e1000: FIX: enable hw TSO for IPV6
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         /* required last entry */
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122                              struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124                              struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145                                 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147                                 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring,
175                                    int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177                                       struct e1000_rx_ring *rx_ring,
178                                       int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181                            int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189                                        struct sk_buff *skb);
190
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
195
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
201
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
206
207 extern void e1000_check_options(struct e1000_adapter *adapter);
208
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210                      pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
213
214 static struct pci_error_handlers e1000_err_handler = {
215         .error_detected = e1000_io_error_detected,
216         .slot_reset = e1000_io_slot_reset,
217         .resume = e1000_io_resume,
218 };
219
220 static struct pci_driver e1000_driver = {
221         .name     = e1000_driver_name,
222         .id_table = e1000_pci_tbl,
223         .probe    = e1000_probe,
224         .remove   = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226         /* Power Managment Hooks */
227         .suspend  = e1000_suspend,
228         .resume   = e1000_resume,
229 #endif
230         .shutdown = e1000_shutdown,
231         .err_handler = &e1000_err_handler
232 };
233
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
238
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
242
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249
250 static int __init
251 e1000_init_module(void)
252 {
253         int ret;
254         printk(KERN_INFO "%s - version %s\n",
255                e1000_driver_string, e1000_driver_version);
256
257         printk(KERN_INFO "%s\n", e1000_copyright);
258
259         ret = pci_register_driver(&e1000_driver);
260
261         return ret;
262 }
263
264 module_init(e1000_init_module);
265
266 /**
267  * e1000_exit_module - Driver Exit Cleanup Routine
268  *
269  * e1000_exit_module is called just before the driver is removed
270  * from memory.
271  **/
272
273 static void __exit
274 e1000_exit_module(void)
275 {
276         pci_unregister_driver(&e1000_driver);
277 }
278
279 module_exit(e1000_exit_module);
280
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283         struct net_device *netdev = adapter->netdev;
284         int flags, err = 0;
285
286         flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288         if (adapter->hw.mac_type > e1000_82547_rev_2) {
289                 adapter->have_msi = TRUE;
290                 if ((err = pci_enable_msi(adapter->pdev))) {
291                         DPRINTK(PROBE, ERR,
292                          "Unable to allocate MSI interrupt Error: %d\n", err);
293                         adapter->have_msi = FALSE;
294                 }
295         }
296         if (adapter->have_msi)
297                 flags &= ~IRQF_SHARED;
298 #endif
299         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300                                netdev->name, netdev)))
301                 DPRINTK(PROBE, ERR,
302                         "Unable to allocate interrupt Error: %d\n", err);
303
304         return err;
305 }
306
307 static void e1000_free_irq(struct e1000_adapter *adapter)
308 {
309         struct net_device *netdev = adapter->netdev;
310
311         free_irq(adapter->pdev->irq, netdev);
312
313 #ifdef CONFIG_PCI_MSI
314         if (adapter->have_msi)
315                 pci_disable_msi(adapter->pdev);
316 #endif
317 }
318
319 /**
320  * e1000_irq_disable - Mask off interrupt generation on the NIC
321  * @adapter: board private structure
322  **/
323
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
326 {
327         atomic_inc(&adapter->irq_sem);
328         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329         E1000_WRITE_FLUSH(&adapter->hw);
330         synchronize_irq(adapter->pdev->irq);
331 }
332
333 /**
334  * e1000_irq_enable - Enable default interrupt generation settings
335  * @adapter: board private structure
336  **/
337
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
340 {
341         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343                 E1000_WRITE_FLUSH(&adapter->hw);
344         }
345 }
346
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
349 {
350         struct net_device *netdev = adapter->netdev;
351         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352         uint16_t old_vid = adapter->mng_vlan_id;
353         if (adapter->vlgrp) {
354                 if (!adapter->vlgrp->vlan_devices[vid]) {
355                         if (adapter->hw.mng_cookie.status &
356                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357                                 e1000_vlan_rx_add_vid(netdev, vid);
358                                 adapter->mng_vlan_id = vid;
359                         } else
360                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
361
362                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363                                         (vid != old_vid) &&
364                                         !adapter->vlgrp->vlan_devices[old_vid])
365                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
366                 } else
367                         adapter->mng_vlan_id = vid;
368         }
369 }
370
371 /**
372  * e1000_release_hw_control - release control of the h/w to f/w
373  * @adapter: address of board private structure
374  *
375  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376  * For ASF and Pass Through versions of f/w this means that the
377  * driver is no longer loaded. For AMT version (only with 82573) i
378  * of the f/w this means that the network i/f is closed.
379  *
380  **/
381
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
384 {
385         uint32_t ctrl_ext;
386         uint32_t swsm;
387         uint32_t extcnf;
388
389         /* Let firmware taken over control of h/w */
390         switch (adapter->hw.mac_type) {
391         case e1000_82571:
392         case e1000_82572:
393         case e1000_80003es2lan:
394                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397                 break;
398         case e1000_82573:
399                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400                 E1000_WRITE_REG(&adapter->hw, SWSM,
401                                 swsm & ~E1000_SWSM_DRV_LOAD);
402         case e1000_ich8lan:
403                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406                 break;
407         default:
408                 break;
409         }
410 }
411
412 /**
413  * e1000_get_hw_control - get control of the h/w from f/w
414  * @adapter: address of board private structure
415  *
416  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417  * For ASF and Pass Through versions of f/w this means that
418  * the driver is loaded. For AMT version (only with 82573)
419  * of the f/w this means that the network i/f is open.
420  *
421  **/
422
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
425 {
426         uint32_t ctrl_ext;
427         uint32_t swsm;
428         uint32_t extcnf;
429
430         /* Let firmware know the driver has taken over */
431         switch (adapter->hw.mac_type) {
432         case e1000_82571:
433         case e1000_82572:
434         case e1000_80003es2lan:
435                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
436                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
437                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
438                 break;
439         case e1000_82573:
440                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
441                 E1000_WRITE_REG(&adapter->hw, SWSM,
442                                 swsm | E1000_SWSM_DRV_LOAD);
443                 break;
444         case e1000_ich8lan:
445                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
446                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
447                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
448                 break;
449         default:
450                 break;
451         }
452 }
453
454 int
455 e1000_up(struct e1000_adapter *adapter)
456 {
457         struct net_device *netdev = adapter->netdev;
458         int i;
459
460         /* hardware has been reset, we need to reload some things */
461
462         e1000_set_multi(netdev);
463
464         e1000_restore_vlan(adapter);
465
466         e1000_configure_tx(adapter);
467         e1000_setup_rctl(adapter);
468         e1000_configure_rx(adapter);
469         /* call E1000_DESC_UNUSED which always leaves
470          * at least 1 descriptor unused to make sure
471          * next_to_use != next_to_clean */
472         for (i = 0; i < adapter->num_rx_queues; i++) {
473                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
474                 adapter->alloc_rx_buf(adapter, ring,
475                                       E1000_DESC_UNUSED(ring));
476         }
477
478         adapter->tx_queue_len = netdev->tx_queue_len;
479
480 #ifdef CONFIG_E1000_NAPI
481         netif_poll_enable(netdev);
482 #endif
483         e1000_irq_enable(adapter);
484
485         clear_bit(__E1000_DOWN, &adapter->flags);
486
487         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
488         return 0;
489 }
490
491 /**
492  * e1000_power_up_phy - restore link in case the phy was powered down
493  * @adapter: address of board private structure
494  *
495  * The phy may be powered down to save power and turn off link when the
496  * driver is unloaded and wake on lan is not enabled (among others)
497  * *** this routine MUST be followed by a call to e1000_reset ***
498  *
499  **/
500
501 void e1000_power_up_phy(struct e1000_adapter *adapter)
502 {
503         uint16_t mii_reg = 0;
504
505         /* Just clear the power down bit to wake the phy back up */
506         if (adapter->hw.media_type == e1000_media_type_copper) {
507                 /* according to the manual, the phy will retain its
508                  * settings across a power-down/up cycle */
509                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
510                 mii_reg &= ~MII_CR_POWER_DOWN;
511                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
512         }
513 }
514
515 static void e1000_power_down_phy(struct e1000_adapter *adapter)
516 {
517         /* Power down the PHY so no link is implied when interface is down *
518          * The PHY cannot be powered down if any of the following is TRUE *
519          * (a) WoL is enabled
520          * (b) AMT is active
521          * (c) SoL/IDER session is active */
522         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
523            adapter->hw.media_type == e1000_media_type_copper) {
524                 uint16_t mii_reg = 0;
525
526                 switch (adapter->hw.mac_type) {
527                 case e1000_82540:
528                 case e1000_82545:
529                 case e1000_82545_rev_3:
530                 case e1000_82546:
531                 case e1000_82546_rev_3:
532                 case e1000_82541:
533                 case e1000_82541_rev_2:
534                 case e1000_82547:
535                 case e1000_82547_rev_2:
536                         if (E1000_READ_REG(&adapter->hw, MANC) &
537                             E1000_MANC_SMBUS_EN)
538                                 goto out;
539                         break;
540                 case e1000_82571:
541                 case e1000_82572:
542                 case e1000_82573:
543                 case e1000_80003es2lan:
544                 case e1000_ich8lan:
545                         if (e1000_check_mng_mode(&adapter->hw) ||
546                             e1000_check_phy_reset_block(&adapter->hw))
547                                 goto out;
548                         break;
549                 default:
550                         goto out;
551                 }
552                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
553                 mii_reg |= MII_CR_POWER_DOWN;
554                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
555                 mdelay(1);
556         }
557 out:
558         return;
559 }
560
561 void
562 e1000_down(struct e1000_adapter *adapter)
563 {
564         struct net_device *netdev = adapter->netdev;
565
566         /* signal that we're down so the interrupt handler does not
567          * reschedule our watchdog timer */
568         set_bit(__E1000_DOWN, &adapter->flags);
569
570         e1000_irq_disable(adapter);
571
572         del_timer_sync(&adapter->tx_fifo_stall_timer);
573         del_timer_sync(&adapter->watchdog_timer);
574         del_timer_sync(&adapter->phy_info_timer);
575
576 #ifdef CONFIG_E1000_NAPI
577         netif_poll_disable(netdev);
578 #endif
579         netdev->tx_queue_len = adapter->tx_queue_len;
580         adapter->link_speed = 0;
581         adapter->link_duplex = 0;
582         netif_carrier_off(netdev);
583         netif_stop_queue(netdev);
584
585         e1000_reset(adapter);
586         e1000_clean_all_tx_rings(adapter);
587         e1000_clean_all_rx_rings(adapter);
588 }
589
590 void
591 e1000_reinit_locked(struct e1000_adapter *adapter)
592 {
593         WARN_ON(in_interrupt());
594         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595                 msleep(1);
596         e1000_down(adapter);
597         e1000_up(adapter);
598         clear_bit(__E1000_RESETTING, &adapter->flags);
599 }
600
601 void
602 e1000_reset(struct e1000_adapter *adapter)
603 {
604         uint32_t pba, manc;
605         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
606
607         /* Repartition Pba for greater than 9k mtu
608          * To take effect CTRL.RST is required.
609          */
610
611         switch (adapter->hw.mac_type) {
612         case e1000_82547:
613         case e1000_82547_rev_2:
614                 pba = E1000_PBA_30K;
615                 break;
616         case e1000_82571:
617         case e1000_82572:
618         case e1000_80003es2lan:
619                 pba = E1000_PBA_38K;
620                 break;
621         case e1000_82573:
622                 pba = E1000_PBA_12K;
623                 break;
624         case e1000_ich8lan:
625                 pba = E1000_PBA_8K;
626                 break;
627         default:
628                 pba = E1000_PBA_48K;
629                 break;
630         }
631
632         if ((adapter->hw.mac_type != e1000_82573) &&
633            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
634                 pba -= 8; /* allocate more FIFO for Tx */
635
636
637         if (adapter->hw.mac_type == e1000_82547) {
638                 adapter->tx_fifo_head = 0;
639                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
640                 adapter->tx_fifo_size =
641                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
642                 atomic_set(&adapter->tx_fifo_stall, 0);
643         }
644
645         E1000_WRITE_REG(&adapter->hw, PBA, pba);
646
647         /* flow control settings */
648         /* Set the FC high water mark to 90% of the FIFO size.
649          * Required to clear last 3 LSB */
650         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
651         /* We can't use 90% on small FIFOs because the remainder
652          * would be less than 1 full frame.  In this case, we size
653          * it to allow at least a full frame above the high water
654          *  mark. */
655         if (pba < E1000_PBA_16K)
656                 fc_high_water_mark = (pba * 1024) - 1600;
657
658         adapter->hw.fc_high_water = fc_high_water_mark;
659         adapter->hw.fc_low_water = fc_high_water_mark - 8;
660         if (adapter->hw.mac_type == e1000_80003es2lan)
661                 adapter->hw.fc_pause_time = 0xFFFF;
662         else
663                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
664         adapter->hw.fc_send_xon = 1;
665         adapter->hw.fc = adapter->hw.original_fc;
666
667         /* Allow time for pending master requests to run */
668         e1000_reset_hw(&adapter->hw);
669         if (adapter->hw.mac_type >= e1000_82544)
670                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
671
672         if (e1000_init_hw(&adapter->hw))
673                 DPRINTK(PROBE, ERR, "Hardware Error\n");
674         e1000_update_mng_vlan(adapter);
675         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
676         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
677
678         e1000_reset_adaptive(&adapter->hw);
679         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
680
681         if (!adapter->smart_power_down &&
682             (adapter->hw.mac_type == e1000_82571 ||
683              adapter->hw.mac_type == e1000_82572)) {
684                 uint16_t phy_data = 0;
685                 /* speed up time to link by disabling smart power down, ignore
686                  * the return value of this function because there is nothing
687                  * different we would do if it failed */
688                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
689                                    &phy_data);
690                 phy_data &= ~IGP02E1000_PM_SPD;
691                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
692                                     phy_data);
693         }
694
695         if ((adapter->en_mng_pt) &&
696             (adapter->hw.mac_type >= e1000_82540) &&
697             (adapter->hw.mac_type < e1000_82571) &&
698             (adapter->hw.media_type == e1000_media_type_copper)) {
699                 manc = E1000_READ_REG(&adapter->hw, MANC);
700                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
701                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
702         }
703 }
704
705 /**
706  * e1000_probe - Device Initialization Routine
707  * @pdev: PCI device information struct
708  * @ent: entry in e1000_pci_tbl
709  *
710  * Returns 0 on success, negative on failure
711  *
712  * e1000_probe initializes an adapter identified by a pci_dev structure.
713  * The OS initialization, configuring of the adapter private structure,
714  * and a hardware reset occur.
715  **/
716
717 static int __devinit
718 e1000_probe(struct pci_dev *pdev,
719             const struct pci_device_id *ent)
720 {
721         struct net_device *netdev;
722         struct e1000_adapter *adapter;
723         unsigned long mmio_start, mmio_len;
724         unsigned long flash_start, flash_len;
725
726         static int cards_found = 0;
727         static int global_quad_port_a = 0; /* global ksp3 port a indication */
728         int i, err, pci_using_dac;
729         uint16_t eeprom_data = 0;
730         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
731         if ((err = pci_enable_device(pdev)))
732                 return err;
733
734         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
735             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
736                 pci_using_dac = 1;
737         } else {
738                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
739                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
740                         E1000_ERR("No usable DMA configuration, aborting\n");
741                         goto err_dma;
742                 }
743                 pci_using_dac = 0;
744         }
745
746         if ((err = pci_request_regions(pdev, e1000_driver_name)))
747                 goto err_pci_reg;
748
749         pci_set_master(pdev);
750
751         err = -ENOMEM;
752         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
753         if (!netdev)
754                 goto err_alloc_etherdev;
755
756         SET_MODULE_OWNER(netdev);
757         SET_NETDEV_DEV(netdev, &pdev->dev);
758
759         pci_set_drvdata(pdev, netdev);
760         adapter = netdev_priv(netdev);
761         adapter->netdev = netdev;
762         adapter->pdev = pdev;
763         adapter->hw.back = adapter;
764         adapter->msg_enable = (1 << debug) - 1;
765
766         mmio_start = pci_resource_start(pdev, BAR_0);
767         mmio_len = pci_resource_len(pdev, BAR_0);
768
769         err = -EIO;
770         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
771         if (!adapter->hw.hw_addr)
772                 goto err_ioremap;
773
774         for (i = BAR_1; i <= BAR_5; i++) {
775                 if (pci_resource_len(pdev, i) == 0)
776                         continue;
777                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
778                         adapter->hw.io_base = pci_resource_start(pdev, i);
779                         break;
780                 }
781         }
782
783         netdev->open = &e1000_open;
784         netdev->stop = &e1000_close;
785         netdev->hard_start_xmit = &e1000_xmit_frame;
786         netdev->get_stats = &e1000_get_stats;
787         netdev->set_multicast_list = &e1000_set_multi;
788         netdev->set_mac_address = &e1000_set_mac;
789         netdev->change_mtu = &e1000_change_mtu;
790         netdev->do_ioctl = &e1000_ioctl;
791         e1000_set_ethtool_ops(netdev);
792         netdev->tx_timeout = &e1000_tx_timeout;
793         netdev->watchdog_timeo = 5 * HZ;
794 #ifdef CONFIG_E1000_NAPI
795         netdev->poll = &e1000_clean;
796         netdev->weight = 64;
797 #endif
798         netdev->vlan_rx_register = e1000_vlan_rx_register;
799         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
800         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
801 #ifdef CONFIG_NET_POLL_CONTROLLER
802         netdev->poll_controller = e1000_netpoll;
803 #endif
804         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
805
806         netdev->mem_start = mmio_start;
807         netdev->mem_end = mmio_start + mmio_len;
808         netdev->base_addr = adapter->hw.io_base;
809
810         adapter->bd_number = cards_found;
811
812         /* setup the private structure */
813
814         if ((err = e1000_sw_init(adapter)))
815                 goto err_sw_init;
816
817         err = -EIO;
818         /* Flash BAR mapping must happen after e1000_sw_init
819          * because it depends on mac_type */
820         if ((adapter->hw.mac_type == e1000_ich8lan) &&
821            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
822                 flash_start = pci_resource_start(pdev, 1);
823                 flash_len = pci_resource_len(pdev, 1);
824                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
825                 if (!adapter->hw.flash_address)
826                         goto err_flashmap;
827         }
828
829         if (e1000_check_phy_reset_block(&adapter->hw))
830                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
831
832         if (adapter->hw.mac_type >= e1000_82543) {
833                 netdev->features = NETIF_F_SG |
834                                    NETIF_F_HW_CSUM |
835                                    NETIF_F_HW_VLAN_TX |
836                                    NETIF_F_HW_VLAN_RX |
837                                    NETIF_F_HW_VLAN_FILTER;
838                 if (adapter->hw.mac_type == e1000_ich8lan)
839                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
840         }
841
842 #ifdef NETIF_F_TSO
843         if ((adapter->hw.mac_type >= e1000_82544) &&
844            (adapter->hw.mac_type != e1000_82547))
845                 netdev->features |= NETIF_F_TSO;
846
847 #ifdef NETIF_F_TSO6
848         if (adapter->hw.mac_type > e1000_82547_rev_2)
849                 netdev->features |= NETIF_F_TSO6;
850 #endif
851 #endif
852         if (pci_using_dac)
853                 netdev->features |= NETIF_F_HIGHDMA;
854
855         netdev->features |= NETIF_F_LLTX;
856
857         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
858
859         /* initialize eeprom parameters */
860
861         if (e1000_init_eeprom_params(&adapter->hw)) {
862                 E1000_ERR("EEPROM initialization failed\n");
863                 goto err_eeprom;
864         }
865
866         /* before reading the EEPROM, reset the controller to
867          * put the device in a known good starting state */
868
869         e1000_reset_hw(&adapter->hw);
870
871         /* make sure the EEPROM is good */
872
873         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
874                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
875                 goto err_eeprom;
876         }
877
878         /* copy the MAC address out of the EEPROM */
879
880         if (e1000_read_mac_addr(&adapter->hw))
881                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
882         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
883         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
884
885         if (!is_valid_ether_addr(netdev->perm_addr)) {
886                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
887                 goto err_eeprom;
888         }
889
890         e1000_get_bus_info(&adapter->hw);
891
892         init_timer(&adapter->tx_fifo_stall_timer);
893         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
894         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
895
896         init_timer(&adapter->watchdog_timer);
897         adapter->watchdog_timer.function = &e1000_watchdog;
898         adapter->watchdog_timer.data = (unsigned long) adapter;
899
900         init_timer(&adapter->phy_info_timer);
901         adapter->phy_info_timer.function = &e1000_update_phy_info;
902         adapter->phy_info_timer.data = (unsigned long) adapter;
903
904         INIT_WORK(&adapter->reset_task,
905                 (void (*)(void *))e1000_reset_task, netdev);
906
907         e1000_check_options(adapter);
908
909         /* Initial Wake on LAN setting
910          * If APM wake is enabled in the EEPROM,
911          * enable the ACPI Magic Packet filter
912          */
913
914         switch (adapter->hw.mac_type) {
915         case e1000_82542_rev2_0:
916         case e1000_82542_rev2_1:
917         case e1000_82543:
918                 break;
919         case e1000_82544:
920                 e1000_read_eeprom(&adapter->hw,
921                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
922                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
923                 break;
924         case e1000_ich8lan:
925                 e1000_read_eeprom(&adapter->hw,
926                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
927                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
928                 break;
929         case e1000_82546:
930         case e1000_82546_rev_3:
931         case e1000_82571:
932         case e1000_80003es2lan:
933                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
934                         e1000_read_eeprom(&adapter->hw,
935                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
936                         break;
937                 }
938                 /* Fall Through */
939         default:
940                 e1000_read_eeprom(&adapter->hw,
941                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
942                 break;
943         }
944         if (eeprom_data & eeprom_apme_mask)
945                 adapter->eeprom_wol |= E1000_WUFC_MAG;
946
947         /* now that we have the eeprom settings, apply the special cases
948          * where the eeprom may be wrong or the board simply won't support
949          * wake on lan on a particular port */
950         switch (pdev->device) {
951         case E1000_DEV_ID_82546GB_PCIE:
952                 adapter->eeprom_wol = 0;
953                 break;
954         case E1000_DEV_ID_82546EB_FIBER:
955         case E1000_DEV_ID_82546GB_FIBER:
956         case E1000_DEV_ID_82571EB_FIBER:
957                 /* Wake events only supported on port A for dual fiber
958                  * regardless of eeprom setting */
959                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
960                         adapter->eeprom_wol = 0;
961                 break;
962         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
963         case E1000_DEV_ID_82571EB_QUAD_COPPER:
964                 /* if quad port adapter, disable WoL on all but port A */
965                 if (global_quad_port_a != 0)
966                         adapter->eeprom_wol = 0;
967                 else
968                         adapter->quad_port_a = 1;
969                 /* Reset for multiple quad port adapters */
970                 if (++global_quad_port_a == 4)
971                         global_quad_port_a = 0;
972                 break;
973         }
974
975         /* initialize the wol settings based on the eeprom settings */
976         adapter->wol = adapter->eeprom_wol;
977
978         /* print bus type/speed/width info */
979         {
980         struct e1000_hw *hw = &adapter->hw;
981         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
982                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
983                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
984                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
985                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
986                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
987                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
988                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
989                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
990                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
991                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
992                  "32-bit"));
993         }
994
995         for (i = 0; i < 6; i++)
996                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
997
998         /* reset the hardware with the new settings */
999         e1000_reset(adapter);
1000
1001         /* If the controller is 82573 and f/w is AMT, do not set
1002          * DRV_LOAD until the interface is up.  For all other cases,
1003          * let the f/w know that the h/w is now under the control
1004          * of the driver. */
1005         if (adapter->hw.mac_type != e1000_82573 ||
1006             !e1000_check_mng_mode(&adapter->hw))
1007                 e1000_get_hw_control(adapter);
1008
1009         strcpy(netdev->name, "eth%d");
1010         if ((err = register_netdev(netdev)))
1011                 goto err_register;
1012
1013         /* tell the stack to leave us alone until e1000_open() is called */
1014         netif_carrier_off(netdev);
1015         netif_stop_queue(netdev);
1016
1017         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1018
1019         cards_found++;
1020         return 0;
1021
1022 err_register:
1023         e1000_release_hw_control(adapter);
1024 err_eeprom:
1025         if (!e1000_check_phy_reset_block(&adapter->hw))
1026                 e1000_phy_hw_reset(&adapter->hw);
1027
1028         if (adapter->hw.flash_address)
1029                 iounmap(adapter->hw.flash_address);
1030 err_flashmap:
1031 #ifdef CONFIG_E1000_NAPI
1032         for (i = 0; i < adapter->num_rx_queues; i++)
1033                 dev_put(&adapter->polling_netdev[i]);
1034 #endif
1035
1036         kfree(adapter->tx_ring);
1037         kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039         kfree(adapter->polling_netdev);
1040 #endif
1041 err_sw_init:
1042         iounmap(adapter->hw.hw_addr);
1043 err_ioremap:
1044         free_netdev(netdev);
1045 err_alloc_etherdev:
1046         pci_release_regions(pdev);
1047 err_pci_reg:
1048 err_dma:
1049         pci_disable_device(pdev);
1050         return err;
1051 }
1052
1053 /**
1054  * e1000_remove - Device Removal Routine
1055  * @pdev: PCI device information struct
1056  *
1057  * e1000_remove is called by the PCI subsystem to alert the driver
1058  * that it should release a PCI device.  The could be caused by a
1059  * Hot-Plug event, or because the driver is going to be removed from
1060  * memory.
1061  **/
1062
1063 static void __devexit
1064 e1000_remove(struct pci_dev *pdev)
1065 {
1066         struct net_device *netdev = pci_get_drvdata(pdev);
1067         struct e1000_adapter *adapter = netdev_priv(netdev);
1068         uint32_t manc;
1069 #ifdef CONFIG_E1000_NAPI
1070         int i;
1071 #endif
1072
1073         flush_scheduled_work();
1074
1075         if (adapter->hw.mac_type >= e1000_82540 &&
1076             adapter->hw.mac_type < e1000_82571 &&
1077             adapter->hw.media_type == e1000_media_type_copper) {
1078                 manc = E1000_READ_REG(&adapter->hw, MANC);
1079                 if (manc & E1000_MANC_SMBUS_EN) {
1080                         manc |= E1000_MANC_ARP_EN;
1081                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1082                 }
1083         }
1084
1085         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1086          * would have already happened in close and is redundant. */
1087         e1000_release_hw_control(adapter);
1088
1089         unregister_netdev(netdev);
1090 #ifdef CONFIG_E1000_NAPI
1091         for (i = 0; i < adapter->num_rx_queues; i++)
1092                 dev_put(&adapter->polling_netdev[i]);
1093 #endif
1094
1095         if (!e1000_check_phy_reset_block(&adapter->hw))
1096                 e1000_phy_hw_reset(&adapter->hw);
1097
1098         kfree(adapter->tx_ring);
1099         kfree(adapter->rx_ring);
1100 #ifdef CONFIG_E1000_NAPI
1101         kfree(adapter->polling_netdev);
1102 #endif
1103
1104         iounmap(adapter->hw.hw_addr);
1105         if (adapter->hw.flash_address)
1106                 iounmap(adapter->hw.flash_address);
1107         pci_release_regions(pdev);
1108
1109         free_netdev(netdev);
1110
1111         pci_disable_device(pdev);
1112 }
1113
1114 /**
1115  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1116  * @adapter: board private structure to initialize
1117  *
1118  * e1000_sw_init initializes the Adapter private data structure.
1119  * Fields are initialized based on PCI device information and
1120  * OS network device settings (MTU size).
1121  **/
1122
1123 static int __devinit
1124 e1000_sw_init(struct e1000_adapter *adapter)
1125 {
1126         struct e1000_hw *hw = &adapter->hw;
1127         struct net_device *netdev = adapter->netdev;
1128         struct pci_dev *pdev = adapter->pdev;
1129 #ifdef CONFIG_E1000_NAPI
1130         int i;
1131 #endif
1132
1133         /* PCI config space info */
1134
1135         hw->vendor_id = pdev->vendor;
1136         hw->device_id = pdev->device;
1137         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1138         hw->subsystem_id = pdev->subsystem_device;
1139
1140         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1141
1142         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1143
1144         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1145         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1146         hw->max_frame_size = netdev->mtu +
1147                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1148         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1149
1150         /* identify the MAC */
1151
1152         if (e1000_set_mac_type(hw)) {
1153                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1154                 return -EIO;
1155         }
1156
1157         switch (hw->mac_type) {
1158         default:
1159                 break;
1160         case e1000_82541:
1161         case e1000_82547:
1162         case e1000_82541_rev_2:
1163         case e1000_82547_rev_2:
1164                 hw->phy_init_script = 1;
1165                 break;
1166         }
1167
1168         e1000_set_media_type(hw);
1169
1170         hw->wait_autoneg_complete = FALSE;
1171         hw->tbi_compatibility_en = TRUE;
1172         hw->adaptive_ifs = TRUE;
1173
1174         /* Copper options */
1175
1176         if (hw->media_type == e1000_media_type_copper) {
1177                 hw->mdix = AUTO_ALL_MODES;
1178                 hw->disable_polarity_correction = FALSE;
1179                 hw->master_slave = E1000_MASTER_SLAVE;
1180         }
1181
1182         adapter->num_tx_queues = 1;
1183         adapter->num_rx_queues = 1;
1184
1185         if (e1000_alloc_queues(adapter)) {
1186                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1187                 return -ENOMEM;
1188         }
1189
1190 #ifdef CONFIG_E1000_NAPI
1191         for (i = 0; i < adapter->num_rx_queues; i++) {
1192                 adapter->polling_netdev[i].priv = adapter;
1193                 adapter->polling_netdev[i].poll = &e1000_clean;
1194                 adapter->polling_netdev[i].weight = 64;
1195                 dev_hold(&adapter->polling_netdev[i]);
1196                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1197         }
1198         spin_lock_init(&adapter->tx_queue_lock);
1199 #endif
1200
1201         atomic_set(&adapter->irq_sem, 1);
1202         spin_lock_init(&adapter->stats_lock);
1203
1204         set_bit(__E1000_DOWN, &adapter->flags);
1205
1206         return 0;
1207 }
1208
1209 /**
1210  * e1000_alloc_queues - Allocate memory for all rings
1211  * @adapter: board private structure to initialize
1212  *
1213  * We allocate one ring per queue at run-time since we don't know the
1214  * number of queues at compile-time.  The polling_netdev array is
1215  * intended for Multiqueue, but should work fine with a single queue.
1216  **/
1217
1218 static int __devinit
1219 e1000_alloc_queues(struct e1000_adapter *adapter)
1220 {
1221         int size;
1222
1223         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1224         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1225         if (!adapter->tx_ring)
1226                 return -ENOMEM;
1227         memset(adapter->tx_ring, 0, size);
1228
1229         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1230         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1231         if (!adapter->rx_ring) {
1232                 kfree(adapter->tx_ring);
1233                 return -ENOMEM;
1234         }
1235         memset(adapter->rx_ring, 0, size);
1236
1237 #ifdef CONFIG_E1000_NAPI
1238         size = sizeof(struct net_device) * adapter->num_rx_queues;
1239         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1240         if (!adapter->polling_netdev) {
1241                 kfree(adapter->tx_ring);
1242                 kfree(adapter->rx_ring);
1243                 return -ENOMEM;
1244         }
1245         memset(adapter->polling_netdev, 0, size);
1246 #endif
1247
1248         return E1000_SUCCESS;
1249 }
1250
1251 /**
1252  * e1000_open - Called when a network interface is made active
1253  * @netdev: network interface device structure
1254  *
1255  * Returns 0 on success, negative value on failure
1256  *
1257  * The open entry point is called when a network interface is made
1258  * active by the system (IFF_UP).  At this point all resources needed
1259  * for transmit and receive operations are allocated, the interrupt
1260  * handler is registered with the OS, the watchdog timer is started,
1261  * and the stack is notified that the interface is ready.
1262  **/
1263
1264 static int
1265 e1000_open(struct net_device *netdev)
1266 {
1267         struct e1000_adapter *adapter = netdev_priv(netdev);
1268         int err;
1269
1270         /* disallow open during test */
1271         if (test_bit(__E1000_TESTING, &adapter->flags))
1272                 return -EBUSY;
1273
1274         /* allocate transmit descriptors */
1275         if ((err = e1000_setup_all_tx_resources(adapter)))
1276                 goto err_setup_tx;
1277
1278         /* allocate receive descriptors */
1279         if ((err = e1000_setup_all_rx_resources(adapter)))
1280                 goto err_setup_rx;
1281
1282         err = e1000_request_irq(adapter);
1283         if (err)
1284                 goto err_req_irq;
1285
1286         e1000_power_up_phy(adapter);
1287
1288         if ((err = e1000_up(adapter)))
1289                 goto err_up;
1290         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1291         if ((adapter->hw.mng_cookie.status &
1292                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1293                 e1000_update_mng_vlan(adapter);
1294         }
1295
1296         /* If AMT is enabled, let the firmware know that the network
1297          * interface is now open */
1298         if (adapter->hw.mac_type == e1000_82573 &&
1299             e1000_check_mng_mode(&adapter->hw))
1300                 e1000_get_hw_control(adapter);
1301
1302         return E1000_SUCCESS;
1303
1304 err_up:
1305         e1000_power_down_phy(adapter);
1306         e1000_free_irq(adapter);
1307 err_req_irq:
1308         e1000_free_all_rx_resources(adapter);
1309 err_setup_rx:
1310         e1000_free_all_tx_resources(adapter);
1311 err_setup_tx:
1312         e1000_reset(adapter);
1313
1314         return err;
1315 }
1316
1317 /**
1318  * e1000_close - Disables a network interface
1319  * @netdev: network interface device structure
1320  *
1321  * Returns 0, this is not allowed to fail
1322  *
1323  * The close entry point is called when an interface is de-activated
1324  * by the OS.  The hardware is still under the drivers control, but
1325  * needs to be disabled.  A global MAC reset is issued to stop the
1326  * hardware, and all transmit and receive resources are freed.
1327  **/
1328
1329 static int
1330 e1000_close(struct net_device *netdev)
1331 {
1332         struct e1000_adapter *adapter = netdev_priv(netdev);
1333
1334         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1335         e1000_down(adapter);
1336         e1000_power_down_phy(adapter);
1337         e1000_free_irq(adapter);
1338
1339         e1000_free_all_tx_resources(adapter);
1340         e1000_free_all_rx_resources(adapter);
1341
1342         /* kill manageability vlan ID if supported, but not if a vlan with
1343          * the same ID is registered on the host OS (let 8021q kill it) */
1344         if ((adapter->hw.mng_cookie.status &
1345                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1346              !(adapter->vlgrp &&
1347                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1348                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1349         }
1350
1351         /* If AMT is enabled, let the firmware know that the network
1352          * interface is now closed */
1353         if (adapter->hw.mac_type == e1000_82573 &&
1354             e1000_check_mng_mode(&adapter->hw))
1355                 e1000_release_hw_control(adapter);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1362  * @adapter: address of board private structure
1363  * @start: address of beginning of memory
1364  * @len: length of memory
1365  **/
1366 static boolean_t
1367 e1000_check_64k_bound(struct e1000_adapter *adapter,
1368                       void *start, unsigned long len)
1369 {
1370         unsigned long begin = (unsigned long) start;
1371         unsigned long end = begin + len;
1372
1373         /* First rev 82545 and 82546 need to not allow any memory
1374          * write location to cross 64k boundary due to errata 23 */
1375         if (adapter->hw.mac_type == e1000_82545 ||
1376             adapter->hw.mac_type == e1000_82546) {
1377                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1378         }
1379
1380         return TRUE;
1381 }
1382
1383 /**
1384  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1385  * @adapter: board private structure
1386  * @txdr:    tx descriptor ring (for a specific queue) to setup
1387  *
1388  * Return 0 on success, negative on failure
1389  **/
1390
1391 static int
1392 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1393                          struct e1000_tx_ring *txdr)
1394 {
1395         struct pci_dev *pdev = adapter->pdev;
1396         int size;
1397
1398         size = sizeof(struct e1000_buffer) * txdr->count;
1399         txdr->buffer_info = vmalloc(size);
1400         if (!txdr->buffer_info) {
1401                 DPRINTK(PROBE, ERR,
1402                 "Unable to allocate memory for the transmit descriptor ring\n");
1403                 return -ENOMEM;
1404         }
1405         memset(txdr->buffer_info, 0, size);
1406
1407         /* round up to nearest 4K */
1408
1409         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1410         E1000_ROUNDUP(txdr->size, 4096);
1411
1412         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1413         if (!txdr->desc) {
1414 setup_tx_desc_die:
1415                 vfree(txdr->buffer_info);
1416                 DPRINTK(PROBE, ERR,
1417                 "Unable to allocate memory for the transmit descriptor ring\n");
1418                 return -ENOMEM;
1419         }
1420
1421         /* Fix for errata 23, can't cross 64kB boundary */
1422         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1423                 void *olddesc = txdr->desc;
1424                 dma_addr_t olddma = txdr->dma;
1425                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1426                                      "at %p\n", txdr->size, txdr->desc);
1427                 /* Try again, without freeing the previous */
1428                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1429                 /* Failed allocation, critical failure */
1430                 if (!txdr->desc) {
1431                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1432                         goto setup_tx_desc_die;
1433                 }
1434
1435                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436                         /* give up */
1437                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1438                                             txdr->dma);
1439                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1440                         DPRINTK(PROBE, ERR,
1441                                 "Unable to allocate aligned memory "
1442                                 "for the transmit descriptor ring\n");
1443                         vfree(txdr->buffer_info);
1444                         return -ENOMEM;
1445                 } else {
1446                         /* Free old allocation, new allocation was successful */
1447                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1448                 }
1449         }
1450         memset(txdr->desc, 0, txdr->size);
1451
1452         txdr->next_to_use = 0;
1453         txdr->next_to_clean = 0;
1454         spin_lock_init(&txdr->tx_lock);
1455
1456         return 0;
1457 }
1458
1459 /**
1460  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1461  *                                (Descriptors) for all queues
1462  * @adapter: board private structure
1463  *
1464  * Return 0 on success, negative on failure
1465  **/
1466
1467 int
1468 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1469 {
1470         int i, err = 0;
1471
1472         for (i = 0; i < adapter->num_tx_queues; i++) {
1473                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1474                 if (err) {
1475                         DPRINTK(PROBE, ERR,
1476                                 "Allocation for Tx Queue %u failed\n", i);
1477                         for (i-- ; i >= 0; i--)
1478                                 e1000_free_tx_resources(adapter,
1479                                                         &adapter->tx_ring[i]);
1480                         break;
1481                 }
1482         }
1483
1484         return err;
1485 }
1486
1487 /**
1488  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1489  * @adapter: board private structure
1490  *
1491  * Configure the Tx unit of the MAC after a reset.
1492  **/
1493
1494 static void
1495 e1000_configure_tx(struct e1000_adapter *adapter)
1496 {
1497         uint64_t tdba;
1498         struct e1000_hw *hw = &adapter->hw;
1499         uint32_t tdlen, tctl, tipg, tarc;
1500         uint32_t ipgr1, ipgr2;
1501
1502         /* Setup the HW Tx Head and Tail descriptor pointers */
1503
1504         switch (adapter->num_tx_queues) {
1505         case 1:
1506         default:
1507                 tdba = adapter->tx_ring[0].dma;
1508                 tdlen = adapter->tx_ring[0].count *
1509                         sizeof(struct e1000_tx_desc);
1510                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1511                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1512                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1513                 E1000_WRITE_REG(hw, TDT, 0);
1514                 E1000_WRITE_REG(hw, TDH, 0);
1515                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1516                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1517                 break;
1518         }
1519
1520         /* Set the default values for the Tx Inter Packet Gap timer */
1521
1522         if (hw->media_type == e1000_media_type_fiber ||
1523             hw->media_type == e1000_media_type_internal_serdes)
1524                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1525         else
1526                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1527
1528         switch (hw->mac_type) {
1529         case e1000_82542_rev2_0:
1530         case e1000_82542_rev2_1:
1531                 tipg = DEFAULT_82542_TIPG_IPGT;
1532                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1533                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1534                 break;
1535         case e1000_80003es2lan:
1536                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1537                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1538                 break;
1539         default:
1540                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1541                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1542                 break;
1543         }
1544         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1545         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1546         E1000_WRITE_REG(hw, TIPG, tipg);
1547
1548         /* Set the Tx Interrupt Delay register */
1549
1550         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1551         if (hw->mac_type >= e1000_82540)
1552                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1553
1554         /* Program the Transmit Control Register */
1555
1556         tctl = E1000_READ_REG(hw, TCTL);
1557         tctl &= ~E1000_TCTL_CT;
1558         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1559                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1560
1561         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1562                 tarc = E1000_READ_REG(hw, TARC0);
1563                 /* set the speed mode bit, we'll clear it if we're not at
1564                  * gigabit link later */
1565                 tarc |= (1 << 21);
1566                 E1000_WRITE_REG(hw, TARC0, tarc);
1567         } else if (hw->mac_type == e1000_80003es2lan) {
1568                 tarc = E1000_READ_REG(hw, TARC0);
1569                 tarc |= 1;
1570                 E1000_WRITE_REG(hw, TARC0, tarc);
1571                 tarc = E1000_READ_REG(hw, TARC1);
1572                 tarc |= 1;
1573                 E1000_WRITE_REG(hw, TARC1, tarc);
1574         }
1575
1576         e1000_config_collision_dist(hw);
1577
1578         /* Setup Transmit Descriptor Settings for eop descriptor */
1579         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1580                 E1000_TXD_CMD_IFCS;
1581
1582         if (hw->mac_type < e1000_82543)
1583                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1584         else
1585                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1586
1587         /* Cache if we're 82544 running in PCI-X because we'll
1588          * need this to apply a workaround later in the send path. */
1589         if (hw->mac_type == e1000_82544 &&
1590             hw->bus_type == e1000_bus_type_pcix)
1591                 adapter->pcix_82544 = 1;
1592
1593         E1000_WRITE_REG(hw, TCTL, tctl);
1594
1595 }
1596
1597 /**
1598  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1599  * @adapter: board private structure
1600  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1601  *
1602  * Returns 0 on success, negative on failure
1603  **/
1604
1605 static int
1606 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1607                          struct e1000_rx_ring *rxdr)
1608 {
1609         struct pci_dev *pdev = adapter->pdev;
1610         int size, desc_len;
1611
1612         size = sizeof(struct e1000_buffer) * rxdr->count;
1613         rxdr->buffer_info = vmalloc(size);
1614         if (!rxdr->buffer_info) {
1615                 DPRINTK(PROBE, ERR,
1616                 "Unable to allocate memory for the receive descriptor ring\n");
1617                 return -ENOMEM;
1618         }
1619         memset(rxdr->buffer_info, 0, size);
1620
1621         size = sizeof(struct e1000_ps_page) * rxdr->count;
1622         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1623         if (!rxdr->ps_page) {
1624                 vfree(rxdr->buffer_info);
1625                 DPRINTK(PROBE, ERR,
1626                 "Unable to allocate memory for the receive descriptor ring\n");
1627                 return -ENOMEM;
1628         }
1629         memset(rxdr->ps_page, 0, size);
1630
1631         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1632         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1633         if (!rxdr->ps_page_dma) {
1634                 vfree(rxdr->buffer_info);
1635                 kfree(rxdr->ps_page);
1636                 DPRINTK(PROBE, ERR,
1637                 "Unable to allocate memory for the receive descriptor ring\n");
1638                 return -ENOMEM;
1639         }
1640         memset(rxdr->ps_page_dma, 0, size);
1641
1642         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1643                 desc_len = sizeof(struct e1000_rx_desc);
1644         else
1645                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1646
1647         /* Round up to nearest 4K */
1648
1649         rxdr->size = rxdr->count * desc_len;
1650         E1000_ROUNDUP(rxdr->size, 4096);
1651
1652         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1653
1654         if (!rxdr->desc) {
1655                 DPRINTK(PROBE, ERR,
1656                 "Unable to allocate memory for the receive descriptor ring\n");
1657 setup_rx_desc_die:
1658                 vfree(rxdr->buffer_info);
1659                 kfree(rxdr->ps_page);
1660                 kfree(rxdr->ps_page_dma);
1661                 return -ENOMEM;
1662         }
1663
1664         /* Fix for errata 23, can't cross 64kB boundary */
1665         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1666                 void *olddesc = rxdr->desc;
1667                 dma_addr_t olddma = rxdr->dma;
1668                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1669                                      "at %p\n", rxdr->size, rxdr->desc);
1670                 /* Try again, without freeing the previous */
1671                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1672                 /* Failed allocation, critical failure */
1673                 if (!rxdr->desc) {
1674                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1675                         DPRINTK(PROBE, ERR,
1676                                 "Unable to allocate memory "
1677                                 "for the receive descriptor ring\n");
1678                         goto setup_rx_desc_die;
1679                 }
1680
1681                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682                         /* give up */
1683                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1684                                             rxdr->dma);
1685                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1686                         DPRINTK(PROBE, ERR,
1687                                 "Unable to allocate aligned memory "
1688                                 "for the receive descriptor ring\n");
1689                         goto setup_rx_desc_die;
1690                 } else {
1691                         /* Free old allocation, new allocation was successful */
1692                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1693                 }
1694         }
1695         memset(rxdr->desc, 0, rxdr->size);
1696
1697         rxdr->next_to_clean = 0;
1698         rxdr->next_to_use = 0;
1699
1700         return 0;
1701 }
1702
1703 /**
1704  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1705  *                                (Descriptors) for all queues
1706  * @adapter: board private structure
1707  *
1708  * Return 0 on success, negative on failure
1709  **/
1710
1711 int
1712 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1713 {
1714         int i, err = 0;
1715
1716         for (i = 0; i < adapter->num_rx_queues; i++) {
1717                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1718                 if (err) {
1719                         DPRINTK(PROBE, ERR,
1720                                 "Allocation for Rx Queue %u failed\n", i);
1721                         for (i-- ; i >= 0; i--)
1722                                 e1000_free_rx_resources(adapter,
1723                                                         &adapter->rx_ring[i]);
1724                         break;
1725                 }
1726         }
1727
1728         return err;
1729 }
1730
1731 /**
1732  * e1000_setup_rctl - configure the receive control registers
1733  * @adapter: Board private structure
1734  **/
1735 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1736                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1737 static void
1738 e1000_setup_rctl(struct e1000_adapter *adapter)
1739 {
1740         uint32_t rctl, rfctl;
1741         uint32_t psrctl = 0;
1742 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1743         uint32_t pages = 0;
1744 #endif
1745
1746         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1747
1748         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1749
1750         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1751                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1752                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1753
1754         if (adapter->hw.tbi_compatibility_on == 1)
1755                 rctl |= E1000_RCTL_SBP;
1756         else
1757                 rctl &= ~E1000_RCTL_SBP;
1758
1759         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1760                 rctl &= ~E1000_RCTL_LPE;
1761         else
1762                 rctl |= E1000_RCTL_LPE;
1763
1764         /* Setup buffer sizes */
1765         rctl &= ~E1000_RCTL_SZ_4096;
1766         rctl |= E1000_RCTL_BSEX;
1767         switch (adapter->rx_buffer_len) {
1768                 case E1000_RXBUFFER_256:
1769                         rctl |= E1000_RCTL_SZ_256;
1770                         rctl &= ~E1000_RCTL_BSEX;
1771                         break;
1772                 case E1000_RXBUFFER_512:
1773                         rctl |= E1000_RCTL_SZ_512;
1774                         rctl &= ~E1000_RCTL_BSEX;
1775                         break;
1776                 case E1000_RXBUFFER_1024:
1777                         rctl |= E1000_RCTL_SZ_1024;
1778                         rctl &= ~E1000_RCTL_BSEX;
1779                         break;
1780                 case E1000_RXBUFFER_2048:
1781                 default:
1782                         rctl |= E1000_RCTL_SZ_2048;
1783                         rctl &= ~E1000_RCTL_BSEX;
1784                         break;
1785                 case E1000_RXBUFFER_4096:
1786                         rctl |= E1000_RCTL_SZ_4096;
1787                         break;
1788                 case E1000_RXBUFFER_8192:
1789                         rctl |= E1000_RCTL_SZ_8192;
1790                         break;
1791                 case E1000_RXBUFFER_16384:
1792                         rctl |= E1000_RCTL_SZ_16384;
1793                         break;
1794         }
1795
1796 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1797         /* 82571 and greater support packet-split where the protocol
1798          * header is placed in skb->data and the packet data is
1799          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1800          * In the case of a non-split, skb->data is linearly filled,
1801          * followed by the page buffers.  Therefore, skb->data is
1802          * sized to hold the largest protocol header.
1803          */
1804         /* allocations using alloc_page take too long for regular MTU
1805          * so only enable packet split for jumbo frames */
1806         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1807         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1808             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1809                 adapter->rx_ps_pages = pages;
1810         else
1811                 adapter->rx_ps_pages = 0;
1812 #endif
1813         if (adapter->rx_ps_pages) {
1814                 /* Configure extra packet-split registers */
1815                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1816                 rfctl |= E1000_RFCTL_EXTEN;
1817                 /* disable packet split support for IPv6 extension headers,
1818                  * because some malformed IPv6 headers can hang the RX */
1819                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1820                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1821
1822                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1823
1824                 rctl |= E1000_RCTL_DTYP_PS;
1825
1826                 psrctl |= adapter->rx_ps_bsize0 >>
1827                         E1000_PSRCTL_BSIZE0_SHIFT;
1828
1829                 switch (adapter->rx_ps_pages) {
1830                 case 3:
1831                         psrctl |= PAGE_SIZE <<
1832                                 E1000_PSRCTL_BSIZE3_SHIFT;
1833                 case 2:
1834                         psrctl |= PAGE_SIZE <<
1835                                 E1000_PSRCTL_BSIZE2_SHIFT;
1836                 case 1:
1837                         psrctl |= PAGE_SIZE >>
1838                                 E1000_PSRCTL_BSIZE1_SHIFT;
1839                         break;
1840                 }
1841
1842                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1843         }
1844
1845         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1846 }
1847
1848 /**
1849  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850  * @adapter: board private structure
1851  *
1852  * Configure the Rx unit of the MAC after a reset.
1853  **/
1854
1855 static void
1856 e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858         uint64_t rdba;
1859         struct e1000_hw *hw = &adapter->hw;
1860         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1861
1862         if (adapter->rx_ps_pages) {
1863                 /* this is a 32 byte descriptor */
1864                 rdlen = adapter->rx_ring[0].count *
1865                         sizeof(union e1000_rx_desc_packet_split);
1866                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1867                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1868         } else {
1869                 rdlen = adapter->rx_ring[0].count *
1870                         sizeof(struct e1000_rx_desc);
1871                 adapter->clean_rx = e1000_clean_rx_irq;
1872                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1873         }
1874
1875         /* disable receives while setting up the descriptors */
1876         rctl = E1000_READ_REG(hw, RCTL);
1877         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1878
1879         /* set the Receive Delay Timer Register */
1880         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1881
1882         if (hw->mac_type >= e1000_82540) {
1883                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1884                 if (adapter->itr > 1)
1885                         E1000_WRITE_REG(hw, ITR,
1886                                 1000000000 / (adapter->itr * 256));
1887         }
1888
1889         if (hw->mac_type >= e1000_82571) {
1890                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1891                 /* Reset delay timers after every interrupt */
1892                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1893 #ifdef CONFIG_E1000_NAPI
1894                 /* Auto-Mask interrupts upon ICR read. */
1895                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1896 #endif
1897                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1898                 E1000_WRITE_REG(hw, IAM, ~0);
1899                 E1000_WRITE_FLUSH(hw);
1900         }
1901
1902         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1903          * the Base and Length of the Rx Descriptor Ring */
1904         switch (adapter->num_rx_queues) {
1905         case 1:
1906         default:
1907                 rdba = adapter->rx_ring[0].dma;
1908                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1909                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1910                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1911                 E1000_WRITE_REG(hw, RDT, 0);
1912                 E1000_WRITE_REG(hw, RDH, 0);
1913                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1914                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1915                 break;
1916         }
1917
1918         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1919         if (hw->mac_type >= e1000_82543) {
1920                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1921                 if (adapter->rx_csum == TRUE) {
1922                         rxcsum |= E1000_RXCSUM_TUOFL;
1923
1924                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1925                          * Must be used in conjunction with packet-split. */
1926                         if ((hw->mac_type >= e1000_82571) &&
1927                             (adapter->rx_ps_pages)) {
1928                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1929                         }
1930                 } else {
1931                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1932                         /* don't need to clear IPPCSE as it defaults to 0 */
1933                 }
1934                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1935         }
1936
1937         /* Enable Receives */
1938         E1000_WRITE_REG(hw, RCTL, rctl);
1939 }
1940
1941 /**
1942  * e1000_free_tx_resources - Free Tx Resources per Queue
1943  * @adapter: board private structure
1944  * @tx_ring: Tx descriptor ring for a specific queue
1945  *
1946  * Free all transmit software resources
1947  **/
1948
1949 static void
1950 e1000_free_tx_resources(struct e1000_adapter *adapter,
1951                         struct e1000_tx_ring *tx_ring)
1952 {
1953         struct pci_dev *pdev = adapter->pdev;
1954
1955         e1000_clean_tx_ring(adapter, tx_ring);
1956
1957         vfree(tx_ring->buffer_info);
1958         tx_ring->buffer_info = NULL;
1959
1960         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1961
1962         tx_ring->desc = NULL;
1963 }
1964
1965 /**
1966  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1967  * @adapter: board private structure
1968  *
1969  * Free all transmit software resources
1970  **/
1971
1972 void
1973 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1974 {
1975         int i;
1976
1977         for (i = 0; i < adapter->num_tx_queues; i++)
1978                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1979 }
1980
1981 static void
1982 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1983                         struct e1000_buffer *buffer_info)
1984 {
1985         if (buffer_info->dma) {
1986                 pci_unmap_page(adapter->pdev,
1987                                 buffer_info->dma,
1988                                 buffer_info->length,
1989                                 PCI_DMA_TODEVICE);
1990         }
1991         if (buffer_info->skb)
1992                 dev_kfree_skb_any(buffer_info->skb);
1993         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1994 }
1995
1996 /**
1997  * e1000_clean_tx_ring - Free Tx Buffers
1998  * @adapter: board private structure
1999  * @tx_ring: ring to be cleaned
2000  **/
2001
2002 static void
2003 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2004                     struct e1000_tx_ring *tx_ring)
2005 {
2006         struct e1000_buffer *buffer_info;
2007         unsigned long size;
2008         unsigned int i;
2009
2010         /* Free all the Tx ring sk_buffs */
2011
2012         for (i = 0; i < tx_ring->count; i++) {
2013                 buffer_info = &tx_ring->buffer_info[i];
2014                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2015         }
2016
2017         size = sizeof(struct e1000_buffer) * tx_ring->count;
2018         memset(tx_ring->buffer_info, 0, size);
2019
2020         /* Zero out the descriptor ring */
2021
2022         memset(tx_ring->desc, 0, tx_ring->size);
2023
2024         tx_ring->next_to_use = 0;
2025         tx_ring->next_to_clean = 0;
2026         tx_ring->last_tx_tso = 0;
2027
2028         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2029         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2030 }
2031
2032 /**
2033  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2034  * @adapter: board private structure
2035  **/
2036
2037 static void
2038 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2039 {
2040         int i;
2041
2042         for (i = 0; i < adapter->num_tx_queues; i++)
2043                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2044 }
2045
2046 /**
2047  * e1000_free_rx_resources - Free Rx Resources
2048  * @adapter: board private structure
2049  * @rx_ring: ring to clean the resources from
2050  *
2051  * Free all receive software resources
2052  **/
2053
2054 static void
2055 e1000_free_rx_resources(struct e1000_adapter *adapter,
2056                         struct e1000_rx_ring *rx_ring)
2057 {
2058         struct pci_dev *pdev = adapter->pdev;
2059
2060         e1000_clean_rx_ring(adapter, rx_ring);
2061
2062         vfree(rx_ring->buffer_info);
2063         rx_ring->buffer_info = NULL;
2064         kfree(rx_ring->ps_page);
2065         rx_ring->ps_page = NULL;
2066         kfree(rx_ring->ps_page_dma);
2067         rx_ring->ps_page_dma = NULL;
2068
2069         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2070
2071         rx_ring->desc = NULL;
2072 }
2073
2074 /**
2075  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2076  * @adapter: board private structure
2077  *
2078  * Free all receive software resources
2079  **/
2080
2081 void
2082 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2083 {
2084         int i;
2085
2086         for (i = 0; i < adapter->num_rx_queues; i++)
2087                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2088 }
2089
2090 /**
2091  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2092  * @adapter: board private structure
2093  * @rx_ring: ring to free buffers from
2094  **/
2095
2096 static void
2097 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2098                     struct e1000_rx_ring *rx_ring)
2099 {
2100         struct e1000_buffer *buffer_info;
2101         struct e1000_ps_page *ps_page;
2102         struct e1000_ps_page_dma *ps_page_dma;
2103         struct pci_dev *pdev = adapter->pdev;
2104         unsigned long size;
2105         unsigned int i, j;
2106
2107         /* Free all the Rx ring sk_buffs */
2108         for (i = 0; i < rx_ring->count; i++) {
2109                 buffer_info = &rx_ring->buffer_info[i];
2110                 if (buffer_info->skb) {
2111                         pci_unmap_single(pdev,
2112                                          buffer_info->dma,
2113                                          buffer_info->length,
2114                                          PCI_DMA_FROMDEVICE);
2115
2116                         dev_kfree_skb(buffer_info->skb);
2117                         buffer_info->skb = NULL;
2118                 }
2119                 ps_page = &rx_ring->ps_page[i];
2120                 ps_page_dma = &rx_ring->ps_page_dma[i];
2121                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2122                         if (!ps_page->ps_page[j]) break;
2123                         pci_unmap_page(pdev,
2124                                        ps_page_dma->ps_page_dma[j],
2125                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2126                         ps_page_dma->ps_page_dma[j] = 0;
2127                         put_page(ps_page->ps_page[j]);
2128                         ps_page->ps_page[j] = NULL;
2129                 }
2130         }
2131
2132         size = sizeof(struct e1000_buffer) * rx_ring->count;
2133         memset(rx_ring->buffer_info, 0, size);
2134         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2135         memset(rx_ring->ps_page, 0, size);
2136         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2137         memset(rx_ring->ps_page_dma, 0, size);
2138
2139         /* Zero out the descriptor ring */
2140
2141         memset(rx_ring->desc, 0, rx_ring->size);
2142
2143         rx_ring->next_to_clean = 0;
2144         rx_ring->next_to_use = 0;
2145
2146         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2147         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2148 }
2149
2150 /**
2151  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2152  * @adapter: board private structure
2153  **/
2154
2155 static void
2156 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2157 {
2158         int i;
2159
2160         for (i = 0; i < adapter->num_rx_queues; i++)
2161                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2162 }
2163
2164 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2165  * and memory write and invalidate disabled for certain operations
2166  */
2167 static void
2168 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2169 {
2170         struct net_device *netdev = adapter->netdev;
2171         uint32_t rctl;
2172
2173         e1000_pci_clear_mwi(&adapter->hw);
2174
2175         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2176         rctl |= E1000_RCTL_RST;
2177         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2178         E1000_WRITE_FLUSH(&adapter->hw);
2179         mdelay(5);
2180
2181         if (netif_running(netdev))
2182                 e1000_clean_all_rx_rings(adapter);
2183 }
2184
2185 static void
2186 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2187 {
2188         struct net_device *netdev = adapter->netdev;
2189         uint32_t rctl;
2190
2191         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2192         rctl &= ~E1000_RCTL_RST;
2193         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2194         E1000_WRITE_FLUSH(&adapter->hw);
2195         mdelay(5);
2196
2197         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2198                 e1000_pci_set_mwi(&adapter->hw);
2199
2200         if (netif_running(netdev)) {
2201                 /* No need to loop, because 82542 supports only 1 queue */
2202                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2203                 e1000_configure_rx(adapter);
2204                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2205         }
2206 }
2207
2208 /**
2209  * e1000_set_mac - Change the Ethernet Address of the NIC
2210  * @netdev: network interface device structure
2211  * @p: pointer to an address structure
2212  *
2213  * Returns 0 on success, negative on failure
2214  **/
2215
2216 static int
2217 e1000_set_mac(struct net_device *netdev, void *p)
2218 {
2219         struct e1000_adapter *adapter = netdev_priv(netdev);
2220         struct sockaddr *addr = p;
2221
2222         if (!is_valid_ether_addr(addr->sa_data))
2223                 return -EADDRNOTAVAIL;
2224
2225         /* 82542 2.0 needs to be in reset to write receive address registers */
2226
2227         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2228                 e1000_enter_82542_rst(adapter);
2229
2230         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2231         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2232
2233         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2234
2235         /* With 82571 controllers, LAA may be overwritten (with the default)
2236          * due to controller reset from the other port. */
2237         if (adapter->hw.mac_type == e1000_82571) {
2238                 /* activate the work around */
2239                 adapter->hw.laa_is_present = 1;
2240
2241                 /* Hold a copy of the LAA in RAR[14] This is done so that
2242                  * between the time RAR[0] gets clobbered  and the time it
2243                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2244                  * of the RARs and no incoming packets directed to this port
2245                  * are dropped. Eventaully the LAA will be in RAR[0] and
2246                  * RAR[14] */
2247                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2248                                         E1000_RAR_ENTRIES - 1);
2249         }
2250
2251         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2252                 e1000_leave_82542_rst(adapter);
2253
2254         return 0;
2255 }
2256
2257 /**
2258  * e1000_set_multi - Multicast and Promiscuous mode set
2259  * @netdev: network interface device structure
2260  *
2261  * The set_multi entry point is called whenever the multicast address
2262  * list or the network interface flags are updated.  This routine is
2263  * responsible for configuring the hardware for proper multicast,
2264  * promiscuous mode, and all-multi behavior.
2265  **/
2266
2267 static void
2268 e1000_set_multi(struct net_device *netdev)
2269 {
2270         struct e1000_adapter *adapter = netdev_priv(netdev);
2271         struct e1000_hw *hw = &adapter->hw;
2272         struct dev_mc_list *mc_ptr;
2273         uint32_t rctl;
2274         uint32_t hash_value;
2275         int i, rar_entries = E1000_RAR_ENTRIES;
2276         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2277                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2278                                 E1000_NUM_MTA_REGISTERS;
2279
2280         if (adapter->hw.mac_type == e1000_ich8lan)
2281                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2282
2283         /* reserve RAR[14] for LAA over-write work-around */
2284         if (adapter->hw.mac_type == e1000_82571)
2285                 rar_entries--;
2286
2287         /* Check for Promiscuous and All Multicast modes */
2288
2289         rctl = E1000_READ_REG(hw, RCTL);
2290
2291         if (netdev->flags & IFF_PROMISC) {
2292                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2293         } else if (netdev->flags & IFF_ALLMULTI) {
2294                 rctl |= E1000_RCTL_MPE;
2295                 rctl &= ~E1000_RCTL_UPE;
2296         } else {
2297                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2298         }
2299
2300         E1000_WRITE_REG(hw, RCTL, rctl);
2301
2302         /* 82542 2.0 needs to be in reset to write receive address registers */
2303
2304         if (hw->mac_type == e1000_82542_rev2_0)
2305                 e1000_enter_82542_rst(adapter);
2306
2307         /* load the first 14 multicast address into the exact filters 1-14
2308          * RAR 0 is used for the station MAC adddress
2309          * if there are not 14 addresses, go ahead and clear the filters
2310          * -- with 82571 controllers only 0-13 entries are filled here
2311          */
2312         mc_ptr = netdev->mc_list;
2313
2314         for (i = 1; i < rar_entries; i++) {
2315                 if (mc_ptr) {
2316                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2317                         mc_ptr = mc_ptr->next;
2318                 } else {
2319                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2320                         E1000_WRITE_FLUSH(hw);
2321                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2322                         E1000_WRITE_FLUSH(hw);
2323                 }
2324         }
2325
2326         /* clear the old settings from the multicast hash table */
2327
2328         for (i = 0; i < mta_reg_count; i++) {
2329                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2330                 E1000_WRITE_FLUSH(hw);
2331         }
2332
2333         /* load any remaining addresses into the hash table */
2334
2335         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2336                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2337                 e1000_mta_set(hw, hash_value);
2338         }
2339
2340         if (hw->mac_type == e1000_82542_rev2_0)
2341                 e1000_leave_82542_rst(adapter);
2342 }
2343
2344 /* Need to wait a few seconds after link up to get diagnostic information from
2345  * the phy */
2346
2347 static void
2348 e1000_update_phy_info(unsigned long data)
2349 {
2350         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2351         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2352 }
2353
2354 /**
2355  * e1000_82547_tx_fifo_stall - Timer Call-back
2356  * @data: pointer to adapter cast into an unsigned long
2357  **/
2358
2359 static void
2360 e1000_82547_tx_fifo_stall(unsigned long data)
2361 {
2362         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2363         struct net_device *netdev = adapter->netdev;
2364         uint32_t tctl;
2365
2366         if (atomic_read(&adapter->tx_fifo_stall)) {
2367                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2368                     E1000_READ_REG(&adapter->hw, TDH)) &&
2369                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2370                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2371                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2372                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2373                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2374                         E1000_WRITE_REG(&adapter->hw, TCTL,
2375                                         tctl & ~E1000_TCTL_EN);
2376                         E1000_WRITE_REG(&adapter->hw, TDFT,
2377                                         adapter->tx_head_addr);
2378                         E1000_WRITE_REG(&adapter->hw, TDFH,
2379                                         adapter->tx_head_addr);
2380                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2381                                         adapter->tx_head_addr);
2382                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2383                                         adapter->tx_head_addr);
2384                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2385                         E1000_WRITE_FLUSH(&adapter->hw);
2386
2387                         adapter->tx_fifo_head = 0;
2388                         atomic_set(&adapter->tx_fifo_stall, 0);
2389                         netif_wake_queue(netdev);
2390                 } else {
2391                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2392                 }
2393         }
2394 }
2395
2396 /**
2397  * e1000_watchdog - Timer Call-back
2398  * @data: pointer to adapter cast into an unsigned long
2399  **/
2400 static void
2401 e1000_watchdog(unsigned long data)
2402 {
2403         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2404         struct net_device *netdev = adapter->netdev;
2405         struct e1000_tx_ring *txdr = adapter->tx_ring;
2406         uint32_t link, tctl;
2407         int32_t ret_val;
2408
2409         ret_val = e1000_check_for_link(&adapter->hw);
2410         if ((ret_val == E1000_ERR_PHY) &&
2411             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2412             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2413                 /* See e1000_kumeran_lock_loss_workaround() */
2414                 DPRINTK(LINK, INFO,
2415                         "Gigabit has been disabled, downgrading speed\n");
2416         }
2417
2418         if (adapter->hw.mac_type == e1000_82573) {
2419                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2420                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2421                         e1000_update_mng_vlan(adapter);
2422         }
2423
2424         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2425            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2426                 link = !adapter->hw.serdes_link_down;
2427         else
2428                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2429
2430         if (link) {
2431                 if (!netif_carrier_ok(netdev)) {
2432                         boolean_t txb2b = 1;
2433                         e1000_get_speed_and_duplex(&adapter->hw,
2434                                                    &adapter->link_speed,
2435                                                    &adapter->link_duplex);
2436
2437                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2438                                adapter->link_speed,
2439                                adapter->link_duplex == FULL_DUPLEX ?
2440                                "Full Duplex" : "Half Duplex");
2441
2442                         /* tweak tx_queue_len according to speed/duplex
2443                          * and adjust the timeout factor */
2444                         netdev->tx_queue_len = adapter->tx_queue_len;
2445                         adapter->tx_timeout_factor = 1;
2446                         switch (adapter->link_speed) {
2447                         case SPEED_10:
2448                                 txb2b = 0;
2449                                 netdev->tx_queue_len = 10;
2450                                 adapter->tx_timeout_factor = 8;
2451                                 break;
2452                         case SPEED_100:
2453                                 txb2b = 0;
2454                                 netdev->tx_queue_len = 100;
2455                                 /* maybe add some timeout factor ? */
2456                                 break;
2457                         }
2458
2459                         if ((adapter->hw.mac_type == e1000_82571 ||
2460                              adapter->hw.mac_type == e1000_82572) &&
2461                             txb2b == 0) {
2462                                 uint32_t tarc0;
2463                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2464                                 tarc0 &= ~(1 << 21);
2465                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2466                         }
2467
2468 #ifdef NETIF_F_TSO
2469                         /* disable TSO for pcie and 10/100 speeds, to avoid
2470                          * some hardware issues */
2471                         if (!adapter->tso_force &&
2472                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2473                                 switch (adapter->link_speed) {
2474                                 case SPEED_10:
2475                                 case SPEED_100:
2476                                         DPRINTK(PROBE,INFO,
2477                                         "10/100 speed: disabling TSO\n");
2478                                         netdev->features &= ~NETIF_F_TSO;
2479 #ifdef NETIF_F_TSO6
2480                                         netdev->features &= ~NETIF_F_TSO6;
2481 #endif
2482                                         break;
2483                                 case SPEED_1000:
2484                                         netdev->features |= NETIF_F_TSO;
2485 #ifdef NETIF_F_TSO6
2486                                         netdev->features |= NETIF_F_TSO6;
2487 #endif
2488                                         break;
2489                                 default:
2490                                         /* oops */
2491                                         break;
2492                                 }
2493                         }
2494 #endif
2495
2496                         /* enable transmits in the hardware, need to do this
2497                          * after setting TARC0 */
2498                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2499                         tctl |= E1000_TCTL_EN;
2500                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2501
2502                         netif_carrier_on(netdev);
2503                         netif_wake_queue(netdev);
2504                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2505                         adapter->smartspeed = 0;
2506                 }
2507         } else {
2508                 if (netif_carrier_ok(netdev)) {
2509                         adapter->link_speed = 0;
2510                         adapter->link_duplex = 0;
2511                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2512                         netif_carrier_off(netdev);
2513                         netif_stop_queue(netdev);
2514                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2515
2516                         /* 80003ES2LAN workaround--
2517                          * For packet buffer work-around on link down event;
2518                          * disable receives in the ISR and
2519                          * reset device here in the watchdog
2520                          */
2521                         if (adapter->hw.mac_type == e1000_80003es2lan)
2522                                 /* reset device */
2523                                 schedule_work(&adapter->reset_task);
2524                 }
2525
2526                 e1000_smartspeed(adapter);
2527         }
2528
2529         e1000_update_stats(adapter);
2530
2531         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2532         adapter->tpt_old = adapter->stats.tpt;
2533         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2534         adapter->colc_old = adapter->stats.colc;
2535
2536         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2537         adapter->gorcl_old = adapter->stats.gorcl;
2538         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2539         adapter->gotcl_old = adapter->stats.gotcl;
2540
2541         e1000_update_adaptive(&adapter->hw);
2542
2543         if (!netif_carrier_ok(netdev)) {
2544                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2545                         /* We've lost link, so the controller stops DMA,
2546                          * but we've got queued Tx work that's never going
2547                          * to get done, so reset controller to flush Tx.
2548                          * (Do the reset outside of interrupt context). */
2549                         adapter->tx_timeout_count++;
2550                         schedule_work(&adapter->reset_task);
2551                 }
2552         }
2553
2554         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2555         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2556                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2557                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2558                  * else is between 2000-8000. */
2559                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2560                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2561                         adapter->gotcl - adapter->gorcl :
2562                         adapter->gorcl - adapter->gotcl) / 10000;
2563                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2564                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2565         }
2566
2567         /* Cause software interrupt to ensure rx ring is cleaned */
2568         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2569
2570         /* Force detection of hung controller every watchdog period */
2571         adapter->detect_tx_hung = TRUE;
2572
2573         /* With 82571 controllers, LAA may be overwritten due to controller
2574          * reset from the other port. Set the appropriate LAA in RAR[0] */
2575         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2576                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2577
2578         /* Reset the timer */
2579         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2580 }
2581
2582 #define E1000_TX_FLAGS_CSUM             0x00000001
2583 #define E1000_TX_FLAGS_VLAN             0x00000002
2584 #define E1000_TX_FLAGS_TSO              0x00000004
2585 #define E1000_TX_FLAGS_IPV4             0x00000008
2586 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2587 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2588
2589 static int
2590 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2591           struct sk_buff *skb)
2592 {
2593 #ifdef NETIF_F_TSO
2594         struct e1000_context_desc *context_desc;
2595         struct e1000_buffer *buffer_info;
2596         unsigned int i;
2597         uint32_t cmd_length = 0;
2598         uint16_t ipcse = 0, tucse, mss;
2599         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2600         int err;
2601
2602         if (skb_is_gso(skb)) {
2603                 if (skb_header_cloned(skb)) {
2604                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2605                         if (err)
2606                                 return err;
2607                 }
2608
2609                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2610                 mss = skb_shinfo(skb)->gso_size;
2611                 if (skb->protocol == htons(ETH_P_IP)) {
2612                         skb->nh.iph->tot_len = 0;
2613                         skb->nh.iph->check = 0;
2614                         skb->h.th->check =
2615                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2616                                                    skb->nh.iph->daddr,
2617                                                    0,
2618                                                    IPPROTO_TCP,
2619                                                    0);
2620                         cmd_length = E1000_TXD_CMD_IP;
2621                         ipcse = skb->h.raw - skb->data - 1;
2622 #ifdef NETIF_F_TSO6
2623                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2624                         skb->nh.ipv6h->payload_len = 0;
2625                         skb->h.th->check =
2626                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2627                                                  &skb->nh.ipv6h->daddr,
2628                                                  0,
2629                                                  IPPROTO_TCP,
2630                                                  0);
2631                         ipcse = 0;
2632 #endif
2633                 }
2634                 ipcss = skb->nh.raw - skb->data;
2635                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2636                 tucss = skb->h.raw - skb->data;
2637                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2638                 tucse = 0;
2639
2640                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2641                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2642
2643                 i = tx_ring->next_to_use;
2644                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2645                 buffer_info = &tx_ring->buffer_info[i];
2646
2647                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2648                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2649                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2650                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2651                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2652                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2653                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2654                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2655                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2656
2657                 buffer_info->time_stamp = jiffies;
2658
2659                 if (++i == tx_ring->count) i = 0;
2660                 tx_ring->next_to_use = i;
2661
2662                 return TRUE;
2663         }
2664 #endif
2665
2666         return FALSE;
2667 }
2668
2669 static boolean_t
2670 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2671               struct sk_buff *skb)
2672 {
2673         struct e1000_context_desc *context_desc;
2674         struct e1000_buffer *buffer_info;
2675         unsigned int i;
2676         uint8_t css;
2677
2678         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2679                 css = skb->h.raw - skb->data;
2680
2681                 i = tx_ring->next_to_use;
2682                 buffer_info = &tx_ring->buffer_info[i];
2683                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2684
2685                 context_desc->upper_setup.tcp_fields.tucss = css;
2686                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2687                 context_desc->upper_setup.tcp_fields.tucse = 0;
2688                 context_desc->tcp_seg_setup.data = 0;
2689                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2690
2691                 buffer_info->time_stamp = jiffies;
2692
2693                 if (unlikely(++i == tx_ring->count)) i = 0;
2694                 tx_ring->next_to_use = i;
2695
2696                 return TRUE;
2697         }
2698
2699         return FALSE;
2700 }
2701
2702 #define E1000_MAX_TXD_PWR       12
2703 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2704
2705 static int
2706 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2707              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2708              unsigned int nr_frags, unsigned int mss)
2709 {
2710         struct e1000_buffer *buffer_info;
2711         unsigned int len = skb->len;
2712         unsigned int offset = 0, size, count = 0, i;
2713         unsigned int f;
2714         len -= skb->data_len;
2715
2716         i = tx_ring->next_to_use;
2717
2718         while (len) {
2719                 buffer_info = &tx_ring->buffer_info[i];
2720                 size = min(len, max_per_txd);
2721 #ifdef NETIF_F_TSO
2722                 /* Workaround for Controller erratum --
2723                  * descriptor for non-tso packet in a linear SKB that follows a
2724                  * tso gets written back prematurely before the data is fully
2725                  * DMA'd to the controller */
2726                 if (!skb->data_len && tx_ring->last_tx_tso &&
2727                     !skb_is_gso(skb)) {
2728                         tx_ring->last_tx_tso = 0;
2729                         size -= 4;
2730                 }
2731
2732                 /* Workaround for premature desc write-backs
2733                  * in TSO mode.  Append 4-byte sentinel desc */
2734                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2735                         size -= 4;
2736 #endif
2737                 /* work-around for errata 10 and it applies
2738                  * to all controllers in PCI-X mode
2739                  * The fix is to make sure that the first descriptor of a
2740                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2741                  */
2742                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2743                                 (size > 2015) && count == 0))
2744                         size = 2015;
2745
2746                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2747                  * terminating buffers within evenly-aligned dwords. */
2748                 if (unlikely(adapter->pcix_82544 &&
2749                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2750                    size > 4))
2751                         size -= 4;
2752
2753                 buffer_info->length = size;
2754                 buffer_info->dma =
2755                         pci_map_single(adapter->pdev,
2756                                 skb->data + offset,
2757                                 size,
2758                                 PCI_DMA_TODEVICE);
2759                 buffer_info->time_stamp = jiffies;
2760
2761                 len -= size;
2762                 offset += size;
2763                 count++;
2764                 if (unlikely(++i == tx_ring->count)) i = 0;
2765         }
2766
2767         for (f = 0; f < nr_frags; f++) {
2768                 struct skb_frag_struct *frag;
2769
2770                 frag = &skb_shinfo(skb)->frags[f];
2771                 len = frag->size;
2772                 offset = frag->page_offset;
2773
2774                 while (len) {
2775                         buffer_info = &tx_ring->buffer_info[i];
2776                         size = min(len, max_per_txd);
2777 #ifdef NETIF_F_TSO
2778                         /* Workaround for premature desc write-backs
2779                          * in TSO mode.  Append 4-byte sentinel desc */
2780                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2781                                 size -= 4;
2782 #endif
2783                         /* Workaround for potential 82544 hang in PCI-X.
2784                          * Avoid terminating buffers within evenly-aligned
2785                          * dwords. */
2786                         if (unlikely(adapter->pcix_82544 &&
2787                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2788                            size > 4))
2789                                 size -= 4;
2790
2791                         buffer_info->length = size;
2792                         buffer_info->dma =
2793                                 pci_map_page(adapter->pdev,
2794                                         frag->page,
2795                                         offset,
2796                                         size,
2797                                         PCI_DMA_TODEVICE);
2798                         buffer_info->time_stamp = jiffies;
2799
2800                         len -= size;
2801                         offset += size;
2802                         count++;
2803                         if (unlikely(++i == tx_ring->count)) i = 0;
2804                 }
2805         }
2806
2807         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2808         tx_ring->buffer_info[i].skb = skb;
2809         tx_ring->buffer_info[first].next_to_watch = i;
2810
2811         return count;
2812 }
2813
2814 static void
2815 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2816                int tx_flags, int count)
2817 {
2818         struct e1000_tx_desc *tx_desc = NULL;
2819         struct e1000_buffer *buffer_info;
2820         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2821         unsigned int i;
2822
2823         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2824                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2825                              E1000_TXD_CMD_TSE;
2826                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2827
2828                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2829                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2830         }
2831
2832         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2833                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2834                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2835         }
2836
2837         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2838                 txd_lower |= E1000_TXD_CMD_VLE;
2839                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2840         }
2841
2842         i = tx_ring->next_to_use;
2843
2844         while (count--) {
2845                 buffer_info = &tx_ring->buffer_info[i];
2846                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2847                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2848                 tx_desc->lower.data =
2849                         cpu_to_le32(txd_lower | buffer_info->length);
2850                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2851                 if (unlikely(++i == tx_ring->count)) i = 0;
2852         }
2853
2854         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2855
2856         /* Force memory writes to complete before letting h/w
2857          * know there are new descriptors to fetch.  (Only
2858          * applicable for weak-ordered memory model archs,
2859          * such as IA-64). */
2860         wmb();
2861
2862         tx_ring->next_to_use = i;
2863         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2864 }
2865
2866 /**
2867  * 82547 workaround to avoid controller hang in half-duplex environment.
2868  * The workaround is to avoid queuing a large packet that would span
2869  * the internal Tx FIFO ring boundary by notifying the stack to resend
2870  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2871  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2872  * to the beginning of the Tx FIFO.
2873  **/
2874
2875 #define E1000_FIFO_HDR                  0x10
2876 #define E1000_82547_PAD_LEN             0x3E0
2877
2878 static int
2879 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2880 {
2881         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2882         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2883
2884         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2885
2886         if (adapter->link_duplex != HALF_DUPLEX)
2887                 goto no_fifo_stall_required;
2888
2889         if (atomic_read(&adapter->tx_fifo_stall))
2890                 return 1;
2891
2892         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2893                 atomic_set(&adapter->tx_fifo_stall, 1);
2894                 return 1;
2895         }
2896
2897 no_fifo_stall_required:
2898         adapter->tx_fifo_head += skb_fifo_len;
2899         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2900                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2901         return 0;
2902 }
2903
2904 #define MINIMUM_DHCP_PACKET_SIZE 282
2905 static int
2906 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2907 {
2908         struct e1000_hw *hw =  &adapter->hw;
2909         uint16_t length, offset;
2910         if (vlan_tx_tag_present(skb)) {
2911                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2912                         ( adapter->hw.mng_cookie.status &
2913                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2914                         return 0;
2915         }
2916         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2917                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2918                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2919                         const struct iphdr *ip =
2920                                 (struct iphdr *)((uint8_t *)skb->data+14);
2921                         if (IPPROTO_UDP == ip->protocol) {
2922                                 struct udphdr *udp =
2923                                         (struct udphdr *)((uint8_t *)ip +
2924                                                 (ip->ihl << 2));
2925                                 if (ntohs(udp->dest) == 67) {
2926                                         offset = (uint8_t *)udp + 8 - skb->data;
2927                                         length = skb->len - offset;
2928
2929                                         return e1000_mng_write_dhcp_info(hw,
2930                                                         (uint8_t *)udp + 8,
2931                                                         length);
2932                                 }
2933                         }
2934                 }
2935         }
2936         return 0;
2937 }
2938
2939 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2940 {
2941         struct e1000_adapter *adapter = netdev_priv(netdev);
2942         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2943
2944         netif_stop_queue(netdev);
2945         /* Herbert's original patch had:
2946          *  smp_mb__after_netif_stop_queue();
2947          * but since that doesn't exist yet, just open code it. */
2948         smp_mb();
2949
2950         /* We need to check again in a case another CPU has just
2951          * made room available. */
2952         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2953                 return -EBUSY;
2954
2955         /* A reprieve! */
2956         netif_start_queue(netdev);
2957         return 0;
2958 }
2959
2960 static int e1000_maybe_stop_tx(struct net_device *netdev,
2961                                struct e1000_tx_ring *tx_ring, int size)
2962 {
2963         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2964                 return 0;
2965         return __e1000_maybe_stop_tx(netdev, size);
2966 }
2967
2968 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2969 static int
2970 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2971 {
2972         struct e1000_adapter *adapter = netdev_priv(netdev);
2973         struct e1000_tx_ring *tx_ring;
2974         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2975         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2976         unsigned int tx_flags = 0;
2977         unsigned int len = skb->len;
2978         unsigned long flags;
2979         unsigned int nr_frags = 0;
2980         unsigned int mss = 0;
2981         int count = 0;
2982         int tso;
2983         unsigned int f;
2984         len -= skb->data_len;
2985
2986         /* This goes back to the question of how to logically map a tx queue
2987          * to a flow.  Right now, performance is impacted slightly negatively
2988          * if using multiple tx queues.  If the stack breaks away from a
2989          * single qdisc implementation, we can look at this again. */
2990         tx_ring = adapter->tx_ring;
2991
2992         if (unlikely(skb->len <= 0)) {
2993                 dev_kfree_skb_any(skb);
2994                 return NETDEV_TX_OK;
2995         }
2996
2997         /* 82571 and newer doesn't need the workaround that limited descriptor
2998          * length to 4kB */
2999         if (adapter->hw.mac_type >= e1000_82571)
3000                 max_per_txd = 8192;
3001
3002 #ifdef NETIF_F_TSO
3003         mss = skb_shinfo(skb)->gso_size;
3004         /* The controller does a simple calculation to
3005          * make sure there is enough room in the FIFO before
3006          * initiating the DMA for each buffer.  The calc is:
3007          * 4 = ceil(buffer len/mss).  To make sure we don't
3008          * overrun the FIFO, adjust the max buffer len if mss
3009          * drops. */
3010         if (mss) {
3011                 uint8_t hdr_len;
3012                 max_per_txd = min(mss << 2, max_per_txd);
3013                 max_txd_pwr = fls(max_per_txd) - 1;
3014
3015                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3016                 * points to just header, pull a few bytes of payload from
3017                 * frags into skb->data */
3018                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3019                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3020                         switch (adapter->hw.mac_type) {
3021                                 unsigned int pull_size;
3022                         case e1000_82571:
3023                         case e1000_82572:
3024                         case e1000_82573:
3025                         case e1000_ich8lan:
3026                                 pull_size = min((unsigned int)4, skb->data_len);
3027                                 if (!__pskb_pull_tail(skb, pull_size)) {
3028                                         DPRINTK(DRV, ERR,
3029                                                 "__pskb_pull_tail failed.\n");
3030                                         dev_kfree_skb_any(skb);
3031                                         return NETDEV_TX_OK;
3032                                 }
3033                                 len = skb->len - skb->data_len;
3034                                 break;
3035                         default:
3036                                 /* do nothing */
3037                                 break;
3038                         }
3039                 }
3040         }
3041
3042         /* reserve a descriptor for the offload context */
3043         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3044                 count++;
3045         count++;
3046 #else
3047         if (skb->ip_summed == CHECKSUM_PARTIAL)
3048                 count++;
3049 #endif
3050
3051 #ifdef NETIF_F_TSO
3052         /* Controller Erratum workaround */
3053         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3054                 count++;
3055 #endif
3056
3057         count += TXD_USE_COUNT(len, max_txd_pwr);
3058
3059         if (adapter->pcix_82544)
3060                 count++;
3061
3062         /* work-around for errata 10 and it applies to all controllers
3063          * in PCI-X mode, so add one more descriptor to the count
3064          */
3065         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3066                         (len > 2015)))
3067                 count++;
3068
3069         nr_frags = skb_shinfo(skb)->nr_frags;
3070         for (f = 0; f < nr_frags; f++)
3071                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3072                                        max_txd_pwr);
3073         if (adapter->pcix_82544)
3074                 count += nr_frags;
3075
3076
3077         if (adapter->hw.tx_pkt_filtering &&
3078             (adapter->hw.mac_type == e1000_82573))
3079                 e1000_transfer_dhcp_info(adapter, skb);
3080
3081         local_irq_save(flags);
3082         if (!spin_trylock(&tx_ring->tx_lock)) {
3083                 /* Collision - tell upper layer to requeue */
3084                 local_irq_restore(flags);
3085                 return NETDEV_TX_LOCKED;
3086         }
3087
3088         /* need: count + 2 desc gap to keep tail from touching
3089          * head, otherwise try next time */
3090         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3091                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3092                 return NETDEV_TX_BUSY;
3093         }
3094
3095         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3096                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3097                         netif_stop_queue(netdev);
3098                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3099                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3100                         return NETDEV_TX_BUSY;
3101                 }
3102         }
3103
3104         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3105                 tx_flags |= E1000_TX_FLAGS_VLAN;
3106                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3107         }
3108
3109         first = tx_ring->next_to_use;
3110
3111         tso = e1000_tso(adapter, tx_ring, skb);
3112         if (tso < 0) {
3113                 dev_kfree_skb_any(skb);
3114                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3115                 return NETDEV_TX_OK;
3116         }
3117
3118         if (likely(tso)) {
3119                 tx_ring->last_tx_tso = 1;
3120                 tx_flags |= E1000_TX_FLAGS_TSO;
3121         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3122                 tx_flags |= E1000_TX_FLAGS_CSUM;
3123
3124         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3125          * 82571 hardware supports TSO capabilities for IPv6 as well...
3126          * no longer assume, we must. */
3127         if (likely(skb->protocol == htons(ETH_P_IP)))
3128                 tx_flags |= E1000_TX_FLAGS_IPV4;
3129
3130         e1000_tx_queue(adapter, tx_ring, tx_flags,
3131                        e1000_tx_map(adapter, tx_ring, skb, first,
3132                                     max_per_txd, nr_frags, mss));
3133
3134         netdev->trans_start = jiffies;
3135
3136         /* Make sure there is space in the ring for the next send. */
3137         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3138
3139         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3140         return NETDEV_TX_OK;
3141 }
3142
3143 /**
3144  * e1000_tx_timeout - Respond to a Tx Hang
3145  * @netdev: network interface device structure
3146  **/
3147
3148 static void
3149 e1000_tx_timeout(struct net_device *netdev)
3150 {
3151         struct e1000_adapter *adapter = netdev_priv(netdev);
3152
3153         /* Do the reset outside of interrupt context */
3154         adapter->tx_timeout_count++;
3155         schedule_work(&adapter->reset_task);
3156 }
3157
3158 static void
3159 e1000_reset_task(struct net_device *netdev)
3160 {
3161         struct e1000_adapter *adapter = netdev_priv(netdev);
3162
3163         e1000_reinit_locked(adapter);
3164 }
3165
3166 /**
3167  * e1000_get_stats - Get System Network Statistics
3168  * @netdev: network interface device structure
3169  *
3170  * Returns the address of the device statistics structure.
3171  * The statistics are actually updated from the timer callback.
3172  **/
3173
3174 static struct net_device_stats *
3175 e1000_get_stats(struct net_device *netdev)
3176 {
3177         struct e1000_adapter *adapter = netdev_priv(netdev);
3178
3179         /* only return the current stats */
3180         return &adapter->net_stats;
3181 }
3182
3183 /**
3184  * e1000_change_mtu - Change the Maximum Transfer Unit
3185  * @netdev: network interface device structure
3186  * @new_mtu: new value for maximum frame size
3187  *
3188  * Returns 0 on success, negative on failure
3189  **/
3190
3191 static int
3192 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3193 {
3194         struct e1000_adapter *adapter = netdev_priv(netdev);
3195         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3196         uint16_t eeprom_data = 0;
3197
3198         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3199             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3200                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3201                 return -EINVAL;
3202         }
3203
3204         /* Adapter-specific max frame size limits. */
3205         switch (adapter->hw.mac_type) {
3206         case e1000_undefined ... e1000_82542_rev2_1:
3207         case e1000_ich8lan:
3208                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3209                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3210                         return -EINVAL;
3211                 }
3212                 break;
3213         case e1000_82573:
3214                 /* Jumbo Frames not supported if:
3215                  * - this is not an 82573L device
3216                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3217                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3218                                   &eeprom_data);
3219                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3220                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3221                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3222                                 DPRINTK(PROBE, ERR,
3223                                         "Jumbo Frames not supported.\n");
3224                                 return -EINVAL;
3225                         }
3226                         break;
3227                 }
3228                 /* ERT will be enabled later to enable wire speed receives */
3229
3230                 /* fall through to get support */
3231         case e1000_82571:
3232         case e1000_82572:
3233         case e1000_80003es2lan:
3234 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3235                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3236                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3237                         return -EINVAL;
3238                 }
3239                 break;
3240         default:
3241                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3242                 break;
3243         }
3244
3245         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3246          * means we reserve 2 more, this pushes us to allocate from the next
3247          * larger slab size
3248          * i.e. RXBUFFER_2048 --> size-4096 slab */
3249
3250         if (max_frame <= E1000_RXBUFFER_256)
3251                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3252         else if (max_frame <= E1000_RXBUFFER_512)
3253                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3254         else if (max_frame <= E1000_RXBUFFER_1024)
3255                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3256         else if (max_frame <= E1000_RXBUFFER_2048)
3257                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3258         else if (max_frame <= E1000_RXBUFFER_4096)
3259                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3260         else if (max_frame <= E1000_RXBUFFER_8192)
3261                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3262         else if (max_frame <= E1000_RXBUFFER_16384)
3263                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3264
3265         /* adjust allocation if LPE protects us, and we aren't using SBP */
3266         if (!adapter->hw.tbi_compatibility_on &&
3267             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3268              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3269                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3270
3271         netdev->mtu = new_mtu;
3272
3273         if (netif_running(netdev))
3274                 e1000_reinit_locked(adapter);
3275
3276         adapter->hw.max_frame_size = max_frame;
3277
3278         return 0;
3279 }
3280
3281 /**
3282  * e1000_update_stats - Update the board statistics counters
3283  * @adapter: board private structure
3284  **/
3285
3286 void
3287 e1000_update_stats(struct e1000_adapter *adapter)
3288 {
3289         struct e1000_hw *hw = &adapter->hw;
3290         struct pci_dev *pdev = adapter->pdev;
3291         unsigned long flags;
3292         uint16_t phy_tmp;
3293
3294 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3295
3296         /*
3297          * Prevent stats update while adapter is being reset, or if the pci
3298          * connection is down.
3299          */
3300         if (adapter->link_speed == 0)
3301                 return;
3302         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3303                 return;
3304
3305         spin_lock_irqsave(&adapter->stats_lock, flags);
3306
3307         /* these counters are modified from e1000_adjust_tbi_stats,
3308          * called from the interrupt context, so they must only
3309          * be written while holding adapter->stats_lock
3310          */
3311
3312         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3313         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3314         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3315         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3316         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3317         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3318         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3319
3320         if (adapter->hw.mac_type != e1000_ich8lan) {
3321                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3322                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3323                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3324                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3325                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3326                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3327         }
3328
3329         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3330         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3331         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3332         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3333         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3334         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3335         adapter->stats.dc += E1000_READ_REG(hw, DC);
3336         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3337         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3338         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3339         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3340         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3341         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3342         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3343         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3344         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3345         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3346         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3347         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3348         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3349         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3350         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3351         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3352         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3353         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3354         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3355
3356         if (adapter->hw.mac_type != e1000_ich8lan) {
3357                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3358                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3359                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3360                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3361                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3362                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3363         }
3364
3365         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3366         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3367
3368         /* used for adaptive IFS */
3369
3370         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3371         adapter->stats.tpt += hw->tx_packet_delta;
3372         hw->collision_delta = E1000_READ_REG(hw, COLC);
3373         adapter->stats.colc += hw->collision_delta;
3374
3375         if (hw->mac_type >= e1000_82543) {
3376                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3377                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3378                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3379                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3380                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3381                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3382         }
3383         if (hw->mac_type > e1000_82547_rev_2) {
3384                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3385                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3386
3387                 if (adapter->hw.mac_type != e1000_ich8lan) {
3388                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3389                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3390                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3391                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3392                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3393                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3394                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3395                 }
3396         }
3397
3398         /* Fill out the OS statistics structure */
3399         adapter->net_stats.rx_packets = adapter->stats.gprc;
3400         adapter->net_stats.tx_packets = adapter->stats.gptc;
3401         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3402         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3403         adapter->net_stats.multicast = adapter->stats.mprc;
3404         adapter->net_stats.collisions = adapter->stats.colc;
3405
3406         /* Rx Errors */
3407
3408         /* RLEC on some newer hardware can be incorrect so build
3409         * our own version based on RUC and ROC */
3410         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3411                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3412                 adapter->stats.ruc + adapter->stats.roc +
3413                 adapter->stats.cexterr;
3414         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3415         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3416         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3417         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3418         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3419
3420         /* Tx Errors */
3421         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3422         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3423         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3424         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3425         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3426
3427         /* Tx Dropped needs to be maintained elsewhere */
3428
3429         /* Phy Stats */
3430         if (hw->media_type == e1000_media_type_copper) {
3431                 if ((adapter->link_speed == SPEED_1000) &&
3432                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3433                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3434                         adapter->phy_stats.idle_errors += phy_tmp;
3435                 }
3436
3437                 if ((hw->mac_type <= e1000_82546) &&
3438                    (hw->phy_type == e1000_phy_m88) &&
3439                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3440                         adapter->phy_stats.receive_errors += phy_tmp;
3441         }
3442
3443         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3444 }
3445
3446 /**
3447  * e1000_intr - Interrupt Handler
3448  * @irq: interrupt number
3449  * @data: pointer to a network interface device structure
3450  **/
3451
3452 static irqreturn_t
3453 e1000_intr(int irq, void *data)
3454 {
3455         struct net_device *netdev = data;
3456         struct e1000_adapter *adapter = netdev_priv(netdev);
3457         struct e1000_hw *hw = &adapter->hw;
3458         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3459 #ifndef CONFIG_E1000_NAPI
3460         int i;
3461 #else
3462         /* Interrupt Auto-Mask...upon reading ICR,
3463          * interrupts are masked.  No need for the
3464          * IMC write, but it does mean we should
3465          * account for it ASAP. */
3466         if (likely(hw->mac_type >= e1000_82571))
3467                 atomic_inc(&adapter->irq_sem);
3468 #endif
3469
3470         if (unlikely(!icr)) {
3471 #ifdef CONFIG_E1000_NAPI
3472                 if (hw->mac_type >= e1000_82571)
3473                         e1000_irq_enable(adapter);
3474 #endif
3475                 return IRQ_NONE;  /* Not our interrupt */
3476         }
3477
3478         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3479                 hw->get_link_status = 1;
3480                 /* 80003ES2LAN workaround--
3481                  * For packet buffer work-around on link down event;
3482                  * disable receives here in the ISR and
3483                  * reset adapter in watchdog
3484                  */
3485                 if (netif_carrier_ok(netdev) &&
3486                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3487                         /* disable receives */
3488                         rctl = E1000_READ_REG(hw, RCTL);
3489                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3490                 }
3491                 /* guard against interrupt when we're going down */
3492                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3493                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3494         }
3495
3496 #ifdef CONFIG_E1000_NAPI
3497         if (unlikely(hw->mac_type < e1000_82571)) {
3498                 atomic_inc(&adapter->irq_sem);
3499                 E1000_WRITE_REG(hw, IMC, ~0);
3500                 E1000_WRITE_FLUSH(hw);
3501         }
3502         if (likely(netif_rx_schedule_prep(netdev)))
3503                 __netif_rx_schedule(netdev);
3504         else
3505                 /* this really should not happen! if it does it is basically a
3506                  * bug, but not a hard error, so enable ints and continue */
3507                 e1000_irq_enable(adapter);
3508 #else
3509         /* Writing IMC and IMS is needed for 82547.
3510          * Due to Hub Link bus being occupied, an interrupt
3511          * de-assertion message is not able to be sent.
3512          * When an interrupt assertion message is generated later,
3513          * two messages are re-ordered and sent out.
3514          * That causes APIC to think 82547 is in de-assertion
3515          * state, while 82547 is in assertion state, resulting
3516          * in dead lock. Writing IMC forces 82547 into
3517          * de-assertion state.
3518          */
3519         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3520                 atomic_inc(&adapter->irq_sem);
3521                 E1000_WRITE_REG(hw, IMC, ~0);
3522         }
3523
3524         for (i = 0; i < E1000_MAX_INTR; i++)
3525                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3526                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3527                         break;
3528
3529         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3530                 e1000_irq_enable(adapter);
3531
3532 #endif
3533         return IRQ_HANDLED;
3534 }
3535
3536 #ifdef CONFIG_E1000_NAPI
3537 /**
3538  * e1000_clean - NAPI Rx polling callback
3539  * @adapter: board private structure
3540  **/
3541
3542 static int
3543 e1000_clean(struct net_device *poll_dev, int *budget)
3544 {
3545         struct e1000_adapter *adapter;
3546         int work_to_do = min(*budget, poll_dev->quota);
3547         int tx_cleaned = 0, work_done = 0;
3548
3549         /* Must NOT use netdev_priv macro here. */
3550         adapter = poll_dev->priv;
3551
3552         /* Keep link state information with original netdev */
3553         if (!netif_carrier_ok(poll_dev))
3554                 goto quit_polling;
3555
3556         /* e1000_clean is called per-cpu.  This lock protects
3557          * tx_ring[0] from being cleaned by multiple cpus
3558          * simultaneously.  A failure obtaining the lock means
3559          * tx_ring[0] is currently being cleaned anyway. */
3560         if (spin_trylock(&adapter->tx_queue_lock)) {
3561                 tx_cleaned = e1000_clean_tx_irq(adapter,
3562                                                 &adapter->tx_ring[0]);
3563                 spin_unlock(&adapter->tx_queue_lock);
3564         }
3565
3566         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3567                           &work_done, work_to_do);
3568
3569         *budget -= work_done;
3570         poll_dev->quota -= work_done;
3571
3572         /* If no Tx and not enough Rx work done, exit the polling mode */
3573         if ((!tx_cleaned && (work_done == 0)) ||
3574            !netif_running(poll_dev)) {
3575 quit_polling:
3576                 netif_rx_complete(poll_dev);
3577                 e1000_irq_enable(adapter);
3578                 return 0;
3579         }
3580
3581         return 1;
3582 }
3583
3584 #endif
3585 /**
3586  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3587  * @adapter: board private structure
3588  **/
3589
3590 static boolean_t
3591 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3592                    struct e1000_tx_ring *tx_ring)
3593 {
3594         struct net_device *netdev = adapter->netdev;
3595         struct e1000_tx_desc *tx_desc, *eop_desc;
3596         struct e1000_buffer *buffer_info;
3597         unsigned int i, eop;
3598 #ifdef CONFIG_E1000_NAPI
3599         unsigned int count = 0;
3600 #endif
3601         boolean_t cleaned = FALSE;
3602
3603         i = tx_ring->next_to_clean;
3604         eop = tx_ring->buffer_info[i].next_to_watch;
3605         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3606
3607         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3608                 for (cleaned = FALSE; !cleaned; ) {
3609                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3610                         buffer_info = &tx_ring->buffer_info[i];
3611                         cleaned = (i == eop);
3612
3613                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3614                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3615
3616                         if (unlikely(++i == tx_ring->count)) i = 0;
3617                 }
3618
3619                 eop = tx_ring->buffer_info[i].next_to_watch;
3620                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3621 #ifdef CONFIG_E1000_NAPI
3622 #define E1000_TX_WEIGHT 64
3623                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3624                 if (count++ == E1000_TX_WEIGHT) break;
3625 #endif
3626         }
3627
3628         tx_ring->next_to_clean = i;
3629
3630 #define TX_WAKE_THRESHOLD 32
3631         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3632                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3633                 /* Make sure that anybody stopping the queue after this
3634                  * sees the new next_to_clean.
3635                  */
3636                 smp_mb();
3637                 if (netif_queue_stopped(netdev))
3638                         netif_wake_queue(netdev);
3639         }
3640
3641         if (adapter->detect_tx_hung) {
3642                 /* Detect a transmit hang in hardware, this serializes the
3643                  * check with the clearing of time_stamp and movement of i */
3644                 adapter->detect_tx_hung = FALSE;
3645                 if (tx_ring->buffer_info[eop].dma &&
3646                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3647                                (adapter->tx_timeout_factor * HZ))
3648                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3649                          E1000_STATUS_TXOFF)) {
3650
3651                         /* detected Tx unit hang */
3652                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3653                                         "  Tx Queue             <%lu>\n"
3654                                         "  TDH                  <%x>\n"
3655                                         "  TDT                  <%x>\n"
3656                                         "  next_to_use          <%x>\n"
3657                                         "  next_to_clean        <%x>\n"
3658                                         "buffer_info[next_to_clean]\n"
3659                                         "  time_stamp           <%lx>\n"
3660                                         "  next_to_watch        <%x>\n"
3661                                         "  jiffies              <%lx>\n"
3662                                         "  next_to_watch.status <%x>\n",
3663                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3664                                         sizeof(struct e1000_tx_ring)),
3665                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3666                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3667                                 tx_ring->next_to_use,
3668                                 tx_ring->next_to_clean,
3669                                 tx_ring->buffer_info[eop].time_stamp,
3670                                 eop,
3671                                 jiffies,
3672                                 eop_desc->upper.fields.status);
3673                         netif_stop_queue(netdev);
3674                 }
3675         }
3676         return cleaned;
3677 }
3678
3679 /**
3680  * e1000_rx_checksum - Receive Checksum Offload for 82543
3681  * @adapter:     board private structure
3682  * @status_err:  receive descriptor status and error fields
3683  * @csum:        receive descriptor csum field
3684  * @sk_buff:     socket buffer with received data
3685  **/
3686
3687 static void
3688 e1000_rx_checksum(struct e1000_adapter *adapter,
3689                   uint32_t status_err, uint32_t csum,
3690                   struct sk_buff *skb)
3691 {
3692         uint16_t status = (uint16_t)status_err;
3693         uint8_t errors = (uint8_t)(status_err >> 24);
3694         skb->ip_summed = CHECKSUM_NONE;
3695
3696         /* 82543 or newer only */
3697         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3698         /* Ignore Checksum bit is set */
3699         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3700         /* TCP/UDP checksum error bit is set */
3701         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3702                 /* let the stack verify checksum errors */
3703                 adapter->hw_csum_err++;
3704                 return;
3705         }
3706         /* TCP/UDP Checksum has not been calculated */
3707         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3708                 if (!(status & E1000_RXD_STAT_TCPCS))
3709                         return;
3710         } else {
3711                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3712                         return;
3713         }
3714         /* It must be a TCP or UDP packet with a valid checksum */
3715         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3716                 /* TCP checksum is good */
3717                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3718         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3719                 /* IP fragment with UDP payload */
3720                 /* Hardware complements the payload checksum, so we undo it
3721                  * and then put the value in host order for further stack use.
3722                  */
3723                 csum = ntohl(csum ^ 0xFFFF);
3724                 skb->csum = csum;
3725                 skb->ip_summed = CHECKSUM_COMPLETE;
3726         }
3727         adapter->hw_csum_good++;
3728 }
3729
3730 /**
3731  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3732  * @adapter: board private structure
3733  **/
3734
3735 static boolean_t
3736 #ifdef CONFIG_E1000_NAPI
3737 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3738                    struct e1000_rx_ring *rx_ring,
3739                    int *work_done, int work_to_do)
3740 #else
3741 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3742                    struct e1000_rx_ring *rx_ring)
3743 #endif
3744 {
3745         struct net_device *netdev = adapter->netdev;
3746         struct pci_dev *pdev = adapter->pdev;
3747         struct e1000_rx_desc *rx_desc, *next_rxd;
3748         struct e1000_buffer *buffer_info, *next_buffer;
3749         unsigned long flags;
3750         uint32_t length;
3751         uint8_t last_byte;
3752         unsigned int i;
3753         int cleaned_count = 0;
3754         boolean_t cleaned = FALSE;
3755
3756         i = rx_ring->next_to_clean;
3757         rx_desc = E1000_RX_DESC(*rx_ring, i);
3758         buffer_info = &rx_ring->buffer_info[i];
3759
3760         while (rx_desc->status & E1000_RXD_STAT_DD) {
3761                 struct sk_buff *skb;
3762                 u8 status;
3763
3764 #ifdef CONFIG_E1000_NAPI
3765                 if (*work_done >= work_to_do)
3766                         break;
3767                 (*work_done)++;
3768 #endif
3769                 status = rx_desc->status;
3770                 skb = buffer_info->skb;
3771                 buffer_info->skb = NULL;
3772
3773                 prefetch(skb->data - NET_IP_ALIGN);
3774
3775                 if (++i == rx_ring->count) i = 0;
3776                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3777                 prefetch(next_rxd);
3778
3779                 next_buffer = &rx_ring->buffer_info[i];
3780
3781                 cleaned = TRUE;
3782                 cleaned_count++;
3783                 pci_unmap_single(pdev,
3784                                  buffer_info->dma,
3785                                  buffer_info->length,
3786                                  PCI_DMA_FROMDEVICE);
3787
3788                 length = le16_to_cpu(rx_desc->length);
3789
3790                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3791                         /* All receives must fit into a single buffer */
3792                         E1000_DBG("%s: Receive packet consumed multiple"
3793                                   " buffers\n", netdev->name);
3794                         /* recycle */
3795                         buffer_info->skb = skb;
3796                         goto next_desc;
3797                 }
3798
3799                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3800                         last_byte = *(skb->data + length - 1);
3801                         if (TBI_ACCEPT(&adapter->hw, status,
3802                                       rx_desc->errors, length, last_byte)) {
3803                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3804                                 e1000_tbi_adjust_stats(&adapter->hw,
3805                                                        &adapter->stats,
3806                                                        length, skb->data);
3807                                 spin_unlock_irqrestore(&adapter->stats_lock,
3808                                                        flags);
3809                                 length--;
3810                         } else {
3811                                 /* recycle */
3812                                 buffer_info->skb = skb;
3813                                 goto next_desc;
3814                         }
3815                 }
3816
3817                 /* adjust length to remove Ethernet CRC, this must be
3818                  * done after the TBI_ACCEPT workaround above */
3819                 length -= 4;
3820
3821                 /* code added for copybreak, this should improve
3822                  * performance for small packets with large amounts
3823                  * of reassembly being done in the stack */
3824 #define E1000_CB_LENGTH 256
3825                 if (length < E1000_CB_LENGTH) {
3826                         struct sk_buff *new_skb =
3827                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3828                         if (new_skb) {
3829                                 skb_reserve(new_skb, NET_IP_ALIGN);
3830                                 memcpy(new_skb->data - NET_IP_ALIGN,
3831                                        skb->data - NET_IP_ALIGN,
3832                                        length + NET_IP_ALIGN);
3833                                 /* save the skb in buffer_info as good */
3834                                 buffer_info->skb = skb;
3835                                 skb = new_skb;
3836                                 skb_put(skb, length);
3837                         }
3838                 } else
3839                         skb_put(skb, length);
3840
3841                 /* end copybreak code */
3842
3843                 /* Receive Checksum Offload */
3844                 e1000_rx_checksum(adapter,
3845                                   (uint32_t)(status) |
3846                                   ((uint32_t)(rx_desc->errors) << 24),
3847                                   le16_to_cpu(rx_desc->csum), skb);
3848
3849                 skb->protocol = eth_type_trans(skb, netdev);
3850 #ifdef CONFIG_E1000_NAPI
3851                 if (unlikely(adapter->vlgrp &&
3852                             (status & E1000_RXD_STAT_VP))) {
3853                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3854                                                  le16_to_cpu(rx_desc->special) &
3855                                                  E1000_RXD_SPC_VLAN_MASK);
3856                 } else {
3857                         netif_receive_skb(skb);
3858                 }
3859 #else /* CONFIG_E1000_NAPI */
3860                 if (unlikely(adapter->vlgrp &&
3861                             (status & E1000_RXD_STAT_VP))) {
3862                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3863                                         le16_to_cpu(rx_desc->special) &
3864                                         E1000_RXD_SPC_VLAN_MASK);
3865                 } else {
3866                         netif_rx(skb);
3867                 }
3868 #endif /* CONFIG_E1000_NAPI */
3869                 netdev->last_rx = jiffies;
3870
3871 next_desc:
3872                 rx_desc->status = 0;
3873
3874                 /* return some buffers to hardware, one at a time is too slow */
3875                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3876                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3877                         cleaned_count = 0;
3878                 }
3879
3880                 /* use prefetched values */
3881                 rx_desc = next_rxd;
3882                 buffer_info = next_buffer;
3883         }
3884         rx_ring->next_to_clean = i;
3885
3886         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3887         if (cleaned_count)
3888                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3889
3890         return cleaned;
3891 }
3892
3893 /**
3894  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3895  * @adapter: board private structure
3896  **/
3897
3898 static boolean_t
3899 #ifdef CONFIG_E1000_NAPI
3900 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3901                       struct e1000_rx_ring *rx_ring,
3902                       int *work_done, int work_to_do)
3903 #else
3904 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3905                       struct e1000_rx_ring *rx_ring)
3906 #endif
3907 {
3908         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3909         struct net_device *netdev = adapter->netdev;
3910         struct pci_dev *pdev = adapter->pdev;
3911         struct e1000_buffer *buffer_info, *next_buffer;
3912         struct e1000_ps_page *ps_page;
3913         struct e1000_ps_page_dma *ps_page_dma;
3914         struct sk_buff *skb;
3915         unsigned int i, j;
3916         uint32_t length, staterr;
3917         int cleaned_count = 0;
3918         boolean_t cleaned = FALSE;
3919
3920         i = rx_ring->next_to_clean;
3921         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3922         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3923         buffer_info = &rx_ring->buffer_info[i];
3924
3925         while (staterr & E1000_RXD_STAT_DD) {
3926                 ps_page = &rx_ring->ps_page[i];
3927                 ps_page_dma = &rx_ring->ps_page_dma[i];
3928 #ifdef CONFIG_E1000_NAPI
3929                 if (unlikely(*work_done >= work_to_do))
3930                         break;
3931                 (*work_done)++;
3932 #endif
3933                 skb = buffer_info->skb;
3934
3935                 /* in the packet split case this is header only */
3936                 prefetch(skb->data - NET_IP_ALIGN);
3937
3938                 if (++i == rx_ring->count) i = 0;
3939                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3940                 prefetch(next_rxd);
3941
3942                 next_buffer = &rx_ring->buffer_info[i];
3943
3944                 cleaned = TRUE;
3945                 cleaned_count++;
3946                 pci_unmap_single(pdev, buffer_info->dma,
3947                                  buffer_info->length,
3948                                  PCI_DMA_FROMDEVICE);
3949
3950                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3951                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3952                                   " the full packet\n", netdev->name);
3953                         dev_kfree_skb_irq(skb);
3954                         goto next_desc;
3955                 }
3956
3957                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3958                         dev_kfree_skb_irq(skb);
3959                         goto next_desc;
3960                 }
3961
3962                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3963
3964                 if (unlikely(!length)) {
3965                         E1000_DBG("%s: Last part of the packet spanning"
3966                                   " multiple descriptors\n", netdev->name);
3967                         dev_kfree_skb_irq(skb);
3968                         goto next_desc;
3969                 }
3970
3971                 /* Good Receive */
3972                 skb_put(skb, length);
3973
3974                 {
3975                 /* this looks ugly, but it seems compiler issues make it
3976                    more efficient than reusing j */
3977                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3978
3979                 /* page alloc/put takes too long and effects small packet
3980                  * throughput, so unsplit small packets and save the alloc/put*/
3981                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3982                         u8 *vaddr;
3983                         /* there is no documentation about how to call
3984                          * kmap_atomic, so we can't hold the mapping
3985                          * very long */
3986                         pci_dma_sync_single_for_cpu(pdev,
3987                                 ps_page_dma->ps_page_dma[0],
3988                                 PAGE_SIZE,
3989                                 PCI_DMA_FROMDEVICE);
3990                         vaddr = kmap_atomic(ps_page->ps_page[0],
3991                                             KM_SKB_DATA_SOFTIRQ);
3992                         memcpy(skb->tail, vaddr, l1);
3993                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3994                         pci_dma_sync_single_for_device(pdev,
3995                                 ps_page_dma->ps_page_dma[0],
3996                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3997                         /* remove the CRC */
3998                         l1 -= 4;
3999                         skb_put(skb, l1);
4000                         goto copydone;
4001                 } /* if */
4002                 }
4003
4004                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4005                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4006                                 break;
4007                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4008                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4009                         ps_page_dma->ps_page_dma[j] = 0;
4010                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4011                                            length);
4012                         ps_page->ps_page[j] = NULL;
4013                         skb->len += length;
4014                         skb->data_len += length;
4015                         skb->truesize += length;
4016                 }
4017
4018                 /* strip the ethernet crc, problem is we're using pages now so
4019                  * this whole operation can get a little cpu intensive */
4020                 pskb_trim(skb, skb->len - 4);
4021
4022 copydone:
4023                 e1000_rx_checksum(adapter, staterr,
4024                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4025                 skb->protocol = eth_type_trans(skb, netdev);
4026
4027                 if (likely(rx_desc->wb.upper.header_status &
4028                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4029                         adapter->rx_hdr_split++;
4030 #ifdef CONFIG_E1000_NAPI
4031                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4032                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4033                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4034                                 E1000_RXD_SPC_VLAN_MASK);
4035                 } else {
4036                         netif_receive_skb(skb);
4037                 }
4038 #else /* CONFIG_E1000_NAPI */
4039                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4040                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4041                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4042                                 E1000_RXD_SPC_VLAN_MASK);
4043                 } else {
4044                         netif_rx(skb);
4045                 }
4046 #endif /* CONFIG_E1000_NAPI */
4047                 netdev->last_rx = jiffies;
4048
4049 next_desc:
4050                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4051                 buffer_info->skb = NULL;
4052
4053                 /* return some buffers to hardware, one at a time is too slow */
4054                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4055                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4056                         cleaned_count = 0;
4057                 }
4058
4059                 /* use prefetched values */
4060                 rx_desc = next_rxd;
4061                 buffer_info = next_buffer;
4062
4063                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4064         }
4065         rx_ring->next_to_clean = i;
4066
4067         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4068         if (cleaned_count)
4069                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4070
4071         return cleaned;
4072 }
4073
4074 /**
4075  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4076  * @adapter: address of board private structure
4077  **/
4078
4079 static void
4080 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4081                        struct e1000_rx_ring *rx_ring,
4082                        int cleaned_count)
4083 {
4084         struct net_device *netdev = adapter->netdev;
4085         struct pci_dev *pdev = adapter->pdev;
4086         struct e1000_rx_desc *rx_desc;
4087         struct e1000_buffer *buffer_info;
4088         struct sk_buff *skb;
4089         unsigned int i;
4090         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4091
4092         i = rx_ring->next_to_use;
4093         buffer_info = &rx_ring->buffer_info[i];
4094
4095         while (cleaned_count--) {
4096                 skb = buffer_info->skb;
4097                 if (skb) {
4098                         skb_trim(skb, 0);
4099                         goto map_skb;
4100                 }
4101
4102                 skb = netdev_alloc_skb(netdev, bufsz);
4103                 if (unlikely(!skb)) {
4104                         /* Better luck next round */
4105                         adapter->alloc_rx_buff_failed++;
4106                         break;
4107                 }
4108
4109                 /* Fix for errata 23, can't cross 64kB boundary */
4110                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4111                         struct sk_buff *oldskb = skb;
4112                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4113                                              "at %p\n", bufsz, skb->data);
4114                         /* Try again, without freeing the previous */
4115                         skb = netdev_alloc_skb(netdev, bufsz);
4116                         /* Failed allocation, critical failure */
4117                         if (!skb) {
4118                                 dev_kfree_skb(oldskb);
4119                                 break;
4120                         }
4121
4122                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4123                                 /* give up */
4124                                 dev_kfree_skb(skb);
4125                                 dev_kfree_skb(oldskb);
4126                                 break; /* while !buffer_info->skb */
4127                         }
4128
4129                         /* Use new allocation */
4130                         dev_kfree_skb(oldskb);
4131                 }
4132                 /* Make buffer alignment 2 beyond a 16 byte boundary
4133                  * this will result in a 16 byte aligned IP header after
4134                  * the 14 byte MAC header is removed
4135                  */
4136                 skb_reserve(skb, NET_IP_ALIGN);
4137
4138                 buffer_info->skb = skb;
4139                 buffer_info->length = adapter->rx_buffer_len;
4140 map_skb:
4141                 buffer_info->dma = pci_map_single(pdev,
4142                                                   skb->data,
4143                                                   adapter->rx_buffer_len,
4144                                                   PCI_DMA_FROMDEVICE);
4145
4146                 /* Fix for errata 23, can't cross 64kB boundary */
4147                 if (!e1000_check_64k_bound(adapter,
4148                                         (void *)(unsigned long)buffer_info->dma,
4149                                         adapter->rx_buffer_len)) {
4150                         DPRINTK(RX_ERR, ERR,
4151                                 "dma align check failed: %u bytes at %p\n",
4152                                 adapter->rx_buffer_len,
4153                                 (void *)(unsigned long)buffer_info->dma);
4154                         dev_kfree_skb(skb);
4155                         buffer_info->skb = NULL;
4156
4157                         pci_unmap_single(pdev, buffer_info->dma,
4158                                          adapter->rx_buffer_len,
4159                                          PCI_DMA_FROMDEVICE);
4160
4161                         break; /* while !buffer_info->skb */
4162                 }
4163                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4164                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4165
4166                 if (unlikely(++i == rx_ring->count))
4167                         i = 0;
4168                 buffer_info = &rx_ring->buffer_info[i];
4169         }
4170
4171         if (likely(rx_ring->next_to_use != i)) {
4172                 rx_ring->next_to_use = i;
4173                 if (unlikely(i-- == 0))
4174                         i = (rx_ring->count - 1);
4175
4176                 /* Force memory writes to complete before letting h/w
4177                  * know there are new descriptors to fetch.  (Only
4178                  * applicable for weak-ordered memory model archs,
4179                  * such as IA-64). */
4180                 wmb();
4181                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4182         }
4183 }
4184
4185 /**
4186  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4187  * @adapter: address of board private structure
4188  **/
4189
4190 static void
4191 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4192                           struct e1000_rx_ring *rx_ring,
4193                           int cleaned_count)
4194 {
4195         struct net_device *netdev = adapter->netdev;
4196         struct pci_dev *pdev = adapter->pdev;
4197         union e1000_rx_desc_packet_split *rx_desc;
4198         struct e1000_buffer *buffer_info;
4199         struct e1000_ps_page *ps_page;
4200         struct e1000_ps_page_dma *ps_page_dma;
4201         struct sk_buff *skb;
4202         unsigned int i, j;
4203
4204         i = rx_ring->next_to_use;
4205         buffer_info = &rx_ring->buffer_info[i];
4206         ps_page = &rx_ring->ps_page[i];
4207         ps_page_dma = &rx_ring->ps_page_dma[i];
4208
4209         while (cleaned_count--) {
4210                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4211
4212                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4213                         if (j < adapter->rx_ps_pages) {
4214                                 if (likely(!ps_page->ps_page[j])) {
4215                                         ps_page->ps_page[j] =
4216                                                 alloc_page(GFP_ATOMIC);
4217                                         if (unlikely(!ps_page->ps_page[j])) {
4218                                                 adapter->alloc_rx_buff_failed++;
4219                                                 goto no_buffers;
4220                                         }
4221                                         ps_page_dma->ps_page_dma[j] =
4222                                                 pci_map_page(pdev,
4223                                                             ps_page->ps_page[j],
4224                                                             0, PAGE_SIZE,
4225                                                             PCI_DMA_FROMDEVICE);
4226                                 }
4227                                 /* Refresh the desc even if buffer_addrs didn't
4228                                  * change because each write-back erases
4229                                  * this info.
4230                                  */
4231                                 rx_desc->read.buffer_addr[j+1] =
4232                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4233                         } else
4234                                 rx_desc->read.buffer_addr[j+1] = ~0;
4235                 }
4236
4237                 skb = netdev_alloc_skb(netdev,
4238                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4239
4240                 if (unlikely(!skb)) {
4241                         adapter->alloc_rx_buff_failed++;
4242                         break;
4243                 }
4244
4245                 /* Make buffer alignment 2 beyond a 16 byte boundary
4246                  * this will result in a 16 byte aligned IP header after
4247                  * the 14 byte MAC header is removed
4248                  */
4249                 skb_reserve(skb, NET_IP_ALIGN);
4250
4251                 buffer_info->skb = skb;
4252                 buffer_info->length = adapter->rx_ps_bsize0;
4253                 buffer_info->dma = pci_map_single(pdev, skb->data,
4254                                                   adapter->rx_ps_bsize0,
4255                                                   PCI_DMA_FROMDEVICE);
4256
4257                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4258
4259                 if (unlikely(++i == rx_ring->count)) i = 0;
4260                 buffer_info = &rx_ring->buffer_info[i];
4261                 ps_page = &rx_ring->ps_page[i];
4262                 ps_page_dma = &rx_ring->ps_page_dma[i];
4263         }
4264
4265 no_buffers:
4266         if (likely(rx_ring->next_to_use != i)) {
4267                 rx_ring->next_to_use = i;
4268                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4269
4270                 /* Force memory writes to complete before letting h/w
4271                  * know there are new descriptors to fetch.  (Only
4272                  * applicable for weak-ordered memory model archs,
4273                  * such as IA-64). */
4274                 wmb();
4275                 /* Hardware increments by 16 bytes, but packet split
4276                  * descriptors are 32 bytes...so we increment tail
4277                  * twice as much.
4278                  */
4279                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4280         }
4281 }
4282
4283 /**
4284  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4285  * @adapter:
4286  **/
4287
4288 static void
4289 e1000_smartspeed(struct e1000_adapter *adapter)
4290 {
4291         uint16_t phy_status;
4292         uint16_t phy_ctrl;
4293
4294         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4295            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4296                 return;
4297
4298         if (adapter->smartspeed == 0) {
4299                 /* If Master/Slave config fault is asserted twice,
4300                  * we assume back-to-back */
4301                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4302                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4303                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4304                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4305                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4306                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4307                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4308                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4309                                             phy_ctrl);
4310                         adapter->smartspeed++;
4311                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4312                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4313                                                &phy_ctrl)) {
4314                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4315                                              MII_CR_RESTART_AUTO_NEG);
4316                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4317                                                     phy_ctrl);
4318                         }
4319                 }
4320                 return;
4321         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4322                 /* If still no link, perhaps using 2/3 pair cable */
4323                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4324                 phy_ctrl |= CR_1000T_MS_ENABLE;
4325                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4326                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4327                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4328                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4329                                      MII_CR_RESTART_AUTO_NEG);
4330                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4331                 }
4332         }
4333         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4334         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4335                 adapter->smartspeed = 0;
4336 }
4337
4338 /**
4339  * e1000_ioctl -
4340  * @netdev:
4341  * @ifreq:
4342  * @cmd:
4343  **/
4344
4345 static int
4346 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4347 {
4348         switch (cmd) {
4349         case SIOCGMIIPHY:
4350         case SIOCGMIIREG:
4351         case SIOCSMIIREG:
4352                 return e1000_mii_ioctl(netdev, ifr, cmd);
4353         default:
4354                 return -EOPNOTSUPP;
4355         }
4356 }
4357
4358 /**
4359  * e1000_mii_ioctl -
4360  * @netdev:
4361  * @ifreq:
4362  * @cmd:
4363  **/
4364
4365 static int
4366 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4367 {
4368         struct e1000_adapter *adapter = netdev_priv(netdev);
4369         struct mii_ioctl_data *data = if_mii(ifr);
4370         int retval;
4371         uint16_t mii_reg;
4372         uint16_t spddplx;
4373         unsigned long flags;
4374
4375         if (adapter->hw.media_type != e1000_media_type_copper)
4376                 return -EOPNOTSUPP;
4377
4378         switch (cmd) {
4379         case SIOCGMIIPHY:
4380                 data->phy_id = adapter->hw.phy_addr;
4381                 break;
4382         case SIOCGMIIREG:
4383                 if (!capable(CAP_NET_ADMIN))
4384                         return -EPERM;
4385                 spin_lock_irqsave(&adapter->stats_lock, flags);
4386                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4387                                    &data->val_out)) {
4388                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4389                         return -EIO;
4390                 }
4391                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4392                 break;
4393         case SIOCSMIIREG:
4394                 if (!capable(CAP_NET_ADMIN))
4395                         return -EPERM;
4396                 if (data->reg_num & ~(0x1F))
4397                         return -EFAULT;
4398                 mii_reg = data->val_in;
4399                 spin_lock_irqsave(&adapter->stats_lock, flags);
4400                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4401                                         mii_reg)) {
4402                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4403                         return -EIO;
4404                 }
4405                 if (adapter->hw.media_type == e1000_media_type_copper) {
4406                         switch (data->reg_num) {
4407                         case PHY_CTRL:
4408                                 if (mii_reg & MII_CR_POWER_DOWN)
4409                                         break;
4410                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4411                                         adapter->hw.autoneg = 1;
4412                                         adapter->hw.autoneg_advertised = 0x2F;
4413                                 } else {
4414                                         if (mii_reg & 0x40)
4415                                                 spddplx = SPEED_1000;
4416                                         else if (mii_reg & 0x2000)
4417                                                 spddplx = SPEED_100;
4418                                         else
4419                                                 spddplx = SPEED_10;
4420                                         spddplx += (mii_reg & 0x100)
4421                                                    ? DUPLEX_FULL :
4422                                                    DUPLEX_HALF;
4423                                         retval = e1000_set_spd_dplx(adapter,
4424                                                                     spddplx);
4425                                         if (retval) {
4426                                                 spin_unlock_irqrestore(
4427                                                         &adapter->stats_lock,
4428                                                         flags);
4429                                                 return retval;
4430                                         }
4431                                 }
4432                                 if (netif_running(adapter->netdev))
4433                                         e1000_reinit_locked(adapter);
4434                                 else
4435                                         e1000_reset(adapter);
4436                                 break;
4437                         case M88E1000_PHY_SPEC_CTRL:
4438                         case M88E1000_EXT_PHY_SPEC_CTRL:
4439                                 if (e1000_phy_reset(&adapter->hw)) {
4440                                         spin_unlock_irqrestore(
4441                                                 &adapter->stats_lock, flags);
4442                                         return -EIO;
4443                                 }
4444                                 break;
4445                         }
4446                 } else {
4447                         switch (data->reg_num) {
4448                         case PHY_CTRL:
4449                                 if (mii_reg & MII_CR_POWER_DOWN)
4450                                         break;
4451                                 if (netif_running(adapter->netdev))
4452                                         e1000_reinit_locked(adapter);
4453                                 else
4454                                         e1000_reset(adapter);
4455                                 break;
4456                         }
4457                 }
4458                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4459                 break;
4460         default:
4461                 return -EOPNOTSUPP;
4462         }
4463         return E1000_SUCCESS;
4464 }
4465
4466 void
4467 e1000_pci_set_mwi(struct e1000_hw *hw)
4468 {
4469         struct e1000_adapter *adapter = hw->back;
4470         int ret_val = pci_set_mwi(adapter->pdev);
4471
4472         if (ret_val)
4473                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4474 }
4475
4476 void
4477 e1000_pci_clear_mwi(struct e1000_hw *hw)
4478 {
4479         struct e1000_adapter *adapter = hw->back;
4480
4481         pci_clear_mwi(adapter->pdev);
4482 }
4483
4484 void
4485 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4486 {
4487         struct e1000_adapter *adapter = hw->back;
4488
4489         pci_read_config_word(adapter->pdev, reg, value);
4490 }
4491
4492 void
4493 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4494 {
4495         struct e1000_adapter *adapter = hw->back;
4496
4497         pci_write_config_word(adapter->pdev, reg, *value);
4498 }
4499
4500 int32_t
4501 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4502 {
4503     struct e1000_adapter *adapter = hw->back;
4504     uint16_t cap_offset;
4505
4506     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4507     if (!cap_offset)
4508         return -E1000_ERR_CONFIG;
4509
4510     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4511
4512     return E1000_SUCCESS;
4513 }
4514
4515 void
4516 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4517 {
4518         outl(value, port);
4519 }
4520
4521 static void
4522 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4523 {
4524         struct e1000_adapter *adapter = netdev_priv(netdev);
4525         uint32_t ctrl, rctl;
4526
4527         e1000_irq_disable(adapter);
4528         adapter->vlgrp = grp;
4529
4530         if (grp) {
4531                 /* enable VLAN tag insert/strip */
4532                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4533                 ctrl |= E1000_CTRL_VME;
4534                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4535
4536                 if (adapter->hw.mac_type != e1000_ich8lan) {
4537                         /* enable VLAN receive filtering */
4538                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4539                         rctl |= E1000_RCTL_VFE;
4540                         rctl &= ~E1000_RCTL_CFIEN;
4541                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4542                         e1000_update_mng_vlan(adapter);
4543                 }
4544         } else {
4545                 /* disable VLAN tag insert/strip */
4546                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4547                 ctrl &= ~E1000_CTRL_VME;
4548                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4549
4550                 if (adapter->hw.mac_type != e1000_ich8lan) {
4551                         /* disable VLAN filtering */
4552                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4553                         rctl &= ~E1000_RCTL_VFE;
4554                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4555                         if (adapter->mng_vlan_id !=
4556                             (uint16_t)E1000_MNG_VLAN_NONE) {
4557                                 e1000_vlan_rx_kill_vid(netdev,
4558                                                        adapter->mng_vlan_id);
4559                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4560                         }
4561                 }
4562         }
4563
4564         e1000_irq_enable(adapter);
4565 }
4566
4567 static void
4568 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4569 {
4570         struct e1000_adapter *adapter = netdev_priv(netdev);
4571         uint32_t vfta, index;
4572
4573         if ((adapter->hw.mng_cookie.status &
4574              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4575             (vid == adapter->mng_vlan_id))
4576                 return;
4577         /* add VID to filter table */
4578         index = (vid >> 5) & 0x7F;
4579         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4580         vfta |= (1 << (vid & 0x1F));
4581         e1000_write_vfta(&adapter->hw, index, vfta);
4582 }
4583
4584 static void
4585 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4586 {
4587         struct e1000_adapter *adapter = netdev_priv(netdev);
4588         uint32_t vfta, index;
4589
4590         e1000_irq_disable(adapter);
4591
4592         if (adapter->vlgrp)
4593                 adapter->vlgrp->vlan_devices[vid] = NULL;
4594
4595         e1000_irq_enable(adapter);
4596
4597         if ((adapter->hw.mng_cookie.status &
4598              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4599             (vid == adapter->mng_vlan_id)) {
4600                 /* release control to f/w */
4601                 e1000_release_hw_control(adapter);
4602                 return;
4603         }
4604
4605         /* remove VID from filter table */
4606         index = (vid >> 5) & 0x7F;
4607         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4608         vfta &= ~(1 << (vid & 0x1F));
4609         e1000_write_vfta(&adapter->hw, index, vfta);
4610 }
4611
4612 static void
4613 e1000_restore_vlan(struct e1000_adapter *adapter)
4614 {
4615         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4616
4617         if (adapter->vlgrp) {
4618                 uint16_t vid;
4619                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4620                         if (!adapter->vlgrp->vlan_devices[vid])
4621                                 continue;
4622                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4623                 }
4624         }
4625 }
4626
4627 int
4628 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4629 {
4630         adapter->hw.autoneg = 0;
4631
4632         /* Fiber NICs only allow 1000 gbps Full duplex */
4633         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4634                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4635                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4636                 return -EINVAL;
4637         }
4638
4639         switch (spddplx) {
4640         case SPEED_10 + DUPLEX_HALF:
4641                 adapter->hw.forced_speed_duplex = e1000_10_half;
4642                 break;
4643         case SPEED_10 + DUPLEX_FULL:
4644                 adapter->hw.forced_speed_duplex = e1000_10_full;
4645                 break;
4646         case SPEED_100 + DUPLEX_HALF:
4647                 adapter->hw.forced_speed_duplex = e1000_100_half;
4648                 break;
4649         case SPEED_100 + DUPLEX_FULL:
4650                 adapter->hw.forced_speed_duplex = e1000_100_full;
4651                 break;
4652         case SPEED_1000 + DUPLEX_FULL:
4653                 adapter->hw.autoneg = 1;
4654                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4655                 break;
4656         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4657         default:
4658                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4659                 return -EINVAL;
4660         }
4661         return 0;
4662 }
4663
4664 #ifdef CONFIG_PM
4665 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4666  * bus we're on (PCI(X) vs. PCI-E)
4667  */
4668 #define PCIE_CONFIG_SPACE_LEN 256
4669 #define PCI_CONFIG_SPACE_LEN 64
4670 static int
4671 e1000_pci_save_state(struct e1000_adapter *adapter)
4672 {
4673         struct pci_dev *dev = adapter->pdev;
4674         int size;
4675         int i;
4676
4677         if (adapter->hw.mac_type >= e1000_82571)
4678                 size = PCIE_CONFIG_SPACE_LEN;
4679         else
4680                 size = PCI_CONFIG_SPACE_LEN;
4681
4682         WARN_ON(adapter->config_space != NULL);
4683
4684         adapter->config_space = kmalloc(size, GFP_KERNEL);
4685         if (!adapter->config_space) {
4686                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4687                 return -ENOMEM;
4688         }
4689         for (i = 0; i < (size / 4); i++)
4690                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4691         return 0;
4692 }
4693
4694 static void
4695 e1000_pci_restore_state(struct e1000_adapter *adapter)
4696 {
4697         struct pci_dev *dev = adapter->pdev;
4698         int size;
4699         int i;
4700
4701         if (adapter->config_space == NULL)
4702                 return;
4703
4704         if (adapter->hw.mac_type >= e1000_82571)
4705                 size = PCIE_CONFIG_SPACE_LEN;
4706         else
4707                 size = PCI_CONFIG_SPACE_LEN;
4708         for (i = 0; i < (size / 4); i++)
4709                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4710         kfree(adapter->config_space);
4711         adapter->config_space = NULL;
4712         return;
4713 }
4714 #endif /* CONFIG_PM */
4715
4716 static int
4717 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4718 {
4719         struct net_device *netdev = pci_get_drvdata(pdev);
4720         struct e1000_adapter *adapter = netdev_priv(netdev);
4721         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4722         uint32_t wufc = adapter->wol;
4723 #ifdef CONFIG_PM
4724         int retval = 0;
4725 #endif
4726
4727         netif_device_detach(netdev);
4728
4729         if (netif_running(netdev)) {
4730                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4731                 e1000_down(adapter);
4732         }
4733
4734 #ifdef CONFIG_PM
4735         /* Implement our own version of pci_save_state(pdev) because pci-
4736          * express adapters have 256-byte config spaces. */
4737         retval = e1000_pci_save_state(adapter);
4738         if (retval)
4739                 return retval;
4740 #endif
4741
4742         status = E1000_READ_REG(&adapter->hw, STATUS);
4743         if (status & E1000_STATUS_LU)
4744                 wufc &= ~E1000_WUFC_LNKC;
4745
4746         if (wufc) {
4747                 e1000_setup_rctl(adapter);
4748                 e1000_set_multi(netdev);
4749
4750                 /* turn on all-multi mode if wake on multicast is enabled */
4751                 if (wufc & E1000_WUFC_MC) {
4752                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4753                         rctl |= E1000_RCTL_MPE;
4754                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4755                 }
4756
4757                 if (adapter->hw.mac_type >= e1000_82540) {
4758                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4759                         /* advertise wake from D3Cold */
4760                         #define E1000_CTRL_ADVD3WUC 0x00100000
4761                         /* phy power management enable */
4762                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4763                         ctrl |= E1000_CTRL_ADVD3WUC |
4764                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4765                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4766                 }
4767
4768                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4769                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4770                         /* keep the laser running in D3 */
4771                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4772                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4773                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4774                 }
4775
4776                 /* Allow time for pending master requests to run */
4777                 e1000_disable_pciex_master(&adapter->hw);
4778
4779                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4780                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4781                 pci_enable_wake(pdev, PCI_D3hot, 1);
4782                 pci_enable_wake(pdev, PCI_D3cold, 1);
4783         } else {
4784                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4785                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4786                 pci_enable_wake(pdev, PCI_D3hot, 0);
4787                 pci_enable_wake(pdev, PCI_D3cold, 0);
4788         }
4789
4790         if (adapter->hw.mac_type >= e1000_82540 &&
4791             adapter->hw.mac_type < e1000_82571 &&
4792             adapter->hw.media_type == e1000_media_type_copper) {
4793                 manc = E1000_READ_REG(&adapter->hw, MANC);
4794                 if (manc & E1000_MANC_SMBUS_EN) {
4795                         manc |= E1000_MANC_ARP_EN;
4796                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4797                         pci_enable_wake(pdev, PCI_D3hot, 1);
4798                         pci_enable_wake(pdev, PCI_D3cold, 1);
4799                 }
4800         }
4801
4802         if (adapter->hw.phy_type == e1000_phy_igp_3)
4803                 e1000_phy_powerdown_workaround(&adapter->hw);
4804
4805         if (netif_running(netdev))
4806                 e1000_free_irq(adapter);
4807
4808         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4809          * would have already happened in close and is redundant. */
4810         e1000_release_hw_control(adapter);
4811
4812         pci_disable_device(pdev);
4813
4814         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4815
4816         return 0;
4817 }
4818
4819 #ifdef CONFIG_PM
4820 static int
4821 e1000_resume(struct pci_dev *pdev)
4822 {
4823         struct net_device *netdev = pci_get_drvdata(pdev);
4824         struct e1000_adapter *adapter = netdev_priv(netdev);
4825         uint32_t manc, err;
4826
4827         pci_set_power_state(pdev, PCI_D0);
4828         e1000_pci_restore_state(adapter);
4829         if ((err = pci_enable_device(pdev))) {
4830                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4831                 return err;
4832         }
4833         pci_set_master(pdev);
4834
4835         pci_enable_wake(pdev, PCI_D3hot, 0);
4836         pci_enable_wake(pdev, PCI_D3cold, 0);
4837
4838         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4839                 return err;
4840
4841         e1000_power_up_phy(adapter);
4842         e1000_reset(adapter);
4843         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4844
4845         if (netif_running(netdev))
4846                 e1000_up(adapter);
4847
4848         netif_device_attach(netdev);
4849
4850         if (adapter->hw.mac_type >= e1000_82540 &&
4851             adapter->hw.mac_type < e1000_82571 &&
4852             adapter->hw.media_type == e1000_media_type_copper) {
4853                 manc = E1000_READ_REG(&adapter->hw, MANC);
4854                 manc &= ~(E1000_MANC_ARP_EN);
4855                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4856         }
4857
4858         /* If the controller is 82573 and f/w is AMT, do not set
4859          * DRV_LOAD until the interface is up.  For all other cases,
4860          * let the f/w know that the h/w is now under the control
4861          * of the driver. */
4862         if (adapter->hw.mac_type != e1000_82573 ||
4863             !e1000_check_mng_mode(&adapter->hw))
4864                 e1000_get_hw_control(adapter);
4865
4866         return 0;
4867 }
4868 #endif
4869
4870 static void e1000_shutdown(struct pci_dev *pdev)
4871 {
4872         e1000_suspend(pdev, PMSG_SUSPEND);
4873 }
4874
4875 #ifdef CONFIG_NET_POLL_CONTROLLER
4876 /*
4877  * Polling 'interrupt' - used by things like netconsole to send skbs
4878  * without having to re-enable interrupts. It's not called while
4879  * the interrupt routine is executing.
4880  */
4881 static void
4882 e1000_netpoll(struct net_device *netdev)
4883 {
4884         struct e1000_adapter *adapter = netdev_priv(netdev);
4885
4886         disable_irq(adapter->pdev->irq);
4887         e1000_intr(adapter->pdev->irq, netdev);
4888         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4889 #ifndef CONFIG_E1000_NAPI
4890         adapter->clean_rx(adapter, adapter->rx_ring);
4891 #endif
4892         enable_irq(adapter->pdev->irq);
4893 }
4894 #endif
4895
4896 /**
4897  * e1000_io_error_detected - called when PCI error is detected
4898  * @pdev: Pointer to PCI device
4899  * @state: The current pci conneection state
4900  *
4901  * This function is called after a PCI bus error affecting
4902  * this device has been detected.
4903  */
4904 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4905 {
4906         struct net_device *netdev = pci_get_drvdata(pdev);
4907         struct e1000_adapter *adapter = netdev->priv;
4908
4909         netif_device_detach(netdev);
4910
4911         if (netif_running(netdev))
4912                 e1000_down(adapter);
4913         pci_disable_device(pdev);
4914
4915         /* Request a slot slot reset. */
4916         return PCI_ERS_RESULT_NEED_RESET;
4917 }
4918
4919 /**
4920  * e1000_io_slot_reset - called after the pci bus has been reset.
4921  * @pdev: Pointer to PCI device
4922  *
4923  * Restart the card from scratch, as if from a cold-boot. Implementation
4924  * resembles the first-half of the e1000_resume routine.
4925  */
4926 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4927 {
4928         struct net_device *netdev = pci_get_drvdata(pdev);
4929         struct e1000_adapter *adapter = netdev->priv;
4930
4931         if (pci_enable_device(pdev)) {
4932                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4933                 return PCI_ERS_RESULT_DISCONNECT;
4934         }
4935         pci_set_master(pdev);
4936
4937         pci_enable_wake(pdev, PCI_D3hot, 0);
4938         pci_enable_wake(pdev, PCI_D3cold, 0);
4939
4940         e1000_reset(adapter);
4941         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4942
4943         return PCI_ERS_RESULT_RECOVERED;
4944 }
4945
4946 /**
4947  * e1000_io_resume - called when traffic can start flowing again.
4948  * @pdev: Pointer to PCI device
4949  *
4950  * This callback is called when the error recovery driver tells us that
4951  * its OK to resume normal operation. Implementation resembles the
4952  * second-half of the e1000_resume routine.
4953  */
4954 static void e1000_io_resume(struct pci_dev *pdev)
4955 {
4956         struct net_device *netdev = pci_get_drvdata(pdev);
4957         struct e1000_adapter *adapter = netdev->priv;
4958         uint32_t manc, swsm;
4959
4960         if (netif_running(netdev)) {
4961                 if (e1000_up(adapter)) {
4962                         printk("e1000: can't bring device back up after reset\n");
4963                         return;
4964                 }
4965         }
4966
4967         netif_device_attach(netdev);
4968
4969         if (adapter->hw.mac_type >= e1000_82540 &&
4970             adapter->hw.mac_type < e1000_82571 &&
4971             adapter->hw.media_type == e1000_media_type_copper) {
4972                 manc = E1000_READ_REG(&adapter->hw, MANC);
4973                 manc &= ~(E1000_MANC_ARP_EN);
4974                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4975         }
4976
4977         switch (adapter->hw.mac_type) {
4978         case e1000_82573:
4979                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4980                 E1000_WRITE_REG(&adapter->hw, SWSM,
4981                                 swsm | E1000_SWSM_DRV_LOAD);
4982                 break;
4983         default:
4984                 break;
4985         }
4986
4987         if (netif_running(netdev))
4988                 mod_timer(&adapter->watchdog_timer, jiffies);
4989 }
4990
4991 /* e1000_main.c */