[NET] gso: Add skb_is_gso
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.0.38-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x105E),
77         INTEL_E1000_ETHERNET_DEVICE(0x105F),
78         INTEL_E1000_ETHERNET_DEVICE(0x1060),
79         INTEL_E1000_ETHERNET_DEVICE(0x1075),
80         INTEL_E1000_ETHERNET_DEVICE(0x1076),
81         INTEL_E1000_ETHERNET_DEVICE(0x1077),
82         INTEL_E1000_ETHERNET_DEVICE(0x1078),
83         INTEL_E1000_ETHERNET_DEVICE(0x1079),
84         INTEL_E1000_ETHERNET_DEVICE(0x107A),
85         INTEL_E1000_ETHERNET_DEVICE(0x107B),
86         INTEL_E1000_ETHERNET_DEVICE(0x107C),
87         INTEL_E1000_ETHERNET_DEVICE(0x107D),
88         INTEL_E1000_ETHERNET_DEVICE(0x107E),
89         INTEL_E1000_ETHERNET_DEVICE(0x107F),
90         INTEL_E1000_ETHERNET_DEVICE(0x108A),
91         INTEL_E1000_ETHERNET_DEVICE(0x108B),
92         INTEL_E1000_ETHERNET_DEVICE(0x108C),
93         INTEL_E1000_ETHERNET_DEVICE(0x1096),
94         INTEL_E1000_ETHERNET_DEVICE(0x1098),
95         INTEL_E1000_ETHERNET_DEVICE(0x1099),
96         INTEL_E1000_ETHERNET_DEVICE(0x109A),
97         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
98         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
99         /* required last entry */
100         {0,}
101 };
102
103 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
104
105 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
106                                     struct e1000_tx_ring *txdr);
107 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
108                                     struct e1000_rx_ring *rxdr);
109 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
110                                     struct e1000_tx_ring *tx_ring);
111 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_rx_ring *rx_ring);
113
114 /* Local Function Prototypes */
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132                                 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_multi(struct net_device *netdev);
134 static void e1000_update_phy_info(unsigned long data);
135 static void e1000_watchdog(unsigned long data);
136 static void e1000_watchdog_task(struct e1000_adapter *adapter);
137 static void e1000_82547_tx_fifo_stall(unsigned long data);
138 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
143 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
144                                     struct e1000_tx_ring *tx_ring);
145 #ifdef CONFIG_E1000_NAPI
146 static int e1000_clean(struct net_device *poll_dev, int *budget);
147 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
148                                     struct e1000_rx_ring *rx_ring,
149                                     int *work_done, int work_to_do);
150 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
151                                        struct e1000_rx_ring *rx_ring,
152                                        int *work_done, int work_to_do);
153 #else
154 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
155                                     struct e1000_rx_ring *rx_ring);
156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
157                                        struct e1000_rx_ring *rx_ring);
158 #endif
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160                                    struct e1000_rx_ring *rx_ring,
161                                    int cleaned_count);
162 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
163                                       struct e1000_rx_ring *rx_ring,
164                                       int cleaned_count);
165 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
166 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
167                            int cmd);
168 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
169 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
170 static void e1000_tx_timeout(struct net_device *dev);
171 static void e1000_reset_task(struct net_device *dev);
172 static void e1000_smartspeed(struct e1000_adapter *adapter);
173 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
174                                        struct sk_buff *skb);
175
176 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
177 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
178 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
179 static void e1000_restore_vlan(struct e1000_adapter *adapter);
180
181 #ifdef CONFIG_PM
182 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
183 static int e1000_resume(struct pci_dev *pdev);
184 #endif
185 static void e1000_shutdown(struct pci_dev *pdev);
186
187 #ifdef CONFIG_NET_POLL_CONTROLLER
188 /* for netdump / net console */
189 static void e1000_netpoll (struct net_device *netdev);
190 #endif
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static struct pci_error_handlers e1000_err_handler = {
198         .error_detected = e1000_io_error_detected,
199         .slot_reset = e1000_io_slot_reset,
200         .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204         .name     = e1000_driver_name,
205         .id_table = e1000_pci_tbl,
206         .probe    = e1000_probe,
207         .remove   = __devexit_p(e1000_remove),
208         /* Power Managment Hooks */
209 #ifdef CONFIG_PM
210         .suspend  = e1000_suspend,
211         .resume   = e1000_resume,
212 #endif
213         .shutdown = e1000_shutdown,
214         .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
223 module_param(debug, int, 0);
224 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
225
226 /**
227  * e1000_init_module - Driver Registration Routine
228  *
229  * e1000_init_module is the first routine called when the driver is
230  * loaded. All it does is register with the PCI subsystem.
231  **/
232
233 static int __init
234 e1000_init_module(void)
235 {
236         int ret;
237         printk(KERN_INFO "%s - version %s\n",
238                e1000_driver_string, e1000_driver_version);
239
240         printk(KERN_INFO "%s\n", e1000_copyright);
241
242         ret = pci_module_init(&e1000_driver);
243
244         return ret;
245 }
246
247 module_init(e1000_init_module);
248
249 /**
250  * e1000_exit_module - Driver Exit Cleanup Routine
251  *
252  * e1000_exit_module is called just before the driver is removed
253  * from memory.
254  **/
255
256 static void __exit
257 e1000_exit_module(void)
258 {
259         pci_unregister_driver(&e1000_driver);
260 }
261
262 module_exit(e1000_exit_module);
263
264 /**
265  * e1000_irq_disable - Mask off interrupt generation on the NIC
266  * @adapter: board private structure
267  **/
268
269 static void
270 e1000_irq_disable(struct e1000_adapter *adapter)
271 {
272         atomic_inc(&adapter->irq_sem);
273         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
274         E1000_WRITE_FLUSH(&adapter->hw);
275         synchronize_irq(adapter->pdev->irq);
276 }
277
278 /**
279  * e1000_irq_enable - Enable default interrupt generation settings
280  * @adapter: board private structure
281  **/
282
283 static void
284 e1000_irq_enable(struct e1000_adapter *adapter)
285 {
286         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
287                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
288                 E1000_WRITE_FLUSH(&adapter->hw);
289         }
290 }
291
292 static void
293 e1000_update_mng_vlan(struct e1000_adapter *adapter)
294 {
295         struct net_device *netdev = adapter->netdev;
296         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
297         uint16_t old_vid = adapter->mng_vlan_id;
298         if (adapter->vlgrp) {
299                 if (!adapter->vlgrp->vlan_devices[vid]) {
300                         if (adapter->hw.mng_cookie.status &
301                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
302                                 e1000_vlan_rx_add_vid(netdev, vid);
303                                 adapter->mng_vlan_id = vid;
304                         } else
305                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
306
307                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
308                                         (vid != old_vid) &&
309                                         !adapter->vlgrp->vlan_devices[old_vid])
310                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
311                 } else
312                         adapter->mng_vlan_id = vid;
313         }
314 }
315
316 /**
317  * e1000_release_hw_control - release control of the h/w to f/w
318  * @adapter: address of board private structure
319  *
320  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
321  * For ASF and Pass Through versions of f/w this means that the
322  * driver is no longer loaded. For AMT version (only with 82573) i
323  * of the f/w this means that the netowrk i/f is closed.
324  *
325  **/
326
327 static void
328 e1000_release_hw_control(struct e1000_adapter *adapter)
329 {
330         uint32_t ctrl_ext;
331         uint32_t swsm;
332
333         /* Let firmware taken over control of h/w */
334         switch (adapter->hw.mac_type) {
335         case e1000_82571:
336         case e1000_82572:
337         case e1000_80003es2lan:
338                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
339                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
340                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
341                 break;
342         case e1000_82573:
343                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
344                 E1000_WRITE_REG(&adapter->hw, SWSM,
345                                 swsm & ~E1000_SWSM_DRV_LOAD);
346         default:
347                 break;
348         }
349 }
350
351 /**
352  * e1000_get_hw_control - get control of the h/w from f/w
353  * @adapter: address of board private structure
354  *
355  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
356  * For ASF and Pass Through versions of f/w this means that
357  * the driver is loaded. For AMT version (only with 82573)
358  * of the f/w this means that the netowrk i/f is open.
359  *
360  **/
361
362 static void
363 e1000_get_hw_control(struct e1000_adapter *adapter)
364 {
365         uint32_t ctrl_ext;
366         uint32_t swsm;
367         /* Let firmware know the driver has taken over */
368         switch (adapter->hw.mac_type) {
369         case e1000_82571:
370         case e1000_82572:
371         case e1000_80003es2lan:
372                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
373                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
374                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
375                 break;
376         case e1000_82573:
377                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
378                 E1000_WRITE_REG(&adapter->hw, SWSM,
379                                 swsm | E1000_SWSM_DRV_LOAD);
380                 break;
381         default:
382                 break;
383         }
384 }
385
386 int
387 e1000_up(struct e1000_adapter *adapter)
388 {
389         struct net_device *netdev = adapter->netdev;
390         int i, err;
391
392         /* hardware has been reset, we need to reload some things */
393
394         /* Reset the PHY if it was previously powered down */
395         if (adapter->hw.media_type == e1000_media_type_copper) {
396                 uint16_t mii_reg;
397                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
398                 if (mii_reg & MII_CR_POWER_DOWN)
399                         e1000_phy_hw_reset(&adapter->hw);
400         }
401
402         e1000_set_multi(netdev);
403
404         e1000_restore_vlan(adapter);
405
406         e1000_configure_tx(adapter);
407         e1000_setup_rctl(adapter);
408         e1000_configure_rx(adapter);
409         /* call E1000_DESC_UNUSED which always leaves
410          * at least 1 descriptor unused to make sure
411          * next_to_use != next_to_clean */
412         for (i = 0; i < adapter->num_rx_queues; i++) {
413                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
414                 adapter->alloc_rx_buf(adapter, ring,
415                                       E1000_DESC_UNUSED(ring));
416         }
417
418 #ifdef CONFIG_PCI_MSI
419         if (adapter->hw.mac_type > e1000_82547_rev_2) {
420                 adapter->have_msi = TRUE;
421                 if ((err = pci_enable_msi(adapter->pdev))) {
422                         DPRINTK(PROBE, ERR,
423                          "Unable to allocate MSI interrupt Error: %d\n", err);
424                         adapter->have_msi = FALSE;
425                 }
426         }
427 #endif
428         if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
429                               IRQF_SHARED | IRQF_SAMPLE_RANDOM,
430                               netdev->name, netdev))) {
431                 DPRINTK(PROBE, ERR,
432                     "Unable to allocate interrupt Error: %d\n", err);
433                 return err;
434         }
435
436         adapter->tx_queue_len = netdev->tx_queue_len;
437
438         mod_timer(&adapter->watchdog_timer, jiffies);
439
440 #ifdef CONFIG_E1000_NAPI
441         netif_poll_enable(netdev);
442 #endif
443         e1000_irq_enable(adapter);
444
445         return 0;
446 }
447
448 void
449 e1000_down(struct e1000_adapter *adapter)
450 {
451         struct net_device *netdev = adapter->netdev;
452         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
453                                      e1000_check_mng_mode(&adapter->hw);
454
455         e1000_irq_disable(adapter);
456
457         free_irq(adapter->pdev->irq, netdev);
458 #ifdef CONFIG_PCI_MSI
459         if (adapter->hw.mac_type > e1000_82547_rev_2 &&
460            adapter->have_msi == TRUE)
461                 pci_disable_msi(adapter->pdev);
462 #endif
463         del_timer_sync(&adapter->tx_fifo_stall_timer);
464         del_timer_sync(&adapter->watchdog_timer);
465         del_timer_sync(&adapter->phy_info_timer);
466
467 #ifdef CONFIG_E1000_NAPI
468         netif_poll_disable(netdev);
469 #endif
470         netdev->tx_queue_len = adapter->tx_queue_len;
471         adapter->link_speed = 0;
472         adapter->link_duplex = 0;
473         netif_carrier_off(netdev);
474         netif_stop_queue(netdev);
475
476         e1000_reset(adapter);
477         e1000_clean_all_tx_rings(adapter);
478         e1000_clean_all_rx_rings(adapter);
479
480         /* Power down the PHY so no link is implied when interface is down *
481          * The PHY cannot be powered down if any of the following is TRUE *
482          * (a) WoL is enabled
483          * (b) AMT is active
484          * (c) SoL/IDER session is active */
485         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
486            adapter->hw.media_type == e1000_media_type_copper &&
487            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
488            !mng_mode_enabled &&
489            !e1000_check_phy_reset_block(&adapter->hw)) {
490                 uint16_t mii_reg;
491                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
492                 mii_reg |= MII_CR_POWER_DOWN;
493                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
494                 mdelay(1);
495         }
496 }
497
498 void
499 e1000_reset(struct e1000_adapter *adapter)
500 {
501         uint32_t pba, manc;
502         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
503
504         /* Repartition Pba for greater than 9k mtu
505          * To take effect CTRL.RST is required.
506          */
507
508         switch (adapter->hw.mac_type) {
509         case e1000_82547:
510         case e1000_82547_rev_2:
511                 pba = E1000_PBA_30K;
512                 break;
513         case e1000_82571:
514         case e1000_82572:
515         case e1000_80003es2lan:
516                 pba = E1000_PBA_38K;
517                 break;
518         case e1000_82573:
519                 pba = E1000_PBA_12K;
520                 break;
521         default:
522                 pba = E1000_PBA_48K;
523                 break;
524         }
525
526         if ((adapter->hw.mac_type != e1000_82573) &&
527            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
528                 pba -= 8; /* allocate more FIFO for Tx */
529
530
531         if (adapter->hw.mac_type == e1000_82547) {
532                 adapter->tx_fifo_head = 0;
533                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
534                 adapter->tx_fifo_size =
535                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
536                 atomic_set(&adapter->tx_fifo_stall, 0);
537         }
538
539         E1000_WRITE_REG(&adapter->hw, PBA, pba);
540
541         /* flow control settings */
542         /* Set the FC high water mark to 90% of the FIFO size.
543          * Required to clear last 3 LSB */
544         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
545
546         adapter->hw.fc_high_water = fc_high_water_mark;
547         adapter->hw.fc_low_water = fc_high_water_mark - 8;
548         if (adapter->hw.mac_type == e1000_80003es2lan)
549                 adapter->hw.fc_pause_time = 0xFFFF;
550         else
551                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
552         adapter->hw.fc_send_xon = 1;
553         adapter->hw.fc = adapter->hw.original_fc;
554
555         /* Allow time for pending master requests to run */
556         e1000_reset_hw(&adapter->hw);
557         if (adapter->hw.mac_type >= e1000_82544)
558                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
559         if (e1000_init_hw(&adapter->hw))
560                 DPRINTK(PROBE, ERR, "Hardware Error\n");
561         e1000_update_mng_vlan(adapter);
562         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
563         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
564
565         e1000_reset_adaptive(&adapter->hw);
566         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
567         if (adapter->en_mng_pt) {
568                 manc = E1000_READ_REG(&adapter->hw, MANC);
569                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
570                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
571         }
572 }
573
574 /**
575  * e1000_probe - Device Initialization Routine
576  * @pdev: PCI device information struct
577  * @ent: entry in e1000_pci_tbl
578  *
579  * Returns 0 on success, negative on failure
580  *
581  * e1000_probe initializes an adapter identified by a pci_dev structure.
582  * The OS initialization, configuring of the adapter private structure,
583  * and a hardware reset occur.
584  **/
585
586 static int __devinit
587 e1000_probe(struct pci_dev *pdev,
588             const struct pci_device_id *ent)
589 {
590         struct net_device *netdev;
591         struct e1000_adapter *adapter;
592         unsigned long mmio_start, mmio_len;
593
594         static int cards_found = 0;
595         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
596         int i, err, pci_using_dac;
597         uint16_t eeprom_data;
598         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
599         if ((err = pci_enable_device(pdev)))
600                 return err;
601
602         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
603                 pci_using_dac = 1;
604         } else {
605                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
606                         E1000_ERR("No usable DMA configuration, aborting\n");
607                         return err;
608                 }
609                 pci_using_dac = 0;
610         }
611
612         if ((err = pci_request_regions(pdev, e1000_driver_name)))
613                 return err;
614
615         pci_set_master(pdev);
616
617         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
618         if (!netdev) {
619                 err = -ENOMEM;
620                 goto err_alloc_etherdev;
621         }
622
623         SET_MODULE_OWNER(netdev);
624         SET_NETDEV_DEV(netdev, &pdev->dev);
625
626         pci_set_drvdata(pdev, netdev);
627         adapter = netdev_priv(netdev);
628         adapter->netdev = netdev;
629         adapter->pdev = pdev;
630         adapter->hw.back = adapter;
631         adapter->msg_enable = (1 << debug) - 1;
632
633         mmio_start = pci_resource_start(pdev, BAR_0);
634         mmio_len = pci_resource_len(pdev, BAR_0);
635
636         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
637         if (!adapter->hw.hw_addr) {
638                 err = -EIO;
639                 goto err_ioremap;
640         }
641
642         for (i = BAR_1; i <= BAR_5; i++) {
643                 if (pci_resource_len(pdev, i) == 0)
644                         continue;
645                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
646                         adapter->hw.io_base = pci_resource_start(pdev, i);
647                         break;
648                 }
649         }
650
651         netdev->open = &e1000_open;
652         netdev->stop = &e1000_close;
653         netdev->hard_start_xmit = &e1000_xmit_frame;
654         netdev->get_stats = &e1000_get_stats;
655         netdev->set_multicast_list = &e1000_set_multi;
656         netdev->set_mac_address = &e1000_set_mac;
657         netdev->change_mtu = &e1000_change_mtu;
658         netdev->do_ioctl = &e1000_ioctl;
659         e1000_set_ethtool_ops(netdev);
660         netdev->tx_timeout = &e1000_tx_timeout;
661         netdev->watchdog_timeo = 5 * HZ;
662 #ifdef CONFIG_E1000_NAPI
663         netdev->poll = &e1000_clean;
664         netdev->weight = 64;
665 #endif
666         netdev->vlan_rx_register = e1000_vlan_rx_register;
667         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
668         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
669 #ifdef CONFIG_NET_POLL_CONTROLLER
670         netdev->poll_controller = e1000_netpoll;
671 #endif
672         strcpy(netdev->name, pci_name(pdev));
673
674         netdev->mem_start = mmio_start;
675         netdev->mem_end = mmio_start + mmio_len;
676         netdev->base_addr = adapter->hw.io_base;
677
678         adapter->bd_number = cards_found;
679
680         /* setup the private structure */
681
682         if ((err = e1000_sw_init(adapter)))
683                 goto err_sw_init;
684
685         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
686                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
687
688         /* if ksp3, indicate if it's port a being setup */
689         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
690                         e1000_ksp3_port_a == 0)
691                 adapter->ksp3_port_a = 1;
692         e1000_ksp3_port_a++;
693         /* Reset for multiple KP3 adapters */
694         if (e1000_ksp3_port_a == 4)
695                 e1000_ksp3_port_a = 0;
696
697         if (adapter->hw.mac_type >= e1000_82543) {
698                 netdev->features = NETIF_F_SG |
699                                    NETIF_F_HW_CSUM |
700                                    NETIF_F_HW_VLAN_TX |
701                                    NETIF_F_HW_VLAN_RX |
702                                    NETIF_F_HW_VLAN_FILTER;
703         }
704
705 #ifdef NETIF_F_TSO
706         if ((adapter->hw.mac_type >= e1000_82544) &&
707            (adapter->hw.mac_type != e1000_82547))
708                 netdev->features |= NETIF_F_TSO;
709
710 #ifdef NETIF_F_TSO_IPV6
711         if (adapter->hw.mac_type > e1000_82547_rev_2)
712                 netdev->features |= NETIF_F_TSO_IPV6;
713 #endif
714 #endif
715         if (pci_using_dac)
716                 netdev->features |= NETIF_F_HIGHDMA;
717
718         /* hard_start_xmit is safe against parallel locking */
719         netdev->features |= NETIF_F_LLTX;
720
721         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
722
723         /* before reading the EEPROM, reset the controller to
724          * put the device in a known good starting state */
725
726         e1000_reset_hw(&adapter->hw);
727
728         /* make sure the EEPROM is good */
729
730         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
731                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
732                 err = -EIO;
733                 goto err_eeprom;
734         }
735
736         /* copy the MAC address out of the EEPROM */
737
738         if (e1000_read_mac_addr(&adapter->hw))
739                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
740         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
741         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
742
743         if (!is_valid_ether_addr(netdev->perm_addr)) {
744                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
745                 err = -EIO;
746                 goto err_eeprom;
747         }
748
749         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
750
751         e1000_get_bus_info(&adapter->hw);
752
753         init_timer(&adapter->tx_fifo_stall_timer);
754         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
755         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
756
757         init_timer(&adapter->watchdog_timer);
758         adapter->watchdog_timer.function = &e1000_watchdog;
759         adapter->watchdog_timer.data = (unsigned long) adapter;
760
761         INIT_WORK(&adapter->watchdog_task,
762                 (void (*)(void *))e1000_watchdog_task, adapter);
763
764         init_timer(&adapter->phy_info_timer);
765         adapter->phy_info_timer.function = &e1000_update_phy_info;
766         adapter->phy_info_timer.data = (unsigned long) adapter;
767
768         INIT_WORK(&adapter->reset_task,
769                 (void (*)(void *))e1000_reset_task, netdev);
770
771         /* we're going to reset, so assume we have no link for now */
772
773         netif_carrier_off(netdev);
774         netif_stop_queue(netdev);
775
776         e1000_check_options(adapter);
777
778         /* Initial Wake on LAN setting
779          * If APM wake is enabled in the EEPROM,
780          * enable the ACPI Magic Packet filter
781          */
782
783         switch (adapter->hw.mac_type) {
784         case e1000_82542_rev2_0:
785         case e1000_82542_rev2_1:
786         case e1000_82543:
787                 break;
788         case e1000_82544:
789                 e1000_read_eeprom(&adapter->hw,
790                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
791                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
792                 break;
793         case e1000_82546:
794         case e1000_82546_rev_3:
795         case e1000_82571:
796         case e1000_80003es2lan:
797                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
798                         e1000_read_eeprom(&adapter->hw,
799                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
800                         break;
801                 }
802                 /* Fall Through */
803         default:
804                 e1000_read_eeprom(&adapter->hw,
805                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
806                 break;
807         }
808         if (eeprom_data & eeprom_apme_mask)
809                 adapter->wol |= E1000_WUFC_MAG;
810
811         /* print bus type/speed/width info */
812         {
813         struct e1000_hw *hw = &adapter->hw;
814         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
815                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
816                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
817                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
818                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
819                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
820                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
821                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
822                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
823                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
824                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
825                  "32-bit"));
826         }
827
828         for (i = 0; i < 6; i++)
829                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
830
831         /* reset the hardware with the new settings */
832         e1000_reset(adapter);
833
834         /* If the controller is 82573 and f/w is AMT, do not set
835          * DRV_LOAD until the interface is up.  For all other cases,
836          * let the f/w know that the h/w is now under the control
837          * of the driver. */
838         if (adapter->hw.mac_type != e1000_82573 ||
839             !e1000_check_mng_mode(&adapter->hw))
840                 e1000_get_hw_control(adapter);
841
842         strcpy(netdev->name, "eth%d");
843         if ((err = register_netdev(netdev)))
844                 goto err_register;
845
846         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
847
848         cards_found++;
849         return 0;
850
851 err_register:
852 err_sw_init:
853 err_eeprom:
854         iounmap(adapter->hw.hw_addr);
855 err_ioremap:
856         free_netdev(netdev);
857 err_alloc_etherdev:
858         pci_release_regions(pdev);
859         return err;
860 }
861
862 /**
863  * e1000_remove - Device Removal Routine
864  * @pdev: PCI device information struct
865  *
866  * e1000_remove is called by the PCI subsystem to alert the driver
867  * that it should release a PCI device.  The could be caused by a
868  * Hot-Plug event, or because the driver is going to be removed from
869  * memory.
870  **/
871
872 static void __devexit
873 e1000_remove(struct pci_dev *pdev)
874 {
875         struct net_device *netdev = pci_get_drvdata(pdev);
876         struct e1000_adapter *adapter = netdev_priv(netdev);
877         uint32_t manc;
878 #ifdef CONFIG_E1000_NAPI
879         int i;
880 #endif
881
882         flush_scheduled_work();
883
884         if (adapter->hw.mac_type >= e1000_82540 &&
885            adapter->hw.media_type == e1000_media_type_copper) {
886                 manc = E1000_READ_REG(&adapter->hw, MANC);
887                 if (manc & E1000_MANC_SMBUS_EN) {
888                         manc |= E1000_MANC_ARP_EN;
889                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
890                 }
891         }
892
893         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
894          * would have already happened in close and is redundant. */
895         e1000_release_hw_control(adapter);
896
897         unregister_netdev(netdev);
898 #ifdef CONFIG_E1000_NAPI
899         for (i = 0; i < adapter->num_rx_queues; i++)
900                 dev_put(&adapter->polling_netdev[i]);
901 #endif
902
903         if (!e1000_check_phy_reset_block(&adapter->hw))
904                 e1000_phy_hw_reset(&adapter->hw);
905
906         kfree(adapter->tx_ring);
907         kfree(adapter->rx_ring);
908 #ifdef CONFIG_E1000_NAPI
909         kfree(adapter->polling_netdev);
910 #endif
911
912         iounmap(adapter->hw.hw_addr);
913         pci_release_regions(pdev);
914
915         free_netdev(netdev);
916
917         pci_disable_device(pdev);
918 }
919
920 /**
921  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
922  * @adapter: board private structure to initialize
923  *
924  * e1000_sw_init initializes the Adapter private data structure.
925  * Fields are initialized based on PCI device information and
926  * OS network device settings (MTU size).
927  **/
928
929 static int __devinit
930 e1000_sw_init(struct e1000_adapter *adapter)
931 {
932         struct e1000_hw *hw = &adapter->hw;
933         struct net_device *netdev = adapter->netdev;
934         struct pci_dev *pdev = adapter->pdev;
935 #ifdef CONFIG_E1000_NAPI
936         int i;
937 #endif
938
939         /* PCI config space info */
940
941         hw->vendor_id = pdev->vendor;
942         hw->device_id = pdev->device;
943         hw->subsystem_vendor_id = pdev->subsystem_vendor;
944         hw->subsystem_id = pdev->subsystem_device;
945
946         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
947
948         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
949
950         adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
951         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
952         hw->max_frame_size = netdev->mtu +
953                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
954         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
955
956         /* identify the MAC */
957
958         if (e1000_set_mac_type(hw)) {
959                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
960                 return -EIO;
961         }
962
963         /* initialize eeprom parameters */
964
965         if (e1000_init_eeprom_params(hw)) {
966                 E1000_ERR("EEPROM initialization failed\n");
967                 return -EIO;
968         }
969
970         switch (hw->mac_type) {
971         default:
972                 break;
973         case e1000_82541:
974         case e1000_82547:
975         case e1000_82541_rev_2:
976         case e1000_82547_rev_2:
977                 hw->phy_init_script = 1;
978                 break;
979         }
980
981         e1000_set_media_type(hw);
982
983         hw->wait_autoneg_complete = FALSE;
984         hw->tbi_compatibility_en = TRUE;
985         hw->adaptive_ifs = TRUE;
986
987         /* Copper options */
988
989         if (hw->media_type == e1000_media_type_copper) {
990                 hw->mdix = AUTO_ALL_MODES;
991                 hw->disable_polarity_correction = FALSE;
992                 hw->master_slave = E1000_MASTER_SLAVE;
993         }
994
995         adapter->num_tx_queues = 1;
996         adapter->num_rx_queues = 1;
997
998         if (e1000_alloc_queues(adapter)) {
999                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1000                 return -ENOMEM;
1001         }
1002
1003 #ifdef CONFIG_E1000_NAPI
1004         for (i = 0; i < adapter->num_rx_queues; i++) {
1005                 adapter->polling_netdev[i].priv = adapter;
1006                 adapter->polling_netdev[i].poll = &e1000_clean;
1007                 adapter->polling_netdev[i].weight = 64;
1008                 dev_hold(&adapter->polling_netdev[i]);
1009                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1010         }
1011         spin_lock_init(&adapter->tx_queue_lock);
1012 #endif
1013
1014         atomic_set(&adapter->irq_sem, 1);
1015         spin_lock_init(&adapter->stats_lock);
1016
1017         return 0;
1018 }
1019
1020 /**
1021  * e1000_alloc_queues - Allocate memory for all rings
1022  * @adapter: board private structure to initialize
1023  *
1024  * We allocate one ring per queue at run-time since we don't know the
1025  * number of queues at compile-time.  The polling_netdev array is
1026  * intended for Multiqueue, but should work fine with a single queue.
1027  **/
1028
1029 static int __devinit
1030 e1000_alloc_queues(struct e1000_adapter *adapter)
1031 {
1032         int size;
1033
1034         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1035         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1036         if (!adapter->tx_ring)
1037                 return -ENOMEM;
1038         memset(adapter->tx_ring, 0, size);
1039
1040         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1041         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1042         if (!adapter->rx_ring) {
1043                 kfree(adapter->tx_ring);
1044                 return -ENOMEM;
1045         }
1046         memset(adapter->rx_ring, 0, size);
1047
1048 #ifdef CONFIG_E1000_NAPI
1049         size = sizeof(struct net_device) * adapter->num_rx_queues;
1050         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1051         if (!adapter->polling_netdev) {
1052                 kfree(adapter->tx_ring);
1053                 kfree(adapter->rx_ring);
1054                 return -ENOMEM;
1055         }
1056         memset(adapter->polling_netdev, 0, size);
1057 #endif
1058
1059         return E1000_SUCCESS;
1060 }
1061
1062 /**
1063  * e1000_open - Called when a network interface is made active
1064  * @netdev: network interface device structure
1065  *
1066  * Returns 0 on success, negative value on failure
1067  *
1068  * The open entry point is called when a network interface is made
1069  * active by the system (IFF_UP).  At this point all resources needed
1070  * for transmit and receive operations are allocated, the interrupt
1071  * handler is registered with the OS, the watchdog timer is started,
1072  * and the stack is notified that the interface is ready.
1073  **/
1074
1075 static int
1076 e1000_open(struct net_device *netdev)
1077 {
1078         struct e1000_adapter *adapter = netdev_priv(netdev);
1079         int err;
1080
1081         /* allocate transmit descriptors */
1082
1083         if ((err = e1000_setup_all_tx_resources(adapter)))
1084                 goto err_setup_tx;
1085
1086         /* allocate receive descriptors */
1087
1088         if ((err = e1000_setup_all_rx_resources(adapter)))
1089                 goto err_setup_rx;
1090
1091         if ((err = e1000_up(adapter)))
1092                 goto err_up;
1093         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1094         if ((adapter->hw.mng_cookie.status &
1095                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1096                 e1000_update_mng_vlan(adapter);
1097         }
1098
1099         /* If AMT is enabled, let the firmware know that the network
1100          * interface is now open */
1101         if (adapter->hw.mac_type == e1000_82573 &&
1102             e1000_check_mng_mode(&adapter->hw))
1103                 e1000_get_hw_control(adapter);
1104
1105         return E1000_SUCCESS;
1106
1107 err_up:
1108         e1000_free_all_rx_resources(adapter);
1109 err_setup_rx:
1110         e1000_free_all_tx_resources(adapter);
1111 err_setup_tx:
1112         e1000_reset(adapter);
1113
1114         return err;
1115 }
1116
1117 /**
1118  * e1000_close - Disables a network interface
1119  * @netdev: network interface device structure
1120  *
1121  * Returns 0, this is not allowed to fail
1122  *
1123  * The close entry point is called when an interface is de-activated
1124  * by the OS.  The hardware is still under the drivers control, but
1125  * needs to be disabled.  A global MAC reset is issued to stop the
1126  * hardware, and all transmit and receive resources are freed.
1127  **/
1128
1129 static int
1130 e1000_close(struct net_device *netdev)
1131 {
1132         struct e1000_adapter *adapter = netdev_priv(netdev);
1133
1134         e1000_down(adapter);
1135
1136         e1000_free_all_tx_resources(adapter);
1137         e1000_free_all_rx_resources(adapter);
1138
1139         if ((adapter->hw.mng_cookie.status &
1140                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1141                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1142         }
1143
1144         /* If AMT is enabled, let the firmware know that the network
1145          * interface is now closed */
1146         if (adapter->hw.mac_type == e1000_82573 &&
1147             e1000_check_mng_mode(&adapter->hw))
1148                 e1000_release_hw_control(adapter);
1149
1150         return 0;
1151 }
1152
1153 /**
1154  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1155  * @adapter: address of board private structure
1156  * @start: address of beginning of memory
1157  * @len: length of memory
1158  **/
1159 static boolean_t
1160 e1000_check_64k_bound(struct e1000_adapter *adapter,
1161                       void *start, unsigned long len)
1162 {
1163         unsigned long begin = (unsigned long) start;
1164         unsigned long end = begin + len;
1165
1166         /* First rev 82545 and 82546 need to not allow any memory
1167          * write location to cross 64k boundary due to errata 23 */
1168         if (adapter->hw.mac_type == e1000_82545 ||
1169             adapter->hw.mac_type == e1000_82546) {
1170                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1171         }
1172
1173         return TRUE;
1174 }
1175
1176 /**
1177  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1178  * @adapter: board private structure
1179  * @txdr:    tx descriptor ring (for a specific queue) to setup
1180  *
1181  * Return 0 on success, negative on failure
1182  **/
1183
1184 static int
1185 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1186                          struct e1000_tx_ring *txdr)
1187 {
1188         struct pci_dev *pdev = adapter->pdev;
1189         int size;
1190
1191         size = sizeof(struct e1000_buffer) * txdr->count;
1192
1193         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1194         if (!txdr->buffer_info) {
1195                 DPRINTK(PROBE, ERR,
1196                 "Unable to allocate memory for the transmit descriptor ring\n");
1197                 return -ENOMEM;
1198         }
1199         memset(txdr->buffer_info, 0, size);
1200
1201         /* round up to nearest 4K */
1202
1203         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1204         E1000_ROUNDUP(txdr->size, 4096);
1205
1206         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1207         if (!txdr->desc) {
1208 setup_tx_desc_die:
1209                 vfree(txdr->buffer_info);
1210                 DPRINTK(PROBE, ERR,
1211                 "Unable to allocate memory for the transmit descriptor ring\n");
1212                 return -ENOMEM;
1213         }
1214
1215         /* Fix for errata 23, can't cross 64kB boundary */
1216         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1217                 void *olddesc = txdr->desc;
1218                 dma_addr_t olddma = txdr->dma;
1219                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1220                                      "at %p\n", txdr->size, txdr->desc);
1221                 /* Try again, without freeing the previous */
1222                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1223                 /* Failed allocation, critical failure */
1224                 if (!txdr->desc) {
1225                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1226                         goto setup_tx_desc_die;
1227                 }
1228
1229                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1230                         /* give up */
1231                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1232                                             txdr->dma);
1233                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1234                         DPRINTK(PROBE, ERR,
1235                                 "Unable to allocate aligned memory "
1236                                 "for the transmit descriptor ring\n");
1237                         vfree(txdr->buffer_info);
1238                         return -ENOMEM;
1239                 } else {
1240                         /* Free old allocation, new allocation was successful */
1241                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1242                 }
1243         }
1244         memset(txdr->desc, 0, txdr->size);
1245
1246         txdr->next_to_use = 0;
1247         txdr->next_to_clean = 0;
1248         spin_lock_init(&txdr->tx_lock);
1249
1250         return 0;
1251 }
1252
1253 /**
1254  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1255  *                                (Descriptors) for all queues
1256  * @adapter: board private structure
1257  *
1258  * If this function returns with an error, then it's possible one or
1259  * more of the rings is populated (while the rest are not).  It is the
1260  * callers duty to clean those orphaned rings.
1261  *
1262  * Return 0 on success, negative on failure
1263  **/
1264
1265 int
1266 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1267 {
1268         int i, err = 0;
1269
1270         for (i = 0; i < adapter->num_tx_queues; i++) {
1271                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1272                 if (err) {
1273                         DPRINTK(PROBE, ERR,
1274                                 "Allocation for Tx Queue %u failed\n", i);
1275                         break;
1276                 }
1277         }
1278
1279         return err;
1280 }
1281
1282 /**
1283  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1284  * @adapter: board private structure
1285  *
1286  * Configure the Tx unit of the MAC after a reset.
1287  **/
1288
1289 static void
1290 e1000_configure_tx(struct e1000_adapter *adapter)
1291 {
1292         uint64_t tdba;
1293         struct e1000_hw *hw = &adapter->hw;
1294         uint32_t tdlen, tctl, tipg, tarc;
1295         uint32_t ipgr1, ipgr2;
1296
1297         /* Setup the HW Tx Head and Tail descriptor pointers */
1298
1299         switch (adapter->num_tx_queues) {
1300         case 1:
1301         default:
1302                 tdba = adapter->tx_ring[0].dma;
1303                 tdlen = adapter->tx_ring[0].count *
1304                         sizeof(struct e1000_tx_desc);
1305                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1306                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1307                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1308                 E1000_WRITE_REG(hw, TDH, 0);
1309                 E1000_WRITE_REG(hw, TDT, 0);
1310                 adapter->tx_ring[0].tdh = E1000_TDH;
1311                 adapter->tx_ring[0].tdt = E1000_TDT;
1312                 break;
1313         }
1314
1315         /* Set the default values for the Tx Inter Packet Gap timer */
1316
1317         if (hw->media_type == e1000_media_type_fiber ||
1318             hw->media_type == e1000_media_type_internal_serdes)
1319                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1320         else
1321                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1322
1323         switch (hw->mac_type) {
1324         case e1000_82542_rev2_0:
1325         case e1000_82542_rev2_1:
1326                 tipg = DEFAULT_82542_TIPG_IPGT;
1327                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1328                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1329                 break;
1330         case e1000_80003es2lan:
1331                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1332                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1333                 break;
1334         default:
1335                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1336                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1337                 break;
1338         }
1339         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1340         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1341         E1000_WRITE_REG(hw, TIPG, tipg);
1342
1343         /* Set the Tx Interrupt Delay register */
1344
1345         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1346         if (hw->mac_type >= e1000_82540)
1347                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1348
1349         /* Program the Transmit Control Register */
1350
1351         tctl = E1000_READ_REG(hw, TCTL);
1352
1353         tctl &= ~E1000_TCTL_CT;
1354         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1355                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1356
1357 #ifdef DISABLE_MULR
1358         /* disable Multiple Reads for debugging */
1359         tctl &= ~E1000_TCTL_MULR;
1360 #endif
1361
1362         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1363                 tarc = E1000_READ_REG(hw, TARC0);
1364                 tarc |= ((1 << 25) | (1 << 21));
1365                 E1000_WRITE_REG(hw, TARC0, tarc);
1366                 tarc = E1000_READ_REG(hw, TARC1);
1367                 tarc |= (1 << 25);
1368                 if (tctl & E1000_TCTL_MULR)
1369                         tarc &= ~(1 << 28);
1370                 else
1371                         tarc |= (1 << 28);
1372                 E1000_WRITE_REG(hw, TARC1, tarc);
1373         } else if (hw->mac_type == e1000_80003es2lan) {
1374                 tarc = E1000_READ_REG(hw, TARC0);
1375                 tarc |= 1;
1376                 if (hw->media_type == e1000_media_type_internal_serdes)
1377                         tarc |= (1 << 20);
1378                 E1000_WRITE_REG(hw, TARC0, tarc);
1379                 tarc = E1000_READ_REG(hw, TARC1);
1380                 tarc |= 1;
1381                 E1000_WRITE_REG(hw, TARC1, tarc);
1382         }
1383
1384         e1000_config_collision_dist(hw);
1385
1386         /* Setup Transmit Descriptor Settings for eop descriptor */
1387         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1388                 E1000_TXD_CMD_IFCS;
1389
1390         if (hw->mac_type < e1000_82543)
1391                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1392         else
1393                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1394
1395         /* Cache if we're 82544 running in PCI-X because we'll
1396          * need this to apply a workaround later in the send path. */
1397         if (hw->mac_type == e1000_82544 &&
1398             hw->bus_type == e1000_bus_type_pcix)
1399                 adapter->pcix_82544 = 1;
1400
1401         E1000_WRITE_REG(hw, TCTL, tctl);
1402
1403 }
1404
1405 /**
1406  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1407  * @adapter: board private structure
1408  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1409  *
1410  * Returns 0 on success, negative on failure
1411  **/
1412
1413 static int
1414 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1415                          struct e1000_rx_ring *rxdr)
1416 {
1417         struct pci_dev *pdev = adapter->pdev;
1418         int size, desc_len;
1419
1420         size = sizeof(struct e1000_buffer) * rxdr->count;
1421         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1422         if (!rxdr->buffer_info) {
1423                 DPRINTK(PROBE, ERR,
1424                 "Unable to allocate memory for the receive descriptor ring\n");
1425                 return -ENOMEM;
1426         }
1427         memset(rxdr->buffer_info, 0, size);
1428
1429         size = sizeof(struct e1000_ps_page) * rxdr->count;
1430         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1431         if (!rxdr->ps_page) {
1432                 vfree(rxdr->buffer_info);
1433                 DPRINTK(PROBE, ERR,
1434                 "Unable to allocate memory for the receive descriptor ring\n");
1435                 return -ENOMEM;
1436         }
1437         memset(rxdr->ps_page, 0, size);
1438
1439         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1440         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1441         if (!rxdr->ps_page_dma) {
1442                 vfree(rxdr->buffer_info);
1443                 kfree(rxdr->ps_page);
1444                 DPRINTK(PROBE, ERR,
1445                 "Unable to allocate memory for the receive descriptor ring\n");
1446                 return -ENOMEM;
1447         }
1448         memset(rxdr->ps_page_dma, 0, size);
1449
1450         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1451                 desc_len = sizeof(struct e1000_rx_desc);
1452         else
1453                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1454
1455         /* Round up to nearest 4K */
1456
1457         rxdr->size = rxdr->count * desc_len;
1458         E1000_ROUNDUP(rxdr->size, 4096);
1459
1460         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1461
1462         if (!rxdr->desc) {
1463                 DPRINTK(PROBE, ERR,
1464                 "Unable to allocate memory for the receive descriptor ring\n");
1465 setup_rx_desc_die:
1466                 vfree(rxdr->buffer_info);
1467                 kfree(rxdr->ps_page);
1468                 kfree(rxdr->ps_page_dma);
1469                 return -ENOMEM;
1470         }
1471
1472         /* Fix for errata 23, can't cross 64kB boundary */
1473         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1474                 void *olddesc = rxdr->desc;
1475                 dma_addr_t olddma = rxdr->dma;
1476                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1477                                      "at %p\n", rxdr->size, rxdr->desc);
1478                 /* Try again, without freeing the previous */
1479                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1480                 /* Failed allocation, critical failure */
1481                 if (!rxdr->desc) {
1482                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1483                         DPRINTK(PROBE, ERR,
1484                                 "Unable to allocate memory "
1485                                 "for the receive descriptor ring\n");
1486                         goto setup_rx_desc_die;
1487                 }
1488
1489                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1490                         /* give up */
1491                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1492                                             rxdr->dma);
1493                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1494                         DPRINTK(PROBE, ERR,
1495                                 "Unable to allocate aligned memory "
1496                                 "for the receive descriptor ring\n");
1497                         goto setup_rx_desc_die;
1498                 } else {
1499                         /* Free old allocation, new allocation was successful */
1500                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1501                 }
1502         }
1503         memset(rxdr->desc, 0, rxdr->size);
1504
1505         rxdr->next_to_clean = 0;
1506         rxdr->next_to_use = 0;
1507
1508         return 0;
1509 }
1510
1511 /**
1512  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1513  *                                (Descriptors) for all queues
1514  * @adapter: board private structure
1515  *
1516  * If this function returns with an error, then it's possible one or
1517  * more of the rings is populated (while the rest are not).  It is the
1518  * callers duty to clean those orphaned rings.
1519  *
1520  * Return 0 on success, negative on failure
1521  **/
1522
1523 int
1524 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1525 {
1526         int i, err = 0;
1527
1528         for (i = 0; i < adapter->num_rx_queues; i++) {
1529                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1530                 if (err) {
1531                         DPRINTK(PROBE, ERR,
1532                                 "Allocation for Rx Queue %u failed\n", i);
1533                         break;
1534                 }
1535         }
1536
1537         return err;
1538 }
1539
1540 /**
1541  * e1000_setup_rctl - configure the receive control registers
1542  * @adapter: Board private structure
1543  **/
1544 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1545                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1546 static void
1547 e1000_setup_rctl(struct e1000_adapter *adapter)
1548 {
1549         uint32_t rctl, rfctl;
1550         uint32_t psrctl = 0;
1551 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1552         uint32_t pages = 0;
1553 #endif
1554
1555         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1556
1557         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1558
1559         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1560                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1561                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1562
1563         if (adapter->hw.mac_type > e1000_82543)
1564                 rctl |= E1000_RCTL_SECRC;
1565
1566         if (adapter->hw.tbi_compatibility_on == 1)
1567                 rctl |= E1000_RCTL_SBP;
1568         else
1569                 rctl &= ~E1000_RCTL_SBP;
1570
1571         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1572                 rctl &= ~E1000_RCTL_LPE;
1573         else
1574                 rctl |= E1000_RCTL_LPE;
1575
1576         /* Setup buffer sizes */
1577         rctl &= ~E1000_RCTL_SZ_4096;
1578         rctl |= E1000_RCTL_BSEX;
1579         switch (adapter->rx_buffer_len) {
1580                 case E1000_RXBUFFER_256:
1581                         rctl |= E1000_RCTL_SZ_256;
1582                         rctl &= ~E1000_RCTL_BSEX;
1583                         break;
1584                 case E1000_RXBUFFER_512:
1585                         rctl |= E1000_RCTL_SZ_512;
1586                         rctl &= ~E1000_RCTL_BSEX;
1587                         break;
1588                 case E1000_RXBUFFER_1024:
1589                         rctl |= E1000_RCTL_SZ_1024;
1590                         rctl &= ~E1000_RCTL_BSEX;
1591                         break;
1592                 case E1000_RXBUFFER_2048:
1593                 default:
1594                         rctl |= E1000_RCTL_SZ_2048;
1595                         rctl &= ~E1000_RCTL_BSEX;
1596                         break;
1597                 case E1000_RXBUFFER_4096:
1598                         rctl |= E1000_RCTL_SZ_4096;
1599                         break;
1600                 case E1000_RXBUFFER_8192:
1601                         rctl |= E1000_RCTL_SZ_8192;
1602                         break;
1603                 case E1000_RXBUFFER_16384:
1604                         rctl |= E1000_RCTL_SZ_16384;
1605                         break;
1606         }
1607
1608 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1609         /* 82571 and greater support packet-split where the protocol
1610          * header is placed in skb->data and the packet data is
1611          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1612          * In the case of a non-split, skb->data is linearly filled,
1613          * followed by the page buffers.  Therefore, skb->data is
1614          * sized to hold the largest protocol header.
1615          */
1616         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1617         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1618             PAGE_SIZE <= 16384)
1619                 adapter->rx_ps_pages = pages;
1620         else
1621                 adapter->rx_ps_pages = 0;
1622 #endif
1623         if (adapter->rx_ps_pages) {
1624                 /* Configure extra packet-split registers */
1625                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1626                 rfctl |= E1000_RFCTL_EXTEN;
1627                 /* disable IPv6 packet split support */
1628                 rfctl |= E1000_RFCTL_IPV6_DIS;
1629                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1630
1631                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1632
1633                 psrctl |= adapter->rx_ps_bsize0 >>
1634                         E1000_PSRCTL_BSIZE0_SHIFT;
1635
1636                 switch (adapter->rx_ps_pages) {
1637                 case 3:
1638                         psrctl |= PAGE_SIZE <<
1639                                 E1000_PSRCTL_BSIZE3_SHIFT;
1640                 case 2:
1641                         psrctl |= PAGE_SIZE <<
1642                                 E1000_PSRCTL_BSIZE2_SHIFT;
1643                 case 1:
1644                         psrctl |= PAGE_SIZE >>
1645                                 E1000_PSRCTL_BSIZE1_SHIFT;
1646                         break;
1647                 }
1648
1649                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1650         }
1651
1652         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1653 }
1654
1655 /**
1656  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1657  * @adapter: board private structure
1658  *
1659  * Configure the Rx unit of the MAC after a reset.
1660  **/
1661
1662 static void
1663 e1000_configure_rx(struct e1000_adapter *adapter)
1664 {
1665         uint64_t rdba;
1666         struct e1000_hw *hw = &adapter->hw;
1667         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1668
1669         if (adapter->rx_ps_pages) {
1670                 /* this is a 32 byte descriptor */
1671                 rdlen = adapter->rx_ring[0].count *
1672                         sizeof(union e1000_rx_desc_packet_split);
1673                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1674                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1675         } else {
1676                 rdlen = adapter->rx_ring[0].count *
1677                         sizeof(struct e1000_rx_desc);
1678                 adapter->clean_rx = e1000_clean_rx_irq;
1679                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1680         }
1681
1682         /* disable receives while setting up the descriptors */
1683         rctl = E1000_READ_REG(hw, RCTL);
1684         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1685
1686         /* set the Receive Delay Timer Register */
1687         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1688
1689         if (hw->mac_type >= e1000_82540) {
1690                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1691                 if (adapter->itr > 1)
1692                         E1000_WRITE_REG(hw, ITR,
1693                                 1000000000 / (adapter->itr * 256));
1694         }
1695
1696         if (hw->mac_type >= e1000_82571) {
1697                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1698                 /* Reset delay timers after every interrupt */
1699                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1700 #ifdef CONFIG_E1000_NAPI
1701                 /* Auto-Mask interrupts upon ICR read. */
1702                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1703 #endif
1704                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1705                 E1000_WRITE_REG(hw, IAM, ~0);
1706                 E1000_WRITE_FLUSH(hw);
1707         }
1708
1709         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1710          * the Base and Length of the Rx Descriptor Ring */
1711         switch (adapter->num_rx_queues) {
1712         case 1:
1713         default:
1714                 rdba = adapter->rx_ring[0].dma;
1715                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1716                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1717                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1718                 E1000_WRITE_REG(hw, RDH, 0);
1719                 E1000_WRITE_REG(hw, RDT, 0);
1720                 adapter->rx_ring[0].rdh = E1000_RDH;
1721                 adapter->rx_ring[0].rdt = E1000_RDT;
1722                 break;
1723         }
1724
1725         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1726         if (hw->mac_type >= e1000_82543) {
1727                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1728                 if (adapter->rx_csum == TRUE) {
1729                         rxcsum |= E1000_RXCSUM_TUOFL;
1730
1731                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1732                          * Must be used in conjunction with packet-split. */
1733                         if ((hw->mac_type >= e1000_82571) &&
1734                             (adapter->rx_ps_pages)) {
1735                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1736                         }
1737                 } else {
1738                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1739                         /* don't need to clear IPPCSE as it defaults to 0 */
1740                 }
1741                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1742         }
1743
1744         if (hw->mac_type == e1000_82573)
1745                 E1000_WRITE_REG(hw, ERT, 0x0100);
1746
1747         /* Enable Receives */
1748         E1000_WRITE_REG(hw, RCTL, rctl);
1749 }
1750
1751 /**
1752  * e1000_free_tx_resources - Free Tx Resources per Queue
1753  * @adapter: board private structure
1754  * @tx_ring: Tx descriptor ring for a specific queue
1755  *
1756  * Free all transmit software resources
1757  **/
1758
1759 static void
1760 e1000_free_tx_resources(struct e1000_adapter *adapter,
1761                         struct e1000_tx_ring *tx_ring)
1762 {
1763         struct pci_dev *pdev = adapter->pdev;
1764
1765         e1000_clean_tx_ring(adapter, tx_ring);
1766
1767         vfree(tx_ring->buffer_info);
1768         tx_ring->buffer_info = NULL;
1769
1770         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1771
1772         tx_ring->desc = NULL;
1773 }
1774
1775 /**
1776  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1777  * @adapter: board private structure
1778  *
1779  * Free all transmit software resources
1780  **/
1781
1782 void
1783 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1784 {
1785         int i;
1786
1787         for (i = 0; i < adapter->num_tx_queues; i++)
1788                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1789 }
1790
1791 static void
1792 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1793                         struct e1000_buffer *buffer_info)
1794 {
1795         if (buffer_info->dma) {
1796                 pci_unmap_page(adapter->pdev,
1797                                 buffer_info->dma,
1798                                 buffer_info->length,
1799                                 PCI_DMA_TODEVICE);
1800         }
1801         if (buffer_info->skb)
1802                 dev_kfree_skb_any(buffer_info->skb);
1803         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1804 }
1805
1806 /**
1807  * e1000_clean_tx_ring - Free Tx Buffers
1808  * @adapter: board private structure
1809  * @tx_ring: ring to be cleaned
1810  **/
1811
1812 static void
1813 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1814                     struct e1000_tx_ring *tx_ring)
1815 {
1816         struct e1000_buffer *buffer_info;
1817         unsigned long size;
1818         unsigned int i;
1819
1820         /* Free all the Tx ring sk_buffs */
1821
1822         for (i = 0; i < tx_ring->count; i++) {
1823                 buffer_info = &tx_ring->buffer_info[i];
1824                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1825         }
1826
1827         size = sizeof(struct e1000_buffer) * tx_ring->count;
1828         memset(tx_ring->buffer_info, 0, size);
1829
1830         /* Zero out the descriptor ring */
1831
1832         memset(tx_ring->desc, 0, tx_ring->size);
1833
1834         tx_ring->next_to_use = 0;
1835         tx_ring->next_to_clean = 0;
1836         tx_ring->last_tx_tso = 0;
1837
1838         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1839         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1840 }
1841
1842 /**
1843  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1844  * @adapter: board private structure
1845  **/
1846
1847 static void
1848 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1849 {
1850         int i;
1851
1852         for (i = 0; i < adapter->num_tx_queues; i++)
1853                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1854 }
1855
1856 /**
1857  * e1000_free_rx_resources - Free Rx Resources
1858  * @adapter: board private structure
1859  * @rx_ring: ring to clean the resources from
1860  *
1861  * Free all receive software resources
1862  **/
1863
1864 static void
1865 e1000_free_rx_resources(struct e1000_adapter *adapter,
1866                         struct e1000_rx_ring *rx_ring)
1867 {
1868         struct pci_dev *pdev = adapter->pdev;
1869
1870         e1000_clean_rx_ring(adapter, rx_ring);
1871
1872         vfree(rx_ring->buffer_info);
1873         rx_ring->buffer_info = NULL;
1874         kfree(rx_ring->ps_page);
1875         rx_ring->ps_page = NULL;
1876         kfree(rx_ring->ps_page_dma);
1877         rx_ring->ps_page_dma = NULL;
1878
1879         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1880
1881         rx_ring->desc = NULL;
1882 }
1883
1884 /**
1885  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1886  * @adapter: board private structure
1887  *
1888  * Free all receive software resources
1889  **/
1890
1891 void
1892 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1893 {
1894         int i;
1895
1896         for (i = 0; i < adapter->num_rx_queues; i++)
1897                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1898 }
1899
1900 /**
1901  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1902  * @adapter: board private structure
1903  * @rx_ring: ring to free buffers from
1904  **/
1905
1906 static void
1907 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1908                     struct e1000_rx_ring *rx_ring)
1909 {
1910         struct e1000_buffer *buffer_info;
1911         struct e1000_ps_page *ps_page;
1912         struct e1000_ps_page_dma *ps_page_dma;
1913         struct pci_dev *pdev = adapter->pdev;
1914         unsigned long size;
1915         unsigned int i, j;
1916
1917         /* Free all the Rx ring sk_buffs */
1918         for (i = 0; i < rx_ring->count; i++) {
1919                 buffer_info = &rx_ring->buffer_info[i];
1920                 if (buffer_info->skb) {
1921                         pci_unmap_single(pdev,
1922                                          buffer_info->dma,
1923                                          buffer_info->length,
1924                                          PCI_DMA_FROMDEVICE);
1925
1926                         dev_kfree_skb(buffer_info->skb);
1927                         buffer_info->skb = NULL;
1928                 }
1929                 ps_page = &rx_ring->ps_page[i];
1930                 ps_page_dma = &rx_ring->ps_page_dma[i];
1931                 for (j = 0; j < adapter->rx_ps_pages; j++) {
1932                         if (!ps_page->ps_page[j]) break;
1933                         pci_unmap_page(pdev,
1934                                        ps_page_dma->ps_page_dma[j],
1935                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1936                         ps_page_dma->ps_page_dma[j] = 0;
1937                         put_page(ps_page->ps_page[j]);
1938                         ps_page->ps_page[j] = NULL;
1939                 }
1940         }
1941
1942         size = sizeof(struct e1000_buffer) * rx_ring->count;
1943         memset(rx_ring->buffer_info, 0, size);
1944         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1945         memset(rx_ring->ps_page, 0, size);
1946         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1947         memset(rx_ring->ps_page_dma, 0, size);
1948
1949         /* Zero out the descriptor ring */
1950
1951         memset(rx_ring->desc, 0, rx_ring->size);
1952
1953         rx_ring->next_to_clean = 0;
1954         rx_ring->next_to_use = 0;
1955
1956         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1957         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1958 }
1959
1960 /**
1961  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1962  * @adapter: board private structure
1963  **/
1964
1965 static void
1966 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1967 {
1968         int i;
1969
1970         for (i = 0; i < adapter->num_rx_queues; i++)
1971                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1972 }
1973
1974 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1975  * and memory write and invalidate disabled for certain operations
1976  */
1977 static void
1978 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1979 {
1980         struct net_device *netdev = adapter->netdev;
1981         uint32_t rctl;
1982
1983         e1000_pci_clear_mwi(&adapter->hw);
1984
1985         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1986         rctl |= E1000_RCTL_RST;
1987         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1988         E1000_WRITE_FLUSH(&adapter->hw);
1989         mdelay(5);
1990
1991         if (netif_running(netdev))
1992                 e1000_clean_all_rx_rings(adapter);
1993 }
1994
1995 static void
1996 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1997 {
1998         struct net_device *netdev = adapter->netdev;
1999         uint32_t rctl;
2000
2001         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2002         rctl &= ~E1000_RCTL_RST;
2003         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2004         E1000_WRITE_FLUSH(&adapter->hw);
2005         mdelay(5);
2006
2007         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2008                 e1000_pci_set_mwi(&adapter->hw);
2009
2010         if (netif_running(netdev)) {
2011                 /* No need to loop, because 82542 supports only 1 queue */
2012                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2013                 e1000_configure_rx(adapter);
2014                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2015         }
2016 }
2017
2018 /**
2019  * e1000_set_mac - Change the Ethernet Address of the NIC
2020  * @netdev: network interface device structure
2021  * @p: pointer to an address structure
2022  *
2023  * Returns 0 on success, negative on failure
2024  **/
2025
2026 static int
2027 e1000_set_mac(struct net_device *netdev, void *p)
2028 {
2029         struct e1000_adapter *adapter = netdev_priv(netdev);
2030         struct sockaddr *addr = p;
2031
2032         if (!is_valid_ether_addr(addr->sa_data))
2033                 return -EADDRNOTAVAIL;
2034
2035         /* 82542 2.0 needs to be in reset to write receive address registers */
2036
2037         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2038                 e1000_enter_82542_rst(adapter);
2039
2040         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2041         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2042
2043         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2044
2045         /* With 82571 controllers, LAA may be overwritten (with the default)
2046          * due to controller reset from the other port. */
2047         if (adapter->hw.mac_type == e1000_82571) {
2048                 /* activate the work around */
2049                 adapter->hw.laa_is_present = 1;
2050
2051                 /* Hold a copy of the LAA in RAR[14] This is done so that
2052                  * between the time RAR[0] gets clobbered  and the time it
2053                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2054                  * of the RARs and no incoming packets directed to this port
2055                  * are dropped. Eventaully the LAA will be in RAR[0] and
2056                  * RAR[14] */
2057                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2058                                         E1000_RAR_ENTRIES - 1);
2059         }
2060
2061         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2062                 e1000_leave_82542_rst(adapter);
2063
2064         return 0;
2065 }
2066
2067 /**
2068  * e1000_set_multi - Multicast and Promiscuous mode set
2069  * @netdev: network interface device structure
2070  *
2071  * The set_multi entry point is called whenever the multicast address
2072  * list or the network interface flags are updated.  This routine is
2073  * responsible for configuring the hardware for proper multicast,
2074  * promiscuous mode, and all-multi behavior.
2075  **/
2076
2077 static void
2078 e1000_set_multi(struct net_device *netdev)
2079 {
2080         struct e1000_adapter *adapter = netdev_priv(netdev);
2081         struct e1000_hw *hw = &adapter->hw;
2082         struct dev_mc_list *mc_ptr;
2083         uint32_t rctl;
2084         uint32_t hash_value;
2085         int i, rar_entries = E1000_RAR_ENTRIES;
2086
2087         /* reserve RAR[14] for LAA over-write work-around */
2088         if (adapter->hw.mac_type == e1000_82571)
2089                 rar_entries--;
2090
2091         /* Check for Promiscuous and All Multicast modes */
2092
2093         rctl = E1000_READ_REG(hw, RCTL);
2094
2095         if (netdev->flags & IFF_PROMISC) {
2096                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2097         } else if (netdev->flags & IFF_ALLMULTI) {
2098                 rctl |= E1000_RCTL_MPE;
2099                 rctl &= ~E1000_RCTL_UPE;
2100         } else {
2101                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2102         }
2103
2104         E1000_WRITE_REG(hw, RCTL, rctl);
2105
2106         /* 82542 2.0 needs to be in reset to write receive address registers */
2107
2108         if (hw->mac_type == e1000_82542_rev2_0)
2109                 e1000_enter_82542_rst(adapter);
2110
2111         /* load the first 14 multicast address into the exact filters 1-14
2112          * RAR 0 is used for the station MAC adddress
2113          * if there are not 14 addresses, go ahead and clear the filters
2114          * -- with 82571 controllers only 0-13 entries are filled here
2115          */
2116         mc_ptr = netdev->mc_list;
2117
2118         for (i = 1; i < rar_entries; i++) {
2119                 if (mc_ptr) {
2120                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2121                         mc_ptr = mc_ptr->next;
2122                 } else {
2123                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2124                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2125                 }
2126         }
2127
2128         /* clear the old settings from the multicast hash table */
2129
2130         for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2131                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2132
2133         /* load any remaining addresses into the hash table */
2134
2135         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2136                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2137                 e1000_mta_set(hw, hash_value);
2138         }
2139
2140         if (hw->mac_type == e1000_82542_rev2_0)
2141                 e1000_leave_82542_rst(adapter);
2142 }
2143
2144 /* Need to wait a few seconds after link up to get diagnostic information from
2145  * the phy */
2146
2147 static void
2148 e1000_update_phy_info(unsigned long data)
2149 {
2150         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2151         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2152 }
2153
2154 /**
2155  * e1000_82547_tx_fifo_stall - Timer Call-back
2156  * @data: pointer to adapter cast into an unsigned long
2157  **/
2158
2159 static void
2160 e1000_82547_tx_fifo_stall(unsigned long data)
2161 {
2162         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2163         struct net_device *netdev = adapter->netdev;
2164         uint32_t tctl;
2165
2166         if (atomic_read(&adapter->tx_fifo_stall)) {
2167                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2168                     E1000_READ_REG(&adapter->hw, TDH)) &&
2169                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2170                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2171                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2172                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2173                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2174                         E1000_WRITE_REG(&adapter->hw, TCTL,
2175                                         tctl & ~E1000_TCTL_EN);
2176                         E1000_WRITE_REG(&adapter->hw, TDFT,
2177                                         adapter->tx_head_addr);
2178                         E1000_WRITE_REG(&adapter->hw, TDFH,
2179                                         adapter->tx_head_addr);
2180                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2181                                         adapter->tx_head_addr);
2182                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2183                                         adapter->tx_head_addr);
2184                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2185                         E1000_WRITE_FLUSH(&adapter->hw);
2186
2187                         adapter->tx_fifo_head = 0;
2188                         atomic_set(&adapter->tx_fifo_stall, 0);
2189                         netif_wake_queue(netdev);
2190                 } else {
2191                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2192                 }
2193         }
2194 }
2195
2196 /**
2197  * e1000_watchdog - Timer Call-back
2198  * @data: pointer to adapter cast into an unsigned long
2199  **/
2200 static void
2201 e1000_watchdog(unsigned long data)
2202 {
2203         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2204
2205         /* Do the rest outside of interrupt context */
2206         schedule_work(&adapter->watchdog_task);
2207 }
2208
2209 static void
2210 e1000_watchdog_task(struct e1000_adapter *adapter)
2211 {
2212         struct net_device *netdev = adapter->netdev;
2213         struct e1000_tx_ring *txdr = adapter->tx_ring;
2214         uint32_t link, tctl;
2215
2216         e1000_check_for_link(&adapter->hw);
2217         if (adapter->hw.mac_type == e1000_82573) {
2218                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2219                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2220                         e1000_update_mng_vlan(adapter);
2221         }
2222
2223         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2224            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2225                 link = !adapter->hw.serdes_link_down;
2226         else
2227                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2228
2229         if (link) {
2230                 if (!netif_carrier_ok(netdev)) {
2231                         boolean_t txb2b = 1;
2232                         e1000_get_speed_and_duplex(&adapter->hw,
2233                                                    &adapter->link_speed,
2234                                                    &adapter->link_duplex);
2235
2236                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2237                                adapter->link_speed,
2238                                adapter->link_duplex == FULL_DUPLEX ?
2239                                "Full Duplex" : "Half Duplex");
2240
2241                         /* tweak tx_queue_len according to speed/duplex
2242                          * and adjust the timeout factor */
2243                         netdev->tx_queue_len = adapter->tx_queue_len;
2244                         adapter->tx_timeout_factor = 1;
2245                         switch (adapter->link_speed) {
2246                         case SPEED_10:
2247                                 txb2b = 0;
2248                                 netdev->tx_queue_len = 10;
2249                                 adapter->tx_timeout_factor = 8;
2250                                 break;
2251                         case SPEED_100:
2252                                 txb2b = 0;
2253                                 netdev->tx_queue_len = 100;
2254                                 /* maybe add some timeout factor ? */
2255                                 break;
2256                         }
2257
2258                         if ((adapter->hw.mac_type == e1000_82571 ||
2259                              adapter->hw.mac_type == e1000_82572) &&
2260                             txb2b == 0) {
2261 #define SPEED_MODE_BIT (1 << 21)
2262                                 uint32_t tarc0;
2263                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2264                                 tarc0 &= ~SPEED_MODE_BIT;
2265                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2266                         }
2267                                 
2268 #ifdef NETIF_F_TSO
2269                         /* disable TSO for pcie and 10/100 speeds, to avoid
2270                          * some hardware issues */
2271                         if (!adapter->tso_force &&
2272                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2273                                 switch (adapter->link_speed) {
2274                                 case SPEED_10:
2275                                 case SPEED_100:
2276                                         DPRINTK(PROBE,INFO,
2277                                         "10/100 speed: disabling TSO\n");
2278                                         netdev->features &= ~NETIF_F_TSO;
2279                                         break;
2280                                 case SPEED_1000:
2281                                         netdev->features |= NETIF_F_TSO;
2282                                         break;
2283                                 default:
2284                                         /* oops */
2285                                         break;
2286                                 }
2287                         }
2288 #endif
2289
2290                         /* enable transmits in the hardware, need to do this
2291                          * after setting TARC0 */
2292                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2293                         tctl |= E1000_TCTL_EN;
2294                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2295
2296                         netif_carrier_on(netdev);
2297                         netif_wake_queue(netdev);
2298                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2299                         adapter->smartspeed = 0;
2300                 }
2301         } else {
2302                 if (netif_carrier_ok(netdev)) {
2303                         adapter->link_speed = 0;
2304                         adapter->link_duplex = 0;
2305                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2306                         netif_carrier_off(netdev);
2307                         netif_stop_queue(netdev);
2308                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2309
2310                         /* 80003ES2LAN workaround--
2311                          * For packet buffer work-around on link down event;
2312                          * disable receives in the ISR and
2313                          * reset device here in the watchdog
2314                          */
2315                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2316                                 /* reset device */
2317                                 schedule_work(&adapter->reset_task);
2318                         }
2319                 }
2320
2321                 e1000_smartspeed(adapter);
2322         }
2323
2324         e1000_update_stats(adapter);
2325
2326         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2327         adapter->tpt_old = adapter->stats.tpt;
2328         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2329         adapter->colc_old = adapter->stats.colc;
2330
2331         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2332         adapter->gorcl_old = adapter->stats.gorcl;
2333         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2334         adapter->gotcl_old = adapter->stats.gotcl;
2335
2336         e1000_update_adaptive(&adapter->hw);
2337
2338         if (!netif_carrier_ok(netdev)) {
2339                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2340                         /* We've lost link, so the controller stops DMA,
2341                          * but we've got queued Tx work that's never going
2342                          * to get done, so reset controller to flush Tx.
2343                          * (Do the reset outside of interrupt context). */
2344                         adapter->tx_timeout_count++;
2345                         schedule_work(&adapter->reset_task);
2346                 }
2347         }
2348
2349         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2350         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2351                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2352                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2353                  * else is between 2000-8000. */
2354                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2355                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2356                         adapter->gotcl - adapter->gorcl :
2357                         adapter->gorcl - adapter->gotcl) / 10000;
2358                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2359                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2360         }
2361
2362         /* Cause software interrupt to ensure rx ring is cleaned */
2363         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2364
2365         /* Force detection of hung controller every watchdog period */
2366         adapter->detect_tx_hung = TRUE;
2367
2368         /* With 82571 controllers, LAA may be overwritten due to controller
2369          * reset from the other port. Set the appropriate LAA in RAR[0] */
2370         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2371                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2372
2373         /* Reset the timer */
2374         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2375 }
2376
2377 #define E1000_TX_FLAGS_CSUM             0x00000001
2378 #define E1000_TX_FLAGS_VLAN             0x00000002
2379 #define E1000_TX_FLAGS_TSO              0x00000004
2380 #define E1000_TX_FLAGS_IPV4             0x00000008
2381 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2382 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2383
2384 static int
2385 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2386           struct sk_buff *skb)
2387 {
2388 #ifdef NETIF_F_TSO
2389         struct e1000_context_desc *context_desc;
2390         struct e1000_buffer *buffer_info;
2391         unsigned int i;
2392         uint32_t cmd_length = 0;
2393         uint16_t ipcse = 0, tucse, mss;
2394         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2395         int err;
2396
2397         if (skb_is_gso(skb)) {
2398                 if (skb_header_cloned(skb)) {
2399                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2400                         if (err)
2401                                 return err;
2402                 }
2403
2404                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2405                 mss = skb_shinfo(skb)->gso_size;
2406                 if (skb->protocol == htons(ETH_P_IP)) {
2407                         skb->nh.iph->tot_len = 0;
2408                         skb->nh.iph->check = 0;
2409                         skb->h.th->check =
2410                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2411                                                    skb->nh.iph->daddr,
2412                                                    0,
2413                                                    IPPROTO_TCP,
2414                                                    0);
2415                         cmd_length = E1000_TXD_CMD_IP;
2416                         ipcse = skb->h.raw - skb->data - 1;
2417 #ifdef NETIF_F_TSO_IPV6
2418                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2419                         skb->nh.ipv6h->payload_len = 0;
2420                         skb->h.th->check =
2421                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2422                                                  &skb->nh.ipv6h->daddr,
2423                                                  0,
2424                                                  IPPROTO_TCP,
2425                                                  0);
2426                         ipcse = 0;
2427 #endif
2428                 }
2429                 ipcss = skb->nh.raw - skb->data;
2430                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2431                 tucss = skb->h.raw - skb->data;
2432                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2433                 tucse = 0;
2434
2435                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2436                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2437
2438                 i = tx_ring->next_to_use;
2439                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2440                 buffer_info = &tx_ring->buffer_info[i];
2441
2442                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2443                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2444                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2445                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2446                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2447                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2448                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2449                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2450                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2451
2452                 buffer_info->time_stamp = jiffies;
2453
2454                 if (++i == tx_ring->count) i = 0;
2455                 tx_ring->next_to_use = i;
2456
2457                 return TRUE;
2458         }
2459 #endif
2460
2461         return FALSE;
2462 }
2463
2464 static boolean_t
2465 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2466               struct sk_buff *skb)
2467 {
2468         struct e1000_context_desc *context_desc;
2469         struct e1000_buffer *buffer_info;
2470         unsigned int i;
2471         uint8_t css;
2472
2473         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2474                 css = skb->h.raw - skb->data;
2475
2476                 i = tx_ring->next_to_use;
2477                 buffer_info = &tx_ring->buffer_info[i];
2478                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2479
2480                 context_desc->upper_setup.tcp_fields.tucss = css;
2481                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2482                 context_desc->upper_setup.tcp_fields.tucse = 0;
2483                 context_desc->tcp_seg_setup.data = 0;
2484                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2485
2486                 buffer_info->time_stamp = jiffies;
2487
2488                 if (unlikely(++i == tx_ring->count)) i = 0;
2489                 tx_ring->next_to_use = i;
2490
2491                 return TRUE;
2492         }
2493
2494         return FALSE;
2495 }
2496
2497 #define E1000_MAX_TXD_PWR       12
2498 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2499
2500 static int
2501 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2502              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2503              unsigned int nr_frags, unsigned int mss)
2504 {
2505         struct e1000_buffer *buffer_info;
2506         unsigned int len = skb->len;
2507         unsigned int offset = 0, size, count = 0, i;
2508         unsigned int f;
2509         len -= skb->data_len;
2510
2511         i = tx_ring->next_to_use;
2512
2513         while (len) {
2514                 buffer_info = &tx_ring->buffer_info[i];
2515                 size = min(len, max_per_txd);
2516 #ifdef NETIF_F_TSO
2517                 /* Workaround for Controller erratum --
2518                  * descriptor for non-tso packet in a linear SKB that follows a
2519                  * tso gets written back prematurely before the data is fully
2520                  * DMA'd to the controller */
2521                 if (!skb->data_len && tx_ring->last_tx_tso &&
2522                     !skb_is_gso(skb)) {
2523                         tx_ring->last_tx_tso = 0;
2524                         size -= 4;
2525                 }
2526
2527                 /* Workaround for premature desc write-backs
2528                  * in TSO mode.  Append 4-byte sentinel desc */
2529                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2530                         size -= 4;
2531 #endif
2532                 /* work-around for errata 10 and it applies
2533                  * to all controllers in PCI-X mode
2534                  * The fix is to make sure that the first descriptor of a
2535                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2536                  */
2537                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2538                                 (size > 2015) && count == 0))
2539                         size = 2015;
2540
2541                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2542                  * terminating buffers within evenly-aligned dwords. */
2543                 if (unlikely(adapter->pcix_82544 &&
2544                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2545                    size > 4))
2546                         size -= 4;
2547
2548                 buffer_info->length = size;
2549                 buffer_info->dma =
2550                         pci_map_single(adapter->pdev,
2551                                 skb->data + offset,
2552                                 size,
2553                                 PCI_DMA_TODEVICE);
2554                 buffer_info->time_stamp = jiffies;
2555
2556                 len -= size;
2557                 offset += size;
2558                 count++;
2559                 if (unlikely(++i == tx_ring->count)) i = 0;
2560         }
2561
2562         for (f = 0; f < nr_frags; f++) {
2563                 struct skb_frag_struct *frag;
2564
2565                 frag = &skb_shinfo(skb)->frags[f];
2566                 len = frag->size;
2567                 offset = frag->page_offset;
2568
2569                 while (len) {
2570                         buffer_info = &tx_ring->buffer_info[i];
2571                         size = min(len, max_per_txd);
2572 #ifdef NETIF_F_TSO
2573                         /* Workaround for premature desc write-backs
2574                          * in TSO mode.  Append 4-byte sentinel desc */
2575                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2576                                 size -= 4;
2577 #endif
2578                         /* Workaround for potential 82544 hang in PCI-X.
2579                          * Avoid terminating buffers within evenly-aligned
2580                          * dwords. */
2581                         if (unlikely(adapter->pcix_82544 &&
2582                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2583                            size > 4))
2584                                 size -= 4;
2585
2586                         buffer_info->length = size;
2587                         buffer_info->dma =
2588                                 pci_map_page(adapter->pdev,
2589                                         frag->page,
2590                                         offset,
2591                                         size,
2592                                         PCI_DMA_TODEVICE);
2593                         buffer_info->time_stamp = jiffies;
2594
2595                         len -= size;
2596                         offset += size;
2597                         count++;
2598                         if (unlikely(++i == tx_ring->count)) i = 0;
2599                 }
2600         }
2601
2602         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2603         tx_ring->buffer_info[i].skb = skb;
2604         tx_ring->buffer_info[first].next_to_watch = i;
2605
2606         return count;
2607 }
2608
2609 static void
2610 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2611                int tx_flags, int count)
2612 {
2613         struct e1000_tx_desc *tx_desc = NULL;
2614         struct e1000_buffer *buffer_info;
2615         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2616         unsigned int i;
2617
2618         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2619                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2620                              E1000_TXD_CMD_TSE;
2621                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2622
2623                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2624                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2625         }
2626
2627         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2628                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2629                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2630         }
2631
2632         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2633                 txd_lower |= E1000_TXD_CMD_VLE;
2634                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2635         }
2636
2637         i = tx_ring->next_to_use;
2638
2639         while (count--) {
2640                 buffer_info = &tx_ring->buffer_info[i];
2641                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2642                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2643                 tx_desc->lower.data =
2644                         cpu_to_le32(txd_lower | buffer_info->length);
2645                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2646                 if (unlikely(++i == tx_ring->count)) i = 0;
2647         }
2648
2649         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2650
2651         /* Force memory writes to complete before letting h/w
2652          * know there are new descriptors to fetch.  (Only
2653          * applicable for weak-ordered memory model archs,
2654          * such as IA-64). */
2655         wmb();
2656
2657         tx_ring->next_to_use = i;
2658         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2659 }
2660
2661 /**
2662  * 82547 workaround to avoid controller hang in half-duplex environment.
2663  * The workaround is to avoid queuing a large packet that would span
2664  * the internal Tx FIFO ring boundary by notifying the stack to resend
2665  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2666  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2667  * to the beginning of the Tx FIFO.
2668  **/
2669
2670 #define E1000_FIFO_HDR                  0x10
2671 #define E1000_82547_PAD_LEN             0x3E0
2672
2673 static int
2674 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2675 {
2676         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2677         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2678
2679         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2680
2681         if (adapter->link_duplex != HALF_DUPLEX)
2682                 goto no_fifo_stall_required;
2683
2684         if (atomic_read(&adapter->tx_fifo_stall))
2685                 return 1;
2686
2687         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2688                 atomic_set(&adapter->tx_fifo_stall, 1);
2689                 return 1;
2690         }
2691
2692 no_fifo_stall_required:
2693         adapter->tx_fifo_head += skb_fifo_len;
2694         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2695                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2696         return 0;
2697 }
2698
2699 #define MINIMUM_DHCP_PACKET_SIZE 282
2700 static int
2701 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2702 {
2703         struct e1000_hw *hw =  &adapter->hw;
2704         uint16_t length, offset;
2705         if (vlan_tx_tag_present(skb)) {
2706                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2707                         ( adapter->hw.mng_cookie.status &
2708                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2709                         return 0;
2710         }
2711         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2712                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2713                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2714                         const struct iphdr *ip =
2715                                 (struct iphdr *)((uint8_t *)skb->data+14);
2716                         if (IPPROTO_UDP == ip->protocol) {
2717                                 struct udphdr *udp =
2718                                         (struct udphdr *)((uint8_t *)ip +
2719                                                 (ip->ihl << 2));
2720                                 if (ntohs(udp->dest) == 67) {
2721                                         offset = (uint8_t *)udp + 8 - skb->data;
2722                                         length = skb->len - offset;
2723
2724                                         return e1000_mng_write_dhcp_info(hw,
2725                                                         (uint8_t *)udp + 8,
2726                                                         length);
2727                                 }
2728                         }
2729                 }
2730         }
2731         return 0;
2732 }
2733
2734 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2735 static int
2736 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2737 {
2738         struct e1000_adapter *adapter = netdev_priv(netdev);
2739         struct e1000_tx_ring *tx_ring;
2740         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2741         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2742         unsigned int tx_flags = 0;
2743         unsigned int len = skb->len;
2744         unsigned long flags;
2745         unsigned int nr_frags = 0;
2746         unsigned int mss = 0;
2747         int count = 0;
2748         int tso;
2749         unsigned int f;
2750         len -= skb->data_len;
2751
2752         tx_ring = adapter->tx_ring;
2753
2754         if (unlikely(skb->len <= 0)) {
2755                 dev_kfree_skb_any(skb);
2756                 return NETDEV_TX_OK;
2757         }
2758
2759 #ifdef NETIF_F_TSO
2760         mss = skb_shinfo(skb)->gso_size;
2761         /* The controller does a simple calculation to
2762          * make sure there is enough room in the FIFO before
2763          * initiating the DMA for each buffer.  The calc is:
2764          * 4 = ceil(buffer len/mss).  To make sure we don't
2765          * overrun the FIFO, adjust the max buffer len if mss
2766          * drops. */
2767         if (mss) {
2768                 uint8_t hdr_len;
2769                 max_per_txd = min(mss << 2, max_per_txd);
2770                 max_txd_pwr = fls(max_per_txd) - 1;
2771
2772         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2773          * points to just header, pull a few bytes of payload from
2774          * frags into skb->data */
2775                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2776                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2777                         switch (adapter->hw.mac_type) {
2778                                 unsigned int pull_size;
2779                         case e1000_82571:
2780                         case e1000_82572:
2781                         case e1000_82573:
2782                                 pull_size = min((unsigned int)4, skb->data_len);
2783                                 if (!__pskb_pull_tail(skb, pull_size)) {
2784                                         printk(KERN_ERR
2785                                                 "__pskb_pull_tail failed.\n");
2786                                         dev_kfree_skb_any(skb);
2787                                         return NETDEV_TX_OK;
2788                                 }
2789                                 len = skb->len - skb->data_len;
2790                                 break;
2791                         default:
2792                                 /* do nothing */
2793                                 break;
2794                         }
2795                 }
2796         }
2797
2798         /* reserve a descriptor for the offload context */
2799         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2800                 count++;
2801         count++;
2802 #else
2803         if (skb->ip_summed == CHECKSUM_HW)
2804                 count++;
2805 #endif
2806
2807 #ifdef NETIF_F_TSO
2808         /* Controller Erratum workaround */
2809         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2810                 count++;
2811 #endif
2812
2813         count += TXD_USE_COUNT(len, max_txd_pwr);
2814
2815         if (adapter->pcix_82544)
2816                 count++;
2817
2818         /* work-around for errata 10 and it applies to all controllers
2819          * in PCI-X mode, so add one more descriptor to the count
2820          */
2821         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2822                         (len > 2015)))
2823                 count++;
2824
2825         nr_frags = skb_shinfo(skb)->nr_frags;
2826         for (f = 0; f < nr_frags; f++)
2827                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2828                                        max_txd_pwr);
2829         if (adapter->pcix_82544)
2830                 count += nr_frags;
2831
2832
2833         if (adapter->hw.tx_pkt_filtering &&
2834             (adapter->hw.mac_type == e1000_82573))
2835                 e1000_transfer_dhcp_info(adapter, skb);
2836
2837         local_irq_save(flags);
2838         if (!spin_trylock(&tx_ring->tx_lock)) {
2839                 /* Collision - tell upper layer to requeue */
2840                 local_irq_restore(flags);
2841                 return NETDEV_TX_LOCKED;
2842         }
2843
2844         /* need: count + 2 desc gap to keep tail from touching
2845          * head, otherwise try next time */
2846         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2847                 netif_stop_queue(netdev);
2848                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2849                 return NETDEV_TX_BUSY;
2850         }
2851
2852         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2853                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2854                         netif_stop_queue(netdev);
2855                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2856                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2857                         return NETDEV_TX_BUSY;
2858                 }
2859         }
2860
2861         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2862                 tx_flags |= E1000_TX_FLAGS_VLAN;
2863                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2864         }
2865
2866         first = tx_ring->next_to_use;
2867
2868         tso = e1000_tso(adapter, tx_ring, skb);
2869         if (tso < 0) {
2870                 dev_kfree_skb_any(skb);
2871                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2872                 return NETDEV_TX_OK;
2873         }
2874
2875         if (likely(tso)) {
2876                 tx_ring->last_tx_tso = 1;
2877                 tx_flags |= E1000_TX_FLAGS_TSO;
2878         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2879                 tx_flags |= E1000_TX_FLAGS_CSUM;
2880
2881         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2882          * 82571 hardware supports TSO capabilities for IPv6 as well...
2883          * no longer assume, we must. */
2884         if (likely(skb->protocol == htons(ETH_P_IP)))
2885                 tx_flags |= E1000_TX_FLAGS_IPV4;
2886
2887         e1000_tx_queue(adapter, tx_ring, tx_flags,
2888                        e1000_tx_map(adapter, tx_ring, skb, first,
2889                                     max_per_txd, nr_frags, mss));
2890
2891         netdev->trans_start = jiffies;
2892
2893         /* Make sure there is space in the ring for the next send. */
2894         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2895                 netif_stop_queue(netdev);
2896
2897         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2898         return NETDEV_TX_OK;
2899 }
2900
2901 /**
2902  * e1000_tx_timeout - Respond to a Tx Hang
2903  * @netdev: network interface device structure
2904  **/
2905
2906 static void
2907 e1000_tx_timeout(struct net_device *netdev)
2908 {
2909         struct e1000_adapter *adapter = netdev_priv(netdev);
2910
2911         /* Do the reset outside of interrupt context */
2912         adapter->tx_timeout_count++;
2913         schedule_work(&adapter->reset_task);
2914 }
2915
2916 static void
2917 e1000_reset_task(struct net_device *netdev)
2918 {
2919         struct e1000_adapter *adapter = netdev_priv(netdev);
2920
2921         e1000_down(adapter);
2922         e1000_up(adapter);
2923 }
2924
2925 /**
2926  * e1000_get_stats - Get System Network Statistics
2927  * @netdev: network interface device structure
2928  *
2929  * Returns the address of the device statistics structure.
2930  * The statistics are actually updated from the timer callback.
2931  **/
2932
2933 static struct net_device_stats *
2934 e1000_get_stats(struct net_device *netdev)
2935 {
2936         struct e1000_adapter *adapter = netdev_priv(netdev);
2937
2938         /* only return the current stats */
2939         return &adapter->net_stats;
2940 }
2941
2942 /**
2943  * e1000_change_mtu - Change the Maximum Transfer Unit
2944  * @netdev: network interface device structure
2945  * @new_mtu: new value for maximum frame size
2946  *
2947  * Returns 0 on success, negative on failure
2948  **/
2949
2950 static int
2951 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2952 {
2953         struct e1000_adapter *adapter = netdev_priv(netdev);
2954         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2955         uint16_t eeprom_data = 0;
2956
2957         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2958             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2959                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2960                 return -EINVAL;
2961         }
2962
2963         /* Adapter-specific max frame size limits. */
2964         switch (adapter->hw.mac_type) {
2965         case e1000_undefined ... e1000_82542_rev2_1:
2966                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2967                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2968                         return -EINVAL;
2969                 }
2970                 break;
2971         case e1000_82573:
2972                 /* only enable jumbo frames if ASPM is disabled completely
2973                  * this means both bits must be zero in 0x1A bits 3:2 */
2974                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
2975                                   &eeprom_data);
2976                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
2977                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2978                                 DPRINTK(PROBE, ERR,
2979                                         "Jumbo Frames not supported.\n");
2980                                 return -EINVAL;
2981                         }
2982                         break;
2983                 }
2984                 /* fall through to get support */
2985         case e1000_82571:
2986         case e1000_82572:
2987         case e1000_80003es2lan:
2988 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2989                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2990                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
2991                         return -EINVAL;
2992                 }
2993                 break;
2994         default:
2995                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
2996                 break;
2997         }
2998
2999         /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3000          * means we reserve 2 more, this pushes us to allocate from the next
3001          * larger slab size
3002          * i.e. RXBUFFER_2048 --> size-4096 slab */
3003
3004         if (max_frame <= E1000_RXBUFFER_256)
3005                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3006         else if (max_frame <= E1000_RXBUFFER_512)
3007                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3008         else if (max_frame <= E1000_RXBUFFER_1024)
3009                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3010         else if (max_frame <= E1000_RXBUFFER_2048)
3011                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3012         else if (max_frame <= E1000_RXBUFFER_4096)
3013                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3014         else if (max_frame <= E1000_RXBUFFER_8192)
3015                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3016         else if (max_frame <= E1000_RXBUFFER_16384)
3017                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3018
3019         /* adjust allocation if LPE protects us, and we aren't using SBP */
3020 #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3021         if (!adapter->hw.tbi_compatibility_on &&
3022             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3023              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3024                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3025
3026         netdev->mtu = new_mtu;
3027
3028         if (netif_running(netdev)) {
3029                 e1000_down(adapter);
3030                 e1000_up(adapter);
3031         }
3032
3033         adapter->hw.max_frame_size = max_frame;
3034
3035         return 0;
3036 }
3037
3038 /**
3039  * e1000_update_stats - Update the board statistics counters
3040  * @adapter: board private structure
3041  **/
3042
3043 void
3044 e1000_update_stats(struct e1000_adapter *adapter)
3045 {
3046         struct e1000_hw *hw = &adapter->hw;
3047         struct pci_dev *pdev = adapter->pdev;
3048         unsigned long flags;
3049         uint16_t phy_tmp;
3050
3051 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3052
3053         /*
3054          * Prevent stats update while adapter is being reset, or if the pci
3055          * connection is down.
3056          */
3057         if (adapter->link_speed == 0)
3058                 return;
3059         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3060                 return;
3061
3062         spin_lock_irqsave(&adapter->stats_lock, flags);
3063
3064         /* these counters are modified from e1000_adjust_tbi_stats,
3065          * called from the interrupt context, so they must only
3066          * be written while holding adapter->stats_lock
3067          */
3068
3069         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3070         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3071         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3072         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3073         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3074         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3075         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3076         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3077         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3078         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3079         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3080         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3081         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3082
3083         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3084         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3085         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3086         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3087         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3088         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3089         adapter->stats.dc += E1000_READ_REG(hw, DC);
3090         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3091         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3092         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3093         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3094         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3095         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3096         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3097         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3098         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3099         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3100         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3101         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3102         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3103         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3104         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3105         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3106         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3107         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3108         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3109         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3110         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3111         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3112         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3113         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3114         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3115         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3116         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3117
3118         /* used for adaptive IFS */
3119
3120         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3121         adapter->stats.tpt += hw->tx_packet_delta;
3122         hw->collision_delta = E1000_READ_REG(hw, COLC);
3123         adapter->stats.colc += hw->collision_delta;
3124
3125         if (hw->mac_type >= e1000_82543) {
3126                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3127                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3128                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3129                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3130                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3131                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3132         }
3133         if (hw->mac_type > e1000_82547_rev_2) {
3134                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3135                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3136                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3137                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3138                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3139                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3140                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3141                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3142                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3143         }
3144
3145         /* Fill out the OS statistics structure */
3146
3147         adapter->net_stats.rx_packets = adapter->stats.gprc;
3148         adapter->net_stats.tx_packets = adapter->stats.gptc;
3149         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3150         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3151         adapter->net_stats.multicast = adapter->stats.mprc;
3152         adapter->net_stats.collisions = adapter->stats.colc;
3153
3154         /* Rx Errors */
3155
3156         /* RLEC on some newer hardware can be incorrect so build
3157         * our own version based on RUC and ROC */
3158         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3159                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3160                 adapter->stats.ruc + adapter->stats.roc +
3161                 adapter->stats.cexterr;
3162         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3163                                               adapter->stats.roc;
3164         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3165         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3166         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3167
3168         /* Tx Errors */
3169
3170         adapter->net_stats.tx_errors = adapter->stats.ecol +
3171                                        adapter->stats.latecol;
3172         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3173         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3174         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3175
3176         /* Tx Dropped needs to be maintained elsewhere */
3177
3178         /* Phy Stats */
3179
3180         if (hw->media_type == e1000_media_type_copper) {
3181                 if ((adapter->link_speed == SPEED_1000) &&
3182                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3183                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3184                         adapter->phy_stats.idle_errors += phy_tmp;
3185                 }
3186
3187                 if ((hw->mac_type <= e1000_82546) &&
3188                    (hw->phy_type == e1000_phy_m88) &&
3189                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3190                         adapter->phy_stats.receive_errors += phy_tmp;
3191         }
3192
3193         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3194 }
3195
3196 /**
3197  * e1000_intr - Interrupt Handler
3198  * @irq: interrupt number
3199  * @data: pointer to a network interface device structure
3200  * @pt_regs: CPU registers structure
3201  **/
3202
3203 static irqreturn_t
3204 e1000_intr(int irq, void *data, struct pt_regs *regs)
3205 {
3206         struct net_device *netdev = data;
3207         struct e1000_adapter *adapter = netdev_priv(netdev);
3208         struct e1000_hw *hw = &adapter->hw;
3209         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3210 #ifndef CONFIG_E1000_NAPI
3211         int i;
3212 #else
3213         /* Interrupt Auto-Mask...upon reading ICR,
3214          * interrupts are masked.  No need for the
3215          * IMC write, but it does mean we should
3216          * account for it ASAP. */
3217         if (likely(hw->mac_type >= e1000_82571))
3218                 atomic_inc(&adapter->irq_sem);
3219 #endif
3220
3221         if (unlikely(!icr)) {
3222 #ifdef CONFIG_E1000_NAPI
3223                 if (hw->mac_type >= e1000_82571)
3224                         e1000_irq_enable(adapter);
3225 #endif
3226                 return IRQ_NONE;  /* Not our interrupt */
3227         }
3228
3229         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3230                 hw->get_link_status = 1;
3231                 /* 80003ES2LAN workaround--
3232                  * For packet buffer work-around on link down event;
3233                  * disable receives here in the ISR and
3234                  * reset adapter in watchdog
3235                  */
3236                 if (netif_carrier_ok(netdev) &&
3237                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3238                         /* disable receives */
3239                         rctl = E1000_READ_REG(hw, RCTL);
3240                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3241                 }
3242                 mod_timer(&adapter->watchdog_timer, jiffies);
3243         }
3244
3245 #ifdef CONFIG_E1000_NAPI
3246         if (unlikely(hw->mac_type < e1000_82571)) {
3247                 atomic_inc(&adapter->irq_sem);
3248                 E1000_WRITE_REG(hw, IMC, ~0);
3249                 E1000_WRITE_FLUSH(hw);
3250         }
3251         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3252                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3253         else
3254                 e1000_irq_enable(adapter);
3255 #else
3256         /* Writing IMC and IMS is needed for 82547.
3257          * Due to Hub Link bus being occupied, an interrupt
3258          * de-assertion message is not able to be sent.
3259          * When an interrupt assertion message is generated later,
3260          * two messages are re-ordered and sent out.
3261          * That causes APIC to think 82547 is in de-assertion
3262          * state, while 82547 is in assertion state, resulting
3263          * in dead lock. Writing IMC forces 82547 into
3264          * de-assertion state.
3265          */
3266         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3267                 atomic_inc(&adapter->irq_sem);
3268                 E1000_WRITE_REG(hw, IMC, ~0);
3269         }
3270
3271         for (i = 0; i < E1000_MAX_INTR; i++)
3272                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3273                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3274                         break;
3275
3276         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3277                 e1000_irq_enable(adapter);
3278
3279 #endif
3280
3281         return IRQ_HANDLED;
3282 }
3283
3284 #ifdef CONFIG_E1000_NAPI
3285 /**
3286  * e1000_clean - NAPI Rx polling callback
3287  * @adapter: board private structure
3288  **/
3289
3290 static int
3291 e1000_clean(struct net_device *poll_dev, int *budget)
3292 {
3293         struct e1000_adapter *adapter;
3294         int work_to_do = min(*budget, poll_dev->quota);
3295         int tx_cleaned = 0, i = 0, work_done = 0;
3296
3297         /* Must NOT use netdev_priv macro here. */
3298         adapter = poll_dev->priv;
3299
3300         /* Keep link state information with original netdev */
3301         if (!netif_carrier_ok(adapter->netdev))
3302                 goto quit_polling;
3303
3304         while (poll_dev != &adapter->polling_netdev[i]) {
3305                 i++;
3306                 BUG_ON(i == adapter->num_rx_queues);
3307         }
3308
3309         if (likely(adapter->num_tx_queues == 1)) {
3310                 /* e1000_clean is called per-cpu.  This lock protects
3311                  * tx_ring[0] from being cleaned by multiple cpus
3312                  * simultaneously.  A failure obtaining the lock means
3313                  * tx_ring[0] is currently being cleaned anyway. */
3314                 if (spin_trylock(&adapter->tx_queue_lock)) {
3315                         tx_cleaned = e1000_clean_tx_irq(adapter,
3316                                                         &adapter->tx_ring[0]);
3317                         spin_unlock(&adapter->tx_queue_lock);
3318                 }
3319         } else
3320                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3321
3322         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3323                           &work_done, work_to_do);
3324
3325         *budget -= work_done;
3326         poll_dev->quota -= work_done;
3327
3328         /* If no Tx and not enough Rx work done, exit the polling mode */
3329         if ((!tx_cleaned && (work_done == 0)) ||
3330            !netif_running(adapter->netdev)) {
3331 quit_polling:
3332                 netif_rx_complete(poll_dev);
3333                 e1000_irq_enable(adapter);
3334                 return 0;
3335         }
3336
3337         return 1;
3338 }
3339
3340 #endif
3341 /**
3342  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3343  * @adapter: board private structure
3344  **/
3345
3346 static boolean_t
3347 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3348                    struct e1000_tx_ring *tx_ring)
3349 {
3350         struct net_device *netdev = adapter->netdev;
3351         struct e1000_tx_desc *tx_desc, *eop_desc;
3352         struct e1000_buffer *buffer_info;
3353         unsigned int i, eop;
3354 #ifdef CONFIG_E1000_NAPI
3355         unsigned int count = 0;
3356 #endif
3357         boolean_t cleaned = FALSE;
3358
3359         i = tx_ring->next_to_clean;
3360         eop = tx_ring->buffer_info[i].next_to_watch;
3361         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3362
3363         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3364                 for (cleaned = FALSE; !cleaned; ) {
3365                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3366                         buffer_info = &tx_ring->buffer_info[i];
3367                         cleaned = (i == eop);
3368
3369                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3370                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3371
3372                         if (unlikely(++i == tx_ring->count)) i = 0;
3373                 }
3374
3375
3376                 eop = tx_ring->buffer_info[i].next_to_watch;
3377                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3378 #ifdef CONFIG_E1000_NAPI
3379 #define E1000_TX_WEIGHT 64
3380                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3381                 if (count++ == E1000_TX_WEIGHT) break;
3382 #endif
3383         }
3384
3385         tx_ring->next_to_clean = i;
3386
3387 #define TX_WAKE_THRESHOLD 32
3388         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3389                      netif_carrier_ok(netdev))) {
3390                 spin_lock(&tx_ring->tx_lock);
3391                 if (netif_queue_stopped(netdev) &&
3392                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3393                         netif_wake_queue(netdev);
3394                 spin_unlock(&tx_ring->tx_lock);
3395         }
3396
3397         if (adapter->detect_tx_hung) {
3398                 /* Detect a transmit hang in hardware, this serializes the
3399                  * check with the clearing of time_stamp and movement of i */
3400                 adapter->detect_tx_hung = FALSE;
3401                 if (tx_ring->buffer_info[eop].dma &&
3402                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3403                                (adapter->tx_timeout_factor * HZ))
3404                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3405                          E1000_STATUS_TXOFF)) {
3406
3407                         /* detected Tx unit hang */
3408                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3409                                         "  Tx Queue             <%lu>\n"
3410                                         "  TDH                  <%x>\n"
3411                                         "  TDT                  <%x>\n"
3412                                         "  next_to_use          <%x>\n"
3413                                         "  next_to_clean        <%x>\n"
3414                                         "buffer_info[next_to_clean]\n"
3415                                         "  time_stamp           <%lx>\n"
3416                                         "  next_to_watch        <%x>\n"
3417                                         "  jiffies              <%lx>\n"
3418                                         "  next_to_watch.status <%x>\n",
3419                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3420                                         sizeof(struct e1000_tx_ring)),
3421                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3422                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3423                                 tx_ring->next_to_use,
3424                                 tx_ring->next_to_clean,
3425                                 tx_ring->buffer_info[eop].time_stamp,
3426                                 eop,
3427                                 jiffies,
3428                                 eop_desc->upper.fields.status);
3429                         netif_stop_queue(netdev);
3430                 }
3431         }
3432         return cleaned;
3433 }
3434
3435 /**
3436  * e1000_rx_checksum - Receive Checksum Offload for 82543
3437  * @adapter:     board private structure
3438  * @status_err:  receive descriptor status and error fields
3439  * @csum:        receive descriptor csum field
3440  * @sk_buff:     socket buffer with received data
3441  **/
3442
3443 static void
3444 e1000_rx_checksum(struct e1000_adapter *adapter,
3445                   uint32_t status_err, uint32_t csum,
3446                   struct sk_buff *skb)
3447 {
3448         uint16_t status = (uint16_t)status_err;
3449         uint8_t errors = (uint8_t)(status_err >> 24);
3450         skb->ip_summed = CHECKSUM_NONE;
3451
3452         /* 82543 or newer only */
3453         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3454         /* Ignore Checksum bit is set */
3455         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3456         /* TCP/UDP checksum error bit is set */
3457         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3458                 /* let the stack verify checksum errors */
3459                 adapter->hw_csum_err++;
3460                 return;
3461         }
3462         /* TCP/UDP Checksum has not been calculated */
3463         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3464                 if (!(status & E1000_RXD_STAT_TCPCS))
3465                         return;
3466         } else {
3467                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3468                         return;
3469         }
3470         /* It must be a TCP or UDP packet with a valid checksum */
3471         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3472                 /* TCP checksum is good */
3473                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3474         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3475                 /* IP fragment with UDP payload */
3476                 /* Hardware complements the payload checksum, so we undo it
3477                  * and then put the value in host order for further stack use.
3478                  */
3479                 csum = ntohl(csum ^ 0xFFFF);
3480                 skb->csum = csum;
3481                 skb->ip_summed = CHECKSUM_HW;
3482         }
3483         adapter->hw_csum_good++;
3484 }
3485
3486 /**
3487  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3488  * @adapter: board private structure
3489  **/
3490
3491 static boolean_t
3492 #ifdef CONFIG_E1000_NAPI
3493 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3494                    struct e1000_rx_ring *rx_ring,
3495                    int *work_done, int work_to_do)
3496 #else
3497 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3498                    struct e1000_rx_ring *rx_ring)
3499 #endif
3500 {
3501         struct net_device *netdev = adapter->netdev;
3502         struct pci_dev *pdev = adapter->pdev;
3503         struct e1000_rx_desc *rx_desc, *next_rxd;
3504         struct e1000_buffer *buffer_info, *next_buffer;
3505         unsigned long flags;
3506         uint32_t length;
3507         uint8_t last_byte;
3508         unsigned int i;
3509         int cleaned_count = 0;
3510         boolean_t cleaned = FALSE;
3511
3512         i = rx_ring->next_to_clean;
3513         rx_desc = E1000_RX_DESC(*rx_ring, i);
3514         buffer_info = &rx_ring->buffer_info[i];
3515
3516         while (rx_desc->status & E1000_RXD_STAT_DD) {
3517                 struct sk_buff *skb;
3518                 u8 status;
3519 #ifdef CONFIG_E1000_NAPI
3520                 if (*work_done >= work_to_do)
3521                         break;
3522                 (*work_done)++;
3523 #endif
3524                 status = rx_desc->status;
3525                 skb = buffer_info->skb;
3526                 buffer_info->skb = NULL;
3527
3528                 prefetch(skb->data - NET_IP_ALIGN);
3529
3530                 if (++i == rx_ring->count) i = 0;
3531                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3532                 prefetch(next_rxd);
3533
3534                 next_buffer = &rx_ring->buffer_info[i];
3535
3536                 cleaned = TRUE;
3537                 cleaned_count++;
3538                 pci_unmap_single(pdev,
3539                                  buffer_info->dma,
3540                                  buffer_info->length,
3541                                  PCI_DMA_FROMDEVICE);
3542
3543                 length = le16_to_cpu(rx_desc->length);
3544
3545                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3546                         /* All receives must fit into a single buffer */
3547                         E1000_DBG("%s: Receive packet consumed multiple"
3548                                   " buffers\n", netdev->name);
3549                         dev_kfree_skb_irq(skb);
3550                         goto next_desc;
3551                 }
3552
3553                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3554                         last_byte = *(skb->data + length - 1);
3555                         if (TBI_ACCEPT(&adapter->hw, status,
3556                                       rx_desc->errors, length, last_byte)) {
3557                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3558                                 e1000_tbi_adjust_stats(&adapter->hw,
3559                                                        &adapter->stats,
3560                                                        length, skb->data);
3561                                 spin_unlock_irqrestore(&adapter->stats_lock,
3562                                                        flags);
3563                                 length--;
3564                         } else {
3565                                 /* recycle */
3566                                 buffer_info->skb = skb;
3567                                 goto next_desc;
3568                         }
3569                 }
3570
3571                 /* code added for copybreak, this should improve
3572                  * performance for small packets with large amounts
3573                  * of reassembly being done in the stack */
3574 #define E1000_CB_LENGTH 256
3575                 if (length < E1000_CB_LENGTH) {
3576                         struct sk_buff *new_skb =
3577                             dev_alloc_skb(length + NET_IP_ALIGN);
3578                         if (new_skb) {
3579                                 skb_reserve(new_skb, NET_IP_ALIGN);
3580                                 new_skb->dev = netdev;
3581                                 memcpy(new_skb->data - NET_IP_ALIGN,
3582                                        skb->data - NET_IP_ALIGN,
3583                                        length + NET_IP_ALIGN);
3584                                 /* save the skb in buffer_info as good */
3585                                 buffer_info->skb = skb;
3586                                 skb = new_skb;
3587                                 skb_put(skb, length);
3588                         }
3589                 } else
3590                         skb_put(skb, length);
3591
3592                 /* end copybreak code */
3593
3594                 /* Receive Checksum Offload */
3595                 e1000_rx_checksum(adapter,
3596                                   (uint32_t)(status) |
3597                                   ((uint32_t)(rx_desc->errors) << 24),
3598                                   le16_to_cpu(rx_desc->csum), skb);
3599
3600                 skb->protocol = eth_type_trans(skb, netdev);
3601 #ifdef CONFIG_E1000_NAPI
3602                 if (unlikely(adapter->vlgrp &&
3603                             (status & E1000_RXD_STAT_VP))) {
3604                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3605                                                  le16_to_cpu(rx_desc->special) &
3606                                                  E1000_RXD_SPC_VLAN_MASK);
3607                 } else {
3608                         netif_receive_skb(skb);
3609                 }
3610 #else /* CONFIG_E1000_NAPI */
3611                 if (unlikely(adapter->vlgrp &&
3612                             (status & E1000_RXD_STAT_VP))) {
3613                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3614                                         le16_to_cpu(rx_desc->special) &
3615                                         E1000_RXD_SPC_VLAN_MASK);
3616                 } else {
3617                         netif_rx(skb);
3618                 }
3619 #endif /* CONFIG_E1000_NAPI */
3620                 netdev->last_rx = jiffies;
3621
3622 next_desc:
3623                 rx_desc->status = 0;
3624
3625                 /* return some buffers to hardware, one at a time is too slow */
3626                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3627                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3628                         cleaned_count = 0;
3629                 }
3630
3631                 /* use prefetched values */
3632                 rx_desc = next_rxd;
3633                 buffer_info = next_buffer;
3634         }
3635         rx_ring->next_to_clean = i;
3636
3637         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3638         if (cleaned_count)
3639                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3640
3641         return cleaned;
3642 }
3643
3644 /**
3645  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3646  * @adapter: board private structure
3647  **/
3648
3649 static boolean_t
3650 #ifdef CONFIG_E1000_NAPI
3651 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3652                       struct e1000_rx_ring *rx_ring,
3653                       int *work_done, int work_to_do)
3654 #else
3655 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3656                       struct e1000_rx_ring *rx_ring)
3657 #endif
3658 {
3659         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3660         struct net_device *netdev = adapter->netdev;
3661         struct pci_dev *pdev = adapter->pdev;
3662         struct e1000_buffer *buffer_info, *next_buffer;
3663         struct e1000_ps_page *ps_page;
3664         struct e1000_ps_page_dma *ps_page_dma;
3665         struct sk_buff *skb;
3666         unsigned int i, j;
3667         uint32_t length, staterr;
3668         int cleaned_count = 0;
3669         boolean_t cleaned = FALSE;
3670
3671         i = rx_ring->next_to_clean;
3672         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3673         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3674         buffer_info = &rx_ring->buffer_info[i];
3675
3676         while (staterr & E1000_RXD_STAT_DD) {
3677                 buffer_info = &rx_ring->buffer_info[i];
3678                 ps_page = &rx_ring->ps_page[i];
3679                 ps_page_dma = &rx_ring->ps_page_dma[i];
3680 #ifdef CONFIG_E1000_NAPI
3681                 if (unlikely(*work_done >= work_to_do))
3682                         break;
3683                 (*work_done)++;
3684 #endif
3685                 skb = buffer_info->skb;
3686
3687                 /* in the packet split case this is header only */
3688                 prefetch(skb->data - NET_IP_ALIGN);
3689
3690                 if (++i == rx_ring->count) i = 0;
3691                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3692                 prefetch(next_rxd);
3693
3694                 next_buffer = &rx_ring->buffer_info[i];
3695
3696                 cleaned = TRUE;
3697                 cleaned_count++;
3698                 pci_unmap_single(pdev, buffer_info->dma,
3699                                  buffer_info->length,
3700                                  PCI_DMA_FROMDEVICE);
3701
3702                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3703                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3704                                   " the full packet\n", netdev->name);
3705                         dev_kfree_skb_irq(skb);
3706                         goto next_desc;
3707                 }
3708
3709                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3710                         dev_kfree_skb_irq(skb);
3711                         goto next_desc;
3712                 }
3713
3714                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3715
3716                 if (unlikely(!length)) {
3717                         E1000_DBG("%s: Last part of the packet spanning"
3718                                   " multiple descriptors\n", netdev->name);
3719                         dev_kfree_skb_irq(skb);
3720                         goto next_desc;
3721                 }
3722
3723                 /* Good Receive */
3724                 skb_put(skb, length);
3725
3726                 {
3727                 /* this looks ugly, but it seems compiler issues make it
3728                    more efficient than reusing j */
3729                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3730
3731                 /* page alloc/put takes too long and effects small packet
3732                  * throughput, so unsplit small packets and save the alloc/put*/
3733                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3734                         u8 *vaddr;
3735                         /* there is no documentation about how to call
3736                          * kmap_atomic, so we can't hold the mapping
3737                          * very long */
3738                         pci_dma_sync_single_for_cpu(pdev,
3739                                 ps_page_dma->ps_page_dma[0],
3740                                 PAGE_SIZE,
3741                                 PCI_DMA_FROMDEVICE);
3742                         vaddr = kmap_atomic(ps_page->ps_page[0],
3743                                             KM_SKB_DATA_SOFTIRQ);
3744                         memcpy(skb->tail, vaddr, l1);
3745                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3746                         pci_dma_sync_single_for_device(pdev,
3747                                 ps_page_dma->ps_page_dma[0],
3748                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3749                         skb_put(skb, l1);
3750                         length += l1;
3751                         goto copydone;
3752                 } /* if */
3753                 }
3754                 
3755                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3756                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3757                                 break;
3758                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3759                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3760                         ps_page_dma->ps_page_dma[j] = 0;
3761                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3762                                            length);
3763                         ps_page->ps_page[j] = NULL;
3764                         skb->len += length;
3765                         skb->data_len += length;
3766                         skb->truesize += length;
3767                 }
3768
3769 copydone:
3770                 e1000_rx_checksum(adapter, staterr,
3771                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3772                 skb->protocol = eth_type_trans(skb, netdev);
3773
3774                 if (likely(rx_desc->wb.upper.header_status &
3775                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3776                         adapter->rx_hdr_split++;
3777 #ifdef CONFIG_E1000_NAPI
3778                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3779                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3780                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3781                                 E1000_RXD_SPC_VLAN_MASK);
3782                 } else {
3783                         netif_receive_skb(skb);
3784                 }
3785 #else /* CONFIG_E1000_NAPI */
3786                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3787                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3788                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3789                                 E1000_RXD_SPC_VLAN_MASK);
3790                 } else {
3791                         netif_rx(skb);
3792                 }
3793 #endif /* CONFIG_E1000_NAPI */
3794                 netdev->last_rx = jiffies;
3795
3796 next_desc:
3797                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3798                 buffer_info->skb = NULL;
3799
3800                 /* return some buffers to hardware, one at a time is too slow */
3801                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3802                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3803                         cleaned_count = 0;
3804                 }
3805
3806                 /* use prefetched values */
3807                 rx_desc = next_rxd;
3808                 buffer_info = next_buffer;
3809
3810                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3811         }
3812         rx_ring->next_to_clean = i;
3813
3814         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3815         if (cleaned_count)
3816                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3817
3818         return cleaned;
3819 }
3820
3821 /**
3822  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3823  * @adapter: address of board private structure
3824  **/
3825
3826 static void
3827 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3828                        struct e1000_rx_ring *rx_ring,
3829                        int cleaned_count)
3830 {
3831         struct net_device *netdev = adapter->netdev;
3832         struct pci_dev *pdev = adapter->pdev;
3833         struct e1000_rx_desc *rx_desc;
3834         struct e1000_buffer *buffer_info;
3835         struct sk_buff *skb;
3836         unsigned int i;
3837         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3838
3839         i = rx_ring->next_to_use;
3840         buffer_info = &rx_ring->buffer_info[i];
3841
3842         while (cleaned_count--) {
3843                 if (!(skb = buffer_info->skb))
3844                         skb = dev_alloc_skb(bufsz);
3845                 else {
3846                         skb_trim(skb, 0);
3847                         goto map_skb;
3848                 }
3849
3850                 if (unlikely(!skb)) {
3851                         /* Better luck next round */
3852                         adapter->alloc_rx_buff_failed++;
3853                         break;
3854                 }
3855
3856                 /* Fix for errata 23, can't cross 64kB boundary */
3857                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3858                         struct sk_buff *oldskb = skb;
3859                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3860                                              "at %p\n", bufsz, skb->data);
3861                         /* Try again, without freeing the previous */
3862                         skb = dev_alloc_skb(bufsz);
3863                         /* Failed allocation, critical failure */
3864                         if (!skb) {
3865                                 dev_kfree_skb(oldskb);
3866                                 break;
3867                         }
3868
3869                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3870                                 /* give up */
3871                                 dev_kfree_skb(skb);
3872                                 dev_kfree_skb(oldskb);
3873                                 break; /* while !buffer_info->skb */
3874                         } else {
3875                                 /* Use new allocation */
3876                                 dev_kfree_skb(oldskb);
3877                         }
3878                 }
3879                 /* Make buffer alignment 2 beyond a 16 byte boundary
3880                  * this will result in a 16 byte aligned IP header after
3881                  * the 14 byte MAC header is removed
3882                  */
3883                 skb_reserve(skb, NET_IP_ALIGN);
3884
3885                 skb->dev = netdev;
3886
3887                 buffer_info->skb = skb;
3888                 buffer_info->length = adapter->rx_buffer_len;
3889 map_skb:
3890                 buffer_info->dma = pci_map_single(pdev,
3891                                                   skb->data,
3892                                                   adapter->rx_buffer_len,
3893                                                   PCI_DMA_FROMDEVICE);
3894
3895                 /* Fix for errata 23, can't cross 64kB boundary */
3896                 if (!e1000_check_64k_bound(adapter,
3897                                         (void *)(unsigned long)buffer_info->dma,
3898                                         adapter->rx_buffer_len)) {
3899                         DPRINTK(RX_ERR, ERR,
3900                                 "dma align check failed: %u bytes at %p\n",
3901                                 adapter->rx_buffer_len,
3902                                 (void *)(unsigned long)buffer_info->dma);
3903                         dev_kfree_skb(skb);
3904                         buffer_info->skb = NULL;
3905
3906                         pci_unmap_single(pdev, buffer_info->dma,
3907                                          adapter->rx_buffer_len,
3908                                          PCI_DMA_FROMDEVICE);
3909
3910                         break; /* while !buffer_info->skb */
3911                 }
3912                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3913                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3914
3915                 if (unlikely(++i == rx_ring->count))
3916                         i = 0;
3917                 buffer_info = &rx_ring->buffer_info[i];
3918         }
3919
3920         if (likely(rx_ring->next_to_use != i)) {
3921                 rx_ring->next_to_use = i;
3922                 if (unlikely(i-- == 0))
3923                         i = (rx_ring->count - 1);
3924
3925                 /* Force memory writes to complete before letting h/w
3926                  * know there are new descriptors to fetch.  (Only
3927                  * applicable for weak-ordered memory model archs,
3928                  * such as IA-64). */
3929                 wmb();
3930                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3931         }
3932 }
3933
3934 /**
3935  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3936  * @adapter: address of board private structure
3937  **/
3938
3939 static void
3940 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3941                           struct e1000_rx_ring *rx_ring,
3942                           int cleaned_count)
3943 {
3944         struct net_device *netdev = adapter->netdev;
3945         struct pci_dev *pdev = adapter->pdev;
3946         union e1000_rx_desc_packet_split *rx_desc;
3947         struct e1000_buffer *buffer_info;
3948         struct e1000_ps_page *ps_page;
3949         struct e1000_ps_page_dma *ps_page_dma;
3950         struct sk_buff *skb;
3951         unsigned int i, j;
3952
3953         i = rx_ring->next_to_use;
3954         buffer_info = &rx_ring->buffer_info[i];
3955         ps_page = &rx_ring->ps_page[i];
3956         ps_page_dma = &rx_ring->ps_page_dma[i];
3957
3958         while (cleaned_count--) {
3959                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3960
3961                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3962                         if (j < adapter->rx_ps_pages) {
3963                                 if (likely(!ps_page->ps_page[j])) {
3964                                         ps_page->ps_page[j] =
3965                                                 alloc_page(GFP_ATOMIC);
3966                                         if (unlikely(!ps_page->ps_page[j])) {
3967                                                 adapter->alloc_rx_buff_failed++;
3968                                                 goto no_buffers;
3969                                         }
3970                                         ps_page_dma->ps_page_dma[j] =
3971                                                 pci_map_page(pdev,
3972                                                             ps_page->ps_page[j],
3973                                                             0, PAGE_SIZE,
3974                                                             PCI_DMA_FROMDEVICE);
3975                                 }
3976                                 /* Refresh the desc even if buffer_addrs didn't
3977                                  * change because each write-back erases
3978                                  * this info.
3979                                  */
3980                                 rx_desc->read.buffer_addr[j+1] =
3981                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3982                         } else
3983                                 rx_desc->read.buffer_addr[j+1] = ~0;
3984                 }
3985
3986                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3987
3988                 if (unlikely(!skb)) {
3989                         adapter->alloc_rx_buff_failed++;
3990                         break;
3991                 }
3992
3993                 /* Make buffer alignment 2 beyond a 16 byte boundary
3994                  * this will result in a 16 byte aligned IP header after
3995                  * the 14 byte MAC header is removed
3996                  */
3997                 skb_reserve(skb, NET_IP_ALIGN);
3998
3999                 skb->dev = netdev;
4000
4001                 buffer_info->skb = skb;
4002                 buffer_info->length = adapter->rx_ps_bsize0;
4003                 buffer_info->dma = pci_map_single(pdev, skb->data,
4004                                                   adapter->rx_ps_bsize0,
4005                                                   PCI_DMA_FROMDEVICE);
4006
4007                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4008
4009                 if (unlikely(++i == rx_ring->count)) i = 0;
4010                 buffer_info = &rx_ring->buffer_info[i];
4011                 ps_page = &rx_ring->ps_page[i];
4012                 ps_page_dma = &rx_ring->ps_page_dma[i];
4013         }
4014
4015 no_buffers:
4016         if (likely(rx_ring->next_to_use != i)) {
4017                 rx_ring->next_to_use = i;
4018                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4019
4020                 /* Force memory writes to complete before letting h/w
4021                  * know there are new descriptors to fetch.  (Only
4022                  * applicable for weak-ordered memory model archs,
4023                  * such as IA-64). */
4024                 wmb();
4025                 /* Hardware increments by 16 bytes, but packet split
4026                  * descriptors are 32 bytes...so we increment tail
4027                  * twice as much.
4028                  */
4029                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4030         }
4031 }
4032
4033 /**
4034  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4035  * @adapter:
4036  **/
4037
4038 static void
4039 e1000_smartspeed(struct e1000_adapter *adapter)
4040 {
4041         uint16_t phy_status;
4042         uint16_t phy_ctrl;
4043
4044         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4045            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4046                 return;
4047
4048         if (adapter->smartspeed == 0) {
4049                 /* If Master/Slave config fault is asserted twice,
4050                  * we assume back-to-back */
4051                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4052                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4053                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4054                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4055                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4056                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4057                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4058                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4059                                             phy_ctrl);
4060                         adapter->smartspeed++;
4061                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4062                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4063                                                &phy_ctrl)) {
4064                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4065                                              MII_CR_RESTART_AUTO_NEG);
4066                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4067                                                     phy_ctrl);
4068                         }
4069                 }
4070                 return;
4071         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4072                 /* If still no link, perhaps using 2/3 pair cable */
4073                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4074                 phy_ctrl |= CR_1000T_MS_ENABLE;
4075                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4076                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4077                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4078                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4079                                      MII_CR_RESTART_AUTO_NEG);
4080                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4081                 }
4082         }
4083         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4084         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4085                 adapter->smartspeed = 0;
4086 }
4087
4088 /**
4089  * e1000_ioctl -
4090  * @netdev:
4091  * @ifreq:
4092  * @cmd:
4093  **/
4094
4095 static int
4096 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4097 {
4098         switch (cmd) {
4099         case SIOCGMIIPHY:
4100         case SIOCGMIIREG:
4101         case SIOCSMIIREG:
4102                 return e1000_mii_ioctl(netdev, ifr, cmd);
4103         default:
4104                 return -EOPNOTSUPP;
4105         }
4106 }
4107
4108 /**
4109  * e1000_mii_ioctl -
4110  * @netdev:
4111  * @ifreq:
4112  * @cmd:
4113  **/
4114
4115 static int
4116 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4117 {
4118         struct e1000_adapter *adapter = netdev_priv(netdev);
4119         struct mii_ioctl_data *data = if_mii(ifr);
4120         int retval;
4121         uint16_t mii_reg;
4122         uint16_t spddplx;
4123         unsigned long flags;
4124
4125         if (adapter->hw.media_type != e1000_media_type_copper)
4126                 return -EOPNOTSUPP;
4127
4128         switch (cmd) {
4129         case SIOCGMIIPHY:
4130                 data->phy_id = adapter->hw.phy_addr;
4131                 break;
4132         case SIOCGMIIREG:
4133                 if (!capable(CAP_NET_ADMIN))
4134                         return -EPERM;
4135                 spin_lock_irqsave(&adapter->stats_lock, flags);
4136                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4137                                    &data->val_out)) {
4138                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4139                         return -EIO;
4140                 }
4141                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4142                 break;
4143         case SIOCSMIIREG:
4144                 if (!capable(CAP_NET_ADMIN))
4145                         return -EPERM;
4146                 if (data->reg_num & ~(0x1F))
4147                         return -EFAULT;
4148                 mii_reg = data->val_in;
4149                 spin_lock_irqsave(&adapter->stats_lock, flags);
4150                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4151                                         mii_reg)) {
4152                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4153                         return -EIO;
4154                 }
4155                 if (adapter->hw.media_type == e1000_media_type_copper) {
4156                         switch (data->reg_num) {
4157                         case PHY_CTRL:
4158                                 if (mii_reg & MII_CR_POWER_DOWN)
4159                                         break;
4160                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4161                                         adapter->hw.autoneg = 1;
4162                                         adapter->hw.autoneg_advertised = 0x2F;
4163                                 } else {
4164                                         if (mii_reg & 0x40)
4165                                                 spddplx = SPEED_1000;
4166                                         else if (mii_reg & 0x2000)
4167                                                 spddplx = SPEED_100;
4168                                         else
4169                                                 spddplx = SPEED_10;
4170                                         spddplx += (mii_reg & 0x100)
4171                                                    ? DUPLEX_FULL :
4172                                                    DUPLEX_HALF;
4173                                         retval = e1000_set_spd_dplx(adapter,
4174                                                                     spddplx);
4175                                         if (retval) {
4176                                                 spin_unlock_irqrestore(
4177                                                         &adapter->stats_lock,
4178                                                         flags);
4179                                                 return retval;
4180                                         }
4181                                 }
4182                                 if (netif_running(adapter->netdev)) {
4183                                         e1000_down(adapter);
4184                                         e1000_up(adapter);
4185                                 } else
4186                                         e1000_reset(adapter);
4187                                 break;
4188                         case M88E1000_PHY_SPEC_CTRL:
4189                         case M88E1000_EXT_PHY_SPEC_CTRL:
4190                                 if (e1000_phy_reset(&adapter->hw)) {
4191                                         spin_unlock_irqrestore(
4192                                                 &adapter->stats_lock, flags);
4193                                         return -EIO;
4194                                 }
4195                                 break;
4196                         }
4197                 } else {
4198                         switch (data->reg_num) {
4199                         case PHY_CTRL:
4200                                 if (mii_reg & MII_CR_POWER_DOWN)
4201                                         break;
4202                                 if (netif_running(adapter->netdev)) {
4203                                         e1000_down(adapter);
4204                                         e1000_up(adapter);
4205                                 } else
4206                                         e1000_reset(adapter);
4207                                 break;
4208                         }
4209                 }
4210                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4211                 break;
4212         default:
4213                 return -EOPNOTSUPP;
4214         }
4215         return E1000_SUCCESS;
4216 }
4217
4218 void
4219 e1000_pci_set_mwi(struct e1000_hw *hw)
4220 {
4221         struct e1000_adapter *adapter = hw->back;
4222         int ret_val = pci_set_mwi(adapter->pdev);
4223
4224         if (ret_val)
4225                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4226 }
4227
4228 void
4229 e1000_pci_clear_mwi(struct e1000_hw *hw)
4230 {
4231         struct e1000_adapter *adapter = hw->back;
4232
4233         pci_clear_mwi(adapter->pdev);
4234 }
4235
4236 void
4237 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4238 {
4239         struct e1000_adapter *adapter = hw->back;
4240
4241         pci_read_config_word(adapter->pdev, reg, value);
4242 }
4243
4244 void
4245 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4246 {
4247         struct e1000_adapter *adapter = hw->back;
4248
4249         pci_write_config_word(adapter->pdev, reg, *value);
4250 }
4251
4252 uint32_t
4253 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4254 {
4255         return inl(port);
4256 }
4257
4258 void
4259 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4260 {
4261         outl(value, port);
4262 }
4263
4264 static void
4265 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4266 {
4267         struct e1000_adapter *adapter = netdev_priv(netdev);
4268         uint32_t ctrl, rctl;
4269
4270         e1000_irq_disable(adapter);
4271         adapter->vlgrp = grp;
4272
4273         if (grp) {
4274                 /* enable VLAN tag insert/strip */
4275                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4276                 ctrl |= E1000_CTRL_VME;
4277                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4278
4279                 /* enable VLAN receive filtering */
4280                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4281                 rctl |= E1000_RCTL_VFE;
4282                 rctl &= ~E1000_RCTL_CFIEN;
4283                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4284                 e1000_update_mng_vlan(adapter);
4285         } else {
4286                 /* disable VLAN tag insert/strip */
4287                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4288                 ctrl &= ~E1000_CTRL_VME;
4289                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4290
4291                 /* disable VLAN filtering */
4292                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4293                 rctl &= ~E1000_RCTL_VFE;
4294                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4295                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4296                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4297                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4298                 }
4299         }
4300
4301         e1000_irq_enable(adapter);
4302 }
4303
4304 static void
4305 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4306 {
4307         struct e1000_adapter *adapter = netdev_priv(netdev);
4308         uint32_t vfta, index;
4309
4310         if ((adapter->hw.mng_cookie.status &
4311              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4312             (vid == adapter->mng_vlan_id))
4313                 return;
4314         /* add VID to filter table */
4315         index = (vid >> 5) & 0x7F;
4316         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4317         vfta |= (1 << (vid & 0x1F));
4318         e1000_write_vfta(&adapter->hw, index, vfta);
4319 }
4320
4321 static void
4322 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4323 {
4324         struct e1000_adapter *adapter = netdev_priv(netdev);
4325         uint32_t vfta, index;
4326
4327         e1000_irq_disable(adapter);
4328
4329         if (adapter->vlgrp)
4330                 adapter->vlgrp->vlan_devices[vid] = NULL;
4331
4332         e1000_irq_enable(adapter);
4333
4334         if ((adapter->hw.mng_cookie.status &
4335              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4336             (vid == adapter->mng_vlan_id)) {
4337                 /* release control to f/w */
4338                 e1000_release_hw_control(adapter);
4339                 return;
4340         }
4341
4342         /* remove VID from filter table */
4343         index = (vid >> 5) & 0x7F;
4344         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4345         vfta &= ~(1 << (vid & 0x1F));
4346         e1000_write_vfta(&adapter->hw, index, vfta);
4347 }
4348
4349 static void
4350 e1000_restore_vlan(struct e1000_adapter *adapter)
4351 {
4352         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4353
4354         if (adapter->vlgrp) {
4355                 uint16_t vid;
4356                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4357                         if (!adapter->vlgrp->vlan_devices[vid])
4358                                 continue;
4359                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4360                 }
4361         }
4362 }
4363
4364 int
4365 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4366 {
4367         adapter->hw.autoneg = 0;
4368
4369         /* Fiber NICs only allow 1000 gbps Full duplex */
4370         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4371                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4372                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4373                 return -EINVAL;
4374         }
4375
4376         switch (spddplx) {
4377         case SPEED_10 + DUPLEX_HALF:
4378                 adapter->hw.forced_speed_duplex = e1000_10_half;
4379                 break;
4380         case SPEED_10 + DUPLEX_FULL:
4381                 adapter->hw.forced_speed_duplex = e1000_10_full;
4382                 break;
4383         case SPEED_100 + DUPLEX_HALF:
4384                 adapter->hw.forced_speed_duplex = e1000_100_half;
4385                 break;
4386         case SPEED_100 + DUPLEX_FULL:
4387                 adapter->hw.forced_speed_duplex = e1000_100_full;
4388                 break;
4389         case SPEED_1000 + DUPLEX_FULL:
4390                 adapter->hw.autoneg = 1;
4391                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4392                 break;
4393         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4394         default:
4395                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4396                 return -EINVAL;
4397         }
4398         return 0;
4399 }
4400
4401 #ifdef CONFIG_PM
4402 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4403  * bus we're on (PCI(X) vs. PCI-E)
4404  */
4405 #define PCIE_CONFIG_SPACE_LEN 256
4406 #define PCI_CONFIG_SPACE_LEN 64
4407 static int
4408 e1000_pci_save_state(struct e1000_adapter *adapter)
4409 {
4410         struct pci_dev *dev = adapter->pdev;
4411         int size;
4412         int i;
4413
4414         if (adapter->hw.mac_type >= e1000_82571)
4415                 size = PCIE_CONFIG_SPACE_LEN;
4416         else
4417                 size = PCI_CONFIG_SPACE_LEN;
4418
4419         WARN_ON(adapter->config_space != NULL);
4420
4421         adapter->config_space = kmalloc(size, GFP_KERNEL);
4422         if (!adapter->config_space) {
4423                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4424                 return -ENOMEM;
4425         }
4426         for (i = 0; i < (size / 4); i++)
4427                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4428         return 0;
4429 }
4430
4431 static void
4432 e1000_pci_restore_state(struct e1000_adapter *adapter)
4433 {
4434         struct pci_dev *dev = adapter->pdev;
4435         int size;
4436         int i;
4437
4438         if (adapter->config_space == NULL)
4439                 return;
4440
4441         if (adapter->hw.mac_type >= e1000_82571)
4442                 size = PCIE_CONFIG_SPACE_LEN;
4443         else
4444                 size = PCI_CONFIG_SPACE_LEN;
4445         for (i = 0; i < (size / 4); i++)
4446                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4447         kfree(adapter->config_space);
4448         adapter->config_space = NULL;
4449         return;
4450 }
4451 #endif /* CONFIG_PM */
4452
4453 static int
4454 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4455 {
4456         struct net_device *netdev = pci_get_drvdata(pdev);
4457         struct e1000_adapter *adapter = netdev_priv(netdev);
4458         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4459         uint32_t wufc = adapter->wol;
4460         int retval = 0;
4461
4462         netif_device_detach(netdev);
4463
4464         if (netif_running(netdev))
4465                 e1000_down(adapter);
4466
4467 #ifdef CONFIG_PM
4468         /* Implement our own version of pci_save_state(pdev) because pci-
4469          * express adapters have 256-byte config spaces. */
4470         retval = e1000_pci_save_state(adapter);
4471         if (retval)
4472                 return retval;
4473 #endif
4474
4475         status = E1000_READ_REG(&adapter->hw, STATUS);
4476         if (status & E1000_STATUS_LU)
4477                 wufc &= ~E1000_WUFC_LNKC;
4478
4479         if (wufc) {
4480                 e1000_setup_rctl(adapter);
4481                 e1000_set_multi(netdev);
4482
4483                 /* turn on all-multi mode if wake on multicast is enabled */
4484                 if (adapter->wol & E1000_WUFC_MC) {
4485                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4486                         rctl |= E1000_RCTL_MPE;
4487                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4488                 }
4489
4490                 if (adapter->hw.mac_type >= e1000_82540) {
4491                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4492                         /* advertise wake from D3Cold */
4493                         #define E1000_CTRL_ADVD3WUC 0x00100000
4494                         /* phy power management enable */
4495                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4496                         ctrl |= E1000_CTRL_ADVD3WUC |
4497                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4498                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4499                 }
4500
4501                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4502                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4503                         /* keep the laser running in D3 */
4504                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4505                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4506                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4507                 }
4508
4509                 /* Allow time for pending master requests to run */
4510                 e1000_disable_pciex_master(&adapter->hw);
4511
4512                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4513                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4514                 pci_enable_wake(pdev, PCI_D3hot, 1);
4515                 pci_enable_wake(pdev, PCI_D3cold, 1);
4516         } else {
4517                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4518                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4519                 pci_enable_wake(pdev, PCI_D3hot, 0);
4520                 pci_enable_wake(pdev, PCI_D3cold, 0);
4521         }
4522
4523         if (adapter->hw.mac_type >= e1000_82540 &&
4524            adapter->hw.media_type == e1000_media_type_copper) {
4525                 manc = E1000_READ_REG(&adapter->hw, MANC);
4526                 if (manc & E1000_MANC_SMBUS_EN) {
4527                         manc |= E1000_MANC_ARP_EN;
4528                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4529                         pci_enable_wake(pdev, PCI_D3hot, 1);
4530                         pci_enable_wake(pdev, PCI_D3cold, 1);
4531                 }
4532         }
4533
4534         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4535          * would have already happened in close and is redundant. */
4536         e1000_release_hw_control(adapter);
4537
4538         pci_disable_device(pdev);
4539
4540         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4541
4542         return 0;
4543 }
4544
4545 #ifdef CONFIG_PM
4546 static int
4547 e1000_resume(struct pci_dev *pdev)
4548 {
4549         struct net_device *netdev = pci_get_drvdata(pdev);
4550         struct e1000_adapter *adapter = netdev_priv(netdev);
4551         uint32_t manc, ret_val;
4552
4553         pci_set_power_state(pdev, PCI_D0);
4554         e1000_pci_restore_state(adapter);
4555         ret_val = pci_enable_device(pdev);
4556         pci_set_master(pdev);
4557
4558         pci_enable_wake(pdev, PCI_D3hot, 0);
4559         pci_enable_wake(pdev, PCI_D3cold, 0);
4560
4561         e1000_reset(adapter);
4562         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4563
4564         if (netif_running(netdev))
4565                 e1000_up(adapter);
4566
4567         netif_device_attach(netdev);
4568
4569         if (adapter->hw.mac_type >= e1000_82540 &&
4570            adapter->hw.media_type == e1000_media_type_copper) {
4571                 manc = E1000_READ_REG(&adapter->hw, MANC);
4572                 manc &= ~(E1000_MANC_ARP_EN);
4573                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4574         }
4575
4576         /* If the controller is 82573 and f/w is AMT, do not set
4577          * DRV_LOAD until the interface is up.  For all other cases,
4578          * let the f/w know that the h/w is now under the control
4579          * of the driver. */
4580         if (adapter->hw.mac_type != e1000_82573 ||
4581             !e1000_check_mng_mode(&adapter->hw))
4582                 e1000_get_hw_control(adapter);
4583
4584         return 0;
4585 }
4586 #endif
4587
4588 static void e1000_shutdown(struct pci_dev *pdev)
4589 {
4590         e1000_suspend(pdev, PMSG_SUSPEND);
4591 }
4592
4593 #ifdef CONFIG_NET_POLL_CONTROLLER
4594 /*
4595  * Polling 'interrupt' - used by things like netconsole to send skbs
4596  * without having to re-enable interrupts. It's not called while
4597  * the interrupt routine is executing.
4598  */
4599 static void
4600 e1000_netpoll(struct net_device *netdev)
4601 {
4602         struct e1000_adapter *adapter = netdev_priv(netdev);
4603         disable_irq(adapter->pdev->irq);
4604         e1000_intr(adapter->pdev->irq, netdev, NULL);
4605         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4606 #ifndef CONFIG_E1000_NAPI
4607         adapter->clean_rx(adapter, adapter->rx_ring);
4608 #endif
4609         enable_irq(adapter->pdev->irq);
4610 }
4611 #endif
4612
4613 /**
4614  * e1000_io_error_detected - called when PCI error is detected
4615  * @pdev: Pointer to PCI device
4616  * @state: The current pci conneection state
4617  *
4618  * This function is called after a PCI bus error affecting
4619  * this device has been detected.
4620  */
4621 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4622 {
4623         struct net_device *netdev = pci_get_drvdata(pdev);
4624         struct e1000_adapter *adapter = netdev->priv;
4625
4626         netif_device_detach(netdev);
4627
4628         if (netif_running(netdev))
4629                 e1000_down(adapter);
4630
4631         /* Request a slot slot reset. */
4632         return PCI_ERS_RESULT_NEED_RESET;
4633 }
4634
4635 /**
4636  * e1000_io_slot_reset - called after the pci bus has been reset.
4637  * @pdev: Pointer to PCI device
4638  *
4639  * Restart the card from scratch, as if from a cold-boot. Implementation
4640  * resembles the first-half of the e1000_resume routine.
4641  */
4642 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4643 {
4644         struct net_device *netdev = pci_get_drvdata(pdev);
4645         struct e1000_adapter *adapter = netdev->priv;
4646
4647         if (pci_enable_device(pdev)) {
4648                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4649                 return PCI_ERS_RESULT_DISCONNECT;
4650         }
4651         pci_set_master(pdev);
4652
4653         pci_enable_wake(pdev, 3, 0);
4654         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4655
4656         /* Perform card reset only on one instance of the card */
4657         if (PCI_FUNC (pdev->devfn) != 0)
4658                 return PCI_ERS_RESULT_RECOVERED;
4659
4660         e1000_reset(adapter);
4661         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4662
4663         return PCI_ERS_RESULT_RECOVERED;
4664 }
4665
4666 /**
4667  * e1000_io_resume - called when traffic can start flowing again.
4668  * @pdev: Pointer to PCI device
4669  *
4670  * This callback is called when the error recovery driver tells us that
4671  * its OK to resume normal operation. Implementation resembles the
4672  * second-half of the e1000_resume routine.
4673  */
4674 static void e1000_io_resume(struct pci_dev *pdev)
4675 {
4676         struct net_device *netdev = pci_get_drvdata(pdev);
4677         struct e1000_adapter *adapter = netdev->priv;
4678         uint32_t manc, swsm;
4679
4680         if (netif_running(netdev)) {
4681                 if (e1000_up(adapter)) {
4682                         printk("e1000: can't bring device back up after reset\n");
4683                         return;
4684                 }
4685         }
4686
4687         netif_device_attach(netdev);
4688
4689         if (adapter->hw.mac_type >= e1000_82540 &&
4690             adapter->hw.media_type == e1000_media_type_copper) {
4691                 manc = E1000_READ_REG(&adapter->hw, MANC);
4692                 manc &= ~(E1000_MANC_ARP_EN);
4693                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4694         }
4695
4696         switch (adapter->hw.mac_type) {
4697         case e1000_82573:
4698                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4699                 E1000_WRITE_REG(&adapter->hw, SWSM,
4700                                 swsm | E1000_SWSM_DRV_LOAD);
4701                 break;
4702         default:
4703                 break;
4704         }
4705
4706         if (netif_running(netdev))
4707                 mod_timer(&adapter->watchdog_timer, jiffies);
4708 }
4709
4710 /* e1000_main.c */