of fields
5478          * isn't equal to the default value, we'll need to make sure that the
5479          * field selections will fit in the 36-bit budget.
5480          */
5481         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5482                 int j, bits = 0;
5483
5484                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5485                         switch (tp_vlan_pri_map & (1 << j)) {
5486                         case 0:
5487                                 /* compressed filter field not enabled */
5488                                 break;
5489                         case FCOE_MASK:
5490                                 bits +=  1;
5491                                 break;
5492                         case PORT_MASK:
5493                                 bits +=  3;
5494                                 break;
5495                         case VNIC_ID_MASK:
5496                                 bits += 17;
5497                                 break;
5498                         case VLAN_MASK:
5499                                 bits += 17;
5500                                 break;
5501                         case TOS_MASK:
5502                                 bits +=  8;
5503                                 break;
5504                         case PROTOCOL_MASK:
5505                                 bits +=  8;
5506                                 break;
5507                         case ETHERTYPE_MASK:
5508                                 bits += 16;
5509                                 break;
5510                         case MACMATCH_MASK:
5511                                 bits +=  9;
5512                                 break;
5513                         case MPSHITTYPE_MASK:
5514                                 bits +=  3;
5515                                 break;
5516                         case FRAGMENTATION_MASK:
5517                                 bits +=  1;
5518                                 break;
5519                         }
5520
5521                 if (bits > 36) {
5522                         dev_err(adapter->pdev_dev,
5523                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5524                                 " using %#x\n", tp_vlan_pri_map, bits,
5525                                 TP_VLAN_PRI_MAP_DEFAULT);
5526                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5527                 }
5528         }
5529         v = tp_vlan_pri_map;
5530         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5531                           &v, 1, TP_VLAN_PRI_MAP);
5532
5533         /*
5534          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5535          * to support any of the compressed filter fields above.  Newer
5536          * versions of the firmware do this automatically but it doesn't hurt
5537          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5538          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5539          * since the firmware automatically turns this on and off when we have
5540          * a non-zero number of filters active (since it does have a
5541          * performance impact).
5542          */
5543         if (tp_vlan_pri_map)
5544                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5545                                  FIVETUPLELOOKUP_MASK,
5546                                  FIVETUPLELOOKUP_MASK);
5547
5548         /*
5549          * Tweak some settings.
5550          */
5551         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5552                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5553                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5554                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5555
5556         /*
5557          * Get basic stuff going by issuing the Firmware Initialize command.
5558          * Note that this _must_ be after all PFVF commands ...
5559          */
5560         ret = t4_fw_initialize(adapter, adapter->mbox);
5561         if (ret < 0)
5562                 goto bye;
5563
5564         /*
5565          * Return successfully!
5566          */
5567         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5568                  "driver parameters\n");
5569         return 0;
5570
5571         /*
5572          * Something bad happened.  Return the error ...
5573          */
5574 bye:
5575         return ret;
5576 }
5577
5578 static struct fw_info fw_info_array[] = {
5579         {
5580                 .chip = CHELSIO_T4,
5581                 .fs_name = FW4_CFNAME,
5582                 .fw_mod_name = FW4_FNAME,
5583                 .fw_hdr = {
5584                         .chip = FW_HDR_CHIP_T4,
5585                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5586                         .intfver_nic = FW_INTFVER(T4, NIC),
5587                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5588                         .intfver_ri = FW_INTFVER(T4, RI),
5589                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5590                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5591                 },
5592         }, {
5593                 .chip = CHELSIO_T5,
5594                 .fs_name = FW5_CFNAME,
5595                 .fw_mod_name = FW5_FNAME,
5596                 .fw_hdr = {
5597                         .chip = FW_HDR_CHIP_T5,
5598                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5599                         .intfver_nic = FW_INTFVER(T5, NIC),
5600                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5601                         .intfver_ri = FW_INTFVER(T5, RI),
5602                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5603                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5604                 },
5605         }
5606 };
5607
5608 static struct fw_info *find_fw_info(int chip)
5609 {
5610         int i;
5611
5612         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5613                 if (fw_info_array[i].chip == chip)
5614                         return &fw_info_array[i];
5615         }
5616         return NULL;
5617 }
5618
5619 /*
5620  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5621  */
5622 static int adap_init0(struct adapter *adap)
5623 {
5624         int ret;
5625         u32 v, port_vec;
5626         enum dev_state state;
5627         u32 params[7], val[7];
5628         struct fw_caps_config_cmd caps_cmd;
5629         int reset = 1;
5630
5631         /*
5632          * Contact FW, advertising Master capability (and potentially forcing
5633          * ourselves as the Master PF if our module parameter force_init is
5634          * set).
5635          */
5636         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5637                           force_init ? MASTER_MUST : MASTER_MAY,
5638                           &state);
5639         if (ret < 0) {
5640                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5641                         ret);
5642                 return ret;
5643         }
5644         if (ret == adap->mbox)
5645                 adap->flags |= MASTER_PF;
5646         if (force_init && state == DEV_STATE_INIT)
5647                 state = DEV_STATE_UNINIT;
5648
5649         /*
5650          * If we're the Master PF Driver and the device is uninitialized,
5651          * then let's consider upgrading the firmware ...  (We always want
5652          * to check the firmware version number in order to A. get it for
5653          * later reporting and B. to warn if the currently loaded firmware
5654          * is excessively mismatched relative to the driver.)
5655          */
5656         t4_get_fw_version(adap, &adap->params.fw_vers);
5657         t4_get_tp_version(adap, &adap->params.tp_vers);
5658         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5659                 struct fw_info *fw_info;
5660                 struct fw_hdr *card_fw;
5661                 const struct firmware *fw;
5662                 const u8 *fw_data = NULL;
5663                 unsigned int fw_size = 0;
5664
5665                 /* This is the firmware whose headers the driver was compiled
5666                  * against
5667                  */
5668                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5669                 if (fw_info == NULL) {
5670                         dev_err(adap->pdev_dev,
5671                                 "unable to get firmware info for chip %d.\n",
5672                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5673                         return -EINVAL;
5674                 }
5675
5676                 /* allocate memory to read the header of the firmware on the
5677                  * card
5678                  */
5679                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5680
5681                 /* Get FW from from /lib/firmware/ */
5682                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5683                                        adap->pdev_dev);
5684                 if (ret < 0) {
5685                         dev_err(adap->pdev_dev,
5686                                 "unable to load firmware image %s, error %d\n",
5687                                 fw_info->fw_mod_name, ret);
5688                 } else {
5689                         fw_data = fw->data;
5690                         fw_size = fw->size;
5691                 }
5692
5693                 /* upgrade FW logic */
5694                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5695                                  state, &reset);
5696
5697                 /* Cleaning up */
5698                 if (fw != NULL)
5699                         release_firmware(fw);
5700                 t4_free_mem(card_fw);
5701
5702                 if (ret < 0)
5703                         goto bye;
5704         }
5705
5706         /*
5707          * Grab VPD parameters.  This should be done after we establish a
5708          * connection to the firmware since some of the VPD parameters
5709          * (notably the Core Clock frequency) are retrieved via requests to
5710          * the firmware.  On the other hand, we need these fairly early on
5711          * so we do this right after getting ahold of the firmware.
5712          */
5713         ret = get_vpd_params(adap, &adap->params.vpd);
5714         if (ret < 0)
5715                 goto bye;
5716
5717         /*
5718          * Find out what ports are available to us.  Note that we need to do
5719          * this before calling adap_init0_no_config() since it needs nports
5720          * and portvec ...
5721          */
5722         v =
5723             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5724             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5725         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5726         if (ret < 0)
5727                 goto bye;
5728
5729         adap->params.nports = hweight32(port_vec);
5730         adap->params.portvec = port_vec;
5731
5732         /*
5733          * If the firmware is initialized already (and we're not forcing a
5734          * master initialization), note that we're living with existing
5735          * adapter parameters.  Otherwise, it's time to try initializing the
5736          * adapter ...
5737          */
5738         if (state == DEV_STATE_INIT) {
5739                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5740                          "Adapter already initialized\n",
5741                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5742                 adap->flags |= USING_SOFT_PARAMS;
5743         } else {
5744                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5745                          "Initializing adapter\n");
5746
5747                 /*
5748                  * If the firmware doesn't support Configuration
5749                  * Files warn user and exit,
5750                  */
5751                 if (ret < 0)
5752                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5753                                  "configuration file.\n");
5754                 if (force_old_init)
5755                         ret = adap_init0_no_config(adap, reset);
5756                 else {
5757                         /*
5758                          * Find out whether we're dealing with a version of
5759                          * the firmware which has configuration file support.
5760                          */
5761                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5762                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5763                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5764                                               params, val);
5765
5766                         /*
5767                          * If the firmware doesn't support Configuration
5768                          * Files, use the old Driver-based, hard-wired
5769                          * initialization.  Otherwise, try using the
5770                          * Configuration File support and fall back to the
5771                          * Driver-based initialization if there's no
5772                          * Configuration File found.
5773                          */
5774                         if (ret < 0)
5775                                 ret = adap_init0_no_config(adap, reset);
5776                         else {
5777                                 /*
5778                                  * The firmware provides us with a memory
5779                                  * buffer where we can load a Configuration
5780                                  * File from the host if we want to override
5781                                  * the Configuration File in flash.
5782                                  */
5783
5784                                 ret = adap_init0_config(adap, reset);
5785                                 if (ret == -ENOENT) {
5786                                         dev_info(adap->pdev_dev,
5787                                             "No Configuration File present "
5788                                             "on adapter. Using hard-wired "
5789                                             "configuration parameters.\n");
5790                                         ret = adap_init0_no_config(adap, reset);
5791                                 }
5792                         }
5793                 }
5794                 if (ret < 0) {
5795                         dev_err(adap->pdev_dev,
5796                                 "could not initialize adapter, error %d\n",
5797                                 -ret);
5798                         goto bye;
5799                 }
5800         }
5801
5802         /*
5803          * If we're living with non-hard-coded parameters (either from a
5804          * Firmware Configuration File or values programmed by a different PF
5805          * Driver), give the SGE code a chance to pull in anything that it
5806          * needs ...  Note that this must be called after we retrieve our VPD
5807          * parameters in order to know how to convert core ticks to seconds.
5808          */
5809         if (adap->flags & USING_SOFT_PARAMS) {
5810                 ret = t4_sge_init(adap);
5811                 if (ret < 0)
5812                         goto bye;
5813         }
5814
5815         if (is_bypass_device(adap->pdev->device))
5816                 adap->params.bypass = 1;
5817
5818         /*
5819          * Grab some of our basic fundamental operating parameters.
5820          */
5821 #define FW_PARAM_DEV(param) \
5822         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5823         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5824
5825 #define FW_PARAM_PFVF(param) \
5826         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5827         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5828         FW_PARAMS_PARAM_Y(0) | \
5829         FW_PARAMS_PARAM_Z(0)
5830
5831         params[0] = FW_PARAM_PFVF(EQ_START);
5832         params[1] = FW_PARAM_PFVF(L2T_START);
5833         params[2] = FW_PARAM_PFVF(L2T_END);
5834         params[3] = FW_PARAM_PFVF(FILTER_START);
5835         params[4] = FW_PARAM_PFVF(FILTER_END);
5836         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5837         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5838         if (ret < 0)
5839                 goto bye;
5840         adap->sge.egr_start = val[0];
5841         adap->l2t_start = val[1];
5842         adap->l2t_end = val[2];
5843         adap->tids.ftid_base = val[3];
5844         adap->tids.nftids = val[4] - val[3] + 1;
5845         adap->sge.ingr_start = val[5];
5846
5847         /* query params related to active filter region */
5848         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5849         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5850         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5851         /* If Active filter size is set we enable establishing
5852          * offload connection through firmware work request
5853          */
5854         if ((val[0] != val[1]) && (ret >= 0)) {
5855                 adap->flags |= FW_OFLD_CONN;
5856                 adap->tids.aftid_base = val[0];
5857                 adap->tids.aftid_end = val[1];
5858         }
5859
5860         /* If we're running on newer firmware, let it know that we're
5861          * prepared to deal with encapsulated CPL messages.  Older
5862          * firmware won't understand this and we'll just get
5863          * unencapsulated messages ...
5864          */
5865         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5866         val[0] = 1;
5867         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5868
5869         /*
5870          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5871          * capability.  Earlier versions of the firmware didn't have the
5872          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5873          * permission to use ULPTX MEMWRITE DSGL.
5874          */
5875         if (is_t4(adap->params.chip)) {
5876                 adap->params.ulptx_memwrite_dsgl = false;
5877         } else {
5878                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5879                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5880                                       1, params, val);
5881                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5882         }
5883
5884         /*
5885          * Get device capabilities so we can determine what resources we need
5886          * to manage.
5887          */
5888         memset(&caps_cmd, 0, sizeof(caps_cmd));
5889         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5890                                      FW_CMD_REQUEST | FW_CMD_READ);
5891         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5892         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5893                          &caps_cmd);
5894         if (ret < 0)
5895                 goto bye;
5896
5897         if (caps_cmd.ofldcaps) {
5898                 /* query offload-related parameters */
5899                 params[0] = FW_PARAM_DEV(NTID);
5900                 params[1] = FW_PARAM_PFVF(SERVER_START);
5901                 params[2] = FW_PARAM_PFVF(SERVER_END);
5902                 params[3] = FW_PARAM_PFVF(TDDP_START);
5903                 params[4] = FW_PARAM_PFVF(TDDP_END);
5904                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5905                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5906                                       params, val);
5907                 if (ret < 0)
5908                         goto bye;
5909                 adap->tids.ntids = val[0];
5910                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5911                 adap->tids.stid_base = val[1];
5912                 adap->tids.nstids = val[2] - val[1] + 1;
5913                 /*
5914                  * Setup server filter region. Divide the availble filter
5915                  * region into two parts. Regular filters get 1/3rd and server
5916                  * filters get 2/3rd part. This is only enabled if workarond
5917                  * path is enabled.
5918                  * 1. For regular filters.
5919                  * 2. Server filter: This are special filters which are used
5920                  * to redirect SYN packets to offload queue.
5921                  */
5922                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5923                         adap->tids.sftid_base = adap->tids.ftid_base +
5924                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5925                         adap->tids.nsftids = adap->tids.nftids -
5926                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5927                         adap->tids.nftids = adap->tids.sftid_base -
5928                                                 adap->tids.ftid_base;
5929                 }
5930                 adap->vres.ddp.start = val[3];
5931                 adap->vres.ddp.size = val[4] - val[3] + 1;
5932                 adap->params.ofldq_wr_cred = val[5];
5933
5934                 adap->params.offload = 1;
5935         }
5936         if (caps_cmd.rdmacaps) {
5937                 params[0] = FW_PARAM_PFVF(STAG_START);
5938                 params[1] = FW_PARAM_PFVF(STAG_END);
5939                 params[2] = FW_PARAM_PFVF(RQ_START);
5940                 params[3] = FW_PARAM_PFVF(RQ_END);
5941                 params[4] = FW_PARAM_PFVF(PBL_START);
5942                 params[5] = FW_PARAM_PFVF(PBL_END);
5943                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5944                                       params, val);
5945                 if (ret < 0)
5946                         goto bye;
5947                 adap->vres.stag.start = val[0];
5948                 adap->vres.stag.size = val[1] - val[0] + 1;
5949                 adap->vres.rq.start = val[2];
5950                 adap->vres.rq.size = val[3] - val[2] + 1;
5951                 adap->vres.pbl.start = val[4];
5952                 adap->vres.pbl.size = val[5] - val[4] + 1;
5953
5954                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5955                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5956                 params[2] = FW_PARAM_PFVF(CQ_START);
5957                 params[3] = FW_PARAM_PFVF(CQ_END);
5958                 params[4] = FW_PARAM_PFVF(OCQ_START);
5959                 params[5] = FW_PARAM_PFVF(OCQ_END);
5960                 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
5961                 if (ret < 0)
5962                         goto bye;
5963                 adap->vres.qp.start = val[0];
5964                 adap->vres.qp.size = val[1] - val[0] + 1;
5965                 adap->vres.cq.start = val[2];
5966                 adap->vres.cq.size = val[3] - val[2] + 1;
5967                 adap->vres.ocq.start = val[4];
5968                 adap->vres.ocq.size = val[5] - val[4] + 1;
5969
5970                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5971                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5972                 ret = t4_query_params(adap, 0, 0, 0, 2, params, val);
5973                 if (ret < 0) {
5974                         adap->params.max_ordird_qp = 8;
5975                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5976                         ret = 0;
5977                 } else {
5978                         adap->params.max_ordird_qp = val[0];
5979                         adap->params.max_ird_adapter = val[1];
5980                 }
5981                 dev_info(adap->pdev_dev,
5982                          "max_ordird_qp %d max_ird_adapter %d\n",
5983                          adap->params.max_ordird_qp,
5984                          adap->params.max_ird_adapter);
5985         }
5986         if (caps_cmd.iscsicaps) {
5987                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5988                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5989                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5990                                       params, val);
5991                 if (ret < 0)
5992                         goto bye;
5993                 adap->vres.iscsi.start = val[0];
5994                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5995         }
5996 #undef FW_PARAM_PFVF
5997 #undef FW_PARAM_DEV
5998
5999         /* The MTU/MSS Table is initialized by now, so load their values.  If
6000          * we're initializing the adapter, then we'll make any modifications
6001          * we want to the MTU/MSS Table and also initialize the congestion
6002          * parameters.
6003          */
6004         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6005         if (state != DEV_STATE_INIT) {
6006                 int i;
6007
6008                 /* The default MTU Table contains values 1492 and 1500.
6009                  * However, for TCP, it's better to have two values which are
6010                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6011                  * This allows us to have a TCP Data Payload which is a
6012                  * multiple of 8 regardless of what combination of TCP Options
6013                  * are in use (always a multiple of 4 bytes) which is
6014                  * important for performance reasons.  For instance, if no
6015                  * options are in use, then we have a 20-byte IP header and a
6016                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
6017                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6018                  * which is not a multiple of 8.  So using an MSS of 1488 in
6019                  * this case results in a TCP Data Payload of 1448 bytes which
6020                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
6021                  * Stamps have been negotiated, then an MTU of 1500 bytes
6022                  * results in a TCP Data Payload of 1448 bytes which, as
6023                  * above, is a multiple of 8 bytes ...
6024                  */
6025                 for (i = 0; i < NMTUS; i++)
6026                         if (adap->params.mtus[i] == 1492) {
6027                                 adap->params.mtus[i] = 1488;
6028                                 break;
6029                         }
6030
6031                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6032                              adap->params.b_wnd);
6033         }
6034         t4_init_tp_params(adap);
6035         adap->flags |= FW_OK;
6036         return 0;
6037
6038         /*
6039          * Something bad happened.  If a command timed out or failed with EIO
6040          * FW does not operate within its spec or something catastrophic
6041          * happened to HW/FW, stop issuing commands.
6042          */
6043 bye:
6044         if (ret != -ETIMEDOUT && ret != -EIO)
6045                 t4_fw_bye(adap, adap->mbox);
6046         return ret;
6047 }
6048
6049 /* EEH callbacks */
6050
6051 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6052                                          pci_channel_state_t state)
6053 {
6054         int i;
6055         struct adapter *adap = pci_get_drvdata(pdev);
6056
6057         if (!adap)
6058                 goto out;
6059
6060         rtnl_lock();
6061         adap->flags &= ~FW_OK;
6062         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6063         spin_lock(&adap->stats_lock);
6064         for_each_port(adap, i) {
6065                 struct net_device *dev = adap->port[i];
6066
6067                 netif_device_detach(dev);
6068                 netif_carrier_off(dev);
6069         }
6070         spin_unlock(&adap->stats_lock);
6071         if (adap->flags & FULL_INIT_DONE)
6072                 cxgb_down(adap);
6073         rtnl_unlock();
6074         if ((adap->flags & DEV_ENABLED)) {
6075                 pci_disable_device(pdev);
6076                 adap->flags &= ~DEV_ENABLED;
6077         }
6078 out:    return state == pci_channel_io_perm_failure ?
6079                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6080 }
6081
6082 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6083 {
6084         int i, ret;
6085         struct fw_caps_config_cmd c;
6086         struct adapter *adap = pci_get_drvdata(pdev);
6087
6088         if (!adap) {
6089                 pci_restore_state(pdev);
6090                 pci_save_state(pdev);
6091                 return PCI_ERS_RESULT_RECOVERED;
6092         }
6093
6094         if (!(adap->flags & DEV_ENABLED)) {
6095                 if (pci_enable_device(pdev)) {
6096                         dev_err(&pdev->dev, "Cannot reenable PCI "
6097                                             "device after reset\n");
6098                         return PCI_ERS_RESULT_DISCONNECT;
6099                 }
6100                 adap->flags |= DEV_ENABLED;
6101         }
6102
6103         pci_set_master(pdev);
6104         pci_restore_state(pdev);
6105         pci_save_state(pdev);
6106         pci_cleanup_aer_uncorrect_error_status(pdev);
6107
6108         if (t4_wait_dev_ready(adap) < 0)
6109                 return PCI_ERS_RESULT_DISCONNECT;
6110         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6111                 return PCI_ERS_RESULT_DISCONNECT;
6112         adap->flags |= FW_OK;
6113         if (adap_init1(adap, &c))
6114                 return PCI_ERS_RESULT_DISCONNECT;
6115
6116         for_each_port(adap, i) {
6117                 struct port_info *p = adap2pinfo(adap, i);
6118
6119                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6120                                   NULL, NULL);
6121                 if (ret < 0)
6122                         return PCI_ERS_RESULT_DISCONNECT;
6123                 p->viid = ret;
6124                 p->xact_addr_filt = -1;
6125         }
6126
6127         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6128                      adap->params.b_wnd);
6129         setup_memwin(adap);
6130         if (cxgb_up(adap))
6131                 return PCI_ERS_RESULT_DISCONNECT;
6132         return PCI_ERS_RESULT_RECOVERED;
6133 }
6134
6135 static void eeh_resume(struct pci_dev *pdev)
6136 {
6137         int i;
6138         struct adapter *adap = pci_get_drvdata(pdev);
6139
6140         if (!adap)
6141                 return;
6142
6143         rtnl_lock();
6144         for_each_port(adap, i) {
6145                 struct net_device *dev = adap->port[i];
6146
6147                 if (netif_running(dev)) {
6148                         link_start(dev);
6149                         cxgb_set_rxmode(dev);
6150                 }
6151                 netif_device_attach(dev);
6152         }
6153         rtnl_unlock();
6154 }
6155
6156 static const struct pci_error_handlers cxgb4_eeh = {
6157         .error_detected = eeh_err_detected,
6158         .slot_reset     = eeh_slot_reset,
6159         .resume         = eeh_resume,
6160 };
6161
6162 static inline bool is_x_10g_port(const struct link_config *lc)
6163 {
6164         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6165                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6166 }
6167
6168 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6169                              unsigned int us, unsigned int cnt,
6170                              unsigned int size, unsigned int iqe_size)
6171 {
6172         q->adap = adap;
6173         set_rspq_intr_params(q, us, cnt);
6174         q->iqe_len = iqe_size;
6175         q->size = size;
6176 }
6177
6178 /*
6179  * Perform default configuration of DMA queues depending on the number and type
6180  * of ports we found and the number of available CPUs.  Most settings can be
6181  * modified by the admin prior to actual use.
6182  */
6183 static void cfg_queues(struct adapter *adap)
6184 {
6185         struct sge *s = &adap->sge;
6186         int i, n10g = 0, qidx = 0;
6187 #ifndef CONFIG_CHELSIO_T4_DCB
6188         int q10g = 0;
6189 #endif
6190         int ciq_size;
6191
6192         for_each_port(adap, i)
6193                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6194 #ifdef CONFIG_CHELSIO_T4_DCB
6195         /* For Data Center Bridging support we need to be able to support up
6196          * to 8 Traffic Priorities; each of which will be assigned to its
6197          * own TX Queue in order to prevent Head-Of-Line Blocking.
6198          */
6199         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6200                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6201                         MAX_ETH_QSETS, adap->params.nports * 8);
6202                 BUG_ON(1);
6203         }
6204
6205         for_each_port(adap, i) {
6206                 struct port_info *pi = adap2pinfo(adap, i);
6207
6208                 pi->first_qset = qidx;
6209                 pi->nqsets = 8;
6210                 qidx += pi->nqsets;
6211         }
6212 #else /* !CONFIG_CHELSIO_T4_DCB */
6213         /*
6214          * We default to 1 queue per non-10G port and up to # of cores queues
6215          * per 10G port.
6216          */
6217         if (n10g)
6218                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6219         if (q10g > netif_get_num_default_rss_queues())
6220                 q10g = netif_get_num_default_rss_queues();
6221
6222         for_each_port(adap, i) {
6223                 struct port_info *pi = adap2pinfo(adap, i);
6224
6225                 pi->first_qset = qidx;
6226                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6227                 qidx += pi->nqsets;
6228         }
6229 #endif /* !CONFIG_CHELSIO_T4_DCB */
6230
6231         s->ethqsets = qidx;
6232         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6233
6234         if (is_offload(adap)) {
6235                 /*
6236                  * For offload we use 1 queue/channel if all ports are up to 1G,
6237                  * otherwise we divide all available queues amongst the channels
6238                  * capped by the number of available cores.
6239                  */
6240                 if (n10g) {
6241                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6242                                   num_online_cpus());
6243                         s->ofldqsets = roundup(i, adap->params.nports);
6244                 } else
6245                         s->ofldqsets = adap->params.nports;
6246                 /* For RDMA one Rx queue per channel suffices */
6247                 s->rdmaqs = adap->params.nports;
6248                 s->rdmaciqs = adap->params.nports;
6249         }
6250
6251         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6252                 struct sge_eth_rxq *r = &s->ethrxq[i];
6253
6254                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6255                 r->fl.size = 72;
6256         }
6257
6258         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6259                 s->ethtxq[i].q.size = 1024;
6260
6261         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6262                 s->ctrlq[i].q.size = 512;
6263
6264         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6265                 s->ofldtxq[i].q.size = 1024;
6266
6267         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6268                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6269
6270                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6271                 r->rspq.uld = CXGB4_ULD_ISCSI;
6272                 r->fl.size = 72;
6273         }
6274
6275         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6276                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6277
6278                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6279                 r->rspq.uld = CXGB4_ULD_RDMA;
6280                 r->fl.size = 72;
6281         }
6282
6283         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6284         if (ciq_size > SGE_MAX_IQ_SIZE) {
6285                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6286                 ciq_size = SGE_MAX_IQ_SIZE;
6287         }
6288
6289         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6290                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6291
6292                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6293                 r->rspq.uld = CXGB4_ULD_RDMA;
6294         }
6295
6296         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6297         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6298 }
6299
6300 /*
6301  * Reduce the number of Ethernet queues across all ports to at most n.
6302  * n provides at least one queue per port.
6303  */
6304 static void reduce_ethqs(struct adapter *adap, int n)
6305 {
6306         int i;
6307         struct port_info *pi;
6308
6309         while (n < adap->sge.ethqsets)
6310                 for_each_port(adap, i) {
6311                         pi = adap2pinfo(adap, i);
6312                         if (pi->nqsets > 1) {
6313                                 pi->nqsets--;
6314                                 adap->sge.ethqsets--;
6315                                 if (adap->sge.ethqsets <= n)
6316                                         break;
6317                         }
6318                 }
6319
6320         n = 0;
6321         for_each_port(adap, i) {
6322                 pi = adap2pinfo(adap, i);
6323                 pi->first_qset = n;
6324                 n += pi->nqsets;
6325         }
6326 }
6327
6328 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6329 #define EXTRA_VECS 2
6330
6331 static int enable_msix(struct adapter *adap)
6332 {
6333         int ofld_need = 0;
6334         int i, want, need;
6335         struct sge *s = &adap->sge;
6336         unsigned int nchan = adap->params.nports;
6337         struct msix_entry entries[MAX_INGQ + 1];
6338
6339         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6340                 entries[i].entry = i;
6341
6342         want = s->max_ethqsets + EXTRA_VECS;
6343         if (is_offload(adap)) {
6344                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6345                 /* need nchan for each possible ULD */
6346                 ofld_need = 3 * nchan;
6347         }
6348 #ifdef CONFIG_CHELSIO_T4_DCB
6349         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6350          * each port.
6351          */
6352         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6353 #else
6354         need = adap->params.nports + EXTRA_VECS + ofld_need;
6355 #endif
6356         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6357         if (want < 0)
6358                 return want;
6359
6360         /*
6361          * Distribute available vectors to the various queue groups.
6362          * Every group gets its minimum requirement and NIC gets top
6363          * priority for leftovers.
6364          */
6365         i = want - EXTRA_VECS - ofld_need;
6366         if (i < s->max_ethqsets) {
6367                 s->max_ethqsets = i;
6368                 if (i < s->ethqsets)
6369                         reduce_ethqs(adap, i);
6370         }
6371         if (is_offload(adap)) {
6372                 i = want - EXTRA_VECS - s->max_ethqsets;
6373                 i -= ofld_need - nchan;
6374                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6375         }
6376         for (i = 0; i < want; ++i)
6377                 adap->msix_info[i].vec = entries[i].vector;
6378
6379         return 0;
6380 }
6381
6382 #undef EXTRA_VECS
6383
6384 static int init_rss(struct adapter *adap)
6385 {
6386         unsigned int i, j;
6387
6388         for_each_port(adap, i) {
6389                 struct port_info *pi = adap2pinfo(adap, i);
6390
6391                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6392                 if (!pi->rss)
6393                         return -ENOMEM;
6394                 for (j = 0; j < pi->rss_size; j++)
6395                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6396         }
6397         return 0;
6398 }
6399
6400 static void print_port_info(const struct net_device *dev)
6401 {
6402         char buf[80];
6403         char *bufp = buf;
6404         const char *spd = "";
6405         const struct port_info *pi = netdev_priv(dev);
6406         const struct adapter *adap = pi->adapter;
6407
6408         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6409                 spd = " 2.5 GT/s";
6410         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6411                 spd = " 5 GT/s";
6412         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6413                 spd = " 8 GT/s";
6414
6415         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6416                 bufp += sprintf(bufp, "100/");
6417         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6418                 bufp += sprintf(bufp, "1000/");
6419         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6420                 bufp += sprintf(bufp, "10G/");
6421         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6422                 bufp += sprintf(bufp, "40G/");
6423         if (bufp != buf)
6424                 --bufp;
6425         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6426
6427         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6428                     adap->params.vpd.id,
6429                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6430                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6431                     (adap->flags & USING_MSIX) ? " MSI-X" :
6432                     (adap->flags & USING_MSI) ? " MSI" : "");
6433         netdev_info(dev, "S/N: %s, P/N: %s\n",
6434                     adap->params.vpd.sn, adap->params.vpd.pn);
6435 }
6436
6437 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6438 {
6439         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6440 }
6441
6442 /*
6443  * Free the following resources:
6444  * - memory used for tables
6445  * - MSI/MSI-X
6446  * - net devices
6447  * - resources FW is holding for us
6448  */
6449 static void free_some_resources(struct adapter *adapter)
6450 {
6451         unsigned int i;
6452
6453         t4_free_mem(adapter->l2t);
6454         t4_free_mem(adapter->tids.tid_tab);
6455         disable_msi(adapter);
6456
6457         for_each_port(adapter, i)
6458                 if (adapter->port[i]) {
6459                         kfree(adap2pinfo(adapter, i)->rss);
6460                         free_netdev(adapter->port[i]);
6461                 }
6462         if (adapter->flags & FW_OK)
6463                 t4_fw_bye(adapter, adapter->fn);
6464 }
6465
6466 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6467 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6468                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6469 #define SEGMENT_SIZE 128
6470
6471 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6472 {
6473         int func, i, err, s_qpp, qpp, num_seg;
6474         struct port_info *pi;
6475         bool highdma = false;
6476         struct adapter *adapter = NULL;
6477
6478         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6479
6480         err = pci_request_regions(pdev, KBUILD_MODNAME);
6481         if (err) {
6482                 /* Just info, some other driver may have claimed the device. */
6483                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6484                 return err;
6485         }
6486
6487         err = pci_enable_device(pdev);
6488         if (err) {
6489                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6490                 goto out_release_regions;
6491         }
6492
6493         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6494                 highdma = true;
6495                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6496                 if (err) {
6497                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6498                                 "coherent allocations\n");
6499                         goto out_disable_device;
6500                 }
6501         } else {
6502                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6503                 if (err) {
6504                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6505                         goto out_disable_device;
6506                 }
6507         }
6508
6509         pci_enable_pcie_error_reporting(pdev);
6510         enable_pcie_relaxed_ordering(pdev);
6511         pci_set_master(pdev);
6512         pci_save_state(pdev);
6513
6514         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6515         if (!adapter) {
6516                 err = -ENOMEM;
6517                 goto out_disable_device;
6518         }
6519
6520         /* PCI device has been enabled */
6521         adapter->flags |= DEV_ENABLED;
6522
6523         adapter->regs = pci_ioremap_bar(pdev, 0);
6524         if (!adapter->regs) {
6525                 dev_err(&pdev->dev, "cannot map device registers\n");
6526                 err = -ENOMEM;
6527                 goto out_free_adapter;
6528         }
6529
6530         /* We control everything through one PF */
6531         func = SOURCEPF_GET(readl(adapter->regs + PL_WHOAMI));
6532         if (func != ent->driver_data) {
6533                 pci_save_state(pdev);        /* to restore SR-IOV later */
6534                 goto sriov;
6535         }
6536
6537         adapter->pdev = pdev;
6538         adapter->pdev_dev = &pdev->dev;
6539         adapter->mbox = func;
6540         adapter->fn = func;
6541         adapter->msg_enable = dflt_msg_enable;
6542         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6543
6544         spin_lock_init(&adapter->stats_lock);
6545         spin_lock_init(&adapter->tid_release_lock);
6546
6547         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6548         INIT_WORK(&adapter->db_full_task, process_db_full);
6549         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6550
6551         err = t4_prep_adapter(adapter);
6552         if (err)
6553                 goto out_unmap_bar0;
6554
6555         if (!is_t4(adapter->params.chip)) {
6556                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6557                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6558                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6559                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6560
6561                 /* Each segment size is 128B. Write coalescing is enabled only
6562                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6563                  * queue is less no of segments that can be accommodated in
6564                  * a page size.
6565                  */
6566                 if (qpp > num_seg) {
6567                         dev_err(&pdev->dev,
6568                                 "Incorrect number of egress queues per page\n");
6569                         err = -EINVAL;
6570                         goto out_unmap_bar0;
6571                 }
6572                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6573                 pci_resource_len(pdev, 2));
6574                 if (!adapter->bar2) {
6575                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6576                         err = -ENOMEM;
6577                         goto out_unmap_bar0;
6578                 }
6579         }
6580
6581         setup_memwin(adapter);
6582         err = adap_init0(adapter);
6583         setup_memwin_rdma(adapter);
6584         if (err)
6585                 goto out_unmap_bar;
6586
6587         for_each_port(adapter, i) {
6588                 struct net_device *netdev;
6589
6590                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6591                                            MAX_ETH_QSETS);
6592                 if (!netdev) {
6593                         err = -ENOMEM;
6594                         goto out_free_dev;
6595                 }
6596
6597                 SET_NETDEV_DEV(netdev, &pdev->dev);
6598
6599                 adapter->port[i] = netdev;
6600                 pi = netdev_priv(netdev);
6601                 pi->adapter = adapter;
6602                 pi->xact_addr_filt = -1;
6603                 pi->port_id = i;
6604                 netdev->irq = pdev->irq;
6605
6606                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6607                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6608                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6609                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6610                 if (highdma)
6611                         netdev->hw_features |= NETIF_F_HIGHDMA;
6612                 netdev->features |= netdev->hw_features;
6613                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6614
6615                 netdev->priv_flags |= IFF_UNICAST_FLT;
6616
6617                 netdev->netdev_ops = &cxgb4_netdev_ops;
6618 #ifdef CONFIG_CHELSIO_T4_DCB
6619                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6620                 cxgb4_dcb_state_init(netdev);
6621 #endif
6622                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6623         }
6624
6625         pci_set_drvdata(pdev, adapter);
6626
6627         if (adapter->flags & FW_OK) {
6628                 err = t4_port_init(adapter, func, func, 0);
6629                 if (err)
6630                         goto out_free_dev;
6631         }
6632
6633         /*
6634          * Configure queues and allocate tables now, they can be needed as
6635          * soon as the first register_netdev completes.
6636          */
6637         cfg_queues(adapter);
6638
6639         adapter->l2t = t4_init_l2t();
6640         if (!adapter->l2t) {
6641                 /* We tolerate a lack of L2T, giving up some functionality */
6642                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6643                 adapter->params.offload = 0;
6644         }
6645
6646         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6647                 dev_warn(&pdev->dev, "could not allocate TID table, "
6648                          "continuing\n");
6649                 adapter->params.offload = 0;
6650         }
6651
6652         /* See what interrupts we'll be using */
6653         if (msi > 1 && enable_msix(adapter) == 0)
6654                 adapter->flags |= USING_MSIX;
6655         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6656                 adapter->flags |= USING_MSI;
6657
6658         err = init_rss(adapter);
6659         if (err)
6660                 goto out_free_dev;
6661
6662         /*
6663          * The card is now ready to go.  If any errors occur during device
6664          * registration we do not fail the whole card but rather proceed only
6665          * with the ports we manage to register successfully.  However we must
6666          * register at least one net device.
6667          */
6668         for_each_port(adapter, i) {
6669                 pi = adap2pinfo(adapter, i);
6670                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6671                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6672
6673                 err = register_netdev(adapter->port[i]);
6674                 if (err)
6675                         break;
6676                 adapter->chan_map[pi->tx_chan] = i;
6677                 print_port_info(adapter->port[i]);
6678         }
6679         if (i == 0) {
6680                 dev_err(&pdev->dev, "could not register any net devices\n");
6681                 goto out_free_dev;
6682         }
6683         if (err) {
6684                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6685                 err = 0;
6686         }
6687
6688         if (cxgb4_debugfs_root) {
6689                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6690                                                            cxgb4_debugfs_root);
6691                 setup_debugfs(adapter);
6692         }
6693
6694         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6695         pdev->needs_freset = 1;
6696
6697         if (is_offload(adapter))
6698                 attach_ulds(adapter);
6699
6700 sriov:
6701 #ifdef CONFIG_PCI_IOV
6702         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6703                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6704                         dev_info(&pdev->dev,
6705                                  "instantiated %u virtual functions\n",
6706                                  num_vf[func]);
6707 #endif
6708         return 0;
6709
6710  out_free_dev:
6711         free_some_resources(adapter);
6712  out_unmap_bar:
6713         if (!is_t4(adapter->params.chip))
6714                 iounmap(adapter->bar2);
6715  out_unmap_bar0:
6716         iounmap(adapter->regs);
6717  out_free_adapter:
6718         kfree(adapter);
6719  out_disable_device:
6720         pci_disable_pcie_error_reporting(pdev);
6721         pci_disable_device(pdev);
6722  out_release_regions:
6723         pci_release_regions(pdev);
6724         return err;
6725 }
6726
6727 static void remove_one(struct pci_dev *pdev)
6728 {
6729         struct adapter *adapter = pci_get_drvdata(pdev);
6730
6731 #ifdef CONFIG_PCI_IOV
6732         pci_disable_sriov(pdev);
6733
6734 #endif
6735
6736         if (adapter) {
6737                 int i;
6738
6739                 if (is_offload(adapter))
6740                         detach_ulds(adapter);
6741
6742                 for_each_port(adapter, i)
6743                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6744                                 unregister_netdev(adapter->port[i]);
6745
6746                 debugfs_remove_recursive(adapter->debugfs_root);
6747
6748                 /* If we allocated filters, free up state associated with any
6749                  * valid filters ...
6750                  */
6751                 if (adapter->tids.ftid_tab) {
6752                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6753                         for (i = 0; i < (adapter->tids.nftids +
6754                                         adapter->tids.nsftids); i++, f++)
6755                                 if (f->valid)
6756                                         clear_filter(adapter, f);
6757                 }
6758
6759                 if (adapter->flags & FULL_INIT_DONE)
6760                         cxgb_down(adapter);
6761
6762                 free_some_resources(adapter);
6763                 iounmap(adapter->regs);
6764                 if (!is_t4(adapter->params.chip))
6765                         iounmap(adapter->bar2);
6766                 pci_disable_pcie_error_reporting(pdev);
6767                 if ((adapter->flags & DEV_ENABLED)) {
6768                         pci_disable_device(pdev);
6769                         adapter->flags &= ~DEV_ENABLED;
6770                 }
6771                 pci_release_regions(pdev);
6772                 synchronize_rcu();
6773                 kfree(adapter);
6774         } else
6775                 pci_release_regions(pdev);
6776 }
6777
6778 static struct pci_driver cxgb4_driver = {
6779         .name     = KBUILD_MODNAME,
6780         .id_table = cxgb4_pci_tbl,
6781         .probe    = init_one,
6782         .remove   = remove_one,
6783         .shutdown = remove_one,
6784         .err_handler = &cxgb4_eeh,
6785 };
6786
6787 static int __init cxgb4_init_module(void)
6788 {
6789         int ret;
6790
6791         workq = create_singlethread_workqueue("cxgb4");
6792         if (!workq)
6793                 return -ENOMEM;
6794
6795         /* Debugfs support is optional, just warn if this fails */
6796         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6797         if (!cxgb4_debugfs_root)
6798                 pr_warn("could not create debugfs entry, continuing\n");
6799
6800         ret = pci_register_driver(&cxgb4_driver);
6801         if (ret < 0) {
6802                 debugfs_remove(cxgb4_debugfs_root);
6803                 destroy_workqueue(workq);
6804         }
6805
6806         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6807
6808         return ret;
6809 }
6810
6811 static void __exit cxgb4_cleanup_module(void)
6812 {
6813         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6814         pci_unregister_driver(&cxgb4_driver);
6815         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6816         flush_workqueue(workq);
6817         destroy_workqueue(workq);
6818 }
6819
6820 module_init(cxgb4_init_module);
6821 module_exit(cxgb4_cleanup_module);