e1000: add dynamic itr modes
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
107         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
109         /* required last entry */
110         {0,}
111 };
112
113 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
114
115 int e1000_up(struct e1000_adapter *adapter);
116 void e1000_down(struct e1000_adapter *adapter);
117 void e1000_reinit_locked(struct e1000_adapter *adapter);
118 void e1000_reset(struct e1000_adapter *adapter);
119 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
120 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
121 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
122 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
124 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
125                              struct e1000_tx_ring *txdr);
126 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
127                              struct e1000_rx_ring *rxdr);
128 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
129                              struct e1000_tx_ring *tx_ring);
130 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
131                              struct e1000_rx_ring *rx_ring);
132 void e1000_update_stats(struct e1000_adapter *adapter);
133
134 static int e1000_init_module(void);
135 static void e1000_exit_module(void);
136 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
137 static void __devexit e1000_remove(struct pci_dev *pdev);
138 static int e1000_alloc_queues(struct e1000_adapter *adapter);
139 static int e1000_sw_init(struct e1000_adapter *adapter);
140 static int e1000_open(struct net_device *netdev);
141 static int e1000_close(struct net_device *netdev);
142 static void e1000_configure_tx(struct e1000_adapter *adapter);
143 static void e1000_configure_rx(struct e1000_adapter *adapter);
144 static void e1000_setup_rctl(struct e1000_adapter *adapter);
145 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
146 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
148                                 struct e1000_tx_ring *tx_ring);
149 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
150                                 struct e1000_rx_ring *rx_ring);
151 static void e1000_set_multi(struct net_device *netdev);
152 static void e1000_update_phy_info(unsigned long data);
153 static void e1000_watchdog(unsigned long data);
154 static void e1000_82547_tx_fifo_stall(unsigned long data);
155 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
156 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
157 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
158 static int e1000_set_mac(struct net_device *netdev, void *p);
159 static irqreturn_t e1000_intr(int irq, void *data);
160 #ifdef CONFIG_PCI_MSI
161 static irqreturn_t e1000_intr_msi(int irq, void *data);
162 #endif
163 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
164                                     struct e1000_tx_ring *tx_ring);
165 #ifdef CONFIG_E1000_NAPI
166 static int e1000_clean(struct net_device *poll_dev, int *budget);
167 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
168                                     struct e1000_rx_ring *rx_ring,
169                                     int *work_done, int work_to_do);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring,
172                                        int *work_done, int work_to_do);
173 #else
174 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
175                                     struct e1000_rx_ring *rx_ring);
176 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
177                                        struct e1000_rx_ring *rx_ring);
178 #endif
179 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
180                                    struct e1000_rx_ring *rx_ring,
181                                    int cleaned_count);
182 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
183                                       struct e1000_rx_ring *rx_ring,
184                                       int cleaned_count);
185 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
186 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
187                            int cmd);
188 void e1000_set_ethtool_ops(struct net_device *netdev);
189 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
190 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_tx_timeout(struct net_device *dev);
192 static void e1000_reset_task(struct net_device *dev);
193 static void e1000_smartspeed(struct e1000_adapter *adapter);
194 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
195                                        struct sk_buff *skb);
196
197 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
198 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
199 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_restore_vlan(struct e1000_adapter *adapter);
201
202 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
203 #ifdef CONFIG_PM
204 static int e1000_resume(struct pci_dev *pdev);
205 #endif
206 static void e1000_shutdown(struct pci_dev *pdev);
207
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void e1000_netpoll (struct net_device *netdev);
211 #endif
212
213 extern void e1000_check_options(struct e1000_adapter *adapter);
214
215 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
216                      pci_channel_state_t state);
217 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
218 static void e1000_io_resume(struct pci_dev *pdev);
219
220 static struct pci_error_handlers e1000_err_handler = {
221         .error_detected = e1000_io_error_detected,
222         .slot_reset = e1000_io_slot_reset,
223         .resume = e1000_io_resume,
224 };
225
226 static struct pci_driver e1000_driver = {
227         .name     = e1000_driver_name,
228         .id_table = e1000_pci_tbl,
229         .probe    = e1000_probe,
230         .remove   = __devexit_p(e1000_remove),
231 #ifdef CONFIG_PM
232         /* Power Managment Hooks */
233         .suspend  = e1000_suspend,
234         .resume   = e1000_resume,
235 #endif
236         .shutdown = e1000_shutdown,
237         .err_handler = &e1000_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
241 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
242 MODULE_LICENSE("GPL");
243 MODULE_VERSION(DRV_VERSION);
244
245 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
246 module_param(debug, int, 0);
247 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248
249 /**
250  * e1000_init_module - Driver Registration Routine
251  *
252  * e1000_init_module is the first routine called when the driver is
253  * loaded. All it does is register with the PCI subsystem.
254  **/
255
256 static int __init
257 e1000_init_module(void)
258 {
259         int ret;
260         printk(KERN_INFO "%s - version %s\n",
261                e1000_driver_string, e1000_driver_version);
262
263         printk(KERN_INFO "%s\n", e1000_copyright);
264
265         ret = pci_register_driver(&e1000_driver);
266
267         return ret;
268 }
269
270 module_init(e1000_init_module);
271
272 /**
273  * e1000_exit_module - Driver Exit Cleanup Routine
274  *
275  * e1000_exit_module is called just before the driver is removed
276  * from memory.
277  **/
278
279 static void __exit
280 e1000_exit_module(void)
281 {
282         pci_unregister_driver(&e1000_driver);
283 }
284
285 module_exit(e1000_exit_module);
286
287 static int e1000_request_irq(struct e1000_adapter *adapter)
288 {
289         struct net_device *netdev = adapter->netdev;
290         int flags, err = 0;
291
292         flags = IRQF_SHARED;
293 #ifdef CONFIG_PCI_MSI
294         if (adapter->hw.mac_type >= e1000_82571) {
295                 adapter->have_msi = TRUE;
296                 if ((err = pci_enable_msi(adapter->pdev))) {
297                         DPRINTK(PROBE, ERR,
298                          "Unable to allocate MSI interrupt Error: %d\n", err);
299                         adapter->have_msi = FALSE;
300                 }
301         }
302         if (adapter->have_msi) {
303                 flags &= ~IRQF_SHARED;
304                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
305                                   netdev->name, netdev);
306                 if (err)
307                         DPRINTK(PROBE, ERR,
308                                "Unable to allocate interrupt Error: %d\n", err);
309         } else
310 #endif
311         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
312                                netdev->name, netdev)))
313                 DPRINTK(PROBE, ERR,
314                         "Unable to allocate interrupt Error: %d\n", err);
315
316         return err;
317 }
318
319 static void e1000_free_irq(struct e1000_adapter *adapter)
320 {
321         struct net_device *netdev = adapter->netdev;
322
323         free_irq(adapter->pdev->irq, netdev);
324
325 #ifdef CONFIG_PCI_MSI
326         if (adapter->have_msi)
327                 pci_disable_msi(adapter->pdev);
328 #endif
329 }
330
331 /**
332  * e1000_irq_disable - Mask off interrupt generation on the NIC
333  * @adapter: board private structure
334  **/
335
336 static void
337 e1000_irq_disable(struct e1000_adapter *adapter)
338 {
339         atomic_inc(&adapter->irq_sem);
340         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
341         E1000_WRITE_FLUSH(&adapter->hw);
342         synchronize_irq(adapter->pdev->irq);
343 }
344
345 /**
346  * e1000_irq_enable - Enable default interrupt generation settings
347  * @adapter: board private structure
348  **/
349
350 static void
351 e1000_irq_enable(struct e1000_adapter *adapter)
352 {
353         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
354                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
355                 E1000_WRITE_FLUSH(&adapter->hw);
356         }
357 }
358
359 static void
360 e1000_update_mng_vlan(struct e1000_adapter *adapter)
361 {
362         struct net_device *netdev = adapter->netdev;
363         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
364         uint16_t old_vid = adapter->mng_vlan_id;
365         if (adapter->vlgrp) {
366                 if (!adapter->vlgrp->vlan_devices[vid]) {
367                         if (adapter->hw.mng_cookie.status &
368                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
369                                 e1000_vlan_rx_add_vid(netdev, vid);
370                                 adapter->mng_vlan_id = vid;
371                         } else
372                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
373
374                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
375                                         (vid != old_vid) &&
376                                         !adapter->vlgrp->vlan_devices[old_vid])
377                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
378                 } else
379                         adapter->mng_vlan_id = vid;
380         }
381 }
382
383 /**
384  * e1000_release_hw_control - release control of the h/w to f/w
385  * @adapter: address of board private structure
386  *
387  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
388  * For ASF and Pass Through versions of f/w this means that the
389  * driver is no longer loaded. For AMT version (only with 82573) i
390  * of the f/w this means that the network i/f is closed.
391  *
392  **/
393
394 static void
395 e1000_release_hw_control(struct e1000_adapter *adapter)
396 {
397         uint32_t ctrl_ext;
398         uint32_t swsm;
399         uint32_t extcnf;
400
401         /* Let firmware taken over control of h/w */
402         switch (adapter->hw.mac_type) {
403         case e1000_82571:
404         case e1000_82572:
405         case e1000_80003es2lan:
406                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
407                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
408                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
409                 break;
410         case e1000_82573:
411                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
412                 E1000_WRITE_REG(&adapter->hw, SWSM,
413                                 swsm & ~E1000_SWSM_DRV_LOAD);
414         case e1000_ich8lan:
415                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
416                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
417                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
418                 break;
419         default:
420                 break;
421         }
422 }
423
424 /**
425  * e1000_get_hw_control - get control of the h/w from f/w
426  * @adapter: address of board private structure
427  *
428  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
429  * For ASF and Pass Through versions of f/w this means that
430  * the driver is loaded. For AMT version (only with 82573)
431  * of the f/w this means that the network i/f is open.
432  *
433  **/
434
435 static void
436 e1000_get_hw_control(struct e1000_adapter *adapter)
437 {
438         uint32_t ctrl_ext;
439         uint32_t swsm;
440         uint32_t extcnf;
441
442         /* Let firmware know the driver has taken over */
443         switch (adapter->hw.mac_type) {
444         case e1000_82571:
445         case e1000_82572:
446         case e1000_80003es2lan:
447                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
448                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
449                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
450                 break;
451         case e1000_82573:
452                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
453                 E1000_WRITE_REG(&adapter->hw, SWSM,
454                                 swsm | E1000_SWSM_DRV_LOAD);
455                 break;
456         case e1000_ich8lan:
457                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
458                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
459                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
460                 break;
461         default:
462                 break;
463         }
464 }
465
466 int
467 e1000_up(struct e1000_adapter *adapter)
468 {
469         struct net_device *netdev = adapter->netdev;
470         int i;
471
472         /* hardware has been reset, we need to reload some things */
473
474         e1000_set_multi(netdev);
475
476         e1000_restore_vlan(adapter);
477
478         e1000_configure_tx(adapter);
479         e1000_setup_rctl(adapter);
480         e1000_configure_rx(adapter);
481         /* call E1000_DESC_UNUSED which always leaves
482          * at least 1 descriptor unused to make sure
483          * next_to_use != next_to_clean */
484         for (i = 0; i < adapter->num_rx_queues; i++) {
485                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
486                 adapter->alloc_rx_buf(adapter, ring,
487                                       E1000_DESC_UNUSED(ring));
488         }
489
490         adapter->tx_queue_len = netdev->tx_queue_len;
491
492 #ifdef CONFIG_E1000_NAPI
493         netif_poll_enable(netdev);
494 #endif
495         e1000_irq_enable(adapter);
496
497         clear_bit(__E1000_DOWN, &adapter->flags);
498
499         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
500         return 0;
501 }
502
503 /**
504  * e1000_power_up_phy - restore link in case the phy was powered down
505  * @adapter: address of board private structure
506  *
507  * The phy may be powered down to save power and turn off link when the
508  * driver is unloaded and wake on lan is not enabled (among others)
509  * *** this routine MUST be followed by a call to e1000_reset ***
510  *
511  **/
512
513 void e1000_power_up_phy(struct e1000_adapter *adapter)
514 {
515         uint16_t mii_reg = 0;
516
517         /* Just clear the power down bit to wake the phy back up */
518         if (adapter->hw.media_type == e1000_media_type_copper) {
519                 /* according to the manual, the phy will retain its
520                  * settings across a power-down/up cycle */
521                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
522                 mii_reg &= ~MII_CR_POWER_DOWN;
523                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
524         }
525 }
526
527 static void e1000_power_down_phy(struct e1000_adapter *adapter)
528 {
529         /* Power down the PHY so no link is implied when interface is down *
530          * The PHY cannot be powered down if any of the following is TRUE *
531          * (a) WoL is enabled
532          * (b) AMT is active
533          * (c) SoL/IDER session is active */
534         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
535            adapter->hw.media_type == e1000_media_type_copper) {
536                 uint16_t mii_reg = 0;
537
538                 switch (adapter->hw.mac_type) {
539                 case e1000_82540:
540                 case e1000_82545:
541                 case e1000_82545_rev_3:
542                 case e1000_82546:
543                 case e1000_82546_rev_3:
544                 case e1000_82541:
545                 case e1000_82541_rev_2:
546                 case e1000_82547:
547                 case e1000_82547_rev_2:
548                         if (E1000_READ_REG(&adapter->hw, MANC) &
549                             E1000_MANC_SMBUS_EN)
550                                 goto out;
551                         break;
552                 case e1000_82571:
553                 case e1000_82572:
554                 case e1000_82573:
555                 case e1000_80003es2lan:
556                 case e1000_ich8lan:
557                         if (e1000_check_mng_mode(&adapter->hw) ||
558                             e1000_check_phy_reset_block(&adapter->hw))
559                                 goto out;
560                         break;
561                 default:
562                         goto out;
563                 }
564                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
565                 mii_reg |= MII_CR_POWER_DOWN;
566                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
567                 mdelay(1);
568         }
569 out:
570         return;
571 }
572
573 void
574 e1000_down(struct e1000_adapter *adapter)
575 {
576         struct net_device *netdev = adapter->netdev;
577
578         /* signal that we're down so the interrupt handler does not
579          * reschedule our watchdog timer */
580         set_bit(__E1000_DOWN, &adapter->flags);
581
582         e1000_irq_disable(adapter);
583
584         del_timer_sync(&adapter->tx_fifo_stall_timer);
585         del_timer_sync(&adapter->watchdog_timer);
586         del_timer_sync(&adapter->phy_info_timer);
587
588 #ifdef CONFIG_E1000_NAPI
589         netif_poll_disable(netdev);
590 #endif
591         netdev->tx_queue_len = adapter->tx_queue_len;
592         adapter->link_speed = 0;
593         adapter->link_duplex = 0;
594         netif_carrier_off(netdev);
595         netif_stop_queue(netdev);
596
597         e1000_reset(adapter);
598         e1000_clean_all_tx_rings(adapter);
599         e1000_clean_all_rx_rings(adapter);
600 }
601
602 void
603 e1000_reinit_locked(struct e1000_adapter *adapter)
604 {
605         WARN_ON(in_interrupt());
606         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
607                 msleep(1);
608         e1000_down(adapter);
609         e1000_up(adapter);
610         clear_bit(__E1000_RESETTING, &adapter->flags);
611 }
612
613 void
614 e1000_reset(struct e1000_adapter *adapter)
615 {
616         uint32_t pba, manc;
617         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
618
619         /* Repartition Pba for greater than 9k mtu
620          * To take effect CTRL.RST is required.
621          */
622
623         switch (adapter->hw.mac_type) {
624         case e1000_82547:
625         case e1000_82547_rev_2:
626                 pba = E1000_PBA_30K;
627                 break;
628         case e1000_82571:
629         case e1000_82572:
630         case e1000_80003es2lan:
631                 pba = E1000_PBA_38K;
632                 break;
633         case e1000_82573:
634                 pba = E1000_PBA_12K;
635                 break;
636         case e1000_ich8lan:
637                 pba = E1000_PBA_8K;
638                 break;
639         default:
640                 pba = E1000_PBA_48K;
641                 break;
642         }
643
644         if ((adapter->hw.mac_type != e1000_82573) &&
645            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
646                 pba -= 8; /* allocate more FIFO for Tx */
647
648
649         if (adapter->hw.mac_type == e1000_82547) {
650                 adapter->tx_fifo_head = 0;
651                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
652                 adapter->tx_fifo_size =
653                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
654                 atomic_set(&adapter->tx_fifo_stall, 0);
655         }
656
657         E1000_WRITE_REG(&adapter->hw, PBA, pba);
658
659         /* flow control settings */
660         /* Set the FC high water mark to 90% of the FIFO size.
661          * Required to clear last 3 LSB */
662         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
663         /* We can't use 90% on small FIFOs because the remainder
664          * would be less than 1 full frame.  In this case, we size
665          * it to allow at least a full frame above the high water
666          *  mark. */
667         if (pba < E1000_PBA_16K)
668                 fc_high_water_mark = (pba * 1024) - 1600;
669
670         adapter->hw.fc_high_water = fc_high_water_mark;
671         adapter->hw.fc_low_water = fc_high_water_mark - 8;
672         if (adapter->hw.mac_type == e1000_80003es2lan)
673                 adapter->hw.fc_pause_time = 0xFFFF;
674         else
675                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
676         adapter->hw.fc_send_xon = 1;
677         adapter->hw.fc = adapter->hw.original_fc;
678
679         /* Allow time for pending master requests to run */
680         e1000_reset_hw(&adapter->hw);
681         if (adapter->hw.mac_type >= e1000_82544)
682                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
683
684         if (e1000_init_hw(&adapter->hw))
685                 DPRINTK(PROBE, ERR, "Hardware Error\n");
686         e1000_update_mng_vlan(adapter);
687         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
688         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
689
690         e1000_reset_adaptive(&adapter->hw);
691         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
692
693         if (!adapter->smart_power_down &&
694             (adapter->hw.mac_type == e1000_82571 ||
695              adapter->hw.mac_type == e1000_82572)) {
696                 uint16_t phy_data = 0;
697                 /* speed up time to link by disabling smart power down, ignore
698                  * the return value of this function because there is nothing
699                  * different we would do if it failed */
700                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
701                                    &phy_data);
702                 phy_data &= ~IGP02E1000_PM_SPD;
703                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
704                                     phy_data);
705         }
706
707         if ((adapter->en_mng_pt) &&
708             (adapter->hw.mac_type >= e1000_82540) &&
709             (adapter->hw.mac_type < e1000_82571) &&
710             (adapter->hw.media_type == e1000_media_type_copper)) {
711                 manc = E1000_READ_REG(&adapter->hw, MANC);
712                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
713                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
714         }
715 }
716
717 /**
718  * e1000_probe - Device Initialization Routine
719  * @pdev: PCI device information struct
720  * @ent: entry in e1000_pci_tbl
721  *
722  * Returns 0 on success, negative on failure
723  *
724  * e1000_probe initializes an adapter identified by a pci_dev structure.
725  * The OS initialization, configuring of the adapter private structure,
726  * and a hardware reset occur.
727  **/
728
729 static int __devinit
730 e1000_probe(struct pci_dev *pdev,
731             const struct pci_device_id *ent)
732 {
733         struct net_device *netdev;
734         struct e1000_adapter *adapter;
735         unsigned long mmio_start, mmio_len;
736         unsigned long flash_start, flash_len;
737
738         static int cards_found = 0;
739         static int global_quad_port_a = 0; /* global ksp3 port a indication */
740         int i, err, pci_using_dac;
741         uint16_t eeprom_data = 0;
742         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
743         if ((err = pci_enable_device(pdev)))
744                 return err;
745
746         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
747             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
748                 pci_using_dac = 1;
749         } else {
750                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
751                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
752                         E1000_ERR("No usable DMA configuration, aborting\n");
753                         goto err_dma;
754                 }
755                 pci_using_dac = 0;
756         }
757
758         if ((err = pci_request_regions(pdev, e1000_driver_name)))
759                 goto err_pci_reg;
760
761         pci_set_master(pdev);
762
763         err = -ENOMEM;
764         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
765         if (!netdev)
766                 goto err_alloc_etherdev;
767
768         SET_MODULE_OWNER(netdev);
769         SET_NETDEV_DEV(netdev, &pdev->dev);
770
771         pci_set_drvdata(pdev, netdev);
772         adapter = netdev_priv(netdev);
773         adapter->netdev = netdev;
774         adapter->pdev = pdev;
775         adapter->hw.back = adapter;
776         adapter->msg_enable = (1 << debug) - 1;
777
778         mmio_start = pci_resource_start(pdev, BAR_0);
779         mmio_len = pci_resource_len(pdev, BAR_0);
780
781         err = -EIO;
782         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
783         if (!adapter->hw.hw_addr)
784                 goto err_ioremap;
785
786         for (i = BAR_1; i <= BAR_5; i++) {
787                 if (pci_resource_len(pdev, i) == 0)
788                         continue;
789                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
790                         adapter->hw.io_base = pci_resource_start(pdev, i);
791                         break;
792                 }
793         }
794
795         netdev->open = &e1000_open;
796         netdev->stop = &e1000_close;
797         netdev->hard_start_xmit = &e1000_xmit_frame;
798         netdev->get_stats = &e1000_get_stats;
799         netdev->set_multicast_list = &e1000_set_multi;
800         netdev->set_mac_address = &e1000_set_mac;
801         netdev->change_mtu = &e1000_change_mtu;
802         netdev->do_ioctl = &e1000_ioctl;
803         e1000_set_ethtool_ops(netdev);
804         netdev->tx_timeout = &e1000_tx_timeout;
805         netdev->watchdog_timeo = 5 * HZ;
806 #ifdef CONFIG_E1000_NAPI
807         netdev->poll = &e1000_clean;
808         netdev->weight = 64;
809 #endif
810         netdev->vlan_rx_register = e1000_vlan_rx_register;
811         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
812         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
813 #ifdef CONFIG_NET_POLL_CONTROLLER
814         netdev->poll_controller = e1000_netpoll;
815 #endif
816         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
817
818         netdev->mem_start = mmio_start;
819         netdev->mem_end = mmio_start + mmio_len;
820         netdev->base_addr = adapter->hw.io_base;
821
822         adapter->bd_number = cards_found;
823
824         /* setup the private structure */
825
826         if ((err = e1000_sw_init(adapter)))
827                 goto err_sw_init;
828
829         err = -EIO;
830         /* Flash BAR mapping must happen after e1000_sw_init
831          * because it depends on mac_type */
832         if ((adapter->hw.mac_type == e1000_ich8lan) &&
833            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
834                 flash_start = pci_resource_start(pdev, 1);
835                 flash_len = pci_resource_len(pdev, 1);
836                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
837                 if (!adapter->hw.flash_address)
838                         goto err_flashmap;
839         }
840
841         if (e1000_check_phy_reset_block(&adapter->hw))
842                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
843
844         if (adapter->hw.mac_type >= e1000_82543) {
845                 netdev->features = NETIF_F_SG |
846                                    NETIF_F_HW_CSUM |
847                                    NETIF_F_HW_VLAN_TX |
848                                    NETIF_F_HW_VLAN_RX |
849                                    NETIF_F_HW_VLAN_FILTER;
850                 if (adapter->hw.mac_type == e1000_ich8lan)
851                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
852         }
853
854 #ifdef NETIF_F_TSO
855         if ((adapter->hw.mac_type >= e1000_82544) &&
856            (adapter->hw.mac_type != e1000_82547))
857                 netdev->features |= NETIF_F_TSO;
858
859 #ifdef NETIF_F_TSO6
860         if (adapter->hw.mac_type > e1000_82547_rev_2)
861                 netdev->features |= NETIF_F_TSO6;
862 #endif
863 #endif
864         if (pci_using_dac)
865                 netdev->features |= NETIF_F_HIGHDMA;
866
867         netdev->features |= NETIF_F_LLTX;
868
869         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
870
871         /* initialize eeprom parameters */
872
873         if (e1000_init_eeprom_params(&adapter->hw)) {
874                 E1000_ERR("EEPROM initialization failed\n");
875                 goto err_eeprom;
876         }
877
878         /* before reading the EEPROM, reset the controller to
879          * put the device in a known good starting state */
880
881         e1000_reset_hw(&adapter->hw);
882
883         /* make sure the EEPROM is good */
884
885         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
886                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
887                 goto err_eeprom;
888         }
889
890         /* copy the MAC address out of the EEPROM */
891
892         if (e1000_read_mac_addr(&adapter->hw))
893                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
894         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
895         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
896
897         if (!is_valid_ether_addr(netdev->perm_addr)) {
898                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
899                 goto err_eeprom;
900         }
901
902         e1000_get_bus_info(&adapter->hw);
903
904         init_timer(&adapter->tx_fifo_stall_timer);
905         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
906         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
907
908         init_timer(&adapter->watchdog_timer);
909         adapter->watchdog_timer.function = &e1000_watchdog;
910         adapter->watchdog_timer.data = (unsigned long) adapter;
911
912         init_timer(&adapter->phy_info_timer);
913         adapter->phy_info_timer.function = &e1000_update_phy_info;
914         adapter->phy_info_timer.data = (unsigned long) adapter;
915
916         INIT_WORK(&adapter->reset_task,
917                 (void (*)(void *))e1000_reset_task, netdev);
918
919         e1000_check_options(adapter);
920
921         /* Initial Wake on LAN setting
922          * If APM wake is enabled in the EEPROM,
923          * enable the ACPI Magic Packet filter
924          */
925
926         switch (adapter->hw.mac_type) {
927         case e1000_82542_rev2_0:
928         case e1000_82542_rev2_1:
929         case e1000_82543:
930                 break;
931         case e1000_82544:
932                 e1000_read_eeprom(&adapter->hw,
933                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
934                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
935                 break;
936         case e1000_ich8lan:
937                 e1000_read_eeprom(&adapter->hw,
938                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
939                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
940                 break;
941         case e1000_82546:
942         case e1000_82546_rev_3:
943         case e1000_82571:
944         case e1000_80003es2lan:
945                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
946                         e1000_read_eeprom(&adapter->hw,
947                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
948                         break;
949                 }
950                 /* Fall Through */
951         default:
952                 e1000_read_eeprom(&adapter->hw,
953                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
954                 break;
955         }
956         if (eeprom_data & eeprom_apme_mask)
957                 adapter->eeprom_wol |= E1000_WUFC_MAG;
958
959         /* now that we have the eeprom settings, apply the special cases
960          * where the eeprom may be wrong or the board simply won't support
961          * wake on lan on a particular port */
962         switch (pdev->device) {
963         case E1000_DEV_ID_82546GB_PCIE:
964                 adapter->eeprom_wol = 0;
965                 break;
966         case E1000_DEV_ID_82546EB_FIBER:
967         case E1000_DEV_ID_82546GB_FIBER:
968         case E1000_DEV_ID_82571EB_FIBER:
969                 /* Wake events only supported on port A for dual fiber
970                  * regardless of eeprom setting */
971                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
972                         adapter->eeprom_wol = 0;
973                 break;
974         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
975         case E1000_DEV_ID_82571EB_QUAD_COPPER:
976         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
977                 /* if quad port adapter, disable WoL on all but port A */
978                 if (global_quad_port_a != 0)
979                         adapter->eeprom_wol = 0;
980                 else
981                         adapter->quad_port_a = 1;
982                 /* Reset for multiple quad port adapters */
983                 if (++global_quad_port_a == 4)
984                         global_quad_port_a = 0;
985                 break;
986         }
987
988         /* initialize the wol settings based on the eeprom settings */
989         adapter->wol = adapter->eeprom_wol;
990
991         /* print bus type/speed/width info */
992         {
993         struct e1000_hw *hw = &adapter->hw;
994         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
995                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
996                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
997                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
998                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
999                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1000                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1001                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1002                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1003                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1004                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1005                  "32-bit"));
1006         }
1007
1008         for (i = 0; i < 6; i++)
1009                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1010
1011         /* reset the hardware with the new settings */
1012         e1000_reset(adapter);
1013
1014         /* If the controller is 82573 and f/w is AMT, do not set
1015          * DRV_LOAD until the interface is up.  For all other cases,
1016          * let the f/w know that the h/w is now under the control
1017          * of the driver. */
1018         if (adapter->hw.mac_type != e1000_82573 ||
1019             !e1000_check_mng_mode(&adapter->hw))
1020                 e1000_get_hw_control(adapter);
1021
1022         strcpy(netdev->name, "eth%d");
1023         if ((err = register_netdev(netdev)))
1024                 goto err_register;
1025
1026         /* tell the stack to leave us alone until e1000_open() is called */
1027         netif_carrier_off(netdev);
1028         netif_stop_queue(netdev);
1029
1030         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1031
1032         cards_found++;
1033         return 0;
1034
1035 err_register:
1036         e1000_release_hw_control(adapter);
1037 err_eeprom:
1038         if (!e1000_check_phy_reset_block(&adapter->hw))
1039                 e1000_phy_hw_reset(&adapter->hw);
1040
1041         if (adapter->hw.flash_address)
1042                 iounmap(adapter->hw.flash_address);
1043 err_flashmap:
1044 #ifdef CONFIG_E1000_NAPI
1045         for (i = 0; i < adapter->num_rx_queues; i++)
1046                 dev_put(&adapter->polling_netdev[i]);
1047 #endif
1048
1049         kfree(adapter->tx_ring);
1050         kfree(adapter->rx_ring);
1051 #ifdef CONFIG_E1000_NAPI
1052         kfree(adapter->polling_netdev);
1053 #endif
1054 err_sw_init:
1055         iounmap(adapter->hw.hw_addr);
1056 err_ioremap:
1057         free_netdev(netdev);
1058 err_alloc_etherdev:
1059         pci_release_regions(pdev);
1060 err_pci_reg:
1061 err_dma:
1062         pci_disable_device(pdev);
1063         return err;
1064 }
1065
1066 /**
1067  * e1000_remove - Device Removal Routine
1068  * @pdev: PCI device information struct
1069  *
1070  * e1000_remove is called by the PCI subsystem to alert the driver
1071  * that it should release a PCI device.  The could be caused by a
1072  * Hot-Plug event, or because the driver is going to be removed from
1073  * memory.
1074  **/
1075
1076 static void __devexit
1077 e1000_remove(struct pci_dev *pdev)
1078 {
1079         struct net_device *netdev = pci_get_drvdata(pdev);
1080         struct e1000_adapter *adapter = netdev_priv(netdev);
1081         uint32_t manc;
1082 #ifdef CONFIG_E1000_NAPI
1083         int i;
1084 #endif
1085
1086         flush_scheduled_work();
1087
1088         if (adapter->hw.mac_type >= e1000_82540 &&
1089             adapter->hw.mac_type < e1000_82571 &&
1090             adapter->hw.media_type == e1000_media_type_copper) {
1091                 manc = E1000_READ_REG(&adapter->hw, MANC);
1092                 if (manc & E1000_MANC_SMBUS_EN) {
1093                         manc |= E1000_MANC_ARP_EN;
1094                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1095                 }
1096         }
1097
1098         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1099          * would have already happened in close and is redundant. */
1100         e1000_release_hw_control(adapter);
1101
1102         unregister_netdev(netdev);
1103 #ifdef CONFIG_E1000_NAPI
1104         for (i = 0; i < adapter->num_rx_queues; i++)
1105                 dev_put(&adapter->polling_netdev[i]);
1106 #endif
1107
1108         if (!e1000_check_phy_reset_block(&adapter->hw))
1109                 e1000_phy_hw_reset(&adapter->hw);
1110
1111         kfree(adapter->tx_ring);
1112         kfree(adapter->rx_ring);
1113 #ifdef CONFIG_E1000_NAPI
1114         kfree(adapter->polling_netdev);
1115 #endif
1116
1117         iounmap(adapter->hw.hw_addr);
1118         if (adapter->hw.flash_address)
1119                 iounmap(adapter->hw.flash_address);
1120         pci_release_regions(pdev);
1121
1122         free_netdev(netdev);
1123
1124         pci_disable_device(pdev);
1125 }
1126
1127 /**
1128  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129  * @adapter: board private structure to initialize
1130  *
1131  * e1000_sw_init initializes the Adapter private data structure.
1132  * Fields are initialized based on PCI device information and
1133  * OS network device settings (MTU size).
1134  **/
1135
1136 static int __devinit
1137 e1000_sw_init(struct e1000_adapter *adapter)
1138 {
1139         struct e1000_hw *hw = &adapter->hw;
1140         struct net_device *netdev = adapter->netdev;
1141         struct pci_dev *pdev = adapter->pdev;
1142 #ifdef CONFIG_E1000_NAPI
1143         int i;
1144 #endif
1145
1146         /* PCI config space info */
1147
1148         hw->vendor_id = pdev->vendor;
1149         hw->device_id = pdev->device;
1150         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1151         hw->subsystem_id = pdev->subsystem_device;
1152
1153         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1154
1155         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1156
1157         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1158         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1159         hw->max_frame_size = netdev->mtu +
1160                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1161         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1162
1163         /* identify the MAC */
1164
1165         if (e1000_set_mac_type(hw)) {
1166                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1167                 return -EIO;
1168         }
1169
1170         switch (hw->mac_type) {
1171         default:
1172                 break;
1173         case e1000_82541:
1174         case e1000_82547:
1175         case e1000_82541_rev_2:
1176         case e1000_82547_rev_2:
1177                 hw->phy_init_script = 1;
1178                 break;
1179         }
1180
1181         e1000_set_media_type(hw);
1182
1183         hw->wait_autoneg_complete = FALSE;
1184         hw->tbi_compatibility_en = TRUE;
1185         hw->adaptive_ifs = TRUE;
1186
1187         /* Copper options */
1188
1189         if (hw->media_type == e1000_media_type_copper) {
1190                 hw->mdix = AUTO_ALL_MODES;
1191                 hw->disable_polarity_correction = FALSE;
1192                 hw->master_slave = E1000_MASTER_SLAVE;
1193         }
1194
1195         adapter->num_tx_queues = 1;
1196         adapter->num_rx_queues = 1;
1197
1198         if (e1000_alloc_queues(adapter)) {
1199                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1200                 return -ENOMEM;
1201         }
1202
1203 #ifdef CONFIG_E1000_NAPI
1204         for (i = 0; i < adapter->num_rx_queues; i++) {
1205                 adapter->polling_netdev[i].priv = adapter;
1206                 adapter->polling_netdev[i].poll = &e1000_clean;
1207                 adapter->polling_netdev[i].weight = 64;
1208                 dev_hold(&adapter->polling_netdev[i]);
1209                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1210         }
1211         spin_lock_init(&adapter->tx_queue_lock);
1212 #endif
1213
1214         atomic_set(&adapter->irq_sem, 1);
1215         spin_lock_init(&adapter->stats_lock);
1216
1217         set_bit(__E1000_DOWN, &adapter->flags);
1218
1219         return 0;
1220 }
1221
1222 /**
1223  * e1000_alloc_queues - Allocate memory for all rings
1224  * @adapter: board private structure to initialize
1225  *
1226  * We allocate one ring per queue at run-time since we don't know the
1227  * number of queues at compile-time.  The polling_netdev array is
1228  * intended for Multiqueue, but should work fine with a single queue.
1229  **/
1230
1231 static int __devinit
1232 e1000_alloc_queues(struct e1000_adapter *adapter)
1233 {
1234         int size;
1235
1236         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1237         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1238         if (!adapter->tx_ring)
1239                 return -ENOMEM;
1240         memset(adapter->tx_ring, 0, size);
1241
1242         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1243         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1244         if (!adapter->rx_ring) {
1245                 kfree(adapter->tx_ring);
1246                 return -ENOMEM;
1247         }
1248         memset(adapter->rx_ring, 0, size);
1249
1250 #ifdef CONFIG_E1000_NAPI
1251         size = sizeof(struct net_device) * adapter->num_rx_queues;
1252         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1253         if (!adapter->polling_netdev) {
1254                 kfree(adapter->tx_ring);
1255                 kfree(adapter->rx_ring);
1256                 return -ENOMEM;
1257         }
1258         memset(adapter->polling_netdev, 0, size);
1259 #endif
1260
1261         return E1000_SUCCESS;
1262 }
1263
1264 /**
1265  * e1000_open - Called when a network interface is made active
1266  * @netdev: network interface device structure
1267  *
1268  * Returns 0 on success, negative value on failure
1269  *
1270  * The open entry point is called when a network interface is made
1271  * active by the system (IFF_UP).  At this point all resources needed
1272  * for transmit and receive operations are allocated, the interrupt
1273  * handler is registered with the OS, the watchdog timer is started,
1274  * and the stack is notified that the interface is ready.
1275  **/
1276
1277 static int
1278 e1000_open(struct net_device *netdev)
1279 {
1280         struct e1000_adapter *adapter = netdev_priv(netdev);
1281         int err;
1282
1283         /* disallow open during test */
1284         if (test_bit(__E1000_TESTING, &adapter->flags))
1285                 return -EBUSY;
1286
1287         /* allocate transmit descriptors */
1288         if ((err = e1000_setup_all_tx_resources(adapter)))
1289                 goto err_setup_tx;
1290
1291         /* allocate receive descriptors */
1292         if ((err = e1000_setup_all_rx_resources(adapter)))
1293                 goto err_setup_rx;
1294
1295         err = e1000_request_irq(adapter);
1296         if (err)
1297                 goto err_req_irq;
1298
1299         e1000_power_up_phy(adapter);
1300
1301         if ((err = e1000_up(adapter)))
1302                 goto err_up;
1303         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1304         if ((adapter->hw.mng_cookie.status &
1305                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1306                 e1000_update_mng_vlan(adapter);
1307         }
1308
1309         /* If AMT is enabled, let the firmware know that the network
1310          * interface is now open */
1311         if (adapter->hw.mac_type == e1000_82573 &&
1312             e1000_check_mng_mode(&adapter->hw))
1313                 e1000_get_hw_control(adapter);
1314
1315         return E1000_SUCCESS;
1316
1317 err_up:
1318         e1000_power_down_phy(adapter);
1319         e1000_free_irq(adapter);
1320 err_req_irq:
1321         e1000_free_all_rx_resources(adapter);
1322 err_setup_rx:
1323         e1000_free_all_tx_resources(adapter);
1324 err_setup_tx:
1325         e1000_reset(adapter);
1326
1327         return err;
1328 }
1329
1330 /**
1331  * e1000_close - Disables a network interface
1332  * @netdev: network interface device structure
1333  *
1334  * Returns 0, this is not allowed to fail
1335  *
1336  * The close entry point is called when an interface is de-activated
1337  * by the OS.  The hardware is still under the drivers control, but
1338  * needs to be disabled.  A global MAC reset is issued to stop the
1339  * hardware, and all transmit and receive resources are freed.
1340  **/
1341
1342 static int
1343 e1000_close(struct net_device *netdev)
1344 {
1345         struct e1000_adapter *adapter = netdev_priv(netdev);
1346
1347         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1348         e1000_down(adapter);
1349         e1000_power_down_phy(adapter);
1350         e1000_free_irq(adapter);
1351
1352         e1000_free_all_tx_resources(adapter);
1353         e1000_free_all_rx_resources(adapter);
1354
1355         /* kill manageability vlan ID if supported, but not if a vlan with
1356          * the same ID is registered on the host OS (let 8021q kill it) */
1357         if ((adapter->hw.mng_cookie.status &
1358                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1359              !(adapter->vlgrp &&
1360                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1361                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1362         }
1363
1364         /* If AMT is enabled, let the firmware know that the network
1365          * interface is now closed */
1366         if (adapter->hw.mac_type == e1000_82573 &&
1367             e1000_check_mng_mode(&adapter->hw))
1368                 e1000_release_hw_control(adapter);
1369
1370         return 0;
1371 }
1372
1373 /**
1374  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1375  * @adapter: address of board private structure
1376  * @start: address of beginning of memory
1377  * @len: length of memory
1378  **/
1379 static boolean_t
1380 e1000_check_64k_bound(struct e1000_adapter *adapter,
1381                       void *start, unsigned long len)
1382 {
1383         unsigned long begin = (unsigned long) start;
1384         unsigned long end = begin + len;
1385
1386         /* First rev 82545 and 82546 need to not allow any memory
1387          * write location to cross 64k boundary due to errata 23 */
1388         if (adapter->hw.mac_type == e1000_82545 ||
1389             adapter->hw.mac_type == e1000_82546) {
1390                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1391         }
1392
1393         return TRUE;
1394 }
1395
1396 /**
1397  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1398  * @adapter: board private structure
1399  * @txdr:    tx descriptor ring (for a specific queue) to setup
1400  *
1401  * Return 0 on success, negative on failure
1402  **/
1403
1404 static int
1405 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1406                          struct e1000_tx_ring *txdr)
1407 {
1408         struct pci_dev *pdev = adapter->pdev;
1409         int size;
1410
1411         size = sizeof(struct e1000_buffer) * txdr->count;
1412         txdr->buffer_info = vmalloc(size);
1413         if (!txdr->buffer_info) {
1414                 DPRINTK(PROBE, ERR,
1415                 "Unable to allocate memory for the transmit descriptor ring\n");
1416                 return -ENOMEM;
1417         }
1418         memset(txdr->buffer_info, 0, size);
1419
1420         /* round up to nearest 4K */
1421
1422         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1423         E1000_ROUNDUP(txdr->size, 4096);
1424
1425         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1426         if (!txdr->desc) {
1427 setup_tx_desc_die:
1428                 vfree(txdr->buffer_info);
1429                 DPRINTK(PROBE, ERR,
1430                 "Unable to allocate memory for the transmit descriptor ring\n");
1431                 return -ENOMEM;
1432         }
1433
1434         /* Fix for errata 23, can't cross 64kB boundary */
1435         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436                 void *olddesc = txdr->desc;
1437                 dma_addr_t olddma = txdr->dma;
1438                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1439                                      "at %p\n", txdr->size, txdr->desc);
1440                 /* Try again, without freeing the previous */
1441                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1442                 /* Failed allocation, critical failure */
1443                 if (!txdr->desc) {
1444                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1445                         goto setup_tx_desc_die;
1446                 }
1447
1448                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1449                         /* give up */
1450                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1451                                             txdr->dma);
1452                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1453                         DPRINTK(PROBE, ERR,
1454                                 "Unable to allocate aligned memory "
1455                                 "for the transmit descriptor ring\n");
1456                         vfree(txdr->buffer_info);
1457                         return -ENOMEM;
1458                 } else {
1459                         /* Free old allocation, new allocation was successful */
1460                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1461                 }
1462         }
1463         memset(txdr->desc, 0, txdr->size);
1464
1465         txdr->next_to_use = 0;
1466         txdr->next_to_clean = 0;
1467         spin_lock_init(&txdr->tx_lock);
1468
1469         return 0;
1470 }
1471
1472 /**
1473  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1474  *                                (Descriptors) for all queues
1475  * @adapter: board private structure
1476  *
1477  * Return 0 on success, negative on failure
1478  **/
1479
1480 int
1481 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1482 {
1483         int i, err = 0;
1484
1485         for (i = 0; i < adapter->num_tx_queues; i++) {
1486                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1487                 if (err) {
1488                         DPRINTK(PROBE, ERR,
1489                                 "Allocation for Tx Queue %u failed\n", i);
1490                         for (i-- ; i >= 0; i--)
1491                                 e1000_free_tx_resources(adapter,
1492                                                         &adapter->tx_ring[i]);
1493                         break;
1494                 }
1495         }
1496
1497         return err;
1498 }
1499
1500 /**
1501  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1502  * @adapter: board private structure
1503  *
1504  * Configure the Tx unit of the MAC after a reset.
1505  **/
1506
1507 static void
1508 e1000_configure_tx(struct e1000_adapter *adapter)
1509 {
1510         uint64_t tdba;
1511         struct e1000_hw *hw = &adapter->hw;
1512         uint32_t tdlen, tctl, tipg, tarc;
1513         uint32_t ipgr1, ipgr2;
1514
1515         /* Setup the HW Tx Head and Tail descriptor pointers */
1516
1517         switch (adapter->num_tx_queues) {
1518         case 1:
1519         default:
1520                 tdba = adapter->tx_ring[0].dma;
1521                 tdlen = adapter->tx_ring[0].count *
1522                         sizeof(struct e1000_tx_desc);
1523                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1524                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1525                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1526                 E1000_WRITE_REG(hw, TDT, 0);
1527                 E1000_WRITE_REG(hw, TDH, 0);
1528                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1529                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1530                 break;
1531         }
1532
1533         /* Set the default values for the Tx Inter Packet Gap timer */
1534
1535         if (hw->media_type == e1000_media_type_fiber ||
1536             hw->media_type == e1000_media_type_internal_serdes)
1537                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1538         else
1539                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1540
1541         switch (hw->mac_type) {
1542         case e1000_82542_rev2_0:
1543         case e1000_82542_rev2_1:
1544                 tipg = DEFAULT_82542_TIPG_IPGT;
1545                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1546                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1547                 break;
1548         case e1000_80003es2lan:
1549                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1550                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1551                 break;
1552         default:
1553                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1554                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1555                 break;
1556         }
1557         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1558         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1559         E1000_WRITE_REG(hw, TIPG, tipg);
1560
1561         /* Set the Tx Interrupt Delay register */
1562
1563         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1564         if (hw->mac_type >= e1000_82540)
1565                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1566
1567         /* Program the Transmit Control Register */
1568
1569         tctl = E1000_READ_REG(hw, TCTL);
1570         tctl &= ~E1000_TCTL_CT;
1571         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1572                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1573
1574         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1575                 tarc = E1000_READ_REG(hw, TARC0);
1576                 /* set the speed mode bit, we'll clear it if we're not at
1577                  * gigabit link later */
1578                 tarc |= (1 << 21);
1579                 E1000_WRITE_REG(hw, TARC0, tarc);
1580         } else if (hw->mac_type == e1000_80003es2lan) {
1581                 tarc = E1000_READ_REG(hw, TARC0);
1582                 tarc |= 1;
1583                 E1000_WRITE_REG(hw, TARC0, tarc);
1584                 tarc = E1000_READ_REG(hw, TARC1);
1585                 tarc |= 1;
1586                 E1000_WRITE_REG(hw, TARC1, tarc);
1587         }
1588
1589         e1000_config_collision_dist(hw);
1590
1591         /* Setup Transmit Descriptor Settings for eop descriptor */
1592         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1593
1594         /* only set IDE if we are delaying interrupts using the timers */
1595         if (adapter->tx_int_delay)
1596                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1597
1598         if (hw->mac_type < e1000_82543)
1599                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1600         else
1601                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1602
1603         /* Cache if we're 82544 running in PCI-X because we'll
1604          * need this to apply a workaround later in the send path. */
1605         if (hw->mac_type == e1000_82544 &&
1606             hw->bus_type == e1000_bus_type_pcix)
1607                 adapter->pcix_82544 = 1;
1608
1609         E1000_WRITE_REG(hw, TCTL, tctl);
1610
1611 }
1612
1613 /**
1614  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1615  * @adapter: board private structure
1616  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1617  *
1618  * Returns 0 on success, negative on failure
1619  **/
1620
1621 static int
1622 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1623                          struct e1000_rx_ring *rxdr)
1624 {
1625         struct pci_dev *pdev = adapter->pdev;
1626         int size, desc_len;
1627
1628         size = sizeof(struct e1000_buffer) * rxdr->count;
1629         rxdr->buffer_info = vmalloc(size);
1630         if (!rxdr->buffer_info) {
1631                 DPRINTK(PROBE, ERR,
1632                 "Unable to allocate memory for the receive descriptor ring\n");
1633                 return -ENOMEM;
1634         }
1635         memset(rxdr->buffer_info, 0, size);
1636
1637         size = sizeof(struct e1000_ps_page) * rxdr->count;
1638         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1639         if (!rxdr->ps_page) {
1640                 vfree(rxdr->buffer_info);
1641                 DPRINTK(PROBE, ERR,
1642                 "Unable to allocate memory for the receive descriptor ring\n");
1643                 return -ENOMEM;
1644         }
1645         memset(rxdr->ps_page, 0, size);
1646
1647         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1648         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1649         if (!rxdr->ps_page_dma) {
1650                 vfree(rxdr->buffer_info);
1651                 kfree(rxdr->ps_page);
1652                 DPRINTK(PROBE, ERR,
1653                 "Unable to allocate memory for the receive descriptor ring\n");
1654                 return -ENOMEM;
1655         }
1656         memset(rxdr->ps_page_dma, 0, size);
1657
1658         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1659                 desc_len = sizeof(struct e1000_rx_desc);
1660         else
1661                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1662
1663         /* Round up to nearest 4K */
1664
1665         rxdr->size = rxdr->count * desc_len;
1666         E1000_ROUNDUP(rxdr->size, 4096);
1667
1668         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1669
1670         if (!rxdr->desc) {
1671                 DPRINTK(PROBE, ERR,
1672                 "Unable to allocate memory for the receive descriptor ring\n");
1673 setup_rx_desc_die:
1674                 vfree(rxdr->buffer_info);
1675                 kfree(rxdr->ps_page);
1676                 kfree(rxdr->ps_page_dma);
1677                 return -ENOMEM;
1678         }
1679
1680         /* Fix for errata 23, can't cross 64kB boundary */
1681         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682                 void *olddesc = rxdr->desc;
1683                 dma_addr_t olddma = rxdr->dma;
1684                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1685                                      "at %p\n", rxdr->size, rxdr->desc);
1686                 /* Try again, without freeing the previous */
1687                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1688                 /* Failed allocation, critical failure */
1689                 if (!rxdr->desc) {
1690                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1691                         DPRINTK(PROBE, ERR,
1692                                 "Unable to allocate memory "
1693                                 "for the receive descriptor ring\n");
1694                         goto setup_rx_desc_die;
1695                 }
1696
1697                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1698                         /* give up */
1699                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1700                                             rxdr->dma);
1701                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1702                         DPRINTK(PROBE, ERR,
1703                                 "Unable to allocate aligned memory "
1704                                 "for the receive descriptor ring\n");
1705                         goto setup_rx_desc_die;
1706                 } else {
1707                         /* Free old allocation, new allocation was successful */
1708                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1709                 }
1710         }
1711         memset(rxdr->desc, 0, rxdr->size);
1712
1713         rxdr->next_to_clean = 0;
1714         rxdr->next_to_use = 0;
1715
1716         return 0;
1717 }
1718
1719 /**
1720  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1721  *                                (Descriptors) for all queues
1722  * @adapter: board private structure
1723  *
1724  * Return 0 on success, negative on failure
1725  **/
1726
1727 int
1728 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1729 {
1730         int i, err = 0;
1731
1732         for (i = 0; i < adapter->num_rx_queues; i++) {
1733                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1734                 if (err) {
1735                         DPRINTK(PROBE, ERR,
1736                                 "Allocation for Rx Queue %u failed\n", i);
1737                         for (i-- ; i >= 0; i--)
1738                                 e1000_free_rx_resources(adapter,
1739                                                         &adapter->rx_ring[i]);
1740                         break;
1741                 }
1742         }
1743
1744         return err;
1745 }
1746
1747 /**
1748  * e1000_setup_rctl - configure the receive control registers
1749  * @adapter: Board private structure
1750  **/
1751 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1752                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1753 static void
1754 e1000_setup_rctl(struct e1000_adapter *adapter)
1755 {
1756         uint32_t rctl, rfctl;
1757         uint32_t psrctl = 0;
1758 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1759         uint32_t pages = 0;
1760 #endif
1761
1762         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1763
1764         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1765
1766         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1767                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1768                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1769
1770         if (adapter->hw.tbi_compatibility_on == 1)
1771                 rctl |= E1000_RCTL_SBP;
1772         else
1773                 rctl &= ~E1000_RCTL_SBP;
1774
1775         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1776                 rctl &= ~E1000_RCTL_LPE;
1777         else
1778                 rctl |= E1000_RCTL_LPE;
1779
1780         /* Setup buffer sizes */
1781         rctl &= ~E1000_RCTL_SZ_4096;
1782         rctl |= E1000_RCTL_BSEX;
1783         switch (adapter->rx_buffer_len) {
1784                 case E1000_RXBUFFER_256:
1785                         rctl |= E1000_RCTL_SZ_256;
1786                         rctl &= ~E1000_RCTL_BSEX;
1787                         break;
1788                 case E1000_RXBUFFER_512:
1789                         rctl |= E1000_RCTL_SZ_512;
1790                         rctl &= ~E1000_RCTL_BSEX;
1791                         break;
1792                 case E1000_RXBUFFER_1024:
1793                         rctl |= E1000_RCTL_SZ_1024;
1794                         rctl &= ~E1000_RCTL_BSEX;
1795                         break;
1796                 case E1000_RXBUFFER_2048:
1797                 default:
1798                         rctl |= E1000_RCTL_SZ_2048;
1799                         rctl &= ~E1000_RCTL_BSEX;
1800                         break;
1801                 case E1000_RXBUFFER_4096:
1802                         rctl |= E1000_RCTL_SZ_4096;
1803                         break;
1804                 case E1000_RXBUFFER_8192:
1805                         rctl |= E1000_RCTL_SZ_8192;
1806                         break;
1807                 case E1000_RXBUFFER_16384:
1808                         rctl |= E1000_RCTL_SZ_16384;
1809                         break;
1810         }
1811
1812 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1813         /* 82571 and greater support packet-split where the protocol
1814          * header is placed in skb->data and the packet data is
1815          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1816          * In the case of a non-split, skb->data is linearly filled,
1817          * followed by the page buffers.  Therefore, skb->data is
1818          * sized to hold the largest protocol header.
1819          */
1820         /* allocations using alloc_page take too long for regular MTU
1821          * so only enable packet split for jumbo frames */
1822         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1823         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1824             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1825                 adapter->rx_ps_pages = pages;
1826         else
1827                 adapter->rx_ps_pages = 0;
1828 #endif
1829         if (adapter->rx_ps_pages) {
1830                 /* Configure extra packet-split registers */
1831                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1832                 rfctl |= E1000_RFCTL_EXTEN;
1833                 /* disable packet split support for IPv6 extension headers,
1834                  * because some malformed IPv6 headers can hang the RX */
1835                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1836                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1837
1838                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1839
1840                 rctl |= E1000_RCTL_DTYP_PS;
1841
1842                 psrctl |= adapter->rx_ps_bsize0 >>
1843                         E1000_PSRCTL_BSIZE0_SHIFT;
1844
1845                 switch (adapter->rx_ps_pages) {
1846                 case 3:
1847                         psrctl |= PAGE_SIZE <<
1848                                 E1000_PSRCTL_BSIZE3_SHIFT;
1849                 case 2:
1850                         psrctl |= PAGE_SIZE <<
1851                                 E1000_PSRCTL_BSIZE2_SHIFT;
1852                 case 1:
1853                         psrctl |= PAGE_SIZE >>
1854                                 E1000_PSRCTL_BSIZE1_SHIFT;
1855                         break;
1856                 }
1857
1858                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1859         }
1860
1861         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1862 }
1863
1864 /**
1865  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1866  * @adapter: board private structure
1867  *
1868  * Configure the Rx unit of the MAC after a reset.
1869  **/
1870
1871 static void
1872 e1000_configure_rx(struct e1000_adapter *adapter)
1873 {
1874         uint64_t rdba;
1875         struct e1000_hw *hw = &adapter->hw;
1876         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1877
1878         if (adapter->rx_ps_pages) {
1879                 /* this is a 32 byte descriptor */
1880                 rdlen = adapter->rx_ring[0].count *
1881                         sizeof(union e1000_rx_desc_packet_split);
1882                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1883                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1884         } else {
1885                 rdlen = adapter->rx_ring[0].count *
1886                         sizeof(struct e1000_rx_desc);
1887                 adapter->clean_rx = e1000_clean_rx_irq;
1888                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1889         }
1890
1891         /* disable receives while setting up the descriptors */
1892         rctl = E1000_READ_REG(hw, RCTL);
1893         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1894
1895         /* set the Receive Delay Timer Register */
1896         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1897
1898         if (hw->mac_type >= e1000_82540) {
1899                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1900                 if (adapter->itr_setting != 0)
1901                         E1000_WRITE_REG(hw, ITR,
1902                                 1000000000 / (adapter->itr * 256));
1903         }
1904
1905         if (hw->mac_type >= e1000_82571) {
1906                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1907                 /* Reset delay timers after every interrupt */
1908                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1909 #ifdef CONFIG_E1000_NAPI
1910                 /* Auto-Mask interrupts upon ICR access */
1911                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1912                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
1913 #endif
1914                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1915                 E1000_WRITE_FLUSH(hw);
1916         }
1917
1918         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1919          * the Base and Length of the Rx Descriptor Ring */
1920         switch (adapter->num_rx_queues) {
1921         case 1:
1922         default:
1923                 rdba = adapter->rx_ring[0].dma;
1924                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1925                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1926                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1927                 E1000_WRITE_REG(hw, RDT, 0);
1928                 E1000_WRITE_REG(hw, RDH, 0);
1929                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1930                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1931                 break;
1932         }
1933
1934         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1935         if (hw->mac_type >= e1000_82543) {
1936                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1937                 if (adapter->rx_csum == TRUE) {
1938                         rxcsum |= E1000_RXCSUM_TUOFL;
1939
1940                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1941                          * Must be used in conjunction with packet-split. */
1942                         if ((hw->mac_type >= e1000_82571) &&
1943                             (adapter->rx_ps_pages)) {
1944                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1945                         }
1946                 } else {
1947                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1948                         /* don't need to clear IPPCSE as it defaults to 0 */
1949                 }
1950                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1951         }
1952
1953         /* enable early receives on 82573, only takes effect if using > 2048
1954          * byte total frame size.  for example only for jumbo frames */
1955 #define E1000_ERT_2048 0x100
1956         if (hw->mac_type == e1000_82573)
1957                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1958
1959         /* Enable Receives */
1960         E1000_WRITE_REG(hw, RCTL, rctl);
1961 }
1962
1963 /**
1964  * e1000_free_tx_resources - Free Tx Resources per Queue
1965  * @adapter: board private structure
1966  * @tx_ring: Tx descriptor ring for a specific queue
1967  *
1968  * Free all transmit software resources
1969  **/
1970
1971 static void
1972 e1000_free_tx_resources(struct e1000_adapter *adapter,
1973                         struct e1000_tx_ring *tx_ring)
1974 {
1975         struct pci_dev *pdev = adapter->pdev;
1976
1977         e1000_clean_tx_ring(adapter, tx_ring);
1978
1979         vfree(tx_ring->buffer_info);
1980         tx_ring->buffer_info = NULL;
1981
1982         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1983
1984         tx_ring->desc = NULL;
1985 }
1986
1987 /**
1988  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1989  * @adapter: board private structure
1990  *
1991  * Free all transmit software resources
1992  **/
1993
1994 void
1995 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1996 {
1997         int i;
1998
1999         for (i = 0; i < adapter->num_tx_queues; i++)
2000                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2001 }
2002
2003 static void
2004 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2005                         struct e1000_buffer *buffer_info)
2006 {
2007         if (buffer_info->dma) {
2008                 pci_unmap_page(adapter->pdev,
2009                                 buffer_info->dma,
2010                                 buffer_info->length,
2011                                 PCI_DMA_TODEVICE);
2012                 buffer_info->dma = 0;
2013         }
2014         if (buffer_info->skb) {
2015                 dev_kfree_skb_any(buffer_info->skb);
2016                 buffer_info->skb = NULL;
2017         }
2018         /* buffer_info must be completely set up in the transmit path */
2019 }
2020
2021 /**
2022  * e1000_clean_tx_ring - Free Tx Buffers
2023  * @adapter: board private structure
2024  * @tx_ring: ring to be cleaned
2025  **/
2026
2027 static void
2028 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2029                     struct e1000_tx_ring *tx_ring)
2030 {
2031         struct e1000_buffer *buffer_info;
2032         unsigned long size;
2033         unsigned int i;
2034
2035         /* Free all the Tx ring sk_buffs */
2036
2037         for (i = 0; i < tx_ring->count; i++) {
2038                 buffer_info = &tx_ring->buffer_info[i];
2039                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2040         }
2041
2042         size = sizeof(struct e1000_buffer) * tx_ring->count;
2043         memset(tx_ring->buffer_info, 0, size);
2044
2045         /* Zero out the descriptor ring */
2046
2047         memset(tx_ring->desc, 0, tx_ring->size);
2048
2049         tx_ring->next_to_use = 0;
2050         tx_ring->next_to_clean = 0;
2051         tx_ring->last_tx_tso = 0;
2052
2053         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2054         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2055 }
2056
2057 /**
2058  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2059  * @adapter: board private structure
2060  **/
2061
2062 static void
2063 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2064 {
2065         int i;
2066
2067         for (i = 0; i < adapter->num_tx_queues; i++)
2068                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2069 }
2070
2071 /**
2072  * e1000_free_rx_resources - Free Rx Resources
2073  * @adapter: board private structure
2074  * @rx_ring: ring to clean the resources from
2075  *
2076  * Free all receive software resources
2077  **/
2078
2079 static void
2080 e1000_free_rx_resources(struct e1000_adapter *adapter,
2081                         struct e1000_rx_ring *rx_ring)
2082 {
2083         struct pci_dev *pdev = adapter->pdev;
2084
2085         e1000_clean_rx_ring(adapter, rx_ring);
2086
2087         vfree(rx_ring->buffer_info);
2088         rx_ring->buffer_info = NULL;
2089         kfree(rx_ring->ps_page);
2090         rx_ring->ps_page = NULL;
2091         kfree(rx_ring->ps_page_dma);
2092         rx_ring->ps_page_dma = NULL;
2093
2094         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2095
2096         rx_ring->desc = NULL;
2097 }
2098
2099 /**
2100  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2101  * @adapter: board private structure
2102  *
2103  * Free all receive software resources
2104  **/
2105
2106 void
2107 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2108 {
2109         int i;
2110
2111         for (i = 0; i < adapter->num_rx_queues; i++)
2112                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2113 }
2114
2115 /**
2116  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2117  * @adapter: board private structure
2118  * @rx_ring: ring to free buffers from
2119  **/
2120
2121 static void
2122 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2123                     struct e1000_rx_ring *rx_ring)
2124 {
2125         struct e1000_buffer *buffer_info;
2126         struct e1000_ps_page *ps_page;
2127         struct e1000_ps_page_dma *ps_page_dma;
2128         struct pci_dev *pdev = adapter->pdev;
2129         unsigned long size;
2130         unsigned int i, j;
2131
2132         /* Free all the Rx ring sk_buffs */
2133         for (i = 0; i < rx_ring->count; i++) {
2134                 buffer_info = &rx_ring->buffer_info[i];
2135                 if (buffer_info->skb) {
2136                         pci_unmap_single(pdev,
2137                                          buffer_info->dma,
2138                                          buffer_info->length,
2139                                          PCI_DMA_FROMDEVICE);
2140
2141                         dev_kfree_skb(buffer_info->skb);
2142                         buffer_info->skb = NULL;
2143                 }
2144                 ps_page = &rx_ring->ps_page[i];
2145                 ps_page_dma = &rx_ring->ps_page_dma[i];
2146                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2147                         if (!ps_page->ps_page[j]) break;
2148                         pci_unmap_page(pdev,
2149                                        ps_page_dma->ps_page_dma[j],
2150                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2151                         ps_page_dma->ps_page_dma[j] = 0;
2152                         put_page(ps_page->ps_page[j]);
2153                         ps_page->ps_page[j] = NULL;
2154                 }
2155         }
2156
2157         size = sizeof(struct e1000_buffer) * rx_ring->count;
2158         memset(rx_ring->buffer_info, 0, size);
2159         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2160         memset(rx_ring->ps_page, 0, size);
2161         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2162         memset(rx_ring->ps_page_dma, 0, size);
2163
2164         /* Zero out the descriptor ring */
2165
2166         memset(rx_ring->desc, 0, rx_ring->size);
2167
2168         rx_ring->next_to_clean = 0;
2169         rx_ring->next_to_use = 0;
2170
2171         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2172         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2173 }
2174
2175 /**
2176  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2177  * @adapter: board private structure
2178  **/
2179
2180 static void
2181 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2182 {
2183         int i;
2184
2185         for (i = 0; i < adapter->num_rx_queues; i++)
2186                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2187 }
2188
2189 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2190  * and memory write and invalidate disabled for certain operations
2191  */
2192 static void
2193 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2194 {
2195         struct net_device *netdev = adapter->netdev;
2196         uint32_t rctl;
2197
2198         e1000_pci_clear_mwi(&adapter->hw);
2199
2200         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2201         rctl |= E1000_RCTL_RST;
2202         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2203         E1000_WRITE_FLUSH(&adapter->hw);
2204         mdelay(5);
2205
2206         if (netif_running(netdev))
2207                 e1000_clean_all_rx_rings(adapter);
2208 }
2209
2210 static void
2211 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2212 {
2213         struct net_device *netdev = adapter->netdev;
2214         uint32_t rctl;
2215
2216         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2217         rctl &= ~E1000_RCTL_RST;
2218         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2219         E1000_WRITE_FLUSH(&adapter->hw);
2220         mdelay(5);
2221
2222         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2223                 e1000_pci_set_mwi(&adapter->hw);
2224
2225         if (netif_running(netdev)) {
2226                 /* No need to loop, because 82542 supports only 1 queue */
2227                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2228                 e1000_configure_rx(adapter);
2229                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2230         }
2231 }
2232
2233 /**
2234  * e1000_set_mac - Change the Ethernet Address of the NIC
2235  * @netdev: network interface device structure
2236  * @p: pointer to an address structure
2237  *
2238  * Returns 0 on success, negative on failure
2239  **/
2240
2241 static int
2242 e1000_set_mac(struct net_device *netdev, void *p)
2243 {
2244         struct e1000_adapter *adapter = netdev_priv(netdev);
2245         struct sockaddr *addr = p;
2246
2247         if (!is_valid_ether_addr(addr->sa_data))
2248                 return -EADDRNOTAVAIL;
2249
2250         /* 82542 2.0 needs to be in reset to write receive address registers */
2251
2252         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2253                 e1000_enter_82542_rst(adapter);
2254
2255         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2256         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2257
2258         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2259
2260         /* With 82571 controllers, LAA may be overwritten (with the default)
2261          * due to controller reset from the other port. */
2262         if (adapter->hw.mac_type == e1000_82571) {
2263                 /* activate the work around */
2264                 adapter->hw.laa_is_present = 1;
2265
2266                 /* Hold a copy of the LAA in RAR[14] This is done so that
2267                  * between the time RAR[0] gets clobbered  and the time it
2268                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2269                  * of the RARs and no incoming packets directed to this port
2270                  * are dropped. Eventaully the LAA will be in RAR[0] and
2271                  * RAR[14] */
2272                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2273                                         E1000_RAR_ENTRIES - 1);
2274         }
2275
2276         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2277                 e1000_leave_82542_rst(adapter);
2278
2279         return 0;
2280 }
2281
2282 /**
2283  * e1000_set_multi - Multicast and Promiscuous mode set
2284  * @netdev: network interface device structure
2285  *
2286  * The set_multi entry point is called whenever the multicast address
2287  * list or the network interface flags are updated.  This routine is
2288  * responsible for configuring the hardware for proper multicast,
2289  * promiscuous mode, and all-multi behavior.
2290  **/
2291
2292 static void
2293 e1000_set_multi(struct net_device *netdev)
2294 {
2295         struct e1000_adapter *adapter = netdev_priv(netdev);
2296         struct e1000_hw *hw = &adapter->hw;
2297         struct dev_mc_list *mc_ptr;
2298         uint32_t rctl;
2299         uint32_t hash_value;
2300         int i, rar_entries = E1000_RAR_ENTRIES;
2301         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2302                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2303                                 E1000_NUM_MTA_REGISTERS;
2304
2305         if (adapter->hw.mac_type == e1000_ich8lan)
2306                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2307
2308         /* reserve RAR[14] for LAA over-write work-around */
2309         if (adapter->hw.mac_type == e1000_82571)
2310                 rar_entries--;
2311
2312         /* Check for Promiscuous and All Multicast modes */
2313
2314         rctl = E1000_READ_REG(hw, RCTL);
2315
2316         if (netdev->flags & IFF_PROMISC) {
2317                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2318         } else if (netdev->flags & IFF_ALLMULTI) {
2319                 rctl |= E1000_RCTL_MPE;
2320                 rctl &= ~E1000_RCTL_UPE;
2321         } else {
2322                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2323         }
2324
2325         E1000_WRITE_REG(hw, RCTL, rctl);
2326
2327         /* 82542 2.0 needs to be in reset to write receive address registers */
2328
2329         if (hw->mac_type == e1000_82542_rev2_0)
2330                 e1000_enter_82542_rst(adapter);
2331
2332         /* load the first 14 multicast address into the exact filters 1-14
2333          * RAR 0 is used for the station MAC adddress
2334          * if there are not 14 addresses, go ahead and clear the filters
2335          * -- with 82571 controllers only 0-13 entries are filled here
2336          */
2337         mc_ptr = netdev->mc_list;
2338
2339         for (i = 1; i < rar_entries; i++) {
2340                 if (mc_ptr) {
2341                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2342                         mc_ptr = mc_ptr->next;
2343                 } else {
2344                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2345                         E1000_WRITE_FLUSH(hw);
2346                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2347                         E1000_WRITE_FLUSH(hw);
2348                 }
2349         }
2350
2351         /* clear the old settings from the multicast hash table */
2352
2353         for (i = 0; i < mta_reg_count; i++) {
2354                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2355                 E1000_WRITE_FLUSH(hw);
2356         }
2357
2358         /* load any remaining addresses into the hash table */
2359
2360         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2361                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2362                 e1000_mta_set(hw, hash_value);
2363         }
2364
2365         if (hw->mac_type == e1000_82542_rev2_0)
2366                 e1000_leave_82542_rst(adapter);
2367 }
2368
2369 /* Need to wait a few seconds after link up to get diagnostic information from
2370  * the phy */
2371
2372 static void
2373 e1000_update_phy_info(unsigned long data)
2374 {
2375         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2376         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2377 }
2378
2379 /**
2380  * e1000_82547_tx_fifo_stall - Timer Call-back
2381  * @data: pointer to adapter cast into an unsigned long
2382  **/
2383
2384 static void
2385 e1000_82547_tx_fifo_stall(unsigned long data)
2386 {
2387         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2388         struct net_device *netdev = adapter->netdev;
2389         uint32_t tctl;
2390
2391         if (atomic_read(&adapter->tx_fifo_stall)) {
2392                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2393                     E1000_READ_REG(&adapter->hw, TDH)) &&
2394                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2395                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2396                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2397                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2398                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2399                         E1000_WRITE_REG(&adapter->hw, TCTL,
2400                                         tctl & ~E1000_TCTL_EN);
2401                         E1000_WRITE_REG(&adapter->hw, TDFT,
2402                                         adapter->tx_head_addr);
2403                         E1000_WRITE_REG(&adapter->hw, TDFH,
2404                                         adapter->tx_head_addr);
2405                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2406                                         adapter->tx_head_addr);
2407                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2408                                         adapter->tx_head_addr);
2409                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2410                         E1000_WRITE_FLUSH(&adapter->hw);
2411
2412                         adapter->tx_fifo_head = 0;
2413                         atomic_set(&adapter->tx_fifo_stall, 0);
2414                         netif_wake_queue(netdev);
2415                 } else {
2416                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2417                 }
2418         }
2419 }
2420
2421 /**
2422  * e1000_watchdog - Timer Call-back
2423  * @data: pointer to adapter cast into an unsigned long
2424  **/
2425 static void
2426 e1000_watchdog(unsigned long data)
2427 {
2428         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2429         struct net_device *netdev = adapter->netdev;
2430         struct e1000_tx_ring *txdr = adapter->tx_ring;
2431         uint32_t link, tctl;
2432         int32_t ret_val;
2433
2434         ret_val = e1000_check_for_link(&adapter->hw);
2435         if ((ret_val == E1000_ERR_PHY) &&
2436             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2437             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2438                 /* See e1000_kumeran_lock_loss_workaround() */
2439                 DPRINTK(LINK, INFO,
2440                         "Gigabit has been disabled, downgrading speed\n");
2441         }
2442
2443         if (adapter->hw.mac_type == e1000_82573) {
2444                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2445                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2446                         e1000_update_mng_vlan(adapter);
2447         }
2448
2449         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2450            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2451                 link = !adapter->hw.serdes_link_down;
2452         else
2453                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2454
2455         if (link) {
2456                 if (!netif_carrier_ok(netdev)) {
2457                         boolean_t txb2b = 1;
2458                         e1000_get_speed_and_duplex(&adapter->hw,
2459                                                    &adapter->link_speed,
2460                                                    &adapter->link_duplex);
2461
2462                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2463                                adapter->link_speed,
2464                                adapter->link_duplex == FULL_DUPLEX ?
2465                                "Full Duplex" : "Half Duplex");
2466
2467                         /* tweak tx_queue_len according to speed/duplex
2468                          * and adjust the timeout factor */
2469                         netdev->tx_queue_len = adapter->tx_queue_len;
2470                         adapter->tx_timeout_factor = 1;
2471                         switch (adapter->link_speed) {
2472                         case SPEED_10:
2473                                 txb2b = 0;
2474                                 netdev->tx_queue_len = 10;
2475                                 adapter->tx_timeout_factor = 8;
2476                                 break;
2477                         case SPEED_100:
2478                                 txb2b = 0;
2479                                 netdev->tx_queue_len = 100;
2480                                 /* maybe add some timeout factor ? */
2481                                 break;
2482                         }
2483
2484                         if ((adapter->hw.mac_type == e1000_82571 ||
2485                              adapter->hw.mac_type == e1000_82572) &&
2486                             txb2b == 0) {
2487                                 uint32_t tarc0;
2488                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2489                                 tarc0 &= ~(1 << 21);
2490                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2491                         }
2492
2493 #ifdef NETIF_F_TSO
2494                         /* disable TSO for pcie and 10/100 speeds, to avoid
2495                          * some hardware issues */
2496                         if (!adapter->tso_force &&
2497                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2498                                 switch (adapter->link_speed) {
2499                                 case SPEED_10:
2500                                 case SPEED_100:
2501                                         DPRINTK(PROBE,INFO,
2502                                         "10/100 speed: disabling TSO\n");
2503                                         netdev->features &= ~NETIF_F_TSO;
2504 #ifdef NETIF_F_TSO6
2505                                         netdev->features &= ~NETIF_F_TSO6;
2506 #endif
2507                                         break;
2508                                 case SPEED_1000:
2509                                         netdev->features |= NETIF_F_TSO;
2510 #ifdef NETIF_F_TSO6
2511                                         netdev->features |= NETIF_F_TSO6;
2512 #endif
2513                                         break;
2514                                 default:
2515                                         /* oops */
2516                                         break;
2517                                 }
2518                         }
2519 #endif
2520
2521                         /* enable transmits in the hardware, need to do this
2522                          * after setting TARC0 */
2523                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2524                         tctl |= E1000_TCTL_EN;
2525                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2526
2527                         netif_carrier_on(netdev);
2528                         netif_wake_queue(netdev);
2529                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2530                         adapter->smartspeed = 0;
2531                 }
2532         } else {
2533                 if (netif_carrier_ok(netdev)) {
2534                         adapter->link_speed = 0;
2535                         adapter->link_duplex = 0;
2536                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2537                         netif_carrier_off(netdev);
2538                         netif_stop_queue(netdev);
2539                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2540
2541                         /* 80003ES2LAN workaround--
2542                          * For packet buffer work-around on link down event;
2543                          * disable receives in the ISR and
2544                          * reset device here in the watchdog
2545                          */
2546                         if (adapter->hw.mac_type == e1000_80003es2lan)
2547                                 /* reset device */
2548                                 schedule_work(&adapter->reset_task);
2549                 }
2550
2551                 e1000_smartspeed(adapter);
2552         }
2553
2554         e1000_update_stats(adapter);
2555
2556         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2557         adapter->tpt_old = adapter->stats.tpt;
2558         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2559         adapter->colc_old = adapter->stats.colc;
2560
2561         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2562         adapter->gorcl_old = adapter->stats.gorcl;
2563         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2564         adapter->gotcl_old = adapter->stats.gotcl;
2565
2566         e1000_update_adaptive(&adapter->hw);
2567
2568         if (!netif_carrier_ok(netdev)) {
2569                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2570                         /* We've lost link, so the controller stops DMA,
2571                          * but we've got queued Tx work that's never going
2572                          * to get done, so reset controller to flush Tx.
2573                          * (Do the reset outside of interrupt context). */
2574                         adapter->tx_timeout_count++;
2575                         schedule_work(&adapter->reset_task);
2576                 }
2577         }
2578
2579         /* Cause software interrupt to ensure rx ring is cleaned */
2580         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2581
2582         /* Force detection of hung controller every watchdog period */
2583         adapter->detect_tx_hung = TRUE;
2584
2585         /* With 82571 controllers, LAA may be overwritten due to controller
2586          * reset from the other port. Set the appropriate LAA in RAR[0] */
2587         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2588                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2589
2590         /* Reset the timer */
2591         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2592 }
2593
2594 enum latency_range {
2595         lowest_latency = 0,
2596         low_latency = 1,
2597         bulk_latency = 2,
2598         latency_invalid = 255
2599 };
2600
2601 /**
2602  * e1000_update_itr - update the dynamic ITR value based on statistics
2603  *      Stores a new ITR value based on packets and byte
2604  *      counts during the last interrupt.  The advantage of per interrupt
2605  *      computation is faster updates and more accurate ITR for the current
2606  *      traffic pattern.  Constants in this function were computed
2607  *      based on theoretical maximum wire speed and thresholds were set based
2608  *      on testing data as well as attempting to minimize response time
2609  *      while increasing bulk throughput.
2610  *      this functionality is controlled by the InterruptThrottleRate module
2611  *      parameter (see e1000_param.c)
2612  * @adapter: pointer to adapter
2613  * @itr_setting: current adapter->itr
2614  * @packets: the number of packets during this measurement interval
2615  * @bytes: the number of bytes during this measurement interval
2616  **/
2617 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2618                                    uint16_t itr_setting,
2619                                    int packets,
2620                                    int bytes)
2621 {
2622         unsigned int retval = itr_setting;
2623         struct e1000_hw *hw = &adapter->hw;
2624
2625         if (unlikely(hw->mac_type < e1000_82540))
2626                 goto update_itr_done;
2627
2628         if (packets == 0)
2629                 goto update_itr_done;
2630
2631
2632         switch (itr_setting) {
2633         case lowest_latency:
2634                 if ((packets < 5) && (bytes > 512))
2635                         retval = low_latency;
2636                 break;
2637         case low_latency:  /* 50 usec aka 20000 ints/s */
2638                 if (bytes > 10000) {
2639                         if ((packets < 10) ||
2640                              ((bytes/packets) > 1200))
2641                                 retval = bulk_latency;
2642                         else if ((packets > 35))
2643                                 retval = lowest_latency;
2644                 } else if (packets <= 2 && bytes < 512)
2645                         retval = lowest_latency;
2646                 break;
2647         case bulk_latency: /* 250 usec aka 4000 ints/s */
2648                 if (bytes > 25000) {
2649                         if (packets > 35)
2650                                 retval = low_latency;
2651                 } else {
2652                         if (bytes < 6000)
2653                                 retval = low_latency;
2654                 }
2655                 break;
2656         }
2657
2658 update_itr_done:
2659         return retval;
2660 }
2661
2662 static void e1000_set_itr(struct e1000_adapter *adapter)
2663 {
2664         struct e1000_hw *hw = &adapter->hw;
2665         uint16_t current_itr;
2666         uint32_t new_itr = adapter->itr;
2667
2668         if (unlikely(hw->mac_type < e1000_82540))
2669                 return;
2670
2671         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2672         if (unlikely(adapter->link_speed != SPEED_1000)) {
2673                 current_itr = 0;
2674                 new_itr = 4000;
2675                 goto set_itr_now;
2676         }
2677
2678         adapter->tx_itr = e1000_update_itr(adapter,
2679                                     adapter->tx_itr,
2680                                     adapter->total_tx_packets,
2681                                     adapter->total_tx_bytes);
2682         adapter->rx_itr = e1000_update_itr(adapter,
2683                                     adapter->rx_itr,
2684                                     adapter->total_rx_packets,
2685                                     adapter->total_rx_bytes);
2686
2687         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2688
2689         /* conservative mode eliminates the lowest_latency setting */
2690         if (current_itr == lowest_latency && (adapter->itr_setting == 3))
2691                 current_itr = low_latency;
2692
2693         switch (current_itr) {
2694         /* counts and packets in update_itr are dependent on these numbers */
2695         case lowest_latency:
2696                 new_itr = 70000;
2697                 break;
2698         case low_latency:
2699                 new_itr = 20000; /* aka hwitr = ~200 */
2700                 break;
2701         case bulk_latency:
2702                 new_itr = 4000;
2703                 break;
2704         default:
2705                 break;
2706         }
2707
2708 set_itr_now:
2709         if (new_itr != adapter->itr) {
2710                 /* this attempts to bias the interrupt rate towards Bulk
2711                  * by adding intermediate steps when interrupt rate is
2712                  * increasing */
2713                 new_itr = new_itr > adapter->itr ?
2714                              min(adapter->itr + (new_itr >> 2), new_itr) :
2715                              new_itr;
2716                 adapter->itr = new_itr;
2717                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2718         }
2719
2720         return;
2721 }
2722
2723 #define E1000_TX_FLAGS_CSUM             0x00000001
2724 #define E1000_TX_FLAGS_VLAN             0x00000002
2725 #define E1000_TX_FLAGS_TSO              0x00000004
2726 #define E1000_TX_FLAGS_IPV4             0x00000008
2727 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2728 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2729
2730 static int
2731 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2732           struct sk_buff *skb)
2733 {
2734 #ifdef NETIF_F_TSO
2735         struct e1000_context_desc *context_desc;
2736         struct e1000_buffer *buffer_info;
2737         unsigned int i;
2738         uint32_t cmd_length = 0;
2739         uint16_t ipcse = 0, tucse, mss;
2740         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2741         int err;
2742
2743         if (skb_is_gso(skb)) {
2744                 if (skb_header_cloned(skb)) {
2745                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2746                         if (err)
2747                                 return err;
2748                 }
2749
2750                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2751                 mss = skb_shinfo(skb)->gso_size;
2752                 if (skb->protocol == htons(ETH_P_IP)) {
2753                         skb->nh.iph->tot_len = 0;
2754                         skb->nh.iph->check = 0;
2755                         skb->h.th->check =
2756                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2757                                                    skb->nh.iph->daddr,
2758                                                    0,
2759                                                    IPPROTO_TCP,
2760                                                    0);
2761                         cmd_length = E1000_TXD_CMD_IP;
2762                         ipcse = skb->h.raw - skb->data - 1;
2763 #ifdef NETIF_F_TSO6
2764                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2765                         skb->nh.ipv6h->payload_len = 0;
2766                         skb->h.th->check =
2767                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2768                                                  &skb->nh.ipv6h->daddr,
2769                                                  0,
2770                                                  IPPROTO_TCP,
2771                                                  0);
2772                         ipcse = 0;
2773 #endif
2774                 }
2775                 ipcss = skb->nh.raw - skb->data;
2776                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2777                 tucss = skb->h.raw - skb->data;
2778                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2779                 tucse = 0;
2780
2781                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2782                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2783
2784                 i = tx_ring->next_to_use;
2785                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2786                 buffer_info = &tx_ring->buffer_info[i];
2787
2788                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2789                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2790                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2791                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2792                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2793                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2794                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2795                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2796                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2797
2798                 buffer_info->time_stamp = jiffies;
2799                 buffer_info->next_to_watch = i;
2800
2801                 if (++i == tx_ring->count) i = 0;
2802                 tx_ring->next_to_use = i;
2803
2804                 return TRUE;
2805         }
2806 #endif
2807
2808         return FALSE;
2809 }
2810
2811 static boolean_t
2812 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2813               struct sk_buff *skb)
2814 {
2815         struct e1000_context_desc *context_desc;
2816         struct e1000_buffer *buffer_info;
2817         unsigned int i;
2818         uint8_t css;
2819
2820         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2821                 css = skb->h.raw - skb->data;
2822
2823                 i = tx_ring->next_to_use;
2824                 buffer_info = &tx_ring->buffer_info[i];
2825                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2826
2827                 context_desc->upper_setup.tcp_fields.tucss = css;
2828                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2829                 context_desc->upper_setup.tcp_fields.tucse = 0;
2830                 context_desc->tcp_seg_setup.data = 0;
2831                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2832
2833                 buffer_info->time_stamp = jiffies;
2834                 buffer_info->next_to_watch = i;
2835
2836                 if (unlikely(++i == tx_ring->count)) i = 0;
2837                 tx_ring->next_to_use = i;
2838
2839                 return TRUE;
2840         }
2841
2842         return FALSE;
2843 }
2844
2845 #define E1000_MAX_TXD_PWR       12
2846 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2847
2848 static int
2849 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2850              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2851              unsigned int nr_frags, unsigned int mss)
2852 {
2853         struct e1000_buffer *buffer_info;
2854         unsigned int len = skb->len;
2855         unsigned int offset = 0, size, count = 0, i;
2856         unsigned int f;
2857         len -= skb->data_len;
2858
2859         i = tx_ring->next_to_use;
2860
2861         while (len) {
2862                 buffer_info = &tx_ring->buffer_info[i];
2863                 size = min(len, max_per_txd);
2864 #ifdef NETIF_F_TSO
2865                 /* Workaround for Controller erratum --
2866                  * descriptor for non-tso packet in a linear SKB that follows a
2867                  * tso gets written back prematurely before the data is fully
2868                  * DMA'd to the controller */
2869                 if (!skb->data_len && tx_ring->last_tx_tso &&
2870                     !skb_is_gso(skb)) {
2871                         tx_ring->last_tx_tso = 0;
2872                         size -= 4;
2873                 }
2874
2875                 /* Workaround for premature desc write-backs
2876                  * in TSO mode.  Append 4-byte sentinel desc */
2877                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2878                         size -= 4;
2879 #endif
2880                 /* work-around for errata 10 and it applies
2881                  * to all controllers in PCI-X mode
2882                  * The fix is to make sure that the first descriptor of a
2883                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2884                  */
2885                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2886                                 (size > 2015) && count == 0))
2887                         size = 2015;
2888
2889                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2890                  * terminating buffers within evenly-aligned dwords. */
2891                 if (unlikely(adapter->pcix_82544 &&
2892                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2893                    size > 4))
2894                         size -= 4;
2895
2896                 buffer_info->length = size;
2897                 buffer_info->dma =
2898                         pci_map_single(adapter->pdev,
2899                                 skb->data + offset,
2900                                 size,
2901                                 PCI_DMA_TODEVICE);
2902                 buffer_info->time_stamp = jiffies;
2903                 buffer_info->next_to_watch = i;
2904
2905                 len -= size;
2906                 offset += size;
2907                 count++;
2908                 if (unlikely(++i == tx_ring->count)) i = 0;
2909         }
2910
2911         for (f = 0; f < nr_frags; f++) {
2912                 struct skb_frag_struct *frag;
2913
2914                 frag = &skb_shinfo(skb)->frags[f];
2915                 len = frag->size;
2916                 offset = frag->page_offset;
2917
2918                 while (len) {
2919                         buffer_info = &tx_ring->buffer_info[i];
2920                         size = min(len, max_per_txd);
2921 #ifdef NETIF_F_TSO
2922                         /* Workaround for premature desc write-backs
2923                          * in TSO mode.  Append 4-byte sentinel desc */
2924                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2925                                 size -= 4;
2926 #endif
2927                         /* Workaround for potential 82544 hang in PCI-X.
2928                          * Avoid terminating buffers within evenly-aligned
2929                          * dwords. */
2930                         if (unlikely(adapter->pcix_82544 &&
2931                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2932                            size > 4))
2933                                 size -= 4;
2934
2935                         buffer_info->length = size;
2936                         buffer_info->dma =
2937                                 pci_map_page(adapter->pdev,
2938                                         frag->page,
2939                                         offset,
2940                                         size,
2941                                         PCI_DMA_TODEVICE);
2942                         buffer_info->time_stamp = jiffies;
2943                         buffer_info->next_to_watch = i;
2944
2945                         len -= size;
2946                         offset += size;
2947                         count++;
2948                         if (unlikely(++i == tx_ring->count)) i = 0;
2949                 }
2950         }
2951
2952         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2953         tx_ring->buffer_info[i].skb = skb;
2954         tx_ring->buffer_info[first].next_to_watch = i;
2955
2956         return count;
2957 }
2958
2959 static void
2960 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2961                int tx_flags, int count)
2962 {
2963         struct e1000_tx_desc *tx_desc = NULL;
2964         struct e1000_buffer *buffer_info;
2965         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2966         unsigned int i;
2967
2968         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2969                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2970                              E1000_TXD_CMD_TSE;
2971                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2972
2973                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2974                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2975         }
2976
2977         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2978                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2979                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2980         }
2981
2982         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2983                 txd_lower |= E1000_TXD_CMD_VLE;
2984                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2985         }
2986
2987         i = tx_ring->next_to_use;
2988
2989         while (count--) {
2990                 buffer_info = &tx_ring->buffer_info[i];
2991                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2992                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2993                 tx_desc->lower.data =
2994                         cpu_to_le32(txd_lower | buffer_info->length);
2995                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2996                 if (unlikely(++i == tx_ring->count)) i = 0;
2997         }
2998
2999         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3000
3001         /* Force memory writes to complete before letting h/w
3002          * know there are new descriptors to fetch.  (Only
3003          * applicable for weak-ordered memory model archs,
3004          * such as IA-64). */
3005         wmb();
3006
3007         tx_ring->next_to_use = i;
3008         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3009         /* we need this if more than one processor can write to our tail
3010          * at a time, it syncronizes IO on IA64/Altix systems */
3011         mmiowb();
3012 }
3013
3014 /**
3015  * 82547 workaround to avoid controller hang in half-duplex environment.
3016  * The workaround is to avoid queuing a large packet that would span
3017  * the internal Tx FIFO ring boundary by notifying the stack to resend
3018  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3019  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3020  * to the beginning of the Tx FIFO.
3021  **/
3022
3023 #define E1000_FIFO_HDR                  0x10
3024 #define E1000_82547_PAD_LEN             0x3E0
3025
3026 static int
3027 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3028 {
3029         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3030         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3031
3032         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3033
3034         if (adapter->link_duplex != HALF_DUPLEX)
3035                 goto no_fifo_stall_required;
3036
3037         if (atomic_read(&adapter->tx_fifo_stall))
3038                 return 1;
3039
3040         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3041                 atomic_set(&adapter->tx_fifo_stall, 1);
3042                 return 1;
3043         }
3044
3045 no_fifo_stall_required:
3046         adapter->tx_fifo_head += skb_fifo_len;
3047         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3048                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3049         return 0;
3050 }
3051
3052 #define MINIMUM_DHCP_PACKET_SIZE 282
3053 static int
3054 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3055 {
3056         struct e1000_hw *hw =  &adapter->hw;
3057         uint16_t length, offset;
3058         if (vlan_tx_tag_present(skb)) {
3059                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3060                         ( adapter->hw.mng_cookie.status &
3061                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3062                         return 0;
3063         }
3064         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3065                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3066                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3067                         const struct iphdr *ip =
3068                                 (struct iphdr *)((uint8_t *)skb->data+14);
3069                         if (IPPROTO_UDP == ip->protocol) {
3070                                 struct udphdr *udp =
3071                                         (struct udphdr *)((uint8_t *)ip +
3072                                                 (ip->ihl << 2));
3073                                 if (ntohs(udp->dest) == 67) {
3074                                         offset = (uint8_t *)udp + 8 - skb->data;
3075                                         length = skb->len - offset;
3076
3077                                         return e1000_mng_write_dhcp_info(hw,
3078                                                         (uint8_t *)udp + 8,
3079                                                         length);
3080                                 }
3081                         }
3082                 }
3083         }
3084         return 0;
3085 }
3086
3087 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3088 {
3089         struct e1000_adapter *adapter = netdev_priv(netdev);
3090         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3091
3092         netif_stop_queue(netdev);
3093         /* Herbert's original patch had:
3094          *  smp_mb__after_netif_stop_queue();
3095          * but since that doesn't exist yet, just open code it. */
3096         smp_mb();
3097
3098         /* We need to check again in a case another CPU has just
3099          * made room available. */
3100         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3101                 return -EBUSY;
3102
3103         /* A reprieve! */
3104         netif_start_queue(netdev);
3105         ++adapter->restart_queue;
3106         return 0;
3107 }
3108
3109 static int e1000_maybe_stop_tx(struct net_device *netdev,
3110                                struct e1000_tx_ring *tx_ring, int size)
3111 {
3112         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3113                 return 0;
3114         return __e1000_maybe_stop_tx(netdev, size);
3115 }
3116
3117 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3118 static int
3119 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3120 {
3121         struct e1000_adapter *adapter = netdev_priv(netdev);
3122         struct e1000_tx_ring *tx_ring;
3123         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3124         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3125         unsigned int tx_flags = 0;
3126         unsigned int len = skb->len;
3127         unsigned long flags;
3128         unsigned int nr_frags = 0;
3129         unsigned int mss = 0;
3130         int count = 0;
3131         int tso;
3132         unsigned int f;
3133         len -= skb->data_len;
3134
3135         /* This goes back to the question of how to logically map a tx queue
3136          * to a flow.  Right now, performance is impacted slightly negatively
3137          * if using multiple tx queues.  If the stack breaks away from a
3138          * single qdisc implementation, we can look at this again. */
3139         tx_ring = adapter->tx_ring;
3140
3141         if (unlikely(skb->len <= 0)) {
3142                 dev_kfree_skb_any(skb);
3143                 return NETDEV_TX_OK;
3144         }
3145
3146         /* 82571 and newer doesn't need the workaround that limited descriptor
3147          * length to 4kB */
3148         if (adapter->hw.mac_type >= e1000_82571)
3149                 max_per_txd = 8192;
3150
3151 #ifdef NETIF_F_TSO
3152         mss = skb_shinfo(skb)->gso_size;
3153         /* The controller does a simple calculation to
3154          * make sure there is enough room in the FIFO before
3155          * initiating the DMA for each buffer.  The calc is:
3156          * 4 = ceil(buffer len/mss).  To make sure we don't
3157          * overrun the FIFO, adjust the max buffer len if mss
3158          * drops. */
3159         if (mss) {
3160                 uint8_t hdr_len;
3161                 max_per_txd = min(mss << 2, max_per_txd);
3162                 max_txd_pwr = fls(max_per_txd) - 1;
3163
3164                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3165                 * points to just header, pull a few bytes of payload from
3166                 * frags into skb->data */
3167                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3168                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3169                         switch (adapter->hw.mac_type) {
3170                                 unsigned int pull_size;
3171                         case e1000_82571:
3172                         case e1000_82572:
3173                         case e1000_82573:
3174                         case e1000_ich8lan:
3175                                 pull_size = min((unsigned int)4, skb->data_len);
3176                                 if (!__pskb_pull_tail(skb, pull_size)) {
3177                                         DPRINTK(DRV, ERR,
3178                                                 "__pskb_pull_tail failed.\n");
3179                                         dev_kfree_skb_any(skb);
3180                                         return NETDEV_TX_OK;
3181                                 }
3182                                 len = skb->len - skb->data_len;
3183                                 break;
3184                         default:
3185                                 /* do nothing */
3186                                 break;
3187                         }
3188                 }
3189         }
3190
3191         /* reserve a descriptor for the offload context */
3192         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3193                 count++;
3194         count++;
3195 #else
3196         if (skb->ip_summed == CHECKSUM_PARTIAL)
3197                 count++;
3198 #endif
3199
3200 #ifdef NETIF_F_TSO
3201         /* Controller Erratum workaround */
3202         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3203                 count++;
3204 #endif
3205
3206         count += TXD_USE_COUNT(len, max_txd_pwr);
3207
3208         if (adapter->pcix_82544)
3209                 count++;
3210
3211         /* work-around for errata 10 and it applies to all controllers
3212          * in PCI-X mode, so add one more descriptor to the count
3213          */
3214         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3215                         (len > 2015)))
3216                 count++;
3217
3218         nr_frags = skb_shinfo(skb)->nr_frags;
3219         for (f = 0; f < nr_frags; f++)
3220                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3221                                        max_txd_pwr);
3222         if (adapter->pcix_82544)
3223                 count += nr_frags;
3224
3225
3226         if (adapter->hw.tx_pkt_filtering &&
3227             (adapter->hw.mac_type == e1000_82573))
3228                 e1000_transfer_dhcp_info(adapter, skb);
3229
3230         local_irq_save(flags);
3231         if (!spin_trylock(&tx_ring->tx_lock)) {
3232                 /* Collision - tell upper layer to requeue */
3233                 local_irq_restore(flags);
3234                 return NETDEV_TX_LOCKED;
3235         }
3236
3237         /* need: count + 2 desc gap to keep tail from touching
3238          * head, otherwise try next time */
3239         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3240                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3241                 return NETDEV_TX_BUSY;
3242         }
3243
3244         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3245                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3246                         netif_stop_queue(netdev);
3247                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3248                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3249                         return NETDEV_TX_BUSY;
3250                 }
3251         }
3252
3253         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3254                 tx_flags |= E1000_TX_FLAGS_VLAN;
3255                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3256         }
3257
3258         first = tx_ring->next_to_use;
3259
3260         tso = e1000_tso(adapter, tx_ring, skb);
3261         if (tso < 0) {
3262                 dev_kfree_skb_any(skb);
3263                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3264                 return NETDEV_TX_OK;
3265         }
3266
3267         if (likely(tso)) {
3268                 tx_ring->last_tx_tso = 1;
3269                 tx_flags |= E1000_TX_FLAGS_TSO;
3270         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3271                 tx_flags |= E1000_TX_FLAGS_CSUM;
3272
3273         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3274          * 82571 hardware supports TSO capabilities for IPv6 as well...
3275          * no longer assume, we must. */
3276         if (likely(skb->protocol == htons(ETH_P_IP)))
3277                 tx_flags |= E1000_TX_FLAGS_IPV4;
3278
3279         e1000_tx_queue(adapter, tx_ring, tx_flags,
3280                        e1000_tx_map(adapter, tx_ring, skb, first,
3281                                     max_per_txd, nr_frags, mss));
3282
3283         netdev->trans_start = jiffies;
3284
3285         /* Make sure there is space in the ring for the next send. */
3286         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3287
3288         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3289         return NETDEV_TX_OK;
3290 }
3291
3292 /**
3293  * e1000_tx_timeout - Respond to a Tx Hang
3294  * @netdev: network interface device structure
3295  **/
3296
3297 static void
3298 e1000_tx_timeout(struct net_device *netdev)
3299 {
3300         struct e1000_adapter *adapter = netdev_priv(netdev);
3301
3302         /* Do the reset outside of interrupt context */
3303         adapter->tx_timeout_count++;
3304         schedule_work(&adapter->reset_task);
3305 }
3306
3307 static void
3308 e1000_reset_task(struct net_device *netdev)
3309 {
3310         struct e1000_adapter *adapter = netdev_priv(netdev);
3311
3312         e1000_reinit_locked(adapter);
3313 }
3314
3315 /**
3316  * e1000_get_stats - Get System Network Statistics
3317  * @netdev: network interface device structure
3318  *
3319  * Returns the address of the device statistics structure.
3320  * The statistics are actually updated from the timer callback.
3321  **/
3322
3323 static struct net_device_stats *
3324 e1000_get_stats(struct net_device *netdev)
3325 {
3326         struct e1000_adapter *adapter = netdev_priv(netdev);
3327
3328         /* only return the current stats */
3329         return &adapter->net_stats;
3330 }
3331
3332 /**
3333  * e1000_change_mtu - Change the Maximum Transfer Unit
3334  * @netdev: network interface device structure
3335  * @new_mtu: new value for maximum frame size
3336  *
3337  * Returns 0 on success, negative on failure
3338  **/
3339
3340 static int
3341 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3342 {
3343         struct e1000_adapter *adapter = netdev_priv(netdev);
3344         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3345         uint16_t eeprom_data = 0;
3346
3347         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3348             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3349                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3350                 return -EINVAL;
3351         }
3352
3353         /* Adapter-specific max frame size limits. */
3354         switch (adapter->hw.mac_type) {
3355         case e1000_undefined ... e1000_82542_rev2_1:
3356         case e1000_ich8lan:
3357                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3358                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3359                         return -EINVAL;
3360                 }
3361                 break;
3362         case e1000_82573:
3363                 /* Jumbo Frames not supported if:
3364                  * - this is not an 82573L device
3365                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3366                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3367                                   &eeprom_data);
3368                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3369                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3370                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3371                                 DPRINTK(PROBE, ERR,
3372                                         "Jumbo Frames not supported.\n");
3373                                 return -EINVAL;
3374                         }
3375                         break;
3376                 }
3377                 /* ERT will be enabled later to enable wire speed receives */
3378
3379                 /* fall through to get support */
3380         case e1000_82571:
3381         case e1000_82572:
3382         case e1000_80003es2lan:
3383 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3384                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3385                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3386                         return -EINVAL;
3387                 }
3388                 break;
3389         default:
3390                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3391                 break;
3392         }
3393
3394         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3395          * means we reserve 2 more, this pushes us to allocate from the next
3396          * larger slab size
3397          * i.e. RXBUFFER_2048 --> size-4096 slab */
3398
3399         if (max_frame <= E1000_RXBUFFER_256)
3400                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3401         else if (max_frame <= E1000_RXBUFFER_512)
3402                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3403         else if (max_frame <= E1000_RXBUFFER_1024)
3404                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3405         else if (max_frame <= E1000_RXBUFFER_2048)
3406                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3407         else if (max_frame <= E1000_RXBUFFER_4096)
3408                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3409         else if (max_frame <= E1000_RXBUFFER_8192)
3410                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3411         else if (max_frame <= E1000_RXBUFFER_16384)
3412                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3413
3414         /* adjust allocation if LPE protects us, and we aren't using SBP */
3415         if (!adapter->hw.tbi_compatibility_on &&
3416             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3417              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3418                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3419
3420         netdev->mtu = new_mtu;
3421
3422         if (netif_running(netdev))
3423                 e1000_reinit_locked(adapter);
3424
3425         adapter->hw.max_frame_size = max_frame;
3426
3427         return 0;
3428 }
3429
3430 /**
3431  * e1000_update_stats - Update the board statistics counters
3432  * @adapter: board private structure
3433  **/
3434
3435 void
3436 e1000_update_stats(struct e1000_adapter *adapter)
3437 {
3438         struct e1000_hw *hw = &adapter->hw;
3439         struct pci_dev *pdev = adapter->pdev;
3440         unsigned long flags;
3441         uint16_t phy_tmp;
3442
3443 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3444
3445         /*
3446          * Prevent stats update while adapter is being reset, or if the pci
3447          * connection is down.
3448          */
3449         if (adapter->link_speed == 0)
3450                 return;
3451         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3452                 return;
3453
3454         spin_lock_irqsave(&adapter->stats_lock, flags);
3455
3456         /* these counters are modified from e1000_adjust_tbi_stats,
3457          * called from the interrupt context, so they must only
3458          * be written while holding adapter->stats_lock
3459          */
3460
3461         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3462         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3463         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3464         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3465         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3466         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3467         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3468
3469         if (adapter->hw.mac_type != e1000_ich8lan) {
3470                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3471                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3472                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3473                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3474                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3475                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3476         }
3477
3478         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3479         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3480         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3481         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3482         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3483         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3484         adapter->stats.dc += E1000_READ_REG(hw, DC);
3485         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3486         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3487         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3488         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3489         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3490         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3491         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3492         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3493         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3494         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3495         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3496         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3497         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3498         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3499         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3500         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3501         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3502         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3503         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3504
3505         if (adapter->hw.mac_type != e1000_ich8lan) {
3506                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3507                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3508                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3509                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3510                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3511                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3512         }
3513
3514         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3515         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3516
3517         /* used for adaptive IFS */
3518
3519         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3520         adapter->stats.tpt += hw->tx_packet_delta;
3521         hw->collision_delta = E1000_READ_REG(hw, COLC);
3522         adapter->stats.colc += hw->collision_delta;
3523
3524         if (hw->mac_type >= e1000_82543) {
3525                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3526                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3527                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3528                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3529                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3530                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3531         }
3532         if (hw->mac_type > e1000_82547_rev_2) {
3533                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3534                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3535
3536                 if (adapter->hw.mac_type != e1000_ich8lan) {
3537                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3538                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3539                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3540                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3541                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3542                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3543                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3544                 }
3545         }
3546
3547         /* Fill out the OS statistics structure */
3548         adapter->net_stats.rx_packets = adapter->stats.gprc;
3549         adapter->net_stats.tx_packets = adapter->stats.gptc;
3550         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3551         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3552         adapter->net_stats.multicast = adapter->stats.mprc;
3553         adapter->net_stats.collisions = adapter->stats.colc;
3554
3555         /* Rx Errors */
3556
3557         /* RLEC on some newer hardware can be incorrect so build
3558         * our own version based on RUC and ROC */
3559         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3560                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3561                 adapter->stats.ruc + adapter->stats.roc +
3562                 adapter->stats.cexterr;
3563         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3564         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3565         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3566         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3567         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3568
3569         /* Tx Errors */
3570         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3571         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3572         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3573         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3574         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3575
3576         /* Tx Dropped needs to be maintained elsewhere */
3577
3578         /* Phy Stats */
3579         if (hw->media_type == e1000_media_type_copper) {
3580                 if ((adapter->link_speed == SPEED_1000) &&
3581                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3582                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3583                         adapter->phy_stats.idle_errors += phy_tmp;
3584                 }
3585
3586                 if ((hw->mac_type <= e1000_82546) &&
3587                    (hw->phy_type == e1000_phy_m88) &&
3588                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3589                         adapter->phy_stats.receive_errors += phy_tmp;
3590         }
3591
3592         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3593 }
3594 #ifdef CONFIG_PCI_MSI
3595
3596 /**
3597  * e1000_intr_msi - Interrupt Handler
3598  * @irq: interrupt number
3599  * @data: pointer to a network interface device structure
3600  **/
3601
3602 static
3603 irqreturn_t e1000_intr_msi(int irq, void *data)
3604 {
3605         struct net_device *netdev = data;
3606         struct e1000_adapter *adapter = netdev_priv(netdev);
3607         struct e1000_hw *hw = &adapter->hw;
3608 #ifndef CONFIG_E1000_NAPI
3609         int i;
3610 #endif
3611
3612         /* this code avoids the read of ICR but has to get 1000 interrupts
3613          * at every link change event before it will notice the change */
3614         if (++adapter->detect_link >= 1000) {
3615                 uint32_t icr = E1000_READ_REG(hw, ICR);
3616 #ifdef CONFIG_E1000_NAPI
3617                 /* read ICR disables interrupts using IAM, so keep up with our
3618                  * enable/disable accounting */
3619                 atomic_inc(&adapter->irq_sem);
3620 #endif
3621                 adapter->detect_link = 0;
3622                 if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) &&
3623                     (icr & E1000_ICR_INT_ASSERTED)) {
3624                         hw->get_link_status = 1;
3625                         /* 80003ES2LAN workaround--
3626                         * For packet buffer work-around on link down event;
3627                         * disable receives here in the ISR and
3628                         * reset adapter in watchdog
3629                         */
3630                         if (netif_carrier_ok(netdev) &&
3631                             (adapter->hw.mac_type == e1000_80003es2lan)) {
3632                                 /* disable receives */
3633                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3634                                 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3635                         }
3636                         /* guard against interrupt when we're going down */
3637                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3638                                 mod_timer(&adapter->watchdog_timer,
3639                                           jiffies + 1);
3640                 }
3641         } else {
3642                 E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ |
3643                                                          E1000_ICR_LSC)));
3644                 /* bummer we have to flush here, but things break otherwise as
3645                  * some event appears to be lost or delayed and throughput
3646                  * drops.  In almost all tests this flush is un-necessary */
3647                 E1000_WRITE_FLUSH(hw);
3648 #ifdef CONFIG_E1000_NAPI
3649                 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3650                  * masked.  No need for the IMC write, but it does mean we
3651                  * should account for it ASAP. */
3652                 atomic_inc(&adapter->irq_sem);
3653 #endif
3654         }
3655
3656 #ifdef CONFIG_E1000_NAPI
3657         if (likely(netif_rx_schedule_prep(netdev))) {
3658                 adapter->total_tx_bytes = 0;
3659                 adapter->total_tx_packets = 0;
3660                 adapter->total_rx_bytes = 0;
3661                 adapter->total_rx_packets = 0;
3662                 __netif_rx_schedule(netdev);
3663         } else
3664                 e1000_irq_enable(adapter);
3665 #else
3666         adapter->total_tx_bytes = 0;
3667         adapter->total_rx_bytes = 0;
3668         adapter->total_tx_packets = 0;
3669         adapter->total_rx_packets = 0;
3670
3671         for (i = 0; i < E1000_MAX_INTR; i++)
3672                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3673                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3674                         break;
3675
3676         if (likely(adapter->itr_setting & 3))
3677                 e1000_set_itr(adapter);
3678 #endif
3679
3680         return IRQ_HANDLED;
3681 }
3682 #endif
3683
3684 /**
3685  * e1000_intr - Interrupt Handler
3686  * @irq: interrupt number
3687  * @data: pointer to a network interface device structure
3688  **/
3689
3690 static irqreturn_t
3691 e1000_intr(int irq, void *data)
3692 {
3693         struct net_device *netdev = data;
3694         struct e1000_adapter *adapter = netdev_priv(netdev);
3695         struct e1000_hw *hw = &adapter->hw;
3696         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3697 #ifndef CONFIG_E1000_NAPI
3698         int i;
3699 #endif
3700         if (unlikely(!icr))
3701                 return IRQ_NONE;  /* Not our interrupt */
3702
3703 #ifdef CONFIG_E1000_NAPI
3704         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3705          * not set, then the adapter didn't send an interrupt */
3706         if (unlikely(hw->mac_type >= e1000_82571 &&
3707                      !(icr & E1000_ICR_INT_ASSERTED)))
3708                 return IRQ_NONE;
3709
3710         /* Interrupt Auto-Mask...upon reading ICR,
3711          * interrupts are masked.  No need for the
3712          * IMC write, but it does mean we should
3713          * account for it ASAP. */
3714         if (likely(hw->mac_type >= e1000_82571))
3715                 atomic_inc(&adapter->irq_sem);
3716 #endif
3717
3718         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3719                 hw->get_link_status = 1;
3720                 /* 80003ES2LAN workaround--
3721                  * For packet buffer work-around on link down event;
3722                  * disable receives here in the ISR and
3723                  * reset adapter in watchdog
3724                  */
3725                 if (netif_carrier_ok(netdev) &&
3726                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3727                         /* disable receives */
3728                         rctl = E1000_READ_REG(hw, RCTL);
3729                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3730                 }
3731                 /* guard against interrupt when we're going down */
3732                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3733                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3734         }
3735
3736 #ifdef CONFIG_E1000_NAPI
3737         if (unlikely(hw->mac_type < e1000_82571)) {
3738                 /* disable interrupts, without the synchronize_irq bit */
3739                 atomic_inc(&adapter->irq_sem);
3740                 E1000_WRITE_REG(hw, IMC, ~0);
3741                 E1000_WRITE_FLUSH(hw);
3742         }
3743         if (likely(netif_rx_schedule_prep(netdev))) {
3744                 adapter->total_tx_bytes = 0;
3745                 adapter->total_tx_packets = 0;
3746                 adapter->total_rx_bytes = 0;
3747                 adapter->total_rx_packets = 0;
3748                 __netif_rx_schedule(netdev);
3749         } else
3750                 /* this really should not happen! if it does it is basically a
3751                  * bug, but not a hard error, so enable ints and continue */
3752                 e1000_irq_enable(adapter);
3753 #else
3754         /* Writing IMC and IMS is needed for 82547.
3755          * Due to Hub Link bus being occupied, an interrupt
3756          * de-assertion message is not able to be sent.
3757          * When an interrupt assertion message is generated later,
3758          * two messages are re-ordered and sent out.
3759          * That causes APIC to think 82547 is in de-assertion
3760          * state, while 82547 is in assertion state, resulting
3761          * in dead lock. Writing IMC forces 82547 into
3762          * de-assertion state.
3763          */
3764         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3765                 atomic_inc(&adapter->irq_sem);
3766                 E1000_WRITE_REG(hw, IMC, ~0);
3767         }
3768
3769         adapter->total_tx_bytes = 0;
3770         adapter->total_rx_bytes = 0;
3771         adapter->total_tx_packets = 0;
3772         adapter->total_rx_packets = 0;
3773
3774         for (i = 0; i < E1000_MAX_INTR; i++)
3775                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3776                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3777                         break;
3778
3779         if (likely(adapter->itr_setting & 3))
3780                 e1000_set_itr(adapter);
3781
3782         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3783                 e1000_irq_enable(adapter);
3784
3785 #endif
3786         return IRQ_HANDLED;
3787 }
3788
3789 #ifdef CONFIG_E1000_NAPI
3790 /**
3791  * e1000_clean - NAPI Rx polling callback
3792  * @adapter: board private structure
3793  **/
3794
3795 static int
3796 e1000_clean(struct net_device *poll_dev, int *budget)
3797 {
3798         struct e1000_adapter *adapter;
3799         int work_to_do = min(*budget, poll_dev->quota);
3800         int tx_cleaned = 0, work_done = 0;
3801
3802         /* Must NOT use netdev_priv macro here. */
3803         adapter = poll_dev->priv;
3804
3805         /* Keep link state information with original netdev */
3806         if (!netif_carrier_ok(poll_dev))
3807                 goto quit_polling;
3808
3809         /* e1000_clean is called per-cpu.  This lock protects
3810          * tx_ring[0] from being cleaned by multiple cpus
3811          * simultaneously.  A failure obtaining the lock means
3812          * tx_ring[0] is currently being cleaned anyway. */
3813         if (spin_trylock(&adapter->tx_queue_lock)) {
3814                 tx_cleaned = e1000_clean_tx_irq(adapter,
3815                                                 &adapter->tx_ring[0]);
3816                 spin_unlock(&adapter->tx_queue_lock);
3817         }
3818
3819         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3820                           &work_done, work_to_do);
3821
3822         *budget -= work_done;
3823         poll_dev->quota -= work_done;
3824
3825         /* If no Tx and not enough Rx work done, exit the polling mode */
3826         if ((!tx_cleaned && (work_done == 0)) ||
3827            !netif_running(poll_dev)) {
3828 quit_polling:
3829                 if (likely(adapter->itr_setting & 3))
3830                         e1000_set_itr(adapter);
3831                 netif_rx_complete(poll_dev);
3832                 e1000_irq_enable(adapter);
3833                 return 0;
3834         }
3835
3836         return 1;
3837 }
3838
3839 #endif
3840 /**
3841  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3842  * @adapter: board private structure
3843  **/
3844
3845 static boolean_t
3846 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3847                    struct e1000_tx_ring *tx_ring)
3848 {
3849         struct net_device *netdev = adapter->netdev;
3850         struct e1000_tx_desc *tx_desc, *eop_desc;
3851         struct e1000_buffer *buffer_info;
3852         unsigned int i, eop;
3853 #ifdef CONFIG_E1000_NAPI
3854         unsigned int count = 0;
3855 #endif
3856         boolean_t cleaned = FALSE;
3857         unsigned int total_tx_bytes=0, total_tx_packets=0;
3858
3859         i = tx_ring->next_to_clean;
3860         eop = tx_ring->buffer_info[i].next_to_watch;
3861         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3862
3863         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3864                 for (cleaned = FALSE; !cleaned; ) {
3865                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3866                         buffer_info = &tx_ring->buffer_info[i];
3867                         cleaned = (i == eop);
3868
3869                         if (cleaned) {
3870                                 /* this packet count is wrong for TSO but has a
3871                                  * tendency to make dynamic ITR change more
3872                                  * towards bulk */
3873                                 total_tx_packets++;
3874                                 total_tx_bytes += buffer_info->skb->len;
3875                         }
3876                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3877                         tx_desc->upper.data = 0;
3878
3879                         if (unlikely(++i == tx_ring->count)) i = 0;
3880                 }
3881
3882                 eop = tx_ring->buffer_info[i].next_to_watch;
3883                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3884 #ifdef CONFIG_E1000_NAPI
3885 #define E1000_TX_WEIGHT 64
3886                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3887                 if (count++ == E1000_TX_WEIGHT) break;
3888 #endif
3889         }
3890
3891         tx_ring->next_to_clean = i;
3892
3893 #define TX_WAKE_THRESHOLD 32
3894         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3895                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3896                 /* Make sure that anybody stopping the queue after this
3897                  * sees the new next_to_clean.
3898                  */
3899                 smp_mb();
3900                 if (netif_queue_stopped(netdev)) {
3901                         netif_wake_queue(netdev);
3902                         ++adapter->restart_queue;
3903                 }
3904         }
3905
3906         if (adapter->detect_tx_hung) {
3907                 /* Detect a transmit hang in hardware, this serializes the
3908                  * check with the clearing of time_stamp and movement of i */
3909                 adapter->detect_tx_hung = FALSE;
3910                 if (tx_ring->buffer_info[eop].dma &&
3911                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3912                                (adapter->tx_timeout_factor * HZ))
3913                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3914                          E1000_STATUS_TXOFF)) {
3915
3916                         /* detected Tx unit hang */
3917                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3918                                         "  Tx Queue             <%lu>\n"
3919                                         "  TDH                  <%x>\n"
3920                                         "  TDT                  <%x>\n"
3921                                         "  next_to_use          <%x>\n"
3922                                         "  next_to_clean        <%x>\n"
3923                                         "buffer_info[next_to_clean]\n"
3924                                         "  time_stamp           <%lx>\n"
3925                                         "  next_to_watch        <%x>\n"
3926                                         "  jiffies              <%lx>\n"
3927                                         "  next_to_watch.status <%x>\n",
3928                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3929                                         sizeof(struct e1000_tx_ring)),
3930                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3931                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3932                                 tx_ring->next_to_use,
3933                                 tx_ring->next_to_clean,
3934                                 tx_ring->buffer_info[eop].time_stamp,
3935                                 eop,
3936                                 jiffies,
3937                                 eop_desc->upper.fields.status);
3938                         netif_stop_queue(netdev);
3939                 }
3940         }
3941         adapter->total_tx_bytes += total_tx_bytes;
3942         adapter->total_tx_packets += total_tx_packets;
3943         return cleaned;
3944 }
3945
3946 /**
3947  * e1000_rx_checksum - Receive Checksum Offload for 82543
3948  * @adapter:     board private structure
3949  * @status_err:  receive descriptor status and error fields
3950  * @csum:        receive descriptor csum field
3951  * @sk_buff:     socket buffer with received data
3952  **/
3953
3954 static void
3955 e1000_rx_checksum(struct e1000_adapter *adapter,
3956                   uint32_t status_err, uint32_t csum,
3957                   struct sk_buff *skb)
3958 {
3959         uint16_t status = (uint16_t)status_err;
3960         uint8_t errors = (uint8_t)(status_err >> 24);
3961         skb->ip_summed = CHECKSUM_NONE;
3962
3963         /* 82543 or newer only */
3964         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3965         /* Ignore Checksum bit is set */
3966         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3967         /* TCP/UDP checksum error bit is set */
3968         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3969                 /* let the stack verify checksum errors */
3970                 adapter->hw_csum_err++;
3971                 return;
3972         }
3973         /* TCP/UDP Checksum has not been calculated */
3974         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3975                 if (!(status & E1000_RXD_STAT_TCPCS))
3976                         return;
3977         } else {
3978                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3979                         return;
3980         }
3981         /* It must be a TCP or UDP packet with a valid checksum */
3982         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3983                 /* TCP checksum is good */
3984                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3985         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3986                 /* IP fragment with UDP payload */
3987                 /* Hardware complements the payload checksum, so we undo it
3988                  * and then put the value in host order for further stack use.
3989                  */
3990                 csum = ntohl(csum ^ 0xFFFF);
3991                 skb->csum = csum;
3992                 skb->ip_summed = CHECKSUM_COMPLETE;
3993         }
3994         adapter->hw_csum_good++;
3995 }
3996
3997 /**
3998  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3999  * @adapter: board private structure
4000  **/
4001
4002 static boolean_t
4003 #ifdef CONFIG_E1000_NAPI
4004 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4005                    struct e1000_rx_ring *rx_ring,
4006                    int *work_done, int work_to_do)
4007 #else
4008 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4009                    struct e1000_rx_ring *rx_ring)
4010 #endif
4011 {
4012         struct net_device *netdev = adapter->netdev;
4013         struct pci_dev *pdev = adapter->pdev;
4014         struct e1000_rx_desc *rx_desc, *next_rxd;
4015         struct e1000_buffer *buffer_info, *next_buffer;
4016         unsigned long flags;
4017         uint32_t length;
4018         uint8_t last_byte;
4019         unsigned int i;
4020         int cleaned_count = 0;
4021         boolean_t cleaned = FALSE;
4022         unsigned int total_rx_bytes=0, total_rx_packets=0;
4023
4024         i = rx_ring->next_to_clean;
4025         rx_desc = E1000_RX_DESC(*rx_ring, i);
4026         buffer_info = &rx_ring->buffer_info[i];
4027
4028         while (rx_desc->status & E1000_RXD_STAT_DD) {
4029                 struct sk_buff *skb;
4030                 u8 status;
4031
4032 #ifdef CONFIG_E1000_NAPI
4033                 if (*work_done >= work_to_do)
4034                         break;
4035                 (*work_done)++;
4036 #endif
4037                 status = rx_desc->status;
4038                 skb = buffer_info->skb;
4039                 buffer_info->skb = NULL;
4040
4041                 prefetch(skb->data - NET_IP_ALIGN);
4042
4043                 if (++i == rx_ring->count) i = 0;
4044                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4045                 prefetch(next_rxd);
4046
4047                 next_buffer = &rx_ring->buffer_info[i];
4048
4049                 cleaned = TRUE;
4050                 cleaned_count++;
4051                 pci_unmap_single(pdev,
4052                                  buffer_info->dma,
4053                                  buffer_info->length,
4054                                  PCI_DMA_FROMDEVICE);
4055
4056                 length = le16_to_cpu(rx_desc->length);
4057
4058                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4059                         /* All receives must fit into a single buffer */
4060                         E1000_DBG("%s: Receive packet consumed multiple"
4061                                   " buffers\n", netdev->name);
4062                         /* recycle */
4063                         buffer_info->skb = skb;
4064                         goto next_desc;
4065                 }
4066
4067                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4068                         last_byte = *(skb->data + length - 1);
4069                         if (TBI_ACCEPT(&adapter->hw, status,
4070                                       rx_desc->errors, length, last_byte)) {
4071                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4072                                 e1000_tbi_adjust_stats(&adapter->hw,
4073                                                        &adapter->stats,
4074                                                        length, skb->data);
4075                                 spin_unlock_irqrestore(&adapter->stats_lock,
4076                                                        flags);
4077                                 length--;
4078                         } else {
4079                                 /* recycle */
4080                                 buffer_info->skb = skb;
4081                                 goto next_desc;
4082                         }
4083                 }
4084
4085                 /* adjust length to remove Ethernet CRC, this must be
4086                  * done after the TBI_ACCEPT workaround above */
4087                 length -= 4;
4088
4089                 /* probably a little skewed due to removing CRC */
4090                 total_rx_bytes += length;
4091                 total_rx_packets++;
4092
4093                 /* code added for copybreak, this should improve
4094                  * performance for small packets with large amounts
4095                  * of reassembly being done in the stack */
4096 #define E1000_CB_LENGTH 256
4097                 if (length < E1000_CB_LENGTH) {
4098                         struct sk_buff *new_skb =
4099                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4100                         if (new_skb) {
4101                                 skb_reserve(new_skb, NET_IP_ALIGN);
4102                                 memcpy(new_skb->data - NET_IP_ALIGN,
4103                                        skb->data - NET_IP_ALIGN,
4104                                        length + NET_IP_ALIGN);
4105                                 /* save the skb in buffer_info as good */
4106                                 buffer_info->skb = skb;
4107                                 skb = new_skb;
4108                         }
4109                         /* else just continue with the old one */
4110                 }
4111                 /* end copybreak code */
4112                 skb_put(skb, length);
4113
4114                 /* Receive Checksum Offload */
4115                 e1000_rx_checksum(adapter,
4116                                   (uint32_t)(status) |
4117                                   ((uint32_t)(rx_desc->errors) << 24),
4118                                   le16_to_cpu(rx_desc->csum), skb);
4119
4120                 skb->protocol = eth_type_trans(skb, netdev);
4121 #ifdef CONFIG_E1000_NAPI
4122                 if (unlikely(adapter->vlgrp &&
4123                             (status & E1000_RXD_STAT_VP))) {
4124                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4125                                                  le16_to_cpu(rx_desc->special) &
4126                                                  E1000_RXD_SPC_VLAN_MASK);
4127                 } else {
4128                         netif_receive_skb(skb);
4129                 }
4130 #else /* CONFIG_E1000_NAPI */
4131                 if (unlikely(adapter->vlgrp &&
4132                             (status & E1000_RXD_STAT_VP))) {
4133                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4134                                         le16_to_cpu(rx_desc->special) &
4135                                         E1000_RXD_SPC_VLAN_MASK);
4136                 } else {
4137                         netif_rx(skb);
4138                 }
4139 #endif /* CONFIG_E1000_NAPI */
4140                 netdev->last_rx = jiffies;
4141
4142 next_desc:
4143                 rx_desc->status = 0;
4144
4145                 /* return some buffers to hardware, one at a time is too slow */
4146                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4147                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4148                         cleaned_count = 0;
4149                 }
4150
4151                 /* use prefetched values */
4152                 rx_desc = next_rxd;
4153                 buffer_info = next_buffer;
4154         }
4155         rx_ring->next_to_clean = i;
4156
4157         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4158         if (cleaned_count)
4159                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4160
4161         adapter->total_rx_packets += total_rx_packets;
4162         adapter->total_rx_bytes += total_rx_bytes;
4163         return cleaned;
4164 }
4165
4166 /**
4167  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4168  * @adapter: board private structure
4169  **/
4170
4171 static boolean_t
4172 #ifdef CONFIG_E1000_NAPI
4173 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4174                       struct e1000_rx_ring *rx_ring,
4175                       int *work_done, int work_to_do)
4176 #else
4177 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4178                       struct e1000_rx_ring *rx_ring)
4179 #endif
4180 {
4181         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4182         struct net_device *netdev = adapter->netdev;
4183         struct pci_dev *pdev = adapter->pdev;
4184         struct e1000_buffer *buffer_info, *next_buffer;
4185         struct e1000_ps_page *ps_page;
4186         struct e1000_ps_page_dma *ps_page_dma;
4187         struct sk_buff *skb;
4188         unsigned int i, j;
4189         uint32_t length, staterr;
4190         int cleaned_count = 0;
4191         boolean_t cleaned = FALSE;
4192         unsigned int total_rx_bytes=0, total_rx_packets=0;
4193
4194         i = rx_ring->next_to_clean;
4195         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4196         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4197         buffer_info = &rx_ring->buffer_info[i];
4198
4199         while (staterr & E1000_RXD_STAT_DD) {
4200                 ps_page = &rx_ring->ps_page[i];
4201                 ps_page_dma = &rx_ring->ps_page_dma[i];
4202 #ifdef CONFIG_E1000_NAPI
4203                 if (unlikely(*work_done >= work_to_do))
4204                         break;
4205                 (*work_done)++;
4206 #endif
4207                 skb = buffer_info->skb;
4208
4209                 /* in the packet split case this is header only */
4210                 prefetch(skb->data - NET_IP_ALIGN);
4211
4212                 if (++i == rx_ring->count) i = 0;
4213                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4214                 prefetch(next_rxd);
4215
4216                 next_buffer = &rx_ring->buffer_info[i];
4217
4218                 cleaned = TRUE;
4219                 cleaned_count++;
4220                 pci_unmap_single(pdev, buffer_info->dma,
4221                                  buffer_info->length,
4222                                  PCI_DMA_FROMDEVICE);
4223
4224                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4225                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4226                                   " the full packet\n", netdev->name);
4227                         dev_kfree_skb_irq(skb);
4228                         goto next_desc;
4229                 }
4230
4231                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4232                         dev_kfree_skb_irq(skb);
4233                         goto next_desc;
4234                 }
4235
4236                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4237
4238                 if (unlikely(!length)) {
4239                         E1000_DBG("%s: Last part of the packet spanning"
4240                                   " multiple descriptors\n", netdev->name);
4241                         dev_kfree_skb_irq(skb);
4242                         goto next_desc;
4243                 }
4244
4245                 /* Good Receive */
4246                 skb_put(skb, length);
4247
4248                 {
4249                 /* this looks ugly, but it seems compiler issues make it
4250                    more efficient than reusing j */
4251                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4252
4253                 /* page alloc/put takes too long and effects small packet
4254                  * throughput, so unsplit small packets and save the alloc/put*/
4255                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
4256                         u8 *vaddr;
4257                         /* there is no documentation about how to call
4258                          * kmap_atomic, so we can't hold the mapping
4259                          * very long */
4260                         pci_dma_sync_single_for_cpu(pdev,
4261                                 ps_page_dma->ps_page_dma[0],
4262                                 PAGE_SIZE,
4263                                 PCI_DMA_FROMDEVICE);
4264                         vaddr = kmap_atomic(ps_page->ps_page[0],
4265                                             KM_SKB_DATA_SOFTIRQ);
4266                         memcpy(skb->tail, vaddr, l1);
4267                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4268                         pci_dma_sync_single_for_device(pdev,
4269                                 ps_page_dma->ps_page_dma[0],
4270                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4271                         /* remove the CRC */
4272                         l1 -= 4;
4273                         skb_put(skb, l1);
4274                         goto copydone;
4275                 } /* if */
4276                 }
4277
4278                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4279                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4280                                 break;
4281                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4282                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4283                         ps_page_dma->ps_page_dma[j] = 0;
4284                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4285                                            length);
4286                         ps_page->ps_page[j] = NULL;
4287                         skb->len += length;
4288                         skb->data_len += length;
4289                         skb->truesize += length;
4290                 }
4291
4292                 /* strip the ethernet crc, problem is we're using pages now so
4293                  * this whole operation can get a little cpu intensive */
4294                 pskb_trim(skb, skb->len - 4);
4295
4296 copydone:
4297                 total_rx_bytes += skb->len;
4298                 total_rx_packets++;
4299
4300                 e1000_rx_checksum(adapter, staterr,
4301                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4302                 skb->protocol = eth_type_trans(skb, netdev);
4303
4304                 if (likely(rx_desc->wb.upper.header_status &
4305                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4306                         adapter->rx_hdr_split++;
4307 #ifdef CONFIG_E1000_NAPI
4308                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4309                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4310                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4311                                 E1000_RXD_SPC_VLAN_MASK);
4312                 } else {
4313                         netif_receive_skb(skb);
4314                 }
4315 #else /* CONFIG_E1000_NAPI */
4316                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4317                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4318                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4319                                 E1000_RXD_SPC_VLAN_MASK);
4320                 } else {
4321                         netif_rx(skb);
4322                 }
4323 #endif /* CONFIG_E1000_NAPI */
4324                 netdev->last_rx = jiffies;
4325
4326 next_desc:
4327                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4328                 buffer_info->skb = NULL;
4329
4330                 /* return some buffers to hardware, one at a time is too slow */
4331                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4332                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4333                         cleaned_count = 0;
4334                 }
4335
4336                 /* use prefetched values */
4337                 rx_desc = next_rxd;
4338                 buffer_info = next_buffer;
4339
4340                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4341         }
4342         rx_ring->next_to_clean = i;
4343
4344         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4345         if (cleaned_count)
4346                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4347
4348         adapter->total_rx_packets += total_rx_packets;
4349         adapter->total_rx_bytes += total_rx_bytes;
4350         return cleaned;
4351 }
4352
4353 /**
4354  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4355  * @adapter: address of board private structure
4356  **/
4357
4358 static void
4359 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4360                        struct e1000_rx_ring *rx_ring,
4361                        int cleaned_count)
4362 {
4363         struct net_device *netdev = adapter->netdev;
4364         struct pci_dev *pdev = adapter->pdev;
4365         struct e1000_rx_desc *rx_desc;
4366         struct e1000_buffer *buffer_info;
4367         struct sk_buff *skb;
4368         unsigned int i;
4369         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4370
4371         i = rx_ring->next_to_use;
4372         buffer_info = &rx_ring->buffer_info[i];
4373
4374         while (cleaned_count--) {
4375                 skb = buffer_info->skb;
4376                 if (skb) {
4377                         skb_trim(skb, 0);
4378                         goto map_skb;
4379                 }
4380
4381                 skb = netdev_alloc_skb(netdev, bufsz);
4382                 if (unlikely(!skb)) {
4383                         /* Better luck next round */
4384                         adapter->alloc_rx_buff_failed++;
4385                         break;
4386                 }
4387
4388                 /* Fix for errata 23, can't cross 64kB boundary */
4389                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4390                         struct sk_buff *oldskb = skb;
4391                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4392                                              "at %p\n", bufsz, skb->data);
4393                         /* Try again, without freeing the previous */
4394                         skb = netdev_alloc_skb(netdev, bufsz);
4395                         /* Failed allocation, critical failure */
4396                         if (!skb) {
4397                                 dev_kfree_skb(oldskb);
4398                                 break;
4399                         }
4400
4401                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4402                                 /* give up */
4403                                 dev_kfree_skb(skb);
4404                                 dev_kfree_skb(oldskb);
4405                                 break; /* while !buffer_info->skb */
4406                         }
4407
4408                         /* Use new allocation */
4409                         dev_kfree_skb(oldskb);
4410                 }
4411                 /* Make buffer alignment 2 beyond a 16 byte boundary
4412                  * this will result in a 16 byte aligned IP header after
4413                  * the 14 byte MAC header is removed
4414                  */
4415                 skb_reserve(skb, NET_IP_ALIGN);
4416
4417                 buffer_info->skb = skb;
4418                 buffer_info->length = adapter->rx_buffer_len;
4419 map_skb:
4420                 buffer_info->dma = pci_map_single(pdev,
4421                                                   skb->data,
4422                                                   adapter->rx_buffer_len,
4423                                                   PCI_DMA_FROMDEVICE);
4424
4425                 /* Fix for errata 23, can't cross 64kB boundary */
4426                 if (!e1000_check_64k_bound(adapter,
4427                                         (void *)(unsigned long)buffer_info->dma,
4428                                         adapter->rx_buffer_len)) {
4429                         DPRINTK(RX_ERR, ERR,
4430                                 "dma align check failed: %u bytes at %p\n",
4431                                 adapter->rx_buffer_len,
4432                                 (void *)(unsigned long)buffer_info->dma);
4433                         dev_kfree_skb(skb);
4434                         buffer_info->skb = NULL;
4435
4436                         pci_unmap_single(pdev, buffer_info->dma,
4437                                          adapter->rx_buffer_len,
4438                                          PCI_DMA_FROMDEVICE);
4439
4440                         break; /* while !buffer_info->skb */
4441                 }
4442                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4443                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4444
4445                 if (unlikely(++i == rx_ring->count))
4446                         i = 0;
4447                 buffer_info = &rx_ring->buffer_info[i];
4448         }
4449
4450         if (likely(rx_ring->next_to_use != i)) {
4451                 rx_ring->next_to_use = i;
4452                 if (unlikely(i-- == 0))
4453                         i = (rx_ring->count - 1);
4454
4455                 /* Force memory writes to complete before letting h/w
4456                  * know there are new descriptors to fetch.  (Only
4457                  * applicable for weak-ordered memory model archs,
4458                  * such as IA-64). */
4459                 wmb();
4460                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4461         }
4462 }
4463
4464 /**
4465  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4466  * @adapter: address of board private structure
4467  **/
4468
4469 static void
4470 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4471                           struct e1000_rx_ring *rx_ring,
4472                           int cleaned_count)
4473 {
4474         struct net_device *netdev = adapter->netdev;
4475         struct pci_dev *pdev = adapter->pdev;
4476         union e1000_rx_desc_packet_split *rx_desc;
4477         struct e1000_buffer *buffer_info;
4478         struct e1000_ps_page *ps_page;
4479         struct e1000_ps_page_dma *ps_page_dma;
4480         struct sk_buff *skb;
4481         unsigned int i, j;
4482
4483         i = rx_ring->next_to_use;
4484         buffer_info = &rx_ring->buffer_info[i];
4485         ps_page = &rx_ring->ps_page[i];
4486         ps_page_dma = &rx_ring->ps_page_dma[i];
4487
4488         while (cleaned_count--) {
4489                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4490
4491                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4492                         if (j < adapter->rx_ps_pages) {
4493                                 if (likely(!ps_page->ps_page[j])) {
4494                                         ps_page->ps_page[j] =
4495                                                 alloc_page(GFP_ATOMIC);
4496                                         if (unlikely(!ps_page->ps_page[j])) {
4497                                                 adapter->alloc_rx_buff_failed++;
4498                                                 goto no_buffers;
4499                                         }
4500                                         ps_page_dma->ps_page_dma[j] =
4501                                                 pci_map_page(pdev,
4502                                                             ps_page->ps_page[j],
4503                                                             0, PAGE_SIZE,
4504                                                             PCI_DMA_FROMDEVICE);
4505                                 }
4506                                 /* Refresh the desc even if buffer_addrs didn't
4507                                  * change because each write-back erases
4508                                  * this info.
4509                                  */
4510                                 rx_desc->read.buffer_addr[j+1] =
4511                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4512                         } else
4513                                 rx_desc->read.buffer_addr[j+1] = ~0;
4514                 }
4515
4516                 skb = netdev_alloc_skb(netdev,
4517                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4518
4519                 if (unlikely(!skb)) {
4520                         adapter->alloc_rx_buff_failed++;
4521                         break;
4522                 }
4523
4524                 /* Make buffer alignment 2 beyond a 16 byte boundary
4525                  * this will result in a 16 byte aligned IP header after
4526                  * the 14 byte MAC header is removed
4527                  */
4528                 skb_reserve(skb, NET_IP_ALIGN);
4529
4530                 buffer_info->skb = skb;
4531                 buffer_info->length = adapter->rx_ps_bsize0;
4532                 buffer_info->dma = pci_map_single(pdev, skb->data,
4533                                                   adapter->rx_ps_bsize0,
4534                                                   PCI_DMA_FROMDEVICE);
4535
4536                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4537
4538                 if (unlikely(++i == rx_ring->count)) i = 0;
4539                 buffer_info = &rx_ring->buffer_info[i];
4540                 ps_page = &rx_ring->ps_page[i];
4541                 ps_page_dma = &rx_ring->ps_page_dma[i];
4542         }
4543
4544 no_buffers:
4545         if (likely(rx_ring->next_to_use != i)) {
4546                 rx_ring->next_to_use = i;
4547                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4548
4549                 /* Force memory writes to complete before letting h/w
4550                  * know there are new descriptors to fetch.  (Only
4551                  * applicable for weak-ordered memory model archs,
4552                  * such as IA-64). */
4553                 wmb();
4554                 /* Hardware increments by 16 bytes, but packet split
4555                  * descriptors are 32 bytes...so we increment tail
4556                  * twice as much.
4557                  */
4558                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4559         }
4560 }
4561
4562 /**
4563  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4564  * @adapter:
4565  **/
4566
4567 static void
4568 e1000_smartspeed(struct e1000_adapter *adapter)
4569 {
4570         uint16_t phy_status;
4571         uint16_t phy_ctrl;
4572
4573         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4574            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4575                 return;
4576
4577         if (adapter->smartspeed == 0) {
4578                 /* If Master/Slave config fault is asserted twice,
4579                  * we assume back-to-back */
4580                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4581                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4582                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4583                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4584                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4585                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4586                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4587                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4588                                             phy_ctrl);
4589                         adapter->smartspeed++;
4590                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4591                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4592                                                &phy_ctrl)) {
4593                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4594                                              MII_CR_RESTART_AUTO_NEG);
4595                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4596                                                     phy_ctrl);
4597                         }
4598                 }
4599                 return;
4600         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4601                 /* If still no link, perhaps using 2/3 pair cable */
4602                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4603                 phy_ctrl |= CR_1000T_MS_ENABLE;
4604                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4605                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4606                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4607                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4608                                      MII_CR_RESTART_AUTO_NEG);
4609                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4610                 }
4611         }
4612         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4613         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4614                 adapter->smartspeed = 0;
4615 }
4616
4617 /**
4618  * e1000_ioctl -
4619  * @netdev:
4620  * @ifreq:
4621  * @cmd:
4622  **/
4623
4624 static int
4625 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4626 {
4627         switch (cmd) {
4628         case SIOCGMIIPHY:
4629         case SIOCGMIIREG:
4630         case SIOCSMIIREG:
4631                 return e1000_mii_ioctl(netdev, ifr, cmd);
4632         default:
4633                 return -EOPNOTSUPP;
4634         }
4635 }
4636
4637 /**
4638  * e1000_mii_ioctl -
4639  * @netdev:
4640  * @ifreq:
4641  * @cmd:
4642  **/
4643
4644 static int
4645 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4646 {
4647         struct e1000_adapter *adapter = netdev_priv(netdev);
4648         struct mii_ioctl_data *data = if_mii(ifr);
4649         int retval;
4650         uint16_t mii_reg;
4651         uint16_t spddplx;
4652         unsigned long flags;
4653
4654         if (adapter->hw.media_type != e1000_media_type_copper)
4655                 return -EOPNOTSUPP;
4656
4657         switch (cmd) {
4658         case SIOCGMIIPHY:
4659                 data->phy_id = adapter->hw.phy_addr;
4660                 break;
4661         case SIOCGMIIREG:
4662                 if (!capable(CAP_NET_ADMIN))
4663                         return -EPERM;
4664                 spin_lock_irqsave(&adapter->stats_lock, flags);
4665                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4666                                    &data->val_out)) {
4667                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4668                         return -EIO;
4669                 }
4670                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4671                 break;
4672         case SIOCSMIIREG:
4673                 if (!capable(CAP_NET_ADMIN))
4674                         return -EPERM;
4675                 if (data->reg_num & ~(0x1F))
4676                         return -EFAULT;
4677                 mii_reg = data->val_in;
4678                 spin_lock_irqsave(&adapter->stats_lock, flags);
4679                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4680                                         mii_reg)) {
4681                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4682                         return -EIO;
4683                 }
4684                 if (adapter->hw.media_type == e1000_media_type_copper) {
4685                         switch (data->reg_num) {
4686                         case PHY_CTRL:
4687                                 if (mii_reg & MII_CR_POWER_DOWN)
4688                                         break;
4689                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4690                                         adapter->hw.autoneg = 1;
4691                                         adapter->hw.autoneg_advertised = 0x2F;
4692                                 } else {
4693                                         if (mii_reg & 0x40)
4694                                                 spddplx = SPEED_1000;
4695                                         else if (mii_reg & 0x2000)
4696                                                 spddplx = SPEED_100;
4697                                         else
4698                                                 spddplx = SPEED_10;
4699                                         spddplx += (mii_reg & 0x100)
4700                                                    ? DUPLEX_FULL :
4701                                                    DUPLEX_HALF;
4702                                         retval = e1000_set_spd_dplx(adapter,
4703                                                                     spddplx);
4704                                         if (retval) {
4705                                                 spin_unlock_irqrestore(
4706                                                         &adapter->stats_lock,
4707                                                         flags);
4708                                                 return retval;
4709                                         }
4710                                 }
4711                                 if (netif_running(adapter->netdev))
4712                                         e1000_reinit_locked(adapter);
4713                                 else
4714                                         e1000_reset(adapter);
4715                                 break;
4716                         case M88E1000_PHY_SPEC_CTRL:
4717                         case M88E1000_EXT_PHY_SPEC_CTRL:
4718                                 if (e1000_phy_reset(&adapter->hw)) {
4719                                         spin_unlock_irqrestore(
4720                                                 &adapter->stats_lock, flags);
4721                                         return -EIO;
4722                                 }
4723                                 break;
4724                         }
4725                 } else {
4726                         switch (data->reg_num) {
4727                         case PHY_CTRL:
4728                                 if (mii_reg & MII_CR_POWER_DOWN)
4729                                         break;
4730                                 if (netif_running(adapter->netdev))
4731                                         e1000_reinit_locked(adapter);
4732                                 else
4733                                         e1000_reset(adapter);
4734                                 break;
4735                         }
4736                 }
4737                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4738                 break;
4739         default:
4740                 return -EOPNOTSUPP;
4741         }
4742         return E1000_SUCCESS;
4743 }
4744
4745 void
4746 e1000_pci_set_mwi(struct e1000_hw *hw)
4747 {
4748         struct e1000_adapter *adapter = hw->back;
4749         int ret_val = pci_set_mwi(adapter->pdev);
4750
4751         if (ret_val)
4752                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4753 }
4754
4755 void
4756 e1000_pci_clear_mwi(struct e1000_hw *hw)
4757 {
4758         struct e1000_adapter *adapter = hw->back;
4759
4760         pci_clear_mwi(adapter->pdev);
4761 }
4762
4763 void
4764 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4765 {
4766         struct e1000_adapter *adapter = hw->back;
4767
4768         pci_read_config_word(adapter->pdev, reg, value);
4769 }
4770
4771 void
4772 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4773 {
4774         struct e1000_adapter *adapter = hw->back;
4775
4776         pci_write_config_word(adapter->pdev, reg, *value);
4777 }
4778
4779 int32_t
4780 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4781 {
4782     struct e1000_adapter *adapter = hw->back;
4783     uint16_t cap_offset;
4784
4785     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4786     if (!cap_offset)
4787         return -E1000_ERR_CONFIG;
4788
4789     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4790
4791     return E1000_SUCCESS;
4792 }
4793
4794 void
4795 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4796 {
4797         outl(value, port);
4798 }
4799
4800 static void
4801 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4802 {
4803         struct e1000_adapter *adapter = netdev_priv(netdev);
4804         uint32_t ctrl, rctl;
4805
4806         e1000_irq_disable(adapter);
4807         adapter->vlgrp = grp;
4808
4809         if (grp) {
4810                 /* enable VLAN tag insert/strip */
4811                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4812                 ctrl |= E1000_CTRL_VME;
4813                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4814
4815                 if (adapter->hw.mac_type != e1000_ich8lan) {
4816                         /* enable VLAN receive filtering */
4817                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4818                         rctl |= E1000_RCTL_VFE;
4819                         rctl &= ~E1000_RCTL_CFIEN;
4820                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4821                         e1000_update_mng_vlan(adapter);
4822                 }
4823         } else {
4824                 /* disable VLAN tag insert/strip */
4825                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4826                 ctrl &= ~E1000_CTRL_VME;
4827                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4828
4829                 if (adapter->hw.mac_type != e1000_ich8lan) {
4830                         /* disable VLAN filtering */
4831                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4832                         rctl &= ~E1000_RCTL_VFE;
4833                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4834                         if (adapter->mng_vlan_id !=
4835                             (uint16_t)E1000_MNG_VLAN_NONE) {
4836                                 e1000_vlan_rx_kill_vid(netdev,
4837                                                        adapter->mng_vlan_id);
4838                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4839                         }
4840                 }
4841         }
4842
4843         e1000_irq_enable(adapter);
4844 }
4845
4846 static void
4847 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4848 {
4849         struct e1000_adapter *adapter = netdev_priv(netdev);
4850         uint32_t vfta, index;
4851
4852         if ((adapter->hw.mng_cookie.status &
4853              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4854             (vid == adapter->mng_vlan_id))
4855                 return;
4856         /* add VID to filter table */
4857         index = (vid >> 5) & 0x7F;
4858         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4859         vfta |= (1 << (vid & 0x1F));
4860         e1000_write_vfta(&adapter->hw, index, vfta);
4861 }
4862
4863 static void
4864 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4865 {
4866         struct e1000_adapter *adapter = netdev_priv(netdev);
4867         uint32_t vfta, index;
4868
4869         e1000_irq_disable(adapter);
4870
4871         if (adapter->vlgrp)
4872                 adapter->vlgrp->vlan_devices[vid] = NULL;
4873
4874         e1000_irq_enable(adapter);
4875
4876         if ((adapter->hw.mng_cookie.status &
4877              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4878             (vid == adapter->mng_vlan_id)) {
4879                 /* release control to f/w */
4880                 e1000_release_hw_control(adapter);
4881                 return;
4882         }
4883
4884         /* remove VID from filter table */
4885         index = (vid >> 5) & 0x7F;
4886         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4887         vfta &= ~(1 << (vid & 0x1F));
4888         e1000_write_vfta(&adapter->hw, index, vfta);
4889 }
4890
4891 static void
4892 e1000_restore_vlan(struct e1000_adapter *adapter)
4893 {
4894         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4895
4896         if (adapter->vlgrp) {
4897                 uint16_t vid;
4898                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4899                         if (!adapter->vlgrp->vlan_devices[vid])
4900                                 continue;
4901                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4902                 }
4903         }
4904 }
4905
4906 int
4907 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4908 {
4909         adapter->hw.autoneg = 0;
4910
4911         /* Fiber NICs only allow 1000 gbps Full duplex */
4912         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4913                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4914                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4915                 return -EINVAL;
4916         }
4917
4918         switch (spddplx) {
4919         case SPEED_10 + DUPLEX_HALF:
4920                 adapter->hw.forced_speed_duplex = e1000_10_half;
4921                 break;
4922         case SPEED_10 + DUPLEX_FULL:
4923                 adapter->hw.forced_speed_duplex = e1000_10_full;
4924                 break;
4925         case SPEED_100 + DUPLEX_HALF:
4926                 adapter->hw.forced_speed_duplex = e1000_100_half;
4927                 break;
4928         case SPEED_100 + DUPLEX_FULL:
4929                 adapter->hw.forced_speed_duplex = e1000_100_full;
4930                 break;
4931         case SPEED_1000 + DUPLEX_FULL:
4932                 adapter->hw.autoneg = 1;
4933                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4934                 break;
4935         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4936         default:
4937                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4938                 return -EINVAL;
4939         }
4940         return 0;
4941 }
4942
4943 #ifdef CONFIG_PM
4944 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4945  * bus we're on (PCI(X) vs. PCI-E)
4946  */
4947 #define PCIE_CONFIG_SPACE_LEN 256
4948 #define PCI_CONFIG_SPACE_LEN 64
4949 static int
4950 e1000_pci_save_state(struct e1000_adapter *adapter)
4951 {
4952         struct pci_dev *dev = adapter->pdev;
4953         int size;
4954         int i;
4955
4956         if (adapter->hw.mac_type >= e1000_82571)
4957                 size = PCIE_CONFIG_SPACE_LEN;
4958         else
4959                 size = PCI_CONFIG_SPACE_LEN;
4960
4961         WARN_ON(adapter->config_space != NULL);
4962
4963         adapter->config_space = kmalloc(size, GFP_KERNEL);
4964         if (!adapter->config_space) {
4965                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4966                 return -ENOMEM;
4967         }
4968         for (i = 0; i < (size / 4); i++)
4969                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4970         return 0;
4971 }
4972
4973 static void
4974 e1000_pci_restore_state(struct e1000_adapter *adapter)
4975 {
4976         struct pci_dev *dev = adapter->pdev;
4977         int size;
4978         int i;
4979
4980         if (adapter->config_space == NULL)
4981                 return;
4982
4983         if (adapter->hw.mac_type >= e1000_82571)
4984                 size = PCIE_CONFIG_SPACE_LEN;
4985         else
4986                 size = PCI_CONFIG_SPACE_LEN;
4987         for (i = 0; i < (size / 4); i++)
4988                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4989         kfree(adapter->config_space);
4990         adapter->config_space = NULL;
4991         return;
4992 }
4993 #endif /* CONFIG_PM */
4994
4995 static int
4996 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4997 {
4998         struct net_device *netdev = pci_get_drvdata(pdev);
4999         struct e1000_adapter *adapter = netdev_priv(netdev);
5000         uint32_t ctrl, ctrl_ext, rctl, manc, status;
5001         uint32_t wufc = adapter->wol;
5002 #ifdef CONFIG_PM
5003         int retval = 0;
5004 #endif
5005
5006         netif_device_detach(netdev);
5007
5008         if (netif_running(netdev)) {
5009                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5010                 e1000_down(adapter);
5011         }
5012
5013 #ifdef CONFIG_PM
5014         /* Implement our own version of pci_save_state(pdev) because pci-
5015          * express adapters have 256-byte config spaces. */
5016         retval = e1000_pci_save_state(adapter);
5017         if (retval)
5018                 return retval;
5019 #endif
5020
5021         status = E1000_READ_REG(&adapter->hw, STATUS);
5022         if (status & E1000_STATUS_LU)
5023                 wufc &= ~E1000_WUFC_LNKC;
5024
5025         if (wufc) {
5026                 e1000_setup_rctl(adapter);
5027                 e1000_set_multi(netdev);
5028
5029                 /* turn on all-multi mode if wake on multicast is enabled */
5030                 if (wufc & E1000_WUFC_MC) {
5031                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5032                         rctl |= E1000_RCTL_MPE;
5033                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5034                 }
5035
5036                 if (adapter->hw.mac_type >= e1000_82540) {
5037                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5038                         /* advertise wake from D3Cold */
5039                         #define E1000_CTRL_ADVD3WUC 0x00100000
5040                         /* phy power management enable */
5041                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5042                         ctrl |= E1000_CTRL_ADVD3WUC |
5043                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5044                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5045                 }
5046
5047                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5048                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5049                         /* keep the laser running in D3 */
5050                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5051                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5052                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5053                 }
5054
5055                 /* Allow time for pending master requests to run */
5056                 e1000_disable_pciex_master(&adapter->hw);
5057
5058                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5059                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5060                 pci_enable_wake(pdev, PCI_D3hot, 1);
5061                 pci_enable_wake(pdev, PCI_D3cold, 1);
5062         } else {
5063                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5064                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5065                 pci_enable_wake(pdev, PCI_D3hot, 0);
5066                 pci_enable_wake(pdev, PCI_D3cold, 0);
5067         }
5068
5069         if (adapter->hw.mac_type >= e1000_82540 &&
5070             adapter->hw.mac_type < e1000_82571 &&
5071             adapter->hw.media_type == e1000_media_type_copper) {
5072                 manc = E1000_READ_REG(&adapter->hw, MANC);
5073                 if (manc & E1000_MANC_SMBUS_EN) {
5074                         manc |= E1000_MANC_ARP_EN;
5075                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
5076                         pci_enable_wake(pdev, PCI_D3hot, 1);
5077                         pci_enable_wake(pdev, PCI_D3cold, 1);
5078                 }
5079         }
5080
5081         if (adapter->hw.phy_type == e1000_phy_igp_3)
5082                 e1000_phy_powerdown_workaround(&adapter->hw);
5083
5084         if (netif_running(netdev))
5085                 e1000_free_irq(adapter);
5086
5087         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5088          * would have already happened in close and is redundant. */
5089         e1000_release_hw_control(adapter);
5090
5091         pci_disable_device(pdev);
5092
5093         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5094
5095         return 0;
5096 }
5097
5098 #ifdef CONFIG_PM
5099 static int
5100 e1000_resume(struct pci_dev *pdev)
5101 {
5102         struct net_device *netdev = pci_get_drvdata(pdev);
5103         struct e1000_adapter *adapter = netdev_priv(netdev);
5104         uint32_t manc, err;
5105
5106         pci_set_power_state(pdev, PCI_D0);
5107         e1000_pci_restore_state(adapter);
5108         if ((err = pci_enable_device(pdev))) {
5109                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5110                 return err;
5111         }
5112         pci_set_master(pdev);
5113
5114         pci_enable_wake(pdev, PCI_D3hot, 0);
5115         pci_enable_wake(pdev, PCI_D3cold, 0);
5116
5117         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5118                 return err;
5119
5120         e1000_power_up_phy(adapter);
5121         e1000_reset(adapter);
5122         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5123
5124         if (netif_running(netdev))
5125                 e1000_up(adapter);
5126
5127         netif_device_attach(netdev);
5128
5129         if (adapter->hw.mac_type >= e1000_82540 &&
5130             adapter->hw.mac_type < e1000_82571 &&
5131             adapter->hw.media_type == e1000_media_type_copper) {
5132                 manc = E1000_READ_REG(&adapter->hw, MANC);
5133                 manc &= ~(E1000_MANC_ARP_EN);
5134                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
5135         }
5136
5137         /* If the controller is 82573 and f/w is AMT, do not set
5138          * DRV_LOAD until the interface is up.  For all other cases,
5139          * let the f/w know that the h/w is now under the control
5140          * of the driver. */
5141         if (adapter->hw.mac_type != e1000_82573 ||
5142             !e1000_check_mng_mode(&adapter->hw))
5143                 e1000_get_hw_control(adapter);
5144
5145         return 0;
5146 }
5147 #endif
5148
5149 static void e1000_shutdown(struct pci_dev *pdev)
5150 {
5151         e1000_suspend(pdev, PMSG_SUSPEND);
5152 }
5153
5154 #ifdef CONFIG_NET_POLL_CONTROLLER
5155 /*
5156  * Polling 'interrupt' - used by things like netconsole to send skbs
5157  * without having to re-enable interrupts. It's not called while
5158  * the interrupt routine is executing.
5159  */
5160 static void
5161 e1000_netpoll(struct net_device *netdev)
5162 {
5163         struct e1000_adapter *adapter = netdev_priv(netdev);
5164
5165         disable_irq(adapter->pdev->irq);
5166         e1000_intr(adapter->pdev->irq, netdev);
5167         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5168 #ifndef CONFIG_E1000_NAPI
5169         adapter->clean_rx(adapter, adapter->rx_ring);
5170 #endif
5171         enable_irq(adapter->pdev->irq);
5172 }
5173 #endif
5174
5175 /**
5176  * e1000_io_error_detected - called when PCI error is detected
5177  * @pdev: Pointer to PCI device
5178  * @state: The current pci conneection state
5179  *
5180  * This function is called after a PCI bus error affecting
5181  * this device has been detected.
5182  */
5183 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5184 {
5185         struct net_device *netdev = pci_get_drvdata(pdev);
5186         struct e1000_adapter *adapter = netdev->priv;
5187
5188         netif_device_detach(netdev);
5189
5190         if (netif_running(netdev))
5191                 e1000_down(adapter);
5192         pci_disable_device(pdev);
5193
5194         /* Request a slot slot reset. */
5195         return PCI_ERS_RESULT_NEED_RESET;
5196 }
5197
5198 /**
5199  * e1000_io_slot_reset - called after the pci bus has been reset.
5200  * @pdev: Pointer to PCI device
5201  *
5202  * Restart the card from scratch, as if from a cold-boot. Implementation
5203  * resembles the first-half of the e1000_resume routine.
5204  */
5205 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5206 {
5207         struct net_device *netdev = pci_get_drvdata(pdev);
5208         struct e1000_adapter *adapter = netdev->priv;
5209
5210         if (pci_enable_device(pdev)) {
5211                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5212                 return PCI_ERS_RESULT_DISCONNECT;
5213         }
5214         pci_set_master(pdev);
5215
5216         pci_enable_wake(pdev, PCI_D3hot, 0);
5217         pci_enable_wake(pdev, PCI_D3cold, 0);
5218
5219         e1000_reset(adapter);
5220         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5221
5222         return PCI_ERS_RESULT_RECOVERED;
5223 }
5224
5225 /**
5226  * e1000_io_resume - called when traffic can start flowing again.
5227  * @pdev: Pointer to PCI device
5228  *
5229  * This callback is called when the error recovery driver tells us that
5230  * its OK to resume normal operation. Implementation resembles the
5231  * second-half of the e1000_resume routine.
5232  */
5233 static void e1000_io_resume(struct pci_dev *pdev)
5234 {
5235         struct net_device *netdev = pci_get_drvdata(pdev);
5236         struct e1000_adapter *adapter = netdev->priv;
5237         uint32_t manc, swsm;
5238
5239         if (netif_running(netdev)) {
5240                 if (e1000_up(adapter)) {
5241                         printk("e1000: can't bring device back up after reset\n");
5242                         return;
5243                 }
5244         }
5245
5246         netif_device_attach(netdev);
5247
5248         if (adapter->hw.mac_type >= e1000_82540 &&
5249             adapter->hw.mac_type < e1000_82571 &&
5250             adapter->hw.media_type == e1000_media_type_copper) {
5251                 manc = E1000_READ_REG(&adapter->hw, MANC);
5252                 manc &= ~(E1000_MANC_ARP_EN);
5253                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
5254         }
5255
5256         switch (adapter->hw.mac_type) {
5257         case e1000_82573:
5258                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
5259                 E1000_WRITE_REG(&adapter->hw, SWSM,
5260                                 swsm | E1000_SWSM_DRV_LOAD);
5261                 break;
5262         default:
5263                 break;
5264         }
5265
5266         if (netif_running(netdev))
5267                 mod_timer(&adapter->watchdog_timer, jiffies);
5268 }
5269
5270 /* e1000_main.c */