e1000e: Use kmemdup rather than duplicating its implementation
[pandora-kernel.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int type;
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define E1000_STAT(str, m) { \
49                 .stat_string = str, \
50                 .type = E1000_STATS, \
51                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
52                 .stat_offset = offsetof(struct e1000_adapter, m) }
53 #define E1000_NETDEV_STAT(str, m) { \
54                 .stat_string = str, \
55                 .type = NETDEV_STATS, \
56                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
57                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
58
59 static const struct e1000_stats e1000_gstrings_stats[] = {
60         E1000_STAT("rx_packets", stats.gprc),
61         E1000_STAT("tx_packets", stats.gptc),
62         E1000_STAT("rx_bytes", stats.gorc),
63         E1000_STAT("tx_bytes", stats.gotc),
64         E1000_STAT("rx_broadcast", stats.bprc),
65         E1000_STAT("tx_broadcast", stats.bptc),
66         E1000_STAT("rx_multicast", stats.mprc),
67         E1000_STAT("tx_multicast", stats.mptc),
68         E1000_NETDEV_STAT("rx_errors", rx_errors),
69         E1000_NETDEV_STAT("tx_errors", tx_errors),
70         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
71         E1000_STAT("multicast", stats.mprc),
72         E1000_STAT("collisions", stats.colc),
73         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
74         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
75         E1000_STAT("rx_crc_errors", stats.crcerrs),
76         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
77         E1000_STAT("rx_no_buffer_count", stats.rnbc),
78         E1000_STAT("rx_missed_errors", stats.mpc),
79         E1000_STAT("tx_aborted_errors", stats.ecol),
80         E1000_STAT("tx_carrier_errors", stats.tncrs),
81         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
82         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
83         E1000_STAT("tx_window_errors", stats.latecol),
84         E1000_STAT("tx_abort_late_coll", stats.latecol),
85         E1000_STAT("tx_deferred_ok", stats.dc),
86         E1000_STAT("tx_single_coll_ok", stats.scc),
87         E1000_STAT("tx_multi_coll_ok", stats.mcc),
88         E1000_STAT("tx_timeout_count", tx_timeout_count),
89         E1000_STAT("tx_restart_queue", restart_queue),
90         E1000_STAT("rx_long_length_errors", stats.roc),
91         E1000_STAT("rx_short_length_errors", stats.ruc),
92         E1000_STAT("rx_align_errors", stats.algnerrc),
93         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
94         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
95         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
96         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
97         E1000_STAT("tx_flow_control_xon", stats.xontxc),
98         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
99         E1000_STAT("rx_long_byte_count", stats.gorc),
100         E1000_STAT("rx_csum_offload_good", hw_csum_good),
101         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
102         E1000_STAT("rx_header_split", rx_hdr_split),
103         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
104         E1000_STAT("tx_smbus", stats.mgptc),
105         E1000_STAT("rx_smbus", stats.mgprc),
106         E1000_STAT("dropped_smbus", stats.mgpdc),
107         E1000_STAT("rx_dma_failed", rx_dma_failed),
108         E1000_STAT("tx_dma_failed", tx_dma_failed),
109 };
110
111 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
114         "Register test  (offline)", "Eeprom test    (offline)",
115         "Interrupt test (offline)", "Loopback test  (offline)",
116         "Link test   (on/offline)"
117 };
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120 static int e1000_get_settings(struct net_device *netdev,
121                               struct ethtool_cmd *ecmd)
122 {
123         struct e1000_adapter *adapter = netdev_priv(netdev);
124         struct e1000_hw *hw = &adapter->hw;
125
126         if (hw->phy.media_type == e1000_media_type_copper) {
127
128                 ecmd->supported = (SUPPORTED_10baseT_Half |
129                                    SUPPORTED_10baseT_Full |
130                                    SUPPORTED_100baseT_Half |
131                                    SUPPORTED_100baseT_Full |
132                                    SUPPORTED_1000baseT_Full |
133                                    SUPPORTED_Autoneg |
134                                    SUPPORTED_TP);
135                 if (hw->phy.type == e1000_phy_ife)
136                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137                 ecmd->advertising = ADVERTISED_TP;
138
139                 if (hw->mac.autoneg == 1) {
140                         ecmd->advertising |= ADVERTISED_Autoneg;
141                         /* the e1000 autoneg seems to match ethtool nicely */
142                         ecmd->advertising |= hw->phy.autoneg_advertised;
143                 }
144
145                 ecmd->port = PORT_TP;
146                 ecmd->phy_address = hw->phy.addr;
147                 ecmd->transceiver = XCVR_INTERNAL;
148
149         } else {
150                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
151                                      SUPPORTED_FIBRE |
152                                      SUPPORTED_Autoneg);
153
154                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155                                      ADVERTISED_FIBRE |
156                                      ADVERTISED_Autoneg);
157
158                 ecmd->port = PORT_FIBRE;
159                 ecmd->transceiver = XCVR_EXTERNAL;
160         }
161
162         ecmd->speed = -1;
163         ecmd->duplex = -1;
164
165         if (netif_running(netdev)) {
166                 if (netif_carrier_ok(netdev)) {
167                         ecmd->speed = adapter->link_speed;
168                         ecmd->duplex = adapter->link_duplex - 1;
169                 }
170         } else {
171                 u32 status = er32(STATUS);
172                 if (status & E1000_STATUS_LU) {
173                         if (status & E1000_STATUS_SPEED_1000)
174                                 ecmd->speed = 1000;
175                         else if (status & E1000_STATUS_SPEED_100)
176                                 ecmd->speed = 100;
177                         else
178                                 ecmd->speed = 10;
179
180                         if (status & E1000_STATUS_FD)
181                                 ecmd->duplex = DUPLEX_FULL;
182                         else
183                                 ecmd->duplex = DUPLEX_HALF;
184                 }
185         }
186
187         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
188                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189
190         /* MDI-X => 2; MDI =>1; Invalid =>0 */
191         if ((hw->phy.media_type == e1000_media_type_copper) &&
192             netif_carrier_ok(netdev))
193                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
194                                                       ETH_TP_MDI;
195         else
196                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
197
198         return 0;
199 }
200
201 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
202 {
203         struct e1000_mac_info *mac = &adapter->hw.mac;
204
205         mac->autoneg = 0;
206
207         /* Fiber NICs only allow 1000 gbps Full duplex */
208         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
209                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
210                 e_err("Unsupported Speed/Duplex configuration\n");
211                 return -EINVAL;
212         }
213
214         switch (spddplx) {
215         case SPEED_10 + DUPLEX_HALF:
216                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
217                 break;
218         case SPEED_10 + DUPLEX_FULL:
219                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
220                 break;
221         case SPEED_100 + DUPLEX_HALF:
222                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
223                 break;
224         case SPEED_100 + DUPLEX_FULL:
225                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
226                 break;
227         case SPEED_1000 + DUPLEX_FULL:
228                 mac->autoneg = 1;
229                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
230                 break;
231         case SPEED_1000 + DUPLEX_HALF: /* not supported */
232         default:
233                 e_err("Unsupported Speed/Duplex configuration\n");
234                 return -EINVAL;
235         }
236         return 0;
237 }
238
239 static int e1000_set_settings(struct net_device *netdev,
240                               struct ethtool_cmd *ecmd)
241 {
242         struct e1000_adapter *adapter = netdev_priv(netdev);
243         struct e1000_hw *hw = &adapter->hw;
244
245         /*
246          * When SoL/IDER sessions are active, autoneg/speed/duplex
247          * cannot be changed
248          */
249         if (e1000_check_reset_block(hw)) {
250                 e_err("Cannot change link characteristics when SoL/IDER is "
251                       "active.\n");
252                 return -EINVAL;
253         }
254
255         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
256                 msleep(1);
257
258         if (ecmd->autoneg == AUTONEG_ENABLE) {
259                 hw->mac.autoneg = 1;
260                 if (hw->phy.media_type == e1000_media_type_fiber)
261                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
262                                                      ADVERTISED_FIBRE |
263                                                      ADVERTISED_Autoneg;
264                 else
265                         hw->phy.autoneg_advertised = ecmd->advertising |
266                                                      ADVERTISED_TP |
267                                                      ADVERTISED_Autoneg;
268                 ecmd->advertising = hw->phy.autoneg_advertised;
269                 if (adapter->fc_autoneg)
270                         hw->fc.requested_mode = e1000_fc_default;
271         } else {
272                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
273                         clear_bit(__E1000_RESETTING, &adapter->state);
274                         return -EINVAL;
275                 }
276         }
277
278         /* reset the link */
279
280         if (netif_running(adapter->netdev)) {
281                 e1000e_down(adapter);
282                 e1000e_up(adapter);
283         } else {
284                 e1000e_reset(adapter);
285         }
286
287         clear_bit(__E1000_RESETTING, &adapter->state);
288         return 0;
289 }
290
291 static void e1000_get_pauseparam(struct net_device *netdev,
292                                  struct ethtool_pauseparam *pause)
293 {
294         struct e1000_adapter *adapter = netdev_priv(netdev);
295         struct e1000_hw *hw = &adapter->hw;
296
297         pause->autoneg =
298                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
299
300         if (hw->fc.current_mode == e1000_fc_rx_pause) {
301                 pause->rx_pause = 1;
302         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
303                 pause->tx_pause = 1;
304         } else if (hw->fc.current_mode == e1000_fc_full) {
305                 pause->rx_pause = 1;
306                 pause->tx_pause = 1;
307         }
308 }
309
310 static int e1000_set_pauseparam(struct net_device *netdev,
311                                 struct ethtool_pauseparam *pause)
312 {
313         struct e1000_adapter *adapter = netdev_priv(netdev);
314         struct e1000_hw *hw = &adapter->hw;
315         int retval = 0;
316
317         adapter->fc_autoneg = pause->autoneg;
318
319         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
320                 msleep(1);
321
322         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
323                 hw->fc.requested_mode = e1000_fc_default;
324                 if (netif_running(adapter->netdev)) {
325                         e1000e_down(adapter);
326                         e1000e_up(adapter);
327                 } else {
328                         e1000e_reset(adapter);
329                 }
330         } else {
331                 if (pause->rx_pause && pause->tx_pause)
332                         hw->fc.requested_mode = e1000_fc_full;
333                 else if (pause->rx_pause && !pause->tx_pause)
334                         hw->fc.requested_mode = e1000_fc_rx_pause;
335                 else if (!pause->rx_pause && pause->tx_pause)
336                         hw->fc.requested_mode = e1000_fc_tx_pause;
337                 else if (!pause->rx_pause && !pause->tx_pause)
338                         hw->fc.requested_mode = e1000_fc_none;
339
340                 hw->fc.current_mode = hw->fc.requested_mode;
341
342                 if (hw->phy.media_type == e1000_media_type_fiber) {
343                         retval = hw->mac.ops.setup_link(hw);
344                         /* implicit goto out */
345                 } else {
346                         retval = e1000e_force_mac_fc(hw);
347                         if (retval)
348                                 goto out;
349                         e1000e_set_fc_watermarks(hw);
350                 }
351         }
352
353 out:
354         clear_bit(__E1000_RESETTING, &adapter->state);
355         return retval;
356 }
357
358 static u32 e1000_get_rx_csum(struct net_device *netdev)
359 {
360         struct e1000_adapter *adapter = netdev_priv(netdev);
361         return adapter->flags & FLAG_RX_CSUM_ENABLED;
362 }
363
364 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
365 {
366         struct e1000_adapter *adapter = netdev_priv(netdev);
367
368         if (data)
369                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
370         else
371                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
372
373         if (netif_running(netdev))
374                 e1000e_reinit_locked(adapter);
375         else
376                 e1000e_reset(adapter);
377         return 0;
378 }
379
380 static u32 e1000_get_tx_csum(struct net_device *netdev)
381 {
382         return (netdev->features & NETIF_F_HW_CSUM) != 0;
383 }
384
385 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
386 {
387         if (data)
388                 netdev->features |= NETIF_F_HW_CSUM;
389         else
390                 netdev->features &= ~NETIF_F_HW_CSUM;
391
392         return 0;
393 }
394
395 static int e1000_set_tso(struct net_device *netdev, u32 data)
396 {
397         struct e1000_adapter *adapter = netdev_priv(netdev);
398
399         if (data) {
400                 netdev->features |= NETIF_F_TSO;
401                 netdev->features |= NETIF_F_TSO6;
402         } else {
403                 netdev->features &= ~NETIF_F_TSO;
404                 netdev->features &= ~NETIF_F_TSO6;
405         }
406
407         adapter->flags |= FLAG_TSO_FORCE;
408         return 0;
409 }
410
411 static u32 e1000_get_msglevel(struct net_device *netdev)
412 {
413         struct e1000_adapter *adapter = netdev_priv(netdev);
414         return adapter->msg_enable;
415 }
416
417 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
418 {
419         struct e1000_adapter *adapter = netdev_priv(netdev);
420         adapter->msg_enable = data;
421 }
422
423 static int e1000_get_regs_len(struct net_device *netdev)
424 {
425 #define E1000_REGS_LEN 32 /* overestimate */
426         return E1000_REGS_LEN * sizeof(u32);
427 }
428
429 static void e1000_get_regs(struct net_device *netdev,
430                            struct ethtool_regs *regs, void *p)
431 {
432         struct e1000_adapter *adapter = netdev_priv(netdev);
433         struct e1000_hw *hw = &adapter->hw;
434         u32 *regs_buff = p;
435         u16 phy_data;
436         u8 revision_id;
437
438         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
439
440         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
441
442         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
443
444         regs_buff[0]  = er32(CTRL);
445         regs_buff[1]  = er32(STATUS);
446
447         regs_buff[2]  = er32(RCTL);
448         regs_buff[3]  = er32(RDLEN);
449         regs_buff[4]  = er32(RDH);
450         regs_buff[5]  = er32(RDT);
451         regs_buff[6]  = er32(RDTR);
452
453         regs_buff[7]  = er32(TCTL);
454         regs_buff[8]  = er32(TDLEN);
455         regs_buff[9]  = er32(TDH);
456         regs_buff[10] = er32(TDT);
457         regs_buff[11] = er32(TIDV);
458
459         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
460
461         /* ethtool doesn't use anything past this point, so all this
462          * code is likely legacy junk for apps that may or may not
463          * exist */
464         if (hw->phy.type == e1000_phy_m88) {
465                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466                 regs_buff[13] = (u32)phy_data; /* cable length */
467                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
468                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
470                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472                 regs_buff[18] = regs_buff[13]; /* cable polarity */
473                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
474                 regs_buff[20] = regs_buff[17]; /* polarity correction */
475                 /* phy receive errors */
476                 regs_buff[22] = adapter->phy_stats.receive_errors;
477                 regs_buff[23] = regs_buff[13]; /* mdix mode */
478         }
479         regs_buff[21] = 0; /* was idle_errors */
480         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
481         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
482         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
483 }
484
485 static int e1000_get_eeprom_len(struct net_device *netdev)
486 {
487         struct e1000_adapter *adapter = netdev_priv(netdev);
488         return adapter->hw.nvm.word_size * 2;
489 }
490
491 static int e1000_get_eeprom(struct net_device *netdev,
492                             struct ethtool_eeprom *eeprom, u8 *bytes)
493 {
494         struct e1000_adapter *adapter = netdev_priv(netdev);
495         struct e1000_hw *hw = &adapter->hw;
496         u16 *eeprom_buff;
497         int first_word;
498         int last_word;
499         int ret_val = 0;
500         u16 i;
501
502         if (eeprom->len == 0)
503                 return -EINVAL;
504
505         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
506
507         first_word = eeprom->offset >> 1;
508         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
509
510         eeprom_buff = kmalloc(sizeof(u16) *
511                         (last_word - first_word + 1), GFP_KERNEL);
512         if (!eeprom_buff)
513                 return -ENOMEM;
514
515         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
516                 ret_val = e1000_read_nvm(hw, first_word,
517                                          last_word - first_word + 1,
518                                          eeprom_buff);
519         } else {
520                 for (i = 0; i < last_word - first_word + 1; i++) {
521                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
522                                                       &eeprom_buff[i]);
523                         if (ret_val)
524                                 break;
525                 }
526         }
527
528         if (ret_val) {
529                 /* a read error occurred, throw away the result */
530                 memset(eeprom_buff, 0xff, sizeof(u16) *
531                        (last_word - first_word + 1));
532         } else {
533                 /* Device's eeprom is always little-endian, word addressable */
534                 for (i = 0; i < last_word - first_word + 1; i++)
535                         le16_to_cpus(&eeprom_buff[i]);
536         }
537
538         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
539         kfree(eeprom_buff);
540
541         return ret_val;
542 }
543
544 static int e1000_set_eeprom(struct net_device *netdev,
545                             struct ethtool_eeprom *eeprom, u8 *bytes)
546 {
547         struct e1000_adapter *adapter = netdev_priv(netdev);
548         struct e1000_hw *hw = &adapter->hw;
549         u16 *eeprom_buff;
550         void *ptr;
551         int max_len;
552         int first_word;
553         int last_word;
554         int ret_val = 0;
555         u16 i;
556
557         if (eeprom->len == 0)
558                 return -EOPNOTSUPP;
559
560         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
561                 return -EFAULT;
562
563         if (adapter->flags & FLAG_READ_ONLY_NVM)
564                 return -EINVAL;
565
566         max_len = hw->nvm.word_size * 2;
567
568         first_word = eeprom->offset >> 1;
569         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
570         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
571         if (!eeprom_buff)
572                 return -ENOMEM;
573
574         ptr = (void *)eeprom_buff;
575
576         if (eeprom->offset & 1) {
577                 /* need read/modify/write of first changed EEPROM word */
578                 /* only the second byte of the word is being modified */
579                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
580                 ptr++;
581         }
582         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
583                 /* need read/modify/write of last changed EEPROM word */
584                 /* only the first byte of the word is being modified */
585                 ret_val = e1000_read_nvm(hw, last_word, 1,
586                                   &eeprom_buff[last_word - first_word]);
587
588         if (ret_val)
589                 goto out;
590
591         /* Device's eeprom is always little-endian, word addressable */
592         for (i = 0; i < last_word - first_word + 1; i++)
593                 le16_to_cpus(&eeprom_buff[i]);
594
595         memcpy(ptr, bytes, eeprom->len);
596
597         for (i = 0; i < last_word - first_word + 1; i++)
598                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
599
600         ret_val = e1000_write_nvm(hw, first_word,
601                                   last_word - first_word + 1, eeprom_buff);
602
603         if (ret_val)
604                 goto out;
605
606         /*
607          * Update the checksum over the first part of the EEPROM if needed
608          * and flush shadow RAM for applicable controllers
609          */
610         if ((first_word <= NVM_CHECKSUM_REG) ||
611             (hw->mac.type == e1000_82583) ||
612             (hw->mac.type == e1000_82574) ||
613             (hw->mac.type == e1000_82573))
614                 ret_val = e1000e_update_nvm_checksum(hw);
615
616 out:
617         kfree(eeprom_buff);
618         return ret_val;
619 }
620
621 static void e1000_get_drvinfo(struct net_device *netdev,
622                               struct ethtool_drvinfo *drvinfo)
623 {
624         struct e1000_adapter *adapter = netdev_priv(netdev);
625         char firmware_version[32];
626
627         strncpy(drvinfo->driver,  e1000e_driver_name,
628                 sizeof(drvinfo->driver) - 1);
629         strncpy(drvinfo->version, e1000e_driver_version,
630                 sizeof(drvinfo->version) - 1);
631
632         /*
633          * EEPROM image version # is reported as firmware version # for
634          * PCI-E controllers
635          */
636         snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
637                 (adapter->eeprom_vers & 0xF000) >> 12,
638                 (adapter->eeprom_vers & 0x0FF0) >> 4,
639                 (adapter->eeprom_vers & 0x000F));
640
641         strncpy(drvinfo->fw_version, firmware_version,
642                 sizeof(drvinfo->fw_version) - 1);
643         strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
644                 sizeof(drvinfo->bus_info) - 1);
645         drvinfo->regdump_len = e1000_get_regs_len(netdev);
646         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
647 }
648
649 static void e1000_get_ringparam(struct net_device *netdev,
650                                 struct ethtool_ringparam *ring)
651 {
652         struct e1000_adapter *adapter = netdev_priv(netdev);
653         struct e1000_ring *tx_ring = adapter->tx_ring;
654         struct e1000_ring *rx_ring = adapter->rx_ring;
655
656         ring->rx_max_pending = E1000_MAX_RXD;
657         ring->tx_max_pending = E1000_MAX_TXD;
658         ring->rx_mini_max_pending = 0;
659         ring->rx_jumbo_max_pending = 0;
660         ring->rx_pending = rx_ring->count;
661         ring->tx_pending = tx_ring->count;
662         ring->rx_mini_pending = 0;
663         ring->rx_jumbo_pending = 0;
664 }
665
666 static int e1000_set_ringparam(struct net_device *netdev,
667                                struct ethtool_ringparam *ring)
668 {
669         struct e1000_adapter *adapter = netdev_priv(netdev);
670         struct e1000_ring *tx_ring, *tx_old;
671         struct e1000_ring *rx_ring, *rx_old;
672         int err;
673
674         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
675                 return -EINVAL;
676
677         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
678                 msleep(1);
679
680         if (netif_running(adapter->netdev))
681                 e1000e_down(adapter);
682
683         tx_old = adapter->tx_ring;
684         rx_old = adapter->rx_ring;
685
686         err = -ENOMEM;
687         tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
688         if (!tx_ring)
689                 goto err_alloc_tx;
690
691         rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
692         if (!rx_ring)
693                 goto err_alloc_rx;
694
695         adapter->tx_ring = tx_ring;
696         adapter->rx_ring = rx_ring;
697
698         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
699         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
700         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
701
702         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
703         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
704         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
705
706         if (netif_running(adapter->netdev)) {
707                 /* Try to get new resources before deleting old */
708                 err = e1000e_setup_rx_resources(adapter);
709                 if (err)
710                         goto err_setup_rx;
711                 err = e1000e_setup_tx_resources(adapter);
712                 if (err)
713                         goto err_setup_tx;
714
715                 /*
716                  * restore the old in order to free it,
717                  * then add in the new
718                  */
719                 adapter->rx_ring = rx_old;
720                 adapter->tx_ring = tx_old;
721                 e1000e_free_rx_resources(adapter);
722                 e1000e_free_tx_resources(adapter);
723                 kfree(tx_old);
724                 kfree(rx_old);
725                 adapter->rx_ring = rx_ring;
726                 adapter->tx_ring = tx_ring;
727                 err = e1000e_up(adapter);
728                 if (err)
729                         goto err_setup;
730         }
731
732         clear_bit(__E1000_RESETTING, &adapter->state);
733         return 0;
734 err_setup_tx:
735         e1000e_free_rx_resources(adapter);
736 err_setup_rx:
737         adapter->rx_ring = rx_old;
738         adapter->tx_ring = tx_old;
739         kfree(rx_ring);
740 err_alloc_rx:
741         kfree(tx_ring);
742 err_alloc_tx:
743         e1000e_up(adapter);
744 err_setup:
745         clear_bit(__E1000_RESETTING, &adapter->state);
746         return err;
747 }
748
749 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
750                              int reg, int offset, u32 mask, u32 write)
751 {
752         u32 pat, val;
753         static const u32 test[] = {
754                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
755         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
756                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
757                                       (test[pat] & write));
758                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
759                 if (val != (test[pat] & write & mask)) {
760                         e_err("pattern test reg %04X failed: got 0x%08X "
761                               "expected 0x%08X\n", reg + offset, val,
762                               (test[pat] & write & mask));
763                         *data = reg;
764                         return 1;
765                 }
766         }
767         return 0;
768 }
769
770 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
771                               int reg, u32 mask, u32 write)
772 {
773         u32 val;
774         __ew32(&adapter->hw, reg, write & mask);
775         val = __er32(&adapter->hw, reg);
776         if ((write & mask) != (val & mask)) {
777                 e_err("set/check reg %04X test failed: got 0x%08X "
778                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
779                 *data = reg;
780                 return 1;
781         }
782         return 0;
783 }
784 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
785         do {                                                                   \
786                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
787                         return 1;                                              \
788         } while (0)
789 #define REG_PATTERN_TEST(reg, mask, write)                                     \
790         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
791
792 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
793         do {                                                                   \
794                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
795                         return 1;                                              \
796         } while (0)
797
798 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
799 {
800         struct e1000_hw *hw = &adapter->hw;
801         struct e1000_mac_info *mac = &adapter->hw.mac;
802         u32 value;
803         u32 before;
804         u32 after;
805         u32 i;
806         u32 toggle;
807         u32 mask;
808
809         /*
810          * The status register is Read Only, so a write should fail.
811          * Some bits that get toggled are ignored.
812          */
813         switch (mac->type) {
814         /* there are several bits on newer hardware that are r/w */
815         case e1000_82571:
816         case e1000_82572:
817         case e1000_80003es2lan:
818                 toggle = 0x7FFFF3FF;
819                 break;
820         default:
821                 toggle = 0x7FFFF033;
822                 break;
823         }
824
825         before = er32(STATUS);
826         value = (er32(STATUS) & toggle);
827         ew32(STATUS, toggle);
828         after = er32(STATUS) & toggle;
829         if (value != after) {
830                 e_err("failed STATUS register test got: 0x%08X expected: "
831                       "0x%08X\n", after, value);
832                 *data = 1;
833                 return 1;
834         }
835         /* restore previous status */
836         ew32(STATUS, before);
837
838         if (!(adapter->flags & FLAG_IS_ICH)) {
839                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
840                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
841                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
842                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
843         }
844
845         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
846         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
847         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
848         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
849         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
850         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
851         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
852         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
853         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
854         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
855
856         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
857
858         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
859         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
860         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
861
862         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
863         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
864         if (!(adapter->flags & FLAG_IS_ICH))
865                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
866         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
867         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
868         mask = 0x8003FFFF;
869         switch (mac->type) {
870         case e1000_ich10lan:
871         case e1000_pchlan:
872         case e1000_pch2lan:
873                 mask |= (1 << 18);
874                 break;
875         default:
876                 break;
877         }
878         for (i = 0; i < mac->rar_entry_count; i++)
879                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
880                                        mask, 0xFFFFFFFF);
881
882         for (i = 0; i < mac->mta_reg_count; i++)
883                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
884
885         *data = 0;
886         return 0;
887 }
888
889 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
890 {
891         u16 temp;
892         u16 checksum = 0;
893         u16 i;
894
895         *data = 0;
896         /* Read and add up the contents of the EEPROM */
897         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
898                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
899                         *data = 1;
900                         return *data;
901                 }
902                 checksum += temp;
903         }
904
905         /* If Checksum is not Correct return error else test passed */
906         if ((checksum != (u16) NVM_SUM) && !(*data))
907                 *data = 2;
908
909         return *data;
910 }
911
912 static irqreturn_t e1000_test_intr(int irq, void *data)
913 {
914         struct net_device *netdev = (struct net_device *) data;
915         struct e1000_adapter *adapter = netdev_priv(netdev);
916         struct e1000_hw *hw = &adapter->hw;
917
918         adapter->test_icr |= er32(ICR);
919
920         return IRQ_HANDLED;
921 }
922
923 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
924 {
925         struct net_device *netdev = adapter->netdev;
926         struct e1000_hw *hw = &adapter->hw;
927         u32 mask;
928         u32 shared_int = 1;
929         u32 irq = adapter->pdev->irq;
930         int i;
931         int ret_val = 0;
932         int int_mode = E1000E_INT_MODE_LEGACY;
933
934         *data = 0;
935
936         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
937         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
938                 int_mode = adapter->int_mode;
939                 e1000e_reset_interrupt_capability(adapter);
940                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
941                 e1000e_set_interrupt_capability(adapter);
942         }
943         /* Hook up test interrupt handler just for this test */
944         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
945                          netdev)) {
946                 shared_int = 0;
947         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
948                  netdev->name, netdev)) {
949                 *data = 1;
950                 ret_val = -1;
951                 goto out;
952         }
953         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
954
955         /* Disable all the interrupts */
956         ew32(IMC, 0xFFFFFFFF);
957         msleep(10);
958
959         /* Test each interrupt */
960         for (i = 0; i < 10; i++) {
961                 /* Interrupt to test */
962                 mask = 1 << i;
963
964                 if (adapter->flags & FLAG_IS_ICH) {
965                         switch (mask) {
966                         case E1000_ICR_RXSEQ:
967                                 continue;
968                         case 0x00000100:
969                                 if (adapter->hw.mac.type == e1000_ich8lan ||
970                                     adapter->hw.mac.type == e1000_ich9lan)
971                                         continue;
972                                 break;
973                         default:
974                                 break;
975                         }
976                 }
977
978                 if (!shared_int) {
979                         /*
980                          * Disable the interrupt to be reported in
981                          * the cause register and then force the same
982                          * interrupt and see if one gets posted.  If
983                          * an interrupt was posted to the bus, the
984                          * test failed.
985                          */
986                         adapter->test_icr = 0;
987                         ew32(IMC, mask);
988                         ew32(ICS, mask);
989                         msleep(10);
990
991                         if (adapter->test_icr & mask) {
992                                 *data = 3;
993                                 break;
994                         }
995                 }
996
997                 /*
998                  * Enable the interrupt to be reported in
999                  * the cause register and then force the same
1000                  * interrupt and see if one gets posted.  If
1001                  * an interrupt was not posted to the bus, the
1002                  * test failed.
1003                  */
1004                 adapter->test_icr = 0;
1005                 ew32(IMS, mask);
1006                 ew32(ICS, mask);
1007                 msleep(10);
1008
1009                 if (!(adapter->test_icr & mask)) {
1010                         *data = 4;
1011                         break;
1012                 }
1013
1014                 if (!shared_int) {
1015                         /*
1016                          * Disable the other interrupts to be reported in
1017                          * the cause register and then force the other
1018                          * interrupts and see if any get posted.  If
1019                          * an interrupt was posted to the bus, the
1020                          * test failed.
1021                          */
1022                         adapter->test_icr = 0;
1023                         ew32(IMC, ~mask & 0x00007FFF);
1024                         ew32(ICS, ~mask & 0x00007FFF);
1025                         msleep(10);
1026
1027                         if (adapter->test_icr) {
1028                                 *data = 5;
1029                                 break;
1030                         }
1031                 }
1032         }
1033
1034         /* Disable all the interrupts */
1035         ew32(IMC, 0xFFFFFFFF);
1036         msleep(10);
1037
1038         /* Unhook test interrupt handler */
1039         free_irq(irq, netdev);
1040
1041 out:
1042         if (int_mode == E1000E_INT_MODE_MSIX) {
1043                 e1000e_reset_interrupt_capability(adapter);
1044                 adapter->int_mode = int_mode;
1045                 e1000e_set_interrupt_capability(adapter);
1046         }
1047
1048         return ret_val;
1049 }
1050
1051 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1052 {
1053         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1054         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1055         struct pci_dev *pdev = adapter->pdev;
1056         int i;
1057
1058         if (tx_ring->desc && tx_ring->buffer_info) {
1059                 for (i = 0; i < tx_ring->count; i++) {
1060                         if (tx_ring->buffer_info[i].dma)
1061                                 dma_unmap_single(&pdev->dev,
1062                                         tx_ring->buffer_info[i].dma,
1063                                         tx_ring->buffer_info[i].length,
1064                                         DMA_TO_DEVICE);
1065                         if (tx_ring->buffer_info[i].skb)
1066                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1067                 }
1068         }
1069
1070         if (rx_ring->desc && rx_ring->buffer_info) {
1071                 for (i = 0; i < rx_ring->count; i++) {
1072                         if (rx_ring->buffer_info[i].dma)
1073                                 dma_unmap_single(&pdev->dev,
1074                                         rx_ring->buffer_info[i].dma,
1075                                         2048, DMA_FROM_DEVICE);
1076                         if (rx_ring->buffer_info[i].skb)
1077                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1078                 }
1079         }
1080
1081         if (tx_ring->desc) {
1082                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1083                                   tx_ring->dma);
1084                 tx_ring->desc = NULL;
1085         }
1086         if (rx_ring->desc) {
1087                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1088                                   rx_ring->dma);
1089                 rx_ring->desc = NULL;
1090         }
1091
1092         kfree(tx_ring->buffer_info);
1093         tx_ring->buffer_info = NULL;
1094         kfree(rx_ring->buffer_info);
1095         rx_ring->buffer_info = NULL;
1096 }
1097
1098 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1099 {
1100         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1101         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1102         struct pci_dev *pdev = adapter->pdev;
1103         struct e1000_hw *hw = &adapter->hw;
1104         u32 rctl;
1105         int i;
1106         int ret_val;
1107
1108         /* Setup Tx descriptor ring and Tx buffers */
1109
1110         if (!tx_ring->count)
1111                 tx_ring->count = E1000_DEFAULT_TXD;
1112
1113         tx_ring->buffer_info = kcalloc(tx_ring->count,
1114                                        sizeof(struct e1000_buffer),
1115                                        GFP_KERNEL);
1116         if (!(tx_ring->buffer_info)) {
1117                 ret_val = 1;
1118                 goto err_nomem;
1119         }
1120
1121         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1122         tx_ring->size = ALIGN(tx_ring->size, 4096);
1123         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1124                                            &tx_ring->dma, GFP_KERNEL);
1125         if (!tx_ring->desc) {
1126                 ret_val = 2;
1127                 goto err_nomem;
1128         }
1129         tx_ring->next_to_use = 0;
1130         tx_ring->next_to_clean = 0;
1131
1132         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1133         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1134         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1135         ew32(TDH, 0);
1136         ew32(TDT, 0);
1137         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1138              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1139              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1140
1141         for (i = 0; i < tx_ring->count; i++) {
1142                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1143                 struct sk_buff *skb;
1144                 unsigned int skb_size = 1024;
1145
1146                 skb = alloc_skb(skb_size, GFP_KERNEL);
1147                 if (!skb) {
1148                         ret_val = 3;
1149                         goto err_nomem;
1150                 }
1151                 skb_put(skb, skb_size);
1152                 tx_ring->buffer_info[i].skb = skb;
1153                 tx_ring->buffer_info[i].length = skb->len;
1154                 tx_ring->buffer_info[i].dma =
1155                         dma_map_single(&pdev->dev, skb->data, skb->len,
1156                                        DMA_TO_DEVICE);
1157                 if (dma_mapping_error(&pdev->dev,
1158                                       tx_ring->buffer_info[i].dma)) {
1159                         ret_val = 4;
1160                         goto err_nomem;
1161                 }
1162                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1163                 tx_desc->lower.data = cpu_to_le32(skb->len);
1164                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1165                                                    E1000_TXD_CMD_IFCS |
1166                                                    E1000_TXD_CMD_RS);
1167                 tx_desc->upper.data = 0;
1168         }
1169
1170         /* Setup Rx descriptor ring and Rx buffers */
1171
1172         if (!rx_ring->count)
1173                 rx_ring->count = E1000_DEFAULT_RXD;
1174
1175         rx_ring->buffer_info = kcalloc(rx_ring->count,
1176                                        sizeof(struct e1000_buffer),
1177                                        GFP_KERNEL);
1178         if (!(rx_ring->buffer_info)) {
1179                 ret_val = 5;
1180                 goto err_nomem;
1181         }
1182
1183         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1184         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1185                                            &rx_ring->dma, GFP_KERNEL);
1186         if (!rx_ring->desc) {
1187                 ret_val = 6;
1188                 goto err_nomem;
1189         }
1190         rx_ring->next_to_use = 0;
1191         rx_ring->next_to_clean = 0;
1192
1193         rctl = er32(RCTL);
1194         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1195         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1196         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1197         ew32(RDLEN, rx_ring->size);
1198         ew32(RDH, 0);
1199         ew32(RDT, 0);
1200         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1201                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1202                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1203                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1204                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1205         ew32(RCTL, rctl);
1206
1207         for (i = 0; i < rx_ring->count; i++) {
1208                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1209                 struct sk_buff *skb;
1210
1211                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1212                 if (!skb) {
1213                         ret_val = 7;
1214                         goto err_nomem;
1215                 }
1216                 skb_reserve(skb, NET_IP_ALIGN);
1217                 rx_ring->buffer_info[i].skb = skb;
1218                 rx_ring->buffer_info[i].dma =
1219                         dma_map_single(&pdev->dev, skb->data, 2048,
1220                                        DMA_FROM_DEVICE);
1221                 if (dma_mapping_error(&pdev->dev,
1222                                       rx_ring->buffer_info[i].dma)) {
1223                         ret_val = 8;
1224                         goto err_nomem;
1225                 }
1226                 rx_desc->buffer_addr =
1227                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1228                 memset(skb->data, 0x00, skb->len);
1229         }
1230
1231         return 0;
1232
1233 err_nomem:
1234         e1000_free_desc_rings(adapter);
1235         return ret_val;
1236 }
1237
1238 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1239 {
1240         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1241         e1e_wphy(&adapter->hw, 29, 0x001F);
1242         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1243         e1e_wphy(&adapter->hw, 29, 0x001A);
1244         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1245 }
1246
1247 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1248 {
1249         struct e1000_hw *hw = &adapter->hw;
1250         u32 ctrl_reg = 0;
1251         u16 phy_reg = 0;
1252         s32 ret_val = 0;
1253
1254         hw->mac.autoneg = 0;
1255
1256         if (hw->phy.type == e1000_phy_ife) {
1257                 /* force 100, set loopback */
1258                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1259
1260                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1261                 ctrl_reg = er32(CTRL);
1262                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1263                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1264                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1265                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1266                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1267
1268                 ew32(CTRL, ctrl_reg);
1269                 udelay(500);
1270
1271                 return 0;
1272         }
1273
1274         /* Specific PHY configuration for loopback */
1275         switch (hw->phy.type) {
1276         case e1000_phy_m88:
1277                 /* Auto-MDI/MDIX Off */
1278                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1279                 /* reset to update Auto-MDI/MDIX */
1280                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1281                 /* autoneg off */
1282                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1283                 break;
1284         case e1000_phy_gg82563:
1285                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1286                 break;
1287         case e1000_phy_bm:
1288                 /* Set Default MAC Interface speed to 1GB */
1289                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1290                 phy_reg &= ~0x0007;
1291                 phy_reg |= 0x006;
1292                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1293                 /* Assert SW reset for above settings to take effect */
1294                 e1000e_commit_phy(hw);
1295                 mdelay(1);
1296                 /* Force Full Duplex */
1297                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1298                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1299                 /* Set Link Up (in force link) */
1300                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1301                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1302                 /* Force Link */
1303                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1304                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1305                 /* Set Early Link Enable */
1306                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1307                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1308                 break;
1309         case e1000_phy_82577:
1310         case e1000_phy_82578:
1311                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1312                 ret_val = hw->phy.ops.acquire(hw);
1313                 if (ret_val) {
1314                         e_err("Cannot setup 1Gbps loopback.\n");
1315                         return ret_val;
1316                 }
1317                 e1000_configure_k1_ich8lan(hw, false);
1318                 hw->phy.ops.release(hw);
1319                 break;
1320         case e1000_phy_82579:
1321                 /* Disable PHY energy detect power down */
1322                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1323                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1324                 /* Disable full chip energy detect */
1325                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1326                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1327                 /* Enable loopback on the PHY */
1328 #define I82577_PHY_LBK_CTRL          19
1329                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1330                 break;
1331         default:
1332                 break;
1333         }
1334
1335         /* force 1000, set loopback */
1336         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1337         mdelay(250);
1338
1339         /* Now set up the MAC to the same speed/duplex as the PHY. */
1340         ctrl_reg = er32(CTRL);
1341         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1342         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1343                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1344                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1345                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1346
1347         if (adapter->flags & FLAG_IS_ICH)
1348                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1349
1350         if (hw->phy.media_type == e1000_media_type_copper &&
1351             hw->phy.type == e1000_phy_m88) {
1352                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1353         } else {
1354                 /*
1355                  * Set the ILOS bit on the fiber Nic if half duplex link is
1356                  * detected.
1357                  */
1358                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1359                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1360         }
1361
1362         ew32(CTRL, ctrl_reg);
1363
1364         /*
1365          * Disable the receiver on the PHY so when a cable is plugged in, the
1366          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1367          */
1368         if (hw->phy.type == e1000_phy_m88)
1369                 e1000_phy_disable_receiver(adapter);
1370
1371         udelay(500);
1372
1373         return 0;
1374 }
1375
1376 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1377 {
1378         struct e1000_hw *hw = &adapter->hw;
1379         u32 ctrl = er32(CTRL);
1380         int link = 0;
1381
1382         /* special requirements for 82571/82572 fiber adapters */
1383
1384         /*
1385          * jump through hoops to make sure link is up because serdes
1386          * link is hardwired up
1387          */
1388         ctrl |= E1000_CTRL_SLU;
1389         ew32(CTRL, ctrl);
1390
1391         /* disable autoneg */
1392         ctrl = er32(TXCW);
1393         ctrl &= ~(1 << 31);
1394         ew32(TXCW, ctrl);
1395
1396         link = (er32(STATUS) & E1000_STATUS_LU);
1397
1398         if (!link) {
1399                 /* set invert loss of signal */
1400                 ctrl = er32(CTRL);
1401                 ctrl |= E1000_CTRL_ILOS;
1402                 ew32(CTRL, ctrl);
1403         }
1404
1405         /*
1406          * special write to serdes control register to enable SerDes analog
1407          * loopback
1408          */
1409 #define E1000_SERDES_LB_ON 0x410
1410         ew32(SCTL, E1000_SERDES_LB_ON);
1411         msleep(10);
1412
1413         return 0;
1414 }
1415
1416 /* only call this for fiber/serdes connections to es2lan */
1417 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1418 {
1419         struct e1000_hw *hw = &adapter->hw;
1420         u32 ctrlext = er32(CTRL_EXT);
1421         u32 ctrl = er32(CTRL);
1422
1423         /*
1424          * save CTRL_EXT to restore later, reuse an empty variable (unused
1425          * on mac_type 80003es2lan)
1426          */
1427         adapter->tx_fifo_head = ctrlext;
1428
1429         /* clear the serdes mode bits, putting the device into mac loopback */
1430         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1431         ew32(CTRL_EXT, ctrlext);
1432
1433         /* force speed to 1000/FD, link up */
1434         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1435         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1436                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1437         ew32(CTRL, ctrl);
1438
1439         /* set mac loopback */
1440         ctrl = er32(RCTL);
1441         ctrl |= E1000_RCTL_LBM_MAC;
1442         ew32(RCTL, ctrl);
1443
1444         /* set testing mode parameters (no need to reset later) */
1445 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1446 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1447         ew32(KMRNCTRLSTA,
1448              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1449
1450         return 0;
1451 }
1452
1453 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1454 {
1455         struct e1000_hw *hw = &adapter->hw;
1456         u32 rctl;
1457
1458         if (hw->phy.media_type == e1000_media_type_fiber ||
1459             hw->phy.media_type == e1000_media_type_internal_serdes) {
1460                 switch (hw->mac.type) {
1461                 case e1000_80003es2lan:
1462                         return e1000_set_es2lan_mac_loopback(adapter);
1463                         break;
1464                 case e1000_82571:
1465                 case e1000_82572:
1466                         return e1000_set_82571_fiber_loopback(adapter);
1467                         break;
1468                 default:
1469                         rctl = er32(RCTL);
1470                         rctl |= E1000_RCTL_LBM_TCVR;
1471                         ew32(RCTL, rctl);
1472                         return 0;
1473                 }
1474         } else if (hw->phy.media_type == e1000_media_type_copper) {
1475                 return e1000_integrated_phy_loopback(adapter);
1476         }
1477
1478         return 7;
1479 }
1480
1481 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1482 {
1483         struct e1000_hw *hw = &adapter->hw;
1484         u32 rctl;
1485         u16 phy_reg;
1486
1487         rctl = er32(RCTL);
1488         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1489         ew32(RCTL, rctl);
1490
1491         switch (hw->mac.type) {
1492         case e1000_80003es2lan:
1493                 if (hw->phy.media_type == e1000_media_type_fiber ||
1494                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1495                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1496                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1497                         adapter->tx_fifo_head = 0;
1498                 }
1499                 /* fall through */
1500         case e1000_82571:
1501         case e1000_82572:
1502                 if (hw->phy.media_type == e1000_media_type_fiber ||
1503                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1504 #define E1000_SERDES_LB_OFF 0x400
1505                         ew32(SCTL, E1000_SERDES_LB_OFF);
1506                         msleep(10);
1507                         break;
1508                 }
1509                 /* Fall Through */
1510         default:
1511                 hw->mac.autoneg = 1;
1512                 if (hw->phy.type == e1000_phy_gg82563)
1513                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1514                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1515                 if (phy_reg & MII_CR_LOOPBACK) {
1516                         phy_reg &= ~MII_CR_LOOPBACK;
1517                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1518                         e1000e_commit_phy(hw);
1519                 }
1520                 break;
1521         }
1522 }
1523
1524 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1525                                       unsigned int frame_size)
1526 {
1527         memset(skb->data, 0xFF, frame_size);
1528         frame_size &= ~1;
1529         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1530         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1531         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1532 }
1533
1534 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1535                                     unsigned int frame_size)
1536 {
1537         frame_size &= ~1;
1538         if (*(skb->data + 3) == 0xFF)
1539                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1540                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1541                         return 0;
1542         return 13;
1543 }
1544
1545 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1546 {
1547         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1548         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1549         struct pci_dev *pdev = adapter->pdev;
1550         struct e1000_hw *hw = &adapter->hw;
1551         int i, j, k, l;
1552         int lc;
1553         int good_cnt;
1554         int ret_val = 0;
1555         unsigned long time;
1556
1557         ew32(RDT, rx_ring->count - 1);
1558
1559         /*
1560          * Calculate the loop count based on the largest descriptor ring
1561          * The idea is to wrap the largest ring a number of times using 64
1562          * send/receive pairs during each loop
1563          */
1564
1565         if (rx_ring->count <= tx_ring->count)
1566                 lc = ((tx_ring->count / 64) * 2) + 1;
1567         else
1568                 lc = ((rx_ring->count / 64) * 2) + 1;
1569
1570         k = 0;
1571         l = 0;
1572         for (j = 0; j <= lc; j++) { /* loop count loop */
1573                 for (i = 0; i < 64; i++) { /* send the packets */
1574                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1575                                                   1024);
1576                         dma_sync_single_for_device(&pdev->dev,
1577                                         tx_ring->buffer_info[k].dma,
1578                                         tx_ring->buffer_info[k].length,
1579                                         DMA_TO_DEVICE);
1580                         k++;
1581                         if (k == tx_ring->count)
1582                                 k = 0;
1583                 }
1584                 ew32(TDT, k);
1585                 msleep(200);
1586                 time = jiffies; /* set the start time for the receive */
1587                 good_cnt = 0;
1588                 do { /* receive the sent packets */
1589                         dma_sync_single_for_cpu(&pdev->dev,
1590                                         rx_ring->buffer_info[l].dma, 2048,
1591                                         DMA_FROM_DEVICE);
1592
1593                         ret_val = e1000_check_lbtest_frame(
1594                                         rx_ring->buffer_info[l].skb, 1024);
1595                         if (!ret_val)
1596                                 good_cnt++;
1597                         l++;
1598                         if (l == rx_ring->count)
1599                                 l = 0;
1600                         /*
1601                          * time + 20 msecs (200 msecs on 2.4) is more than
1602                          * enough time to complete the receives, if it's
1603                          * exceeded, break and error off
1604                          */
1605                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1606                 if (good_cnt != 64) {
1607                         ret_val = 13; /* ret_val is the same as mis-compare */
1608                         break;
1609                 }
1610                 if (jiffies >= (time + 20)) {
1611                         ret_val = 14; /* error code for time out error */
1612                         break;
1613                 }
1614         } /* end loop count loop */
1615         return ret_val;
1616 }
1617
1618 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1619 {
1620         /*
1621          * PHY loopback cannot be performed if SoL/IDER
1622          * sessions are active
1623          */
1624         if (e1000_check_reset_block(&adapter->hw)) {
1625                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1626                 *data = 0;
1627                 goto out;
1628         }
1629
1630         *data = e1000_setup_desc_rings(adapter);
1631         if (*data)
1632                 goto out;
1633
1634         *data = e1000_setup_loopback_test(adapter);
1635         if (*data)
1636                 goto err_loopback;
1637
1638         *data = e1000_run_loopback_test(adapter);
1639         e1000_loopback_cleanup(adapter);
1640
1641 err_loopback:
1642         e1000_free_desc_rings(adapter);
1643 out:
1644         return *data;
1645 }
1646
1647 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1648 {
1649         struct e1000_hw *hw = &adapter->hw;
1650
1651         *data = 0;
1652         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1653                 int i = 0;
1654                 hw->mac.serdes_has_link = false;
1655
1656                 /*
1657                  * On some blade server designs, link establishment
1658                  * could take as long as 2-3 minutes
1659                  */
1660                 do {
1661                         hw->mac.ops.check_for_link(hw);
1662                         if (hw->mac.serdes_has_link)
1663                                 return *data;
1664                         msleep(20);
1665                 } while (i++ < 3750);
1666
1667                 *data = 1;
1668         } else {
1669                 hw->mac.ops.check_for_link(hw);
1670                 if (hw->mac.autoneg)
1671                         msleep(4000);
1672
1673                 if (!(er32(STATUS) &
1674                       E1000_STATUS_LU))
1675                         *data = 1;
1676         }
1677         return *data;
1678 }
1679
1680 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1681 {
1682         switch (sset) {
1683         case ETH_SS_TEST:
1684                 return E1000_TEST_LEN;
1685         case ETH_SS_STATS:
1686                 return E1000_STATS_LEN;
1687         default:
1688                 return -EOPNOTSUPP;
1689         }
1690 }
1691
1692 static void e1000_diag_test(struct net_device *netdev,
1693                             struct ethtool_test *eth_test, u64 *data)
1694 {
1695         struct e1000_adapter *adapter = netdev_priv(netdev);
1696         u16 autoneg_advertised;
1697         u8 forced_speed_duplex;
1698         u8 autoneg;
1699         bool if_running = netif_running(netdev);
1700
1701         set_bit(__E1000_TESTING, &adapter->state);
1702
1703         if (!if_running) {
1704                 /* Get control of and reset hardware */
1705                 if (adapter->flags & FLAG_HAS_AMT)
1706                         e1000e_get_hw_control(adapter);
1707
1708                 e1000e_power_up_phy(adapter);
1709
1710                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1711                 e1000e_reset(adapter);
1712                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1713         }
1714
1715         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1716                 /* Offline tests */
1717
1718                 /* save speed, duplex, autoneg settings */
1719                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1720                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1721                 autoneg = adapter->hw.mac.autoneg;
1722
1723                 e_info("offline testing starting\n");
1724
1725                 if (if_running)
1726                         /* indicate we're in test mode */
1727                         dev_close(netdev);
1728
1729                 if (e1000_reg_test(adapter, &data[0]))
1730                         eth_test->flags |= ETH_TEST_FL_FAILED;
1731
1732                 e1000e_reset(adapter);
1733                 if (e1000_eeprom_test(adapter, &data[1]))
1734                         eth_test->flags |= ETH_TEST_FL_FAILED;
1735
1736                 e1000e_reset(adapter);
1737                 if (e1000_intr_test(adapter, &data[2]))
1738                         eth_test->flags |= ETH_TEST_FL_FAILED;
1739
1740                 e1000e_reset(adapter);
1741                 if (e1000_loopback_test(adapter, &data[3]))
1742                         eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744                 /* force this routine to wait until autoneg complete/timeout */
1745                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1746                 e1000e_reset(adapter);
1747                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1748
1749                 if (e1000_link_test(adapter, &data[4]))
1750                         eth_test->flags |= ETH_TEST_FL_FAILED;
1751
1752                 /* restore speed, duplex, autoneg settings */
1753                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1754                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1755                 adapter->hw.mac.autoneg = autoneg;
1756                 e1000e_reset(adapter);
1757
1758                 clear_bit(__E1000_TESTING, &adapter->state);
1759                 if (if_running)
1760                         dev_open(netdev);
1761         } else {
1762                 /* Online tests */
1763
1764                 e_info("online testing starting\n");
1765
1766                 /* register, eeprom, intr and loopback tests not run online */
1767                 data[0] = 0;
1768                 data[1] = 0;
1769                 data[2] = 0;
1770                 data[3] = 0;
1771
1772                 if (e1000_link_test(adapter, &data[4]))
1773                         eth_test->flags |= ETH_TEST_FL_FAILED;
1774
1775                 clear_bit(__E1000_TESTING, &adapter->state);
1776         }
1777
1778         if (!if_running) {
1779                 e1000e_reset(adapter);
1780
1781                 if (adapter->flags & FLAG_HAS_AMT)
1782                         e1000e_release_hw_control(adapter);
1783         }
1784
1785         msleep_interruptible(4 * 1000);
1786 }
1787
1788 static void e1000_get_wol(struct net_device *netdev,
1789                           struct ethtool_wolinfo *wol)
1790 {
1791         struct e1000_adapter *adapter = netdev_priv(netdev);
1792
1793         wol->supported = 0;
1794         wol->wolopts = 0;
1795
1796         if (!(adapter->flags & FLAG_HAS_WOL) ||
1797             !device_can_wakeup(&adapter->pdev->dev))
1798                 return;
1799
1800         wol->supported = WAKE_UCAST | WAKE_MCAST |
1801                          WAKE_BCAST | WAKE_MAGIC |
1802                          WAKE_PHY | WAKE_ARP;
1803
1804         /* apply any specific unsupported masks here */
1805         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1806                 wol->supported &= ~WAKE_UCAST;
1807
1808                 if (adapter->wol & E1000_WUFC_EX)
1809                         e_err("Interface does not support directed (unicast) "
1810                               "frame wake-up packets\n");
1811         }
1812
1813         if (adapter->wol & E1000_WUFC_EX)
1814                 wol->wolopts |= WAKE_UCAST;
1815         if (adapter->wol & E1000_WUFC_MC)
1816                 wol->wolopts |= WAKE_MCAST;
1817         if (adapter->wol & E1000_WUFC_BC)
1818                 wol->wolopts |= WAKE_BCAST;
1819         if (adapter->wol & E1000_WUFC_MAG)
1820                 wol->wolopts |= WAKE_MAGIC;
1821         if (adapter->wol & E1000_WUFC_LNKC)
1822                 wol->wolopts |= WAKE_PHY;
1823         if (adapter->wol & E1000_WUFC_ARP)
1824                 wol->wolopts |= WAKE_ARP;
1825 }
1826
1827 static int e1000_set_wol(struct net_device *netdev,
1828                          struct ethtool_wolinfo *wol)
1829 {
1830         struct e1000_adapter *adapter = netdev_priv(netdev);
1831
1832         if (!(adapter->flags & FLAG_HAS_WOL) ||
1833             !device_can_wakeup(&adapter->pdev->dev) ||
1834             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1835                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1836                 return -EOPNOTSUPP;
1837
1838         /* these settings will always override what we currently have */
1839         adapter->wol = 0;
1840
1841         if (wol->wolopts & WAKE_UCAST)
1842                 adapter->wol |= E1000_WUFC_EX;
1843         if (wol->wolopts & WAKE_MCAST)
1844                 adapter->wol |= E1000_WUFC_MC;
1845         if (wol->wolopts & WAKE_BCAST)
1846                 adapter->wol |= E1000_WUFC_BC;
1847         if (wol->wolopts & WAKE_MAGIC)
1848                 adapter->wol |= E1000_WUFC_MAG;
1849         if (wol->wolopts & WAKE_PHY)
1850                 adapter->wol |= E1000_WUFC_LNKC;
1851         if (wol->wolopts & WAKE_ARP)
1852                 adapter->wol |= E1000_WUFC_ARP;
1853
1854         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1855
1856         return 0;
1857 }
1858
1859 /* toggle LED 4 times per second = 2 "blinks" per second */
1860 #define E1000_ID_INTERVAL       (HZ/4)
1861
1862 /* bit defines for adapter->led_status */
1863 #define E1000_LED_ON            0
1864
1865 void e1000e_led_blink_task(struct work_struct *work)
1866 {
1867         struct e1000_adapter *adapter = container_of(work,
1868                                         struct e1000_adapter, led_blink_task);
1869
1870         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1871                 adapter->hw.mac.ops.led_off(&adapter->hw);
1872         else
1873                 adapter->hw.mac.ops.led_on(&adapter->hw);
1874 }
1875
1876 static void e1000_led_blink_callback(unsigned long data)
1877 {
1878         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1879
1880         schedule_work(&adapter->led_blink_task);
1881         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1882 }
1883
1884 static int e1000_phys_id(struct net_device *netdev, u32 data)
1885 {
1886         struct e1000_adapter *adapter = netdev_priv(netdev);
1887         struct e1000_hw *hw = &adapter->hw;
1888
1889         if (!data)
1890                 data = INT_MAX;
1891
1892         if ((hw->phy.type == e1000_phy_ife) ||
1893             (hw->mac.type == e1000_pchlan) ||
1894             (hw->mac.type == e1000_pch2lan) ||
1895             (hw->mac.type == e1000_82583) ||
1896             (hw->mac.type == e1000_82574)) {
1897                 if (!adapter->blink_timer.function) {
1898                         init_timer(&adapter->blink_timer);
1899                         adapter->blink_timer.function =
1900                                 e1000_led_blink_callback;
1901                         adapter->blink_timer.data = (unsigned long) adapter;
1902                 }
1903                 mod_timer(&adapter->blink_timer, jiffies);
1904                 msleep_interruptible(data * 1000);
1905                 del_timer_sync(&adapter->blink_timer);
1906                 if (hw->phy.type == e1000_phy_ife)
1907                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1908         } else {
1909                 e1000e_blink_led(hw);
1910                 msleep_interruptible(data * 1000);
1911         }
1912
1913         hw->mac.ops.led_off(hw);
1914         clear_bit(E1000_LED_ON, &adapter->led_status);
1915         hw->mac.ops.cleanup_led(hw);
1916
1917         return 0;
1918 }
1919
1920 static int e1000_get_coalesce(struct net_device *netdev,
1921                               struct ethtool_coalesce *ec)
1922 {
1923         struct e1000_adapter *adapter = netdev_priv(netdev);
1924
1925         if (adapter->itr_setting <= 4)
1926                 ec->rx_coalesce_usecs = adapter->itr_setting;
1927         else
1928                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1929
1930         return 0;
1931 }
1932
1933 static int e1000_set_coalesce(struct net_device *netdev,
1934                               struct ethtool_coalesce *ec)
1935 {
1936         struct e1000_adapter *adapter = netdev_priv(netdev);
1937         struct e1000_hw *hw = &adapter->hw;
1938
1939         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1940             ((ec->rx_coalesce_usecs > 4) &&
1941              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1942             (ec->rx_coalesce_usecs == 2))
1943                 return -EINVAL;
1944
1945         if (ec->rx_coalesce_usecs == 4) {
1946                 adapter->itr = adapter->itr_setting = 4;
1947         } else if (ec->rx_coalesce_usecs <= 3) {
1948                 adapter->itr = 20000;
1949                 adapter->itr_setting = ec->rx_coalesce_usecs;
1950         } else {
1951                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1952                 adapter->itr_setting = adapter->itr & ~3;
1953         }
1954
1955         if (adapter->itr_setting != 0)
1956                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1957         else
1958                 ew32(ITR, 0);
1959
1960         return 0;
1961 }
1962
1963 static int e1000_nway_reset(struct net_device *netdev)
1964 {
1965         struct e1000_adapter *adapter = netdev_priv(netdev);
1966         if (netif_running(netdev))
1967                 e1000e_reinit_locked(adapter);
1968         return 0;
1969 }
1970
1971 static void e1000_get_ethtool_stats(struct net_device *netdev,
1972                                     struct ethtool_stats *stats,
1973                                     u64 *data)
1974 {
1975         struct e1000_adapter *adapter = netdev_priv(netdev);
1976         struct rtnl_link_stats64 net_stats;
1977         int i;
1978         char *p = NULL;
1979
1980         e1000e_get_stats64(netdev, &net_stats);
1981         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1982                 switch (e1000_gstrings_stats[i].type) {
1983                 case NETDEV_STATS:
1984                         p = (char *) &net_stats +
1985                                         e1000_gstrings_stats[i].stat_offset;
1986                         break;
1987                 case E1000_STATS:
1988                         p = (char *) adapter +
1989                                         e1000_gstrings_stats[i].stat_offset;
1990                         break;
1991                 default:
1992                         data[i] = 0;
1993                         continue;
1994                 }
1995
1996                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1997                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1998         }
1999 }
2000
2001 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
2002                               u8 *data)
2003 {
2004         u8 *p = data;
2005         int i;
2006
2007         switch (stringset) {
2008         case ETH_SS_TEST:
2009                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2010                 break;
2011         case ETH_SS_STATS:
2012                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2013                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2014                                ETH_GSTRING_LEN);
2015                         p += ETH_GSTRING_LEN;
2016                 }
2017                 break;
2018         }
2019 }
2020
2021 static const struct ethtool_ops e1000_ethtool_ops = {
2022         .get_settings           = e1000_get_settings,
2023         .set_settings           = e1000_set_settings,
2024         .get_drvinfo            = e1000_get_drvinfo,
2025         .get_regs_len           = e1000_get_regs_len,
2026         .get_regs               = e1000_get_regs,
2027         .get_wol                = e1000_get_wol,
2028         .set_wol                = e1000_set_wol,
2029         .get_msglevel           = e1000_get_msglevel,
2030         .set_msglevel           = e1000_set_msglevel,
2031         .nway_reset             = e1000_nway_reset,
2032         .get_link               = ethtool_op_get_link,
2033         .get_eeprom_len         = e1000_get_eeprom_len,
2034         .get_eeprom             = e1000_get_eeprom,
2035         .set_eeprom             = e1000_set_eeprom,
2036         .get_ringparam          = e1000_get_ringparam,
2037         .set_ringparam          = e1000_set_ringparam,
2038         .get_pauseparam         = e1000_get_pauseparam,
2039         .set_pauseparam         = e1000_set_pauseparam,
2040         .get_rx_csum            = e1000_get_rx_csum,
2041         .set_rx_csum            = e1000_set_rx_csum,
2042         .get_tx_csum            = e1000_get_tx_csum,
2043         .set_tx_csum            = e1000_set_tx_csum,
2044         .get_sg                 = ethtool_op_get_sg,
2045         .set_sg                 = ethtool_op_set_sg,
2046         .get_tso                = ethtool_op_get_tso,
2047         .set_tso                = e1000_set_tso,
2048         .self_test              = e1000_diag_test,
2049         .get_strings            = e1000_get_strings,
2050         .phys_id                = e1000_phys_id,
2051         .get_ethtool_stats      = e1000_get_ethtool_stats,
2052         .get_sset_count         = e1000e_get_sset_count,
2053         .get_coalesce           = e1000_get_coalesce,
2054         .set_coalesce           = e1000_set_coalesce,
2055         .get_flags              = ethtool_op_get_flags,
2056 };
2057
2058 void e1000e_set_ethtool_ops(struct net_device *netdev)
2059 {
2060         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2061 }