e1000: Remove unneeded and unwanted memsets
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         /* required last entry */
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122                              struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124                              struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145                                 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147                                 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring,
175                                    int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177                                       struct e1000_rx_ring *rx_ring,
178                                       int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181                            int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189                                        struct sk_buff *skb);
190
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
195
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
201
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
206
207 extern void e1000_check_options(struct e1000_adapter *adapter);
208
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210                      pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
213
214 static struct pci_error_handlers e1000_err_handler = {
215         .error_detected = e1000_io_error_detected,
216         .slot_reset = e1000_io_slot_reset,
217         .resume = e1000_io_resume,
218 };
219
220 static struct pci_driver e1000_driver = {
221         .name     = e1000_driver_name,
222         .id_table = e1000_pci_tbl,
223         .probe    = e1000_probe,
224         .remove   = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226         /* Power Managment Hooks */
227         .suspend  = e1000_suspend,
228         .resume   = e1000_resume,
229 #endif
230         .shutdown = e1000_shutdown,
231         .err_handler = &e1000_err_handler
232 };
233
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
238
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
242
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249
250 static int __init
251 e1000_init_module(void)
252 {
253         int ret;
254         printk(KERN_INFO "%s - version %s\n",
255                e1000_driver_string, e1000_driver_version);
256
257         printk(KERN_INFO "%s\n", e1000_copyright);
258
259         ret = pci_register_driver(&e1000_driver);
260
261         return ret;
262 }
263
264 module_init(e1000_init_module);
265
266 /**
267  * e1000_exit_module - Driver Exit Cleanup Routine
268  *
269  * e1000_exit_module is called just before the driver is removed
270  * from memory.
271  **/
272
273 static void __exit
274 e1000_exit_module(void)
275 {
276         pci_unregister_driver(&e1000_driver);
277 }
278
279 module_exit(e1000_exit_module);
280
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283         struct net_device *netdev = adapter->netdev;
284         int flags, err = 0;
285
286         flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288         if (adapter->hw.mac_type > e1000_82547_rev_2) {
289                 adapter->have_msi = TRUE;
290                 if ((err = pci_enable_msi(adapter->pdev))) {
291                         DPRINTK(PROBE, ERR,
292                          "Unable to allocate MSI interrupt Error: %d\n", err);
293                         adapter->have_msi = FALSE;
294                 }
295         }
296         if (adapter->have_msi)
297                 flags &= ~IRQF_SHARED;
298 #endif
299         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300                                netdev->name, netdev)))
301                 DPRINTK(PROBE, ERR,
302                         "Unable to allocate interrupt Error: %d\n", err);
303
304         return err;
305 }
306
307 static void e1000_free_irq(struct e1000_adapter *adapter)
308 {
309         struct net_device *netdev = adapter->netdev;
310
311         free_irq(adapter->pdev->irq, netdev);
312
313 #ifdef CONFIG_PCI_MSI
314         if (adapter->have_msi)
315                 pci_disable_msi(adapter->pdev);
316 #endif
317 }
318
319 /**
320  * e1000_irq_disable - Mask off interrupt generation on the NIC
321  * @adapter: board private structure
322  **/
323
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
326 {
327         atomic_inc(&adapter->irq_sem);
328         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329         E1000_WRITE_FLUSH(&adapter->hw);
330         synchronize_irq(adapter->pdev->irq);
331 }
332
333 /**
334  * e1000_irq_enable - Enable default interrupt generation settings
335  * @adapter: board private structure
336  **/
337
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
340 {
341         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343                 E1000_WRITE_FLUSH(&adapter->hw);
344         }
345 }
346
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
349 {
350         struct net_device *netdev = adapter->netdev;
351         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352         uint16_t old_vid = adapter->mng_vlan_id;
353         if (adapter->vlgrp) {
354                 if (!adapter->vlgrp->vlan_devices[vid]) {
355                         if (adapter->hw.mng_cookie.status &
356                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357                                 e1000_vlan_rx_add_vid(netdev, vid);
358                                 adapter->mng_vlan_id = vid;
359                         } else
360                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
361
362                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363                                         (vid != old_vid) &&
364                                         !adapter->vlgrp->vlan_devices[old_vid])
365                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
366                 } else
367                         adapter->mng_vlan_id = vid;
368         }
369 }
370
371 /**
372  * e1000_release_hw_control - release control of the h/w to f/w
373  * @adapter: address of board private structure
374  *
375  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376  * For ASF and Pass Through versions of f/w this means that the
377  * driver is no longer loaded. For AMT version (only with 82573) i
378  * of the f/w this means that the network i/f is closed.
379  *
380  **/
381
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
384 {
385         uint32_t ctrl_ext;
386         uint32_t swsm;
387         uint32_t extcnf;
388
389         /* Let firmware taken over control of h/w */
390         switch (adapter->hw.mac_type) {
391         case e1000_82571:
392         case e1000_82572:
393         case e1000_80003es2lan:
394                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397                 break;
398         case e1000_82573:
399                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400                 E1000_WRITE_REG(&adapter->hw, SWSM,
401                                 swsm & ~E1000_SWSM_DRV_LOAD);
402         case e1000_ich8lan:
403                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406                 break;
407         default:
408                 break;
409         }
410 }
411
412 /**
413  * e1000_get_hw_control - get control of the h/w from f/w
414  * @adapter: address of board private structure
415  *
416  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417  * For ASF and Pass Through versions of f/w this means that
418  * the driver is loaded. For AMT version (only with 82573)
419  * of the f/w this means that the network i/f is open.
420  *
421  **/
422
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
425 {
426         uint32_t ctrl_ext;
427         uint32_t swsm;
428         uint32_t extcnf;
429
430         /* Let firmware know the driver has taken over */
431         switch (adapter->hw.mac_type) {
432         case e1000_82571:
433         case e1000_82572:
434         case e1000_80003es2lan:
435                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
436                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
437                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
438                 break;
439         case e1000_82573:
440                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
441                 E1000_WRITE_REG(&adapter->hw, SWSM,
442                                 swsm | E1000_SWSM_DRV_LOAD);
443                 break;
444         case e1000_ich8lan:
445                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
446                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
447                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
448                 break;
449         default:
450                 break;
451         }
452 }
453
454 int
455 e1000_up(struct e1000_adapter *adapter)
456 {
457         struct net_device *netdev = adapter->netdev;
458         int i;
459
460         /* hardware has been reset, we need to reload some things */
461
462         e1000_set_multi(netdev);
463
464         e1000_restore_vlan(adapter);
465
466         e1000_configure_tx(adapter);
467         e1000_setup_rctl(adapter);
468         e1000_configure_rx(adapter);
469         /* call E1000_DESC_UNUSED which always leaves
470          * at least 1 descriptor unused to make sure
471          * next_to_use != next_to_clean */
472         for (i = 0; i < adapter->num_rx_queues; i++) {
473                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
474                 adapter->alloc_rx_buf(adapter, ring,
475                                       E1000_DESC_UNUSED(ring));
476         }
477
478         adapter->tx_queue_len = netdev->tx_queue_len;
479
480 #ifdef CONFIG_E1000_NAPI
481         netif_poll_enable(netdev);
482 #endif
483         e1000_irq_enable(adapter);
484
485         clear_bit(__E1000_DOWN, &adapter->flags);
486
487         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
488         return 0;
489 }
490
491 /**
492  * e1000_power_up_phy - restore link in case the phy was powered down
493  * @adapter: address of board private structure
494  *
495  * The phy may be powered down to save power and turn off link when the
496  * driver is unloaded and wake on lan is not enabled (among others)
497  * *** this routine MUST be followed by a call to e1000_reset ***
498  *
499  **/
500
501 void e1000_power_up_phy(struct e1000_adapter *adapter)
502 {
503         uint16_t mii_reg = 0;
504
505         /* Just clear the power down bit to wake the phy back up */
506         if (adapter->hw.media_type == e1000_media_type_copper) {
507                 /* according to the manual, the phy will retain its
508                  * settings across a power-down/up cycle */
509                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
510                 mii_reg &= ~MII_CR_POWER_DOWN;
511                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
512         }
513 }
514
515 static void e1000_power_down_phy(struct e1000_adapter *adapter)
516 {
517         /* Power down the PHY so no link is implied when interface is down *
518          * The PHY cannot be powered down if any of the following is TRUE *
519          * (a) WoL is enabled
520          * (b) AMT is active
521          * (c) SoL/IDER session is active */
522         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
523            adapter->hw.media_type == e1000_media_type_copper) {
524                 uint16_t mii_reg = 0;
525
526                 switch (adapter->hw.mac_type) {
527                 case e1000_82540:
528                 case e1000_82545:
529                 case e1000_82545_rev_3:
530                 case e1000_82546:
531                 case e1000_82546_rev_3:
532                 case e1000_82541:
533                 case e1000_82541_rev_2:
534                 case e1000_82547:
535                 case e1000_82547_rev_2:
536                         if (E1000_READ_REG(&adapter->hw, MANC) &
537                             E1000_MANC_SMBUS_EN)
538                                 goto out;
539                         break;
540                 case e1000_82571:
541                 case e1000_82572:
542                 case e1000_82573:
543                 case e1000_80003es2lan:
544                 case e1000_ich8lan:
545                         if (e1000_check_mng_mode(&adapter->hw) ||
546                             e1000_check_phy_reset_block(&adapter->hw))
547                                 goto out;
548                         break;
549                 default:
550                         goto out;
551                 }
552                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
553                 mii_reg |= MII_CR_POWER_DOWN;
554                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
555                 mdelay(1);
556         }
557 out:
558         return;
559 }
560
561 void
562 e1000_down(struct e1000_adapter *adapter)
563 {
564         struct net_device *netdev = adapter->netdev;
565
566         /* signal that we're down so the interrupt handler does not
567          * reschedule our watchdog timer */
568         set_bit(__E1000_DOWN, &adapter->flags);
569
570         e1000_irq_disable(adapter);
571
572         del_timer_sync(&adapter->tx_fifo_stall_timer);
573         del_timer_sync(&adapter->watchdog_timer);
574         del_timer_sync(&adapter->phy_info_timer);
575
576 #ifdef CONFIG_E1000_NAPI
577         netif_poll_disable(netdev);
578 #endif
579         netdev->tx_queue_len = adapter->tx_queue_len;
580         adapter->link_speed = 0;
581         adapter->link_duplex = 0;
582         netif_carrier_off(netdev);
583         netif_stop_queue(netdev);
584
585         e1000_reset(adapter);
586         e1000_clean_all_tx_rings(adapter);
587         e1000_clean_all_rx_rings(adapter);
588 }
589
590 void
591 e1000_reinit_locked(struct e1000_adapter *adapter)
592 {
593         WARN_ON(in_interrupt());
594         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595                 msleep(1);
596         e1000_down(adapter);
597         e1000_up(adapter);
598         clear_bit(__E1000_RESETTING, &adapter->flags);
599 }
600
601 void
602 e1000_reset(struct e1000_adapter *adapter)
603 {
604         uint32_t pba, manc;
605         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
606
607         /* Repartition Pba for greater than 9k mtu
608          * To take effect CTRL.RST is required.
609          */
610
611         switch (adapter->hw.mac_type) {
612         case e1000_82547:
613         case e1000_82547_rev_2:
614                 pba = E1000_PBA_30K;
615                 break;
616         case e1000_82571:
617         case e1000_82572:
618         case e1000_80003es2lan:
619                 pba = E1000_PBA_38K;
620                 break;
621         case e1000_82573:
622                 pba = E1000_PBA_12K;
623                 break;
624         case e1000_ich8lan:
625                 pba = E1000_PBA_8K;
626                 break;
627         default:
628                 pba = E1000_PBA_48K;
629                 break;
630         }
631
632         if ((adapter->hw.mac_type != e1000_82573) &&
633            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
634                 pba -= 8; /* allocate more FIFO for Tx */
635
636
637         if (adapter->hw.mac_type == e1000_82547) {
638                 adapter->tx_fifo_head = 0;
639                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
640                 adapter->tx_fifo_size =
641                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
642                 atomic_set(&adapter->tx_fifo_stall, 0);
643         }
644
645         E1000_WRITE_REG(&adapter->hw, PBA, pba);
646
647         /* flow control settings */
648         /* Set the FC high water mark to 90% of the FIFO size.
649          * Required to clear last 3 LSB */
650         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
651         /* We can't use 90% on small FIFOs because the remainder
652          * would be less than 1 full frame.  In this case, we size
653          * it to allow at least a full frame above the high water
654          *  mark. */
655         if (pba < E1000_PBA_16K)
656                 fc_high_water_mark = (pba * 1024) - 1600;
657
658         adapter->hw.fc_high_water = fc_high_water_mark;
659         adapter->hw.fc_low_water = fc_high_water_mark - 8;
660         if (adapter->hw.mac_type == e1000_80003es2lan)
661                 adapter->hw.fc_pause_time = 0xFFFF;
662         else
663                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
664         adapter->hw.fc_send_xon = 1;
665         adapter->hw.fc = adapter->hw.original_fc;
666
667         /* Allow time for pending master requests to run */
668         e1000_reset_hw(&adapter->hw);
669         if (adapter->hw.mac_type >= e1000_82544)
670                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
671
672         if (e1000_init_hw(&adapter->hw))
673                 DPRINTK(PROBE, ERR, "Hardware Error\n");
674         e1000_update_mng_vlan(adapter);
675         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
676         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
677
678         e1000_reset_adaptive(&adapter->hw);
679         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
680
681         if (!adapter->smart_power_down &&
682             (adapter->hw.mac_type == e1000_82571 ||
683              adapter->hw.mac_type == e1000_82572)) {
684                 uint16_t phy_data = 0;
685                 /* speed up time to link by disabling smart power down, ignore
686                  * the return value of this function because there is nothing
687                  * different we would do if it failed */
688                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
689                                    &phy_data);
690                 phy_data &= ~IGP02E1000_PM_SPD;
691                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
692                                     phy_data);
693         }
694
695         if ((adapter->en_mng_pt) &&
696             (adapter->hw.mac_type >= e1000_82540) &&
697             (adapter->hw.mac_type < e1000_82571) &&
698             (adapter->hw.media_type == e1000_media_type_copper)) {
699                 manc = E1000_READ_REG(&adapter->hw, MANC);
700                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
701                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
702         }
703 }
704
705 /**
706  * e1000_probe - Device Initialization Routine
707  * @pdev: PCI device information struct
708  * @ent: entry in e1000_pci_tbl
709  *
710  * Returns 0 on success, negative on failure
711  *
712  * e1000_probe initializes an adapter identified by a pci_dev structure.
713  * The OS initialization, configuring of the adapter private structure,
714  * and a hardware reset occur.
715  **/
716
717 static int __devinit
718 e1000_probe(struct pci_dev *pdev,
719             const struct pci_device_id *ent)
720 {
721         struct net_device *netdev;
722         struct e1000_adapter *adapter;
723         unsigned long mmio_start, mmio_len;
724         unsigned long flash_start, flash_len;
725
726         static int cards_found = 0;
727         static int global_quad_port_a = 0; /* global ksp3 port a indication */
728         int i, err, pci_using_dac;
729         uint16_t eeprom_data = 0;
730         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
731         if ((err = pci_enable_device(pdev)))
732                 return err;
733
734         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
735             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
736                 pci_using_dac = 1;
737         } else {
738                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
739                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
740                         E1000_ERR("No usable DMA configuration, aborting\n");
741                         goto err_dma;
742                 }
743                 pci_using_dac = 0;
744         }
745
746         if ((err = pci_request_regions(pdev, e1000_driver_name)))
747                 goto err_pci_reg;
748
749         pci_set_master(pdev);
750
751         err = -ENOMEM;
752         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
753         if (!netdev)
754                 goto err_alloc_etherdev;
755
756         SET_MODULE_OWNER(netdev);
757         SET_NETDEV_DEV(netdev, &pdev->dev);
758
759         pci_set_drvdata(pdev, netdev);
760         adapter = netdev_priv(netdev);
761         adapter->netdev = netdev;
762         adapter->pdev = pdev;
763         adapter->hw.back = adapter;
764         adapter->msg_enable = (1 << debug) - 1;
765
766         mmio_start = pci_resource_start(pdev, BAR_0);
767         mmio_len = pci_resource_len(pdev, BAR_0);
768
769         err = -EIO;
770         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
771         if (!adapter->hw.hw_addr)
772                 goto err_ioremap;
773
774         for (i = BAR_1; i <= BAR_5; i++) {
775                 if (pci_resource_len(pdev, i) == 0)
776                         continue;
777                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
778                         adapter->hw.io_base = pci_resource_start(pdev, i);
779                         break;
780                 }
781         }
782
783         netdev->open = &e1000_open;
784         netdev->stop = &e1000_close;
785         netdev->hard_start_xmit = &e1000_xmit_frame;
786         netdev->get_stats = &e1000_get_stats;
787         netdev->set_multicast_list = &e1000_set_multi;
788         netdev->set_mac_address = &e1000_set_mac;
789         netdev->change_mtu = &e1000_change_mtu;
790         netdev->do_ioctl = &e1000_ioctl;
791         e1000_set_ethtool_ops(netdev);
792         netdev->tx_timeout = &e1000_tx_timeout;
793         netdev->watchdog_timeo = 5 * HZ;
794 #ifdef CONFIG_E1000_NAPI
795         netdev->poll = &e1000_clean;
796         netdev->weight = 64;
797 #endif
798         netdev->vlan_rx_register = e1000_vlan_rx_register;
799         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
800         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
801 #ifdef CONFIG_NET_POLL_CONTROLLER
802         netdev->poll_controller = e1000_netpoll;
803 #endif
804         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
805
806         netdev->mem_start = mmio_start;
807         netdev->mem_end = mmio_start + mmio_len;
808         netdev->base_addr = adapter->hw.io_base;
809
810         adapter->bd_number = cards_found;
811
812         /* setup the private structure */
813
814         if ((err = e1000_sw_init(adapter)))
815                 goto err_sw_init;
816
817         err = -EIO;
818         /* Flash BAR mapping must happen after e1000_sw_init
819          * because it depends on mac_type */
820         if ((adapter->hw.mac_type == e1000_ich8lan) &&
821            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
822                 flash_start = pci_resource_start(pdev, 1);
823                 flash_len = pci_resource_len(pdev, 1);
824                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
825                 if (!adapter->hw.flash_address)
826                         goto err_flashmap;
827         }
828
829         if (e1000_check_phy_reset_block(&adapter->hw))
830                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
831
832         if (adapter->hw.mac_type >= e1000_82543) {
833                 netdev->features = NETIF_F_SG |
834                                    NETIF_F_HW_CSUM |
835                                    NETIF_F_HW_VLAN_TX |
836                                    NETIF_F_HW_VLAN_RX |
837                                    NETIF_F_HW_VLAN_FILTER;
838                 if (adapter->hw.mac_type == e1000_ich8lan)
839                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
840         }
841
842 #ifdef NETIF_F_TSO
843         if ((adapter->hw.mac_type >= e1000_82544) &&
844            (adapter->hw.mac_type != e1000_82547))
845                 netdev->features |= NETIF_F_TSO;
846
847 #ifdef NETIF_F_TSO6
848         if (adapter->hw.mac_type > e1000_82547_rev_2)
849                 netdev->features |= NETIF_F_TSO6;
850 #endif
851 #endif
852         if (pci_using_dac)
853                 netdev->features |= NETIF_F_HIGHDMA;
854
855         netdev->features |= NETIF_F_LLTX;
856
857         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
858
859         /* initialize eeprom parameters */
860
861         if (e1000_init_eeprom_params(&adapter->hw)) {
862                 E1000_ERR("EEPROM initialization failed\n");
863                 goto err_eeprom;
864         }
865
866         /* before reading the EEPROM, reset the controller to
867          * put the device in a known good starting state */
868
869         e1000_reset_hw(&adapter->hw);
870
871         /* make sure the EEPROM is good */
872
873         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
874                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
875                 goto err_eeprom;
876         }
877
878         /* copy the MAC address out of the EEPROM */
879
880         if (e1000_read_mac_addr(&adapter->hw))
881                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
882         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
883         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
884
885         if (!is_valid_ether_addr(netdev->perm_addr)) {
886                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
887                 goto err_eeprom;
888         }
889
890         e1000_get_bus_info(&adapter->hw);
891
892         init_timer(&adapter->tx_fifo_stall_timer);
893         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
894         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
895
896         init_timer(&adapter->watchdog_timer);
897         adapter->watchdog_timer.function = &e1000_watchdog;
898         adapter->watchdog_timer.data = (unsigned long) adapter;
899
900         init_timer(&adapter->phy_info_timer);
901         adapter->phy_info_timer.function = &e1000_update_phy_info;
902         adapter->phy_info_timer.data = (unsigned long) adapter;
903
904         INIT_WORK(&adapter->reset_task,
905                 (void (*)(void *))e1000_reset_task, netdev);
906
907         e1000_check_options(adapter);
908
909         /* Initial Wake on LAN setting
910          * If APM wake is enabled in the EEPROM,
911          * enable the ACPI Magic Packet filter
912          */
913
914         switch (adapter->hw.mac_type) {
915         case e1000_82542_rev2_0:
916         case e1000_82542_rev2_1:
917         case e1000_82543:
918                 break;
919         case e1000_82544:
920                 e1000_read_eeprom(&adapter->hw,
921                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
922                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
923                 break;
924         case e1000_ich8lan:
925                 e1000_read_eeprom(&adapter->hw,
926                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
927                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
928                 break;
929         case e1000_82546:
930         case e1000_82546_rev_3:
931         case e1000_82571:
932         case e1000_80003es2lan:
933                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
934                         e1000_read_eeprom(&adapter->hw,
935                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
936                         break;
937                 }
938                 /* Fall Through */
939         default:
940                 e1000_read_eeprom(&adapter->hw,
941                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
942                 break;
943         }
944         if (eeprom_data & eeprom_apme_mask)
945                 adapter->eeprom_wol |= E1000_WUFC_MAG;
946
947         /* now that we have the eeprom settings, apply the special cases
948          * where the eeprom may be wrong or the board simply won't support
949          * wake on lan on a particular port */
950         switch (pdev->device) {
951         case E1000_DEV_ID_82546GB_PCIE:
952                 adapter->eeprom_wol = 0;
953                 break;
954         case E1000_DEV_ID_82546EB_FIBER:
955         case E1000_DEV_ID_82546GB_FIBER:
956         case E1000_DEV_ID_82571EB_FIBER:
957                 /* Wake events only supported on port A for dual fiber
958                  * regardless of eeprom setting */
959                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
960                         adapter->eeprom_wol = 0;
961                 break;
962         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
963         case E1000_DEV_ID_82571EB_QUAD_COPPER:
964                 /* if quad port adapter, disable WoL on all but port A */
965                 if (global_quad_port_a != 0)
966                         adapter->eeprom_wol = 0;
967                 else
968                         adapter->quad_port_a = 1;
969                 /* Reset for multiple quad port adapters */
970                 if (++global_quad_port_a == 4)
971                         global_quad_port_a = 0;
972                 break;
973         }
974
975         /* initialize the wol settings based on the eeprom settings */
976         adapter->wol = adapter->eeprom_wol;
977
978         /* print bus type/speed/width info */
979         {
980         struct e1000_hw *hw = &adapter->hw;
981         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
982                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
983                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
984                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
985                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
986                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
987                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
988                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
989                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
990                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
991                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
992                  "32-bit"));
993         }
994
995         for (i = 0; i < 6; i++)
996                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
997
998         /* reset the hardware with the new settings */
999         e1000_reset(adapter);
1000
1001         /* If the controller is 82573 and f/w is AMT, do not set
1002          * DRV_LOAD until the interface is up.  For all other cases,
1003          * let the f/w know that the h/w is now under the control
1004          * of the driver. */
1005         if (adapter->hw.mac_type != e1000_82573 ||
1006             !e1000_check_mng_mode(&adapter->hw))
1007                 e1000_get_hw_control(adapter);
1008
1009         strcpy(netdev->name, "eth%d");
1010         if ((err = register_netdev(netdev)))
1011                 goto err_register;
1012
1013         /* tell the stack to leave us alone until e1000_open() is called */
1014         netif_carrier_off(netdev);
1015         netif_stop_queue(netdev);
1016
1017         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1018
1019         cards_found++;
1020         return 0;
1021
1022 err_register:
1023         e1000_release_hw_control(adapter);
1024 err_eeprom:
1025         if (!e1000_check_phy_reset_block(&adapter->hw))
1026                 e1000_phy_hw_reset(&adapter->hw);
1027
1028         if (adapter->hw.flash_address)
1029                 iounmap(adapter->hw.flash_address);
1030 err_flashmap:
1031 #ifdef CONFIG_E1000_NAPI
1032         for (i = 0; i < adapter->num_rx_queues; i++)
1033                 dev_put(&adapter->polling_netdev[i]);
1034 #endif
1035
1036         kfree(adapter->tx_ring);
1037         kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039         kfree(adapter->polling_netdev);
1040 #endif
1041 err_sw_init:
1042         iounmap(adapter->hw.hw_addr);
1043 err_ioremap:
1044         free_netdev(netdev);
1045 err_alloc_etherdev:
1046         pci_release_regions(pdev);
1047 err_pci_reg:
1048 err_dma:
1049         pci_disable_device(pdev);
1050         return err;
1051 }
1052
1053 /**
1054  * e1000_remove - Device Removal Routine
1055  * @pdev: PCI device information struct
1056  *
1057  * e1000_remove is called by the PCI subsystem to alert the driver
1058  * that it should release a PCI device.  The could be caused by a
1059  * Hot-Plug event, or because the driver is going to be removed from
1060  * memory.
1061  **/
1062
1063 static void __devexit
1064 e1000_remove(struct pci_dev *pdev)
1065 {
1066         struct net_device *netdev = pci_get_drvdata(pdev);
1067         struct e1000_adapter *adapter = netdev_priv(netdev);
1068         uint32_t manc;
1069 #ifdef CONFIG_E1000_NAPI
1070         int i;
1071 #endif
1072
1073         flush_scheduled_work();
1074
1075         if (adapter->hw.mac_type >= e1000_82540 &&
1076             adapter->hw.mac_type < e1000_82571 &&
1077             adapter->hw.media_type == e1000_media_type_copper) {
1078                 manc = E1000_READ_REG(&adapter->hw, MANC);
1079                 if (manc & E1000_MANC_SMBUS_EN) {
1080                         manc |= E1000_MANC_ARP_EN;
1081                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1082                 }
1083         }
1084
1085         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1086          * would have already happened in close and is redundant. */
1087         e1000_release_hw_control(adapter);
1088
1089         unregister_netdev(netdev);
1090 #ifdef CONFIG_E1000_NAPI
1091         for (i = 0; i < adapter->num_rx_queues; i++)
1092                 dev_put(&adapter->polling_netdev[i]);
1093 #endif
1094
1095         if (!e1000_check_phy_reset_block(&adapter->hw))
1096                 e1000_phy_hw_reset(&adapter->hw);
1097
1098         kfree(adapter->tx_ring);
1099         kfree(adapter->rx_ring);
1100 #ifdef CONFIG_E1000_NAPI
1101         kfree(adapter->polling_netdev);
1102 #endif
1103
1104         iounmap(adapter->hw.hw_addr);
1105         if (adapter->hw.flash_address)
1106                 iounmap(adapter->hw.flash_address);
1107         pci_release_regions(pdev);
1108
1109         free_netdev(netdev);
1110
1111         pci_disable_device(pdev);
1112 }
1113
1114 /**
1115  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1116  * @adapter: board private structure to initialize
1117  *
1118  * e1000_sw_init initializes the Adapter private data structure.
1119  * Fields are initialized based on PCI device information and
1120  * OS network device settings (MTU size).
1121  **/
1122
1123 static int __devinit
1124 e1000_sw_init(struct e1000_adapter *adapter)
1125 {
1126         struct e1000_hw *hw = &adapter->hw;
1127         struct net_device *netdev = adapter->netdev;
1128         struct pci_dev *pdev = adapter->pdev;
1129 #ifdef CONFIG_E1000_NAPI
1130         int i;
1131 #endif
1132
1133         /* PCI config space info */
1134
1135         hw->vendor_id = pdev->vendor;
1136         hw->device_id = pdev->device;
1137         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1138         hw->subsystem_id = pdev->subsystem_device;
1139
1140         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1141
1142         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1143
1144         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1145         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1146         hw->max_frame_size = netdev->mtu +
1147                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1148         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1149
1150         /* identify the MAC */
1151
1152         if (e1000_set_mac_type(hw)) {
1153                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1154                 return -EIO;
1155         }
1156
1157         switch (hw->mac_type) {
1158         default:
1159                 break;
1160         case e1000_82541:
1161         case e1000_82547:
1162         case e1000_82541_rev_2:
1163         case e1000_82547_rev_2:
1164                 hw->phy_init_script = 1;
1165                 break;
1166         }
1167
1168         e1000_set_media_type(hw);
1169
1170         hw->wait_autoneg_complete = FALSE;
1171         hw->tbi_compatibility_en = TRUE;
1172         hw->adaptive_ifs = TRUE;
1173
1174         /* Copper options */
1175
1176         if (hw->media_type == e1000_media_type_copper) {
1177                 hw->mdix = AUTO_ALL_MODES;
1178                 hw->disable_polarity_correction = FALSE;
1179                 hw->master_slave = E1000_MASTER_SLAVE;
1180         }
1181
1182         adapter->num_tx_queues = 1;
1183         adapter->num_rx_queues = 1;
1184
1185         if (e1000_alloc_queues(adapter)) {
1186                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1187                 return -ENOMEM;
1188         }
1189
1190 #ifdef CONFIG_E1000_NAPI
1191         for (i = 0; i < adapter->num_rx_queues; i++) {
1192                 adapter->polling_netdev[i].priv = adapter;
1193                 adapter->polling_netdev[i].poll = &e1000_clean;
1194                 adapter->polling_netdev[i].weight = 64;
1195                 dev_hold(&adapter->polling_netdev[i]);
1196                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1197         }
1198         spin_lock_init(&adapter->tx_queue_lock);
1199 #endif
1200
1201         atomic_set(&adapter->irq_sem, 1);
1202         spin_lock_init(&adapter->stats_lock);
1203
1204         set_bit(__E1000_DOWN, &adapter->flags);
1205
1206         return 0;
1207 }
1208
1209 /**
1210  * e1000_alloc_queues - Allocate memory for all rings
1211  * @adapter: board private structure to initialize
1212  *
1213  * We allocate one ring per queue at run-time since we don't know the
1214  * number of queues at compile-time.  The polling_netdev array is
1215  * intended for Multiqueue, but should work fine with a single queue.
1216  **/
1217
1218 static int __devinit
1219 e1000_alloc_queues(struct e1000_adapter *adapter)
1220 {
1221         int size;
1222
1223         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1224         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1225         if (!adapter->tx_ring)
1226                 return -ENOMEM;
1227         memset(adapter->tx_ring, 0, size);
1228
1229         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1230         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1231         if (!adapter->rx_ring) {
1232                 kfree(adapter->tx_ring);
1233                 return -ENOMEM;
1234         }
1235         memset(adapter->rx_ring, 0, size);
1236
1237 #ifdef CONFIG_E1000_NAPI
1238         size = sizeof(struct net_device) * adapter->num_rx_queues;
1239         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1240         if (!adapter->polling_netdev) {
1241                 kfree(adapter->tx_ring);
1242                 kfree(adapter->rx_ring);
1243                 return -ENOMEM;
1244         }
1245         memset(adapter->polling_netdev, 0, size);
1246 #endif
1247
1248         return E1000_SUCCESS;
1249 }
1250
1251 /**
1252  * e1000_open - Called when a network interface is made active
1253  * @netdev: network interface device structure
1254  *
1255  * Returns 0 on success, negative value on failure
1256  *
1257  * The open entry point is called when a network interface is made
1258  * active by the system (IFF_UP).  At this point all resources needed
1259  * for transmit and receive operations are allocated, the interrupt
1260  * handler is registered with the OS, the watchdog timer is started,
1261  * and the stack is notified that the interface is ready.
1262  **/
1263
1264 static int
1265 e1000_open(struct net_device *netdev)
1266 {
1267         struct e1000_adapter *adapter = netdev_priv(netdev);
1268         int err;
1269
1270         /* disallow open during test */
1271         if (test_bit(__E1000_TESTING, &adapter->flags))
1272                 return -EBUSY;
1273
1274         /* allocate transmit descriptors */
1275         if ((err = e1000_setup_all_tx_resources(adapter)))
1276                 goto err_setup_tx;
1277
1278         /* allocate receive descriptors */
1279         if ((err = e1000_setup_all_rx_resources(adapter)))
1280                 goto err_setup_rx;
1281
1282         err = e1000_request_irq(adapter);
1283         if (err)
1284                 goto err_req_irq;
1285
1286         e1000_power_up_phy(adapter);
1287
1288         if ((err = e1000_up(adapter)))
1289                 goto err_up;
1290         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1291         if ((adapter->hw.mng_cookie.status &
1292                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1293                 e1000_update_mng_vlan(adapter);
1294         }
1295
1296         /* If AMT is enabled, let the firmware know that the network
1297          * interface is now open */
1298         if (adapter->hw.mac_type == e1000_82573 &&
1299             e1000_check_mng_mode(&adapter->hw))
1300                 e1000_get_hw_control(adapter);
1301
1302         return E1000_SUCCESS;
1303
1304 err_up:
1305         e1000_power_down_phy(adapter);
1306         e1000_free_irq(adapter);
1307 err_req_irq:
1308         e1000_free_all_rx_resources(adapter);
1309 err_setup_rx:
1310         e1000_free_all_tx_resources(adapter);
1311 err_setup_tx:
1312         e1000_reset(adapter);
1313
1314         return err;
1315 }
1316
1317 /**
1318  * e1000_close - Disables a network interface
1319  * @netdev: network interface device structure
1320  *
1321  * Returns 0, this is not allowed to fail
1322  *
1323  * The close entry point is called when an interface is de-activated
1324  * by the OS.  The hardware is still under the drivers control, but
1325  * needs to be disabled.  A global MAC reset is issued to stop the
1326  * hardware, and all transmit and receive resources are freed.
1327  **/
1328
1329 static int
1330 e1000_close(struct net_device *netdev)
1331 {
1332         struct e1000_adapter *adapter = netdev_priv(netdev);
1333
1334         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1335         e1000_down(adapter);
1336         e1000_power_down_phy(adapter);
1337         e1000_free_irq(adapter);
1338
1339         e1000_free_all_tx_resources(adapter);
1340         e1000_free_all_rx_resources(adapter);
1341
1342         /* kill manageability vlan ID if supported, but not if a vlan with
1343          * the same ID is registered on the host OS (let 8021q kill it) */
1344         if ((adapter->hw.mng_cookie.status &
1345                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1346              !(adapter->vlgrp &&
1347                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1348                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1349         }
1350
1351         /* If AMT is enabled, let the firmware know that the network
1352          * interface is now closed */
1353         if (adapter->hw.mac_type == e1000_82573 &&
1354             e1000_check_mng_mode(&adapter->hw))
1355                 e1000_release_hw_control(adapter);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1362  * @adapter: address of board private structure
1363  * @start: address of beginning of memory
1364  * @len: length of memory
1365  **/
1366 static boolean_t
1367 e1000_check_64k_bound(struct e1000_adapter *adapter,
1368                       void *start, unsigned long len)
1369 {
1370         unsigned long begin = (unsigned long) start;
1371         unsigned long end = begin + len;
1372
1373         /* First rev 82545 and 82546 need to not allow any memory
1374          * write location to cross 64k boundary due to errata 23 */
1375         if (adapter->hw.mac_type == e1000_82545 ||
1376             adapter->hw.mac_type == e1000_82546) {
1377                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1378         }
1379
1380         return TRUE;
1381 }
1382
1383 /**
1384  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1385  * @adapter: board private structure
1386  * @txdr:    tx descriptor ring (for a specific queue) to setup
1387  *
1388  * Return 0 on success, negative on failure
1389  **/
1390
1391 static int
1392 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1393                          struct e1000_tx_ring *txdr)
1394 {
1395         struct pci_dev *pdev = adapter->pdev;
1396         int size;
1397
1398         size = sizeof(struct e1000_buffer) * txdr->count;
1399         txdr->buffer_info = vmalloc(size);
1400         if (!txdr->buffer_info) {
1401                 DPRINTK(PROBE, ERR,
1402                 "Unable to allocate memory for the transmit descriptor ring\n");
1403                 return -ENOMEM;
1404         }
1405         memset(txdr->buffer_info, 0, size);
1406
1407         /* round up to nearest 4K */
1408
1409         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1410         E1000_ROUNDUP(txdr->size, 4096);
1411
1412         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1413         if (!txdr->desc) {
1414 setup_tx_desc_die:
1415                 vfree(txdr->buffer_info);
1416                 DPRINTK(PROBE, ERR,
1417                 "Unable to allocate memory for the transmit descriptor ring\n");
1418                 return -ENOMEM;
1419         }
1420
1421         /* Fix for errata 23, can't cross 64kB boundary */
1422         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1423                 void *olddesc = txdr->desc;
1424                 dma_addr_t olddma = txdr->dma;
1425                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1426                                      "at %p\n", txdr->size, txdr->desc);
1427                 /* Try again, without freeing the previous */
1428                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1429                 /* Failed allocation, critical failure */
1430                 if (!txdr->desc) {
1431                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1432                         goto setup_tx_desc_die;
1433                 }
1434
1435                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436                         /* give up */
1437                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1438                                             txdr->dma);
1439                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1440                         DPRINTK(PROBE, ERR,
1441                                 "Unable to allocate aligned memory "
1442                                 "for the transmit descriptor ring\n");
1443                         vfree(txdr->buffer_info);
1444                         return -ENOMEM;
1445                 } else {
1446                         /* Free old allocation, new allocation was successful */
1447                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1448                 }
1449         }
1450         memset(txdr->desc, 0, txdr->size);
1451
1452         txdr->next_to_use = 0;
1453         txdr->next_to_clean = 0;
1454         spin_lock_init(&txdr->tx_lock);
1455
1456         return 0;
1457 }
1458
1459 /**
1460  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1461  *                                (Descriptors) for all queues
1462  * @adapter: board private structure
1463  *
1464  * Return 0 on success, negative on failure
1465  **/
1466
1467 int
1468 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1469 {
1470         int i, err = 0;
1471
1472         for (i = 0; i < adapter->num_tx_queues; i++) {
1473                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1474                 if (err) {
1475                         DPRINTK(PROBE, ERR,
1476                                 "Allocation for Tx Queue %u failed\n", i);
1477                         for (i-- ; i >= 0; i--)
1478                                 e1000_free_tx_resources(adapter,
1479                                                         &adapter->tx_ring[i]);
1480                         break;
1481                 }
1482         }
1483
1484         return err;
1485 }
1486
1487 /**
1488  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1489  * @adapter: board private structure
1490  *
1491  * Configure the Tx unit of the MAC after a reset.
1492  **/
1493
1494 static void
1495 e1000_configure_tx(struct e1000_adapter *adapter)
1496 {
1497         uint64_t tdba;
1498         struct e1000_hw *hw = &adapter->hw;
1499         uint32_t tdlen, tctl, tipg, tarc;
1500         uint32_t ipgr1, ipgr2;
1501
1502         /* Setup the HW Tx Head and Tail descriptor pointers */
1503
1504         switch (adapter->num_tx_queues) {
1505         case 1:
1506         default:
1507                 tdba = adapter->tx_ring[0].dma;
1508                 tdlen = adapter->tx_ring[0].count *
1509                         sizeof(struct e1000_tx_desc);
1510                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1511                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1512                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1513                 E1000_WRITE_REG(hw, TDT, 0);
1514                 E1000_WRITE_REG(hw, TDH, 0);
1515                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1516                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1517                 break;
1518         }
1519
1520         /* Set the default values for the Tx Inter Packet Gap timer */
1521
1522         if (hw->media_type == e1000_media_type_fiber ||
1523             hw->media_type == e1000_media_type_internal_serdes)
1524                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1525         else
1526                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1527
1528         switch (hw->mac_type) {
1529         case e1000_82542_rev2_0:
1530         case e1000_82542_rev2_1:
1531                 tipg = DEFAULT_82542_TIPG_IPGT;
1532                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1533                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1534                 break;
1535         case e1000_80003es2lan:
1536                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1537                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1538                 break;
1539         default:
1540                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1541                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1542                 break;
1543         }
1544         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1545         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1546         E1000_WRITE_REG(hw, TIPG, tipg);
1547
1548         /* Set the Tx Interrupt Delay register */
1549
1550         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1551         if (hw->mac_type >= e1000_82540)
1552                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1553
1554         /* Program the Transmit Control Register */
1555
1556         tctl = E1000_READ_REG(hw, TCTL);
1557         tctl &= ~E1000_TCTL_CT;
1558         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1559                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1560
1561         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1562                 tarc = E1000_READ_REG(hw, TARC0);
1563                 /* set the speed mode bit, we'll clear it if we're not at
1564                  * gigabit link later */
1565                 tarc |= (1 << 21);
1566                 E1000_WRITE_REG(hw, TARC0, tarc);
1567         } else if (hw->mac_type == e1000_80003es2lan) {
1568                 tarc = E1000_READ_REG(hw, TARC0);
1569                 tarc |= 1;
1570                 E1000_WRITE_REG(hw, TARC0, tarc);
1571                 tarc = E1000_READ_REG(hw, TARC1);
1572                 tarc |= 1;
1573                 E1000_WRITE_REG(hw, TARC1, tarc);
1574         }
1575
1576         e1000_config_collision_dist(hw);
1577
1578         /* Setup Transmit Descriptor Settings for eop descriptor */
1579         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1580                 E1000_TXD_CMD_IFCS;
1581
1582         if (hw->mac_type < e1000_82543)
1583                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1584         else
1585                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1586
1587         /* Cache if we're 82544 running in PCI-X because we'll
1588          * need this to apply a workaround later in the send path. */
1589         if (hw->mac_type == e1000_82544 &&
1590             hw->bus_type == e1000_bus_type_pcix)
1591                 adapter->pcix_82544 = 1;
1592
1593         E1000_WRITE_REG(hw, TCTL, tctl);
1594
1595 }
1596
1597 /**
1598  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1599  * @adapter: board private structure
1600  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1601  *
1602  * Returns 0 on success, negative on failure
1603  **/
1604
1605 static int
1606 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1607                          struct e1000_rx_ring *rxdr)
1608 {
1609         struct pci_dev *pdev = adapter->pdev;
1610         int size, desc_len;
1611
1612         size = sizeof(struct e1000_buffer) * rxdr->count;
1613         rxdr->buffer_info = vmalloc(size);
1614         if (!rxdr->buffer_info) {
1615                 DPRINTK(PROBE, ERR,
1616                 "Unable to allocate memory for the receive descriptor ring\n");
1617                 return -ENOMEM;
1618         }
1619         memset(rxdr->buffer_info, 0, size);
1620
1621         size = sizeof(struct e1000_ps_page) * rxdr->count;
1622         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1623         if (!rxdr->ps_page) {
1624                 vfree(rxdr->buffer_info);
1625                 DPRINTK(PROBE, ERR,
1626                 "Unable to allocate memory for the receive descriptor ring\n");
1627                 return -ENOMEM;
1628         }
1629         memset(rxdr->ps_page, 0, size);
1630
1631         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1632         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1633         if (!rxdr->ps_page_dma) {
1634                 vfree(rxdr->buffer_info);
1635                 kfree(rxdr->ps_page);
1636                 DPRINTK(PROBE, ERR,
1637                 "Unable to allocate memory for the receive descriptor ring\n");
1638                 return -ENOMEM;
1639         }
1640         memset(rxdr->ps_page_dma, 0, size);
1641
1642         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1643                 desc_len = sizeof(struct e1000_rx_desc);
1644         else
1645                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1646
1647         /* Round up to nearest 4K */
1648
1649         rxdr->size = rxdr->count * desc_len;
1650         E1000_ROUNDUP(rxdr->size, 4096);
1651
1652         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1653
1654         if (!rxdr->desc) {
1655                 DPRINTK(PROBE, ERR,
1656                 "Unable to allocate memory for the receive descriptor ring\n");
1657 setup_rx_desc_die:
1658                 vfree(rxdr->buffer_info);
1659                 kfree(rxdr->ps_page);
1660                 kfree(rxdr->ps_page_dma);
1661                 return -ENOMEM;
1662         }
1663
1664         /* Fix for errata 23, can't cross 64kB boundary */
1665         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1666                 void *olddesc = rxdr->desc;
1667                 dma_addr_t olddma = rxdr->dma;
1668                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1669                                      "at %p\n", rxdr->size, rxdr->desc);
1670                 /* Try again, without freeing the previous */
1671                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1672                 /* Failed allocation, critical failure */
1673                 if (!rxdr->desc) {
1674                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1675                         DPRINTK(PROBE, ERR,
1676                                 "Unable to allocate memory "
1677                                 "for the receive descriptor ring\n");
1678                         goto setup_rx_desc_die;
1679                 }
1680
1681                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682                         /* give up */
1683                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1684                                             rxdr->dma);
1685                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1686                         DPRINTK(PROBE, ERR,
1687                                 "Unable to allocate aligned memory "
1688                                 "for the receive descriptor ring\n");
1689                         goto setup_rx_desc_die;
1690                 } else {
1691                         /* Free old allocation, new allocation was successful */
1692                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1693                 }
1694         }
1695         memset(rxdr->desc, 0, rxdr->size);
1696
1697         rxdr->next_to_clean = 0;
1698         rxdr->next_to_use = 0;
1699
1700         return 0;
1701 }
1702
1703 /**
1704  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1705  *                                (Descriptors) for all queues
1706  * @adapter: board private structure
1707  *
1708  * Return 0 on success, negative on failure
1709  **/
1710
1711 int
1712 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1713 {
1714         int i, err = 0;
1715
1716         for (i = 0; i < adapter->num_rx_queues; i++) {
1717                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1718                 if (err) {
1719                         DPRINTK(PROBE, ERR,
1720                                 "Allocation for Rx Queue %u failed\n", i);
1721                         for (i-- ; i >= 0; i--)
1722                                 e1000_free_rx_resources(adapter,
1723                                                         &adapter->rx_ring[i]);
1724                         break;
1725                 }
1726         }
1727
1728         return err;
1729 }
1730
1731 /**
1732  * e1000_setup_rctl - configure the receive control registers
1733  * @adapter: Board private structure
1734  **/
1735 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1736                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1737 static void
1738 e1000_setup_rctl(struct e1000_adapter *adapter)
1739 {
1740         uint32_t rctl, rfctl;
1741         uint32_t psrctl = 0;
1742 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1743         uint32_t pages = 0;
1744 #endif
1745
1746         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1747
1748         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1749
1750         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1751                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1752                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1753
1754         if (adapter->hw.tbi_compatibility_on == 1)
1755                 rctl |= E1000_RCTL_SBP;
1756         else
1757                 rctl &= ~E1000_RCTL_SBP;
1758
1759         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1760                 rctl &= ~E1000_RCTL_LPE;
1761         else
1762                 rctl |= E1000_RCTL_LPE;
1763
1764         /* Setup buffer sizes */
1765         rctl &= ~E1000_RCTL_SZ_4096;
1766         rctl |= E1000_RCTL_BSEX;
1767         switch (adapter->rx_buffer_len) {
1768                 case E1000_RXBUFFER_256:
1769                         rctl |= E1000_RCTL_SZ_256;
1770                         rctl &= ~E1000_RCTL_BSEX;
1771                         break;
1772                 case E1000_RXBUFFER_512:
1773                         rctl |= E1000_RCTL_SZ_512;
1774                         rctl &= ~E1000_RCTL_BSEX;
1775                         break;
1776                 case E1000_RXBUFFER_1024:
1777                         rctl |= E1000_RCTL_SZ_1024;
1778                         rctl &= ~E1000_RCTL_BSEX;
1779                         break;
1780                 case E1000_RXBUFFER_2048:
1781                 default:
1782                         rctl |= E1000_RCTL_SZ_2048;
1783                         rctl &= ~E1000_RCTL_BSEX;
1784                         break;
1785                 case E1000_RXBUFFER_4096:
1786                         rctl |= E1000_RCTL_SZ_4096;
1787                         break;
1788                 case E1000_RXBUFFER_8192:
1789                         rctl |= E1000_RCTL_SZ_8192;
1790                         break;
1791                 case E1000_RXBUFFER_16384:
1792                         rctl |= E1000_RCTL_SZ_16384;
1793                         break;
1794         }
1795
1796 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1797         /* 82571 and greater support packet-split where the protocol
1798          * header is placed in skb->data and the packet data is
1799          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1800          * In the case of a non-split, skb->data is linearly filled,
1801          * followed by the page buffers.  Therefore, skb->data is
1802          * sized to hold the largest protocol header.
1803          */
1804         /* allocations using alloc_page take too long for regular MTU
1805          * so only enable packet split for jumbo frames */
1806         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1807         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1808             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1809                 adapter->rx_ps_pages = pages;
1810         else
1811                 adapter->rx_ps_pages = 0;
1812 #endif
1813         if (adapter->rx_ps_pages) {
1814                 /* Configure extra packet-split registers */
1815                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1816                 rfctl |= E1000_RFCTL_EXTEN;
1817                 /* disable packet split support for IPv6 extension headers,
1818                  * because some malformed IPv6 headers can hang the RX */
1819                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1820                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1821
1822                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1823
1824                 rctl |= E1000_RCTL_DTYP_PS;
1825
1826                 psrctl |= adapter->rx_ps_bsize0 >>
1827                         E1000_PSRCTL_BSIZE0_SHIFT;
1828
1829                 switch (adapter->rx_ps_pages) {
1830                 case 3:
1831                         psrctl |= PAGE_SIZE <<
1832                                 E1000_PSRCTL_BSIZE3_SHIFT;
1833                 case 2:
1834                         psrctl |= PAGE_SIZE <<
1835                                 E1000_PSRCTL_BSIZE2_SHIFT;
1836                 case 1:
1837                         psrctl |= PAGE_SIZE >>
1838                                 E1000_PSRCTL_BSIZE1_SHIFT;
1839                         break;
1840                 }
1841
1842                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1843         }
1844
1845         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1846 }
1847
1848 /**
1849  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850  * @adapter: board private structure
1851  *
1852  * Configure the Rx unit of the MAC after a reset.
1853  **/
1854
1855 static void
1856 e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858         uint64_t rdba;
1859         struct e1000_hw *hw = &adapter->hw;
1860         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1861
1862         if (adapter->rx_ps_pages) {
1863                 /* this is a 32 byte descriptor */
1864                 rdlen = adapter->rx_ring[0].count *
1865                         sizeof(union e1000_rx_desc_packet_split);
1866                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1867                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1868         } else {
1869                 rdlen = adapter->rx_ring[0].count *
1870                         sizeof(struct e1000_rx_desc);
1871                 adapter->clean_rx = e1000_clean_rx_irq;
1872                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1873         }
1874
1875         /* disable receives while setting up the descriptors */
1876         rctl = E1000_READ_REG(hw, RCTL);
1877         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1878
1879         /* set the Receive Delay Timer Register */
1880         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1881
1882         if (hw->mac_type >= e1000_82540) {
1883                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1884                 if (adapter->itr > 1)
1885                         E1000_WRITE_REG(hw, ITR,
1886                                 1000000000 / (adapter->itr * 256));
1887         }
1888
1889         if (hw->mac_type >= e1000_82571) {
1890                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1891                 /* Reset delay timers after every interrupt */
1892                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1893 #ifdef CONFIG_E1000_NAPI
1894                 /* Auto-Mask interrupts upon ICR read. */
1895                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1896 #endif
1897                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1898                 E1000_WRITE_REG(hw, IAM, ~0);
1899                 E1000_WRITE_FLUSH(hw);
1900         }
1901
1902         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1903          * the Base and Length of the Rx Descriptor Ring */
1904         switch (adapter->num_rx_queues) {
1905         case 1:
1906         default:
1907                 rdba = adapter->rx_ring[0].dma;
1908                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1909                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1910                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1911                 E1000_WRITE_REG(hw, RDT, 0);
1912                 E1000_WRITE_REG(hw, RDH, 0);
1913                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1914                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1915                 break;
1916         }
1917
1918         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1919         if (hw->mac_type >= e1000_82543) {
1920                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1921                 if (adapter->rx_csum == TRUE) {
1922                         rxcsum |= E1000_RXCSUM_TUOFL;
1923
1924                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1925                          * Must be used in conjunction with packet-split. */
1926                         if ((hw->mac_type >= e1000_82571) &&
1927                             (adapter->rx_ps_pages)) {
1928                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1929                         }
1930                 } else {
1931                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1932                         /* don't need to clear IPPCSE as it defaults to 0 */
1933                 }
1934                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1935         }
1936
1937         /* enable early receives on 82573, only takes effect if using > 2048
1938          * byte total frame size.  for example only for jumbo frames */
1939 #define E1000_ERT_2048 0x100
1940         if (hw->mac_type == e1000_82573)
1941                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1942
1943         /* Enable Receives */
1944         E1000_WRITE_REG(hw, RCTL, rctl);
1945 }
1946
1947 /**
1948  * e1000_free_tx_resources - Free Tx Resources per Queue
1949  * @adapter: board private structure
1950  * @tx_ring: Tx descriptor ring for a specific queue
1951  *
1952  * Free all transmit software resources
1953  **/
1954
1955 static void
1956 e1000_free_tx_resources(struct e1000_adapter *adapter,
1957                         struct e1000_tx_ring *tx_ring)
1958 {
1959         struct pci_dev *pdev = adapter->pdev;
1960
1961         e1000_clean_tx_ring(adapter, tx_ring);
1962
1963         vfree(tx_ring->buffer_info);
1964         tx_ring->buffer_info = NULL;
1965
1966         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1967
1968         tx_ring->desc = NULL;
1969 }
1970
1971 /**
1972  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1973  * @adapter: board private structure
1974  *
1975  * Free all transmit software resources
1976  **/
1977
1978 void
1979 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1980 {
1981         int i;
1982
1983         for (i = 0; i < adapter->num_tx_queues; i++)
1984                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1985 }
1986
1987 static void
1988 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1989                         struct e1000_buffer *buffer_info)
1990 {
1991         if (buffer_info->dma) {
1992                 pci_unmap_page(adapter->pdev,
1993                                 buffer_info->dma,
1994                                 buffer_info->length,
1995                                 PCI_DMA_TODEVICE);
1996                 buffer_info->dma = 0;
1997         }
1998         if (buffer_info->skb) {
1999                 dev_kfree_skb_any(buffer_info->skb);
2000                 buffer_info->skb = NULL;
2001         }
2002         /* buffer_info must be completely set up in the transmit path */
2003 }
2004
2005 /**
2006  * e1000_clean_tx_ring - Free Tx Buffers
2007  * @adapter: board private structure
2008  * @tx_ring: ring to be cleaned
2009  **/
2010
2011 static void
2012 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2013                     struct e1000_tx_ring *tx_ring)
2014 {
2015         struct e1000_buffer *buffer_info;
2016         unsigned long size;
2017         unsigned int i;
2018
2019         /* Free all the Tx ring sk_buffs */
2020
2021         for (i = 0; i < tx_ring->count; i++) {
2022                 buffer_info = &tx_ring->buffer_info[i];
2023                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2024         }
2025
2026         size = sizeof(struct e1000_buffer) * tx_ring->count;
2027         memset(tx_ring->buffer_info, 0, size);
2028
2029         /* Zero out the descriptor ring */
2030
2031         memset(tx_ring->desc, 0, tx_ring->size);
2032
2033         tx_ring->next_to_use = 0;
2034         tx_ring->next_to_clean = 0;
2035         tx_ring->last_tx_tso = 0;
2036
2037         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2038         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2039 }
2040
2041 /**
2042  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2043  * @adapter: board private structure
2044  **/
2045
2046 static void
2047 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2048 {
2049         int i;
2050
2051         for (i = 0; i < adapter->num_tx_queues; i++)
2052                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2053 }
2054
2055 /**
2056  * e1000_free_rx_resources - Free Rx Resources
2057  * @adapter: board private structure
2058  * @rx_ring: ring to clean the resources from
2059  *
2060  * Free all receive software resources
2061  **/
2062
2063 static void
2064 e1000_free_rx_resources(struct e1000_adapter *adapter,
2065                         struct e1000_rx_ring *rx_ring)
2066 {
2067         struct pci_dev *pdev = adapter->pdev;
2068
2069         e1000_clean_rx_ring(adapter, rx_ring);
2070
2071         vfree(rx_ring->buffer_info);
2072         rx_ring->buffer_info = NULL;
2073         kfree(rx_ring->ps_page);
2074         rx_ring->ps_page = NULL;
2075         kfree(rx_ring->ps_page_dma);
2076         rx_ring->ps_page_dma = NULL;
2077
2078         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2079
2080         rx_ring->desc = NULL;
2081 }
2082
2083 /**
2084  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2085  * @adapter: board private structure
2086  *
2087  * Free all receive software resources
2088  **/
2089
2090 void
2091 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2092 {
2093         int i;
2094
2095         for (i = 0; i < adapter->num_rx_queues; i++)
2096                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2097 }
2098
2099 /**
2100  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2101  * @adapter: board private structure
2102  * @rx_ring: ring to free buffers from
2103  **/
2104
2105 static void
2106 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2107                     struct e1000_rx_ring *rx_ring)
2108 {
2109         struct e1000_buffer *buffer_info;
2110         struct e1000_ps_page *ps_page;
2111         struct e1000_ps_page_dma *ps_page_dma;
2112         struct pci_dev *pdev = adapter->pdev;
2113         unsigned long size;
2114         unsigned int i, j;
2115
2116         /* Free all the Rx ring sk_buffs */
2117         for (i = 0; i < rx_ring->count; i++) {
2118                 buffer_info = &rx_ring->buffer_info[i];
2119                 if (buffer_info->skb) {
2120                         pci_unmap_single(pdev,
2121                                          buffer_info->dma,
2122                                          buffer_info->length,
2123                                          PCI_DMA_FROMDEVICE);
2124
2125                         dev_kfree_skb(buffer_info->skb);
2126                         buffer_info->skb = NULL;
2127                 }
2128                 ps_page = &rx_ring->ps_page[i];
2129                 ps_page_dma = &rx_ring->ps_page_dma[i];
2130                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2131                         if (!ps_page->ps_page[j]) break;
2132                         pci_unmap_page(pdev,
2133                                        ps_page_dma->ps_page_dma[j],
2134                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2135                         ps_page_dma->ps_page_dma[j] = 0;
2136                         put_page(ps_page->ps_page[j]);
2137                         ps_page->ps_page[j] = NULL;
2138                 }
2139         }
2140
2141         size = sizeof(struct e1000_buffer) * rx_ring->count;
2142         memset(rx_ring->buffer_info, 0, size);
2143         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2144         memset(rx_ring->ps_page, 0, size);
2145         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2146         memset(rx_ring->ps_page_dma, 0, size);
2147
2148         /* Zero out the descriptor ring */
2149
2150         memset(rx_ring->desc, 0, rx_ring->size);
2151
2152         rx_ring->next_to_clean = 0;
2153         rx_ring->next_to_use = 0;
2154
2155         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2156         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2157 }
2158
2159 /**
2160  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2161  * @adapter: board private structure
2162  **/
2163
2164 static void
2165 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2166 {
2167         int i;
2168
2169         for (i = 0; i < adapter->num_rx_queues; i++)
2170                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2171 }
2172
2173 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2174  * and memory write and invalidate disabled for certain operations
2175  */
2176 static void
2177 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2178 {
2179         struct net_device *netdev = adapter->netdev;
2180         uint32_t rctl;
2181
2182         e1000_pci_clear_mwi(&adapter->hw);
2183
2184         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2185         rctl |= E1000_RCTL_RST;
2186         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2187         E1000_WRITE_FLUSH(&adapter->hw);
2188         mdelay(5);
2189
2190         if (netif_running(netdev))
2191                 e1000_clean_all_rx_rings(adapter);
2192 }
2193
2194 static void
2195 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2196 {
2197         struct net_device *netdev = adapter->netdev;
2198         uint32_t rctl;
2199
2200         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2201         rctl &= ~E1000_RCTL_RST;
2202         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2203         E1000_WRITE_FLUSH(&adapter->hw);
2204         mdelay(5);
2205
2206         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2207                 e1000_pci_set_mwi(&adapter->hw);
2208
2209         if (netif_running(netdev)) {
2210                 /* No need to loop, because 82542 supports only 1 queue */
2211                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2212                 e1000_configure_rx(adapter);
2213                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2214         }
2215 }
2216
2217 /**
2218  * e1000_set_mac - Change the Ethernet Address of the NIC
2219  * @netdev: network interface device structure
2220  * @p: pointer to an address structure
2221  *
2222  * Returns 0 on success, negative on failure
2223  **/
2224
2225 static int
2226 e1000_set_mac(struct net_device *netdev, void *p)
2227 {
2228         struct e1000_adapter *adapter = netdev_priv(netdev);
2229         struct sockaddr *addr = p;
2230
2231         if (!is_valid_ether_addr(addr->sa_data))
2232                 return -EADDRNOTAVAIL;
2233
2234         /* 82542 2.0 needs to be in reset to write receive address registers */
2235
2236         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2237                 e1000_enter_82542_rst(adapter);
2238
2239         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2240         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2241
2242         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2243
2244         /* With 82571 controllers, LAA may be overwritten (with the default)
2245          * due to controller reset from the other port. */
2246         if (adapter->hw.mac_type == e1000_82571) {
2247                 /* activate the work around */
2248                 adapter->hw.laa_is_present = 1;
2249
2250                 /* Hold a copy of the LAA in RAR[14] This is done so that
2251                  * between the time RAR[0] gets clobbered  and the time it
2252                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2253                  * of the RARs and no incoming packets directed to this port
2254                  * are dropped. Eventaully the LAA will be in RAR[0] and
2255                  * RAR[14] */
2256                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2257                                         E1000_RAR_ENTRIES - 1);
2258         }
2259
2260         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2261                 e1000_leave_82542_rst(adapter);
2262
2263         return 0;
2264 }
2265
2266 /**
2267  * e1000_set_multi - Multicast and Promiscuous mode set
2268  * @netdev: network interface device structure
2269  *
2270  * The set_multi entry point is called whenever the multicast address
2271  * list or the network interface flags are updated.  This routine is
2272  * responsible for configuring the hardware for proper multicast,
2273  * promiscuous mode, and all-multi behavior.
2274  **/
2275
2276 static void
2277 e1000_set_multi(struct net_device *netdev)
2278 {
2279         struct e1000_adapter *adapter = netdev_priv(netdev);
2280         struct e1000_hw *hw = &adapter->hw;
2281         struct dev_mc_list *mc_ptr;
2282         uint32_t rctl;
2283         uint32_t hash_value;
2284         int i, rar_entries = E1000_RAR_ENTRIES;
2285         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2286                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2287                                 E1000_NUM_MTA_REGISTERS;
2288
2289         if (adapter->hw.mac_type == e1000_ich8lan)
2290                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2291
2292         /* reserve RAR[14] for LAA over-write work-around */
2293         if (adapter->hw.mac_type == e1000_82571)
2294                 rar_entries--;
2295
2296         /* Check for Promiscuous and All Multicast modes */
2297
2298         rctl = E1000_READ_REG(hw, RCTL);
2299
2300         if (netdev->flags & IFF_PROMISC) {
2301                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2302         } else if (netdev->flags & IFF_ALLMULTI) {
2303                 rctl |= E1000_RCTL_MPE;
2304                 rctl &= ~E1000_RCTL_UPE;
2305         } else {
2306                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2307         }
2308
2309         E1000_WRITE_REG(hw, RCTL, rctl);
2310
2311         /* 82542 2.0 needs to be in reset to write receive address registers */
2312
2313         if (hw->mac_type == e1000_82542_rev2_0)
2314                 e1000_enter_82542_rst(adapter);
2315
2316         /* load the first 14 multicast address into the exact filters 1-14
2317          * RAR 0 is used for the station MAC adddress
2318          * if there are not 14 addresses, go ahead and clear the filters
2319          * -- with 82571 controllers only 0-13 entries are filled here
2320          */
2321         mc_ptr = netdev->mc_list;
2322
2323         for (i = 1; i < rar_entries; i++) {
2324                 if (mc_ptr) {
2325                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2326                         mc_ptr = mc_ptr->next;
2327                 } else {
2328                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2329                         E1000_WRITE_FLUSH(hw);
2330                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2331                         E1000_WRITE_FLUSH(hw);
2332                 }
2333         }
2334
2335         /* clear the old settings from the multicast hash table */
2336
2337         for (i = 0; i < mta_reg_count; i++) {
2338                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2339                 E1000_WRITE_FLUSH(hw);
2340         }
2341
2342         /* load any remaining addresses into the hash table */
2343
2344         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2345                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2346                 e1000_mta_set(hw, hash_value);
2347         }
2348
2349         if (hw->mac_type == e1000_82542_rev2_0)
2350                 e1000_leave_82542_rst(adapter);
2351 }
2352
2353 /* Need to wait a few seconds after link up to get diagnostic information from
2354  * the phy */
2355
2356 static void
2357 e1000_update_phy_info(unsigned long data)
2358 {
2359         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2360         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2361 }
2362
2363 /**
2364  * e1000_82547_tx_fifo_stall - Timer Call-back
2365  * @data: pointer to adapter cast into an unsigned long
2366  **/
2367
2368 static void
2369 e1000_82547_tx_fifo_stall(unsigned long data)
2370 {
2371         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2372         struct net_device *netdev = adapter->netdev;
2373         uint32_t tctl;
2374
2375         if (atomic_read(&adapter->tx_fifo_stall)) {
2376                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2377                     E1000_READ_REG(&adapter->hw, TDH)) &&
2378                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2379                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2380                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2381                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2382                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2383                         E1000_WRITE_REG(&adapter->hw, TCTL,
2384                                         tctl & ~E1000_TCTL_EN);
2385                         E1000_WRITE_REG(&adapter->hw, TDFT,
2386                                         adapter->tx_head_addr);
2387                         E1000_WRITE_REG(&adapter->hw, TDFH,
2388                                         adapter->tx_head_addr);
2389                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2390                                         adapter->tx_head_addr);
2391                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2392                                         adapter->tx_head_addr);
2393                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2394                         E1000_WRITE_FLUSH(&adapter->hw);
2395
2396                         adapter->tx_fifo_head = 0;
2397                         atomic_set(&adapter->tx_fifo_stall, 0);
2398                         netif_wake_queue(netdev);
2399                 } else {
2400                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2401                 }
2402         }
2403 }
2404
2405 /**
2406  * e1000_watchdog - Timer Call-back
2407  * @data: pointer to adapter cast into an unsigned long
2408  **/
2409 static void
2410 e1000_watchdog(unsigned long data)
2411 {
2412         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2413         struct net_device *netdev = adapter->netdev;
2414         struct e1000_tx_ring *txdr = adapter->tx_ring;
2415         uint32_t link, tctl;
2416         int32_t ret_val;
2417
2418         ret_val = e1000_check_for_link(&adapter->hw);
2419         if ((ret_val == E1000_ERR_PHY) &&
2420             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2421             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2422                 /* See e1000_kumeran_lock_loss_workaround() */
2423                 DPRINTK(LINK, INFO,
2424                         "Gigabit has been disabled, downgrading speed\n");
2425         }
2426
2427         if (adapter->hw.mac_type == e1000_82573) {
2428                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2429                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2430                         e1000_update_mng_vlan(adapter);
2431         }
2432
2433         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2434            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2435                 link = !adapter->hw.serdes_link_down;
2436         else
2437                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2438
2439         if (link) {
2440                 if (!netif_carrier_ok(netdev)) {
2441                         boolean_t txb2b = 1;
2442                         e1000_get_speed_and_duplex(&adapter->hw,
2443                                                    &adapter->link_speed,
2444                                                    &adapter->link_duplex);
2445
2446                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2447                                adapter->link_speed,
2448                                adapter->link_duplex == FULL_DUPLEX ?
2449                                "Full Duplex" : "Half Duplex");
2450
2451                         /* tweak tx_queue_len according to speed/duplex
2452                          * and adjust the timeout factor */
2453                         netdev->tx_queue_len = adapter->tx_queue_len;
2454                         adapter->tx_timeout_factor = 1;
2455                         switch (adapter->link_speed) {
2456                         case SPEED_10:
2457                                 txb2b = 0;
2458                                 netdev->tx_queue_len = 10;
2459                                 adapter->tx_timeout_factor = 8;
2460                                 break;
2461                         case SPEED_100:
2462                                 txb2b = 0;
2463                                 netdev->tx_queue_len = 100;
2464                                 /* maybe add some timeout factor ? */
2465                                 break;
2466                         }
2467
2468                         if ((adapter->hw.mac_type == e1000_82571 ||
2469                              adapter->hw.mac_type == e1000_82572) &&
2470                             txb2b == 0) {
2471                                 uint32_t tarc0;
2472                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2473                                 tarc0 &= ~(1 << 21);
2474                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2475                         }
2476
2477 #ifdef NETIF_F_TSO
2478                         /* disable TSO for pcie and 10/100 speeds, to avoid
2479                          * some hardware issues */
2480                         if (!adapter->tso_force &&
2481                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2482                                 switch (adapter->link_speed) {
2483                                 case SPEED_10:
2484                                 case SPEED_100:
2485                                         DPRINTK(PROBE,INFO,
2486                                         "10/100 speed: disabling TSO\n");
2487                                         netdev->features &= ~NETIF_F_TSO;
2488 #ifdef NETIF_F_TSO6
2489                                         netdev->features &= ~NETIF_F_TSO6;
2490 #endif
2491                                         break;
2492                                 case SPEED_1000:
2493                                         netdev->features |= NETIF_F_TSO;
2494 #ifdef NETIF_F_TSO6
2495                                         netdev->features |= NETIF_F_TSO6;
2496 #endif
2497                                         break;
2498                                 default:
2499                                         /* oops */
2500                                         break;
2501                                 }
2502                         }
2503 #endif
2504
2505                         /* enable transmits in the hardware, need to do this
2506                          * after setting TARC0 */
2507                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2508                         tctl |= E1000_TCTL_EN;
2509                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2510
2511                         netif_carrier_on(netdev);
2512                         netif_wake_queue(netdev);
2513                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2514                         adapter->smartspeed = 0;
2515                 }
2516         } else {
2517                 if (netif_carrier_ok(netdev)) {
2518                         adapter->link_speed = 0;
2519                         adapter->link_duplex = 0;
2520                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2521                         netif_carrier_off(netdev);
2522                         netif_stop_queue(netdev);
2523                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2524
2525                         /* 80003ES2LAN workaround--
2526                          * For packet buffer work-around on link down event;
2527                          * disable receives in the ISR and
2528                          * reset device here in the watchdog
2529                          */
2530                         if (adapter->hw.mac_type == e1000_80003es2lan)
2531                                 /* reset device */
2532                                 schedule_work(&adapter->reset_task);
2533                 }
2534
2535                 e1000_smartspeed(adapter);
2536         }
2537
2538         e1000_update_stats(adapter);
2539
2540         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2541         adapter->tpt_old = adapter->stats.tpt;
2542         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2543         adapter->colc_old = adapter->stats.colc;
2544
2545         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2546         adapter->gorcl_old = adapter->stats.gorcl;
2547         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2548         adapter->gotcl_old = adapter->stats.gotcl;
2549
2550         e1000_update_adaptive(&adapter->hw);
2551
2552         if (!netif_carrier_ok(netdev)) {
2553                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2554                         /* We've lost link, so the controller stops DMA,
2555                          * but we've got queued Tx work that's never going
2556                          * to get done, so reset controller to flush Tx.
2557                          * (Do the reset outside of interrupt context). */
2558                         adapter->tx_timeout_count++;
2559                         schedule_work(&adapter->reset_task);
2560                 }
2561         }
2562
2563         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2564         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2565                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2566                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2567                  * else is between 2000-8000. */
2568                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2569                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2570                         adapter->gotcl - adapter->gorcl :
2571                         adapter->gorcl - adapter->gotcl) / 10000;
2572                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2573                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2574         }
2575
2576         /* Cause software interrupt to ensure rx ring is cleaned */
2577         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2578
2579         /* Force detection of hung controller every watchdog period */
2580         adapter->detect_tx_hung = TRUE;
2581
2582         /* With 82571 controllers, LAA may be overwritten due to controller
2583          * reset from the other port. Set the appropriate LAA in RAR[0] */
2584         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2585                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2586
2587         /* Reset the timer */
2588         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2589 }
2590
2591 #define E1000_TX_FLAGS_CSUM             0x00000001
2592 #define E1000_TX_FLAGS_VLAN             0x00000002
2593 #define E1000_TX_FLAGS_TSO              0x00000004
2594 #define E1000_TX_FLAGS_IPV4             0x00000008
2595 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2596 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2597
2598 static int
2599 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2600           struct sk_buff *skb)
2601 {
2602 #ifdef NETIF_F_TSO
2603         struct e1000_context_desc *context_desc;
2604         struct e1000_buffer *buffer_info;
2605         unsigned int i;
2606         uint32_t cmd_length = 0;
2607         uint16_t ipcse = 0, tucse, mss;
2608         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2609         int err;
2610
2611         if (skb_is_gso(skb)) {
2612                 if (skb_header_cloned(skb)) {
2613                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2614                         if (err)
2615                                 return err;
2616                 }
2617
2618                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2619                 mss = skb_shinfo(skb)->gso_size;
2620                 if (skb->protocol == htons(ETH_P_IP)) {
2621                         skb->nh.iph->tot_len = 0;
2622                         skb->nh.iph->check = 0;
2623                         skb->h.th->check =
2624                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2625                                                    skb->nh.iph->daddr,
2626                                                    0,
2627                                                    IPPROTO_TCP,
2628                                                    0);
2629                         cmd_length = E1000_TXD_CMD_IP;
2630                         ipcse = skb->h.raw - skb->data - 1;
2631 #ifdef NETIF_F_TSO6
2632                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2633                         skb->nh.ipv6h->payload_len = 0;
2634                         skb->h.th->check =
2635                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2636                                                  &skb->nh.ipv6h->daddr,
2637                                                  0,
2638                                                  IPPROTO_TCP,
2639                                                  0);
2640                         ipcse = 0;
2641 #endif
2642                 }
2643                 ipcss = skb->nh.raw - skb->data;
2644                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2645                 tucss = skb->h.raw - skb->data;
2646                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2647                 tucse = 0;
2648
2649                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2650                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2651
2652                 i = tx_ring->next_to_use;
2653                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2654                 buffer_info = &tx_ring->buffer_info[i];
2655
2656                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2657                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2658                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2659                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2660                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2661                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2662                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2663                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2664                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2665
2666                 buffer_info->time_stamp = jiffies;
2667                 buffer_info->next_to_watch = i;
2668
2669                 if (++i == tx_ring->count) i = 0;
2670                 tx_ring->next_to_use = i;
2671
2672                 return TRUE;
2673         }
2674 #endif
2675
2676         return FALSE;
2677 }
2678
2679 static boolean_t
2680 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2681               struct sk_buff *skb)
2682 {
2683         struct e1000_context_desc *context_desc;
2684         struct e1000_buffer *buffer_info;
2685         unsigned int i;
2686         uint8_t css;
2687
2688         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2689                 css = skb->h.raw - skb->data;
2690
2691                 i = tx_ring->next_to_use;
2692                 buffer_info = &tx_ring->buffer_info[i];
2693                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2694
2695                 context_desc->upper_setup.tcp_fields.tucss = css;
2696                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2697                 context_desc->upper_setup.tcp_fields.tucse = 0;
2698                 context_desc->tcp_seg_setup.data = 0;
2699                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2700
2701                 buffer_info->time_stamp = jiffies;
2702                 buffer_info->next_to_watch = i;
2703
2704                 if (unlikely(++i == tx_ring->count)) i = 0;
2705                 tx_ring->next_to_use = i;
2706
2707                 return TRUE;
2708         }
2709
2710         return FALSE;
2711 }
2712
2713 #define E1000_MAX_TXD_PWR       12
2714 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2715
2716 static int
2717 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2718              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2719              unsigned int nr_frags, unsigned int mss)
2720 {
2721         struct e1000_buffer *buffer_info;
2722         unsigned int len = skb->len;
2723         unsigned int offset = 0, size, count = 0, i;
2724         unsigned int f;
2725         len -= skb->data_len;
2726
2727         i = tx_ring->next_to_use;
2728
2729         while (len) {
2730                 buffer_info = &tx_ring->buffer_info[i];
2731                 size = min(len, max_per_txd);
2732 #ifdef NETIF_F_TSO
2733                 /* Workaround for Controller erratum --
2734                  * descriptor for non-tso packet in a linear SKB that follows a
2735                  * tso gets written back prematurely before the data is fully
2736                  * DMA'd to the controller */
2737                 if (!skb->data_len && tx_ring->last_tx_tso &&
2738                     !skb_is_gso(skb)) {
2739                         tx_ring->last_tx_tso = 0;
2740                         size -= 4;
2741                 }
2742
2743                 /* Workaround for premature desc write-backs
2744                  * in TSO mode.  Append 4-byte sentinel desc */
2745                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2746                         size -= 4;
2747 #endif
2748                 /* work-around for errata 10 and it applies
2749                  * to all controllers in PCI-X mode
2750                  * The fix is to make sure that the first descriptor of a
2751                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2752                  */
2753                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2754                                 (size > 2015) && count == 0))
2755                         size = 2015;
2756
2757                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2758                  * terminating buffers within evenly-aligned dwords. */
2759                 if (unlikely(adapter->pcix_82544 &&
2760                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2761                    size > 4))
2762                         size -= 4;
2763
2764                 buffer_info->length = size;
2765                 buffer_info->dma =
2766                         pci_map_single(adapter->pdev,
2767                                 skb->data + offset,
2768                                 size,
2769                                 PCI_DMA_TODEVICE);
2770                 buffer_info->time_stamp = jiffies;
2771                 buffer_info->next_to_watch = i;
2772
2773                 len -= size;
2774                 offset += size;
2775                 count++;
2776                 if (unlikely(++i == tx_ring->count)) i = 0;
2777         }
2778
2779         for (f = 0; f < nr_frags; f++) {
2780                 struct skb_frag_struct *frag;
2781
2782                 frag = &skb_shinfo(skb)->frags[f];
2783                 len = frag->size;
2784                 offset = frag->page_offset;
2785
2786                 while (len) {
2787                         buffer_info = &tx_ring->buffer_info[i];
2788                         size = min(len, max_per_txd);
2789 #ifdef NETIF_F_TSO
2790                         /* Workaround for premature desc write-backs
2791                          * in TSO mode.  Append 4-byte sentinel desc */
2792                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2793                                 size -= 4;
2794 #endif
2795                         /* Workaround for potential 82544 hang in PCI-X.
2796                          * Avoid terminating buffers within evenly-aligned
2797                          * dwords. */
2798                         if (unlikely(adapter->pcix_82544 &&
2799                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2800                            size > 4))
2801                                 size -= 4;
2802
2803                         buffer_info->length = size;
2804                         buffer_info->dma =
2805                                 pci_map_page(adapter->pdev,
2806                                         frag->page,
2807                                         offset,
2808                                         size,
2809                                         PCI_DMA_TODEVICE);
2810                         buffer_info->time_stamp = jiffies;
2811                         buffer_info->next_to_watch = i;
2812
2813                         len -= size;
2814                         offset += size;
2815                         count++;
2816                         if (unlikely(++i == tx_ring->count)) i = 0;
2817                 }
2818         }
2819
2820         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2821         tx_ring->buffer_info[i].skb = skb;
2822         tx_ring->buffer_info[first].next_to_watch = i;
2823
2824         return count;
2825 }
2826
2827 static void
2828 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2829                int tx_flags, int count)
2830 {
2831         struct e1000_tx_desc *tx_desc = NULL;
2832         struct e1000_buffer *buffer_info;
2833         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2834         unsigned int i;
2835
2836         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2837                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2838                              E1000_TXD_CMD_TSE;
2839                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2840
2841                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2842                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2843         }
2844
2845         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2846                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2847                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2848         }
2849
2850         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2851                 txd_lower |= E1000_TXD_CMD_VLE;
2852                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2853         }
2854
2855         i = tx_ring->next_to_use;
2856
2857         while (count--) {
2858                 buffer_info = &tx_ring->buffer_info[i];
2859                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2860                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2861                 tx_desc->lower.data =
2862                         cpu_to_le32(txd_lower | buffer_info->length);
2863                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2864                 if (unlikely(++i == tx_ring->count)) i = 0;
2865         }
2866
2867         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2868
2869         /* Force memory writes to complete before letting h/w
2870          * know there are new descriptors to fetch.  (Only
2871          * applicable for weak-ordered memory model archs,
2872          * such as IA-64). */
2873         wmb();
2874
2875         tx_ring->next_to_use = i;
2876         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2877         /* we need this if more than one processor can write to our tail
2878          * at a time, it syncronizes IO on IA64/Altix systems */
2879         mmiowb();
2880 }
2881
2882 /**
2883  * 82547 workaround to avoid controller hang in half-duplex environment.
2884  * The workaround is to avoid queuing a large packet that would span
2885  * the internal Tx FIFO ring boundary by notifying the stack to resend
2886  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2887  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2888  * to the beginning of the Tx FIFO.
2889  **/
2890
2891 #define E1000_FIFO_HDR                  0x10
2892 #define E1000_82547_PAD_LEN             0x3E0
2893
2894 static int
2895 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2896 {
2897         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2898         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2899
2900         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2901
2902         if (adapter->link_duplex != HALF_DUPLEX)
2903                 goto no_fifo_stall_required;
2904
2905         if (atomic_read(&adapter->tx_fifo_stall))
2906                 return 1;
2907
2908         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2909                 atomic_set(&adapter->tx_fifo_stall, 1);
2910                 return 1;
2911         }
2912
2913 no_fifo_stall_required:
2914         adapter->tx_fifo_head += skb_fifo_len;
2915         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2916                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2917         return 0;
2918 }
2919
2920 #define MINIMUM_DHCP_PACKET_SIZE 282
2921 static int
2922 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2923 {
2924         struct e1000_hw *hw =  &adapter->hw;
2925         uint16_t length, offset;
2926         if (vlan_tx_tag_present(skb)) {
2927                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2928                         ( adapter->hw.mng_cookie.status &
2929                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2930                         return 0;
2931         }
2932         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2933                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2934                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2935                         const struct iphdr *ip =
2936                                 (struct iphdr *)((uint8_t *)skb->data+14);
2937                         if (IPPROTO_UDP == ip->protocol) {
2938                                 struct udphdr *udp =
2939                                         (struct udphdr *)((uint8_t *)ip +
2940                                                 (ip->ihl << 2));
2941                                 if (ntohs(udp->dest) == 67) {
2942                                         offset = (uint8_t *)udp + 8 - skb->data;
2943                                         length = skb->len - offset;
2944
2945                                         return e1000_mng_write_dhcp_info(hw,
2946                                                         (uint8_t *)udp + 8,
2947                                                         length);
2948                                 }
2949                         }
2950                 }
2951         }
2952         return 0;
2953 }
2954
2955 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2956 {
2957         struct e1000_adapter *adapter = netdev_priv(netdev);
2958         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2959
2960         netif_stop_queue(netdev);
2961         /* Herbert's original patch had:
2962          *  smp_mb__after_netif_stop_queue();
2963          * but since that doesn't exist yet, just open code it. */
2964         smp_mb();
2965
2966         /* We need to check again in a case another CPU has just
2967          * made room available. */
2968         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2969                 return -EBUSY;
2970
2971         /* A reprieve! */
2972         netif_start_queue(netdev);
2973         return 0;
2974 }
2975
2976 static int e1000_maybe_stop_tx(struct net_device *netdev,
2977                                struct e1000_tx_ring *tx_ring, int size)
2978 {
2979         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2980                 return 0;
2981         return __e1000_maybe_stop_tx(netdev, size);
2982 }
2983
2984 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2985 static int
2986 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2987 {
2988         struct e1000_adapter *adapter = netdev_priv(netdev);
2989         struct e1000_tx_ring *tx_ring;
2990         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2991         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2992         unsigned int tx_flags = 0;
2993         unsigned int len = skb->len;
2994         unsigned long flags;
2995         unsigned int nr_frags = 0;
2996         unsigned int mss = 0;
2997         int count = 0;
2998         int tso;
2999         unsigned int f;
3000         len -= skb->data_len;
3001
3002         /* This goes back to the question of how to logically map a tx queue
3003          * to a flow.  Right now, performance is impacted slightly negatively
3004          * if using multiple tx queues.  If the stack breaks away from a
3005          * single qdisc implementation, we can look at this again. */
3006         tx_ring = adapter->tx_ring;
3007
3008         if (unlikely(skb->len <= 0)) {
3009                 dev_kfree_skb_any(skb);
3010                 return NETDEV_TX_OK;
3011         }
3012
3013         /* 82571 and newer doesn't need the workaround that limited descriptor
3014          * length to 4kB */
3015         if (adapter->hw.mac_type >= e1000_82571)
3016                 max_per_txd = 8192;
3017
3018 #ifdef NETIF_F_TSO
3019         mss = skb_shinfo(skb)->gso_size;
3020         /* The controller does a simple calculation to
3021          * make sure there is enough room in the FIFO before
3022          * initiating the DMA for each buffer.  The calc is:
3023          * 4 = ceil(buffer len/mss).  To make sure we don't
3024          * overrun the FIFO, adjust the max buffer len if mss
3025          * drops. */
3026         if (mss) {
3027                 uint8_t hdr_len;
3028                 max_per_txd = min(mss << 2, max_per_txd);
3029                 max_txd_pwr = fls(max_per_txd) - 1;
3030
3031                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3032                 * points to just header, pull a few bytes of payload from
3033                 * frags into skb->data */
3034                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3035                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3036                         switch (adapter->hw.mac_type) {
3037                                 unsigned int pull_size;
3038                         case e1000_82571:
3039                         case e1000_82572:
3040                         case e1000_82573:
3041                         case e1000_ich8lan:
3042                                 pull_size = min((unsigned int)4, skb->data_len);
3043                                 if (!__pskb_pull_tail(skb, pull_size)) {
3044                                         DPRINTK(DRV, ERR,
3045                                                 "__pskb_pull_tail failed.\n");
3046                                         dev_kfree_skb_any(skb);
3047                                         return NETDEV_TX_OK;
3048                                 }
3049                                 len = skb->len - skb->data_len;
3050                                 break;
3051                         default:
3052                                 /* do nothing */
3053                                 break;
3054                         }
3055                 }
3056         }
3057
3058         /* reserve a descriptor for the offload context */
3059         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3060                 count++;
3061         count++;
3062 #else
3063         if (skb->ip_summed == CHECKSUM_PARTIAL)
3064                 count++;
3065 #endif
3066
3067 #ifdef NETIF_F_TSO
3068         /* Controller Erratum workaround */
3069         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3070                 count++;
3071 #endif
3072
3073         count += TXD_USE_COUNT(len, max_txd_pwr);
3074
3075         if (adapter->pcix_82544)
3076                 count++;
3077
3078         /* work-around for errata 10 and it applies to all controllers
3079          * in PCI-X mode, so add one more descriptor to the count
3080          */
3081         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3082                         (len > 2015)))
3083                 count++;
3084
3085         nr_frags = skb_shinfo(skb)->nr_frags;
3086         for (f = 0; f < nr_frags; f++)
3087                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3088                                        max_txd_pwr);
3089         if (adapter->pcix_82544)
3090                 count += nr_frags;
3091
3092
3093         if (adapter->hw.tx_pkt_filtering &&
3094             (adapter->hw.mac_type == e1000_82573))
3095                 e1000_transfer_dhcp_info(adapter, skb);
3096
3097         local_irq_save(flags);
3098         if (!spin_trylock(&tx_ring->tx_lock)) {
3099                 /* Collision - tell upper layer to requeue */
3100                 local_irq_restore(flags);
3101                 return NETDEV_TX_LOCKED;
3102         }
3103
3104         /* need: count + 2 desc gap to keep tail from touching
3105          * head, otherwise try next time */
3106         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3107                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3108                 return NETDEV_TX_BUSY;
3109         }
3110
3111         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3112                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3113                         netif_stop_queue(netdev);
3114                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3115                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3116                         return NETDEV_TX_BUSY;
3117                 }
3118         }
3119
3120         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3121                 tx_flags |= E1000_TX_FLAGS_VLAN;
3122                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3123         }
3124
3125         first = tx_ring->next_to_use;
3126
3127         tso = e1000_tso(adapter, tx_ring, skb);
3128         if (tso < 0) {
3129                 dev_kfree_skb_any(skb);
3130                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3131                 return NETDEV_TX_OK;
3132         }
3133
3134         if (likely(tso)) {
3135                 tx_ring->last_tx_tso = 1;
3136                 tx_flags |= E1000_TX_FLAGS_TSO;
3137         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3138                 tx_flags |= E1000_TX_FLAGS_CSUM;
3139
3140         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3141          * 82571 hardware supports TSO capabilities for IPv6 as well...
3142          * no longer assume, we must. */
3143         if (likely(skb->protocol == htons(ETH_P_IP)))
3144                 tx_flags |= E1000_TX_FLAGS_IPV4;
3145
3146         e1000_tx_queue(adapter, tx_ring, tx_flags,
3147                        e1000_tx_map(adapter, tx_ring, skb, first,
3148                                     max_per_txd, nr_frags, mss));
3149
3150         netdev->trans_start = jiffies;
3151
3152         /* Make sure there is space in the ring for the next send. */
3153         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3154
3155         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3156         return NETDEV_TX_OK;
3157 }
3158
3159 /**
3160  * e1000_tx_timeout - Respond to a Tx Hang
3161  * @netdev: network interface device structure
3162  **/
3163
3164 static void
3165 e1000_tx_timeout(struct net_device *netdev)
3166 {
3167         struct e1000_adapter *adapter = netdev_priv(netdev);
3168
3169         /* Do the reset outside of interrupt context */
3170         adapter->tx_timeout_count++;
3171         schedule_work(&adapter->reset_task);
3172 }
3173
3174 static void
3175 e1000_reset_task(struct net_device *netdev)
3176 {
3177         struct e1000_adapter *adapter = netdev_priv(netdev);
3178
3179         e1000_reinit_locked(adapter);
3180 }
3181
3182 /**
3183  * e1000_get_stats - Get System Network Statistics
3184  * @netdev: network interface device structure
3185  *
3186  * Returns the address of the device statistics structure.
3187  * The statistics are actually updated from the timer callback.
3188  **/
3189
3190 static struct net_device_stats *
3191 e1000_get_stats(struct net_device *netdev)
3192 {
3193         struct e1000_adapter *adapter = netdev_priv(netdev);
3194
3195         /* only return the current stats */
3196         return &adapter->net_stats;
3197 }
3198
3199 /**
3200  * e1000_change_mtu - Change the Maximum Transfer Unit
3201  * @netdev: network interface device structure
3202  * @new_mtu: new value for maximum frame size
3203  *
3204  * Returns 0 on success, negative on failure
3205  **/
3206
3207 static int
3208 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3209 {
3210         struct e1000_adapter *adapter = netdev_priv(netdev);
3211         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3212         uint16_t eeprom_data = 0;
3213
3214         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3215             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3216                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3217                 return -EINVAL;
3218         }
3219
3220         /* Adapter-specific max frame size limits. */
3221         switch (adapter->hw.mac_type) {
3222         case e1000_undefined ... e1000_82542_rev2_1:
3223         case e1000_ich8lan:
3224                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3225                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3226                         return -EINVAL;
3227                 }
3228                 break;
3229         case e1000_82573:
3230                 /* Jumbo Frames not supported if:
3231                  * - this is not an 82573L device
3232                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3233                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3234                                   &eeprom_data);
3235                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3236                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3237                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3238                                 DPRINTK(PROBE, ERR,
3239                                         "Jumbo Frames not supported.\n");
3240                                 return -EINVAL;
3241                         }
3242                         break;
3243                 }
3244                 /* ERT will be enabled later to enable wire speed receives */
3245
3246                 /* fall through to get support */
3247         case e1000_82571:
3248         case e1000_82572:
3249         case e1000_80003es2lan:
3250 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3251                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3252                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3253                         return -EINVAL;
3254                 }
3255                 break;
3256         default:
3257                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3258                 break;
3259         }
3260
3261         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3262          * means we reserve 2 more, this pushes us to allocate from the next
3263          * larger slab size
3264          * i.e. RXBUFFER_2048 --> size-4096 slab */
3265
3266         if (max_frame <= E1000_RXBUFFER_256)
3267                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3268         else if (max_frame <= E1000_RXBUFFER_512)
3269                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3270         else if (max_frame <= E1000_RXBUFFER_1024)
3271                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3272         else if (max_frame <= E1000_RXBUFFER_2048)
3273                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3274         else if (max_frame <= E1000_RXBUFFER_4096)
3275                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3276         else if (max_frame <= E1000_RXBUFFER_8192)
3277                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3278         else if (max_frame <= E1000_RXBUFFER_16384)
3279                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3280
3281         /* adjust allocation if LPE protects us, and we aren't using SBP */
3282         if (!adapter->hw.tbi_compatibility_on &&
3283             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3284              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3285                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3286
3287         netdev->mtu = new_mtu;
3288
3289         if (netif_running(netdev))
3290                 e1000_reinit_locked(adapter);
3291
3292         adapter->hw.max_frame_size = max_frame;
3293
3294         return 0;
3295 }
3296
3297 /**
3298  * e1000_update_stats - Update the board statistics counters
3299  * @adapter: board private structure
3300  **/
3301
3302 void
3303 e1000_update_stats(struct e1000_adapter *adapter)
3304 {
3305         struct e1000_hw *hw = &adapter->hw;
3306         struct pci_dev *pdev = adapter->pdev;
3307         unsigned long flags;
3308         uint16_t phy_tmp;
3309
3310 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3311
3312         /*
3313          * Prevent stats update while adapter is being reset, or if the pci
3314          * connection is down.
3315          */
3316         if (adapter->link_speed == 0)
3317                 return;
3318         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3319                 return;
3320
3321         spin_lock_irqsave(&adapter->stats_lock, flags);
3322
3323         /* these counters are modified from e1000_adjust_tbi_stats,
3324          * called from the interrupt context, so they must only
3325          * be written while holding adapter->stats_lock
3326          */
3327
3328         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3329         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3330         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3331         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3332         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3333         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3334         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3335
3336         if (adapter->hw.mac_type != e1000_ich8lan) {
3337                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3338                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3339                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3340                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3341                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3342                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3343         }
3344
3345         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3346         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3347         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3348         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3349         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3350         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3351         adapter->stats.dc += E1000_READ_REG(hw, DC);
3352         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3353         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3354         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3355         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3356         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3357         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3358         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3359         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3360         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3361         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3362         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3363         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3364         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3365         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3366         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3367         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3368         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3369         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3370         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3371
3372         if (adapter->hw.mac_type != e1000_ich8lan) {
3373                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3374                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3375                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3376                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3377                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3378                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3379         }
3380
3381         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3382         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3383
3384         /* used for adaptive IFS */
3385
3386         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3387         adapter->stats.tpt += hw->tx_packet_delta;
3388         hw->collision_delta = E1000_READ_REG(hw, COLC);
3389         adapter->stats.colc += hw->collision_delta;
3390
3391         if (hw->mac_type >= e1000_82543) {
3392                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3393                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3394                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3395                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3396                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3397                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3398         }
3399         if (hw->mac_type > e1000_82547_rev_2) {
3400                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3401                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3402
3403                 if (adapter->hw.mac_type != e1000_ich8lan) {
3404                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3405                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3406                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3407                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3408                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3409                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3410                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3411                 }
3412         }
3413
3414         /* Fill out the OS statistics structure */
3415         adapter->net_stats.rx_packets = adapter->stats.gprc;
3416         adapter->net_stats.tx_packets = adapter->stats.gptc;
3417         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3418         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3419         adapter->net_stats.multicast = adapter->stats.mprc;
3420         adapter->net_stats.collisions = adapter->stats.colc;
3421
3422         /* Rx Errors */
3423
3424         /* RLEC on some newer hardware can be incorrect so build
3425         * our own version based on RUC and ROC */
3426         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3427                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3428                 adapter->stats.ruc + adapter->stats.roc +
3429                 adapter->stats.cexterr;
3430         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3431         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3432         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3433         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3434         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3435
3436         /* Tx Errors */
3437         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3438         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3439         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3440         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3441         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3442
3443         /* Tx Dropped needs to be maintained elsewhere */
3444
3445         /* Phy Stats */
3446         if (hw->media_type == e1000_media_type_copper) {
3447                 if ((adapter->link_speed == SPEED_1000) &&
3448                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3449                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3450                         adapter->phy_stats.idle_errors += phy_tmp;
3451                 }
3452
3453                 if ((hw->mac_type <= e1000_82546) &&
3454                    (hw->phy_type == e1000_phy_m88) &&
3455                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3456                         adapter->phy_stats.receive_errors += phy_tmp;
3457         }
3458
3459         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3460 }
3461
3462 /**
3463  * e1000_intr - Interrupt Handler
3464  * @irq: interrupt number
3465  * @data: pointer to a network interface device structure
3466  **/
3467
3468 static irqreturn_t
3469 e1000_intr(int irq, void *data)
3470 {
3471         struct net_device *netdev = data;
3472         struct e1000_adapter *adapter = netdev_priv(netdev);
3473         struct e1000_hw *hw = &adapter->hw;
3474         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3475 #ifndef CONFIG_E1000_NAPI
3476         int i;
3477 #else
3478         /* Interrupt Auto-Mask...upon reading ICR,
3479          * interrupts are masked.  No need for the
3480          * IMC write, but it does mean we should
3481          * account for it ASAP. */
3482         if (likely(hw->mac_type >= e1000_82571))
3483                 atomic_inc(&adapter->irq_sem);
3484 #endif
3485
3486         if (unlikely(!icr)) {
3487 #ifdef CONFIG_E1000_NAPI
3488                 if (hw->mac_type >= e1000_82571)
3489                         e1000_irq_enable(adapter);
3490 #endif
3491                 return IRQ_NONE;  /* Not our interrupt */
3492         }
3493
3494         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3495                 hw->get_link_status = 1;
3496                 /* 80003ES2LAN workaround--
3497                  * For packet buffer work-around on link down event;
3498                  * disable receives here in the ISR and
3499                  * reset adapter in watchdog
3500                  */
3501                 if (netif_carrier_ok(netdev) &&
3502                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3503                         /* disable receives */
3504                         rctl = E1000_READ_REG(hw, RCTL);
3505                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3506                 }
3507                 /* guard against interrupt when we're going down */
3508                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3509                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3510         }
3511
3512 #ifdef CONFIG_E1000_NAPI
3513         if (unlikely(hw->mac_type < e1000_82571)) {
3514                 atomic_inc(&adapter->irq_sem);
3515                 E1000_WRITE_REG(hw, IMC, ~0);
3516                 E1000_WRITE_FLUSH(hw);
3517         }
3518         if (likely(netif_rx_schedule_prep(netdev)))
3519                 __netif_rx_schedule(netdev);
3520         else
3521                 /* this really should not happen! if it does it is basically a
3522                  * bug, but not a hard error, so enable ints and continue */
3523                 e1000_irq_enable(adapter);
3524 #else
3525         /* Writing IMC and IMS is needed for 82547.
3526          * Due to Hub Link bus being occupied, an interrupt
3527          * de-assertion message is not able to be sent.
3528          * When an interrupt assertion message is generated later,
3529          * two messages are re-ordered and sent out.
3530          * That causes APIC to think 82547 is in de-assertion
3531          * state, while 82547 is in assertion state, resulting
3532          * in dead lock. Writing IMC forces 82547 into
3533          * de-assertion state.
3534          */
3535         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3536                 atomic_inc(&adapter->irq_sem);
3537                 E1000_WRITE_REG(hw, IMC, ~0);
3538         }
3539
3540         for (i = 0; i < E1000_MAX_INTR; i++)
3541                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3542                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3543                         break;
3544
3545         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3546                 e1000_irq_enable(adapter);
3547
3548 #endif
3549         return IRQ_HANDLED;
3550 }
3551
3552 #ifdef CONFIG_E1000_NAPI
3553 /**
3554  * e1000_clean - NAPI Rx polling callback
3555  * @adapter: board private structure
3556  **/
3557
3558 static int
3559 e1000_clean(struct net_device *poll_dev, int *budget)
3560 {
3561         struct e1000_adapter *adapter;
3562         int work_to_do = min(*budget, poll_dev->quota);
3563         int tx_cleaned = 0, work_done = 0;
3564
3565         /* Must NOT use netdev_priv macro here. */
3566         adapter = poll_dev->priv;
3567
3568         /* Keep link state information with original netdev */
3569         if (!netif_carrier_ok(poll_dev))
3570                 goto quit_polling;
3571
3572         /* e1000_clean is called per-cpu.  This lock protects
3573          * tx_ring[0] from being cleaned by multiple cpus
3574          * simultaneously.  A failure obtaining the lock means
3575          * tx_ring[0] is currently being cleaned anyway. */
3576         if (spin_trylock(&adapter->tx_queue_lock)) {
3577                 tx_cleaned = e1000_clean_tx_irq(adapter,
3578                                                 &adapter->tx_ring[0]);
3579                 spin_unlock(&adapter->tx_queue_lock);
3580         }
3581
3582         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3583                           &work_done, work_to_do);
3584
3585         *budget -= work_done;
3586         poll_dev->quota -= work_done;
3587
3588         /* If no Tx and not enough Rx work done, exit the polling mode */
3589         if ((!tx_cleaned && (work_done == 0)) ||
3590            !netif_running(poll_dev)) {
3591 quit_polling:
3592                 netif_rx_complete(poll_dev);
3593                 e1000_irq_enable(adapter);
3594                 return 0;
3595         }
3596
3597         return 1;
3598 }
3599
3600 #endif
3601 /**
3602  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3603  * @adapter: board private structure
3604  **/
3605
3606 static boolean_t
3607 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3608                    struct e1000_tx_ring *tx_ring)
3609 {
3610         struct net_device *netdev = adapter->netdev;
3611         struct e1000_tx_desc *tx_desc, *eop_desc;
3612         struct e1000_buffer *buffer_info;
3613         unsigned int i, eop;
3614 #ifdef CONFIG_E1000_NAPI
3615         unsigned int count = 0;
3616 #endif
3617         boolean_t cleaned = FALSE;
3618
3619         i = tx_ring->next_to_clean;
3620         eop = tx_ring->buffer_info[i].next_to_watch;
3621         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3622
3623         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3624                 for (cleaned = FALSE; !cleaned; ) {
3625                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3626                         buffer_info = &tx_ring->buffer_info[i];
3627                         cleaned = (i == eop);
3628
3629                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3630                         tx_desc->upper.data = 0;
3631
3632                         if (unlikely(++i == tx_ring->count)) i = 0;
3633                 }
3634
3635                 eop = tx_ring->buffer_info[i].next_to_watch;
3636                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3637 #ifdef CONFIG_E1000_NAPI
3638 #define E1000_TX_WEIGHT 64
3639                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3640                 if (count++ == E1000_TX_WEIGHT) break;
3641 #endif
3642         }
3643
3644         tx_ring->next_to_clean = i;
3645
3646 #define TX_WAKE_THRESHOLD 32
3647         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3648                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3649                 /* Make sure that anybody stopping the queue after this
3650                  * sees the new next_to_clean.
3651                  */
3652                 smp_mb();
3653                 if (netif_queue_stopped(netdev))
3654                         netif_wake_queue(netdev);
3655         }
3656
3657         if (adapter->detect_tx_hung) {
3658                 /* Detect a transmit hang in hardware, this serializes the
3659                  * check with the clearing of time_stamp and movement of i */
3660                 adapter->detect_tx_hung = FALSE;
3661                 if (tx_ring->buffer_info[eop].dma &&
3662                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3663                                (adapter->tx_timeout_factor * HZ))
3664                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3665                          E1000_STATUS_TXOFF)) {
3666
3667                         /* detected Tx unit hang */
3668                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3669                                         "  Tx Queue             <%lu>\n"
3670                                         "  TDH                  <%x>\n"
3671                                         "  TDT                  <%x>\n"
3672                                         "  next_to_use          <%x>\n"
3673                                         "  next_to_clean        <%x>\n"
3674                                         "buffer_info[next_to_clean]\n"
3675                                         "  time_stamp           <%lx>\n"
3676                                         "  next_to_watch        <%x>\n"
3677                                         "  jiffies              <%lx>\n"
3678                                         "  next_to_watch.status <%x>\n",
3679                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3680                                         sizeof(struct e1000_tx_ring)),
3681                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3682                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3683                                 tx_ring->next_to_use,
3684                                 tx_ring->next_to_clean,
3685                                 tx_ring->buffer_info[eop].time_stamp,
3686                                 eop,
3687                                 jiffies,
3688                                 eop_desc->upper.fields.status);
3689                         netif_stop_queue(netdev);
3690                 }
3691         }
3692         return cleaned;
3693 }
3694
3695 /**
3696  * e1000_rx_checksum - Receive Checksum Offload for 82543
3697  * @adapter:     board private structure
3698  * @status_err:  receive descriptor status and error fields
3699  * @csum:        receive descriptor csum field
3700  * @sk_buff:     socket buffer with received data
3701  **/
3702
3703 static void
3704 e1000_rx_checksum(struct e1000_adapter *adapter,
3705                   uint32_t status_err, uint32_t csum,
3706                   struct sk_buff *skb)
3707 {
3708         uint16_t status = (uint16_t)status_err;
3709         uint8_t errors = (uint8_t)(status_err >> 24);
3710         skb->ip_summed = CHECKSUM_NONE;
3711
3712         /* 82543 or newer only */
3713         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3714         /* Ignore Checksum bit is set */
3715         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3716         /* TCP/UDP checksum error bit is set */
3717         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3718                 /* let the stack verify checksum errors */
3719                 adapter->hw_csum_err++;
3720                 return;
3721         }
3722         /* TCP/UDP Checksum has not been calculated */
3723         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3724                 if (!(status & E1000_RXD_STAT_TCPCS))
3725                         return;
3726         } else {
3727                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3728                         return;
3729         }
3730         /* It must be a TCP or UDP packet with a valid checksum */
3731         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3732                 /* TCP checksum is good */
3733                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3734         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3735                 /* IP fragment with UDP payload */
3736                 /* Hardware complements the payload checksum, so we undo it
3737                  * and then put the value in host order for further stack use.
3738                  */
3739                 csum = ntohl(csum ^ 0xFFFF);
3740                 skb->csum = csum;
3741                 skb->ip_summed = CHECKSUM_COMPLETE;
3742         }
3743         adapter->hw_csum_good++;
3744 }
3745
3746 /**
3747  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3748  * @adapter: board private structure
3749  **/
3750
3751 static boolean_t
3752 #ifdef CONFIG_E1000_NAPI
3753 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3754                    struct e1000_rx_ring *rx_ring,
3755                    int *work_done, int work_to_do)
3756 #else
3757 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3758                    struct e1000_rx_ring *rx_ring)
3759 #endif
3760 {
3761         struct net_device *netdev = adapter->netdev;
3762         struct pci_dev *pdev = adapter->pdev;
3763         struct e1000_rx_desc *rx_desc, *next_rxd;
3764         struct e1000_buffer *buffer_info, *next_buffer;
3765         unsigned long flags;
3766         uint32_t length;
3767         uint8_t last_byte;
3768         unsigned int i;
3769         int cleaned_count = 0;
3770         boolean_t cleaned = FALSE;
3771
3772         i = rx_ring->next_to_clean;
3773         rx_desc = E1000_RX_DESC(*rx_ring, i);
3774         buffer_info = &rx_ring->buffer_info[i];
3775
3776         while (rx_desc->status & E1000_RXD_STAT_DD) {
3777                 struct sk_buff *skb;
3778                 u8 status;
3779
3780 #ifdef CONFIG_E1000_NAPI
3781                 if (*work_done >= work_to_do)
3782                         break;
3783                 (*work_done)++;
3784 #endif
3785                 status = rx_desc->status;
3786                 skb = buffer_info->skb;
3787                 buffer_info->skb = NULL;
3788
3789                 prefetch(skb->data - NET_IP_ALIGN);
3790
3791                 if (++i == rx_ring->count) i = 0;
3792                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3793                 prefetch(next_rxd);
3794
3795                 next_buffer = &rx_ring->buffer_info[i];
3796
3797                 cleaned = TRUE;
3798                 cleaned_count++;
3799                 pci_unmap_single(pdev,
3800                                  buffer_info->dma,
3801                                  buffer_info->length,
3802                                  PCI_DMA_FROMDEVICE);
3803
3804                 length = le16_to_cpu(rx_desc->length);
3805
3806                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3807                         /* All receives must fit into a single buffer */
3808                         E1000_DBG("%s: Receive packet consumed multiple"
3809                                   " buffers\n", netdev->name);
3810                         /* recycle */
3811                         buffer_info->skb = skb;
3812                         goto next_desc;
3813                 }
3814
3815                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3816                         last_byte = *(skb->data + length - 1);
3817                         if (TBI_ACCEPT(&adapter->hw, status,
3818                                       rx_desc->errors, length, last_byte)) {
3819                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3820                                 e1000_tbi_adjust_stats(&adapter->hw,
3821                                                        &adapter->stats,
3822                                                        length, skb->data);
3823                                 spin_unlock_irqrestore(&adapter->stats_lock,
3824                                                        flags);
3825                                 length--;
3826                         } else {
3827                                 /* recycle */
3828                                 buffer_info->skb = skb;
3829                                 goto next_desc;
3830                         }
3831                 }
3832
3833                 /* adjust length to remove Ethernet CRC, this must be
3834                  * done after the TBI_ACCEPT workaround above */
3835                 length -= 4;
3836
3837                 /* code added for copybreak, this should improve
3838                  * performance for small packets with large amounts
3839                  * of reassembly being done in the stack */
3840 #define E1000_CB_LENGTH 256
3841                 if (length < E1000_CB_LENGTH) {
3842                         struct sk_buff *new_skb =
3843                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3844                         if (new_skb) {
3845                                 skb_reserve(new_skb, NET_IP_ALIGN);
3846                                 memcpy(new_skb->data - NET_IP_ALIGN,
3847                                        skb->data - NET_IP_ALIGN,
3848                                        length + NET_IP_ALIGN);
3849                                 /* save the skb in buffer_info as good */
3850                                 buffer_info->skb = skb;
3851                                 skb = new_skb;
3852                         }
3853                         /* else just continue with the old one */
3854                 }
3855                 /* end copybreak code */
3856                 skb_put(skb, length);
3857
3858                 /* Receive Checksum Offload */
3859                 e1000_rx_checksum(adapter,
3860                                   (uint32_t)(status) |
3861                                   ((uint32_t)(rx_desc->errors) << 24),
3862                                   le16_to_cpu(rx_desc->csum), skb);
3863
3864                 skb->protocol = eth_type_trans(skb, netdev);
3865 #ifdef CONFIG_E1000_NAPI
3866                 if (unlikely(adapter->vlgrp &&
3867                             (status & E1000_RXD_STAT_VP))) {
3868                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3869                                                  le16_to_cpu(rx_desc->special) &
3870                                                  E1000_RXD_SPC_VLAN_MASK);
3871                 } else {
3872                         netif_receive_skb(skb);
3873                 }
3874 #else /* CONFIG_E1000_NAPI */
3875                 if (unlikely(adapter->vlgrp &&
3876                             (status & E1000_RXD_STAT_VP))) {
3877                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3878                                         le16_to_cpu(rx_desc->special) &
3879                                         E1000_RXD_SPC_VLAN_MASK);
3880                 } else {
3881                         netif_rx(skb);
3882                 }
3883 #endif /* CONFIG_E1000_NAPI */
3884                 netdev->last_rx = jiffies;
3885
3886 next_desc:
3887                 rx_desc->status = 0;
3888
3889                 /* return some buffers to hardware, one at a time is too slow */
3890                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3891                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3892                         cleaned_count = 0;
3893                 }
3894
3895                 /* use prefetched values */
3896                 rx_desc = next_rxd;
3897                 buffer_info = next_buffer;
3898         }
3899         rx_ring->next_to_clean = i;
3900
3901         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3902         if (cleaned_count)
3903                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3904
3905         return cleaned;
3906 }
3907
3908 /**
3909  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3910  * @adapter: board private structure
3911  **/
3912
3913 static boolean_t
3914 #ifdef CONFIG_E1000_NAPI
3915 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3916                       struct e1000_rx_ring *rx_ring,
3917                       int *work_done, int work_to_do)
3918 #else
3919 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3920                       struct e1000_rx_ring *rx_ring)
3921 #endif
3922 {
3923         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3924         struct net_device *netdev = adapter->netdev;
3925         struct pci_dev *pdev = adapter->pdev;
3926         struct e1000_buffer *buffer_info, *next_buffer;
3927         struct e1000_ps_page *ps_page;
3928         struct e1000_ps_page_dma *ps_page_dma;
3929         struct sk_buff *skb;
3930         unsigned int i, j;
3931         uint32_t length, staterr;
3932         int cleaned_count = 0;
3933         boolean_t cleaned = FALSE;
3934
3935         i = rx_ring->next_to_clean;
3936         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3937         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3938         buffer_info = &rx_ring->buffer_info[i];
3939
3940         while (staterr & E1000_RXD_STAT_DD) {
3941                 ps_page = &rx_ring->ps_page[i];
3942                 ps_page_dma = &rx_ring->ps_page_dma[i];
3943 #ifdef CONFIG_E1000_NAPI
3944                 if (unlikely(*work_done >= work_to_do))
3945                         break;
3946                 (*work_done)++;
3947 #endif
3948                 skb = buffer_info->skb;
3949
3950                 /* in the packet split case this is header only */
3951                 prefetch(skb->data - NET_IP_ALIGN);
3952
3953                 if (++i == rx_ring->count) i = 0;
3954                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3955                 prefetch(next_rxd);
3956
3957                 next_buffer = &rx_ring->buffer_info[i];
3958
3959                 cleaned = TRUE;
3960                 cleaned_count++;
3961                 pci_unmap_single(pdev, buffer_info->dma,
3962                                  buffer_info->length,
3963                                  PCI_DMA_FROMDEVICE);
3964
3965                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3966                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3967                                   " the full packet\n", netdev->name);
3968                         dev_kfree_skb_irq(skb);
3969                         goto next_desc;
3970                 }
3971
3972                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3973                         dev_kfree_skb_irq(skb);
3974                         goto next_desc;
3975                 }
3976
3977                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3978
3979                 if (unlikely(!length)) {
3980                         E1000_DBG("%s: Last part of the packet spanning"
3981                                   " multiple descriptors\n", netdev->name);
3982                         dev_kfree_skb_irq(skb);
3983                         goto next_desc;
3984                 }
3985
3986                 /* Good Receive */
3987                 skb_put(skb, length);
3988
3989                 {
3990                 /* this looks ugly, but it seems compiler issues make it
3991                    more efficient than reusing j */
3992                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3993
3994                 /* page alloc/put takes too long and effects small packet
3995                  * throughput, so unsplit small packets and save the alloc/put*/
3996                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3997                         u8 *vaddr;
3998                         /* there is no documentation about how to call
3999                          * kmap_atomic, so we can't hold the mapping
4000                          * very long */
4001                         pci_dma_sync_single_for_cpu(pdev,
4002                                 ps_page_dma->ps_page_dma[0],
4003                                 PAGE_SIZE,
4004                                 PCI_DMA_FROMDEVICE);
4005                         vaddr = kmap_atomic(ps_page->ps_page[0],
4006                                             KM_SKB_DATA_SOFTIRQ);
4007                         memcpy(skb->tail, vaddr, l1);
4008                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4009                         pci_dma_sync_single_for_device(pdev,
4010                                 ps_page_dma->ps_page_dma[0],
4011                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4012                         /* remove the CRC */
4013                         l1 -= 4;
4014                         skb_put(skb, l1);
4015                         goto copydone;
4016                 } /* if */
4017                 }
4018
4019                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4020                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4021                                 break;
4022                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4023                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4024                         ps_page_dma->ps_page_dma[j] = 0;
4025                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4026                                            length);
4027                         ps_page->ps_page[j] = NULL;
4028                         skb->len += length;
4029                         skb->data_len += length;
4030                         skb->truesize += length;
4031                 }
4032
4033                 /* strip the ethernet crc, problem is we're using pages now so
4034                  * this whole operation can get a little cpu intensive */
4035                 pskb_trim(skb, skb->len - 4);
4036
4037 copydone:
4038                 e1000_rx_checksum(adapter, staterr,
4039                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4040                 skb->protocol = eth_type_trans(skb, netdev);
4041
4042                 if (likely(rx_desc->wb.upper.header_status &
4043                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4044                         adapter->rx_hdr_split++;
4045 #ifdef CONFIG_E1000_NAPI
4046                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4047                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4048                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4049                                 E1000_RXD_SPC_VLAN_MASK);
4050                 } else {
4051                         netif_receive_skb(skb);
4052                 }
4053 #else /* CONFIG_E1000_NAPI */
4054                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4055                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4056                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4057                                 E1000_RXD_SPC_VLAN_MASK);
4058                 } else {
4059                         netif_rx(skb);
4060                 }
4061 #endif /* CONFIG_E1000_NAPI */
4062                 netdev->last_rx = jiffies;
4063
4064 next_desc:
4065                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4066                 buffer_info->skb = NULL;
4067
4068                 /* return some buffers to hardware, one at a time is too slow */
4069                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4070                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4071                         cleaned_count = 0;
4072                 }
4073
4074                 /* use prefetched values */
4075                 rx_desc = next_rxd;
4076                 buffer_info = next_buffer;
4077
4078                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4079         }
4080         rx_ring->next_to_clean = i;
4081
4082         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4083         if (cleaned_count)
4084                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4085
4086         return cleaned;
4087 }
4088
4089 /**
4090  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4091  * @adapter: address of board private structure
4092  **/
4093
4094 static void
4095 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4096                        struct e1000_rx_ring *rx_ring,
4097                        int cleaned_count)
4098 {
4099         struct net_device *netdev = adapter->netdev;
4100         struct pci_dev *pdev = adapter->pdev;
4101         struct e1000_rx_desc *rx_desc;
4102         struct e1000_buffer *buffer_info;
4103         struct sk_buff *skb;
4104         unsigned int i;
4105         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4106
4107         i = rx_ring->next_to_use;
4108         buffer_info = &rx_ring->buffer_info[i];
4109
4110         while (cleaned_count--) {
4111                 skb = buffer_info->skb;
4112                 if (skb) {
4113                         skb_trim(skb, 0);
4114                         goto map_skb;
4115                 }
4116
4117                 skb = netdev_alloc_skb(netdev, bufsz);
4118                 if (unlikely(!skb)) {
4119                         /* Better luck next round */
4120                         adapter->alloc_rx_buff_failed++;
4121                         break;
4122                 }
4123
4124                 /* Fix for errata 23, can't cross 64kB boundary */
4125                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4126                         struct sk_buff *oldskb = skb;
4127                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4128                                              "at %p\n", bufsz, skb->data);
4129                         /* Try again, without freeing the previous */
4130                         skb = netdev_alloc_skb(netdev, bufsz);
4131                         /* Failed allocation, critical failure */
4132                         if (!skb) {
4133                                 dev_kfree_skb(oldskb);
4134                                 break;
4135                         }
4136
4137                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4138                                 /* give up */
4139                                 dev_kfree_skb(skb);
4140                                 dev_kfree_skb(oldskb);
4141                                 break; /* while !buffer_info->skb */
4142                         }
4143
4144                         /* Use new allocation */
4145                         dev_kfree_skb(oldskb);
4146                 }
4147                 /* Make buffer alignment 2 beyond a 16 byte boundary
4148                  * this will result in a 16 byte aligned IP header after
4149                  * the 14 byte MAC header is removed
4150                  */
4151                 skb_reserve(skb, NET_IP_ALIGN);
4152
4153                 buffer_info->skb = skb;
4154                 buffer_info->length = adapter->rx_buffer_len;
4155 map_skb:
4156                 buffer_info->dma = pci_map_single(pdev,
4157                                                   skb->data,
4158                                                   adapter->rx_buffer_len,
4159                                                   PCI_DMA_FROMDEVICE);
4160
4161                 /* Fix for errata 23, can't cross 64kB boundary */
4162                 if (!e1000_check_64k_bound(adapter,
4163                                         (void *)(unsigned long)buffer_info->dma,
4164                                         adapter->rx_buffer_len)) {
4165                         DPRINTK(RX_ERR, ERR,
4166                                 "dma align check failed: %u bytes at %p\n",
4167                                 adapter->rx_buffer_len,
4168                                 (void *)(unsigned long)buffer_info->dma);
4169                         dev_kfree_skb(skb);
4170                         buffer_info->skb = NULL;
4171
4172                         pci_unmap_single(pdev, buffer_info->dma,
4173                                          adapter->rx_buffer_len,
4174                                          PCI_DMA_FROMDEVICE);
4175
4176                         break; /* while !buffer_info->skb */
4177                 }
4178                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4179                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4180
4181                 if (unlikely(++i == rx_ring->count))
4182                         i = 0;
4183                 buffer_info = &rx_ring->buffer_info[i];
4184         }
4185
4186         if (likely(rx_ring->next_to_use != i)) {
4187                 rx_ring->next_to_use = i;
4188                 if (unlikely(i-- == 0))
4189                         i = (rx_ring->count - 1);
4190
4191                 /* Force memory writes to complete before letting h/w
4192                  * know there are new descriptors to fetch.  (Only
4193                  * applicable for weak-ordered memory model archs,
4194                  * such as IA-64). */
4195                 wmb();
4196                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4197         }
4198 }
4199
4200 /**
4201  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4202  * @adapter: address of board private structure
4203  **/
4204
4205 static void
4206 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4207                           struct e1000_rx_ring *rx_ring,
4208                           int cleaned_count)
4209 {
4210         struct net_device *netdev = adapter->netdev;
4211         struct pci_dev *pdev = adapter->pdev;
4212         union e1000_rx_desc_packet_split *rx_desc;
4213         struct e1000_buffer *buffer_info;
4214         struct e1000_ps_page *ps_page;
4215         struct e1000_ps_page_dma *ps_page_dma;
4216         struct sk_buff *skb;
4217         unsigned int i, j;
4218
4219         i = rx_ring->next_to_use;
4220         buffer_info = &rx_ring->buffer_info[i];
4221         ps_page = &rx_ring->ps_page[i];
4222         ps_page_dma = &rx_ring->ps_page_dma[i];
4223
4224         while (cleaned_count--) {
4225                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4226
4227                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4228                         if (j < adapter->rx_ps_pages) {
4229                                 if (likely(!ps_page->ps_page[j])) {
4230                                         ps_page->ps_page[j] =
4231                                                 alloc_page(GFP_ATOMIC);
4232                                         if (unlikely(!ps_page->ps_page[j])) {
4233                                                 adapter->alloc_rx_buff_failed++;
4234                                                 goto no_buffers;
4235                                         }
4236                                         ps_page_dma->ps_page_dma[j] =
4237                                                 pci_map_page(pdev,
4238                                                             ps_page->ps_page[j],
4239                                                             0, PAGE_SIZE,
4240                                                             PCI_DMA_FROMDEVICE);
4241                                 }
4242                                 /* Refresh the desc even if buffer_addrs didn't
4243                                  * change because each write-back erases
4244                                  * this info.
4245                                  */
4246                                 rx_desc->read.buffer_addr[j+1] =
4247                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4248                         } else
4249                                 rx_desc->read.buffer_addr[j+1] = ~0;
4250                 }
4251
4252                 skb = netdev_alloc_skb(netdev,
4253                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4254
4255                 if (unlikely(!skb)) {
4256                         adapter->alloc_rx_buff_failed++;
4257                         break;
4258                 }
4259
4260                 /* Make buffer alignment 2 beyond a 16 byte boundary
4261                  * this will result in a 16 byte aligned IP header after
4262                  * the 14 byte MAC header is removed
4263                  */
4264                 skb_reserve(skb, NET_IP_ALIGN);
4265
4266                 buffer_info->skb = skb;
4267                 buffer_info->length = adapter->rx_ps_bsize0;
4268                 buffer_info->dma = pci_map_single(pdev, skb->data,
4269                                                   adapter->rx_ps_bsize0,
4270                                                   PCI_DMA_FROMDEVICE);
4271
4272                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4273
4274                 if (unlikely(++i == rx_ring->count)) i = 0;
4275                 buffer_info = &rx_ring->buffer_info[i];
4276                 ps_page = &rx_ring->ps_page[i];
4277                 ps_page_dma = &rx_ring->ps_page_dma[i];
4278         }
4279
4280 no_buffers:
4281         if (likely(rx_ring->next_to_use != i)) {
4282                 rx_ring->next_to_use = i;
4283                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4284
4285                 /* Force memory writes to complete before letting h/w
4286                  * know there are new descriptors to fetch.  (Only
4287                  * applicable for weak-ordered memory model archs,
4288                  * such as IA-64). */
4289                 wmb();
4290                 /* Hardware increments by 16 bytes, but packet split
4291                  * descriptors are 32 bytes...so we increment tail
4292                  * twice as much.
4293                  */
4294                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4295         }
4296 }
4297
4298 /**
4299  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4300  * @adapter:
4301  **/
4302
4303 static void
4304 e1000_smartspeed(struct e1000_adapter *adapter)
4305 {
4306         uint16_t phy_status;
4307         uint16_t phy_ctrl;
4308
4309         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4310            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4311                 return;
4312
4313         if (adapter->smartspeed == 0) {
4314                 /* If Master/Slave config fault is asserted twice,
4315                  * we assume back-to-back */
4316                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4317                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4318                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4319                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4320                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4321                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4322                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4323                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4324                                             phy_ctrl);
4325                         adapter->smartspeed++;
4326                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4327                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4328                                                &phy_ctrl)) {
4329                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4330                                              MII_CR_RESTART_AUTO_NEG);
4331                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4332                                                     phy_ctrl);
4333                         }
4334                 }
4335                 return;
4336         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4337                 /* If still no link, perhaps using 2/3 pair cable */
4338                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4339                 phy_ctrl |= CR_1000T_MS_ENABLE;
4340                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4341                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4342                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4343                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4344                                      MII_CR_RESTART_AUTO_NEG);
4345                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4346                 }
4347         }
4348         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4349         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4350                 adapter->smartspeed = 0;
4351 }
4352
4353 /**
4354  * e1000_ioctl -
4355  * @netdev:
4356  * @ifreq:
4357  * @cmd:
4358  **/
4359
4360 static int
4361 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4362 {
4363         switch (cmd) {
4364         case SIOCGMIIPHY:
4365         case SIOCGMIIREG:
4366         case SIOCSMIIREG:
4367                 return e1000_mii_ioctl(netdev, ifr, cmd);
4368         default:
4369                 return -EOPNOTSUPP;
4370         }
4371 }
4372
4373 /**
4374  * e1000_mii_ioctl -
4375  * @netdev:
4376  * @ifreq:
4377  * @cmd:
4378  **/
4379
4380 static int
4381 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4382 {
4383         struct e1000_adapter *adapter = netdev_priv(netdev);
4384         struct mii_ioctl_data *data = if_mii(ifr);
4385         int retval;
4386         uint16_t mii_reg;
4387         uint16_t spddplx;
4388         unsigned long flags;
4389
4390         if (adapter->hw.media_type != e1000_media_type_copper)
4391                 return -EOPNOTSUPP;
4392
4393         switch (cmd) {
4394         case SIOCGMIIPHY:
4395                 data->phy_id = adapter->hw.phy_addr;
4396                 break;
4397         case SIOCGMIIREG:
4398                 if (!capable(CAP_NET_ADMIN))
4399                         return -EPERM;
4400                 spin_lock_irqsave(&adapter->stats_lock, flags);
4401                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4402                                    &data->val_out)) {
4403                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4404                         return -EIO;
4405                 }
4406                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4407                 break;
4408         case SIOCSMIIREG:
4409                 if (!capable(CAP_NET_ADMIN))
4410                         return -EPERM;
4411                 if (data->reg_num & ~(0x1F))
4412                         return -EFAULT;
4413                 mii_reg = data->val_in;
4414                 spin_lock_irqsave(&adapter->stats_lock, flags);
4415                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4416                                         mii_reg)) {
4417                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4418                         return -EIO;
4419                 }
4420                 if (adapter->hw.media_type == e1000_media_type_copper) {
4421                         switch (data->reg_num) {
4422                         case PHY_CTRL:
4423                                 if (mii_reg & MII_CR_POWER_DOWN)
4424                                         break;
4425                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4426                                         adapter->hw.autoneg = 1;
4427                                         adapter->hw.autoneg_advertised = 0x2F;
4428                                 } else {
4429                                         if (mii_reg & 0x40)
4430                                                 spddplx = SPEED_1000;
4431                                         else if (mii_reg & 0x2000)
4432                                                 spddplx = SPEED_100;
4433                                         else
4434                                                 spddplx = SPEED_10;
4435                                         spddplx += (mii_reg & 0x100)
4436                                                    ? DUPLEX_FULL :
4437                                                    DUPLEX_HALF;
4438                                         retval = e1000_set_spd_dplx(adapter,
4439                                                                     spddplx);
4440                                         if (retval) {
4441                                                 spin_unlock_irqrestore(
4442                                                         &adapter->stats_lock,
4443                                                         flags);
4444                                                 return retval;
4445                                         }
4446                                 }
4447                                 if (netif_running(adapter->netdev))
4448                                         e1000_reinit_locked(adapter);
4449                                 else
4450                                         e1000_reset(adapter);
4451                                 break;
4452                         case M88E1000_PHY_SPEC_CTRL:
4453                         case M88E1000_EXT_PHY_SPEC_CTRL:
4454                                 if (e1000_phy_reset(&adapter->hw)) {
4455                                         spin_unlock_irqrestore(
4456                                                 &adapter->stats_lock, flags);
4457                                         return -EIO;
4458                                 }
4459                                 break;
4460                         }
4461                 } else {
4462                         switch (data->reg_num) {
4463                         case PHY_CTRL:
4464                                 if (mii_reg & MII_CR_POWER_DOWN)
4465                                         break;
4466                                 if (netif_running(adapter->netdev))
4467                                         e1000_reinit_locked(adapter);
4468                                 else
4469                                         e1000_reset(adapter);
4470                                 break;
4471                         }
4472                 }
4473                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4474                 break;
4475         default:
4476                 return -EOPNOTSUPP;
4477         }
4478         return E1000_SUCCESS;
4479 }
4480
4481 void
4482 e1000_pci_set_mwi(struct e1000_hw *hw)
4483 {
4484         struct e1000_adapter *adapter = hw->back;
4485         int ret_val = pci_set_mwi(adapter->pdev);
4486
4487         if (ret_val)
4488                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4489 }
4490
4491 void
4492 e1000_pci_clear_mwi(struct e1000_hw *hw)
4493 {
4494         struct e1000_adapter *adapter = hw->back;
4495
4496         pci_clear_mwi(adapter->pdev);
4497 }
4498
4499 void
4500 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4501 {
4502         struct e1000_adapter *adapter = hw->back;
4503
4504         pci_read_config_word(adapter->pdev, reg, value);
4505 }
4506
4507 void
4508 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4509 {
4510         struct e1000_adapter *adapter = hw->back;
4511
4512         pci_write_config_word(adapter->pdev, reg, *value);
4513 }
4514
4515 int32_t
4516 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4517 {
4518     struct e1000_adapter *adapter = hw->back;
4519     uint16_t cap_offset;
4520
4521     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4522     if (!cap_offset)
4523         return -E1000_ERR_CONFIG;
4524
4525     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4526
4527     return E1000_SUCCESS;
4528 }
4529
4530 void
4531 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4532 {
4533         outl(value, port);
4534 }
4535
4536 static void
4537 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4538 {
4539         struct e1000_adapter *adapter = netdev_priv(netdev);
4540         uint32_t ctrl, rctl;
4541
4542         e1000_irq_disable(adapter);
4543         adapter->vlgrp = grp;
4544
4545         if (grp) {
4546                 /* enable VLAN tag insert/strip */
4547                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4548                 ctrl |= E1000_CTRL_VME;
4549                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4550
4551                 if (adapter->hw.mac_type != e1000_ich8lan) {
4552                         /* enable VLAN receive filtering */
4553                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4554                         rctl |= E1000_RCTL_VFE;
4555                         rctl &= ~E1000_RCTL_CFIEN;
4556                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4557                         e1000_update_mng_vlan(adapter);
4558                 }
4559         } else {
4560                 /* disable VLAN tag insert/strip */
4561                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4562                 ctrl &= ~E1000_CTRL_VME;
4563                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4564
4565                 if (adapter->hw.mac_type != e1000_ich8lan) {
4566                         /* disable VLAN filtering */
4567                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4568                         rctl &= ~E1000_RCTL_VFE;
4569                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4570                         if (adapter->mng_vlan_id !=
4571                             (uint16_t)E1000_MNG_VLAN_NONE) {
4572                                 e1000_vlan_rx_kill_vid(netdev,
4573                                                        adapter->mng_vlan_id);
4574                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4575                         }
4576                 }
4577         }
4578
4579         e1000_irq_enable(adapter);
4580 }
4581
4582 static void
4583 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4584 {
4585         struct e1000_adapter *adapter = netdev_priv(netdev);
4586         uint32_t vfta, index;
4587
4588         if ((adapter->hw.mng_cookie.status &
4589              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4590             (vid == adapter->mng_vlan_id))
4591                 return;
4592         /* add VID to filter table */
4593         index = (vid >> 5) & 0x7F;
4594         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4595         vfta |= (1 << (vid & 0x1F));
4596         e1000_write_vfta(&adapter->hw, index, vfta);
4597 }
4598
4599 static void
4600 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4601 {
4602         struct e1000_adapter *adapter = netdev_priv(netdev);
4603         uint32_t vfta, index;
4604
4605         e1000_irq_disable(adapter);
4606
4607         if (adapter->vlgrp)
4608                 adapter->vlgrp->vlan_devices[vid] = NULL;
4609
4610         e1000_irq_enable(adapter);
4611
4612         if ((adapter->hw.mng_cookie.status &
4613              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4614             (vid == adapter->mng_vlan_id)) {
4615                 /* release control to f/w */
4616                 e1000_release_hw_control(adapter);
4617                 return;
4618         }
4619
4620         /* remove VID from filter table */
4621         index = (vid >> 5) & 0x7F;
4622         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4623         vfta &= ~(1 << (vid & 0x1F));
4624         e1000_write_vfta(&adapter->hw, index, vfta);
4625 }
4626
4627 static void
4628 e1000_restore_vlan(struct e1000_adapter *adapter)
4629 {
4630         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4631
4632         if (adapter->vlgrp) {
4633                 uint16_t vid;
4634                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4635                         if (!adapter->vlgrp->vlan_devices[vid])
4636                                 continue;
4637                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4638                 }
4639         }
4640 }
4641
4642 int
4643 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4644 {
4645         adapter->hw.autoneg = 0;
4646
4647         /* Fiber NICs only allow 1000 gbps Full duplex */
4648         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4649                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4650                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4651                 return -EINVAL;
4652         }
4653
4654         switch (spddplx) {
4655         case SPEED_10 + DUPLEX_HALF:
4656                 adapter->hw.forced_speed_duplex = e1000_10_half;
4657                 break;
4658         case SPEED_10 + DUPLEX_FULL:
4659                 adapter->hw.forced_speed_duplex = e1000_10_full;
4660                 break;
4661         case SPEED_100 + DUPLEX_HALF:
4662                 adapter->hw.forced_speed_duplex = e1000_100_half;
4663                 break;
4664         case SPEED_100 + DUPLEX_FULL:
4665                 adapter->hw.forced_speed_duplex = e1000_100_full;
4666                 break;
4667         case SPEED_1000 + DUPLEX_FULL:
4668                 adapter->hw.autoneg = 1;
4669                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4670                 break;
4671         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4672         default:
4673                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4674                 return -EINVAL;
4675         }
4676         return 0;
4677 }
4678
4679 #ifdef CONFIG_PM
4680 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4681  * bus we're on (PCI(X) vs. PCI-E)
4682  */
4683 #define PCIE_CONFIG_SPACE_LEN 256
4684 #define PCI_CONFIG_SPACE_LEN 64
4685 static int
4686 e1000_pci_save_state(struct e1000_adapter *adapter)
4687 {
4688         struct pci_dev *dev = adapter->pdev;
4689         int size;
4690         int i;
4691
4692         if (adapter->hw.mac_type >= e1000_82571)
4693                 size = PCIE_CONFIG_SPACE_LEN;
4694         else
4695                 size = PCI_CONFIG_SPACE_LEN;
4696
4697         WARN_ON(adapter->config_space != NULL);
4698
4699         adapter->config_space = kmalloc(size, GFP_KERNEL);
4700         if (!adapter->config_space) {
4701                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4702                 return -ENOMEM;
4703         }
4704         for (i = 0; i < (size / 4); i++)
4705                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4706         return 0;
4707 }
4708
4709 static void
4710 e1000_pci_restore_state(struct e1000_adapter *adapter)
4711 {
4712         struct pci_dev *dev = adapter->pdev;
4713         int size;
4714         int i;
4715
4716         if (adapter->config_space == NULL)
4717                 return;
4718
4719         if (adapter->hw.mac_type >= e1000_82571)
4720                 size = PCIE_CONFIG_SPACE_LEN;
4721         else
4722                 size = PCI_CONFIG_SPACE_LEN;
4723         for (i = 0; i < (size / 4); i++)
4724                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4725         kfree(adapter->config_space);
4726         adapter->config_space = NULL;
4727         return;
4728 }
4729 #endif /* CONFIG_PM */
4730
4731 static int
4732 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4733 {
4734         struct net_device *netdev = pci_get_drvdata(pdev);
4735         struct e1000_adapter *adapter = netdev_priv(netdev);
4736         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4737         uint32_t wufc = adapter->wol;
4738 #ifdef CONFIG_PM
4739         int retval = 0;
4740 #endif
4741
4742         netif_device_detach(netdev);
4743
4744         if (netif_running(netdev)) {
4745                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4746                 e1000_down(adapter);
4747         }
4748
4749 #ifdef CONFIG_PM
4750         /* Implement our own version of pci_save_state(pdev) because pci-
4751          * express adapters have 256-byte config spaces. */
4752         retval = e1000_pci_save_state(adapter);
4753         if (retval)
4754                 return retval;
4755 #endif
4756
4757         status = E1000_READ_REG(&adapter->hw, STATUS);
4758         if (status & E1000_STATUS_LU)
4759                 wufc &= ~E1000_WUFC_LNKC;
4760
4761         if (wufc) {
4762                 e1000_setup_rctl(adapter);
4763                 e1000_set_multi(netdev);
4764
4765                 /* turn on all-multi mode if wake on multicast is enabled */
4766                 if (wufc & E1000_WUFC_MC) {
4767                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4768                         rctl |= E1000_RCTL_MPE;
4769                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4770                 }
4771
4772                 if (adapter->hw.mac_type >= e1000_82540) {
4773                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4774                         /* advertise wake from D3Cold */
4775                         #define E1000_CTRL_ADVD3WUC 0x00100000
4776                         /* phy power management enable */
4777                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4778                         ctrl |= E1000_CTRL_ADVD3WUC |
4779                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4780                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4781                 }
4782
4783                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4784                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4785                         /* keep the laser running in D3 */
4786                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4787                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4788                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4789                 }
4790
4791                 /* Allow time for pending master requests to run */
4792                 e1000_disable_pciex_master(&adapter->hw);
4793
4794                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4795                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4796                 pci_enable_wake(pdev, PCI_D3hot, 1);
4797                 pci_enable_wake(pdev, PCI_D3cold, 1);
4798         } else {
4799                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4800                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4801                 pci_enable_wake(pdev, PCI_D3hot, 0);
4802                 pci_enable_wake(pdev, PCI_D3cold, 0);
4803         }
4804
4805         if (adapter->hw.mac_type >= e1000_82540 &&
4806             adapter->hw.mac_type < e1000_82571 &&
4807             adapter->hw.media_type == e1000_media_type_copper) {
4808                 manc = E1000_READ_REG(&adapter->hw, MANC);
4809                 if (manc & E1000_MANC_SMBUS_EN) {
4810                         manc |= E1000_MANC_ARP_EN;
4811                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4812                         pci_enable_wake(pdev, PCI_D3hot, 1);
4813                         pci_enable_wake(pdev, PCI_D3cold, 1);
4814                 }
4815         }
4816
4817         if (adapter->hw.phy_type == e1000_phy_igp_3)
4818                 e1000_phy_powerdown_workaround(&adapter->hw);
4819
4820         if (netif_running(netdev))
4821                 e1000_free_irq(adapter);
4822
4823         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4824          * would have already happened in close and is redundant. */
4825         e1000_release_hw_control(adapter);
4826
4827         pci_disable_device(pdev);
4828
4829         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4830
4831         return 0;
4832 }
4833
4834 #ifdef CONFIG_PM
4835 static int
4836 e1000_resume(struct pci_dev *pdev)
4837 {
4838         struct net_device *netdev = pci_get_drvdata(pdev);
4839         struct e1000_adapter *adapter = netdev_priv(netdev);
4840         uint32_t manc, err;
4841
4842         pci_set_power_state(pdev, PCI_D0);
4843         e1000_pci_restore_state(adapter);
4844         if ((err = pci_enable_device(pdev))) {
4845                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4846                 return err;
4847         }
4848         pci_set_master(pdev);
4849
4850         pci_enable_wake(pdev, PCI_D3hot, 0);
4851         pci_enable_wake(pdev, PCI_D3cold, 0);
4852
4853         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4854                 return err;
4855
4856         e1000_power_up_phy(adapter);
4857         e1000_reset(adapter);
4858         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4859
4860         if (netif_running(netdev))
4861                 e1000_up(adapter);
4862
4863         netif_device_attach(netdev);
4864
4865         if (adapter->hw.mac_type >= e1000_82540 &&
4866             adapter->hw.mac_type < e1000_82571 &&
4867             adapter->hw.media_type == e1000_media_type_copper) {
4868                 manc = E1000_READ_REG(&adapter->hw, MANC);
4869                 manc &= ~(E1000_MANC_ARP_EN);
4870                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4871         }
4872
4873         /* If the controller is 82573 and f/w is AMT, do not set
4874          * DRV_LOAD until the interface is up.  For all other cases,
4875          * let the f/w know that the h/w is now under the control
4876          * of the driver. */
4877         if (adapter->hw.mac_type != e1000_82573 ||
4878             !e1000_check_mng_mode(&adapter->hw))
4879                 e1000_get_hw_control(adapter);
4880
4881         return 0;
4882 }
4883 #endif
4884
4885 static void e1000_shutdown(struct pci_dev *pdev)
4886 {
4887         e1000_suspend(pdev, PMSG_SUSPEND);
4888 }
4889
4890 #ifdef CONFIG_NET_POLL_CONTROLLER
4891 /*
4892  * Polling 'interrupt' - used by things like netconsole to send skbs
4893  * without having to re-enable interrupts. It's not called while
4894  * the interrupt routine is executing.
4895  */
4896 static void
4897 e1000_netpoll(struct net_device *netdev)
4898 {
4899         struct e1000_adapter *adapter = netdev_priv(netdev);
4900
4901         disable_irq(adapter->pdev->irq);
4902         e1000_intr(adapter->pdev->irq, netdev);
4903         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4904 #ifndef CONFIG_E1000_NAPI
4905         adapter->clean_rx(adapter, adapter->rx_ring);
4906 #endif
4907         enable_irq(adapter->pdev->irq);
4908 }
4909 #endif
4910
4911 /**
4912  * e1000_io_error_detected - called when PCI error is detected
4913  * @pdev: Pointer to PCI device
4914  * @state: The current pci conneection state
4915  *
4916  * This function is called after a PCI bus error affecting
4917  * this device has been detected.
4918  */
4919 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4920 {
4921         struct net_device *netdev = pci_get_drvdata(pdev);
4922         struct e1000_adapter *adapter = netdev->priv;
4923
4924         netif_device_detach(netdev);
4925
4926         if (netif_running(netdev))
4927                 e1000_down(adapter);
4928         pci_disable_device(pdev);
4929
4930         /* Request a slot slot reset. */
4931         return PCI_ERS_RESULT_NEED_RESET;
4932 }
4933
4934 /**
4935  * e1000_io_slot_reset - called after the pci bus has been reset.
4936  * @pdev: Pointer to PCI device
4937  *
4938  * Restart the card from scratch, as if from a cold-boot. Implementation
4939  * resembles the first-half of the e1000_resume routine.
4940  */
4941 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4942 {
4943         struct net_device *netdev = pci_get_drvdata(pdev);
4944         struct e1000_adapter *adapter = netdev->priv;
4945
4946         if (pci_enable_device(pdev)) {
4947                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4948                 return PCI_ERS_RESULT_DISCONNECT;
4949         }
4950         pci_set_master(pdev);
4951
4952         pci_enable_wake(pdev, PCI_D3hot, 0);
4953         pci_enable_wake(pdev, PCI_D3cold, 0);
4954
4955         e1000_reset(adapter);
4956         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4957
4958         return PCI_ERS_RESULT_RECOVERED;
4959 }
4960
4961 /**
4962  * e1000_io_resume - called when traffic can start flowing again.
4963  * @pdev: Pointer to PCI device
4964  *
4965  * This callback is called when the error recovery driver tells us that
4966  * its OK to resume normal operation. Implementation resembles the
4967  * second-half of the e1000_resume routine.
4968  */
4969 static void e1000_io_resume(struct pci_dev *pdev)
4970 {
4971         struct net_device *netdev = pci_get_drvdata(pdev);
4972         struct e1000_adapter *adapter = netdev->priv;
4973         uint32_t manc, swsm;
4974
4975         if (netif_running(netdev)) {
4976                 if (e1000_up(adapter)) {
4977                         printk("e1000: can't bring device back up after reset\n");
4978                         return;
4979                 }
4980         }
4981
4982         netif_device_attach(netdev);
4983
4984         if (adapter->hw.mac_type >= e1000_82540 &&
4985             adapter->hw.mac_type < e1000_82571 &&
4986             adapter->hw.media_type == e1000_media_type_copper) {
4987                 manc = E1000_READ_REG(&adapter->hw, MANC);
4988                 manc &= ~(E1000_MANC_ARP_EN);
4989                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4990         }
4991
4992         switch (adapter->hw.mac_type) {
4993         case e1000_82573:
4994                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4995                 E1000_WRITE_REG(&adapter->hw, SWSM,
4996                                 swsm | E1000_SWSM_DRV_LOAD);
4997                 break;
4998         default:
4999                 break;
5000         }
5001
5002         if (netif_running(netdev))
5003                 mod_timer(&adapter->watchdog_timer, jiffies);
5004 }
5005
5006 /* e1000_main.c */