powerpc32: memset: only use dcbz once cache is enabled
[pandora-kernel.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 *          Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT.  See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/module.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pci.h>
27 #include <linux/pci_ids.h>
28 #include <linux/ip.h>
29 #include <net/ip.h>
30 #include <linux/ipv6.h>
31 #include <linux/net_tstamp.h>
32 #include <linux/if_vlan.h>
33 #include <linux/firmware.h>
34 #include <linux/ethtool.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/types.h>
37 #include <linux/list.h>
38 #include <linux/workqueue.h>
39 #include <linux/interrupt.h>
40 #include "octeon_config.h"
41 #include "liquidio_common.h"
42 #include "octeon_droq.h"
43 #include "octeon_iq.h"
44 #include "response_manager.h"
45 #include "octeon_device.h"
46 #include "octeon_nic.h"
47 #include "octeon_main.h"
48 #include "octeon_network.h"
49 #include "cn66xx_regs.h"
50 #include "cn66xx_device.h"
51 #include "cn68xx_regs.h"
52 #include "cn68xx_device.h"
53 #include "liquidio_image.h"
54
55 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
56 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(LIQUIDIO_VERSION);
59 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
60 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
61 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
62
63 static int ddr_timeout = 10000;
64 module_param(ddr_timeout, int, 0644);
65 MODULE_PARM_DESC(ddr_timeout,
66                  "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
67
68 static u32 console_bitmask;
69 module_param(console_bitmask, int, 0644);
70 MODULE_PARM_DESC(console_bitmask,
71                  "Bitmask indicating which consoles have debug output redirected to syslog.");
72
73 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
74
75 static int debug = -1;
76 module_param(debug, int, 0644);
77 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
78
79 static char fw_type[LIO_MAX_FW_TYPE_LEN];
80 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
81 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
82
83 static int conf_type;
84 module_param(conf_type, int, 0);
85 MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
86
87 /* Bit mask values for lio->ifstate */
88 #define   LIO_IFSTATE_DROQ_OPS             0x01
89 #define   LIO_IFSTATE_REGISTERED           0x02
90 #define   LIO_IFSTATE_RUNNING              0x04
91 #define   LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
92
93 /* Polling interval for determining when NIC application is alive */
94 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
95
96 /* runtime link query interval */
97 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS         1000
98
99 struct liquidio_if_cfg_context {
100         int octeon_id;
101
102         wait_queue_head_t wc;
103
104         int cond;
105 };
106
107 struct liquidio_if_cfg_resp {
108         u64 rh;
109         struct liquidio_if_cfg_info cfg_info;
110         u64 status;
111 };
112
113 struct oct_link_status_resp {
114         u64 rh;
115         struct oct_link_info link_info;
116         u64 status;
117 };
118
119 struct oct_timestamp_resp {
120         u64 rh;
121         u64 timestamp;
122         u64 status;
123 };
124
125 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
126
127 union tx_info {
128         u64 u64;
129         struct {
130 #ifdef __BIG_ENDIAN_BITFIELD
131                 u16 gso_size;
132                 u16 gso_segs;
133                 u32 reserved;
134 #else
135                 u32 reserved;
136                 u16 gso_segs;
137                 u16 gso_size;
138 #endif
139         } s;
140 };
141
142 /** Octeon device properties to be used by the NIC module.
143  * Each octeon device in the system will be represented
144  * by this structure in the NIC module.
145  */
146
147 #define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
148
149 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
150 #define OCTNIC_GSO_MAX_SIZE (GSO_MAX_SIZE - OCTNIC_GSO_MAX_HEADER_SIZE)
151
152 /** Structure of a node in list of gather components maintained by
153  * NIC driver for each network device.
154  */
155 struct octnic_gather {
156         /** List manipulation. Next and prev pointers. */
157         struct list_head list;
158
159         /** Size of the gather component at sg in bytes. */
160         int sg_size;
161
162         /** Number of bytes that sg was adjusted to make it 8B-aligned. */
163         int adjust;
164
165         /** Gather component that can accommodate max sized fragment list
166          *  received from the IP layer.
167          */
168         struct octeon_sg_entry *sg;
169 };
170
171 /** This structure is used by NIC driver to store information required
172  * to free the sk_buff when the packet has been fetched by Octeon.
173  * Bytes offset below assume worst-case of a 64-bit system.
174  */
175 struct octnet_buf_free_info {
176         /** Bytes 1-8.  Pointer to network device private structure. */
177         struct lio *lio;
178
179         /** Bytes 9-16.  Pointer to sk_buff. */
180         struct sk_buff *skb;
181
182         /** Bytes 17-24.  Pointer to gather list. */
183         struct octnic_gather *g;
184
185         /** Bytes 25-32. Physical address of skb->data or gather list. */
186         u64 dptr;
187
188         /** Bytes 33-47. Piggybacked soft command, if any */
189         struct octeon_soft_command *sc;
190 };
191
192 struct handshake {
193         struct completion init;
194         struct completion started;
195         struct pci_dev *pci_dev;
196         int init_ok;
197         int started_ok;
198 };
199
200 struct octeon_device_priv {
201         /** Tasklet structures for this device. */
202         struct tasklet_struct droq_tasklet;
203         unsigned long napi_mask;
204 };
205
206 static int octeon_device_init(struct octeon_device *);
207 static void liquidio_remove(struct pci_dev *pdev);
208 static int liquidio_probe(struct pci_dev *pdev,
209                           const struct pci_device_id *ent);
210
211 static struct handshake handshake[MAX_OCTEON_DEVICES];
212 static struct completion first_stage;
213
214 static void octeon_droq_bh(unsigned long pdev)
215 {
216         int q_no;
217         int reschedule = 0;
218         struct octeon_device *oct = (struct octeon_device *)pdev;
219         struct octeon_device_priv *oct_priv =
220                 (struct octeon_device_priv *)oct->priv;
221
222         /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
223         for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES; q_no++) {
224                 if (!(oct->io_qmask.oq & (1UL << q_no)))
225                         continue;
226                 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
227                                                           MAX_PACKET_BUDGET);
228         }
229
230         if (reschedule)
231                 tasklet_schedule(&oct_priv->droq_tasklet);
232 }
233
234 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
235 {
236         struct octeon_device_priv *oct_priv =
237                 (struct octeon_device_priv *)oct->priv;
238         int retry = 100, pkt_cnt = 0, pending_pkts = 0;
239         int i;
240
241         do {
242                 pending_pkts = 0;
243
244                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
245                         if (!(oct->io_qmask.oq & (1UL << i)))
246                                 continue;
247                         pkt_cnt += octeon_droq_check_hw_for_pkts(oct,
248                                                                  oct->droq[i]);
249                 }
250                 if (pkt_cnt > 0) {
251                         pending_pkts += pkt_cnt;
252                         tasklet_schedule(&oct_priv->droq_tasklet);
253                 }
254                 pkt_cnt = 0;
255                 schedule_timeout_uninterruptible(1);
256
257         } while (retry-- && pending_pkts);
258
259         return pkt_cnt;
260 }
261
262 void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
263                                         unsigned int bytes_compl)
264 {
265         struct netdev_queue *netdev_queue = txq;
266
267         netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
268 }
269
270 void octeon_update_tx_completion_counters(void *buf, int reqtype,
271                                           unsigned int *pkts_compl,
272                                           unsigned int *bytes_compl)
273 {
274         struct octnet_buf_free_info *finfo;
275         struct sk_buff *skb = NULL;
276         struct octeon_soft_command *sc;
277
278         switch (reqtype) {
279         case REQTYPE_NORESP_NET:
280         case REQTYPE_NORESP_NET_SG:
281                 finfo = buf;
282                 skb = finfo->skb;
283                 break;
284
285         case REQTYPE_RESP_NET_SG:
286         case REQTYPE_RESP_NET:
287                 sc = buf;
288                 skb = sc->callback_arg;
289                 break;
290
291         default:
292                 return;
293         }
294
295         (*pkts_compl)++;
296         *bytes_compl += skb->len;
297 }
298
299 void octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
300 {
301         struct octnet_buf_free_info *finfo;
302         struct sk_buff *skb;
303         struct octeon_soft_command *sc;
304         struct netdev_queue *txq;
305
306         switch (reqtype) {
307         case REQTYPE_NORESP_NET:
308         case REQTYPE_NORESP_NET_SG:
309                 finfo = buf;
310                 skb = finfo->skb;
311                 break;
312
313         case REQTYPE_RESP_NET_SG:
314         case REQTYPE_RESP_NET:
315                 sc = buf;
316                 skb = sc->callback_arg;
317                 break;
318
319         default:
320                 return;
321         }
322
323         txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
324         netdev_tx_sent_queue(txq, skb->len);
325 }
326
327 int octeon_console_debug_enabled(u32 console)
328 {
329         return (console_bitmask >> (console)) & 0x1;
330 }
331
332 /**
333  * \brief Forces all IO queues off on a given device
334  * @param oct Pointer to Octeon device
335  */
336 static void force_io_queues_off(struct octeon_device *oct)
337 {
338         if ((oct->chip_id == OCTEON_CN66XX) ||
339             (oct->chip_id == OCTEON_CN68XX)) {
340                 /* Reset the Enable bits for Input Queues. */
341                 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
342
343                 /* Reset the Enable bits for Output Queues. */
344                 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
345         }
346 }
347
348 /**
349  * \brief wait for all pending requests to complete
350  * @param oct Pointer to Octeon device
351  *
352  * Called during shutdown sequence
353  */
354 static int wait_for_pending_requests(struct octeon_device *oct)
355 {
356         int i, pcount = 0;
357
358         for (i = 0; i < 100; i++) {
359                 pcount =
360                         atomic_read(&oct->response_list
361                                 [OCTEON_ORDERED_SC_LIST].pending_req_count);
362                 if (pcount)
363                         schedule_timeout_uninterruptible(HZ / 10);
364                  else
365                         break;
366         }
367
368         if (pcount)
369                 return 1;
370
371         return 0;
372 }
373
374 /**
375  * \brief Cause device to go quiet so it can be safely removed/reset/etc
376  * @param oct Pointer to Octeon device
377  */
378 static inline void pcierror_quiesce_device(struct octeon_device *oct)
379 {
380         int i;
381
382         /* Disable the input and output queues now. No more packets will
383          * arrive from Octeon, but we should wait for all packet processing
384          * to finish.
385          */
386         force_io_queues_off(oct);
387
388         /* To allow for in-flight requests */
389         schedule_timeout_uninterruptible(100);
390
391         if (wait_for_pending_requests(oct))
392                 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
393
394         /* Force all requests waiting to be fetched by OCTEON to complete. */
395         for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
396                 struct octeon_instr_queue *iq;
397
398                 if (!(oct->io_qmask.iq & (1UL << i)))
399                         continue;
400                 iq = oct->instr_queue[i];
401
402                 if (atomic_read(&iq->instr_pending)) {
403                         spin_lock_bh(&iq->lock);
404                         iq->fill_cnt = 0;
405                         iq->octeon_read_index = iq->host_write_index;
406                         iq->stats.instr_processed +=
407                                 atomic_read(&iq->instr_pending);
408                         lio_process_iq_request_list(oct, iq);
409                         spin_unlock_bh(&iq->lock);
410                 }
411         }
412
413         /* Force all pending ordered list requests to time out. */
414         lio_process_ordered_list(oct, 1);
415
416         /* We do not need to wait for output queue packets to be processed. */
417 }
418
419 /**
420  * \brief Cleanup PCI AER uncorrectable error status
421  * @param dev Pointer to PCI device
422  */
423 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
424 {
425         int pos = 0x100;
426         u32 status, mask;
427
428         pr_info("%s :\n", __func__);
429
430         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
431         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
432         if (dev->error_state == pci_channel_io_normal)
433                 status &= ~mask;        /* Clear corresponding nonfatal bits */
434         else
435                 status &= mask;         /* Clear corresponding fatal bits */
436         pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
437 }
438
439 /**
440  * \brief Stop all PCI IO to a given device
441  * @param dev Pointer to Octeon device
442  */
443 static void stop_pci_io(struct octeon_device *oct)
444 {
445         /* No more instructions will be forwarded. */
446         atomic_set(&oct->status, OCT_DEV_IN_RESET);
447
448         pci_disable_device(oct->pci_dev);
449
450         /* Disable interrupts  */
451         oct->fn_list.disable_interrupt(oct->chip);
452
453         pcierror_quiesce_device(oct);
454
455         /* Release the interrupt line */
456         free_irq(oct->pci_dev->irq, oct);
457
458         if (oct->flags & LIO_FLAG_MSI_ENABLED)
459                 pci_disable_msi(oct->pci_dev);
460
461         dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
462                 lio_get_state_string(&oct->status));
463
464         /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
465         /* making it a common function for all OCTEON models */
466         cleanup_aer_uncorrect_error_status(oct->pci_dev);
467 }
468
469 /**
470  * \brief called when PCI error is detected
471  * @param pdev Pointer to PCI device
472  * @param state The current pci connection state
473  *
474  * This function is called after a PCI bus error affecting
475  * this device has been detected.
476  */
477 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
478                                                      pci_channel_state_t state)
479 {
480         struct octeon_device *oct = pci_get_drvdata(pdev);
481
482         /* Non-correctable Non-fatal errors */
483         if (state == pci_channel_io_normal) {
484                 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
485                 cleanup_aer_uncorrect_error_status(oct->pci_dev);
486                 return PCI_ERS_RESULT_CAN_RECOVER;
487         }
488
489         /* Non-correctable Fatal errors */
490         dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
491         stop_pci_io(oct);
492
493         /* Always return a DISCONNECT. There is no support for recovery but only
494          * for a clean shutdown.
495          */
496         return PCI_ERS_RESULT_DISCONNECT;
497 }
498
499 /**
500  * \brief mmio handler
501  * @param pdev Pointer to PCI device
502  */
503 static pci_ers_result_t liquidio_pcie_mmio_enabled(struct pci_dev *pdev)
504 {
505         /* We should never hit this since we never ask for a reset for a Fatal
506          * Error. We always return DISCONNECT in io_error above.
507          * But play safe and return RECOVERED for now.
508          */
509         return PCI_ERS_RESULT_RECOVERED;
510 }
511
512 /**
513  * \brief called after the pci bus has been reset.
514  * @param pdev Pointer to PCI device
515  *
516  * Restart the card from scratch, as if from a cold-boot. Implementation
517  * resembles the first-half of the octeon_resume routine.
518  */
519 static pci_ers_result_t liquidio_pcie_slot_reset(struct pci_dev *pdev)
520 {
521         /* We should never hit this since we never ask for a reset for a Fatal
522          * Error. We always return DISCONNECT in io_error above.
523          * But play safe and return RECOVERED for now.
524          */
525         return PCI_ERS_RESULT_RECOVERED;
526 }
527
528 /**
529  * \brief called when traffic can start flowing again.
530  * @param pdev Pointer to PCI device
531  *
532  * This callback is called when the error recovery driver tells us that
533  * its OK to resume normal operation. Implementation resembles the
534  * second-half of the octeon_resume routine.
535  */
536 static void liquidio_pcie_resume(struct pci_dev *pdev)
537 {
538         /* Nothing to be done here. */
539 }
540
541 #ifdef CONFIG_PM
542 /**
543  * \brief called when suspending
544  * @param pdev Pointer to PCI device
545  * @param state state to suspend to
546  */
547 static int liquidio_suspend(struct pci_dev *pdev, pm_message_t state)
548 {
549         return 0;
550 }
551
552 /**
553  * \brief called when resuming
554  * @param pdev Pointer to PCI device
555  */
556 static int liquidio_resume(struct pci_dev *pdev)
557 {
558         return 0;
559 }
560 #endif
561
562 /* For PCI-E Advanced Error Recovery (AER) Interface */
563 static struct pci_error_handlers liquidio_err_handler = {
564         .error_detected = liquidio_pcie_error_detected,
565         .mmio_enabled   = liquidio_pcie_mmio_enabled,
566         .slot_reset     = liquidio_pcie_slot_reset,
567         .resume         = liquidio_pcie_resume,
568 };
569
570 static const struct pci_device_id liquidio_pci_tbl[] = {
571         {       /* 68xx */
572                 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
573         },
574         {       /* 66xx */
575                 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
576         },
577         {
578                 0, 0, 0, 0, 0, 0, 0
579         }
580 };
581 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
582
583 static struct pci_driver liquidio_pci_driver = {
584         .name           = "LiquidIO",
585         .id_table       = liquidio_pci_tbl,
586         .probe          = liquidio_probe,
587         .remove         = liquidio_remove,
588         .err_handler    = &liquidio_err_handler,    /* For AER */
589
590 #ifdef CONFIG_PM
591         .suspend        = liquidio_suspend,
592         .resume         = liquidio_resume,
593 #endif
594
595 };
596
597 /**
598  * \brief register PCI driver
599  */
600 static int liquidio_init_pci(void)
601 {
602         return pci_register_driver(&liquidio_pci_driver);
603 }
604
605 /**
606  * \brief unregister PCI driver
607  */
608 static void liquidio_deinit_pci(void)
609 {
610         pci_unregister_driver(&liquidio_pci_driver);
611 }
612
613 /**
614  * \brief check interface state
615  * @param lio per-network private data
616  * @param state_flag flag state to check
617  */
618 static inline int ifstate_check(struct lio *lio, int state_flag)
619 {
620         return atomic_read(&lio->ifstate) & state_flag;
621 }
622
623 /**
624  * \brief set interface state
625  * @param lio per-network private data
626  * @param state_flag flag state to set
627  */
628 static inline void ifstate_set(struct lio *lio, int state_flag)
629 {
630         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
631 }
632
633 /**
634  * \brief clear interface state
635  * @param lio per-network private data
636  * @param state_flag flag state to clear
637  */
638 static inline void ifstate_reset(struct lio *lio, int state_flag)
639 {
640         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
641 }
642
643 /**
644  * \brief Stop Tx queues
645  * @param netdev network device
646  */
647 static inline void txqs_stop(struct net_device *netdev)
648 {
649         if (netif_is_multiqueue(netdev)) {
650                 int i;
651
652                 for (i = 0; i < netdev->num_tx_queues; i++)
653                         netif_stop_subqueue(netdev, i);
654         } else {
655                 netif_stop_queue(netdev);
656         }
657 }
658
659 /**
660  * \brief Start Tx queues
661  * @param netdev network device
662  */
663 static inline void txqs_start(struct net_device *netdev)
664 {
665         if (netif_is_multiqueue(netdev)) {
666                 int i;
667
668                 for (i = 0; i < netdev->num_tx_queues; i++)
669                         netif_start_subqueue(netdev, i);
670         } else {
671                 netif_start_queue(netdev);
672         }
673 }
674
675 /**
676  * \brief Wake Tx queues
677  * @param netdev network device
678  */
679 static inline void txqs_wake(struct net_device *netdev)
680 {
681         if (netif_is_multiqueue(netdev)) {
682                 int i;
683
684                 for (i = 0; i < netdev->num_tx_queues; i++)
685                         netif_wake_subqueue(netdev, i);
686         } else {
687                 netif_wake_queue(netdev);
688         }
689 }
690
691 /**
692  * \brief Stop Tx queue
693  * @param netdev network device
694  */
695 static void stop_txq(struct net_device *netdev)
696 {
697         txqs_stop(netdev);
698 }
699
700 /**
701  * \brief Start Tx queue
702  * @param netdev network device
703  */
704 static void start_txq(struct net_device *netdev)
705 {
706         struct lio *lio = GET_LIO(netdev);
707
708         if (lio->linfo.link.s.status) {
709                 txqs_start(netdev);
710                 return;
711         }
712 }
713
714 /**
715  * \brief Wake a queue
716  * @param netdev network device
717  * @param q which queue to wake
718  */
719 static inline void wake_q(struct net_device *netdev, int q)
720 {
721         if (netif_is_multiqueue(netdev))
722                 netif_wake_subqueue(netdev, q);
723         else
724                 netif_wake_queue(netdev);
725 }
726
727 /**
728  * \brief Stop a queue
729  * @param netdev network device
730  * @param q which queue to stop
731  */
732 static inline void stop_q(struct net_device *netdev, int q)
733 {
734         if (netif_is_multiqueue(netdev))
735                 netif_stop_subqueue(netdev, q);
736         else
737                 netif_stop_queue(netdev);
738 }
739
740 /**
741  * \brief Check Tx queue status, and take appropriate action
742  * @param lio per-network private data
743  * @returns 0 if full, number of queues woken up otherwise
744  */
745 static inline int check_txq_status(struct lio *lio)
746 {
747         int ret_val = 0;
748
749         if (netif_is_multiqueue(lio->netdev)) {
750                 int numqs = lio->netdev->num_tx_queues;
751                 int q, iq = 0;
752
753                 /* check each sub-queue state */
754                 for (q = 0; q < numqs; q++) {
755                         iq = lio->linfo.txpciq[q & (lio->linfo.num_txpciq - 1)];
756                         if (octnet_iq_is_full(lio->oct_dev, iq))
757                                 continue;
758                         wake_q(lio->netdev, q);
759                         ret_val++;
760                 }
761         } else {
762                 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
763                         return 0;
764                 wake_q(lio->netdev, lio->txq);
765                 ret_val = 1;
766         }
767         return ret_val;
768 }
769
770 /**
771  * Remove the node at the head of the list. The list would be empty at
772  * the end of this call if there are no more nodes in the list.
773  */
774 static inline struct list_head *list_delete_head(struct list_head *root)
775 {
776         struct list_head *node;
777
778         if ((root->prev == root) && (root->next == root))
779                 node = NULL;
780         else
781                 node = root->next;
782
783         if (node)
784                 list_del(node);
785
786         return node;
787 }
788
789 /**
790  * \brief Delete gather list
791  * @param lio per-network private data
792  */
793 static void delete_glist(struct lio *lio)
794 {
795         struct octnic_gather *g;
796
797         do {
798                 g = (struct octnic_gather *)
799                     list_delete_head(&lio->glist);
800                 if (g) {
801                         if (g->sg)
802                                 kfree((void *)((unsigned long)g->sg -
803                                                 g->adjust));
804                         kfree(g);
805                 }
806         } while (g);
807 }
808
809 /**
810  * \brief Setup gather list
811  * @param lio per-network private data
812  */
813 static int setup_glist(struct lio *lio)
814 {
815         int i;
816         struct octnic_gather *g;
817
818         INIT_LIST_HEAD(&lio->glist);
819
820         for (i = 0; i < lio->tx_qsize; i++) {
821                 g = kmalloc(sizeof(*g), GFP_KERNEL);
822                 if (!g)
823                         break;
824                 memset(g, 0, sizeof(struct octnic_gather));
825
826                 g->sg_size =
827                         ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
828
829                 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
830                 if (!g->sg) {
831                         kfree(g);
832                         break;
833                 }
834
835                 /* The gather component should be aligned on 64-bit boundary */
836                 if (((unsigned long)g->sg) & 7) {
837                         g->adjust = 8 - (((unsigned long)g->sg) & 7);
838                         g->sg = (struct octeon_sg_entry *)
839                                 ((unsigned long)g->sg + g->adjust);
840                 }
841                 list_add_tail(&g->list, &lio->glist);
842         }
843
844         if (i == lio->tx_qsize)
845                 return 0;
846
847         delete_glist(lio);
848         return 1;
849 }
850
851 /**
852  * \brief Print link information
853  * @param netdev network device
854  */
855 static void print_link_info(struct net_device *netdev)
856 {
857         struct lio *lio = GET_LIO(netdev);
858
859         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
860                 struct oct_link_info *linfo = &lio->linfo;
861
862                 if (linfo->link.s.status) {
863                         netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
864                                    linfo->link.s.speed,
865                                    (linfo->link.s.duplex) ? "Full" : "Half");
866                 } else {
867                         netif_info(lio, link, lio->netdev, "Link Down\n");
868                 }
869         }
870 }
871
872 /**
873  * \brief Update link status
874  * @param netdev network device
875  * @param ls link status structure
876  *
877  * Called on receipt of a link status response from the core application to
878  * update each interface's link status.
879  */
880 static inline void update_link_status(struct net_device *netdev,
881                                       union oct_link_status *ls)
882 {
883         struct lio *lio = GET_LIO(netdev);
884
885         if ((lio->intf_open) && (lio->linfo.link.u64 != ls->u64)) {
886                 lio->linfo.link.u64 = ls->u64;
887
888                 print_link_info(netdev);
889
890                 if (lio->linfo.link.s.status) {
891                         netif_carrier_on(netdev);
892                         /* start_txq(netdev); */
893                         txqs_wake(netdev);
894                 } else {
895                         netif_carrier_off(netdev);
896                         stop_txq(netdev);
897                 }
898         }
899 }
900
901 /**
902  * \brief Droq packet processor sceduler
903  * @param oct octeon device
904  */
905 static
906 void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
907 {
908         struct octeon_device_priv *oct_priv =
909                 (struct octeon_device_priv *)oct->priv;
910         u64 oq_no;
911         struct octeon_droq *droq;
912
913         if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
914                 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
915                         if (!(oct->droq_intr & (1 << oq_no)))
916                                 continue;
917
918                         droq = oct->droq[oq_no];
919
920                         if (droq->ops.poll_mode) {
921                                 droq->ops.napi_fn(droq);
922                                 oct_priv->napi_mask |= (1 << oq_no);
923                         } else {
924                                 tasklet_schedule(&oct_priv->droq_tasklet);
925                         }
926                 }
927         }
928 }
929
930 /**
931  * \brief Interrupt handler for octeon
932  * @param irq unused
933  * @param dev octeon device
934  */
935 static
936 irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
937 {
938         struct octeon_device *oct = (struct octeon_device *)dev;
939         irqreturn_t ret;
940
941         /* Disable our interrupts for the duration of ISR */
942         oct->fn_list.disable_interrupt(oct->chip);
943
944         ret = oct->fn_list.process_interrupt_regs(oct);
945
946         if (ret == IRQ_HANDLED)
947                 liquidio_schedule_droq_pkt_handlers(oct);
948
949         /* Re-enable our interrupts  */
950         if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
951                 oct->fn_list.enable_interrupt(oct->chip);
952
953         return ret;
954 }
955
956 /**
957  * \brief Setup interrupt for octeon device
958  * @param oct octeon device
959  *
960  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
961  */
962 static int octeon_setup_interrupt(struct octeon_device *oct)
963 {
964         int irqret, err;
965
966         err = pci_enable_msi(oct->pci_dev);
967         if (err)
968                 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
969                          err);
970         else
971                 oct->flags |= LIO_FLAG_MSI_ENABLED;
972
973         irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
974                              IRQF_SHARED, "octeon", oct);
975         if (irqret) {
976                 if (oct->flags & LIO_FLAG_MSI_ENABLED)
977                         pci_disable_msi(oct->pci_dev);
978                 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
979                         irqret);
980                 return 1;
981         }
982
983         return 0;
984 }
985
986 /**
987  * \brief PCI probe handler
988  * @param pdev PCI device structure
989  * @param ent unused
990  */
991 static int liquidio_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
992 {
993         struct octeon_device *oct_dev = NULL;
994         struct handshake *hs;
995
996         oct_dev = octeon_allocate_device(pdev->device,
997                                          sizeof(struct octeon_device_priv));
998         if (!oct_dev) {
999                 dev_err(&pdev->dev, "Unable to allocate device\n");
1000                 return -ENOMEM;
1001         }
1002
1003         dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1004                  (u32)pdev->vendor, (u32)pdev->device);
1005
1006         /* Assign octeon_device for this device to the private data area. */
1007         pci_set_drvdata(pdev, oct_dev);
1008
1009         /* set linux specific device pointer */
1010         oct_dev->pci_dev = (void *)pdev;
1011
1012         hs = &handshake[oct_dev->octeon_id];
1013         init_completion(&hs->init);
1014         init_completion(&hs->started);
1015         hs->pci_dev = pdev;
1016
1017         if (oct_dev->octeon_id == 0)
1018                 /* first LiquidIO NIC is detected */
1019                 complete(&first_stage);
1020
1021         if (octeon_device_init(oct_dev)) {
1022                 liquidio_remove(pdev);
1023                 return -ENOMEM;
1024         }
1025
1026         dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1027
1028         return 0;
1029 }
1030
1031 /**
1032  *\brief Destroy resources associated with octeon device
1033  * @param pdev PCI device structure
1034  * @param ent unused
1035  */
1036 static void octeon_destroy_resources(struct octeon_device *oct)
1037 {
1038         int i;
1039         struct octeon_device_priv *oct_priv =
1040                 (struct octeon_device_priv *)oct->priv;
1041
1042         struct handshake *hs;
1043
1044         switch (atomic_read(&oct->status)) {
1045         case OCT_DEV_RUNNING:
1046         case OCT_DEV_CORE_OK:
1047
1048                 /* No more instructions will be forwarded. */
1049                 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1050
1051                 oct->app_mode = CVM_DRV_INVALID_APP;
1052                 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1053                         lio_get_state_string(&oct->status));
1054
1055                 schedule_timeout_uninterruptible(HZ / 10);
1056
1057                 /* fallthrough */
1058         case OCT_DEV_HOST_OK:
1059
1060                 /* fallthrough */
1061         case OCT_DEV_CONSOLE_INIT_DONE:
1062                 /* Remove any consoles */
1063                 octeon_remove_consoles(oct);
1064
1065                 /* fallthrough */
1066         case OCT_DEV_IO_QUEUES_DONE:
1067                 if (wait_for_pending_requests(oct))
1068                         dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1069
1070                 if (lio_wait_for_instr_fetch(oct))
1071                         dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1072
1073                 /* Disable the input and output queues now. No more packets will
1074                  * arrive from Octeon, but we should wait for all packet
1075                  * processing to finish.
1076                  */
1077                 oct->fn_list.disable_io_queues(oct);
1078
1079                 if (lio_wait_for_oq_pkts(oct))
1080                         dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1081
1082                 /* Disable interrupts  */
1083                 oct->fn_list.disable_interrupt(oct->chip);
1084
1085                 /* Release the interrupt line */
1086                 free_irq(oct->pci_dev->irq, oct);
1087
1088                 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1089                         pci_disable_msi(oct->pci_dev);
1090
1091                 /* Soft reset the octeon device before exiting */
1092                 oct->fn_list.soft_reset(oct);
1093
1094                 /* Disable the device, releasing the PCI INT */
1095                 pci_disable_device(oct->pci_dev);
1096
1097                 /* fallthrough */
1098         case OCT_DEV_IN_RESET:
1099         case OCT_DEV_DROQ_INIT_DONE:
1100                 /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1101                 mdelay(100);
1102                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
1103                         if (!(oct->io_qmask.oq & (1UL << i)))
1104                                 continue;
1105                         octeon_delete_droq(oct, i);
1106                 }
1107
1108                 /* Force any pending handshakes to complete */
1109                 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1110                         hs = &handshake[i];
1111
1112                         if (hs->pci_dev) {
1113                                 handshake[oct->octeon_id].init_ok = 0;
1114                                 complete(&handshake[oct->octeon_id].init);
1115                                 handshake[oct->octeon_id].started_ok = 0;
1116                                 complete(&handshake[oct->octeon_id].started);
1117                         }
1118                 }
1119
1120                 /* fallthrough */
1121         case OCT_DEV_RESP_LIST_INIT_DONE:
1122                 octeon_delete_response_list(oct);
1123
1124                 /* fallthrough */
1125         case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1126                 octeon_free_sc_buffer_pool(oct);
1127
1128                 /* fallthrough */
1129         case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1130                 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
1131                         if (!(oct->io_qmask.iq & (1UL << i)))
1132                                 continue;
1133                         octeon_delete_instr_queue(oct, i);
1134                 }
1135
1136                 /* fallthrough */
1137         case OCT_DEV_DISPATCH_INIT_DONE:
1138                 octeon_delete_dispatch_list(oct);
1139                 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1140
1141                 /* fallthrough */
1142         case OCT_DEV_PCI_MAP_DONE:
1143                 octeon_unmap_pci_barx(oct, 0);
1144                 octeon_unmap_pci_barx(oct, 1);
1145
1146                 /* fallthrough */
1147         case OCT_DEV_BEGIN_STATE:
1148                 /* Nothing to be done here either */
1149                 break;
1150         }                       /* end switch(oct->status) */
1151
1152         tasklet_kill(&oct_priv->droq_tasklet);
1153 }
1154
1155 /**
1156  * \brief Send Rx control command
1157  * @param lio per-network private data
1158  * @param start_stop whether to start or stop
1159  */
1160 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1161 {
1162         struct octnic_ctrl_pkt nctrl;
1163         struct octnic_ctrl_params nparams;
1164
1165         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1166
1167         nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
1168         nctrl.ncmd.s.param1 = lio->linfo.ifidx;
1169         nctrl.ncmd.s.param2 = start_stop;
1170         nctrl.netpndev = (u64)lio->netdev;
1171
1172         nparams.resp_order = OCTEON_RESP_NORESPONSE;
1173
1174         if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams) < 0)
1175                 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1176 }
1177
1178 /**
1179  * \brief Destroy NIC device interface
1180  * @param oct octeon device
1181  * @param ifidx which interface to destroy
1182  *
1183  * Cleanup associated with each interface for an Octeon device  when NIC
1184  * module is being unloaded or if initialization fails during load.
1185  */
1186 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1187 {
1188         struct net_device *netdev = oct->props[ifidx].netdev;
1189         struct lio *lio;
1190
1191         if (!netdev) {
1192                 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1193                         __func__, ifidx);
1194                 return;
1195         }
1196
1197         lio = GET_LIO(netdev);
1198
1199         dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1200
1201         send_rx_ctrl_cmd(lio, 0);
1202
1203         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1204                 txqs_stop(netdev);
1205
1206         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1207                 unregister_netdev(netdev);
1208
1209         delete_glist(lio);
1210
1211         free_netdev(netdev);
1212
1213         oct->props[ifidx].netdev = NULL;
1214 }
1215
1216 /**
1217  * \brief Stop complete NIC functionality
1218  * @param oct octeon device
1219  */
1220 static int liquidio_stop_nic_module(struct octeon_device *oct)
1221 {
1222         int i, j;
1223         struct lio *lio;
1224
1225         dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1226         if (!oct->ifcount) {
1227                 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1228                 return 1;
1229         }
1230
1231         for (i = 0; i < oct->ifcount; i++) {
1232                 lio = GET_LIO(oct->props[i].netdev);
1233                 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1234                         octeon_unregister_droq_ops(oct, lio->linfo.rxpciq[j]);
1235         }
1236
1237         for (i = 0; i < oct->ifcount; i++)
1238                 liquidio_destroy_nic_device(oct, i);
1239
1240         dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1241         return 0;
1242 }
1243
1244 /**
1245  * \brief Cleans up resources at unload time
1246  * @param pdev PCI device structure
1247  */
1248 static void liquidio_remove(struct pci_dev *pdev)
1249 {
1250         struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1251
1252         dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1253
1254         if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1255                 liquidio_stop_nic_module(oct_dev);
1256
1257         /* Reset the octeon device and cleanup all memory allocated for
1258          * the octeon device by driver.
1259          */
1260         octeon_destroy_resources(oct_dev);
1261
1262         dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1263
1264         /* This octeon device has been removed. Update the global
1265          * data structure to reflect this. Free the device structure.
1266          */
1267         octeon_free_device_mem(oct_dev);
1268 }
1269
1270 /**
1271  * \brief Identify the Octeon device and to map the BAR address space
1272  * @param oct octeon device
1273  */
1274 static int octeon_chip_specific_setup(struct octeon_device *oct)
1275 {
1276         u32 dev_id, rev_id;
1277         int ret = 1;
1278
1279         pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1280         pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1281         oct->rev_id = rev_id & 0xff;
1282
1283         switch (dev_id) {
1284         case OCTEON_CN68XX_PCIID:
1285                 oct->chip_id = OCTEON_CN68XX;
1286                 ret = lio_setup_cn68xx_octeon_device(oct);
1287                 break;
1288
1289         case OCTEON_CN66XX_PCIID:
1290                 oct->chip_id = OCTEON_CN66XX;
1291                 ret = lio_setup_cn66xx_octeon_device(oct);
1292                 break;
1293         default:
1294                 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1295                         dev_id);
1296         }
1297
1298         if (!ret)
1299                 dev_info(&oct->pci_dev->dev, "CN68XX PASS%d.%d %s\n",
1300                          OCTEON_MAJOR_REV(oct),
1301                          OCTEON_MINOR_REV(oct),
1302                          octeon_get_conf(oct)->card_name);
1303
1304         return ret;
1305 }
1306
1307 /**
1308  * \brief PCI initialization for each Octeon device.
1309  * @param oct octeon device
1310  */
1311 static int octeon_pci_os_setup(struct octeon_device *oct)
1312 {
1313         /* setup PCI stuff first */
1314         if (pci_enable_device(oct->pci_dev)) {
1315                 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1316                 return 1;
1317         }
1318
1319         if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1320                 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1321                 return 1;
1322         }
1323
1324         /* Enable PCI DMA Master. */
1325         pci_set_master(oct->pci_dev);
1326
1327         return 0;
1328 }
1329
1330 /**
1331  * \brief Check Tx queue state for a given network buffer
1332  * @param lio per-network private data
1333  * @param skb network buffer
1334  */
1335 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1336 {
1337         int q = 0, iq = 0;
1338
1339         if (netif_is_multiqueue(lio->netdev)) {
1340                 q = skb->queue_mapping;
1341                 iq = lio->linfo.txpciq[(q & (lio->linfo.num_txpciq - 1))];
1342         } else {
1343                 iq = lio->txq;
1344         }
1345
1346         if (octnet_iq_is_full(lio->oct_dev, iq))
1347                 return 0;
1348         wake_q(lio->netdev, q);
1349         return 1;
1350 }
1351
1352 /**
1353  * \brief Unmap and free network buffer
1354  * @param buf buffer
1355  */
1356 static void free_netbuf(void *buf)
1357 {
1358         struct sk_buff *skb;
1359         struct octnet_buf_free_info *finfo;
1360         struct lio *lio;
1361
1362         finfo = (struct octnet_buf_free_info *)buf;
1363         skb = finfo->skb;
1364         lio = finfo->lio;
1365
1366         dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1367                          DMA_TO_DEVICE);
1368
1369         check_txq_state(lio, skb);
1370
1371         recv_buffer_free((struct sk_buff *)skb);
1372 }
1373
1374 /**
1375  * \brief Unmap and free gather buffer
1376  * @param buf buffer
1377  */
1378 static void free_netsgbuf(void *buf)
1379 {
1380         struct octnet_buf_free_info *finfo;
1381         struct sk_buff *skb;
1382         struct lio *lio;
1383         struct octnic_gather *g;
1384         int i, frags;
1385
1386         finfo = (struct octnet_buf_free_info *)buf;
1387         skb = finfo->skb;
1388         lio = finfo->lio;
1389         g = finfo->g;
1390         frags = skb_shinfo(skb)->nr_frags;
1391
1392         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1393                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1394                          DMA_TO_DEVICE);
1395
1396         i = 1;
1397         while (frags--) {
1398                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1399
1400                 pci_unmap_page((lio->oct_dev)->pci_dev,
1401                                g->sg[(i >> 2)].ptr[(i & 3)],
1402                                frag->size, DMA_TO_DEVICE);
1403                 i++;
1404         }
1405
1406         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1407                          finfo->dptr, g->sg_size,
1408                          DMA_TO_DEVICE);
1409
1410         spin_lock(&lio->lock);
1411         list_add_tail(&g->list, &lio->glist);
1412         spin_unlock(&lio->lock);
1413
1414         check_txq_state(lio, skb);     /* mq support: sub-queue state check */
1415
1416         recv_buffer_free((struct sk_buff *)skb);
1417 }
1418
1419 /**
1420  * \brief Unmap and free gather buffer with response
1421  * @param buf buffer
1422  */
1423 static void free_netsgbuf_with_resp(void *buf)
1424 {
1425         struct octeon_soft_command *sc;
1426         struct octnet_buf_free_info *finfo;
1427         struct sk_buff *skb;
1428         struct lio *lio;
1429         struct octnic_gather *g;
1430         int i, frags;
1431
1432         sc = (struct octeon_soft_command *)buf;
1433         skb = (struct sk_buff *)sc->callback_arg;
1434         finfo = (struct octnet_buf_free_info *)&skb->cb;
1435
1436         lio = finfo->lio;
1437         g = finfo->g;
1438         frags = skb_shinfo(skb)->nr_frags;
1439
1440         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1441                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1442                          DMA_TO_DEVICE);
1443
1444         i = 1;
1445         while (frags--) {
1446                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1447
1448                 pci_unmap_page((lio->oct_dev)->pci_dev,
1449                                g->sg[(i >> 2)].ptr[(i & 3)],
1450                                frag->size, DMA_TO_DEVICE);
1451                 i++;
1452         }
1453
1454         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1455                          finfo->dptr, g->sg_size,
1456                          DMA_TO_DEVICE);
1457
1458         spin_lock(&lio->lock);
1459         list_add_tail(&g->list, &lio->glist);
1460         spin_unlock(&lio->lock);
1461
1462         /* Don't free the skb yet */
1463
1464         check_txq_state(lio, skb);
1465 }
1466
1467 /**
1468  * \brief Adjust ptp frequency
1469  * @param ptp PTP clock info
1470  * @param ppb how much to adjust by, in parts-per-billion
1471  */
1472 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1473 {
1474         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1475         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1476         u64 comp, delta;
1477         unsigned long flags;
1478         bool neg_adj = false;
1479
1480         if (ppb < 0) {
1481                 neg_adj = true;
1482                 ppb = -ppb;
1483         }
1484
1485         /* The hardware adds the clock compensation value to the
1486          * PTP clock on every coprocessor clock cycle, so we
1487          * compute the delta in terms of coprocessor clocks.
1488          */
1489         delta = (u64)ppb << 32;
1490         do_div(delta, oct->coproc_clock_rate);
1491
1492         spin_lock_irqsave(&lio->ptp_lock, flags);
1493         comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1494         if (neg_adj)
1495                 comp -= delta;
1496         else
1497                 comp += delta;
1498         lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1499         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1500
1501         return 0;
1502 }
1503
1504 /**
1505  * \brief Adjust ptp time
1506  * @param ptp PTP clock info
1507  * @param delta how much to adjust by, in nanosecs
1508  */
1509 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1510 {
1511         unsigned long flags;
1512         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1513
1514         spin_lock_irqsave(&lio->ptp_lock, flags);
1515         lio->ptp_adjust += delta;
1516         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1517
1518         return 0;
1519 }
1520
1521 /**
1522  * \brief Get hardware clock time, including any adjustment
1523  * @param ptp PTP clock info
1524  * @param ts timespec
1525  */
1526 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1527                                 struct timespec64 *ts)
1528 {
1529         u64 ns;
1530         u32 remainder;
1531         unsigned long flags;
1532         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1533         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1534
1535         spin_lock_irqsave(&lio->ptp_lock, flags);
1536         ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1537         ns += lio->ptp_adjust;
1538         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1539
1540         ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
1541         ts->tv_nsec = remainder;
1542
1543         return 0;
1544 }
1545
1546 /**
1547  * \brief Set hardware clock time. Reset adjustment
1548  * @param ptp PTP clock info
1549  * @param ts timespec
1550  */
1551 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
1552                                 const struct timespec64 *ts)
1553 {
1554         u64 ns;
1555         unsigned long flags;
1556         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1557         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1558
1559         ns = timespec_to_ns(ts);
1560
1561         spin_lock_irqsave(&lio->ptp_lock, flags);
1562         lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
1563         lio->ptp_adjust = 0;
1564         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1565
1566         return 0;
1567 }
1568
1569 /**
1570  * \brief Check if PTP is enabled
1571  * @param ptp PTP clock info
1572  * @param rq request
1573  * @param on is it on
1574  */
1575 static int liquidio_ptp_enable(struct ptp_clock_info *ptp,
1576                                struct ptp_clock_request *rq, int on)
1577 {
1578         return -EOPNOTSUPP;
1579 }
1580
1581 /**
1582  * \brief Open PTP clock source
1583  * @param netdev network device
1584  */
1585 static void oct_ptp_open(struct net_device *netdev)
1586 {
1587         struct lio *lio = GET_LIO(netdev);
1588         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1589
1590         spin_lock_init(&lio->ptp_lock);
1591
1592         snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
1593         lio->ptp_info.owner = THIS_MODULE;
1594         lio->ptp_info.max_adj = 250000000;
1595         lio->ptp_info.n_alarm = 0;
1596         lio->ptp_info.n_ext_ts = 0;
1597         lio->ptp_info.n_per_out = 0;
1598         lio->ptp_info.pps = 0;
1599         lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
1600         lio->ptp_info.adjtime = liquidio_ptp_adjtime;
1601         lio->ptp_info.gettime64 = liquidio_ptp_gettime;
1602         lio->ptp_info.settime64 = liquidio_ptp_settime;
1603         lio->ptp_info.enable = liquidio_ptp_enable;
1604
1605         lio->ptp_adjust = 0;
1606
1607         lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
1608                                              &oct->pci_dev->dev);
1609
1610         if (IS_ERR(lio->ptp_clock))
1611                 lio->ptp_clock = NULL;
1612 }
1613
1614 /**
1615  * \brief Init PTP clock
1616  * @param oct octeon device
1617  */
1618 static void liquidio_ptp_init(struct octeon_device *oct)
1619 {
1620         u64 clock_comp, cfg;
1621
1622         clock_comp = (u64)NSEC_PER_SEC << 32;
1623         do_div(clock_comp, oct->coproc_clock_rate);
1624         lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1625
1626         /* Enable */
1627         cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
1628         lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
1629 }
1630
1631 /**
1632  * \brief Load firmware to device
1633  * @param oct octeon device
1634  *
1635  * Maps device to firmware filename, requests firmware, and downloads it
1636  */
1637 static int load_firmware(struct octeon_device *oct)
1638 {
1639         int ret = 0;
1640         const struct firmware *fw;
1641         char fw_name[LIO_MAX_FW_FILENAME_LEN];
1642         char *tmp_fw_type;
1643
1644         if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1645                     sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
1646                 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
1647                 return ret;
1648         }
1649
1650         if (fw_type[0] == '\0')
1651                 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
1652         else
1653                 tmp_fw_type = fw_type;
1654
1655         sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
1656                 octeon_get_conf(oct)->card_name, tmp_fw_type,
1657                 LIO_FW_NAME_SUFFIX);
1658
1659         ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
1660         if (ret) {
1661                 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
1662                         fw_name);
1663                 return ret;
1664         }
1665
1666         ret = octeon_download_firmware(oct, fw->data, fw->size);
1667
1668         release_firmware(fw);
1669
1670         return ret;
1671 }
1672
1673 /**
1674  * \brief Setup output queue
1675  * @param oct octeon device
1676  * @param q_no which queue
1677  * @param num_descs how many descriptors
1678  * @param desc_size size of each descriptor
1679  * @param app_ctx application context
1680  */
1681 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1682                              int desc_size, void *app_ctx)
1683 {
1684         int ret_val = 0;
1685
1686         dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1687         /* droq creation and local register settings. */
1688         ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1689         if (ret_val == -1)
1690                 return ret_val;
1691
1692         if (ret_val == 1) {
1693                 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1694                 return 0;
1695         }
1696         /* tasklet creation for the droq */
1697
1698         /* Enable the droq queues */
1699         octeon_set_droq_pkt_op(oct, q_no, 1);
1700
1701         /* Send Credit for Octeon Output queues. Credits are always
1702          * sent after the output queue is enabled.
1703          */
1704         writel(oct->droq[q_no]->max_count,
1705                oct->droq[q_no]->pkts_credit_reg);
1706
1707         return ret_val;
1708 }
1709
1710 /**
1711  * \brief Callback for getting interface configuration
1712  * @param status status of request
1713  * @param buf pointer to resp structure
1714  */
1715 static void if_cfg_callback(struct octeon_device *oct,
1716                             u32 status,
1717                             void *buf)
1718 {
1719         struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1720         struct liquidio_if_cfg_resp *resp;
1721         struct liquidio_if_cfg_context *ctx;
1722
1723         resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1724         ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
1725
1726         oct = lio_get_device(ctx->octeon_id);
1727         if (resp->status)
1728                 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1729                         CVM_CAST64(resp->status));
1730         ACCESS_ONCE(ctx->cond) = 1;
1731
1732         /* This barrier is required to be sure that the response has been
1733          * written fully before waking up the handler
1734          */
1735         wmb();
1736
1737         wake_up_interruptible(&ctx->wc);
1738 }
1739
1740 /**
1741  * \brief Select queue based on hash
1742  * @param dev Net device
1743  * @param skb sk_buff structure
1744  * @returns selected queue number
1745  */
1746 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1747                     void *accel_priv, select_queue_fallback_t fallback)
1748 {
1749         int qindex;
1750         struct lio *lio;
1751
1752         lio = GET_LIO(dev);
1753         /* select queue on chosen queue_mapping or core */
1754         qindex = skb_rx_queue_recorded(skb) ?
1755                  skb_get_rx_queue(skb) : smp_processor_id();
1756         return (u16)(qindex & (lio->linfo.num_txpciq - 1));
1757 }
1758
1759 /** Routine to push packets arriving on Octeon interface upto network layer.
1760  * @param oct_id   - octeon device id.
1761  * @param skbuff   - skbuff struct to be passed to network layer.
1762  * @param len      - size of total data received.
1763  * @param rh       - Control header associated with the packet
1764  * @param param    - additional control data with the packet
1765  */
1766 static void
1767 liquidio_push_packet(u32 octeon_id,
1768                      void *skbuff,
1769                      u32 len,
1770                      union octeon_rh *rh,
1771                      void *param)
1772 {
1773         struct napi_struct *napi = param;
1774         struct octeon_device *oct = lio_get_device(octeon_id);
1775         struct sk_buff *skb = (struct sk_buff *)skbuff;
1776         struct skb_shared_hwtstamps *shhwtstamps;
1777         u64 ns;
1778         struct net_device *netdev =
1779                 (struct net_device *)oct->props[rh->r_dh.link].netdev;
1780         struct octeon_droq *droq = container_of(param, struct octeon_droq,
1781                                                 napi);
1782         if (netdev) {
1783                 int packet_was_received;
1784                 struct lio *lio = GET_LIO(netdev);
1785
1786                 /* Do not proceed if the interface is not in RUNNING state. */
1787                 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1788                         recv_buffer_free(skb);
1789                         droq->stats.rx_dropped++;
1790                         return;
1791                 }
1792
1793                 skb->dev = netdev;
1794
1795                 if (rh->r_dh.has_hwtstamp) {
1796                         /* timestamp is included from the hardware at the
1797                          * beginning of the packet.
1798                          */
1799                         if (ifstate_check(lio,
1800                                           LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
1801                                 /* Nanoseconds are in the first 64-bits
1802                                  * of the packet.
1803                                  */
1804                                 memcpy(&ns, (skb->data), sizeof(ns));
1805                                 shhwtstamps = skb_hwtstamps(skb);
1806                                 shhwtstamps->hwtstamp =
1807                                         ns_to_ktime(ns + lio->ptp_adjust);
1808                         }
1809                         skb_pull(skb, sizeof(ns));
1810                 }
1811
1812                 skb->protocol = eth_type_trans(skb, skb->dev);
1813
1814                 if ((netdev->features & NETIF_F_RXCSUM) &&
1815                     (rh->r_dh.csum_verified == CNNIC_CSUM_VERIFIED))
1816                         /* checksum has already been verified */
1817                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1818                 else
1819                         skb->ip_summed = CHECKSUM_NONE;
1820
1821                 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
1822
1823                 if (packet_was_received) {
1824                         droq->stats.rx_bytes_received += len;
1825                         droq->stats.rx_pkts_received++;
1826                         netdev->last_rx = jiffies;
1827                 } else {
1828                         droq->stats.rx_dropped++;
1829                         netif_info(lio, rx_err, lio->netdev,
1830                                    "droq:%d  error rx_dropped:%llu\n",
1831                                    droq->q_no, droq->stats.rx_dropped);
1832                 }
1833
1834         } else {
1835                 recv_buffer_free(skb);
1836         }
1837 }
1838
1839 /**
1840  * \brief wrapper for calling napi_schedule
1841  * @param param parameters to pass to napi_schedule
1842  *
1843  * Used when scheduling on different CPUs
1844  */
1845 static void napi_schedule_wrapper(void *param)
1846 {
1847         struct napi_struct *napi = param;
1848
1849         napi_schedule(napi);
1850 }
1851
1852 /**
1853  * \brief callback when receive interrupt occurs and we are in NAPI mode
1854  * @param arg pointer to octeon output queue
1855  */
1856 static void liquidio_napi_drv_callback(void *arg)
1857 {
1858         struct octeon_droq *droq = arg;
1859         int this_cpu = smp_processor_id();
1860
1861         if (droq->cpu_id == this_cpu) {
1862                 napi_schedule(&droq->napi);
1863         } else {
1864                 struct call_single_data *csd = &droq->csd;
1865
1866                 csd->func = napi_schedule_wrapper;
1867                 csd->info = &droq->napi;
1868                 csd->flags = 0;
1869
1870                 smp_call_function_single_async(droq->cpu_id, csd);
1871         }
1872 }
1873
1874 /**
1875  * \brief Main NAPI poll function
1876  * @param droq octeon output queue
1877  * @param budget maximum number of items to process
1878  */
1879 static int liquidio_napi_do_rx(struct octeon_droq *droq, int budget)
1880 {
1881         int work_done;
1882         struct lio *lio = GET_LIO(droq->napi.dev);
1883         struct octeon_device *oct = lio->oct_dev;
1884
1885         work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
1886                                                  POLL_EVENT_PROCESS_PKTS,
1887                                                  budget);
1888         if (work_done < 0) {
1889                 netif_info(lio, rx_err, lio->netdev,
1890                            "Receive work_done < 0, rxq:%d\n", droq->q_no);
1891                 goto octnet_napi_finish;
1892         }
1893
1894         if (work_done > budget)
1895                 dev_err(&oct->pci_dev->dev, ">>>> %s work_done: %d budget: %d\n",
1896                         __func__, work_done, budget);
1897
1898         return work_done;
1899
1900 octnet_napi_finish:
1901         napi_complete(&droq->napi);
1902         octeon_process_droq_poll_cmd(oct, droq->q_no, POLL_EVENT_ENABLE_INTR,
1903                                      0);
1904         return 0;
1905 }
1906
1907 /**
1908  * \brief Entry point for NAPI polling
1909  * @param napi NAPI structure
1910  * @param budget maximum number of items to process
1911  */
1912 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
1913 {
1914         struct octeon_droq *droq;
1915         int work_done;
1916
1917         droq = container_of(napi, struct octeon_droq, napi);
1918
1919         work_done = liquidio_napi_do_rx(droq, budget);
1920
1921         if (work_done < budget) {
1922                 napi_complete(napi);
1923                 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
1924                                              POLL_EVENT_ENABLE_INTR, 0);
1925                 return 0;
1926         }
1927
1928         return work_done;
1929 }
1930
1931 /**
1932  * \brief Setup input and output queues
1933  * @param octeon_dev octeon device
1934  * @param net_device Net device
1935  *
1936  * Note: Queues are with respect to the octeon device. Thus
1937  * an input queue is for egress packets, and output queues
1938  * are for ingress packets.
1939  */
1940 static inline int setup_io_queues(struct octeon_device *octeon_dev,
1941                                   struct net_device *net_device)
1942 {
1943         static int first_time = 1;
1944         static struct octeon_droq_ops droq_ops;
1945         static int cpu_id;
1946         static int cpu_id_modulus;
1947         struct octeon_droq *droq;
1948         struct napi_struct *napi;
1949         int q, q_no, retval = 0;
1950         struct lio *lio;
1951         int num_tx_descs;
1952
1953         lio = GET_LIO(net_device);
1954         if (first_time) {
1955                 first_time = 0;
1956                 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
1957
1958                 droq_ops.fptr = liquidio_push_packet;
1959
1960                 droq_ops.poll_mode = 1;
1961                 droq_ops.napi_fn = liquidio_napi_drv_callback;
1962                 cpu_id = 0;
1963                 cpu_id_modulus = num_present_cpus();
1964         }
1965
1966         /* set up DROQs. */
1967         for (q = 0; q < lio->linfo.num_rxpciq; q++) {
1968                 q_no = lio->linfo.rxpciq[q];
1969
1970                 retval = octeon_setup_droq(octeon_dev, q_no,
1971                                            CFG_GET_NUM_RX_DESCS_NIC_IF
1972                                                    (octeon_get_conf(octeon_dev),
1973                                                    lio->ifidx),
1974                                            CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
1975                                                    (octeon_get_conf(octeon_dev),
1976                                                    lio->ifidx), NULL);
1977                 if (retval) {
1978                         dev_err(&octeon_dev->pci_dev->dev,
1979                                 " %s : Runtime DROQ(RxQ) creation failed.\n",
1980                                 __func__);
1981                         return 1;
1982                 }
1983
1984                 droq = octeon_dev->droq[q_no];
1985                 napi = &droq->napi;
1986                 netif_napi_add(net_device, napi, liquidio_napi_poll, 64);
1987
1988                 /* designate a CPU for this droq */
1989                 droq->cpu_id = cpu_id;
1990                 cpu_id++;
1991                 if (cpu_id >= cpu_id_modulus)
1992                         cpu_id = 0;
1993
1994                 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
1995         }
1996
1997         /* set up IQs. */
1998         for (q = 0; q < lio->linfo.num_txpciq; q++) {
1999                 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2000                                                            (octeon_dev),
2001                                                            lio->ifidx);
2002                 retval = octeon_setup_iq(octeon_dev, lio->linfo.txpciq[q],
2003                                          num_tx_descs,
2004                                          netdev_get_tx_queue(net_device, q));
2005                 if (retval) {
2006                         dev_err(&octeon_dev->pci_dev->dev,
2007                                 " %s : Runtime IQ(TxQ) creation failed.\n",
2008                                 __func__);
2009                         return 1;
2010                 }
2011         }
2012
2013         return 0;
2014 }
2015
2016 /**
2017  * \brief Poll routine for checking transmit queue status
2018  * @param work work_struct data structure
2019  */
2020 static void octnet_poll_check_txq_status(struct work_struct *work)
2021 {
2022         struct cavium_wk *wk = (struct cavium_wk *)work;
2023         struct lio *lio = (struct lio *)wk->ctxptr;
2024
2025         if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2026                 return;
2027
2028         check_txq_status(lio);
2029         queue_delayed_work(lio->txq_status_wq.wq,
2030                            &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2031 }
2032
2033 /**
2034  * \brief Sets up the txq poll check
2035  * @param netdev network device
2036  */
2037 static inline void setup_tx_poll_fn(struct net_device *netdev)
2038 {
2039         struct lio *lio = GET_LIO(netdev);
2040         struct octeon_device *oct = lio->oct_dev;
2041
2042         lio->txq_status_wq.wq = create_workqueue("txq-status");
2043         if (!lio->txq_status_wq.wq) {
2044                 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2045                 return;
2046         }
2047         INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2048                           octnet_poll_check_txq_status);
2049         lio->txq_status_wq.wk.ctxptr = lio;
2050         queue_delayed_work(lio->txq_status_wq.wq,
2051                            &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2052 }
2053
2054 /**
2055  * \brief Net device open for LiquidIO
2056  * @param netdev network device
2057  */
2058 static int liquidio_open(struct net_device *netdev)
2059 {
2060         struct lio *lio = GET_LIO(netdev);
2061         struct octeon_device *oct = lio->oct_dev;
2062         struct napi_struct *napi, *n;
2063
2064         list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2065                 napi_enable(napi);
2066
2067         oct_ptp_open(netdev);
2068
2069         ifstate_set(lio, LIO_IFSTATE_RUNNING);
2070         setup_tx_poll_fn(netdev);
2071         start_txq(netdev);
2072
2073         netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2074         try_module_get(THIS_MODULE);
2075
2076         /* tell Octeon to start forwarding packets to host */
2077         send_rx_ctrl_cmd(lio, 1);
2078
2079         /* Ready for link status updates */
2080         lio->intf_open = 1;
2081
2082         dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2083                  netdev->name);
2084
2085         return 0;
2086 }
2087
2088 /**
2089  * \brief Net device stop for LiquidIO
2090  * @param netdev network device
2091  */
2092 static int liquidio_stop(struct net_device *netdev)
2093 {
2094         struct napi_struct *napi, *n;
2095         struct lio *lio = GET_LIO(netdev);
2096         struct octeon_device *oct = lio->oct_dev;
2097
2098         netif_info(lio, ifdown, lio->netdev, "Stopping interface!\n");
2099         /* Inform that netif carrier is down */
2100         lio->intf_open = 0;
2101         lio->linfo.link.s.status = 0;
2102
2103         netif_carrier_off(netdev);
2104
2105         /* tell Octeon to stop forwarding packets to host */
2106         send_rx_ctrl_cmd(lio, 0);
2107
2108         cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2109         flush_workqueue(lio->txq_status_wq.wq);
2110         destroy_workqueue(lio->txq_status_wq.wq);
2111
2112         if (lio->ptp_clock) {
2113                 ptp_clock_unregister(lio->ptp_clock);
2114                 lio->ptp_clock = NULL;
2115         }
2116
2117         ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2118
2119         /* This is a hack that allows DHCP to continue working. */
2120         set_bit(__LINK_STATE_START, &lio->netdev->state);
2121
2122         list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2123                 napi_disable(napi);
2124
2125         txqs_stop(netdev);
2126
2127         dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2128         module_put(THIS_MODULE);
2129
2130         return 0;
2131 }
2132
2133 void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
2134 {
2135         struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
2136         struct net_device *netdev = (struct net_device *)nctrl->netpndev;
2137         struct lio *lio = GET_LIO(netdev);
2138         struct octeon_device *oct = lio->oct_dev;
2139
2140         switch (nctrl->ncmd.s.cmd) {
2141         case OCTNET_CMD_CHANGE_DEVFLAGS:
2142         case OCTNET_CMD_SET_MULTI_LIST:
2143                 break;
2144
2145         case OCTNET_CMD_CHANGE_MACADDR:
2146                 /* If command is successful, change the MACADDR. */
2147                 netif_info(lio, probe, lio->netdev, " MACAddr changed to 0x%llx\n",
2148                            CVM_CAST64(nctrl->udd[0]));
2149                 dev_info(&oct->pci_dev->dev, "%s MACAddr changed to 0x%llx\n",
2150                          netdev->name, CVM_CAST64(nctrl->udd[0]));
2151                 memcpy(netdev->dev_addr, ((u8 *)&nctrl->udd[0]) + 2, ETH_ALEN);
2152                 break;
2153
2154         case OCTNET_CMD_CHANGE_MTU:
2155                 /* If command is successful, change the MTU. */
2156                 netif_info(lio, probe, lio->netdev, " MTU Changed from %d to %d\n",
2157                            netdev->mtu, nctrl->ncmd.s.param2);
2158                 dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2159                          netdev->name, netdev->mtu,
2160                          nctrl->ncmd.s.param2);
2161                 netdev->mtu = nctrl->ncmd.s.param2;
2162                 break;
2163
2164         case OCTNET_CMD_GPIO_ACCESS:
2165                 netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
2166
2167                 break;
2168
2169         case OCTNET_CMD_LRO_ENABLE:
2170                 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2171                 break;
2172
2173         case OCTNET_CMD_LRO_DISABLE:
2174                 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2175                          netdev->name);
2176                 break;
2177
2178         case OCTNET_CMD_VERBOSE_ENABLE:
2179                 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2180                 break;
2181
2182         case OCTNET_CMD_VERBOSE_DISABLE:
2183                 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2184                          netdev->name);
2185                 break;
2186
2187         case OCTNET_CMD_SET_SETTINGS:
2188                 dev_info(&oct->pci_dev->dev, "%s settings changed\n",
2189                          netdev->name);
2190
2191                 break;
2192
2193         default:
2194                 dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
2195                         nctrl->ncmd.s.cmd);
2196         }
2197 }
2198
2199 /**
2200  * \brief Converts a mask based on net device flags
2201  * @param netdev network device
2202  *
2203  * This routine generates a octnet_ifflags mask from the net device flags
2204  * received from the OS.
2205  */
2206 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2207 {
2208         enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2209
2210         if (netdev->flags & IFF_PROMISC)
2211                 f |= OCTNET_IFFLAG_PROMISC;
2212
2213         if (netdev->flags & IFF_ALLMULTI)
2214                 f |= OCTNET_IFFLAG_ALLMULTI;
2215
2216         if (netdev->flags & IFF_MULTICAST) {
2217                 f |= OCTNET_IFFLAG_MULTICAST;
2218
2219                 /* Accept all multicast addresses if there are more than we
2220                  * can handle
2221                  */
2222                 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2223                         f |= OCTNET_IFFLAG_ALLMULTI;
2224         }
2225
2226         if (netdev->flags & IFF_BROADCAST)
2227                 f |= OCTNET_IFFLAG_BROADCAST;
2228
2229         return f;
2230 }
2231
2232 /**
2233  * \brief Net device set_multicast_list
2234  * @param netdev network device
2235  */
2236 static void liquidio_set_mcast_list(struct net_device *netdev)
2237 {
2238         struct lio *lio = GET_LIO(netdev);
2239         struct octeon_device *oct = lio->oct_dev;
2240         struct octnic_ctrl_pkt nctrl;
2241         struct octnic_ctrl_params nparams;
2242         struct netdev_hw_addr *ha;
2243         u64 *mc;
2244         int ret, i;
2245         int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2246
2247         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2248
2249         /* Create a ctrl pkt command to be sent to core app. */
2250         nctrl.ncmd.u64 = 0;
2251         nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2252         nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2253         nctrl.ncmd.s.param2 = get_new_flags(netdev);
2254         nctrl.ncmd.s.param3 = mc_count;
2255         nctrl.ncmd.s.more = mc_count;
2256         nctrl.netpndev = (u64)netdev;
2257         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2258
2259         /* copy all the addresses into the udd */
2260         i = 0;
2261         mc = &nctrl.udd[0];
2262         netdev_for_each_mc_addr(ha, netdev) {
2263                 *mc = 0;
2264                 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2265                 /* no need to swap bytes */
2266
2267                 if (++mc > &nctrl.udd[mc_count])
2268                         break;
2269         }
2270
2271         /* Apparently, any activity in this call from the kernel has to
2272          * be atomic. So we won't wait for response.
2273          */
2274         nctrl.wait_time = 0;
2275
2276         nparams.resp_order = OCTEON_RESP_NORESPONSE;
2277
2278         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2279         if (ret < 0) {
2280                 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2281                         ret);
2282         }
2283 }
2284
2285 /**
2286  * \brief Net device set_mac_address
2287  * @param netdev network device
2288  */
2289 static int liquidio_set_mac(struct net_device *netdev, void *p)
2290 {
2291         int ret = 0;
2292         struct lio *lio = GET_LIO(netdev);
2293         struct octeon_device *oct = lio->oct_dev;
2294         struct sockaddr *addr = (struct sockaddr *)p;
2295         struct octnic_ctrl_pkt nctrl;
2296         struct octnic_ctrl_params nparams;
2297
2298         if ((!is_valid_ether_addr(addr->sa_data)) ||
2299             (ifstate_check(lio, LIO_IFSTATE_RUNNING)))
2300                 return -EADDRNOTAVAIL;
2301
2302         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2303
2304         nctrl.ncmd.u64 = 0;
2305         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2306         nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2307         nctrl.ncmd.s.param2 = 0;
2308         nctrl.ncmd.s.more = 1;
2309         nctrl.netpndev = (u64)netdev;
2310         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2311         nctrl.wait_time = 100;
2312
2313         nctrl.udd[0] = 0;
2314         /* The MAC Address is presented in network byte order. */
2315         memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2316
2317         nparams.resp_order = OCTEON_RESP_ORDERED;
2318
2319         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2320         if (ret < 0) {
2321                 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2322                 return -ENOMEM;
2323         }
2324         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2325         memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2326
2327         return 0;
2328 }
2329
2330 /**
2331  * \brief Net device get_stats
2332  * @param netdev network device
2333  */
2334 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2335 {
2336         struct lio *lio = GET_LIO(netdev);
2337         struct net_device_stats *stats = &netdev->stats;
2338         struct octeon_device *oct;
2339         u64 pkts = 0, drop = 0, bytes = 0;
2340         struct oct_droq_stats *oq_stats;
2341         struct oct_iq_stats *iq_stats;
2342         int i, iq_no, oq_no;
2343
2344         oct = lio->oct_dev;
2345
2346         for (i = 0; i < lio->linfo.num_txpciq; i++) {
2347                 iq_no = lio->linfo.txpciq[i];
2348                 iq_stats = &oct->instr_queue[iq_no]->stats;
2349                 pkts += iq_stats->tx_done;
2350                 drop += iq_stats->tx_dropped;
2351                 bytes += iq_stats->tx_tot_bytes;
2352         }
2353
2354         stats->tx_packets = pkts;
2355         stats->tx_bytes = bytes;
2356         stats->tx_dropped = drop;
2357
2358         pkts = 0;
2359         drop = 0;
2360         bytes = 0;
2361
2362         for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2363                 oq_no = lio->linfo.rxpciq[i];
2364                 oq_stats = &oct->droq[oq_no]->stats;
2365                 pkts += oq_stats->rx_pkts_received;
2366                 drop += (oq_stats->rx_dropped +
2367                          oq_stats->dropped_nodispatch +
2368                          oq_stats->dropped_toomany +
2369                          oq_stats->dropped_nomem);
2370                 bytes += oq_stats->rx_bytes_received;
2371         }
2372
2373         stats->rx_bytes = bytes;
2374         stats->rx_packets = pkts;
2375         stats->rx_dropped = drop;
2376
2377         return stats;
2378 }
2379
2380 /**
2381  * \brief Net device change_mtu
2382  * @param netdev network device
2383  */
2384 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2385 {
2386         struct lio *lio = GET_LIO(netdev);
2387         struct octeon_device *oct = lio->oct_dev;
2388         struct octnic_ctrl_pkt nctrl;
2389         struct octnic_ctrl_params nparams;
2390         int max_frm_size = new_mtu + OCTNET_FRM_HEADER_SIZE;
2391         int ret = 0;
2392
2393         /* Limit the MTU to make sure the ethernet packets are between 64 bytes
2394          * and 65535 bytes
2395          */
2396         if ((max_frm_size < OCTNET_MIN_FRM_SIZE) ||
2397             (max_frm_size > OCTNET_MAX_FRM_SIZE)) {
2398                 dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2399                 dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2400                         (OCTNET_MIN_FRM_SIZE - OCTNET_FRM_HEADER_SIZE),
2401                         (OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE));
2402                 return -EINVAL;
2403         }
2404
2405         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2406
2407         nctrl.ncmd.u64 = 0;
2408         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2409         nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2410         nctrl.ncmd.s.param2 = new_mtu;
2411         nctrl.wait_time = 100;
2412         nctrl.netpndev = (u64)netdev;
2413         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2414
2415         nparams.resp_order = OCTEON_RESP_ORDERED;
2416
2417         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2418         if (ret < 0) {
2419                 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2420                 return -1;
2421         }
2422
2423         lio->mtu = new_mtu;
2424
2425         return 0;
2426 }
2427
2428 /**
2429  * \brief Handler for SIOCSHWTSTAMP ioctl
2430  * @param netdev network device
2431  * @param ifr interface request
2432  * @param cmd command
2433  */
2434 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2435 {
2436         struct hwtstamp_config conf;
2437         struct lio *lio = GET_LIO(netdev);
2438
2439         if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2440                 return -EFAULT;
2441
2442         if (conf.flags)
2443                 return -EINVAL;
2444
2445         switch (conf.tx_type) {
2446         case HWTSTAMP_TX_ON:
2447         case HWTSTAMP_TX_OFF:
2448                 break;
2449         default:
2450                 return -ERANGE;
2451         }
2452
2453         switch (conf.rx_filter) {
2454         case HWTSTAMP_FILTER_NONE:
2455                 break;
2456         case HWTSTAMP_FILTER_ALL:
2457         case HWTSTAMP_FILTER_SOME:
2458         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2459         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2460         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2461         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2462         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2463         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2464         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2465         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2466         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2467         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2468         case HWTSTAMP_FILTER_PTP_V2_SYNC:
2469         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2470                 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2471                 break;
2472         default:
2473                 return -ERANGE;
2474         }
2475
2476         if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2477                 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2478
2479         else
2480                 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2481
2482         return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2483 }
2484
2485 /**
2486  * \brief ioctl handler
2487  * @param netdev network device
2488  * @param ifr interface request
2489  * @param cmd command
2490  */
2491 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2492 {
2493         switch (cmd) {
2494         case SIOCSHWTSTAMP:
2495                 return hwtstamp_ioctl(netdev, ifr, cmd);
2496         default:
2497                 return -EOPNOTSUPP;
2498         }
2499 }
2500
2501 /**
2502  * \brief handle a Tx timestamp response
2503  * @param status response status
2504  * @param buf pointer to skb
2505  */
2506 static void handle_timestamp(struct octeon_device *oct,
2507                              u32 status,
2508                              void *buf)
2509 {
2510         struct octnet_buf_free_info *finfo;
2511         struct octeon_soft_command *sc;
2512         struct oct_timestamp_resp *resp;
2513         struct lio *lio;
2514         struct sk_buff *skb = (struct sk_buff *)buf;
2515
2516         finfo = (struct octnet_buf_free_info *)skb->cb;
2517         lio = finfo->lio;
2518         sc = finfo->sc;
2519         oct = lio->oct_dev;
2520         resp = (struct oct_timestamp_resp *)sc->virtrptr;
2521
2522         if (status != OCTEON_REQUEST_DONE) {
2523                 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2524                         CVM_CAST64(status));
2525                 resp->timestamp = 0;
2526         }
2527
2528         octeon_swap_8B_data(&resp->timestamp, 1);
2529
2530         if (unlikely((skb_shinfo(skb)->tx_flags | SKBTX_IN_PROGRESS) != 0)) {
2531                 struct skb_shared_hwtstamps ts;
2532                 u64 ns = resp->timestamp;
2533
2534                 netif_info(lio, tx_done, lio->netdev,
2535                            "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2536                            skb, (unsigned long long)ns);
2537                 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2538                 skb_tstamp_tx(skb, &ts);
2539         }
2540
2541         octeon_free_soft_command(oct, sc);
2542         recv_buffer_free(skb);
2543 }
2544
2545 /* \brief Send a data packet that will be timestamped
2546  * @param oct octeon device
2547  * @param ndata pointer to network data
2548  * @param finfo pointer to private network data
2549  */
2550 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
2551                                          struct octnic_data_pkt *ndata,
2552                                          struct octnet_buf_free_info *finfo,
2553                                          int xmit_more)
2554 {
2555         int retval;
2556         struct octeon_soft_command *sc;
2557         struct octeon_instr_ih *ih;
2558         struct octeon_instr_rdp *rdp;
2559         struct lio *lio;
2560         int ring_doorbell;
2561
2562         lio = finfo->lio;
2563
2564         sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2565                                             sizeof(struct oct_timestamp_resp));
2566         finfo->sc = sc;
2567
2568         if (!sc) {
2569                 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2570                 return IQ_SEND_FAILED;
2571         }
2572
2573         if (ndata->reqtype == REQTYPE_NORESP_NET)
2574                 ndata->reqtype = REQTYPE_RESP_NET;
2575         else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2576                 ndata->reqtype = REQTYPE_RESP_NET_SG;
2577
2578         sc->callback = handle_timestamp;
2579         sc->callback_arg = finfo->skb;
2580         sc->iq_no = ndata->q_no;
2581
2582         ih = (struct octeon_instr_ih *)&sc->cmd.ih;
2583         rdp = (struct octeon_instr_rdp *)&sc->cmd.rdp;
2584
2585         ring_doorbell = !xmit_more;
2586         retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2587                                      sc, ih->dlengsz, ndata->reqtype);
2588
2589         if (retval) {
2590                 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2591                         retval);
2592                 octeon_free_soft_command(oct, sc);
2593         } else {
2594                 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2595         }
2596
2597         return retval;
2598 }
2599
2600 static inline int is_ipv4(struct sk_buff *skb)
2601 {
2602         return (skb->protocol == htons(ETH_P_IP)) &&
2603                (ip_hdr(skb)->version == 4);
2604 }
2605
2606 static inline int is_vlan(struct sk_buff *skb)
2607 {
2608         return skb->protocol == htons(ETH_P_8021Q);
2609 }
2610
2611 static inline int is_ip_fragmented(struct sk_buff *skb)
2612 {
2613         /* The Don't fragment and Reserved flag fields are ignored.
2614          * IP is fragmented if
2615          * -  the More fragments bit is set (indicating this IP is a fragment
2616          * with more to follow; the current offset could be 0 ).
2617          * -  ths offset field is non-zero.
2618          */
2619         return (ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)) ? 1 : 0;
2620 }
2621
2622 static inline int is_ipv6(struct sk_buff *skb)
2623 {
2624         return (skb->protocol == htons(ETH_P_IPV6)) &&
2625                (ipv6_hdr(skb)->version == 6);
2626 }
2627
2628 static inline int is_with_extn_hdr(struct sk_buff *skb)
2629 {
2630         return (ipv6_hdr(skb)->nexthdr != IPPROTO_TCP) &&
2631                (ipv6_hdr(skb)->nexthdr != IPPROTO_UDP);
2632 }
2633
2634 static inline int is_tcpudp(struct sk_buff *skb)
2635 {
2636         return (ip_hdr(skb)->protocol == IPPROTO_TCP) ||
2637                (ip_hdr(skb)->protocol == IPPROTO_UDP);
2638 }
2639
2640 static inline u32 get_ipv4_5tuple_tag(struct sk_buff *skb)
2641 {
2642         u32 tag;
2643         struct iphdr *iphdr = ip_hdr(skb);
2644
2645         tag = crc32(0, &iphdr->protocol, 1);
2646         tag = crc32(tag, (u8 *)&iphdr->saddr, 8);
2647         tag = crc32(tag, skb_transport_header(skb), 4);
2648         return tag;
2649 }
2650
2651 static inline u32 get_ipv6_5tuple_tag(struct sk_buff *skb)
2652 {
2653         u32 tag;
2654         struct ipv6hdr *ipv6hdr = ipv6_hdr(skb);
2655
2656         tag = crc32(0, &ipv6hdr->nexthdr, 1);
2657         tag = crc32(tag, (u8 *)&ipv6hdr->saddr, 32);
2658         tag = crc32(tag, skb_transport_header(skb), 4);
2659         return tag;
2660 }
2661
2662 /** \brief Transmit networks packets to the Octeon interface
2663  * @param skbuff   skbuff struct to be passed to network layer.
2664  * @param netdev    pointer to network device
2665  * @returns whether the packet was transmitted to the device okay or not
2666  *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
2667  */
2668 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2669 {
2670         struct lio *lio;
2671         struct octnet_buf_free_info *finfo;
2672         union octnic_cmd_setup cmdsetup;
2673         struct octnic_data_pkt ndata;
2674         struct octeon_device *oct;
2675         struct oct_iq_stats *stats;
2676         int cpu = 0, status = 0;
2677         int q_idx = 0, iq_no = 0;
2678         int xmit_more;
2679         u32 tag = 0;
2680
2681         lio = GET_LIO(netdev);
2682         oct = lio->oct_dev;
2683
2684         if (netif_is_multiqueue(netdev)) {
2685                 cpu = skb->queue_mapping;
2686                 q_idx = (cpu & (lio->linfo.num_txpciq - 1));
2687                 iq_no = lio->linfo.txpciq[q_idx];
2688         } else {
2689                 iq_no = lio->txq;
2690         }
2691
2692         stats = &oct->instr_queue[iq_no]->stats;
2693
2694         /* Check for all conditions in which the current packet cannot be
2695          * transmitted.
2696          */
2697         if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2698             (!lio->linfo.link.s.status) ||
2699             (skb->len <= 0)) {
2700                 netif_info(lio, tx_err, lio->netdev,
2701                            "Transmit failed link_status : %d\n",
2702                            lio->linfo.link.s.status);
2703                 goto lio_xmit_failed;
2704         }
2705
2706         /* Use space in skb->cb to store info used to unmap and
2707          * free the buffers.
2708          */
2709         finfo = (struct octnet_buf_free_info *)skb->cb;
2710         finfo->lio = lio;
2711         finfo->skb = skb;
2712         finfo->sc = NULL;
2713
2714         /* Prepare the attributes for the data to be passed to OSI. */
2715         memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2716
2717         ndata.buf = (void *)finfo;
2718
2719         ndata.q_no = iq_no;
2720
2721         if (netif_is_multiqueue(netdev)) {
2722                 if (octnet_iq_is_full(oct, ndata.q_no)) {
2723                         /* defer sending if queue is full */
2724                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2725                                    ndata.q_no);
2726                         stats->tx_iq_busy++;
2727                         return NETDEV_TX_BUSY;
2728                 }
2729         } else {
2730                 if (octnet_iq_is_full(oct, lio->txq)) {
2731                         /* defer sending if queue is full */
2732                         stats->tx_iq_busy++;
2733                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2734                                    ndata.q_no);
2735                         return NETDEV_TX_BUSY;
2736                 }
2737         }
2738         /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu:  %d, q_no:%d\n",
2739          *      lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no );
2740          */
2741
2742         ndata.datasize = skb->len;
2743
2744         cmdsetup.u64 = 0;
2745         cmdsetup.s.ifidx = lio->linfo.ifidx;
2746
2747         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2748                 if (is_ipv4(skb) && !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2749                         tag = get_ipv4_5tuple_tag(skb);
2750
2751                         cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2752
2753                         if (ip_hdr(skb)->ihl > 5)
2754                                 cmdsetup.s.ipv4opts_ipv6exthdr =
2755                                                 OCT_PKT_PARAM_IPV4OPTS;
2756
2757                 } else if (is_ipv6(skb)) {
2758                         tag = get_ipv6_5tuple_tag(skb);
2759
2760                         cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2761
2762                         if (is_with_extn_hdr(skb))
2763                                 cmdsetup.s.ipv4opts_ipv6exthdr =
2764                                                 OCT_PKT_PARAM_IPV6EXTHDR;
2765
2766                 } else if (is_vlan(skb)) {
2767                         if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2768                                 == htons(ETH_P_IP) &&
2769                                 !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2770                                 tag = get_ipv4_5tuple_tag(skb);
2771
2772                                 cmdsetup.s.cksum_offset =
2773                                         sizeof(struct vlan_ethhdr) + 1;
2774
2775                                 if (ip_hdr(skb)->ihl > 5)
2776                                         cmdsetup.s.ipv4opts_ipv6exthdr =
2777                                                 OCT_PKT_PARAM_IPV4OPTS;
2778
2779                         } else if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2780                                 == htons(ETH_P_IPV6)) {
2781                                 tag = get_ipv6_5tuple_tag(skb);
2782
2783                                 cmdsetup.s.cksum_offset =
2784                                         sizeof(struct vlan_ethhdr) + 1;
2785
2786                                 if (is_with_extn_hdr(skb))
2787                                         cmdsetup.s.ipv4opts_ipv6exthdr =
2788                                                 OCT_PKT_PARAM_IPV6EXTHDR;
2789                         }
2790                 }
2791         }
2792         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2793                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2794                 cmdsetup.s.timestamp = 1;
2795         }
2796
2797         if (skb_shinfo(skb)->nr_frags == 0) {
2798                 cmdsetup.s.u.datasize = skb->len;
2799                 octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2800                 /* Offload checksum calculation for TCP/UDP packets */
2801                 ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2802                                                 skb->data,
2803                                                 skb->len,
2804                                                 DMA_TO_DEVICE);
2805                 if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2806                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2807                                 __func__);
2808                         return NETDEV_TX_BUSY;
2809                 }
2810
2811                 finfo->dptr = ndata.cmd.dptr;
2812
2813                 ndata.reqtype = REQTYPE_NORESP_NET;
2814
2815         } else {
2816                 int i, frags;
2817                 struct skb_frag_struct *frag;
2818                 struct octnic_gather *g;
2819
2820                 spin_lock(&lio->lock);
2821                 g = (struct octnic_gather *)list_delete_head(&lio->glist);
2822                 spin_unlock(&lio->lock);
2823
2824                 if (!g) {
2825                         netif_info(lio, tx_err, lio->netdev,
2826                                    "Transmit scatter gather: glist null!\n");
2827                         goto lio_xmit_failed;
2828                 }
2829
2830                 cmdsetup.s.gather = 1;
2831                 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
2832                 octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2833
2834                 memset(g->sg, 0, g->sg_size);
2835
2836                 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
2837                                                  skb->data,
2838                                                  (skb->len - skb->data_len),
2839                                                  DMA_TO_DEVICE);
2840                 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
2841                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
2842                                 __func__);
2843                         return NETDEV_TX_BUSY;
2844                 }
2845                 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
2846
2847                 frags = skb_shinfo(skb)->nr_frags;
2848                 i = 1;
2849                 while (frags--) {
2850                         frag = &skb_shinfo(skb)->frags[i - 1];
2851
2852                         g->sg[(i >> 2)].ptr[(i & 3)] =
2853                                 dma_map_page(&oct->pci_dev->dev,
2854                                              frag->page.p,
2855                                              frag->page_offset,
2856                                              frag->size,
2857                                              DMA_TO_DEVICE);
2858
2859                         add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
2860                         i++;
2861                 }
2862
2863                 ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2864                                                 g->sg, g->sg_size,
2865                                                 DMA_TO_DEVICE);
2866                 if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2867                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
2868                                 __func__);
2869                         dma_unmap_single(&oct->pci_dev->dev, g->sg[0].ptr[0],
2870                                          skb->len - skb->data_len,
2871                                          DMA_TO_DEVICE);
2872                         return NETDEV_TX_BUSY;
2873                 }
2874
2875                 finfo->dptr = ndata.cmd.dptr;
2876                 finfo->g = g;
2877
2878                 ndata.reqtype = REQTYPE_NORESP_NET_SG;
2879         }
2880
2881         if (skb_shinfo(skb)->gso_size) {
2882                 struct octeon_instr_irh *irh =
2883                         (struct octeon_instr_irh *)&ndata.cmd.irh;
2884                 union tx_info *tx_info = (union tx_info *)&ndata.cmd.ossp[0];
2885
2886                 irh->len = 1;   /* to indicate that ossp[0] contains tx_info */
2887                 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
2888                 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
2889         }
2890
2891         xmit_more = skb->xmit_more;
2892
2893         if (unlikely(cmdsetup.s.timestamp))
2894                 status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more);
2895         else
2896                 status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more);
2897         if (status == IQ_SEND_FAILED)
2898                 goto lio_xmit_failed;
2899
2900         netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
2901
2902         if (status == IQ_SEND_STOP)
2903                 stop_q(lio->netdev, q_idx);
2904
2905         netdev->trans_start = jiffies;
2906
2907         stats->tx_done++;
2908         stats->tx_tot_bytes += skb->len;
2909
2910         return NETDEV_TX_OK;
2911
2912 lio_xmit_failed:
2913         stats->tx_dropped++;
2914         netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
2915                    iq_no, stats->tx_dropped);
2916         dma_unmap_single(&oct->pci_dev->dev, ndata.cmd.dptr,
2917                          ndata.datasize, DMA_TO_DEVICE);
2918         recv_buffer_free(skb);
2919         return NETDEV_TX_OK;
2920 }
2921
2922 /** \brief Network device Tx timeout
2923  * @param netdev    pointer to network device
2924  */
2925 static void liquidio_tx_timeout(struct net_device *netdev)
2926 {
2927         struct lio *lio;
2928
2929         lio = GET_LIO(netdev);
2930
2931         netif_info(lio, tx_err, lio->netdev,
2932                    "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
2933                    netdev->stats.tx_dropped);
2934         netdev->trans_start = jiffies;
2935         txqs_wake(netdev);
2936 }
2937
2938 int liquidio_set_feature(struct net_device *netdev, int cmd)
2939 {
2940         struct lio *lio = GET_LIO(netdev);
2941         struct octeon_device *oct = lio->oct_dev;
2942         struct octnic_ctrl_pkt nctrl;
2943         struct octnic_ctrl_params nparams;
2944         int ret = 0;
2945
2946         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2947
2948         nctrl.ncmd.u64 = 0;
2949         nctrl.ncmd.s.cmd = cmd;
2950         nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2951         nctrl.ncmd.s.param2 = OCTNIC_LROIPV4 | OCTNIC_LROIPV6;
2952         nctrl.wait_time = 100;
2953         nctrl.netpndev = (u64)netdev;
2954         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2955
2956         nparams.resp_order = OCTEON_RESP_NORESPONSE;
2957
2958         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2959         if (ret < 0) {
2960                 dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
2961                         ret);
2962         }
2963         return ret;
2964 }
2965
2966 /** \brief Net device fix features
2967  * @param netdev  pointer to network device
2968  * @param request features requested
2969  * @returns updated features list
2970  */
2971 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
2972                                                netdev_features_t request)
2973 {
2974         struct lio *lio = netdev_priv(netdev);
2975
2976         if ((request & NETIF_F_RXCSUM) &&
2977             !(lio->dev_capability & NETIF_F_RXCSUM))
2978                 request &= ~NETIF_F_RXCSUM;
2979
2980         if ((request & NETIF_F_HW_CSUM) &&
2981             !(lio->dev_capability & NETIF_F_HW_CSUM))
2982                 request &= ~NETIF_F_HW_CSUM;
2983
2984         if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
2985                 request &= ~NETIF_F_TSO;
2986
2987         if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
2988                 request &= ~NETIF_F_TSO6;
2989
2990         if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
2991                 request &= ~NETIF_F_LRO;
2992
2993         /*Disable LRO if RXCSUM is off */
2994         if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
2995             (lio->dev_capability & NETIF_F_LRO))
2996                 request &= ~NETIF_F_LRO;
2997
2998         return request;
2999 }
3000
3001 /** \brief Net device set features
3002  * @param netdev  pointer to network device
3003  * @param features features to enable/disable
3004  */
3005 static int liquidio_set_features(struct net_device *netdev,
3006                                  netdev_features_t features)
3007 {
3008         struct lio *lio = netdev_priv(netdev);
3009
3010         if (!((netdev->features ^ features) & NETIF_F_LRO))
3011                 return 0;
3012
3013         if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3014                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3015         else if (!(features & NETIF_F_LRO) &&
3016                  (lio->dev_capability & NETIF_F_LRO))
3017                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE);
3018
3019         return 0;
3020 }
3021
3022 static struct net_device_ops lionetdevops = {
3023         .ndo_open               = liquidio_open,
3024         .ndo_stop               = liquidio_stop,
3025         .ndo_start_xmit         = liquidio_xmit,
3026         .ndo_get_stats          = liquidio_get_stats,
3027         .ndo_set_mac_address    = liquidio_set_mac,
3028         .ndo_set_rx_mode        = liquidio_set_mcast_list,
3029         .ndo_tx_timeout         = liquidio_tx_timeout,
3030         .ndo_change_mtu         = liquidio_change_mtu,
3031         .ndo_do_ioctl           = liquidio_ioctl,
3032         .ndo_fix_features       = liquidio_fix_features,
3033         .ndo_set_features       = liquidio_set_features,
3034 };
3035
3036 /** \brief Entry point for the liquidio module
3037  */
3038 static int __init liquidio_init(void)
3039 {
3040         int i;
3041         struct handshake *hs;
3042
3043         init_completion(&first_stage);
3044
3045         octeon_init_device_list(conf_type);
3046
3047         if (liquidio_init_pci())
3048                 return -EINVAL;
3049
3050         wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3051
3052         for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3053                 hs = &handshake[i];
3054                 if (hs->pci_dev) {
3055                         wait_for_completion(&hs->init);
3056                         if (!hs->init_ok) {
3057                                 /* init handshake failed */
3058                                 dev_err(&hs->pci_dev->dev,
3059                                         "Failed to init device\n");
3060                                 liquidio_deinit_pci();
3061                                 return -EIO;
3062                         }
3063                 }
3064         }
3065
3066         for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3067                 hs = &handshake[i];
3068                 if (hs->pci_dev) {
3069                         wait_for_completion_timeout(&hs->started,
3070                                                     msecs_to_jiffies(30000));
3071                         if (!hs->started_ok) {
3072                                 /* starter handshake failed */
3073                                 dev_err(&hs->pci_dev->dev,
3074                                         "Firmware failed to start\n");
3075                                 liquidio_deinit_pci();
3076                                 return -EIO;
3077                         }
3078                 }
3079         }
3080
3081         return 0;
3082 }
3083
3084 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3085 {
3086         struct octeon_device *oct = (struct octeon_device *)buf;
3087         struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3088         int ifidx = 0;
3089         union oct_link_status *ls;
3090         int i;
3091
3092         if ((recv_pkt->buffer_size[0] != sizeof(*ls)) ||
3093             (recv_pkt->rh.r_nic_info.ifidx > oct->ifcount)) {
3094                 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3095                         recv_pkt->buffer_size[0],
3096                         recv_pkt->rh.r_nic_info.ifidx);
3097                 goto nic_info_err;
3098         }
3099
3100         ifidx = recv_pkt->rh.r_nic_info.ifidx;
3101         ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3102
3103         octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3104
3105         update_link_status(oct->props[ifidx].netdev, ls);
3106
3107 nic_info_err:
3108         for (i = 0; i < recv_pkt->buffer_count; i++)
3109                 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3110         octeon_free_recv_info(recv_info);
3111         return 0;
3112 }
3113
3114 /**
3115  * \brief Setup network interfaces
3116  * @param octeon_dev  octeon device
3117  *
3118  * Called during init time for each device. It assumes the NIC
3119  * is already up and running.  The link information for each
3120  * interface is passed in link_info.
3121  */
3122 static int setup_nic_devices(struct octeon_device *octeon_dev)
3123 {
3124         struct lio *lio = NULL;
3125         struct net_device *netdev;
3126         u8 mac[6], i, j;
3127         struct octeon_soft_command *sc;
3128         struct liquidio_if_cfg_context *ctx;
3129         struct liquidio_if_cfg_resp *resp;
3130         struct octdev_props *props;
3131         int retval, num_iqueues, num_oqueues, q_no;
3132         u64 q_mask;
3133         int num_cpus = num_online_cpus();
3134         union oct_nic_if_cfg if_cfg;
3135         unsigned int base_queue;
3136         unsigned int gmx_port_id;
3137         u32 resp_size, ctx_size;
3138
3139         /* This is to handle link status changes */
3140         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3141                                     OPCODE_NIC_INFO,
3142                                     lio_nic_info, octeon_dev);
3143
3144         /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3145          * They are handled directly.
3146          */
3147         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3148                                         free_netbuf);
3149
3150         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3151                                         free_netsgbuf);
3152
3153         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3154                                         free_netsgbuf_with_resp);
3155
3156         for (i = 0; i < octeon_dev->ifcount; i++) {
3157                 resp_size = sizeof(struct liquidio_if_cfg_resp);
3158                 ctx_size = sizeof(struct liquidio_if_cfg_context);
3159                 sc = (struct octeon_soft_command *)
3160                         octeon_alloc_soft_command(octeon_dev, 0,
3161                                                   resp_size, ctx_size);
3162                 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3163                 ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
3164
3165                 num_iqueues =
3166                         CFG_GET_NUM_TXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3167                 num_oqueues =
3168                         CFG_GET_NUM_RXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3169                 base_queue =
3170                         CFG_GET_BASE_QUE_NIC_IF(octeon_get_conf(octeon_dev), i);
3171                 gmx_port_id =
3172                         CFG_GET_GMXID_NIC_IF(octeon_get_conf(octeon_dev), i);
3173                 if (num_iqueues > num_cpus)
3174                         num_iqueues = num_cpus;
3175                 if (num_oqueues > num_cpus)
3176                         num_oqueues = num_cpus;
3177                 dev_dbg(&octeon_dev->pci_dev->dev,
3178                         "requesting config for interface %d, iqs %d, oqs %d\n",
3179                         i, num_iqueues, num_oqueues);
3180                 ACCESS_ONCE(ctx->cond) = 0;
3181                 ctx->octeon_id = lio_get_device_id(octeon_dev);
3182                 init_waitqueue_head(&ctx->wc);
3183
3184                 if_cfg.u64 = 0;
3185                 if_cfg.s.num_iqueues = num_iqueues;
3186                 if_cfg.s.num_oqueues = num_oqueues;
3187                 if_cfg.s.base_queue = base_queue;
3188                 if_cfg.s.gmx_port_id = gmx_port_id;
3189                 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3190                                             OPCODE_NIC_IF_CFG, i,
3191                                             if_cfg.u64, 0);
3192
3193                 sc->callback = if_cfg_callback;
3194                 sc->callback_arg = sc;
3195                 sc->wait_time = 1000;
3196
3197                 retval = octeon_send_soft_command(octeon_dev, sc);
3198                 if (retval) {
3199                         dev_err(&octeon_dev->pci_dev->dev,
3200                                 "iq/oq config failed status: %x\n",
3201                                 retval);
3202                         /* Soft instr is freed by driver in case of failure. */
3203                         goto setup_nic_dev_fail;
3204                 }
3205
3206                 /* Sleep on a wait queue till the cond flag indicates that the
3207                  * response arrived or timed-out.
3208                  */
3209                 sleep_cond(&ctx->wc, &ctx->cond);
3210                 retval = resp->status;
3211                 if (retval) {
3212                         dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3213                         goto setup_nic_dev_fail;
3214                 }
3215
3216                 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3217                                     (sizeof(struct liquidio_if_cfg_info)) >> 3);
3218
3219                 num_iqueues = hweight64(resp->cfg_info.iqmask);
3220                 num_oqueues = hweight64(resp->cfg_info.oqmask);
3221
3222                 if (!(num_iqueues) || !(num_oqueues)) {
3223                         dev_err(&octeon_dev->pci_dev->dev,
3224                                 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3225                                 resp->cfg_info.iqmask,
3226                                 resp->cfg_info.oqmask);
3227                         goto setup_nic_dev_fail;
3228                 }
3229                 dev_dbg(&octeon_dev->pci_dev->dev,
3230                         "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3231                         i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3232                         num_iqueues, num_oqueues);
3233                 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3234
3235                 if (!netdev) {
3236                         dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3237                         goto setup_nic_dev_fail;
3238                 }
3239
3240                 props = &octeon_dev->props[i];
3241                 props->netdev = netdev;
3242
3243                 if (num_iqueues > 1)
3244                         lionetdevops.ndo_select_queue = select_q;
3245
3246                 /* Associate the routines that will handle different
3247                  * netdev tasks.
3248                  */
3249                 netdev->netdev_ops = &lionetdevops;
3250
3251                 lio = GET_LIO(netdev);
3252
3253                 memset(lio, 0, sizeof(struct lio));
3254
3255                 lio->linfo.ifidx = resp->cfg_info.ifidx;
3256                 lio->ifidx = resp->cfg_info.ifidx;
3257
3258                 lio->linfo.num_rxpciq = num_oqueues;
3259                 lio->linfo.num_txpciq = num_iqueues;
3260                 q_mask = resp->cfg_info.oqmask;
3261                 /* q_mask is 0-based and already verified mask is nonzero */
3262                 for (j = 0; j < num_oqueues; j++) {
3263                         q_no = __ffs64(q_mask);
3264                         q_mask &= (~(1UL << q_no));
3265                         lio->linfo.rxpciq[j] = q_no;
3266                 }
3267                 q_mask = resp->cfg_info.iqmask;
3268                 for (j = 0; j < num_iqueues; j++) {
3269                         q_no = __ffs64(q_mask);
3270                         q_mask &= (~(1UL << q_no));
3271                         lio->linfo.txpciq[j] = q_no;
3272                 }
3273                 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3274                 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3275                 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3276
3277                 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3278
3279                 lio->dev_capability = NETIF_F_HIGHDMA
3280                                       | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3281                                       | NETIF_F_SG | NETIF_F_RXCSUM
3282                                       | NETIF_F_TSO | NETIF_F_TSO6
3283                                       | NETIF_F_LRO;
3284                 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3285
3286                 netdev->features = lio->dev_capability;
3287                 netdev->vlan_features = lio->dev_capability;
3288
3289                 netdev->hw_features = lio->dev_capability;
3290
3291                 /* Point to the  properties for octeon device to which this
3292                  * interface belongs.
3293                  */
3294                 lio->oct_dev = octeon_dev;
3295                 lio->octprops = props;
3296                 lio->netdev = netdev;
3297                 spin_lock_init(&lio->lock);
3298
3299                 dev_dbg(&octeon_dev->pci_dev->dev,
3300                         "if%d gmx: %d hw_addr: 0x%llx\n", i,
3301                         lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3302
3303                 /* 64-bit swap required on LE machines */
3304                 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3305                 for (j = 0; j < 6; j++)
3306                         mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3307
3308                 /* Copy MAC Address to OS network device structure */
3309
3310                 ether_addr_copy(netdev->dev_addr, mac);
3311
3312                 if (setup_io_queues(octeon_dev, netdev)) {
3313                         dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3314                         goto setup_nic_dev_fail;
3315                 }
3316
3317                 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3318
3319                 /* By default all interfaces on a single Octeon uses the same
3320                  * tx and rx queues
3321                  */
3322                 lio->txq = lio->linfo.txpciq[0];
3323                 lio->rxq = lio->linfo.rxpciq[0];
3324
3325                 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3326                 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3327
3328                 if (setup_glist(lio)) {
3329                         dev_err(&octeon_dev->pci_dev->dev,
3330                                 "Gather list allocation failed\n");
3331                         goto setup_nic_dev_fail;
3332                 }
3333
3334                 /* Register ethtool support */
3335                 liquidio_set_ethtool_ops(netdev);
3336
3337                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3338
3339                 if ((debug != -1) && (debug & NETIF_MSG_HW))
3340                         liquidio_set_feature(netdev, OCTNET_CMD_VERBOSE_ENABLE);
3341
3342                 /* Register the network device with the OS */
3343                 if (register_netdev(netdev)) {
3344                         dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3345                         goto setup_nic_dev_fail;
3346                 }
3347
3348                 dev_dbg(&octeon_dev->pci_dev->dev,
3349                         "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3350                         i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3351                 netif_carrier_off(netdev);
3352
3353                 if (lio->linfo.link.s.status) {
3354                         netif_carrier_on(netdev);
3355                         start_txq(netdev);
3356                 } else {
3357                         netif_carrier_off(netdev);
3358                 }
3359
3360                 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3361
3362                 dev_dbg(&octeon_dev->pci_dev->dev,
3363                         "NIC ifidx:%d Setup successful\n", i);
3364
3365                 octeon_free_soft_command(octeon_dev, sc);
3366         }
3367
3368         return 0;
3369
3370 setup_nic_dev_fail:
3371
3372         octeon_free_soft_command(octeon_dev, sc);
3373
3374         while (i--) {
3375                 dev_err(&octeon_dev->pci_dev->dev,
3376                         "NIC ifidx:%d Setup failed\n", i);
3377                 liquidio_destroy_nic_device(octeon_dev, i);
3378         }
3379         return -ENODEV;
3380 }
3381
3382 /**
3383  * \brief initialize the NIC
3384  * @param oct octeon device
3385  *
3386  * This initialization routine is called once the Octeon device application is
3387  * up and running
3388  */
3389 static int liquidio_init_nic_module(struct octeon_device *oct)
3390 {
3391         struct oct_intrmod_cfg *intrmod_cfg;
3392         int retval = 0;
3393         int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
3394
3395         dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3396
3397         /* only default iq and oq were initialized
3398          * initialize the rest as well
3399          */
3400         /* run port_config command for each port */
3401         oct->ifcount = num_nic_ports;
3402
3403         memset(oct->props, 0,
3404                sizeof(struct octdev_props) * num_nic_ports);
3405
3406         retval = setup_nic_devices(oct);
3407         if (retval) {
3408                 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3409                 goto octnet_init_failure;
3410         }
3411
3412         liquidio_ptp_init(oct);
3413
3414         /* Initialize interrupt moderation params */
3415         intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3416         intrmod_cfg->intrmod_enable = 1;
3417         intrmod_cfg->intrmod_check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3418         intrmod_cfg->intrmod_maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3419         intrmod_cfg->intrmod_minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3420         intrmod_cfg->intrmod_maxcnt_trigger = LIO_INTRMOD_MAXCNT_TRIGGER;
3421         intrmod_cfg->intrmod_maxtmr_trigger = LIO_INTRMOD_MAXTMR_TRIGGER;
3422         intrmod_cfg->intrmod_mintmr_trigger = LIO_INTRMOD_MINTMR_TRIGGER;
3423         intrmod_cfg->intrmod_mincnt_trigger = LIO_INTRMOD_MINCNT_TRIGGER;
3424
3425         dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3426
3427         return retval;
3428
3429 octnet_init_failure:
3430
3431         oct->ifcount = 0;
3432
3433         return retval;
3434 }
3435
3436 /**
3437  * \brief starter callback that invokes the remaining initialization work after
3438  * the NIC is up and running.
3439  * @param octptr  work struct work_struct
3440  */
3441 static void nic_starter(struct work_struct *work)
3442 {
3443         struct octeon_device *oct;
3444         struct cavium_wk *wk = (struct cavium_wk *)work;
3445
3446         oct = (struct octeon_device *)wk->ctxptr;
3447
3448         if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
3449                 return;
3450
3451         /* If the status of the device is CORE_OK, the core
3452          * application has reported its application type. Call
3453          * any registered handlers now and move to the RUNNING
3454          * state.
3455          */
3456         if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
3457                 schedule_delayed_work(&oct->nic_poll_work.work,
3458                                       LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3459                 return;
3460         }
3461
3462         atomic_set(&oct->status, OCT_DEV_RUNNING);
3463
3464         if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
3465                 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
3466
3467                 if (liquidio_init_nic_module(oct))
3468                         dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
3469                 else
3470                         handshake[oct->octeon_id].started_ok = 1;
3471         } else {
3472                 dev_err(&oct->pci_dev->dev,
3473                         "Unexpected application running on NIC (%d). Check firmware.\n",
3474                         oct->app_mode);
3475         }
3476
3477         complete(&handshake[oct->octeon_id].started);
3478 }
3479
3480 /**
3481  * \brief Device initialization for each Octeon device that is probed
3482  * @param octeon_dev  octeon device
3483  */
3484 static int octeon_device_init(struct octeon_device *octeon_dev)
3485 {
3486         int j, ret;
3487         struct octeon_device_priv *oct_priv =
3488                 (struct octeon_device_priv *)octeon_dev->priv;
3489         atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
3490
3491         /* Enable access to the octeon device and make its DMA capability
3492          * known to the OS.
3493          */
3494         if (octeon_pci_os_setup(octeon_dev))
3495                 return 1;
3496
3497         /* Identify the Octeon type and map the BAR address space. */
3498         if (octeon_chip_specific_setup(octeon_dev)) {
3499                 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
3500                 return 1;
3501         }
3502
3503         atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
3504
3505         octeon_dev->app_mode = CVM_DRV_INVALID_APP;
3506
3507         /* Do a soft reset of the Octeon device. */
3508         if (octeon_dev->fn_list.soft_reset(octeon_dev))
3509                 return 1;
3510
3511         /* Initialize the dispatch mechanism used to push packets arriving on
3512          * Octeon Output queues.
3513          */
3514         if (octeon_init_dispatch_list(octeon_dev))
3515                 return 1;
3516
3517         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3518                                     OPCODE_NIC_CORE_DRV_ACTIVE,
3519                                     octeon_core_drv_init,
3520                                     octeon_dev);
3521
3522         INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
3523         octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
3524         schedule_delayed_work(&octeon_dev->nic_poll_work.work,
3525                               LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3526
3527         atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
3528
3529         octeon_set_io_queues_off(octeon_dev);
3530
3531         /*  Setup the data structures that manage this Octeon's Input queues. */
3532         if (octeon_setup_instr_queues(octeon_dev)) {
3533                 dev_err(&octeon_dev->pci_dev->dev,
3534                         "instruction queue initialization failed\n");
3535                 /* On error, release any previously allocated queues */
3536                 for (j = 0; j < octeon_dev->num_iqs; j++)
3537                         octeon_delete_instr_queue(octeon_dev, j);
3538                 return 1;
3539         }
3540         atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3541
3542         /* Initialize soft command buffer pool
3543          */
3544         if (octeon_setup_sc_buffer_pool(octeon_dev)) {
3545                 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
3546                 return 1;
3547         }
3548         atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3549
3550         /* Initialize lists to manage the requests of different types that
3551          * arrive from user & kernel applications for this octeon device.
3552          */
3553         if (octeon_setup_response_list(octeon_dev)) {
3554                 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
3555                 return 1;
3556         }
3557         atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
3558
3559         if (octeon_setup_output_queues(octeon_dev)) {
3560                 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
3561                 /* Release any previously allocated queues */
3562                 for (j = 0; j < octeon_dev->num_oqs; j++)
3563                         octeon_delete_droq(octeon_dev, j);
3564         }
3565
3566         atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
3567
3568         /* The input and output queue registers were setup earlier (the queues
3569          * were not enabled). Any additional registers that need to be
3570          * programmed should be done now.
3571          */
3572         ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3573         if (ret) {
3574                 dev_err(&octeon_dev->pci_dev->dev,
3575                         "Failed to configure device registers\n");
3576                 return ret;
3577         }
3578
3579         /* Initialize the tasklet that handles output queue packet processing.*/
3580         dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
3581         tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
3582                      (unsigned long)octeon_dev);
3583
3584         /* Setup the interrupt handler and record the INT SUM register address
3585          */
3586         octeon_setup_interrupt(octeon_dev);
3587
3588         /* Enable Octeon device interrupts */
3589         octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
3590
3591         /* Enable the input and output queues for this Octeon device */
3592         octeon_dev->fn_list.enable_io_queues(octeon_dev);
3593
3594         atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
3595
3596         dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
3597
3598         if (ddr_timeout == 0) {
3599                 dev_info(&octeon_dev->pci_dev->dev,
3600                          "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
3601         }
3602
3603         schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
3604
3605         /* Wait for the octeon to initialize DDR after the soft-reset. */
3606         ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
3607         if (ret) {
3608                 dev_err(&octeon_dev->pci_dev->dev,
3609                         "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
3610                         ret);
3611                 return 1;
3612         }
3613
3614         if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
3615                 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
3616                 return 1;
3617         }
3618
3619         dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
3620         ret = octeon_init_consoles(octeon_dev);
3621         if (ret) {
3622                 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
3623                 return 1;
3624         }
3625         ret = octeon_add_console(octeon_dev, 0);
3626         if (ret) {
3627                 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
3628                 return 1;
3629         }
3630
3631         atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
3632
3633         dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
3634         ret = load_firmware(octeon_dev);
3635         if (ret) {
3636                 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
3637                 return 1;
3638         }
3639
3640         handshake[octeon_dev->octeon_id].init_ok = 1;
3641         complete(&handshake[octeon_dev->octeon_id].init);
3642
3643         atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
3644
3645         /* Send Credit for Octeon Output queues. Credits are always sent after
3646          * the output queue is enabled.
3647          */
3648         for (j = 0; j < octeon_dev->num_oqs; j++)
3649                 writel(octeon_dev->droq[j]->max_count,
3650                        octeon_dev->droq[j]->pkts_credit_reg);
3651
3652         /* Packets can start arriving on the output queues from this point. */
3653
3654         return 0;
3655 }
3656
3657 /**
3658  * \brief Exits the module
3659  */
3660 static void __exit liquidio_exit(void)
3661 {
3662         liquidio_deinit_pci();
3663
3664         pr_info("LiquidIO network module is now unloaded\n");
3665 }
3666
3667 module_init(liquidio_init);
3668 module_exit(liquidio_exit);