[PATCH] e1000: Fix PBA allocation calculations
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.15-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110         /* required last entry */
111         {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149                                 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151                                 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring,
170                                     int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172                                        struct e1000_rx_ring *rx_ring,
173                                        int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176                                     struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178                                        struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181                                    struct e1000_rx_ring *rx_ring,
182                                    int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184                                       struct e1000_rx_ring *rx_ring,
185                                       int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188                            int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196                                        struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
217                      pci_channel_state_t state);
218 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
219 static void e1000_io_resume(struct pci_dev *pdev);
220
221 static struct pci_error_handlers e1000_err_handler = {
222         .error_detected = e1000_io_error_detected,
223         .slot_reset = e1000_io_slot_reset,
224         .resume = e1000_io_resume,
225 };
226
227 static struct pci_driver e1000_driver = {
228         .name     = e1000_driver_name,
229         .id_table = e1000_pci_tbl,
230         .probe    = e1000_probe,
231         .remove   = __devexit_p(e1000_remove),
232 #ifdef CONFIG_PM
233         /* Power Managment Hooks */
234         .suspend  = e1000_suspend,
235         .resume   = e1000_resume,
236 #endif
237         .shutdown = e1000_shutdown,
238         .err_handler = &e1000_err_handler
239 };
240
241 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
242 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
243 MODULE_LICENSE("GPL");
244 MODULE_VERSION(DRV_VERSION);
245
246 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 /**
251  * e1000_init_module - Driver Registration Routine
252  *
253  * e1000_init_module is the first routine called when the driver is
254  * loaded. All it does is register with the PCI subsystem.
255  **/
256
257 static int __init
258 e1000_init_module(void)
259 {
260         int ret;
261         printk(KERN_INFO "%s - version %s\n",
262                e1000_driver_string, e1000_driver_version);
263
264         printk(KERN_INFO "%s\n", e1000_copyright);
265
266         ret = pci_register_driver(&e1000_driver);
267
268         return ret;
269 }
270
271 module_init(e1000_init_module);
272
273 /**
274  * e1000_exit_module - Driver Exit Cleanup Routine
275  *
276  * e1000_exit_module is called just before the driver is removed
277  * from memory.
278  **/
279
280 static void __exit
281 e1000_exit_module(void)
282 {
283         pci_unregister_driver(&e1000_driver);
284 }
285
286 module_exit(e1000_exit_module);
287
288 static int e1000_request_irq(struct e1000_adapter *adapter)
289 {
290         struct net_device *netdev = adapter->netdev;
291         int flags, err = 0;
292
293         flags = IRQF_SHARED;
294 #ifdef CONFIG_PCI_MSI
295         if (adapter->hw.mac_type >= e1000_82571) {
296                 adapter->have_msi = TRUE;
297                 if ((err = pci_enable_msi(adapter->pdev))) {
298                         DPRINTK(PROBE, ERR,
299                          "Unable to allocate MSI interrupt Error: %d\n", err);
300                         adapter->have_msi = FALSE;
301                 }
302         }
303         if (adapter->have_msi) {
304                 flags &= ~IRQF_SHARED;
305                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
306                                   netdev->name, netdev);
307                 if (err)
308                         DPRINTK(PROBE, ERR,
309                                "Unable to allocate interrupt Error: %d\n", err);
310         } else
311 #endif
312         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
313                                netdev->name, netdev)))
314                 DPRINTK(PROBE, ERR,
315                         "Unable to allocate interrupt Error: %d\n", err);
316
317         return err;
318 }
319
320 static void e1000_free_irq(struct e1000_adapter *adapter)
321 {
322         struct net_device *netdev = adapter->netdev;
323
324         free_irq(adapter->pdev->irq, netdev);
325
326 #ifdef CONFIG_PCI_MSI
327         if (adapter->have_msi)
328                 pci_disable_msi(adapter->pdev);
329 #endif
330 }
331
332 /**
333  * e1000_irq_disable - Mask off interrupt generation on the NIC
334  * @adapter: board private structure
335  **/
336
337 static void
338 e1000_irq_disable(struct e1000_adapter *adapter)
339 {
340         atomic_inc(&adapter->irq_sem);
341         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
342         E1000_WRITE_FLUSH(&adapter->hw);
343         synchronize_irq(adapter->pdev->irq);
344 }
345
346 /**
347  * e1000_irq_enable - Enable default interrupt generation settings
348  * @adapter: board private structure
349  **/
350
351 static void
352 e1000_irq_enable(struct e1000_adapter *adapter)
353 {
354         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
355                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
356                 E1000_WRITE_FLUSH(&adapter->hw);
357         }
358 }
359
360 static void
361 e1000_update_mng_vlan(struct e1000_adapter *adapter)
362 {
363         struct net_device *netdev = adapter->netdev;
364         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
365         uint16_t old_vid = adapter->mng_vlan_id;
366         if (adapter->vlgrp) {
367                 if (!adapter->vlgrp->vlan_devices[vid]) {
368                         if (adapter->hw.mng_cookie.status &
369                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
370                                 e1000_vlan_rx_add_vid(netdev, vid);
371                                 adapter->mng_vlan_id = vid;
372                         } else
373                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
374
375                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
376                                         (vid != old_vid) &&
377                                         !adapter->vlgrp->vlan_devices[old_vid])
378                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
379                 } else
380                         adapter->mng_vlan_id = vid;
381         }
382 }
383
384 /**
385  * e1000_release_hw_control - release control of the h/w to f/w
386  * @adapter: address of board private structure
387  *
388  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
389  * For ASF and Pass Through versions of f/w this means that the
390  * driver is no longer loaded. For AMT version (only with 82573) i
391  * of the f/w this means that the network i/f is closed.
392  *
393  **/
394
395 static void
396 e1000_release_hw_control(struct e1000_adapter *adapter)
397 {
398         uint32_t ctrl_ext;
399         uint32_t swsm;
400         uint32_t extcnf;
401
402         /* Let firmware taken over control of h/w */
403         switch (adapter->hw.mac_type) {
404         case e1000_82571:
405         case e1000_82572:
406         case e1000_80003es2lan:
407                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
408                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
409                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
410                 break;
411         case e1000_82573:
412                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
413                 E1000_WRITE_REG(&adapter->hw, SWSM,
414                                 swsm & ~E1000_SWSM_DRV_LOAD);
415         case e1000_ich8lan:
416                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
417                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
418                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
419                 break;
420         default:
421                 break;
422         }
423 }
424
425 /**
426  * e1000_get_hw_control - get control of the h/w from f/w
427  * @adapter: address of board private structure
428  *
429  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430  * For ASF and Pass Through versions of f/w this means that
431  * the driver is loaded. For AMT version (only with 82573)
432  * of the f/w this means that the network i/f is open.
433  *
434  **/
435
436 static void
437 e1000_get_hw_control(struct e1000_adapter *adapter)
438 {
439         uint32_t ctrl_ext;
440         uint32_t swsm;
441         uint32_t extcnf;
442
443         /* Let firmware know the driver has taken over */
444         switch (adapter->hw.mac_type) {
445         case e1000_82571:
446         case e1000_82572:
447         case e1000_80003es2lan:
448                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
449                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
450                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
451                 break;
452         case e1000_82573:
453                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
454                 E1000_WRITE_REG(&adapter->hw, SWSM,
455                                 swsm | E1000_SWSM_DRV_LOAD);
456                 break;
457         case e1000_ich8lan:
458                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
459                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
460                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
461                 break;
462         default:
463                 break;
464         }
465 }
466
467 static void
468 e1000_init_manageability(struct e1000_adapter *adapter)
469 {
470         if (adapter->en_mng_pt) {
471                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
472
473                 /* disable hardware interception of ARP */
474                 manc &= ~(E1000_MANC_ARP_EN);
475
476                 /* enable receiving management packets to the host */
477                 /* this will probably generate destination unreachable messages
478                  * from the host OS, but the packets will be handled on SMBUS */
479                 if (adapter->hw.has_manc2h) {
480                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
481
482                         manc |= E1000_MANC_EN_MNG2HOST;
483 #define E1000_MNG2HOST_PORT_623 (1 << 5)
484 #define E1000_MNG2HOST_PORT_664 (1 << 6)
485                         manc2h |= E1000_MNG2HOST_PORT_623;
486                         manc2h |= E1000_MNG2HOST_PORT_664;
487                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
488                 }
489
490                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
491         }
492 }
493
494 static void
495 e1000_release_manageability(struct e1000_adapter *adapter)
496 {
497         if (adapter->en_mng_pt) {
498                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
499
500                 /* re-enable hardware interception of ARP */
501                 manc |= E1000_MANC_ARP_EN;
502
503                 if (adapter->hw.has_manc2h)
504                         manc &= ~E1000_MANC_EN_MNG2HOST;
505
506                 /* don't explicitly have to mess with MANC2H since
507                  * MANC has an enable disable that gates MANC2H */
508
509                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
510         }
511 }
512
513 int
514 e1000_up(struct e1000_adapter *adapter)
515 {
516         struct net_device *netdev = adapter->netdev;
517         int i;
518
519         /* hardware has been reset, we need to reload some things */
520
521         e1000_set_multi(netdev);
522
523         e1000_restore_vlan(adapter);
524         e1000_init_manageability(adapter);
525
526         e1000_configure_tx(adapter);
527         e1000_setup_rctl(adapter);
528         e1000_configure_rx(adapter);
529         /* call E1000_DESC_UNUSED which always leaves
530          * at least 1 descriptor unused to make sure
531          * next_to_use != next_to_clean */
532         for (i = 0; i < adapter->num_rx_queues; i++) {
533                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
534                 adapter->alloc_rx_buf(adapter, ring,
535                                       E1000_DESC_UNUSED(ring));
536         }
537
538         adapter->tx_queue_len = netdev->tx_queue_len;
539
540 #ifdef CONFIG_E1000_NAPI
541         netif_poll_enable(netdev);
542 #endif
543         e1000_irq_enable(adapter);
544
545         clear_bit(__E1000_DOWN, &adapter->flags);
546
547         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
548         return 0;
549 }
550
551 /**
552  * e1000_power_up_phy - restore link in case the phy was powered down
553  * @adapter: address of board private structure
554  *
555  * The phy may be powered down to save power and turn off link when the
556  * driver is unloaded and wake on lan is not enabled (among others)
557  * *** this routine MUST be followed by a call to e1000_reset ***
558  *
559  **/
560
561 void e1000_power_up_phy(struct e1000_adapter *adapter)
562 {
563         uint16_t mii_reg = 0;
564
565         /* Just clear the power down bit to wake the phy back up */
566         if (adapter->hw.media_type == e1000_media_type_copper) {
567                 /* according to the manual, the phy will retain its
568                  * settings across a power-down/up cycle */
569                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
570                 mii_reg &= ~MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
572         }
573 }
574
575 static void e1000_power_down_phy(struct e1000_adapter *adapter)
576 {
577         /* Power down the PHY so no link is implied when interface is down *
578          * The PHY cannot be powered down if any of the following is TRUE *
579          * (a) WoL is enabled
580          * (b) AMT is active
581          * (c) SoL/IDER session is active */
582         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
583            adapter->hw.media_type == e1000_media_type_copper) {
584                 uint16_t mii_reg = 0;
585
586                 switch (adapter->hw.mac_type) {
587                 case e1000_82540:
588                 case e1000_82545:
589                 case e1000_82545_rev_3:
590                 case e1000_82546:
591                 case e1000_82546_rev_3:
592                 case e1000_82541:
593                 case e1000_82541_rev_2:
594                 case e1000_82547:
595                 case e1000_82547_rev_2:
596                         if (E1000_READ_REG(&adapter->hw, MANC) &
597                             E1000_MANC_SMBUS_EN)
598                                 goto out;
599                         break;
600                 case e1000_82571:
601                 case e1000_82572:
602                 case e1000_82573:
603                 case e1000_80003es2lan:
604                 case e1000_ich8lan:
605                         if (e1000_check_mng_mode(&adapter->hw) ||
606                             e1000_check_phy_reset_block(&adapter->hw))
607                                 goto out;
608                         break;
609                 default:
610                         goto out;
611                 }
612                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
613                 mii_reg |= MII_CR_POWER_DOWN;
614                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
615                 mdelay(1);
616         }
617 out:
618         return;
619 }
620
621 void
622 e1000_down(struct e1000_adapter *adapter)
623 {
624         struct net_device *netdev = adapter->netdev;
625
626         /* signal that we're down so the interrupt handler does not
627          * reschedule our watchdog timer */
628         set_bit(__E1000_DOWN, &adapter->flags);
629
630         e1000_irq_disable(adapter);
631
632         del_timer_sync(&adapter->tx_fifo_stall_timer);
633         del_timer_sync(&adapter->watchdog_timer);
634         del_timer_sync(&adapter->phy_info_timer);
635
636 #ifdef CONFIG_E1000_NAPI
637         netif_poll_disable(netdev);
638 #endif
639         netdev->tx_queue_len = adapter->tx_queue_len;
640         adapter->link_speed = 0;
641         adapter->link_duplex = 0;
642         netif_carrier_off(netdev);
643         netif_stop_queue(netdev);
644
645         e1000_reset(adapter);
646         e1000_clean_all_tx_rings(adapter);
647         e1000_clean_all_rx_rings(adapter);
648 }
649
650 void
651 e1000_reinit_locked(struct e1000_adapter *adapter)
652 {
653         WARN_ON(in_interrupt());
654         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
655                 msleep(1);
656         e1000_down(adapter);
657         e1000_up(adapter);
658         clear_bit(__E1000_RESETTING, &adapter->flags);
659 }
660
661 void
662 e1000_reset(struct e1000_adapter *adapter)
663 {
664         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
665         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
666         boolean_t legacy_pba_adjust = FALSE;
667
668         /* Repartition Pba for greater than 9k mtu
669          * To take effect CTRL.RST is required.
670          */
671
672         switch (adapter->hw.mac_type) {
673         case e1000_82542_rev2_0:
674         case e1000_82542_rev2_1:
675         case e1000_82543:
676         case e1000_82544:
677         case e1000_82540:
678         case e1000_82541:
679         case e1000_82541_rev_2:
680                 legacy_pba_adjust = TRUE;
681                 pba = E1000_PBA_48K;
682                 break;
683         case e1000_82545:
684         case e1000_82545_rev_3:
685         case e1000_82546:
686         case e1000_82546_rev_3:
687                 pba = E1000_PBA_48K;
688                 break;
689         case e1000_82547:
690         case e1000_82547_rev_2:
691                 legacy_pba_adjust = TRUE;
692                 pba = E1000_PBA_30K;
693                 break;
694         case e1000_82571:
695         case e1000_82572:
696         case e1000_80003es2lan:
697                 pba = E1000_PBA_38K;
698                 break;
699         case e1000_82573:
700                 pba = E1000_PBA_20K;
701                 break;
702         case e1000_ich8lan:
703                 pba = E1000_PBA_8K;
704         case e1000_undefined:
705         case e1000_num_macs:
706                 break;
707         }
708
709         if (legacy_pba_adjust == TRUE) {
710                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
711                         pba -= 8; /* allocate more FIFO for Tx */
712
713                 if (adapter->hw.mac_type == e1000_82547) {
714                         adapter->tx_fifo_head = 0;
715                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
716                         adapter->tx_fifo_size =
717                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
718                         atomic_set(&adapter->tx_fifo_stall, 0);
719                 }
720         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
721                 /* adjust PBA for jumbo frames */
722                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
723
724                 /* To maintain wire speed transmits, the Tx FIFO should be
725                  * large enough to accomodate two full transmit packets,
726                  * rounded up to the next 1KB and expressed in KB.  Likewise,
727                  * the Rx FIFO should be large enough to accomodate at least
728                  * one full receive packet and is similarly rounded up and
729                  * expressed in KB. */
730                 pba = E1000_READ_REG(&adapter->hw, PBA);
731                 /* upper 16 bits has Tx packet buffer allocation size in KB */
732                 tx_space = pba >> 16;
733                 /* lower 16 bits has Rx packet buffer allocation size in KB */
734                 pba &= 0xffff;
735                 /* don't include ethernet FCS because hardware appends/strips */
736                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
737                                VLAN_TAG_SIZE;
738                 min_tx_space = min_rx_space;
739                 min_tx_space *= 2;
740                 E1000_ROUNDUP(min_tx_space, 1024);
741                 min_tx_space >>= 10;
742                 E1000_ROUNDUP(min_rx_space, 1024);
743                 min_rx_space >>= 10;
744
745                 /* If current Tx allocation is less than the min Tx FIFO size,
746                  * and the min Tx FIFO size is less than the current Rx FIFO
747                  * allocation, take space away from current Rx allocation */
748                 if (tx_space < min_tx_space &&
749                     ((min_tx_space - tx_space) < pba)) {
750                         pba = pba - (min_tx_space - tx_space);
751
752                         /* PCI/PCIx hardware has PBA alignment constraints */
753                         switch (adapter->hw.mac_type) {
754                         case e1000_82545 ... e1000_82546_rev_3:
755                                 pba &= ~(E1000_PBA_8K - 1);
756                                 break;
757                         default:
758                                 break;
759                         }
760
761                         /* if short on rx space, rx wins and must trump tx
762                          * adjustment or use Early Receive if available */
763                         if (pba < min_rx_space) {
764                                 switch (adapter->hw.mac_type) {
765                                 case e1000_82573:
766                                         /* ERT enabled in e1000_configure_rx */
767                                         break;
768                                 default:
769                                         pba = min_rx_space;
770                                         break;
771                                 }
772                         }
773                 }
774         }
775
776         E1000_WRITE_REG(&adapter->hw, PBA, pba);
777
778         /* flow control settings */
779         /* Set the FC high water mark to 90% of the FIFO size.
780          * Required to clear last 3 LSB */
781         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
782         /* We can't use 90% on small FIFOs because the remainder
783          * would be less than 1 full frame.  In this case, we size
784          * it to allow at least a full frame above the high water
785          *  mark. */
786         if (pba < E1000_PBA_16K)
787                 fc_high_water_mark = (pba * 1024) - 1600;
788
789         adapter->hw.fc_high_water = fc_high_water_mark;
790         adapter->hw.fc_low_water = fc_high_water_mark - 8;
791         if (adapter->hw.mac_type == e1000_80003es2lan)
792                 adapter->hw.fc_pause_time = 0xFFFF;
793         else
794                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
795         adapter->hw.fc_send_xon = 1;
796         adapter->hw.fc = adapter->hw.original_fc;
797
798         /* Allow time for pending master requests to run */
799         e1000_reset_hw(&adapter->hw);
800         if (adapter->hw.mac_type >= e1000_82544)
801                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
802
803         if (e1000_init_hw(&adapter->hw))
804                 DPRINTK(PROBE, ERR, "Hardware Error\n");
805         e1000_update_mng_vlan(adapter);
806
807         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
808         if (adapter->hw.mac_type >= e1000_82544 &&
809             adapter->hw.mac_type <= e1000_82547_rev_2 &&
810             adapter->hw.autoneg == 1 &&
811             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
812                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
813                 /* clear phy power management bit if we are in gig only mode,
814                  * which if enabled will attempt negotiation to 100Mb, which
815                  * can cause a loss of link at power off or driver unload */
816                 ctrl &= ~E1000_CTRL_SWDPIN3;
817                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
818         }
819
820         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
821         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
822
823         e1000_reset_adaptive(&adapter->hw);
824         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
825
826         if (!adapter->smart_power_down &&
827             (adapter->hw.mac_type == e1000_82571 ||
828              adapter->hw.mac_type == e1000_82572)) {
829                 uint16_t phy_data = 0;
830                 /* speed up time to link by disabling smart power down, ignore
831                  * the return value of this function because there is nothing
832                  * different we would do if it failed */
833                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
834                                    &phy_data);
835                 phy_data &= ~IGP02E1000_PM_SPD;
836                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
837                                     phy_data);
838         }
839
840         e1000_release_manageability(adapter);
841 }
842
843 /**
844  * e1000_probe - Device Initialization Routine
845  * @pdev: PCI device information struct
846  * @ent: entry in e1000_pci_tbl
847  *
848  * Returns 0 on success, negative on failure
849  *
850  * e1000_probe initializes an adapter identified by a pci_dev structure.
851  * The OS initialization, configuring of the adapter private structure,
852  * and a hardware reset occur.
853  **/
854
855 static int __devinit
856 e1000_probe(struct pci_dev *pdev,
857             const struct pci_device_id *ent)
858 {
859         struct net_device *netdev;
860         struct e1000_adapter *adapter;
861         unsigned long mmio_start, mmio_len;
862         unsigned long flash_start, flash_len;
863
864         static int cards_found = 0;
865         static int global_quad_port_a = 0; /* global ksp3 port a indication */
866         int i, err, pci_using_dac;
867         uint16_t eeprom_data = 0;
868         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
869         if ((err = pci_enable_device(pdev)))
870                 return err;
871
872         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
873             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
874                 pci_using_dac = 1;
875         } else {
876                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
877                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
878                         E1000_ERR("No usable DMA configuration, aborting\n");
879                         goto err_dma;
880                 }
881                 pci_using_dac = 0;
882         }
883
884         if ((err = pci_request_regions(pdev, e1000_driver_name)))
885                 goto err_pci_reg;
886
887         pci_set_master(pdev);
888
889         err = -ENOMEM;
890         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
891         if (!netdev)
892                 goto err_alloc_etherdev;
893
894         SET_MODULE_OWNER(netdev);
895         SET_NETDEV_DEV(netdev, &pdev->dev);
896
897         pci_set_drvdata(pdev, netdev);
898         adapter = netdev_priv(netdev);
899         adapter->netdev = netdev;
900         adapter->pdev = pdev;
901         adapter->hw.back = adapter;
902         adapter->msg_enable = (1 << debug) - 1;
903
904         mmio_start = pci_resource_start(pdev, BAR_0);
905         mmio_len = pci_resource_len(pdev, BAR_0);
906
907         err = -EIO;
908         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
909         if (!adapter->hw.hw_addr)
910                 goto err_ioremap;
911
912         for (i = BAR_1; i <= BAR_5; i++) {
913                 if (pci_resource_len(pdev, i) == 0)
914                         continue;
915                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
916                         adapter->hw.io_base = pci_resource_start(pdev, i);
917                         break;
918                 }
919         }
920
921         netdev->open = &e1000_open;
922         netdev->stop = &e1000_close;
923         netdev->hard_start_xmit = &e1000_xmit_frame;
924         netdev->get_stats = &e1000_get_stats;
925         netdev->set_multicast_list = &e1000_set_multi;
926         netdev->set_mac_address = &e1000_set_mac;
927         netdev->change_mtu = &e1000_change_mtu;
928         netdev->do_ioctl = &e1000_ioctl;
929         e1000_set_ethtool_ops(netdev);
930         netdev->tx_timeout = &e1000_tx_timeout;
931         netdev->watchdog_timeo = 5 * HZ;
932 #ifdef CONFIG_E1000_NAPI
933         netdev->poll = &e1000_clean;
934         netdev->weight = 64;
935 #endif
936         netdev->vlan_rx_register = e1000_vlan_rx_register;
937         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
938         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
939 #ifdef CONFIG_NET_POLL_CONTROLLER
940         netdev->poll_controller = e1000_netpoll;
941 #endif
942         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
943
944         netdev->mem_start = mmio_start;
945         netdev->mem_end = mmio_start + mmio_len;
946         netdev->base_addr = adapter->hw.io_base;
947
948         adapter->bd_number = cards_found;
949
950         /* setup the private structure */
951
952         if ((err = e1000_sw_init(adapter)))
953                 goto err_sw_init;
954
955         err = -EIO;
956         /* Flash BAR mapping must happen after e1000_sw_init
957          * because it depends on mac_type */
958         if ((adapter->hw.mac_type == e1000_ich8lan) &&
959            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
960                 flash_start = pci_resource_start(pdev, 1);
961                 flash_len = pci_resource_len(pdev, 1);
962                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
963                 if (!adapter->hw.flash_address)
964                         goto err_flashmap;
965         }
966
967         if (e1000_check_phy_reset_block(&adapter->hw))
968                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
969
970         if (adapter->hw.mac_type >= e1000_82543) {
971                 netdev->features = NETIF_F_SG |
972                                    NETIF_F_HW_CSUM |
973                                    NETIF_F_HW_VLAN_TX |
974                                    NETIF_F_HW_VLAN_RX |
975                                    NETIF_F_HW_VLAN_FILTER;
976                 if (adapter->hw.mac_type == e1000_ich8lan)
977                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
978         }
979
980 #ifdef NETIF_F_TSO
981         if ((adapter->hw.mac_type >= e1000_82544) &&
982            (adapter->hw.mac_type != e1000_82547))
983                 netdev->features |= NETIF_F_TSO;
984
985 #ifdef CONFIG_DEBUG_SLAB
986         /* 82544's work arounds do not play nicely with DEBUG SLAB */
987         if (adapter->hw.mac_type == e1000_82544)
988                 netdev->features &= ~NETIF_F_TSO;
989 #endif
990
991 #ifdef NETIF_F_TSO6
992         if (adapter->hw.mac_type > e1000_82547_rev_2)
993                 netdev->features |= NETIF_F_TSO6;
994 #endif
995 #endif
996         if (pci_using_dac)
997                 netdev->features |= NETIF_F_HIGHDMA;
998
999         netdev->features |= NETIF_F_LLTX;
1000
1001         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1002
1003         /* initialize eeprom parameters */
1004
1005         if (e1000_init_eeprom_params(&adapter->hw)) {
1006                 E1000_ERR("EEPROM initialization failed\n");
1007                 goto err_eeprom;
1008         }
1009
1010         /* before reading the EEPROM, reset the controller to
1011          * put the device in a known good starting state */
1012
1013         e1000_reset_hw(&adapter->hw);
1014
1015         /* make sure the EEPROM is good */
1016
1017         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1018                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1019                 goto err_eeprom;
1020         }
1021
1022         /* copy the MAC address out of the EEPROM */
1023
1024         if (e1000_read_mac_addr(&adapter->hw))
1025                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1026         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1027         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1028
1029         if (!is_valid_ether_addr(netdev->perm_addr)) {
1030                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1031                 goto err_eeprom;
1032         }
1033
1034         e1000_get_bus_info(&adapter->hw);
1035
1036         init_timer(&adapter->tx_fifo_stall_timer);
1037         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1038         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1039
1040         init_timer(&adapter->watchdog_timer);
1041         adapter->watchdog_timer.function = &e1000_watchdog;
1042         adapter->watchdog_timer.data = (unsigned long) adapter;
1043
1044         init_timer(&adapter->phy_info_timer);
1045         adapter->phy_info_timer.function = &e1000_update_phy_info;
1046         adapter->phy_info_timer.data = (unsigned long) adapter;
1047
1048         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1049
1050         e1000_check_options(adapter);
1051
1052         /* Initial Wake on LAN setting
1053          * If APM wake is enabled in the EEPROM,
1054          * enable the ACPI Magic Packet filter
1055          */
1056
1057         switch (adapter->hw.mac_type) {
1058         case e1000_82542_rev2_0:
1059         case e1000_82542_rev2_1:
1060         case e1000_82543:
1061                 break;
1062         case e1000_82544:
1063                 e1000_read_eeprom(&adapter->hw,
1064                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1065                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1066                 break;
1067         case e1000_ich8lan:
1068                 e1000_read_eeprom(&adapter->hw,
1069                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1070                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1071                 break;
1072         case e1000_82546:
1073         case e1000_82546_rev_3:
1074         case e1000_82571:
1075         case e1000_80003es2lan:
1076                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1077                         e1000_read_eeprom(&adapter->hw,
1078                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1079                         break;
1080                 }
1081                 /* Fall Through */
1082         default:
1083                 e1000_read_eeprom(&adapter->hw,
1084                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1085                 break;
1086         }
1087         if (eeprom_data & eeprom_apme_mask)
1088                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1089
1090         /* now that we have the eeprom settings, apply the special cases
1091          * where the eeprom may be wrong or the board simply won't support
1092          * wake on lan on a particular port */
1093         switch (pdev->device) {
1094         case E1000_DEV_ID_82546GB_PCIE:
1095                 adapter->eeprom_wol = 0;
1096                 break;
1097         case E1000_DEV_ID_82546EB_FIBER:
1098         case E1000_DEV_ID_82546GB_FIBER:
1099         case E1000_DEV_ID_82571EB_FIBER:
1100                 /* Wake events only supported on port A for dual fiber
1101                  * regardless of eeprom setting */
1102                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1103                         adapter->eeprom_wol = 0;
1104                 break;
1105         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1106         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1107         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1108                 /* if quad port adapter, disable WoL on all but port A */
1109                 if (global_quad_port_a != 0)
1110                         adapter->eeprom_wol = 0;
1111                 else
1112                         adapter->quad_port_a = 1;
1113                 /* Reset for multiple quad port adapters */
1114                 if (++global_quad_port_a == 4)
1115                         global_quad_port_a = 0;
1116                 break;
1117         }
1118
1119         /* initialize the wol settings based on the eeprom settings */
1120         adapter->wol = adapter->eeprom_wol;
1121
1122         /* print bus type/speed/width info */
1123         {
1124         struct e1000_hw *hw = &adapter->hw;
1125         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1126                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1127                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1128                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1129                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1130                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1131                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1132                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1133                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1134                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1135                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1136                  "32-bit"));
1137         }
1138
1139         for (i = 0; i < 6; i++)
1140                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1141
1142         /* reset the hardware with the new settings */
1143         e1000_reset(adapter);
1144
1145         /* If the controller is 82573 and f/w is AMT, do not set
1146          * DRV_LOAD until the interface is up.  For all other cases,
1147          * let the f/w know that the h/w is now under the control
1148          * of the driver. */
1149         if (adapter->hw.mac_type != e1000_82573 ||
1150             !e1000_check_mng_mode(&adapter->hw))
1151                 e1000_get_hw_control(adapter);
1152
1153         strcpy(netdev->name, "eth%d");
1154         if ((err = register_netdev(netdev)))
1155                 goto err_register;
1156
1157         /* tell the stack to leave us alone until e1000_open() is called */
1158         netif_carrier_off(netdev);
1159         netif_stop_queue(netdev);
1160
1161         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1162
1163         cards_found++;
1164         return 0;
1165
1166 err_register:
1167         e1000_release_hw_control(adapter);
1168 err_eeprom:
1169         if (!e1000_check_phy_reset_block(&adapter->hw))
1170                 e1000_phy_hw_reset(&adapter->hw);
1171
1172         if (adapter->hw.flash_address)
1173                 iounmap(adapter->hw.flash_address);
1174 err_flashmap:
1175 #ifdef CONFIG_E1000_NAPI
1176         for (i = 0; i < adapter->num_rx_queues; i++)
1177                 dev_put(&adapter->polling_netdev[i]);
1178 #endif
1179
1180         kfree(adapter->tx_ring);
1181         kfree(adapter->rx_ring);
1182 #ifdef CONFIG_E1000_NAPI
1183         kfree(adapter->polling_netdev);
1184 #endif
1185 err_sw_init:
1186         iounmap(adapter->hw.hw_addr);
1187 err_ioremap:
1188         free_netdev(netdev);
1189 err_alloc_etherdev:
1190         pci_release_regions(pdev);
1191 err_pci_reg:
1192 err_dma:
1193         pci_disable_device(pdev);
1194         return err;
1195 }
1196
1197 /**
1198  * e1000_remove - Device Removal Routine
1199  * @pdev: PCI device information struct
1200  *
1201  * e1000_remove is called by the PCI subsystem to alert the driver
1202  * that it should release a PCI device.  The could be caused by a
1203  * Hot-Plug event, or because the driver is going to be removed from
1204  * memory.
1205  **/
1206
1207 static void __devexit
1208 e1000_remove(struct pci_dev *pdev)
1209 {
1210         struct net_device *netdev = pci_get_drvdata(pdev);
1211         struct e1000_adapter *adapter = netdev_priv(netdev);
1212 #ifdef CONFIG_E1000_NAPI
1213         int i;
1214 #endif
1215
1216         flush_scheduled_work();
1217
1218         e1000_release_manageability(adapter);
1219
1220         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1221          * would have already happened in close and is redundant. */
1222         e1000_release_hw_control(adapter);
1223
1224         unregister_netdev(netdev);
1225 #ifdef CONFIG_E1000_NAPI
1226         for (i = 0; i < adapter->num_rx_queues; i++)
1227                 dev_put(&adapter->polling_netdev[i]);
1228 #endif
1229
1230         if (!e1000_check_phy_reset_block(&adapter->hw))
1231                 e1000_phy_hw_reset(&adapter->hw);
1232
1233         kfree(adapter->tx_ring);
1234         kfree(adapter->rx_ring);
1235 #ifdef CONFIG_E1000_NAPI
1236         kfree(adapter->polling_netdev);
1237 #endif
1238
1239         iounmap(adapter->hw.hw_addr);
1240         if (adapter->hw.flash_address)
1241                 iounmap(adapter->hw.flash_address);
1242         pci_release_regions(pdev);
1243
1244         free_netdev(netdev);
1245
1246         pci_disable_device(pdev);
1247 }
1248
1249 /**
1250  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1251  * @adapter: board private structure to initialize
1252  *
1253  * e1000_sw_init initializes the Adapter private data structure.
1254  * Fields are initialized based on PCI device information and
1255  * OS network device settings (MTU size).
1256  **/
1257
1258 static int __devinit
1259 e1000_sw_init(struct e1000_adapter *adapter)
1260 {
1261         struct e1000_hw *hw = &adapter->hw;
1262         struct net_device *netdev = adapter->netdev;
1263         struct pci_dev *pdev = adapter->pdev;
1264 #ifdef CONFIG_E1000_NAPI
1265         int i;
1266 #endif
1267
1268         /* PCI config space info */
1269
1270         hw->vendor_id = pdev->vendor;
1271         hw->device_id = pdev->device;
1272         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1273         hw->subsystem_id = pdev->subsystem_device;
1274
1275         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1276
1277         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1278
1279         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1280         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1281         hw->max_frame_size = netdev->mtu +
1282                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1283         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1284
1285         /* identify the MAC */
1286
1287         if (e1000_set_mac_type(hw)) {
1288                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1289                 return -EIO;
1290         }
1291
1292         switch (hw->mac_type) {
1293         default:
1294                 break;
1295         case e1000_82541:
1296         case e1000_82547:
1297         case e1000_82541_rev_2:
1298         case e1000_82547_rev_2:
1299                 hw->phy_init_script = 1;
1300                 break;
1301         }
1302
1303         e1000_set_media_type(hw);
1304
1305         hw->wait_autoneg_complete = FALSE;
1306         hw->tbi_compatibility_en = TRUE;
1307         hw->adaptive_ifs = TRUE;
1308
1309         /* Copper options */
1310
1311         if (hw->media_type == e1000_media_type_copper) {
1312                 hw->mdix = AUTO_ALL_MODES;
1313                 hw->disable_polarity_correction = FALSE;
1314                 hw->master_slave = E1000_MASTER_SLAVE;
1315         }
1316
1317         adapter->num_tx_queues = 1;
1318         adapter->num_rx_queues = 1;
1319
1320         if (e1000_alloc_queues(adapter)) {
1321                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1322                 return -ENOMEM;
1323         }
1324
1325 #ifdef CONFIG_E1000_NAPI
1326         for (i = 0; i < adapter->num_rx_queues; i++) {
1327                 adapter->polling_netdev[i].priv = adapter;
1328                 adapter->polling_netdev[i].poll = &e1000_clean;
1329                 adapter->polling_netdev[i].weight = 64;
1330                 dev_hold(&adapter->polling_netdev[i]);
1331                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1332         }
1333         spin_lock_init(&adapter->tx_queue_lock);
1334 #endif
1335
1336         atomic_set(&adapter->irq_sem, 1);
1337         spin_lock_init(&adapter->stats_lock);
1338
1339         set_bit(__E1000_DOWN, &adapter->flags);
1340
1341         return 0;
1342 }
1343
1344 /**
1345  * e1000_alloc_queues - Allocate memory for all rings
1346  * @adapter: board private structure to initialize
1347  *
1348  * We allocate one ring per queue at run-time since we don't know the
1349  * number of queues at compile-time.  The polling_netdev array is
1350  * intended for Multiqueue, but should work fine with a single queue.
1351  **/
1352
1353 static int __devinit
1354 e1000_alloc_queues(struct e1000_adapter *adapter)
1355 {
1356         int size;
1357
1358         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1359         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1360         if (!adapter->tx_ring)
1361                 return -ENOMEM;
1362         memset(adapter->tx_ring, 0, size);
1363
1364         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1365         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1366         if (!adapter->rx_ring) {
1367                 kfree(adapter->tx_ring);
1368                 return -ENOMEM;
1369         }
1370         memset(adapter->rx_ring, 0, size);
1371
1372 #ifdef CONFIG_E1000_NAPI
1373         size = sizeof(struct net_device) * adapter->num_rx_queues;
1374         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1375         if (!adapter->polling_netdev) {
1376                 kfree(adapter->tx_ring);
1377                 kfree(adapter->rx_ring);
1378                 return -ENOMEM;
1379         }
1380         memset(adapter->polling_netdev, 0, size);
1381 #endif
1382
1383         return E1000_SUCCESS;
1384 }
1385
1386 /**
1387  * e1000_open - Called when a network interface is made active
1388  * @netdev: network interface device structure
1389  *
1390  * Returns 0 on success, negative value on failure
1391  *
1392  * The open entry point is called when a network interface is made
1393  * active by the system (IFF_UP).  At this point all resources needed
1394  * for transmit and receive operations are allocated, the interrupt
1395  * handler is registered with the OS, the watchdog timer is started,
1396  * and the stack is notified that the interface is ready.
1397  **/
1398
1399 static int
1400 e1000_open(struct net_device *netdev)
1401 {
1402         struct e1000_adapter *adapter = netdev_priv(netdev);
1403         int err;
1404
1405         /* disallow open during test */
1406         if (test_bit(__E1000_TESTING, &adapter->flags))
1407                 return -EBUSY;
1408
1409         /* allocate transmit descriptors */
1410         if ((err = e1000_setup_all_tx_resources(adapter)))
1411                 goto err_setup_tx;
1412
1413         /* allocate receive descriptors */
1414         if ((err = e1000_setup_all_rx_resources(adapter)))
1415                 goto err_setup_rx;
1416
1417         err = e1000_request_irq(adapter);
1418         if (err)
1419                 goto err_req_irq;
1420
1421         e1000_power_up_phy(adapter);
1422
1423         if ((err = e1000_up(adapter)))
1424                 goto err_up;
1425         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1426         if ((adapter->hw.mng_cookie.status &
1427                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1428                 e1000_update_mng_vlan(adapter);
1429         }
1430
1431         /* If AMT is enabled, let the firmware know that the network
1432          * interface is now open */
1433         if (adapter->hw.mac_type == e1000_82573 &&
1434             e1000_check_mng_mode(&adapter->hw))
1435                 e1000_get_hw_control(adapter);
1436
1437         return E1000_SUCCESS;
1438
1439 err_up:
1440         e1000_power_down_phy(adapter);
1441         e1000_free_irq(adapter);
1442 err_req_irq:
1443         e1000_free_all_rx_resources(adapter);
1444 err_setup_rx:
1445         e1000_free_all_tx_resources(adapter);
1446 err_setup_tx:
1447         e1000_reset(adapter);
1448
1449         return err;
1450 }
1451
1452 /**
1453  * e1000_close - Disables a network interface
1454  * @netdev: network interface device structure
1455  *
1456  * Returns 0, this is not allowed to fail
1457  *
1458  * The close entry point is called when an interface is de-activated
1459  * by the OS.  The hardware is still under the drivers control, but
1460  * needs to be disabled.  A global MAC reset is issued to stop the
1461  * hardware, and all transmit and receive resources are freed.
1462  **/
1463
1464 static int
1465 e1000_close(struct net_device *netdev)
1466 {
1467         struct e1000_adapter *adapter = netdev_priv(netdev);
1468
1469         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1470         e1000_down(adapter);
1471         e1000_power_down_phy(adapter);
1472         e1000_free_irq(adapter);
1473
1474         e1000_free_all_tx_resources(adapter);
1475         e1000_free_all_rx_resources(adapter);
1476
1477         /* kill manageability vlan ID if supported, but not if a vlan with
1478          * the same ID is registered on the host OS (let 8021q kill it) */
1479         if ((adapter->hw.mng_cookie.status &
1480                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1481              !(adapter->vlgrp &&
1482                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1483                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1484         }
1485
1486         /* If AMT is enabled, let the firmware know that the network
1487          * interface is now closed */
1488         if (adapter->hw.mac_type == e1000_82573 &&
1489             e1000_check_mng_mode(&adapter->hw))
1490                 e1000_release_hw_control(adapter);
1491
1492         return 0;
1493 }
1494
1495 /**
1496  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1497  * @adapter: address of board private structure
1498  * @start: address of beginning of memory
1499  * @len: length of memory
1500  **/
1501 static boolean_t
1502 e1000_check_64k_bound(struct e1000_adapter *adapter,
1503                       void *start, unsigned long len)
1504 {
1505         unsigned long begin = (unsigned long) start;
1506         unsigned long end = begin + len;
1507
1508         /* First rev 82545 and 82546 need to not allow any memory
1509          * write location to cross 64k boundary due to errata 23 */
1510         if (adapter->hw.mac_type == e1000_82545 ||
1511             adapter->hw.mac_type == e1000_82546) {
1512                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1513         }
1514
1515         return TRUE;
1516 }
1517
1518 /**
1519  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1520  * @adapter: board private structure
1521  * @txdr:    tx descriptor ring (for a specific queue) to setup
1522  *
1523  * Return 0 on success, negative on failure
1524  **/
1525
1526 static int
1527 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1528                          struct e1000_tx_ring *txdr)
1529 {
1530         struct pci_dev *pdev = adapter->pdev;
1531         int size;
1532
1533         size = sizeof(struct e1000_buffer) * txdr->count;
1534         txdr->buffer_info = vmalloc(size);
1535         if (!txdr->buffer_info) {
1536                 DPRINTK(PROBE, ERR,
1537                 "Unable to allocate memory for the transmit descriptor ring\n");
1538                 return -ENOMEM;
1539         }
1540         memset(txdr->buffer_info, 0, size);
1541
1542         /* round up to nearest 4K */
1543
1544         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1545         E1000_ROUNDUP(txdr->size, 4096);
1546
1547         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1548         if (!txdr->desc) {
1549 setup_tx_desc_die:
1550                 vfree(txdr->buffer_info);
1551                 DPRINTK(PROBE, ERR,
1552                 "Unable to allocate memory for the transmit descriptor ring\n");
1553                 return -ENOMEM;
1554         }
1555
1556         /* Fix for errata 23, can't cross 64kB boundary */
1557         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1558                 void *olddesc = txdr->desc;
1559                 dma_addr_t olddma = txdr->dma;
1560                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1561                                      "at %p\n", txdr->size, txdr->desc);
1562                 /* Try again, without freeing the previous */
1563                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1564                 /* Failed allocation, critical failure */
1565                 if (!txdr->desc) {
1566                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1567                         goto setup_tx_desc_die;
1568                 }
1569
1570                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1571                         /* give up */
1572                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1573                                             txdr->dma);
1574                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1575                         DPRINTK(PROBE, ERR,
1576                                 "Unable to allocate aligned memory "
1577                                 "for the transmit descriptor ring\n");
1578                         vfree(txdr->buffer_info);
1579                         return -ENOMEM;
1580                 } else {
1581                         /* Free old allocation, new allocation was successful */
1582                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1583                 }
1584         }
1585         memset(txdr->desc, 0, txdr->size);
1586
1587         txdr->next_to_use = 0;
1588         txdr->next_to_clean = 0;
1589         spin_lock_init(&txdr->tx_lock);
1590
1591         return 0;
1592 }
1593
1594 /**
1595  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1596  *                                (Descriptors) for all queues
1597  * @adapter: board private structure
1598  *
1599  * Return 0 on success, negative on failure
1600  **/
1601
1602 int
1603 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1604 {
1605         int i, err = 0;
1606
1607         for (i = 0; i < adapter->num_tx_queues; i++) {
1608                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1609                 if (err) {
1610                         DPRINTK(PROBE, ERR,
1611                                 "Allocation for Tx Queue %u failed\n", i);
1612                         for (i-- ; i >= 0; i--)
1613                                 e1000_free_tx_resources(adapter,
1614                                                         &adapter->tx_ring[i]);
1615                         break;
1616                 }
1617         }
1618
1619         return err;
1620 }
1621
1622 /**
1623  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1624  * @adapter: board private structure
1625  *
1626  * Configure the Tx unit of the MAC after a reset.
1627  **/
1628
1629 static void
1630 e1000_configure_tx(struct e1000_adapter *adapter)
1631 {
1632         uint64_t tdba;
1633         struct e1000_hw *hw = &adapter->hw;
1634         uint32_t tdlen, tctl, tipg, tarc;
1635         uint32_t ipgr1, ipgr2;
1636
1637         /* Setup the HW Tx Head and Tail descriptor pointers */
1638
1639         switch (adapter->num_tx_queues) {
1640         case 1:
1641         default:
1642                 tdba = adapter->tx_ring[0].dma;
1643                 tdlen = adapter->tx_ring[0].count *
1644                         sizeof(struct e1000_tx_desc);
1645                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1646                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1647                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1648                 E1000_WRITE_REG(hw, TDT, 0);
1649                 E1000_WRITE_REG(hw, TDH, 0);
1650                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1651                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1652                 break;
1653         }
1654
1655         /* Set the default values for the Tx Inter Packet Gap timer */
1656         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1657             (hw->media_type == e1000_media_type_fiber ||
1658              hw->media_type == e1000_media_type_internal_serdes))
1659                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1660         else
1661                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1662
1663         switch (hw->mac_type) {
1664         case e1000_82542_rev2_0:
1665         case e1000_82542_rev2_1:
1666                 tipg = DEFAULT_82542_TIPG_IPGT;
1667                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1668                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1669                 break;
1670         case e1000_80003es2lan:
1671                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1672                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1673                 break;
1674         default:
1675                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1676                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1677                 break;
1678         }
1679         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1680         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1681         E1000_WRITE_REG(hw, TIPG, tipg);
1682
1683         /* Set the Tx Interrupt Delay register */
1684
1685         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1686         if (hw->mac_type >= e1000_82540)
1687                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1688
1689         /* Program the Transmit Control Register */
1690
1691         tctl = E1000_READ_REG(hw, TCTL);
1692         tctl &= ~E1000_TCTL_CT;
1693         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1694                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1695
1696         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1697                 tarc = E1000_READ_REG(hw, TARC0);
1698                 /* set the speed mode bit, we'll clear it if we're not at
1699                  * gigabit link later */
1700                 tarc |= (1 << 21);
1701                 E1000_WRITE_REG(hw, TARC0, tarc);
1702         } else if (hw->mac_type == e1000_80003es2lan) {
1703                 tarc = E1000_READ_REG(hw, TARC0);
1704                 tarc |= 1;
1705                 E1000_WRITE_REG(hw, TARC0, tarc);
1706                 tarc = E1000_READ_REG(hw, TARC1);
1707                 tarc |= 1;
1708                 E1000_WRITE_REG(hw, TARC1, tarc);
1709         }
1710
1711         e1000_config_collision_dist(hw);
1712
1713         /* Setup Transmit Descriptor Settings for eop descriptor */
1714         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1715
1716         /* only set IDE if we are delaying interrupts using the timers */
1717         if (adapter->tx_int_delay)
1718                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1719
1720         if (hw->mac_type < e1000_82543)
1721                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1722         else
1723                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1724
1725         /* Cache if we're 82544 running in PCI-X because we'll
1726          * need this to apply a workaround later in the send path. */
1727         if (hw->mac_type == e1000_82544 &&
1728             hw->bus_type == e1000_bus_type_pcix)
1729                 adapter->pcix_82544 = 1;
1730
1731         E1000_WRITE_REG(hw, TCTL, tctl);
1732
1733 }
1734
1735 /**
1736  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1737  * @adapter: board private structure
1738  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1739  *
1740  * Returns 0 on success, negative on failure
1741  **/
1742
1743 static int
1744 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1745                          struct e1000_rx_ring *rxdr)
1746 {
1747         struct pci_dev *pdev = adapter->pdev;
1748         int size, desc_len;
1749
1750         size = sizeof(struct e1000_buffer) * rxdr->count;
1751         rxdr->buffer_info = vmalloc(size);
1752         if (!rxdr->buffer_info) {
1753                 DPRINTK(PROBE, ERR,
1754                 "Unable to allocate memory for the receive descriptor ring\n");
1755                 return -ENOMEM;
1756         }
1757         memset(rxdr->buffer_info, 0, size);
1758
1759         size = sizeof(struct e1000_ps_page) * rxdr->count;
1760         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1761         if (!rxdr->ps_page) {
1762                 vfree(rxdr->buffer_info);
1763                 DPRINTK(PROBE, ERR,
1764                 "Unable to allocate memory for the receive descriptor ring\n");
1765                 return -ENOMEM;
1766         }
1767         memset(rxdr->ps_page, 0, size);
1768
1769         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1770         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1771         if (!rxdr->ps_page_dma) {
1772                 vfree(rxdr->buffer_info);
1773                 kfree(rxdr->ps_page);
1774                 DPRINTK(PROBE, ERR,
1775                 "Unable to allocate memory for the receive descriptor ring\n");
1776                 return -ENOMEM;
1777         }
1778         memset(rxdr->ps_page_dma, 0, size);
1779
1780         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1781                 desc_len = sizeof(struct e1000_rx_desc);
1782         else
1783                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1784
1785         /* Round up to nearest 4K */
1786
1787         rxdr->size = rxdr->count * desc_len;
1788         E1000_ROUNDUP(rxdr->size, 4096);
1789
1790         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1791
1792         if (!rxdr->desc) {
1793                 DPRINTK(PROBE, ERR,
1794                 "Unable to allocate memory for the receive descriptor ring\n");
1795 setup_rx_desc_die:
1796                 vfree(rxdr->buffer_info);
1797                 kfree(rxdr->ps_page);
1798                 kfree(rxdr->ps_page_dma);
1799                 return -ENOMEM;
1800         }
1801
1802         /* Fix for errata 23, can't cross 64kB boundary */
1803         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1804                 void *olddesc = rxdr->desc;
1805                 dma_addr_t olddma = rxdr->dma;
1806                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1807                                      "at %p\n", rxdr->size, rxdr->desc);
1808                 /* Try again, without freeing the previous */
1809                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1810                 /* Failed allocation, critical failure */
1811                 if (!rxdr->desc) {
1812                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1813                         DPRINTK(PROBE, ERR,
1814                                 "Unable to allocate memory "
1815                                 "for the receive descriptor ring\n");
1816                         goto setup_rx_desc_die;
1817                 }
1818
1819                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1820                         /* give up */
1821                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1822                                             rxdr->dma);
1823                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1824                         DPRINTK(PROBE, ERR,
1825                                 "Unable to allocate aligned memory "
1826                                 "for the receive descriptor ring\n");
1827                         goto setup_rx_desc_die;
1828                 } else {
1829                         /* Free old allocation, new allocation was successful */
1830                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1831                 }
1832         }
1833         memset(rxdr->desc, 0, rxdr->size);
1834
1835         rxdr->next_to_clean = 0;
1836         rxdr->next_to_use = 0;
1837
1838         return 0;
1839 }
1840
1841 /**
1842  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1843  *                                (Descriptors) for all queues
1844  * @adapter: board private structure
1845  *
1846  * Return 0 on success, negative on failure
1847  **/
1848
1849 int
1850 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1851 {
1852         int i, err = 0;
1853
1854         for (i = 0; i < adapter->num_rx_queues; i++) {
1855                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1856                 if (err) {
1857                         DPRINTK(PROBE, ERR,
1858                                 "Allocation for Rx Queue %u failed\n", i);
1859                         for (i-- ; i >= 0; i--)
1860                                 e1000_free_rx_resources(adapter,
1861                                                         &adapter->rx_ring[i]);
1862                         break;
1863                 }
1864         }
1865
1866         return err;
1867 }
1868
1869 /**
1870  * e1000_setup_rctl - configure the receive control registers
1871  * @adapter: Board private structure
1872  **/
1873 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1874                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1875 static void
1876 e1000_setup_rctl(struct e1000_adapter *adapter)
1877 {
1878         uint32_t rctl, rfctl;
1879         uint32_t psrctl = 0;
1880 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1881         uint32_t pages = 0;
1882 #endif
1883
1884         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1885
1886         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1887
1888         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1889                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1890                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1891
1892         if (adapter->hw.tbi_compatibility_on == 1)
1893                 rctl |= E1000_RCTL_SBP;
1894         else
1895                 rctl &= ~E1000_RCTL_SBP;
1896
1897         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1898                 rctl &= ~E1000_RCTL_LPE;
1899         else
1900                 rctl |= E1000_RCTL_LPE;
1901
1902         /* Setup buffer sizes */
1903         rctl &= ~E1000_RCTL_SZ_4096;
1904         rctl |= E1000_RCTL_BSEX;
1905         switch (adapter->rx_buffer_len) {
1906                 case E1000_RXBUFFER_256:
1907                         rctl |= E1000_RCTL_SZ_256;
1908                         rctl &= ~E1000_RCTL_BSEX;
1909                         break;
1910                 case E1000_RXBUFFER_512:
1911                         rctl |= E1000_RCTL_SZ_512;
1912                         rctl &= ~E1000_RCTL_BSEX;
1913                         break;
1914                 case E1000_RXBUFFER_1024:
1915                         rctl |= E1000_RCTL_SZ_1024;
1916                         rctl &= ~E1000_RCTL_BSEX;
1917                         break;
1918                 case E1000_RXBUFFER_2048:
1919                 default:
1920                         rctl |= E1000_RCTL_SZ_2048;
1921                         rctl &= ~E1000_RCTL_BSEX;
1922                         break;
1923                 case E1000_RXBUFFER_4096:
1924                         rctl |= E1000_RCTL_SZ_4096;
1925                         break;
1926                 case E1000_RXBUFFER_8192:
1927                         rctl |= E1000_RCTL_SZ_8192;
1928                         break;
1929                 case E1000_RXBUFFER_16384:
1930                         rctl |= E1000_RCTL_SZ_16384;
1931                         break;
1932         }
1933
1934 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1935         /* 82571 and greater support packet-split where the protocol
1936          * header is placed in skb->data and the packet data is
1937          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1938          * In the case of a non-split, skb->data is linearly filled,
1939          * followed by the page buffers.  Therefore, skb->data is
1940          * sized to hold the largest protocol header.
1941          */
1942         /* allocations using alloc_page take too long for regular MTU
1943          * so only enable packet split for jumbo frames */
1944         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1945         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1946             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1947                 adapter->rx_ps_pages = pages;
1948         else
1949                 adapter->rx_ps_pages = 0;
1950 #endif
1951         if (adapter->rx_ps_pages) {
1952                 /* Configure extra packet-split registers */
1953                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1954                 rfctl |= E1000_RFCTL_EXTEN;
1955                 /* disable packet split support for IPv6 extension headers,
1956                  * because some malformed IPv6 headers can hang the RX */
1957                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1958                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1959
1960                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1961
1962                 rctl |= E1000_RCTL_DTYP_PS;
1963
1964                 psrctl |= adapter->rx_ps_bsize0 >>
1965                         E1000_PSRCTL_BSIZE0_SHIFT;
1966
1967                 switch (adapter->rx_ps_pages) {
1968                 case 3:
1969                         psrctl |= PAGE_SIZE <<
1970                                 E1000_PSRCTL_BSIZE3_SHIFT;
1971                 case 2:
1972                         psrctl |= PAGE_SIZE <<
1973                                 E1000_PSRCTL_BSIZE2_SHIFT;
1974                 case 1:
1975                         psrctl |= PAGE_SIZE >>
1976                                 E1000_PSRCTL_BSIZE1_SHIFT;
1977                         break;
1978                 }
1979
1980                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1981         }
1982
1983         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1984 }
1985
1986 /**
1987  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1988  * @adapter: board private structure
1989  *
1990  * Configure the Rx unit of the MAC after a reset.
1991  **/
1992
1993 static void
1994 e1000_configure_rx(struct e1000_adapter *adapter)
1995 {
1996         uint64_t rdba;
1997         struct e1000_hw *hw = &adapter->hw;
1998         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1999
2000         if (adapter->rx_ps_pages) {
2001                 /* this is a 32 byte descriptor */
2002                 rdlen = adapter->rx_ring[0].count *
2003                         sizeof(union e1000_rx_desc_packet_split);
2004                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2005                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2006         } else {
2007                 rdlen = adapter->rx_ring[0].count *
2008                         sizeof(struct e1000_rx_desc);
2009                 adapter->clean_rx = e1000_clean_rx_irq;
2010                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2011         }
2012
2013         /* disable receives while setting up the descriptors */
2014         rctl = E1000_READ_REG(hw, RCTL);
2015         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2016
2017         /* set the Receive Delay Timer Register */
2018         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2019
2020         if (hw->mac_type >= e1000_82540) {
2021                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2022                 if (adapter->itr_setting != 0)
2023                         E1000_WRITE_REG(hw, ITR,
2024                                 1000000000 / (adapter->itr * 256));
2025         }
2026
2027         if (hw->mac_type >= e1000_82571) {
2028                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2029                 /* Reset delay timers after every interrupt */
2030                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2031 #ifdef CONFIG_E1000_NAPI
2032                 /* Auto-Mask interrupts upon ICR access */
2033                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2034                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2035 #endif
2036                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2037                 E1000_WRITE_FLUSH(hw);
2038         }
2039
2040         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2041          * the Base and Length of the Rx Descriptor Ring */
2042         switch (adapter->num_rx_queues) {
2043         case 1:
2044         default:
2045                 rdba = adapter->rx_ring[0].dma;
2046                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2047                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2048                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2049                 E1000_WRITE_REG(hw, RDT, 0);
2050                 E1000_WRITE_REG(hw, RDH, 0);
2051                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2052                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2053                 break;
2054         }
2055
2056         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2057         if (hw->mac_type >= e1000_82543) {
2058                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2059                 if (adapter->rx_csum == TRUE) {
2060                         rxcsum |= E1000_RXCSUM_TUOFL;
2061
2062                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2063                          * Must be used in conjunction with packet-split. */
2064                         if ((hw->mac_type >= e1000_82571) &&
2065                             (adapter->rx_ps_pages)) {
2066                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2067                         }
2068                 } else {
2069                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2070                         /* don't need to clear IPPCSE as it defaults to 0 */
2071                 }
2072                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2073         }
2074
2075         /* enable early receives on 82573, only takes effect if using > 2048
2076          * byte total frame size.  for example only for jumbo frames */
2077 #define E1000_ERT_2048 0x100
2078         if (hw->mac_type == e1000_82573)
2079                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2080
2081         /* Enable Receives */
2082         E1000_WRITE_REG(hw, RCTL, rctl);
2083 }
2084
2085 /**
2086  * e1000_free_tx_resources - Free Tx Resources per Queue
2087  * @adapter: board private structure
2088  * @tx_ring: Tx descriptor ring for a specific queue
2089  *
2090  * Free all transmit software resources
2091  **/
2092
2093 static void
2094 e1000_free_tx_resources(struct e1000_adapter *adapter,
2095                         struct e1000_tx_ring *tx_ring)
2096 {
2097         struct pci_dev *pdev = adapter->pdev;
2098
2099         e1000_clean_tx_ring(adapter, tx_ring);
2100
2101         vfree(tx_ring->buffer_info);
2102         tx_ring->buffer_info = NULL;
2103
2104         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2105
2106         tx_ring->desc = NULL;
2107 }
2108
2109 /**
2110  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2111  * @adapter: board private structure
2112  *
2113  * Free all transmit software resources
2114  **/
2115
2116 void
2117 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2118 {
2119         int i;
2120
2121         for (i = 0; i < adapter->num_tx_queues; i++)
2122                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2123 }
2124
2125 static void
2126 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2127                         struct e1000_buffer *buffer_info)
2128 {
2129         if (buffer_info->dma) {
2130                 pci_unmap_page(adapter->pdev,
2131                                 buffer_info->dma,
2132                                 buffer_info->length,
2133                                 PCI_DMA_TODEVICE);
2134                 buffer_info->dma = 0;
2135         }
2136         if (buffer_info->skb) {
2137                 dev_kfree_skb_any(buffer_info->skb);
2138                 buffer_info->skb = NULL;
2139         }
2140         /* buffer_info must be completely set up in the transmit path */
2141 }
2142
2143 /**
2144  * e1000_clean_tx_ring - Free Tx Buffers
2145  * @adapter: board private structure
2146  * @tx_ring: ring to be cleaned
2147  **/
2148
2149 static void
2150 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2151                     struct e1000_tx_ring *tx_ring)
2152 {
2153         struct e1000_buffer *buffer_info;
2154         unsigned long size;
2155         unsigned int i;
2156
2157         /* Free all the Tx ring sk_buffs */
2158
2159         for (i = 0; i < tx_ring->count; i++) {
2160                 buffer_info = &tx_ring->buffer_info[i];
2161                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2162         }
2163
2164         size = sizeof(struct e1000_buffer) * tx_ring->count;
2165         memset(tx_ring->buffer_info, 0, size);
2166
2167         /* Zero out the descriptor ring */
2168
2169         memset(tx_ring->desc, 0, tx_ring->size);
2170
2171         tx_ring->next_to_use = 0;
2172         tx_ring->next_to_clean = 0;
2173         tx_ring->last_tx_tso = 0;
2174
2175         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2176         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2177 }
2178
2179 /**
2180  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2181  * @adapter: board private structure
2182  **/
2183
2184 static void
2185 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2186 {
2187         int i;
2188
2189         for (i = 0; i < adapter->num_tx_queues; i++)
2190                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2191 }
2192
2193 /**
2194  * e1000_free_rx_resources - Free Rx Resources
2195  * @adapter: board private structure
2196  * @rx_ring: ring to clean the resources from
2197  *
2198  * Free all receive software resources
2199  **/
2200
2201 static void
2202 e1000_free_rx_resources(struct e1000_adapter *adapter,
2203                         struct e1000_rx_ring *rx_ring)
2204 {
2205         struct pci_dev *pdev = adapter->pdev;
2206
2207         e1000_clean_rx_ring(adapter, rx_ring);
2208
2209         vfree(rx_ring->buffer_info);
2210         rx_ring->buffer_info = NULL;
2211         kfree(rx_ring->ps_page);
2212         rx_ring->ps_page = NULL;
2213         kfree(rx_ring->ps_page_dma);
2214         rx_ring->ps_page_dma = NULL;
2215
2216         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2217
2218         rx_ring->desc = NULL;
2219 }
2220
2221 /**
2222  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2223  * @adapter: board private structure
2224  *
2225  * Free all receive software resources
2226  **/
2227
2228 void
2229 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2230 {
2231         int i;
2232
2233         for (i = 0; i < adapter->num_rx_queues; i++)
2234                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2235 }
2236
2237 /**
2238  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2239  * @adapter: board private structure
2240  * @rx_ring: ring to free buffers from
2241  **/
2242
2243 static void
2244 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2245                     struct e1000_rx_ring *rx_ring)
2246 {
2247         struct e1000_buffer *buffer_info;
2248         struct e1000_ps_page *ps_page;
2249         struct e1000_ps_page_dma *ps_page_dma;
2250         struct pci_dev *pdev = adapter->pdev;
2251         unsigned long size;
2252         unsigned int i, j;
2253
2254         /* Free all the Rx ring sk_buffs */
2255         for (i = 0; i < rx_ring->count; i++) {
2256                 buffer_info = &rx_ring->buffer_info[i];
2257                 if (buffer_info->skb) {
2258                         pci_unmap_single(pdev,
2259                                          buffer_info->dma,
2260                                          buffer_info->length,
2261                                          PCI_DMA_FROMDEVICE);
2262
2263                         dev_kfree_skb(buffer_info->skb);
2264                         buffer_info->skb = NULL;
2265                 }
2266                 ps_page = &rx_ring->ps_page[i];
2267                 ps_page_dma = &rx_ring->ps_page_dma[i];
2268                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2269                         if (!ps_page->ps_page[j]) break;
2270                         pci_unmap_page(pdev,
2271                                        ps_page_dma->ps_page_dma[j],
2272                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2273                         ps_page_dma->ps_page_dma[j] = 0;
2274                         put_page(ps_page->ps_page[j]);
2275                         ps_page->ps_page[j] = NULL;
2276                 }
2277         }
2278
2279         size = sizeof(struct e1000_buffer) * rx_ring->count;
2280         memset(rx_ring->buffer_info, 0, size);
2281         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2282         memset(rx_ring->ps_page, 0, size);
2283         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2284         memset(rx_ring->ps_page_dma, 0, size);
2285
2286         /* Zero out the descriptor ring */
2287
2288         memset(rx_ring->desc, 0, rx_ring->size);
2289
2290         rx_ring->next_to_clean = 0;
2291         rx_ring->next_to_use = 0;
2292
2293         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2294         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2295 }
2296
2297 /**
2298  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2299  * @adapter: board private structure
2300  **/
2301
2302 static void
2303 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2304 {
2305         int i;
2306
2307         for (i = 0; i < adapter->num_rx_queues; i++)
2308                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2309 }
2310
2311 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2312  * and memory write and invalidate disabled for certain operations
2313  */
2314 static void
2315 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2316 {
2317         struct net_device *netdev = adapter->netdev;
2318         uint32_t rctl;
2319
2320         e1000_pci_clear_mwi(&adapter->hw);
2321
2322         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2323         rctl |= E1000_RCTL_RST;
2324         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2325         E1000_WRITE_FLUSH(&adapter->hw);
2326         mdelay(5);
2327
2328         if (netif_running(netdev))
2329                 e1000_clean_all_rx_rings(adapter);
2330 }
2331
2332 static void
2333 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2334 {
2335         struct net_device *netdev = adapter->netdev;
2336         uint32_t rctl;
2337
2338         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2339         rctl &= ~E1000_RCTL_RST;
2340         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2341         E1000_WRITE_FLUSH(&adapter->hw);
2342         mdelay(5);
2343
2344         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2345                 e1000_pci_set_mwi(&adapter->hw);
2346
2347         if (netif_running(netdev)) {
2348                 /* No need to loop, because 82542 supports only 1 queue */
2349                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2350                 e1000_configure_rx(adapter);
2351                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2352         }
2353 }
2354
2355 /**
2356  * e1000_set_mac - Change the Ethernet Address of the NIC
2357  * @netdev: network interface device structure
2358  * @p: pointer to an address structure
2359  *
2360  * Returns 0 on success, negative on failure
2361  **/
2362
2363 static int
2364 e1000_set_mac(struct net_device *netdev, void *p)
2365 {
2366         struct e1000_adapter *adapter = netdev_priv(netdev);
2367         struct sockaddr *addr = p;
2368
2369         if (!is_valid_ether_addr(addr->sa_data))
2370                 return -EADDRNOTAVAIL;
2371
2372         /* 82542 2.0 needs to be in reset to write receive address registers */
2373
2374         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2375                 e1000_enter_82542_rst(adapter);
2376
2377         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2378         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2379
2380         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2381
2382         /* With 82571 controllers, LAA may be overwritten (with the default)
2383          * due to controller reset from the other port. */
2384         if (adapter->hw.mac_type == e1000_82571) {
2385                 /* activate the work around */
2386                 adapter->hw.laa_is_present = 1;
2387
2388                 /* Hold a copy of the LAA in RAR[14] This is done so that
2389                  * between the time RAR[0] gets clobbered  and the time it
2390                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2391                  * of the RARs and no incoming packets directed to this port
2392                  * are dropped. Eventaully the LAA will be in RAR[0] and
2393                  * RAR[14] */
2394                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2395                                         E1000_RAR_ENTRIES - 1);
2396         }
2397
2398         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2399                 e1000_leave_82542_rst(adapter);
2400
2401         return 0;
2402 }
2403
2404 /**
2405  * e1000_set_multi - Multicast and Promiscuous mode set
2406  * @netdev: network interface device structure
2407  *
2408  * The set_multi entry point is called whenever the multicast address
2409  * list or the network interface flags are updated.  This routine is
2410  * responsible for configuring the hardware for proper multicast,
2411  * promiscuous mode, and all-multi behavior.
2412  **/
2413
2414 static void
2415 e1000_set_multi(struct net_device *netdev)
2416 {
2417         struct e1000_adapter *adapter = netdev_priv(netdev);
2418         struct e1000_hw *hw = &adapter->hw;
2419         struct dev_mc_list *mc_ptr;
2420         uint32_t rctl;
2421         uint32_t hash_value;
2422         int i, rar_entries = E1000_RAR_ENTRIES;
2423         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2424                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2425                                 E1000_NUM_MTA_REGISTERS;
2426
2427         if (adapter->hw.mac_type == e1000_ich8lan)
2428                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2429
2430         /* reserve RAR[14] for LAA over-write work-around */
2431         if (adapter->hw.mac_type == e1000_82571)
2432                 rar_entries--;
2433
2434         /* Check for Promiscuous and All Multicast modes */
2435
2436         rctl = E1000_READ_REG(hw, RCTL);
2437
2438         if (netdev->flags & IFF_PROMISC) {
2439                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2440         } else if (netdev->flags & IFF_ALLMULTI) {
2441                 rctl |= E1000_RCTL_MPE;
2442                 rctl &= ~E1000_RCTL_UPE;
2443         } else {
2444                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2445         }
2446
2447         E1000_WRITE_REG(hw, RCTL, rctl);
2448
2449         /* 82542 2.0 needs to be in reset to write receive address registers */
2450
2451         if (hw->mac_type == e1000_82542_rev2_0)
2452                 e1000_enter_82542_rst(adapter);
2453
2454         /* load the first 14 multicast address into the exact filters 1-14
2455          * RAR 0 is used for the station MAC adddress
2456          * if there are not 14 addresses, go ahead and clear the filters
2457          * -- with 82571 controllers only 0-13 entries are filled here
2458          */
2459         mc_ptr = netdev->mc_list;
2460
2461         for (i = 1; i < rar_entries; i++) {
2462                 if (mc_ptr) {
2463                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2464                         mc_ptr = mc_ptr->next;
2465                 } else {
2466                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2467                         E1000_WRITE_FLUSH(hw);
2468                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2469                         E1000_WRITE_FLUSH(hw);
2470                 }
2471         }
2472
2473         /* clear the old settings from the multicast hash table */
2474
2475         for (i = 0; i < mta_reg_count; i++) {
2476                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2477                 E1000_WRITE_FLUSH(hw);
2478         }
2479
2480         /* load any remaining addresses into the hash table */
2481
2482         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2483                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2484                 e1000_mta_set(hw, hash_value);
2485         }
2486
2487         if (hw->mac_type == e1000_82542_rev2_0)
2488                 e1000_leave_82542_rst(adapter);
2489 }
2490
2491 /* Need to wait a few seconds after link up to get diagnostic information from
2492  * the phy */
2493
2494 static void
2495 e1000_update_phy_info(unsigned long data)
2496 {
2497         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2498         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2499 }
2500
2501 /**
2502  * e1000_82547_tx_fifo_stall - Timer Call-back
2503  * @data: pointer to adapter cast into an unsigned long
2504  **/
2505
2506 static void
2507 e1000_82547_tx_fifo_stall(unsigned long data)
2508 {
2509         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2510         struct net_device *netdev = adapter->netdev;
2511         uint32_t tctl;
2512
2513         if (atomic_read(&adapter->tx_fifo_stall)) {
2514                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2515                     E1000_READ_REG(&adapter->hw, TDH)) &&
2516                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2517                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2518                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2519                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2520                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2521                         E1000_WRITE_REG(&adapter->hw, TCTL,
2522                                         tctl & ~E1000_TCTL_EN);
2523                         E1000_WRITE_REG(&adapter->hw, TDFT,
2524                                         adapter->tx_head_addr);
2525                         E1000_WRITE_REG(&adapter->hw, TDFH,
2526                                         adapter->tx_head_addr);
2527                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2528                                         adapter->tx_head_addr);
2529                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2530                                         adapter->tx_head_addr);
2531                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2532                         E1000_WRITE_FLUSH(&adapter->hw);
2533
2534                         adapter->tx_fifo_head = 0;
2535                         atomic_set(&adapter->tx_fifo_stall, 0);
2536                         netif_wake_queue(netdev);
2537                 } else {
2538                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2539                 }
2540         }
2541 }
2542
2543 /**
2544  * e1000_watchdog - Timer Call-back
2545  * @data: pointer to adapter cast into an unsigned long
2546  **/
2547 static void
2548 e1000_watchdog(unsigned long data)
2549 {
2550         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2551         struct net_device *netdev = adapter->netdev;
2552         struct e1000_tx_ring *txdr = adapter->tx_ring;
2553         uint32_t link, tctl;
2554         int32_t ret_val;
2555
2556         ret_val = e1000_check_for_link(&adapter->hw);
2557         if ((ret_val == E1000_ERR_PHY) &&
2558             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2559             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2560                 /* See e1000_kumeran_lock_loss_workaround() */
2561                 DPRINTK(LINK, INFO,
2562                         "Gigabit has been disabled, downgrading speed\n");
2563         }
2564
2565         if (adapter->hw.mac_type == e1000_82573) {
2566                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2567                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2568                         e1000_update_mng_vlan(adapter);
2569         }
2570
2571         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2572            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2573                 link = !adapter->hw.serdes_link_down;
2574         else
2575                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2576
2577         if (link) {
2578                 if (!netif_carrier_ok(netdev)) {
2579                         boolean_t txb2b = 1;
2580                         e1000_get_speed_and_duplex(&adapter->hw,
2581                                                    &adapter->link_speed,
2582                                                    &adapter->link_duplex);
2583
2584                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2585                                adapter->link_speed,
2586                                adapter->link_duplex == FULL_DUPLEX ?
2587                                "Full Duplex" : "Half Duplex");
2588
2589                         /* tweak tx_queue_len according to speed/duplex
2590                          * and adjust the timeout factor */
2591                         netdev->tx_queue_len = adapter->tx_queue_len;
2592                         adapter->tx_timeout_factor = 1;
2593                         switch (adapter->link_speed) {
2594                         case SPEED_10:
2595                                 txb2b = 0;
2596                                 netdev->tx_queue_len = 10;
2597                                 adapter->tx_timeout_factor = 8;
2598                                 break;
2599                         case SPEED_100:
2600                                 txb2b = 0;
2601                                 netdev->tx_queue_len = 100;
2602                                 /* maybe add some timeout factor ? */
2603                                 break;
2604                         }
2605
2606                         if ((adapter->hw.mac_type == e1000_82571 ||
2607                              adapter->hw.mac_type == e1000_82572) &&
2608                             txb2b == 0) {
2609                                 uint32_t tarc0;
2610                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2611                                 tarc0 &= ~(1 << 21);
2612                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2613                         }
2614
2615 #ifdef NETIF_F_TSO
2616                         /* disable TSO for pcie and 10/100 speeds, to avoid
2617                          * some hardware issues */
2618                         if (!adapter->tso_force &&
2619                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2620                                 switch (adapter->link_speed) {
2621                                 case SPEED_10:
2622                                 case SPEED_100:
2623                                         DPRINTK(PROBE,INFO,
2624                                         "10/100 speed: disabling TSO\n");
2625                                         netdev->features &= ~NETIF_F_TSO;
2626 #ifdef NETIF_F_TSO6
2627                                         netdev->features &= ~NETIF_F_TSO6;
2628 #endif
2629                                         break;
2630                                 case SPEED_1000:
2631                                         netdev->features |= NETIF_F_TSO;
2632 #ifdef NETIF_F_TSO6
2633                                         netdev->features |= NETIF_F_TSO6;
2634 #endif
2635                                         break;
2636                                 default:
2637                                         /* oops */
2638                                         break;
2639                                 }
2640                         }
2641 #endif
2642
2643                         /* enable transmits in the hardware, need to do this
2644                          * after setting TARC0 */
2645                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2646                         tctl |= E1000_TCTL_EN;
2647                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2648
2649                         netif_carrier_on(netdev);
2650                         netif_wake_queue(netdev);
2651                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2652                         adapter->smartspeed = 0;
2653                 } else {
2654                         /* make sure the receive unit is started */
2655                         if (adapter->hw.rx_needs_kicking) {
2656                                 struct e1000_hw *hw = &adapter->hw;
2657                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2658                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2659                         }
2660                 }
2661         } else {
2662                 if (netif_carrier_ok(netdev)) {
2663                         adapter->link_speed = 0;
2664                         adapter->link_duplex = 0;
2665                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2666                         netif_carrier_off(netdev);
2667                         netif_stop_queue(netdev);
2668                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2669
2670                         /* 80003ES2LAN workaround--
2671                          * For packet buffer work-around on link down event;
2672                          * disable receives in the ISR and
2673                          * reset device here in the watchdog
2674                          */
2675                         if (adapter->hw.mac_type == e1000_80003es2lan)
2676                                 /* reset device */
2677                                 schedule_work(&adapter->reset_task);
2678                 }
2679
2680                 e1000_smartspeed(adapter);
2681         }
2682
2683         e1000_update_stats(adapter);
2684
2685         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2686         adapter->tpt_old = adapter->stats.tpt;
2687         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2688         adapter->colc_old = adapter->stats.colc;
2689
2690         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2691         adapter->gorcl_old = adapter->stats.gorcl;
2692         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2693         adapter->gotcl_old = adapter->stats.gotcl;
2694
2695         e1000_update_adaptive(&adapter->hw);
2696
2697         if (!netif_carrier_ok(netdev)) {
2698                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2699                         /* We've lost link, so the controller stops DMA,
2700                          * but we've got queued Tx work that's never going
2701                          * to get done, so reset controller to flush Tx.
2702                          * (Do the reset outside of interrupt context). */
2703                         adapter->tx_timeout_count++;
2704                         schedule_work(&adapter->reset_task);
2705                 }
2706         }
2707
2708         /* Cause software interrupt to ensure rx ring is cleaned */
2709         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2710
2711         /* Force detection of hung controller every watchdog period */
2712         adapter->detect_tx_hung = TRUE;
2713
2714         /* With 82571 controllers, LAA may be overwritten due to controller
2715          * reset from the other port. Set the appropriate LAA in RAR[0] */
2716         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2717                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2718
2719         /* Reset the timer */
2720         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2721 }
2722
2723 enum latency_range {
2724         lowest_latency = 0,
2725         low_latency = 1,
2726         bulk_latency = 2,
2727         latency_invalid = 255
2728 };
2729
2730 /**
2731  * e1000_update_itr - update the dynamic ITR value based on statistics
2732  *      Stores a new ITR value based on packets and byte
2733  *      counts during the last interrupt.  The advantage of per interrupt
2734  *      computation is faster updates and more accurate ITR for the current
2735  *      traffic pattern.  Constants in this function were computed
2736  *      based on theoretical maximum wire speed and thresholds were set based
2737  *      on testing data as well as attempting to minimize response time
2738  *      while increasing bulk throughput.
2739  *      this functionality is controlled by the InterruptThrottleRate module
2740  *      parameter (see e1000_param.c)
2741  * @adapter: pointer to adapter
2742  * @itr_setting: current adapter->itr
2743  * @packets: the number of packets during this measurement interval
2744  * @bytes: the number of bytes during this measurement interval
2745  **/
2746 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2747                                    uint16_t itr_setting,
2748                                    int packets,
2749                                    int bytes)
2750 {
2751         unsigned int retval = itr_setting;
2752         struct e1000_hw *hw = &adapter->hw;
2753
2754         if (unlikely(hw->mac_type < e1000_82540))
2755                 goto update_itr_done;
2756
2757         if (packets == 0)
2758                 goto update_itr_done;
2759
2760         switch (itr_setting) {
2761         case lowest_latency:
2762                 /* jumbo frames get bulk treatment*/
2763                 if (bytes/packets > 8000)
2764                         retval = bulk_latency;
2765                 else if ((packets < 5) && (bytes > 512))
2766                         retval = low_latency;
2767                 break;
2768         case low_latency:  /* 50 usec aka 20000 ints/s */
2769                 if (bytes > 10000) {
2770                         /* jumbo frames need bulk latency setting */
2771                         if (bytes/packets > 8000)
2772                                 retval = bulk_latency;
2773                         else if ((packets < 10) || ((bytes/packets) > 1200))
2774                                 retval = bulk_latency;
2775                         else if ((packets > 35))
2776                                 retval = lowest_latency;
2777                 } else if (bytes/packets > 2000)
2778                         retval = bulk_latency;
2779                 else if (packets <= 2 && bytes < 512)
2780                         retval = lowest_latency;
2781                 break;
2782         case bulk_latency: /* 250 usec aka 4000 ints/s */
2783                 if (bytes > 25000) {
2784                         if (packets > 35)
2785                                 retval = low_latency;
2786                 } else if (bytes < 6000) {
2787                         retval = low_latency;
2788                 }
2789                 break;
2790         }
2791
2792 update_itr_done:
2793         return retval;
2794 }
2795
2796 static void e1000_set_itr(struct e1000_adapter *adapter)
2797 {
2798         struct e1000_hw *hw = &adapter->hw;
2799         uint16_t current_itr;
2800         uint32_t new_itr = adapter->itr;
2801
2802         if (unlikely(hw->mac_type < e1000_82540))
2803                 return;
2804
2805         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2806         if (unlikely(adapter->link_speed != SPEED_1000)) {
2807                 current_itr = 0;
2808                 new_itr = 4000;
2809                 goto set_itr_now;
2810         }
2811
2812         adapter->tx_itr = e1000_update_itr(adapter,
2813                                     adapter->tx_itr,
2814                                     adapter->total_tx_packets,
2815                                     adapter->total_tx_bytes);
2816         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2817         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2818                 adapter->tx_itr = low_latency;
2819
2820         adapter->rx_itr = e1000_update_itr(adapter,
2821                                     adapter->rx_itr,
2822                                     adapter->total_rx_packets,
2823                                     adapter->total_rx_bytes);
2824         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2825         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2826                 adapter->rx_itr = low_latency;
2827
2828         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2829
2830         switch (current_itr) {
2831         /* counts and packets in update_itr are dependent on these numbers */
2832         case lowest_latency:
2833                 new_itr = 70000;
2834                 break;
2835         case low_latency:
2836                 new_itr = 20000; /* aka hwitr = ~200 */
2837                 break;
2838         case bulk_latency:
2839                 new_itr = 4000;
2840                 break;
2841         default:
2842                 break;
2843         }
2844
2845 set_itr_now:
2846         if (new_itr != adapter->itr) {
2847                 /* this attempts to bias the interrupt rate towards Bulk
2848                  * by adding intermediate steps when interrupt rate is
2849                  * increasing */
2850                 new_itr = new_itr > adapter->itr ?
2851                              min(adapter->itr + (new_itr >> 2), new_itr) :
2852                              new_itr;
2853                 adapter->itr = new_itr;
2854                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2855         }
2856
2857         return;
2858 }
2859
2860 #define E1000_TX_FLAGS_CSUM             0x00000001
2861 #define E1000_TX_FLAGS_VLAN             0x00000002
2862 #define E1000_TX_FLAGS_TSO              0x00000004
2863 #define E1000_TX_FLAGS_IPV4             0x00000008
2864 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2865 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2866
2867 static int
2868 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2869           struct sk_buff *skb)
2870 {
2871 #ifdef NETIF_F_TSO
2872         struct e1000_context_desc *context_desc;
2873         struct e1000_buffer *buffer_info;
2874         unsigned int i;
2875         uint32_t cmd_length = 0;
2876         uint16_t ipcse = 0, tucse, mss;
2877         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2878         int err;
2879
2880         if (skb_is_gso(skb)) {
2881                 if (skb_header_cloned(skb)) {
2882                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2883                         if (err)
2884                                 return err;
2885                 }
2886
2887                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2888                 mss = skb_shinfo(skb)->gso_size;
2889                 if (skb->protocol == htons(ETH_P_IP)) {
2890                         skb->nh.iph->tot_len = 0;
2891                         skb->nh.iph->check = 0;
2892                         skb->h.th->check =
2893                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2894                                                    skb->nh.iph->daddr,
2895                                                    0,
2896                                                    IPPROTO_TCP,
2897                                                    0);
2898                         cmd_length = E1000_TXD_CMD_IP;
2899                         ipcse = skb->h.raw - skb->data - 1;
2900 #ifdef NETIF_F_TSO6
2901                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2902                         skb->nh.ipv6h->payload_len = 0;
2903                         skb->h.th->check =
2904                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2905                                                  &skb->nh.ipv6h->daddr,
2906                                                  0,
2907                                                  IPPROTO_TCP,
2908                                                  0);
2909                         ipcse = 0;
2910 #endif
2911                 }
2912                 ipcss = skb->nh.raw - skb->data;
2913                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2914                 tucss = skb->h.raw - skb->data;
2915                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2916                 tucse = 0;
2917
2918                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2919                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2920
2921                 i = tx_ring->next_to_use;
2922                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2923                 buffer_info = &tx_ring->buffer_info[i];
2924
2925                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2926                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2927                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2928                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2929                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2930                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2931                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2932                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2933                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2934
2935                 buffer_info->time_stamp = jiffies;
2936                 buffer_info->next_to_watch = i;
2937
2938                 if (++i == tx_ring->count) i = 0;
2939                 tx_ring->next_to_use = i;
2940
2941                 return TRUE;
2942         }
2943 #endif
2944
2945         return FALSE;
2946 }
2947
2948 static boolean_t
2949 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2950               struct sk_buff *skb)
2951 {
2952         struct e1000_context_desc *context_desc;
2953         struct e1000_buffer *buffer_info;
2954         unsigned int i;
2955         uint8_t css;
2956
2957         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2958                 css = skb->h.raw - skb->data;
2959
2960                 i = tx_ring->next_to_use;
2961                 buffer_info = &tx_ring->buffer_info[i];
2962                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2963
2964                 context_desc->upper_setup.tcp_fields.tucss = css;
2965                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
2966                 context_desc->upper_setup.tcp_fields.tucse = 0;
2967                 context_desc->tcp_seg_setup.data = 0;
2968                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2969
2970                 buffer_info->time_stamp = jiffies;
2971                 buffer_info->next_to_watch = i;
2972
2973                 if (unlikely(++i == tx_ring->count)) i = 0;
2974                 tx_ring->next_to_use = i;
2975
2976                 return TRUE;
2977         }
2978
2979         return FALSE;
2980 }
2981
2982 #define E1000_MAX_TXD_PWR       12
2983 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2984
2985 static int
2986 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2987              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2988              unsigned int nr_frags, unsigned int mss)
2989 {
2990         struct e1000_buffer *buffer_info;
2991         unsigned int len = skb->len;
2992         unsigned int offset = 0, size, count = 0, i;
2993         unsigned int f;
2994         len -= skb->data_len;
2995
2996         i = tx_ring->next_to_use;
2997
2998         while (len) {
2999                 buffer_info = &tx_ring->buffer_info[i];
3000                 size = min(len, max_per_txd);
3001 #ifdef NETIF_F_TSO
3002                 /* Workaround for Controller erratum --
3003                  * descriptor for non-tso packet in a linear SKB that follows a
3004                  * tso gets written back prematurely before the data is fully
3005                  * DMA'd to the controller */
3006                 if (!skb->data_len && tx_ring->last_tx_tso &&
3007                     !skb_is_gso(skb)) {
3008                         tx_ring->last_tx_tso = 0;
3009                         size -= 4;
3010                 }
3011
3012                 /* Workaround for premature desc write-backs
3013                  * in TSO mode.  Append 4-byte sentinel desc */
3014                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3015                         size -= 4;
3016 #endif
3017                 /* work-around for errata 10 and it applies
3018                  * to all controllers in PCI-X mode
3019                  * The fix is to make sure that the first descriptor of a
3020                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3021                  */
3022                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3023                                 (size > 2015) && count == 0))
3024                         size = 2015;
3025
3026                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3027                  * terminating buffers within evenly-aligned dwords. */
3028                 if (unlikely(adapter->pcix_82544 &&
3029                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3030                    size > 4))
3031                         size -= 4;
3032
3033                 buffer_info->length = size;
3034                 buffer_info->dma =
3035                         pci_map_single(adapter->pdev,
3036                                 skb->data + offset,
3037                                 size,
3038                                 PCI_DMA_TODEVICE);
3039                 buffer_info->time_stamp = jiffies;
3040                 buffer_info->next_to_watch = i;
3041
3042                 len -= size;
3043                 offset += size;
3044                 count++;
3045                 if (unlikely(++i == tx_ring->count)) i = 0;
3046         }
3047
3048         for (f = 0; f < nr_frags; f++) {
3049                 struct skb_frag_struct *frag;
3050
3051                 frag = &skb_shinfo(skb)->frags[f];
3052                 len = frag->size;
3053                 offset = frag->page_offset;
3054
3055                 while (len) {
3056                         buffer_info = &tx_ring->buffer_info[i];
3057                         size = min(len, max_per_txd);
3058 #ifdef NETIF_F_TSO
3059                         /* Workaround for premature desc write-backs
3060                          * in TSO mode.  Append 4-byte sentinel desc */
3061                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3062                                 size -= 4;
3063 #endif
3064                         /* Workaround for potential 82544 hang in PCI-X.
3065                          * Avoid terminating buffers within evenly-aligned
3066                          * dwords. */
3067                         if (unlikely(adapter->pcix_82544 &&
3068                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3069                            size > 4))
3070                                 size -= 4;
3071
3072                         buffer_info->length = size;
3073                         buffer_info->dma =
3074                                 pci_map_page(adapter->pdev,
3075                                         frag->page,
3076                                         offset,
3077                                         size,
3078                                         PCI_DMA_TODEVICE);
3079                         buffer_info->time_stamp = jiffies;
3080                         buffer_info->next_to_watch = i;
3081
3082                         len -= size;
3083                         offset += size;
3084                         count++;
3085                         if (unlikely(++i == tx_ring->count)) i = 0;
3086                 }
3087         }
3088
3089         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3090         tx_ring->buffer_info[i].skb = skb;
3091         tx_ring->buffer_info[first].next_to_watch = i;
3092
3093         return count;
3094 }
3095
3096 static void
3097 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3098                int tx_flags, int count)
3099 {
3100         struct e1000_tx_desc *tx_desc = NULL;
3101         struct e1000_buffer *buffer_info;
3102         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3103         unsigned int i;
3104
3105         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3106                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3107                              E1000_TXD_CMD_TSE;
3108                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3109
3110                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3111                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3112         }
3113
3114         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3115                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3116                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3117         }
3118
3119         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3120                 txd_lower |= E1000_TXD_CMD_VLE;
3121                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3122         }
3123
3124         i = tx_ring->next_to_use;
3125
3126         while (count--) {
3127                 buffer_info = &tx_ring->buffer_info[i];
3128                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3129                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3130                 tx_desc->lower.data =
3131                         cpu_to_le32(txd_lower | buffer_info->length);
3132                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3133                 if (unlikely(++i == tx_ring->count)) i = 0;
3134         }
3135
3136         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3137
3138         /* Force memory writes to complete before letting h/w
3139          * know there are new descriptors to fetch.  (Only
3140          * applicable for weak-ordered memory model archs,
3141          * such as IA-64). */
3142         wmb();
3143
3144         tx_ring->next_to_use = i;
3145         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3146         /* we need this if more than one processor can write to our tail
3147          * at a time, it syncronizes IO on IA64/Altix systems */
3148         mmiowb();
3149 }
3150
3151 /**
3152  * 82547 workaround to avoid controller hang in half-duplex environment.
3153  * The workaround is to avoid queuing a large packet that would span
3154  * the internal Tx FIFO ring boundary by notifying the stack to resend
3155  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3156  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3157  * to the beginning of the Tx FIFO.
3158  **/
3159
3160 #define E1000_FIFO_HDR                  0x10
3161 #define E1000_82547_PAD_LEN             0x3E0
3162
3163 static int
3164 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3165 {
3166         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3167         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3168
3169         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3170
3171         if (adapter->link_duplex != HALF_DUPLEX)
3172                 goto no_fifo_stall_required;
3173
3174         if (atomic_read(&adapter->tx_fifo_stall))
3175                 return 1;
3176
3177         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3178                 atomic_set(&adapter->tx_fifo_stall, 1);
3179                 return 1;
3180         }
3181
3182 no_fifo_stall_required:
3183         adapter->tx_fifo_head += skb_fifo_len;
3184         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3185                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3186         return 0;
3187 }
3188
3189 #define MINIMUM_DHCP_PACKET_SIZE 282
3190 static int
3191 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3192 {
3193         struct e1000_hw *hw =  &adapter->hw;
3194         uint16_t length, offset;
3195         if (vlan_tx_tag_present(skb)) {
3196                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3197                         ( adapter->hw.mng_cookie.status &
3198                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3199                         return 0;
3200         }
3201         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3202                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3203                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3204                         const struct iphdr *ip =
3205                                 (struct iphdr *)((uint8_t *)skb->data+14);
3206                         if (IPPROTO_UDP == ip->protocol) {
3207                                 struct udphdr *udp =
3208                                         (struct udphdr *)((uint8_t *)ip +
3209                                                 (ip->ihl << 2));
3210                                 if (ntohs(udp->dest) == 67) {
3211                                         offset = (uint8_t *)udp + 8 - skb->data;
3212                                         length = skb->len - offset;
3213
3214                                         return e1000_mng_write_dhcp_info(hw,
3215                                                         (uint8_t *)udp + 8,
3216                                                         length);
3217                                 }
3218                         }
3219                 }
3220         }
3221         return 0;
3222 }
3223
3224 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3225 {
3226         struct e1000_adapter *adapter = netdev_priv(netdev);
3227         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3228
3229         netif_stop_queue(netdev);
3230         /* Herbert's original patch had:
3231          *  smp_mb__after_netif_stop_queue();
3232          * but since that doesn't exist yet, just open code it. */
3233         smp_mb();
3234
3235         /* We need to check again in a case another CPU has just
3236          * made room available. */
3237         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3238                 return -EBUSY;
3239
3240         /* A reprieve! */
3241         netif_start_queue(netdev);
3242         ++adapter->restart_queue;
3243         return 0;
3244 }
3245
3246 static int e1000_maybe_stop_tx(struct net_device *netdev,
3247                                struct e1000_tx_ring *tx_ring, int size)
3248 {
3249         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3250                 return 0;
3251         return __e1000_maybe_stop_tx(netdev, size);
3252 }
3253
3254 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3255 static int
3256 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3257 {
3258         struct e1000_adapter *adapter = netdev_priv(netdev);
3259         struct e1000_tx_ring *tx_ring;
3260         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3261         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3262         unsigned int tx_flags = 0;
3263         unsigned int len = skb->len;
3264         unsigned long flags;
3265         unsigned int nr_frags = 0;
3266         unsigned int mss = 0;
3267         int count = 0;
3268         int tso;
3269         unsigned int f;
3270         len -= skb->data_len;
3271
3272         /* This goes back to the question of how to logically map a tx queue
3273          * to a flow.  Right now, performance is impacted slightly negatively
3274          * if using multiple tx queues.  If the stack breaks away from a
3275          * single qdisc implementation, we can look at this again. */
3276         tx_ring = adapter->tx_ring;
3277
3278         if (unlikely(skb->len <= 0)) {
3279                 dev_kfree_skb_any(skb);
3280                 return NETDEV_TX_OK;
3281         }
3282
3283         /* 82571 and newer doesn't need the workaround that limited descriptor
3284          * length to 4kB */
3285         if (adapter->hw.mac_type >= e1000_82571)
3286                 max_per_txd = 8192;
3287
3288 #ifdef NETIF_F_TSO
3289         mss = skb_shinfo(skb)->gso_size;
3290         /* The controller does a simple calculation to
3291          * make sure there is enough room in the FIFO before
3292          * initiating the DMA for each buffer.  The calc is:
3293          * 4 = ceil(buffer len/mss).  To make sure we don't
3294          * overrun the FIFO, adjust the max buffer len if mss
3295          * drops. */
3296         if (mss) {
3297                 uint8_t hdr_len;
3298                 max_per_txd = min(mss << 2, max_per_txd);
3299                 max_txd_pwr = fls(max_per_txd) - 1;
3300
3301                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3302                 * points to just header, pull a few bytes of payload from
3303                 * frags into skb->data */
3304                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3305                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3306                         switch (adapter->hw.mac_type) {
3307                                 unsigned int pull_size;
3308                         case e1000_82571:
3309                         case e1000_82572:
3310                         case e1000_82573:
3311                         case e1000_ich8lan:
3312                                 pull_size = min((unsigned int)4, skb->data_len);
3313                                 if (!__pskb_pull_tail(skb, pull_size)) {
3314                                         DPRINTK(DRV, ERR,
3315                                                 "__pskb_pull_tail failed.\n");
3316                                         dev_kfree_skb_any(skb);
3317                                         return NETDEV_TX_OK;
3318                                 }
3319                                 len = skb->len - skb->data_len;
3320                                 break;
3321                         default:
3322                                 /* do nothing */
3323                                 break;
3324                         }
3325                 }
3326         }
3327
3328         /* reserve a descriptor for the offload context */
3329         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3330                 count++;
3331         count++;
3332 #else
3333         if (skb->ip_summed == CHECKSUM_PARTIAL)
3334                 count++;
3335 #endif
3336
3337 #ifdef NETIF_F_TSO
3338         /* Controller Erratum workaround */
3339         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3340                 count++;
3341 #endif
3342
3343         count += TXD_USE_COUNT(len, max_txd_pwr);
3344
3345         if (adapter->pcix_82544)
3346                 count++;
3347
3348         /* work-around for errata 10 and it applies to all controllers
3349          * in PCI-X mode, so add one more descriptor to the count
3350          */
3351         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3352                         (len > 2015)))
3353                 count++;
3354
3355         nr_frags = skb_shinfo(skb)->nr_frags;
3356         for (f = 0; f < nr_frags; f++)
3357                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3358                                        max_txd_pwr);
3359         if (adapter->pcix_82544)
3360                 count += nr_frags;
3361
3362
3363         if (adapter->hw.tx_pkt_filtering &&
3364             (adapter->hw.mac_type == e1000_82573))
3365                 e1000_transfer_dhcp_info(adapter, skb);
3366
3367         local_irq_save(flags);
3368         if (!spin_trylock(&tx_ring->tx_lock)) {
3369                 /* Collision - tell upper layer to requeue */
3370                 local_irq_restore(flags);
3371                 return NETDEV_TX_LOCKED;
3372         }
3373
3374         /* need: count + 2 desc gap to keep tail from touching
3375          * head, otherwise try next time */
3376         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3377                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3378                 return NETDEV_TX_BUSY;
3379         }
3380
3381         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3382                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3383                         netif_stop_queue(netdev);
3384                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3385                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3386                         return NETDEV_TX_BUSY;
3387                 }
3388         }
3389
3390         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3391                 tx_flags |= E1000_TX_FLAGS_VLAN;
3392                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3393         }
3394
3395         first = tx_ring->next_to_use;
3396
3397         tso = e1000_tso(adapter, tx_ring, skb);
3398         if (tso < 0) {
3399                 dev_kfree_skb_any(skb);
3400                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3401                 return NETDEV_TX_OK;
3402         }
3403
3404         if (likely(tso)) {
3405                 tx_ring->last_tx_tso = 1;
3406                 tx_flags |= E1000_TX_FLAGS_TSO;
3407         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3408                 tx_flags |= E1000_TX_FLAGS_CSUM;
3409
3410         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3411          * 82571 hardware supports TSO capabilities for IPv6 as well...
3412          * no longer assume, we must. */
3413         if (likely(skb->protocol == htons(ETH_P_IP)))
3414                 tx_flags |= E1000_TX_FLAGS_IPV4;
3415
3416         e1000_tx_queue(adapter, tx_ring, tx_flags,
3417                        e1000_tx_map(adapter, tx_ring, skb, first,
3418                                     max_per_txd, nr_frags, mss));
3419
3420         netdev->trans_start = jiffies;
3421
3422         /* Make sure there is space in the ring for the next send. */
3423         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3424
3425         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3426         return NETDEV_TX_OK;
3427 }
3428
3429 /**
3430  * e1000_tx_timeout - Respond to a Tx Hang
3431  * @netdev: network interface device structure
3432  **/
3433
3434 static void
3435 e1000_tx_timeout(struct net_device *netdev)
3436 {
3437         struct e1000_adapter *adapter = netdev_priv(netdev);
3438
3439         /* Do the reset outside of interrupt context */
3440         adapter->tx_timeout_count++;
3441         schedule_work(&adapter->reset_task);
3442 }
3443
3444 static void
3445 e1000_reset_task(struct work_struct *work)
3446 {
3447         struct e1000_adapter *adapter =
3448                 container_of(work, struct e1000_adapter, reset_task);
3449
3450         e1000_reinit_locked(adapter);
3451 }
3452
3453 /**
3454  * e1000_get_stats - Get System Network Statistics
3455  * @netdev: network interface device structure
3456  *
3457  * Returns the address of the device statistics structure.
3458  * The statistics are actually updated from the timer callback.
3459  **/
3460
3461 static struct net_device_stats *
3462 e1000_get_stats(struct net_device *netdev)
3463 {
3464         struct e1000_adapter *adapter = netdev_priv(netdev);
3465
3466         /* only return the current stats */
3467         return &adapter->net_stats;
3468 }
3469
3470 /**
3471  * e1000_change_mtu - Change the Maximum Transfer Unit
3472  * @netdev: network interface device structure
3473  * @new_mtu: new value for maximum frame size
3474  *
3475  * Returns 0 on success, negative on failure
3476  **/
3477
3478 static int
3479 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3480 {
3481         struct e1000_adapter *adapter = netdev_priv(netdev);
3482         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3483         uint16_t eeprom_data = 0;
3484
3485         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3486             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3487                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3488                 return -EINVAL;
3489         }
3490
3491         /* Adapter-specific max frame size limits. */
3492         switch (adapter->hw.mac_type) {
3493         case e1000_undefined ... e1000_82542_rev2_1:
3494         case e1000_ich8lan:
3495                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3496                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3497                         return -EINVAL;
3498                 }
3499                 break;
3500         case e1000_82573:
3501                 /* Jumbo Frames not supported if:
3502                  * - this is not an 82573L device
3503                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3504                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3505                                   &eeprom_data);
3506                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3507                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3508                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3509                                 DPRINTK(PROBE, ERR,
3510                                         "Jumbo Frames not supported.\n");
3511                                 return -EINVAL;
3512                         }
3513                         break;
3514                 }
3515                 /* ERT will be enabled later to enable wire speed receives */
3516
3517                 /* fall through to get support */
3518         case e1000_82571:
3519         case e1000_82572:
3520         case e1000_80003es2lan:
3521 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3522                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3523                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3524                         return -EINVAL;
3525                 }
3526                 break;
3527         default:
3528                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3529                 break;
3530         }
3531
3532         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3533          * means we reserve 2 more, this pushes us to allocate from the next
3534          * larger slab size
3535          * i.e. RXBUFFER_2048 --> size-4096 slab */
3536
3537         if (max_frame <= E1000_RXBUFFER_256)
3538                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3539         else if (max_frame <= E1000_RXBUFFER_512)
3540                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3541         else if (max_frame <= E1000_RXBUFFER_1024)
3542                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3543         else if (max_frame <= E1000_RXBUFFER_2048)
3544                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3545         else if (max_frame <= E1000_RXBUFFER_4096)
3546                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3547         else if (max_frame <= E1000_RXBUFFER_8192)
3548                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3549         else if (max_frame <= E1000_RXBUFFER_16384)
3550                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3551
3552         /* adjust allocation if LPE protects us, and we aren't using SBP */
3553         if (!adapter->hw.tbi_compatibility_on &&
3554             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3555              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3556                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3557
3558         netdev->mtu = new_mtu;
3559         adapter->hw.max_frame_size = max_frame;
3560
3561         if (netif_running(netdev))
3562                 e1000_reinit_locked(adapter);
3563
3564         return 0;
3565 }
3566
3567 /**
3568  * e1000_update_stats - Update the board statistics counters
3569  * @adapter: board private structure
3570  **/
3571
3572 void
3573 e1000_update_stats(struct e1000_adapter *adapter)
3574 {
3575         struct e1000_hw *hw = &adapter->hw;
3576         struct pci_dev *pdev = adapter->pdev;
3577         unsigned long flags;
3578         uint16_t phy_tmp;
3579
3580 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3581
3582         /*
3583          * Prevent stats update while adapter is being reset, or if the pci
3584          * connection is down.
3585          */
3586         if (adapter->link_speed == 0)
3587                 return;
3588         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3589                 return;
3590
3591         spin_lock_irqsave(&adapter->stats_lock, flags);
3592
3593         /* these counters are modified from e1000_adjust_tbi_stats,
3594          * called from the interrupt context, so they must only
3595          * be written while holding adapter->stats_lock
3596          */
3597
3598         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3599         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3600         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3601         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3602         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3603         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3604         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3605
3606         if (adapter->hw.mac_type != e1000_ich8lan) {
3607                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3608                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3609                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3610                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3611                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3612                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3613         }
3614
3615         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3616         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3617         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3618         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3619         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3620         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3621         adapter->stats.dc += E1000_READ_REG(hw, DC);
3622         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3623         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3624         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3625         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3626         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3627         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3628         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3629         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3630         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3631         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3632         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3633         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3634         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3635         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3636         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3637         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3638         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3639         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3640         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3641
3642         if (adapter->hw.mac_type != e1000_ich8lan) {
3643                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3644                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3645                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3646                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3647                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3648                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3649         }
3650
3651         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3652         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3653
3654         /* used for adaptive IFS */
3655
3656         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3657         adapter->stats.tpt += hw->tx_packet_delta;
3658         hw->collision_delta = E1000_READ_REG(hw, COLC);
3659         adapter->stats.colc += hw->collision_delta;
3660
3661         if (hw->mac_type >= e1000_82543) {
3662                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3663                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3664                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3665                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3666                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3667                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3668         }
3669         if (hw->mac_type > e1000_82547_rev_2) {
3670                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3671                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3672
3673                 if (adapter->hw.mac_type != e1000_ich8lan) {
3674                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3675                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3676                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3677                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3678                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3679                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3680                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3681                 }
3682         }
3683
3684         /* Fill out the OS statistics structure */
3685         adapter->net_stats.rx_packets = adapter->stats.gprc;
3686         adapter->net_stats.tx_packets = adapter->stats.gptc;
3687         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3688         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3689         adapter->net_stats.multicast = adapter->stats.mprc;
3690         adapter->net_stats.collisions = adapter->stats.colc;
3691
3692         /* Rx Errors */
3693
3694         /* RLEC on some newer hardware can be incorrect so build
3695         * our own version based on RUC and ROC */
3696         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3697                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3698                 adapter->stats.ruc + adapter->stats.roc +
3699                 adapter->stats.cexterr;
3700         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3702         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3703         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3704         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3705
3706         /* Tx Errors */
3707         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3709         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3710         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3711         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3712         if (adapter->hw.bad_tx_carr_stats_fd &&
3713             adapter->link_duplex == FULL_DUPLEX) {
3714                 adapter->net_stats.tx_carrier_errors = 0;
3715                 adapter->stats.tncrs = 0;
3716         }
3717
3718         /* Tx Dropped needs to be maintained elsewhere */
3719
3720         /* Phy Stats */
3721         if (hw->media_type == e1000_media_type_copper) {
3722                 if ((adapter->link_speed == SPEED_1000) &&
3723                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725                         adapter->phy_stats.idle_errors += phy_tmp;
3726                 }
3727
3728                 if ((hw->mac_type <= e1000_82546) &&
3729                    (hw->phy_type == e1000_phy_m88) &&
3730                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731                         adapter->phy_stats.receive_errors += phy_tmp;
3732         }
3733
3734         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3735 }
3736 #ifdef CONFIG_PCI_MSI
3737
3738 /**
3739  * e1000_intr_msi - Interrupt Handler
3740  * @irq: interrupt number
3741  * @data: pointer to a network interface device structure
3742  **/
3743
3744 static
3745 irqreturn_t e1000_intr_msi(int irq, void *data)
3746 {
3747         struct net_device *netdev = data;
3748         struct e1000_adapter *adapter = netdev_priv(netdev);
3749         struct e1000_hw *hw = &adapter->hw;
3750 #ifndef CONFIG_E1000_NAPI
3751         int i;
3752 #endif
3753
3754         /* this code avoids the read of ICR but has to get 1000 interrupts
3755          * at every link change event before it will notice the change */
3756         if (++adapter->detect_link >= 1000) {
3757                 uint32_t icr = E1000_READ_REG(hw, ICR);
3758 #ifdef CONFIG_E1000_NAPI
3759                 /* read ICR disables interrupts using IAM, so keep up with our
3760                  * enable/disable accounting */
3761                 atomic_inc(&adapter->irq_sem);
3762 #endif
3763                 adapter->detect_link = 0;
3764                 if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) &&
3765                     (icr & E1000_ICR_INT_ASSERTED)) {
3766                         hw->get_link_status = 1;
3767                         /* 80003ES2LAN workaround--
3768                         * For packet buffer work-around on link down event;
3769                         * disable receives here in the ISR and
3770                         * reset adapter in watchdog
3771                         */
3772                         if (netif_carrier_ok(netdev) &&
3773                             (adapter->hw.mac_type == e1000_80003es2lan)) {
3774                                 /* disable receives */
3775                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3776                                 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3777                         }
3778                         /* guard against interrupt when we're going down */
3779                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3780                                 mod_timer(&adapter->watchdog_timer,
3781                                           jiffies + 1);
3782                 }
3783         } else {
3784                 E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ |
3785                                                          E1000_ICR_LSC)));
3786                 /* bummer we have to flush here, but things break otherwise as
3787                  * some event appears to be lost or delayed and throughput
3788                  * drops.  In almost all tests this flush is un-necessary */
3789                 E1000_WRITE_FLUSH(hw);
3790 #ifdef CONFIG_E1000_NAPI
3791                 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3792                  * masked.  No need for the IMC write, but it does mean we
3793                  * should account for it ASAP. */
3794                 atomic_inc(&adapter->irq_sem);
3795 #endif
3796         }
3797
3798 #ifdef CONFIG_E1000_NAPI
3799         if (likely(netif_rx_schedule_prep(netdev))) {
3800                 adapter->total_tx_bytes = 0;
3801                 adapter->total_tx_packets = 0;
3802                 adapter->total_rx_bytes = 0;
3803                 adapter->total_rx_packets = 0;
3804                 __netif_rx_schedule(netdev);
3805         } else
3806                 e1000_irq_enable(adapter);
3807 #else
3808         adapter->total_tx_bytes = 0;
3809         adapter->total_rx_bytes = 0;
3810         adapter->total_tx_packets = 0;
3811         adapter->total_rx_packets = 0;
3812
3813         for (i = 0; i < E1000_MAX_INTR; i++)
3814                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3815                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3816                         break;
3817
3818         if (likely(adapter->itr_setting & 3))
3819                 e1000_set_itr(adapter);
3820 #endif
3821
3822         return IRQ_HANDLED;
3823 }
3824 #endif
3825
3826 /**
3827  * e1000_intr - Interrupt Handler
3828  * @irq: interrupt number
3829  * @data: pointer to a network interface device structure
3830  **/
3831
3832 static irqreturn_t
3833 e1000_intr(int irq, void *data)
3834 {
3835         struct net_device *netdev = data;
3836         struct e1000_adapter *adapter = netdev_priv(netdev);
3837         struct e1000_hw *hw = &adapter->hw;
3838         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3839 #ifndef CONFIG_E1000_NAPI
3840         int i;
3841 #endif
3842         if (unlikely(!icr))
3843                 return IRQ_NONE;  /* Not our interrupt */
3844
3845 #ifdef CONFIG_E1000_NAPI
3846         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3847          * not set, then the adapter didn't send an interrupt */
3848         if (unlikely(hw->mac_type >= e1000_82571 &&
3849                      !(icr & E1000_ICR_INT_ASSERTED)))
3850                 return IRQ_NONE;
3851
3852         /* Interrupt Auto-Mask...upon reading ICR,
3853          * interrupts are masked.  No need for the
3854          * IMC write, but it does mean we should
3855          * account for it ASAP. */
3856         if (likely(hw->mac_type >= e1000_82571))
3857                 atomic_inc(&adapter->irq_sem);
3858 #endif
3859
3860         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3861                 hw->get_link_status = 1;
3862                 /* 80003ES2LAN workaround--
3863                  * For packet buffer work-around on link down event;
3864                  * disable receives here in the ISR and
3865                  * reset adapter in watchdog
3866                  */
3867                 if (netif_carrier_ok(netdev) &&
3868                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3869                         /* disable receives */
3870                         rctl = E1000_READ_REG(hw, RCTL);
3871                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3872                 }
3873                 /* guard against interrupt when we're going down */
3874                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3875                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3876         }
3877
3878 #ifdef CONFIG_E1000_NAPI
3879         if (unlikely(hw->mac_type < e1000_82571)) {
3880                 /* disable interrupts, without the synchronize_irq bit */
3881                 atomic_inc(&adapter->irq_sem);
3882                 E1000_WRITE_REG(hw, IMC, ~0);
3883                 E1000_WRITE_FLUSH(hw);
3884         }
3885         if (likely(netif_rx_schedule_prep(netdev))) {
3886                 adapter->total_tx_bytes = 0;
3887                 adapter->total_tx_packets = 0;
3888                 adapter->total_rx_bytes = 0;
3889                 adapter->total_rx_packets = 0;
3890                 __netif_rx_schedule(netdev);
3891         } else
3892                 /* this really should not happen! if it does it is basically a
3893                  * bug, but not a hard error, so enable ints and continue */
3894                 e1000_irq_enable(adapter);
3895 #else
3896         /* Writing IMC and IMS is needed for 82547.
3897          * Due to Hub Link bus being occupied, an interrupt
3898          * de-assertion message is not able to be sent.
3899          * When an interrupt assertion message is generated later,
3900          * two messages are re-ordered and sent out.
3901          * That causes APIC to think 82547 is in de-assertion
3902          * state, while 82547 is in assertion state, resulting
3903          * in dead lock. Writing IMC forces 82547 into
3904          * de-assertion state.
3905          */
3906         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3907                 atomic_inc(&adapter->irq_sem);
3908                 E1000_WRITE_REG(hw, IMC, ~0);
3909         }
3910
3911         adapter->total_tx_bytes = 0;
3912         adapter->total_rx_bytes = 0;
3913         adapter->total_tx_packets = 0;
3914         adapter->total_rx_packets = 0;
3915
3916         for (i = 0; i < E1000_MAX_INTR; i++)
3917                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3918                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3919                         break;
3920
3921         if (likely(adapter->itr_setting & 3))
3922                 e1000_set_itr(adapter);
3923
3924         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3925                 e1000_irq_enable(adapter);
3926
3927 #endif
3928         return IRQ_HANDLED;
3929 }
3930
3931 #ifdef CONFIG_E1000_NAPI
3932 /**
3933  * e1000_clean - NAPI Rx polling callback
3934  * @adapter: board private structure
3935  **/
3936
3937 static int
3938 e1000_clean(struct net_device *poll_dev, int *budget)
3939 {
3940         struct e1000_adapter *adapter;
3941         int work_to_do = min(*budget, poll_dev->quota);
3942         int tx_cleaned = 0, work_done = 0;
3943
3944         /* Must NOT use netdev_priv macro here. */
3945         adapter = poll_dev->priv;
3946
3947         /* Keep link state information with original netdev */
3948         if (!netif_carrier_ok(poll_dev))
3949                 goto quit_polling;
3950
3951         /* e1000_clean is called per-cpu.  This lock protects
3952          * tx_ring[0] from being cleaned by multiple cpus
3953          * simultaneously.  A failure obtaining the lock means
3954          * tx_ring[0] is currently being cleaned anyway. */
3955         if (spin_trylock(&adapter->tx_queue_lock)) {
3956                 tx_cleaned = e1000_clean_tx_irq(adapter,
3957                                                 &adapter->tx_ring[0]);
3958                 spin_unlock(&adapter->tx_queue_lock);
3959         }
3960
3961         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3962                           &work_done, work_to_do);
3963
3964         *budget -= work_done;
3965         poll_dev->quota -= work_done;
3966
3967         /* If no Tx and not enough Rx work done, exit the polling mode */
3968         if ((!tx_cleaned && (work_done == 0)) ||
3969            !netif_running(poll_dev)) {
3970 quit_polling:
3971                 if (likely(adapter->itr_setting & 3))
3972                         e1000_set_itr(adapter);
3973                 netif_rx_complete(poll_dev);
3974                 e1000_irq_enable(adapter);
3975                 return 0;
3976         }
3977
3978         return 1;
3979 }
3980
3981 #endif
3982 /**
3983  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3984  * @adapter: board private structure
3985  **/
3986
3987 static boolean_t
3988 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3989                    struct e1000_tx_ring *tx_ring)
3990 {
3991         struct net_device *netdev = adapter->netdev;
3992         struct e1000_tx_desc *tx_desc, *eop_desc;
3993         struct e1000_buffer *buffer_info;
3994         unsigned int i, eop;
3995 #ifdef CONFIG_E1000_NAPI
3996         unsigned int count = 0;
3997 #endif
3998         boolean_t cleaned = FALSE;
3999         unsigned int total_tx_bytes=0, total_tx_packets=0;
4000
4001         i = tx_ring->next_to_clean;
4002         eop = tx_ring->buffer_info[i].next_to_watch;
4003         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4004
4005         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4006                 for (cleaned = FALSE; !cleaned; ) {
4007                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4008                         buffer_info = &tx_ring->buffer_info[i];
4009                         cleaned = (i == eop);
4010
4011                         if (cleaned) {
4012                                 struct sk_buff *skb = buffer_info->skb;
4013                                 unsigned int segs = skb_shinfo(skb)->gso_segs;
4014                                 total_tx_packets += segs;
4015                                 total_tx_packets++;
4016                                 total_tx_bytes += skb->len;
4017                         }
4018                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4019                         tx_desc->upper.data = 0;
4020
4021                         if (unlikely(++i == tx_ring->count)) i = 0;
4022                 }
4023
4024                 eop = tx_ring->buffer_info[i].next_to_watch;
4025                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4026 #ifdef CONFIG_E1000_NAPI
4027 #define E1000_TX_WEIGHT 64
4028                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4029                 if (count++ == E1000_TX_WEIGHT) break;
4030 #endif
4031         }
4032
4033         tx_ring->next_to_clean = i;
4034
4035 #define TX_WAKE_THRESHOLD 32
4036         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4037                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4038                 /* Make sure that anybody stopping the queue after this
4039                  * sees the new next_to_clean.
4040                  */
4041                 smp_mb();
4042                 if (netif_queue_stopped(netdev)) {
4043                         netif_wake_queue(netdev);
4044                         ++adapter->restart_queue;
4045                 }
4046         }
4047
4048         if (adapter->detect_tx_hung) {
4049                 /* Detect a transmit hang in hardware, this serializes the
4050                  * check with the clearing of time_stamp and movement of i */
4051                 adapter->detect_tx_hung = FALSE;
4052                 if (tx_ring->buffer_info[eop].dma &&
4053                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4054                                (adapter->tx_timeout_factor * HZ))
4055                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4056                          E1000_STATUS_TXOFF)) {
4057
4058                         /* detected Tx unit hang */
4059                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4060                                         "  Tx Queue             <%lu>\n"
4061                                         "  TDH                  <%x>\n"
4062                                         "  TDT                  <%x>\n"
4063                                         "  next_to_use          <%x>\n"
4064                                         "  next_to_clean        <%x>\n"
4065                                         "buffer_info[next_to_clean]\n"
4066                                         "  time_stamp           <%lx>\n"
4067                                         "  next_to_watch        <%x>\n"
4068                                         "  jiffies              <%lx>\n"
4069                                         "  next_to_watch.status <%x>\n",
4070                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4071                                         sizeof(struct e1000_tx_ring)),
4072                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4073                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4074                                 tx_ring->next_to_use,
4075                                 tx_ring->next_to_clean,
4076                                 tx_ring->buffer_info[eop].time_stamp,
4077                                 eop,
4078                                 jiffies,
4079                                 eop_desc->upper.fields.status);
4080                         netif_stop_queue(netdev);
4081                 }
4082         }
4083         adapter->total_tx_bytes += total_tx_bytes;
4084         adapter->total_tx_packets += total_tx_packets;
4085         return cleaned;
4086 }
4087
4088 /**
4089  * e1000_rx_checksum - Receive Checksum Offload for 82543
4090  * @adapter:     board private structure
4091  * @status_err:  receive descriptor status and error fields
4092  * @csum:        receive descriptor csum field
4093  * @sk_buff:     socket buffer with received data
4094  **/
4095
4096 static void
4097 e1000_rx_checksum(struct e1000_adapter *adapter,
4098                   uint32_t status_err, uint32_t csum,
4099                   struct sk_buff *skb)
4100 {
4101         uint16_t status = (uint16_t)status_err;
4102         uint8_t errors = (uint8_t)(status_err >> 24);
4103         skb->ip_summed = CHECKSUM_NONE;
4104
4105         /* 82543 or newer only */
4106         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4107         /* Ignore Checksum bit is set */
4108         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4109         /* TCP/UDP checksum error bit is set */
4110         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4111                 /* let the stack verify checksum errors */
4112                 adapter->hw_csum_err++;
4113                 return;
4114         }
4115         /* TCP/UDP Checksum has not been calculated */
4116         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4117                 if (!(status & E1000_RXD_STAT_TCPCS))
4118                         return;
4119         } else {
4120                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4121                         return;
4122         }
4123         /* It must be a TCP or UDP packet with a valid checksum */
4124         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4125                 /* TCP checksum is good */
4126                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4127         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4128                 /* IP fragment with UDP payload */
4129                 /* Hardware complements the payload checksum, so we undo it
4130                  * and then put the value in host order for further stack use.
4131                  */
4132                 csum = ntohl(csum ^ 0xFFFF);
4133                 skb->csum = csum;
4134                 skb->ip_summed = CHECKSUM_COMPLETE;
4135         }
4136         adapter->hw_csum_good++;
4137 }
4138
4139 /**
4140  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4141  * @adapter: board private structure
4142  **/
4143
4144 static boolean_t
4145 #ifdef CONFIG_E1000_NAPI
4146 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4147                    struct e1000_rx_ring *rx_ring,
4148                    int *work_done, int work_to_do)
4149 #else
4150 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4151                    struct e1000_rx_ring *rx_ring)
4152 #endif
4153 {
4154         struct net_device *netdev = adapter->netdev;
4155         struct pci_dev *pdev = adapter->pdev;
4156         struct e1000_rx_desc *rx_desc, *next_rxd;
4157         struct e1000_buffer *buffer_info, *next_buffer;
4158         unsigned long flags;
4159         uint32_t length;
4160         uint8_t last_byte;
4161         unsigned int i;
4162         int cleaned_count = 0;
4163         boolean_t cleaned = FALSE;
4164         unsigned int total_rx_bytes=0, total_rx_packets=0;
4165
4166         i = rx_ring->next_to_clean;
4167         rx_desc = E1000_RX_DESC(*rx_ring, i);
4168         buffer_info = &rx_ring->buffer_info[i];
4169
4170         while (rx_desc->status & E1000_RXD_STAT_DD) {
4171                 struct sk_buff *skb;
4172                 u8 status;
4173
4174 #ifdef CONFIG_E1000_NAPI
4175                 if (*work_done >= work_to_do)
4176                         break;
4177                 (*work_done)++;
4178 #endif
4179                 status = rx_desc->status;
4180                 skb = buffer_info->skb;
4181                 buffer_info->skb = NULL;
4182
4183                 prefetch(skb->data - NET_IP_ALIGN);
4184
4185                 if (++i == rx_ring->count) i = 0;
4186                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4187                 prefetch(next_rxd);
4188
4189                 next_buffer = &rx_ring->buffer_info[i];
4190
4191                 cleaned = TRUE;
4192                 cleaned_count++;
4193                 pci_unmap_single(pdev,
4194                                  buffer_info->dma,
4195                                  buffer_info->length,
4196                                  PCI_DMA_FROMDEVICE);
4197
4198                 length = le16_to_cpu(rx_desc->length);
4199
4200                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4201                         /* All receives must fit into a single buffer */
4202                         E1000_DBG("%s: Receive packet consumed multiple"
4203                                   " buffers\n", netdev->name);
4204                         /* recycle */
4205                         buffer_info->skb = skb;
4206                         goto next_desc;
4207                 }
4208
4209                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4210                         last_byte = *(skb->data + length - 1);
4211                         if (TBI_ACCEPT(&adapter->hw, status,
4212                                       rx_desc->errors, length, last_byte)) {
4213                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4214                                 e1000_tbi_adjust_stats(&adapter->hw,
4215                                                        &adapter->stats,
4216                                                        length, skb->data);
4217                                 spin_unlock_irqrestore(&adapter->stats_lock,
4218                                                        flags);
4219                                 length--;
4220                         } else {
4221                                 /* recycle */
4222                                 buffer_info->skb = skb;
4223                                 goto next_desc;
4224                         }
4225                 }
4226
4227                 /* adjust length to remove Ethernet CRC, this must be
4228                  * done after the TBI_ACCEPT workaround above */
4229                 length -= 4;
4230
4231                 /* probably a little skewed due to removing CRC */
4232                 total_rx_bytes += length;
4233                 total_rx_packets++;
4234
4235                 /* code added for copybreak, this should improve
4236                  * performance for small packets with large amounts
4237                  * of reassembly being done in the stack */
4238 #define E1000_CB_LENGTH 256
4239                 if (length < E1000_CB_LENGTH) {
4240                         struct sk_buff *new_skb =
4241                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4242                         if (new_skb) {
4243                                 skb_reserve(new_skb, NET_IP_ALIGN);
4244                                 memcpy(new_skb->data - NET_IP_ALIGN,
4245                                        skb->data - NET_IP_ALIGN,
4246                                        length + NET_IP_ALIGN);
4247                                 /* save the skb in buffer_info as good */
4248                                 buffer_info->skb = skb;
4249                                 skb = new_skb;
4250                         }
4251                         /* else just continue with the old one */
4252                 }
4253                 /* end copybreak code */
4254                 skb_put(skb, length);
4255
4256                 /* Receive Checksum Offload */
4257                 e1000_rx_checksum(adapter,
4258                                   (uint32_t)(status) |
4259                                   ((uint32_t)(rx_desc->errors) << 24),
4260                                   le16_to_cpu(rx_desc->csum), skb);
4261
4262                 skb->protocol = eth_type_trans(skb, netdev);
4263 #ifdef CONFIG_E1000_NAPI
4264                 if (unlikely(adapter->vlgrp &&
4265                             (status & E1000_RXD_STAT_VP))) {
4266                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4267                                                  le16_to_cpu(rx_desc->special) &
4268                                                  E1000_RXD_SPC_VLAN_MASK);
4269                 } else {
4270                         netif_receive_skb(skb);
4271                 }
4272 #else /* CONFIG_E1000_NAPI */
4273                 if (unlikely(adapter->vlgrp &&
4274                             (status & E1000_RXD_STAT_VP))) {
4275                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4276                                         le16_to_cpu(rx_desc->special) &
4277                                         E1000_RXD_SPC_VLAN_MASK);
4278                 } else {
4279                         netif_rx(skb);
4280                 }
4281 #endif /* CONFIG_E1000_NAPI */
4282                 netdev->last_rx = jiffies;
4283
4284 next_desc:
4285                 rx_desc->status = 0;
4286
4287                 /* return some buffers to hardware, one at a time is too slow */
4288                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4289                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4290                         cleaned_count = 0;
4291                 }
4292
4293                 /* use prefetched values */
4294                 rx_desc = next_rxd;
4295                 buffer_info = next_buffer;
4296         }
4297         rx_ring->next_to_clean = i;
4298
4299         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4300         if (cleaned_count)
4301                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4302
4303         adapter->total_rx_packets += total_rx_packets;
4304         adapter->total_rx_bytes += total_rx_bytes;
4305         return cleaned;
4306 }
4307
4308 /**
4309  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4310  * @adapter: board private structure
4311  **/
4312
4313 static boolean_t
4314 #ifdef CONFIG_E1000_NAPI
4315 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4316                       struct e1000_rx_ring *rx_ring,
4317                       int *work_done, int work_to_do)
4318 #else
4319 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4320                       struct e1000_rx_ring *rx_ring)
4321 #endif
4322 {
4323         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4324         struct net_device *netdev = adapter->netdev;
4325         struct pci_dev *pdev = adapter->pdev;
4326         struct e1000_buffer *buffer_info, *next_buffer;
4327         struct e1000_ps_page *ps_page;
4328         struct e1000_ps_page_dma *ps_page_dma;
4329         struct sk_buff *skb;
4330         unsigned int i, j;
4331         uint32_t length, staterr;
4332         int cleaned_count = 0;
4333         boolean_t cleaned = FALSE;
4334         unsigned int total_rx_bytes=0, total_rx_packets=0;
4335
4336         i = rx_ring->next_to_clean;
4337         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4338         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4339         buffer_info = &rx_ring->buffer_info[i];
4340
4341         while (staterr & E1000_RXD_STAT_DD) {
4342                 ps_page = &rx_ring->ps_page[i];
4343                 ps_page_dma = &rx_ring->ps_page_dma[i];
4344 #ifdef CONFIG_E1000_NAPI
4345                 if (unlikely(*work_done >= work_to_do))
4346                         break;
4347                 (*work_done)++;
4348 #endif
4349                 skb = buffer_info->skb;
4350
4351                 /* in the packet split case this is header only */
4352                 prefetch(skb->data - NET_IP_ALIGN);
4353
4354                 if (++i == rx_ring->count) i = 0;
4355                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4356                 prefetch(next_rxd);
4357
4358                 next_buffer = &rx_ring->buffer_info[i];
4359
4360                 cleaned = TRUE;
4361                 cleaned_count++;
4362                 pci_unmap_single(pdev, buffer_info->dma,
4363                                  buffer_info->length,
4364                                  PCI_DMA_FROMDEVICE);
4365
4366                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4367                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4368                                   " the full packet\n", netdev->name);
4369                         dev_kfree_skb_irq(skb);
4370                         goto next_desc;
4371                 }
4372
4373                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4374                         dev_kfree_skb_irq(skb);
4375                         goto next_desc;
4376                 }
4377
4378                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4379
4380                 if (unlikely(!length)) {
4381                         E1000_DBG("%s: Last part of the packet spanning"
4382                                   " multiple descriptors\n", netdev->name);
4383                         dev_kfree_skb_irq(skb);
4384                         goto next_desc;
4385                 }
4386
4387                 /* Good Receive */
4388                 skb_put(skb, length);
4389
4390                 {
4391                 /* this looks ugly, but it seems compiler issues make it
4392                    more efficient than reusing j */
4393                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4394
4395                 /* page alloc/put takes too long and effects small packet
4396                  * throughput, so unsplit small packets and save the alloc/put*/
4397                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
4398                         u8 *vaddr;
4399                         /* there is no documentation about how to call
4400                          * kmap_atomic, so we can't hold the mapping
4401                          * very long */
4402                         pci_dma_sync_single_for_cpu(pdev,
4403                                 ps_page_dma->ps_page_dma[0],
4404                                 PAGE_SIZE,
4405                                 PCI_DMA_FROMDEVICE);
4406                         vaddr = kmap_atomic(ps_page->ps_page[0],
4407                                             KM_SKB_DATA_SOFTIRQ);
4408                         memcpy(skb->tail, vaddr, l1);
4409                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4410                         pci_dma_sync_single_for_device(pdev,
4411                                 ps_page_dma->ps_page_dma[0],
4412                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4413                         /* remove the CRC */
4414                         l1 -= 4;
4415                         skb_put(skb, l1);
4416                         goto copydone;
4417                 } /* if */
4418                 }
4419
4420                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4421                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4422                                 break;
4423                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4424                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4425                         ps_page_dma->ps_page_dma[j] = 0;
4426                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4427                                            length);
4428                         ps_page->ps_page[j] = NULL;
4429                         skb->len += length;
4430                         skb->data_len += length;
4431                         skb->truesize += length;
4432                 }
4433
4434                 /* strip the ethernet crc, problem is we're using pages now so
4435                  * this whole operation can get a little cpu intensive */
4436                 pskb_trim(skb, skb->len - 4);
4437
4438 copydone:
4439                 total_rx_bytes += skb->len;
4440                 total_rx_packets++;
4441
4442                 e1000_rx_checksum(adapter, staterr,
4443                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4444                 skb->protocol = eth_type_trans(skb, netdev);
4445
4446                 if (likely(rx_desc->wb.upper.header_status &
4447                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4448                         adapter->rx_hdr_split++;
4449 #ifdef CONFIG_E1000_NAPI
4450                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4451                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4452                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4453                                 E1000_RXD_SPC_VLAN_MASK);
4454                 } else {
4455                         netif_receive_skb(skb);
4456                 }
4457 #else /* CONFIG_E1000_NAPI */
4458                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4459                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4460                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4461                                 E1000_RXD_SPC_VLAN_MASK);
4462                 } else {
4463                         netif_rx(skb);
4464                 }
4465 #endif /* CONFIG_E1000_NAPI */
4466                 netdev->last_rx = jiffies;
4467
4468 next_desc:
4469                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4470                 buffer_info->skb = NULL;
4471
4472                 /* return some buffers to hardware, one at a time is too slow */
4473                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4474                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4475                         cleaned_count = 0;
4476                 }
4477
4478                 /* use prefetched values */
4479                 rx_desc = next_rxd;
4480                 buffer_info = next_buffer;
4481
4482                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4483         }
4484         rx_ring->next_to_clean = i;
4485
4486         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4487         if (cleaned_count)
4488                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4489
4490         adapter->total_rx_packets += total_rx_packets;
4491         adapter->total_rx_bytes += total_rx_bytes;
4492         return cleaned;
4493 }
4494
4495 /**
4496  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4497  * @adapter: address of board private structure
4498  **/
4499
4500 static void
4501 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4502                        struct e1000_rx_ring *rx_ring,
4503                        int cleaned_count)
4504 {
4505         struct net_device *netdev = adapter->netdev;
4506         struct pci_dev *pdev = adapter->pdev;
4507         struct e1000_rx_desc *rx_desc;
4508         struct e1000_buffer *buffer_info;
4509         struct sk_buff *skb;
4510         unsigned int i;
4511         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4512
4513         i = rx_ring->next_to_use;
4514         buffer_info = &rx_ring->buffer_info[i];
4515
4516         while (cleaned_count--) {
4517                 skb = buffer_info->skb;
4518                 if (skb) {
4519                         skb_trim(skb, 0);
4520                         goto map_skb;
4521                 }
4522
4523                 skb = netdev_alloc_skb(netdev, bufsz);
4524                 if (unlikely(!skb)) {
4525                         /* Better luck next round */
4526                         adapter->alloc_rx_buff_failed++;
4527                         break;
4528                 }
4529
4530                 /* Fix for errata 23, can't cross 64kB boundary */
4531                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4532                         struct sk_buff *oldskb = skb;
4533                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4534                                              "at %p\n", bufsz, skb->data);
4535                         /* Try again, without freeing the previous */
4536                         skb = netdev_alloc_skb(netdev, bufsz);
4537                         /* Failed allocation, critical failure */
4538                         if (!skb) {
4539                                 dev_kfree_skb(oldskb);
4540                                 break;
4541                         }
4542
4543                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4544                                 /* give up */
4545                                 dev_kfree_skb(skb);
4546                                 dev_kfree_skb(oldskb);
4547                                 break; /* while !buffer_info->skb */
4548                         }
4549
4550                         /* Use new allocation */
4551                         dev_kfree_skb(oldskb);
4552                 }
4553                 /* Make buffer alignment 2 beyond a 16 byte boundary
4554                  * this will result in a 16 byte aligned IP header after
4555                  * the 14 byte MAC header is removed
4556                  */
4557                 skb_reserve(skb, NET_IP_ALIGN);
4558
4559                 buffer_info->skb = skb;
4560                 buffer_info->length = adapter->rx_buffer_len;
4561 map_skb:
4562                 buffer_info->dma = pci_map_single(pdev,
4563                                                   skb->data,
4564                                                   adapter->rx_buffer_len,
4565                                                   PCI_DMA_FROMDEVICE);
4566
4567                 /* Fix for errata 23, can't cross 64kB boundary */
4568                 if (!e1000_check_64k_bound(adapter,
4569                                         (void *)(unsigned long)buffer_info->dma,
4570                                         adapter->rx_buffer_len)) {
4571                         DPRINTK(RX_ERR, ERR,
4572                                 "dma align check failed: %u bytes at %p\n",
4573                                 adapter->rx_buffer_len,
4574                                 (void *)(unsigned long)buffer_info->dma);
4575                         dev_kfree_skb(skb);
4576                         buffer_info->skb = NULL;
4577
4578                         pci_unmap_single(pdev, buffer_info->dma,
4579                                          adapter->rx_buffer_len,
4580                                          PCI_DMA_FROMDEVICE);
4581
4582                         break; /* while !buffer_info->skb */
4583                 }
4584                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4585                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4586
4587                 if (unlikely(++i == rx_ring->count))
4588                         i = 0;
4589                 buffer_info = &rx_ring->buffer_info[i];
4590         }
4591
4592         if (likely(rx_ring->next_to_use != i)) {
4593                 rx_ring->next_to_use = i;
4594                 if (unlikely(i-- == 0))
4595                         i = (rx_ring->count - 1);
4596
4597                 /* Force memory writes to complete before letting h/w
4598                  * know there are new descriptors to fetch.  (Only
4599                  * applicable for weak-ordered memory model archs,
4600                  * such as IA-64). */
4601                 wmb();
4602                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4603         }
4604 }
4605
4606 /**
4607  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4608  * @adapter: address of board private structure
4609  **/
4610
4611 static void
4612 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4613                           struct e1000_rx_ring *rx_ring,
4614                           int cleaned_count)
4615 {
4616         struct net_device *netdev = adapter->netdev;
4617         struct pci_dev *pdev = adapter->pdev;
4618         union e1000_rx_desc_packet_split *rx_desc;
4619         struct e1000_buffer *buffer_info;
4620         struct e1000_ps_page *ps_page;
4621         struct e1000_ps_page_dma *ps_page_dma;
4622         struct sk_buff *skb;
4623         unsigned int i, j;
4624
4625         i = rx_ring->next_to_use;
4626         buffer_info = &rx_ring->buffer_info[i];
4627         ps_page = &rx_ring->ps_page[i];
4628         ps_page_dma = &rx_ring->ps_page_dma[i];
4629
4630         while (cleaned_count--) {
4631                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4632
4633                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4634                         if (j < adapter->rx_ps_pages) {
4635                                 if (likely(!ps_page->ps_page[j])) {
4636                                         ps_page->ps_page[j] =
4637                                                 alloc_page(GFP_ATOMIC);
4638                                         if (unlikely(!ps_page->ps_page[j])) {
4639                                                 adapter->alloc_rx_buff_failed++;
4640                                                 goto no_buffers;
4641                                         }
4642                                         ps_page_dma->ps_page_dma[j] =
4643                                                 pci_map_page(pdev,
4644                                                             ps_page->ps_page[j],
4645                                                             0, PAGE_SIZE,
4646                                                             PCI_DMA_FROMDEVICE);
4647                                 }
4648                                 /* Refresh the desc even if buffer_addrs didn't
4649                                  * change because each write-back erases
4650                                  * this info.
4651                                  */
4652                                 rx_desc->read.buffer_addr[j+1] =
4653                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4654                         } else
4655                                 rx_desc->read.buffer_addr[j+1] = ~0;
4656                 }
4657
4658                 skb = netdev_alloc_skb(netdev,
4659                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4660
4661                 if (unlikely(!skb)) {
4662                         adapter->alloc_rx_buff_failed++;
4663                         break;
4664                 }
4665
4666                 /* Make buffer alignment 2 beyond a 16 byte boundary
4667                  * this will result in a 16 byte aligned IP header after
4668                  * the 14 byte MAC header is removed
4669                  */
4670                 skb_reserve(skb, NET_IP_ALIGN);
4671
4672                 buffer_info->skb = skb;
4673                 buffer_info->length = adapter->rx_ps_bsize0;
4674                 buffer_info->dma = pci_map_single(pdev, skb->data,
4675                                                   adapter->rx_ps_bsize0,
4676                                                   PCI_DMA_FROMDEVICE);
4677
4678                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4679
4680                 if (unlikely(++i == rx_ring->count)) i = 0;
4681                 buffer_info = &rx_ring->buffer_info[i];
4682                 ps_page = &rx_ring->ps_page[i];
4683                 ps_page_dma = &rx_ring->ps_page_dma[i];
4684         }
4685
4686 no_buffers:
4687         if (likely(rx_ring->next_to_use != i)) {
4688                 rx_ring->next_to_use = i;
4689                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4690
4691                 /* Force memory writes to complete before letting h/w
4692                  * know there are new descriptors to fetch.  (Only
4693                  * applicable for weak-ordered memory model archs,
4694                  * such as IA-64). */
4695                 wmb();
4696                 /* Hardware increments by 16 bytes, but packet split
4697                  * descriptors are 32 bytes...so we increment tail
4698                  * twice as much.
4699                  */
4700                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4701         }
4702 }
4703
4704 /**
4705  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4706  * @adapter:
4707  **/
4708
4709 static void
4710 e1000_smartspeed(struct e1000_adapter *adapter)
4711 {
4712         uint16_t phy_status;
4713         uint16_t phy_ctrl;
4714
4715         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4716            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4717                 return;
4718
4719         if (adapter->smartspeed == 0) {
4720                 /* If Master/Slave config fault is asserted twice,
4721                  * we assume back-to-back */
4722                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4723                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4724                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4725                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4726                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4727                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4728                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4729                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4730                                             phy_ctrl);
4731                         adapter->smartspeed++;
4732                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4733                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4734                                                &phy_ctrl)) {
4735                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4736                                              MII_CR_RESTART_AUTO_NEG);
4737                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4738                                                     phy_ctrl);
4739                         }
4740                 }
4741                 return;
4742         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4743                 /* If still no link, perhaps using 2/3 pair cable */
4744                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4745                 phy_ctrl |= CR_1000T_MS_ENABLE;
4746                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4747                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4748                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4749                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4750                                      MII_CR_RESTART_AUTO_NEG);
4751                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4752                 }
4753         }
4754         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4755         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4756                 adapter->smartspeed = 0;
4757 }
4758
4759 /**
4760  * e1000_ioctl -
4761  * @netdev:
4762  * @ifreq:
4763  * @cmd:
4764  **/
4765
4766 static int
4767 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4768 {
4769         switch (cmd) {
4770         case SIOCGMIIPHY:
4771         case SIOCGMIIREG:
4772         case SIOCSMIIREG:
4773                 return e1000_mii_ioctl(netdev, ifr, cmd);
4774         default:
4775                 return -EOPNOTSUPP;
4776         }
4777 }
4778
4779 /**
4780  * e1000_mii_ioctl -
4781  * @netdev:
4782  * @ifreq:
4783  * @cmd:
4784  **/
4785
4786 static int
4787 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4788 {
4789         struct e1000_adapter *adapter = netdev_priv(netdev);
4790         struct mii_ioctl_data *data = if_mii(ifr);
4791         int retval;
4792         uint16_t mii_reg;
4793         uint16_t spddplx;
4794         unsigned long flags;
4795
4796         if (adapter->hw.media_type != e1000_media_type_copper)
4797                 return -EOPNOTSUPP;
4798
4799         switch (cmd) {
4800         case SIOCGMIIPHY:
4801                 data->phy_id = adapter->hw.phy_addr;
4802                 break;
4803         case SIOCGMIIREG:
4804                 if (!capable(CAP_NET_ADMIN))
4805                         return -EPERM;
4806                 spin_lock_irqsave(&adapter->stats_lock, flags);
4807                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4808                                    &data->val_out)) {
4809                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4810                         return -EIO;
4811                 }
4812                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4813                 break;
4814         case SIOCSMIIREG:
4815                 if (!capable(CAP_NET_ADMIN))
4816                         return -EPERM;
4817                 if (data->reg_num & ~(0x1F))
4818                         return -EFAULT;
4819                 mii_reg = data->val_in;
4820                 spin_lock_irqsave(&adapter->stats_lock, flags);
4821                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4822                                         mii_reg)) {
4823                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4824                         return -EIO;
4825                 }
4826                 if (adapter->hw.media_type == e1000_media_type_copper) {
4827                         switch (data->reg_num) {
4828                         case PHY_CTRL:
4829                                 if (mii_reg & MII_CR_POWER_DOWN)
4830                                         break;
4831                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4832                                         adapter->hw.autoneg = 1;
4833                                         adapter->hw.autoneg_advertised = 0x2F;
4834                                 } else {
4835                                         if (mii_reg & 0x40)
4836                                                 spddplx = SPEED_1000;
4837                                         else if (mii_reg & 0x2000)
4838                                                 spddplx = SPEED_100;
4839                                         else
4840                                                 spddplx = SPEED_10;
4841                                         spddplx += (mii_reg & 0x100)
4842                                                    ? DUPLEX_FULL :
4843                                                    DUPLEX_HALF;
4844                                         retval = e1000_set_spd_dplx(adapter,
4845                                                                     spddplx);
4846                                         if (retval) {
4847                                                 spin_unlock_irqrestore(
4848                                                         &adapter->stats_lock,
4849                                                         flags);
4850                                                 return retval;
4851                                         }
4852                                 }
4853                                 if (netif_running(adapter->netdev))
4854                                         e1000_reinit_locked(adapter);
4855                                 else
4856                                         e1000_reset(adapter);
4857                                 break;
4858                         case M88E1000_PHY_SPEC_CTRL:
4859                         case M88E1000_EXT_PHY_SPEC_CTRL:
4860                                 if (e1000_phy_reset(&adapter->hw)) {
4861                                         spin_unlock_irqrestore(
4862                                                 &adapter->stats_lock, flags);
4863                                         return -EIO;
4864                                 }
4865                                 break;
4866                         }
4867                 } else {
4868                         switch (data->reg_num) {
4869                         case PHY_CTRL:
4870                                 if (mii_reg & MII_CR_POWER_DOWN)
4871                                         break;
4872                                 if (netif_running(adapter->netdev))
4873                                         e1000_reinit_locked(adapter);
4874                                 else
4875                                         e1000_reset(adapter);
4876                                 break;
4877                         }
4878                 }
4879                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4880                 break;
4881         default:
4882                 return -EOPNOTSUPP;
4883         }
4884         return E1000_SUCCESS;
4885 }
4886
4887 void
4888 e1000_pci_set_mwi(struct e1000_hw *hw)
4889 {
4890         struct e1000_adapter *adapter = hw->back;
4891         int ret_val = pci_set_mwi(adapter->pdev);
4892
4893         if (ret_val)
4894                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4895 }
4896
4897 void
4898 e1000_pci_clear_mwi(struct e1000_hw *hw)
4899 {
4900         struct e1000_adapter *adapter = hw->back;
4901
4902         pci_clear_mwi(adapter->pdev);
4903 }
4904
4905 void
4906 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4907 {
4908         struct e1000_adapter *adapter = hw->back;
4909
4910         pci_read_config_word(adapter->pdev, reg, value);
4911 }
4912
4913 void
4914 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4915 {
4916         struct e1000_adapter *adapter = hw->back;
4917
4918         pci_write_config_word(adapter->pdev, reg, *value);
4919 }
4920
4921 int32_t
4922 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4923 {
4924     struct e1000_adapter *adapter = hw->back;
4925     uint16_t cap_offset;
4926
4927     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4928     if (!cap_offset)
4929         return -E1000_ERR_CONFIG;
4930
4931     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4932
4933     return E1000_SUCCESS;
4934 }
4935
4936 void
4937 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4938 {
4939         outl(value, port);
4940 }
4941
4942 static void
4943 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4944 {
4945         struct e1000_adapter *adapter = netdev_priv(netdev);
4946         uint32_t ctrl, rctl;
4947
4948         e1000_irq_disable(adapter);
4949         adapter->vlgrp = grp;
4950
4951         if (grp) {
4952                 /* enable VLAN tag insert/strip */
4953                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4954                 ctrl |= E1000_CTRL_VME;
4955                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4956
4957                 if (adapter->hw.mac_type != e1000_ich8lan) {
4958                         /* enable VLAN receive filtering */
4959                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4960                         rctl |= E1000_RCTL_VFE;
4961                         rctl &= ~E1000_RCTL_CFIEN;
4962                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4963                         e1000_update_mng_vlan(adapter);
4964                 }
4965         } else {
4966                 /* disable VLAN tag insert/strip */
4967                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4968                 ctrl &= ~E1000_CTRL_VME;
4969                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4970
4971                 if (adapter->hw.mac_type != e1000_ich8lan) {
4972                         /* disable VLAN filtering */
4973                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4974                         rctl &= ~E1000_RCTL_VFE;
4975                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4976                         if (adapter->mng_vlan_id !=
4977                             (uint16_t)E1000_MNG_VLAN_NONE) {
4978                                 e1000_vlan_rx_kill_vid(netdev,
4979                                                        adapter->mng_vlan_id);
4980                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4981                         }
4982                 }
4983         }
4984
4985         e1000_irq_enable(adapter);
4986 }
4987
4988 static void
4989 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4990 {
4991         struct e1000_adapter *adapter = netdev_priv(netdev);
4992         uint32_t vfta, index;
4993
4994         if ((adapter->hw.mng_cookie.status &
4995              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4996             (vid == adapter->mng_vlan_id))
4997                 return;
4998         /* add VID to filter table */
4999         index = (vid >> 5) & 0x7F;
5000         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5001         vfta |= (1 << (vid & 0x1F));
5002         e1000_write_vfta(&adapter->hw, index, vfta);
5003 }
5004
5005 static void
5006 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
5007 {
5008         struct e1000_adapter *adapter = netdev_priv(netdev);
5009         uint32_t vfta, index;
5010
5011         e1000_irq_disable(adapter);
5012
5013         if (adapter->vlgrp)
5014                 adapter->vlgrp->vlan_devices[vid] = NULL;
5015
5016         e1000_irq_enable(adapter);
5017
5018         if ((adapter->hw.mng_cookie.status &
5019              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5020             (vid == adapter->mng_vlan_id)) {
5021                 /* release control to f/w */
5022                 e1000_release_hw_control(adapter);
5023                 return;
5024         }
5025
5026         /* remove VID from filter table */
5027         index = (vid >> 5) & 0x7F;
5028         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5029         vfta &= ~(1 << (vid & 0x1F));
5030         e1000_write_vfta(&adapter->hw, index, vfta);
5031 }
5032
5033 static void
5034 e1000_restore_vlan(struct e1000_adapter *adapter)
5035 {
5036         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5037
5038         if (adapter->vlgrp) {
5039                 uint16_t vid;
5040                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5041                         if (!adapter->vlgrp->vlan_devices[vid])
5042                                 continue;
5043                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5044                 }
5045         }
5046 }
5047
5048 int
5049 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5050 {
5051         adapter->hw.autoneg = 0;
5052
5053         /* Fiber NICs only allow 1000 gbps Full duplex */
5054         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5055                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5056                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5057                 return -EINVAL;
5058         }
5059
5060         switch (spddplx) {
5061         case SPEED_10 + DUPLEX_HALF:
5062                 adapter->hw.forced_speed_duplex = e1000_10_half;
5063                 break;
5064         case SPEED_10 + DUPLEX_FULL:
5065                 adapter->hw.forced_speed_duplex = e1000_10_full;
5066                 break;
5067         case SPEED_100 + DUPLEX_HALF:
5068                 adapter->hw.forced_speed_duplex = e1000_100_half;
5069                 break;
5070         case SPEED_100 + DUPLEX_FULL:
5071                 adapter->hw.forced_speed_duplex = e1000_100_full;
5072                 break;
5073         case SPEED_1000 + DUPLEX_FULL:
5074                 adapter->hw.autoneg = 1;
5075                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5076                 break;
5077         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5078         default:
5079                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5080                 return -EINVAL;
5081         }
5082         return 0;
5083 }
5084
5085 #ifdef CONFIG_PM
5086 /* Save/restore 16 or 64 dwords of PCI config space depending on which
5087  * bus we're on (PCI(X) vs. PCI-E)
5088  */
5089 #define PCIE_CONFIG_SPACE_LEN 256
5090 #define PCI_CONFIG_SPACE_LEN 64
5091 static int
5092 e1000_pci_save_state(struct e1000_adapter *adapter)
5093 {
5094         struct pci_dev *dev = adapter->pdev;
5095         int size;
5096         int i;
5097
5098         if (adapter->hw.mac_type >= e1000_82571)
5099                 size = PCIE_CONFIG_SPACE_LEN;
5100         else
5101                 size = PCI_CONFIG_SPACE_LEN;
5102
5103         WARN_ON(adapter->config_space != NULL);
5104
5105         adapter->config_space = kmalloc(size, GFP_KERNEL);
5106         if (!adapter->config_space) {
5107                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
5108                 return -ENOMEM;
5109         }
5110         for (i = 0; i < (size / 4); i++)
5111                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
5112         return 0;
5113 }
5114
5115 static void
5116 e1000_pci_restore_state(struct e1000_adapter *adapter)
5117 {
5118         struct pci_dev *dev = adapter->pdev;
5119         int size;
5120         int i;
5121
5122         if (adapter->config_space == NULL)
5123                 return;
5124
5125         if (adapter->hw.mac_type >= e1000_82571)
5126                 size = PCIE_CONFIG_SPACE_LEN;
5127         else
5128                 size = PCI_CONFIG_SPACE_LEN;
5129         for (i = 0; i < (size / 4); i++)
5130                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
5131         kfree(adapter->config_space);
5132         adapter->config_space = NULL;
5133         return;
5134 }
5135 #endif /* CONFIG_PM */
5136
5137 static int
5138 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5139 {
5140         struct net_device *netdev = pci_get_drvdata(pdev);
5141         struct e1000_adapter *adapter = netdev_priv(netdev);
5142         uint32_t ctrl, ctrl_ext, rctl, status;
5143         uint32_t wufc = adapter->wol;
5144 #ifdef CONFIG_PM
5145         int retval = 0;
5146 #endif
5147
5148         netif_device_detach(netdev);
5149
5150         if (netif_running(netdev)) {
5151                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5152                 e1000_down(adapter);
5153         }
5154
5155 #ifdef CONFIG_PM
5156         /* Implement our own version of pci_save_state(pdev) because pci-
5157          * express adapters have 256-byte config spaces. */
5158         retval = e1000_pci_save_state(adapter);
5159         if (retval)
5160                 return retval;
5161 #endif
5162
5163         status = E1000_READ_REG(&adapter->hw, STATUS);
5164         if (status & E1000_STATUS_LU)
5165                 wufc &= ~E1000_WUFC_LNKC;
5166
5167         if (wufc) {
5168                 e1000_setup_rctl(adapter);
5169                 e1000_set_multi(netdev);
5170
5171                 /* turn on all-multi mode if wake on multicast is enabled */
5172                 if (wufc & E1000_WUFC_MC) {
5173                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5174                         rctl |= E1000_RCTL_MPE;
5175                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5176                 }
5177
5178                 if (adapter->hw.mac_type >= e1000_82540) {
5179                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5180                         /* advertise wake from D3Cold */
5181                         #define E1000_CTRL_ADVD3WUC 0x00100000
5182                         /* phy power management enable */
5183                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5184                         ctrl |= E1000_CTRL_ADVD3WUC |
5185                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5186                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5187                 }
5188
5189                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5190                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5191                         /* keep the laser running in D3 */
5192                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5193                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5194                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5195                 }
5196
5197                 /* Allow time for pending master requests to run */
5198                 e1000_disable_pciex_master(&adapter->hw);
5199
5200                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5201                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5202                 pci_enable_wake(pdev, PCI_D3hot, 1);
5203                 pci_enable_wake(pdev, PCI_D3cold, 1);
5204         } else {
5205                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5206                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5207                 pci_enable_wake(pdev, PCI_D3hot, 0);
5208                 pci_enable_wake(pdev, PCI_D3cold, 0);
5209         }
5210
5211         e1000_release_manageability(adapter);
5212
5213         /* make sure adapter isn't asleep if manageability is enabled */
5214         if (adapter->en_mng_pt) {
5215                 pci_enable_wake(pdev, PCI_D3hot, 1);
5216                 pci_enable_wake(pdev, PCI_D3cold, 1);
5217         }
5218
5219         if (adapter->hw.phy_type == e1000_phy_igp_3)
5220                 e1000_phy_powerdown_workaround(&adapter->hw);
5221
5222         if (netif_running(netdev))
5223                 e1000_free_irq(adapter);
5224
5225         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5226          * would have already happened in close and is redundant. */
5227         e1000_release_hw_control(adapter);
5228
5229         pci_disable_device(pdev);
5230
5231         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5232
5233         return 0;
5234 }
5235
5236 #ifdef CONFIG_PM
5237 static int
5238 e1000_resume(struct pci_dev *pdev)
5239 {
5240         struct net_device *netdev = pci_get_drvdata(pdev);
5241         struct e1000_adapter *adapter = netdev_priv(netdev);
5242         uint32_t err;
5243
5244         pci_set_power_state(pdev, PCI_D0);
5245         e1000_pci_restore_state(adapter);
5246         if ((err = pci_enable_device(pdev))) {
5247                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5248                 return err;
5249         }
5250         pci_set_master(pdev);
5251
5252         pci_enable_wake(pdev, PCI_D3hot, 0);
5253         pci_enable_wake(pdev, PCI_D3cold, 0);
5254
5255         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5256                 return err;
5257
5258         e1000_power_up_phy(adapter);
5259         e1000_reset(adapter);
5260         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5261
5262         e1000_init_manageability(adapter);
5263
5264         if (netif_running(netdev))
5265                 e1000_up(adapter);
5266
5267         netif_device_attach(netdev);
5268
5269         /* If the controller is 82573 and f/w is AMT, do not set
5270          * DRV_LOAD until the interface is up.  For all other cases,
5271          * let the f/w know that the h/w is now under the control
5272          * of the driver. */
5273         if (adapter->hw.mac_type != e1000_82573 ||
5274             !e1000_check_mng_mode(&adapter->hw))
5275                 e1000_get_hw_control(adapter);
5276
5277         return 0;
5278 }
5279 #endif
5280
5281 static void e1000_shutdown(struct pci_dev *pdev)
5282 {
5283         e1000_suspend(pdev, PMSG_SUSPEND);
5284 }
5285
5286 #ifdef CONFIG_NET_POLL_CONTROLLER
5287 /*
5288  * Polling 'interrupt' - used by things like netconsole to send skbs
5289  * without having to re-enable interrupts. It's not called while
5290  * the interrupt routine is executing.
5291  */
5292 static void
5293 e1000_netpoll(struct net_device *netdev)
5294 {
5295         struct e1000_adapter *adapter = netdev_priv(netdev);
5296
5297         disable_irq(adapter->pdev->irq);
5298         e1000_intr(adapter->pdev->irq, netdev);
5299         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5300 #ifndef CONFIG_E1000_NAPI
5301         adapter->clean_rx(adapter, adapter->rx_ring);
5302 #endif
5303         enable_irq(adapter->pdev->irq);
5304 }
5305 #endif
5306
5307 /**
5308  * e1000_io_error_detected - called when PCI error is detected
5309  * @pdev: Pointer to PCI device
5310  * @state: The current pci conneection state
5311  *
5312  * This function is called after a PCI bus error affecting
5313  * this device has been detected.
5314  */
5315 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5316 {
5317         struct net_device *netdev = pci_get_drvdata(pdev);
5318         struct e1000_adapter *adapter = netdev->priv;
5319
5320         netif_device_detach(netdev);
5321
5322         if (netif_running(netdev))
5323                 e1000_down(adapter);
5324         pci_disable_device(pdev);
5325
5326         /* Request a slot slot reset. */
5327         return PCI_ERS_RESULT_NEED_RESET;
5328 }
5329
5330 /**
5331  * e1000_io_slot_reset - called after the pci bus has been reset.
5332  * @pdev: Pointer to PCI device
5333  *
5334  * Restart the card from scratch, as if from a cold-boot. Implementation
5335  * resembles the first-half of the e1000_resume routine.
5336  */
5337 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5338 {
5339         struct net_device *netdev = pci_get_drvdata(pdev);
5340         struct e1000_adapter *adapter = netdev->priv;
5341
5342         if (pci_enable_device(pdev)) {
5343                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5344                 return PCI_ERS_RESULT_DISCONNECT;
5345         }
5346         pci_set_master(pdev);
5347
5348         pci_enable_wake(pdev, PCI_D3hot, 0);
5349         pci_enable_wake(pdev, PCI_D3cold, 0);
5350
5351         e1000_reset(adapter);
5352         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5353
5354         return PCI_ERS_RESULT_RECOVERED;
5355 }
5356
5357 /**
5358  * e1000_io_resume - called when traffic can start flowing again.
5359  * @pdev: Pointer to PCI device
5360  *
5361  * This callback is called when the error recovery driver tells us that
5362  * its OK to resume normal operation. Implementation resembles the
5363  * second-half of the e1000_resume routine.
5364  */
5365 static void e1000_io_resume(struct pci_dev *pdev)
5366 {
5367         struct net_device *netdev = pci_get_drvdata(pdev);
5368         struct e1000_adapter *adapter = netdev->priv;
5369
5370         e1000_init_manageability(adapter);
5371
5372         if (netif_running(netdev)) {
5373                 if (e1000_up(adapter)) {
5374                         printk("e1000: can't bring device back up after reset\n");
5375                         return;
5376                 }
5377         }
5378
5379         netif_device_attach(netdev);
5380
5381         /* If the controller is 82573 and f/w is AMT, do not set
5382          * DRV_LOAD until the interface is up.  For all other cases,
5383          * let the f/w know that the h/w is now under the control
5384          * of the driver. */
5385         if (adapter->hw.mac_type != e1000_82573 ||
5386             !e1000_check_mng_mode(&adapter->hw))
5387                 e1000_get_hw_control(adapter);
5388
5389 }
5390
5391 /* e1000_main.c */