e1000: rework driver hardware reset locking
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 /* ethtool support for e1000 */
31
32 #include "e1000.h"
33
34 #include <asm/uaccess.h>
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int sizeof_stat;
39         int stat_offset;
40 };
41
42 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
43                       offsetof(struct e1000_adapter, m)
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
46         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
47         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
48         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
49         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
50         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
51         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
52         { "multicast", E1000_STAT(net_stats.multicast) },
53         { "collisions", E1000_STAT(net_stats.collisions) },
54         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
55         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
56         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
57         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
58         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
59         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
60         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
61         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
62         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
63         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
64         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
65         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
66         { "tx_deferred_ok", E1000_STAT(stats.dc) },
67         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
68         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
69         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
70         { "rx_long_length_errors", E1000_STAT(stats.roc) },
71         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
72         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
73         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
74         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
75         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
76         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
77         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
78         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
79         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
80         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
81         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
82         { "rx_header_split", E1000_STAT(rx_hdr_split) },
83         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
84 };
85
86 #define E1000_QUEUE_STATS_LEN 0
87 #define E1000_GLOBAL_STATS_LEN  \
88         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
89 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
90 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
91         "Register test  (offline)", "Eeprom test    (offline)",
92         "Interrupt test (offline)", "Loopback test  (offline)",
93         "Link test   (on/offline)"
94 };
95 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
96
97 static int
98 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
99 {
100         struct e1000_adapter *adapter = netdev_priv(netdev);
101         struct e1000_hw *hw = &adapter->hw;
102
103         if (hw->media_type == e1000_media_type_copper) {
104
105                 ecmd->supported = (SUPPORTED_10baseT_Half |
106                                    SUPPORTED_10baseT_Full |
107                                    SUPPORTED_100baseT_Half |
108                                    SUPPORTED_100baseT_Full |
109                                    SUPPORTED_1000baseT_Full|
110                                    SUPPORTED_Autoneg |
111                                    SUPPORTED_TP);
112
113                 ecmd->advertising = ADVERTISED_TP;
114
115                 if (hw->autoneg == 1) {
116                         ecmd->advertising |= ADVERTISED_Autoneg;
117
118                         /* the e1000 autoneg seems to match ethtool nicely */
119
120                         ecmd->advertising |= hw->autoneg_advertised;
121                 }
122
123                 ecmd->port = PORT_TP;
124                 ecmd->phy_address = hw->phy_addr;
125
126                 if (hw->mac_type == e1000_82543)
127                         ecmd->transceiver = XCVR_EXTERNAL;
128                 else
129                         ecmd->transceiver = XCVR_INTERNAL;
130
131         } else {
132                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
133                                      SUPPORTED_FIBRE |
134                                      SUPPORTED_Autoneg);
135
136                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
137                                      ADVERTISED_FIBRE |
138                                      ADVERTISED_Autoneg);
139
140                 ecmd->port = PORT_FIBRE;
141
142                 if (hw->mac_type >= e1000_82545)
143                         ecmd->transceiver = XCVR_INTERNAL;
144                 else
145                         ecmd->transceiver = XCVR_EXTERNAL;
146         }
147
148         if (netif_carrier_ok(adapter->netdev)) {
149
150                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
151                                                    &adapter->link_duplex);
152                 ecmd->speed = adapter->link_speed;
153
154                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
155                  *          and HALF_DUPLEX != DUPLEX_HALF */
156
157                 if (adapter->link_duplex == FULL_DUPLEX)
158                         ecmd->duplex = DUPLEX_FULL;
159                 else
160                         ecmd->duplex = DUPLEX_HALF;
161         } else {
162                 ecmd->speed = -1;
163                 ecmd->duplex = -1;
164         }
165
166         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
167                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
168         return 0;
169 }
170
171 static int
172 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
173 {
174         struct e1000_adapter *adapter = netdev_priv(netdev);
175         struct e1000_hw *hw = &adapter->hw;
176
177         /* When SoL/IDER sessions are active, autoneg/speed/duplex
178          * cannot be changed */
179         if (e1000_check_phy_reset_block(hw)) {
180                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
181                         "when SoL/IDER is active.\n");
182                 return -EINVAL;
183         }
184
185         if (ecmd->autoneg == AUTONEG_ENABLE) {
186                 hw->autoneg = 1;
187                 if (hw->media_type == e1000_media_type_fiber)
188                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
189                                      ADVERTISED_FIBRE |
190                                      ADVERTISED_Autoneg;
191                 else
192                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
193                                                   ADVERTISED_10baseT_Full |
194                                                   ADVERTISED_100baseT_Half |
195                                                   ADVERTISED_100baseT_Full |
196                                                   ADVERTISED_1000baseT_Full|
197                                                   ADVERTISED_Autoneg |
198                                                   ADVERTISED_TP;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else
201                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
202                         return -EINVAL;
203
204         /* reset the link */
205
206         if (netif_running(adapter->netdev))
207                 e1000_reinit_locked(adapter);
208         else
209                 e1000_reset(adapter);
210
211         return 0;
212 }
213
214 static void
215 e1000_get_pauseparam(struct net_device *netdev,
216                      struct ethtool_pauseparam *pause)
217 {
218         struct e1000_adapter *adapter = netdev_priv(netdev);
219         struct e1000_hw *hw = &adapter->hw;
220
221         pause->autoneg =
222                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
223
224         if (hw->fc == e1000_fc_rx_pause)
225                 pause->rx_pause = 1;
226         else if (hw->fc == e1000_fc_tx_pause)
227                 pause->tx_pause = 1;
228         else if (hw->fc == e1000_fc_full) {
229                 pause->rx_pause = 1;
230                 pause->tx_pause = 1;
231         }
232 }
233
234 static int
235 e1000_set_pauseparam(struct net_device *netdev,
236                      struct ethtool_pauseparam *pause)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         adapter->fc_autoneg = pause->autoneg;
242
243         if (pause->rx_pause && pause->tx_pause)
244                 hw->fc = e1000_fc_full;
245         else if (pause->rx_pause && !pause->tx_pause)
246                 hw->fc = e1000_fc_rx_pause;
247         else if (!pause->rx_pause && pause->tx_pause)
248                 hw->fc = e1000_fc_tx_pause;
249         else if (!pause->rx_pause && !pause->tx_pause)
250                 hw->fc = e1000_fc_none;
251
252         hw->original_fc = hw->fc;
253
254         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
255                 if (netif_running(adapter->netdev))
256                         e1000_reinit_locked(adapter);
257                 else
258                         e1000_reset(adapter);
259         } else
260                 return ((hw->media_type == e1000_media_type_fiber) ?
261                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
262
263         return 0;
264 }
265
266 static uint32_t
267 e1000_get_rx_csum(struct net_device *netdev)
268 {
269         struct e1000_adapter *adapter = netdev_priv(netdev);
270         return adapter->rx_csum;
271 }
272
273 static int
274 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
275 {
276         struct e1000_adapter *adapter = netdev_priv(netdev);
277         adapter->rx_csum = data;
278
279         if (netif_running(netdev))
280                 e1000_reinit_locked(adapter);
281         else
282                 e1000_reset(adapter);
283         return 0;
284 }
285
286 static uint32_t
287 e1000_get_tx_csum(struct net_device *netdev)
288 {
289         return (netdev->features & NETIF_F_HW_CSUM) != 0;
290 }
291
292 static int
293 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296
297         if (adapter->hw.mac_type < e1000_82543) {
298                 if (!data)
299                         return -EINVAL;
300                 return 0;
301         }
302
303         if (data)
304                 netdev->features |= NETIF_F_HW_CSUM;
305         else
306                 netdev->features &= ~NETIF_F_HW_CSUM;
307
308         return 0;
309 }
310
311 #ifdef NETIF_F_TSO
312 static int
313 e1000_set_tso(struct net_device *netdev, uint32_t data)
314 {
315         struct e1000_adapter *adapter = netdev_priv(netdev);
316         if ((adapter->hw.mac_type < e1000_82544) ||
317             (adapter->hw.mac_type == e1000_82547))
318                 return data ? -EINVAL : 0;
319
320         if (data)
321                 netdev->features |= NETIF_F_TSO;
322         else
323                 netdev->features &= ~NETIF_F_TSO;
324
325         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
326         adapter->tso_force = TRUE;
327         return 0;
328 }
329 #endif /* NETIF_F_TSO */
330
331 static uint32_t
332 e1000_get_msglevel(struct net_device *netdev)
333 {
334         struct e1000_adapter *adapter = netdev_priv(netdev);
335         return adapter->msg_enable;
336 }
337
338 static void
339 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
340 {
341         struct e1000_adapter *adapter = netdev_priv(netdev);
342         adapter->msg_enable = data;
343 }
344
345 static int
346 e1000_get_regs_len(struct net_device *netdev)
347 {
348 #define E1000_REGS_LEN 32
349         return E1000_REGS_LEN * sizeof(uint32_t);
350 }
351
352 static void
353 e1000_get_regs(struct net_device *netdev,
354                struct ethtool_regs *regs, void *p)
355 {
356         struct e1000_adapter *adapter = netdev_priv(netdev);
357         struct e1000_hw *hw = &adapter->hw;
358         uint32_t *regs_buff = p;
359         uint16_t phy_data;
360
361         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
362
363         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
364
365         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
366         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
367
368         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
369         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
370         regs_buff[4]  = E1000_READ_REG(hw, RDH);
371         regs_buff[5]  = E1000_READ_REG(hw, RDT);
372         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
373
374         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
375         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
376         regs_buff[9]  = E1000_READ_REG(hw, TDH);
377         regs_buff[10] = E1000_READ_REG(hw, TDT);
378         regs_buff[11] = E1000_READ_REG(hw, TIDV);
379
380         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
381         if (hw->phy_type == e1000_phy_igp) {
382                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
383                                     IGP01E1000_PHY_AGC_A);
384                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
385                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
386                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
387                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
388                                     IGP01E1000_PHY_AGC_B);
389                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
390                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
391                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
392                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
393                                     IGP01E1000_PHY_AGC_C);
394                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
395                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
396                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
397                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
398                                     IGP01E1000_PHY_AGC_D);
399                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
400                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
401                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
402                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
403                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
404                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
405                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
406                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
407                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
408                                     IGP01E1000_PHY_PCS_INIT_REG);
409                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
410                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
411                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
412                 regs_buff[20] = 0; /* polarity correction enabled (always) */
413                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
414                 regs_buff[23] = regs_buff[18]; /* mdix mode */
415                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
416         } else {
417                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
418                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
419                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
420                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
421                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
422                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
423                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
424                 regs_buff[18] = regs_buff[13]; /* cable polarity */
425                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426                 regs_buff[20] = regs_buff[17]; /* polarity correction */
427                 /* phy receive errors */
428                 regs_buff[22] = adapter->phy_stats.receive_errors;
429                 regs_buff[23] = regs_buff[13]; /* mdix mode */
430         }
431         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
432         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
433         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
434         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
435         if (hw->mac_type >= e1000_82540 &&
436            hw->media_type == e1000_media_type_copper) {
437                 regs_buff[26] = E1000_READ_REG(hw, MANC);
438         }
439 }
440
441 static int
442 e1000_get_eeprom_len(struct net_device *netdev)
443 {
444         struct e1000_adapter *adapter = netdev_priv(netdev);
445         return adapter->hw.eeprom.word_size * 2;
446 }
447
448 static int
449 e1000_get_eeprom(struct net_device *netdev,
450                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
451 {
452         struct e1000_adapter *adapter = netdev_priv(netdev);
453         struct e1000_hw *hw = &adapter->hw;
454         uint16_t *eeprom_buff;
455         int first_word, last_word;
456         int ret_val = 0;
457         uint16_t i;
458
459         if (eeprom->len == 0)
460                 return -EINVAL;
461
462         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
463
464         first_word = eeprom->offset >> 1;
465         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
466
467         eeprom_buff = kmalloc(sizeof(uint16_t) *
468                         (last_word - first_word + 1), GFP_KERNEL);
469         if (!eeprom_buff)
470                 return -ENOMEM;
471
472         if (hw->eeprom.type == e1000_eeprom_spi)
473                 ret_val = e1000_read_eeprom(hw, first_word,
474                                             last_word - first_word + 1,
475                                             eeprom_buff);
476         else {
477                 for (i = 0; i < last_word - first_word + 1; i++)
478                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
479                                                         &eeprom_buff[i])))
480                                 break;
481         }
482
483         /* Device's eeprom is always little-endian, word addressable */
484         for (i = 0; i < last_word - first_word + 1; i++)
485                 le16_to_cpus(&eeprom_buff[i]);
486
487         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
488                         eeprom->len);
489         kfree(eeprom_buff);
490
491         return ret_val;
492 }
493
494 static int
495 e1000_set_eeprom(struct net_device *netdev,
496                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
497 {
498         struct e1000_adapter *adapter = netdev_priv(netdev);
499         struct e1000_hw *hw = &adapter->hw;
500         uint16_t *eeprom_buff;
501         void *ptr;
502         int max_len, first_word, last_word, ret_val = 0;
503         uint16_t i;
504
505         if (eeprom->len == 0)
506                 return -EOPNOTSUPP;
507
508         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
509                 return -EFAULT;
510
511         max_len = hw->eeprom.word_size * 2;
512
513         first_word = eeprom->offset >> 1;
514         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
515         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
516         if (!eeprom_buff)
517                 return -ENOMEM;
518
519         ptr = (void *)eeprom_buff;
520
521         if (eeprom->offset & 1) {
522                 /* need read/modify/write of first changed EEPROM word */
523                 /* only the second byte of the word is being modified */
524                 ret_val = e1000_read_eeprom(hw, first_word, 1,
525                                             &eeprom_buff[0]);
526                 ptr++;
527         }
528         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
529                 /* need read/modify/write of last changed EEPROM word */
530                 /* only the first byte of the word is being modified */
531                 ret_val = e1000_read_eeprom(hw, last_word, 1,
532                                   &eeprom_buff[last_word - first_word]);
533         }
534
535         /* Device's eeprom is always little-endian, word addressable */
536         for (i = 0; i < last_word - first_word + 1; i++)
537                 le16_to_cpus(&eeprom_buff[i]);
538
539         memcpy(ptr, bytes, eeprom->len);
540
541         for (i = 0; i < last_word - first_word + 1; i++)
542                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
543
544         ret_val = e1000_write_eeprom(hw, first_word,
545                                      last_word - first_word + 1, eeprom_buff);
546
547         /* Update the checksum over the first part of the EEPROM if needed
548          * and flush shadow RAM for 82573 conrollers */
549         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
550                                 (hw->mac_type == e1000_82573)))
551                 e1000_update_eeprom_checksum(hw);
552
553         kfree(eeprom_buff);
554         return ret_val;
555 }
556
557 static void
558 e1000_get_drvinfo(struct net_device *netdev,
559                        struct ethtool_drvinfo *drvinfo)
560 {
561         struct e1000_adapter *adapter = netdev_priv(netdev);
562         char firmware_version[32];
563         uint16_t eeprom_data;
564
565         strncpy(drvinfo->driver,  e1000_driver_name, 32);
566         strncpy(drvinfo->version, e1000_driver_version, 32);
567
568         /* EEPROM image version # is reported as firmware version # for
569          * 8257{1|2|3} controllers */
570         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
571         switch (adapter->hw.mac_type) {
572         case e1000_82571:
573         case e1000_82572:
574         case e1000_82573:
575         case e1000_80003es2lan:
576                 sprintf(firmware_version, "%d.%d-%d",
577                         (eeprom_data & 0xF000) >> 12,
578                         (eeprom_data & 0x0FF0) >> 4,
579                         eeprom_data & 0x000F);
580                 break;
581         default:
582                 sprintf(firmware_version, "N/A");
583         }
584
585         strncpy(drvinfo->fw_version, firmware_version, 32);
586         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
587         drvinfo->n_stats = E1000_STATS_LEN;
588         drvinfo->testinfo_len = E1000_TEST_LEN;
589         drvinfo->regdump_len = e1000_get_regs_len(netdev);
590         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
591 }
592
593 static void
594 e1000_get_ringparam(struct net_device *netdev,
595                     struct ethtool_ringparam *ring)
596 {
597         struct e1000_adapter *adapter = netdev_priv(netdev);
598         e1000_mac_type mac_type = adapter->hw.mac_type;
599         struct e1000_tx_ring *txdr = adapter->tx_ring;
600         struct e1000_rx_ring *rxdr = adapter->rx_ring;
601
602         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
603                 E1000_MAX_82544_RXD;
604         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
605                 E1000_MAX_82544_TXD;
606         ring->rx_mini_max_pending = 0;
607         ring->rx_jumbo_max_pending = 0;
608         ring->rx_pending = rxdr->count;
609         ring->tx_pending = txdr->count;
610         ring->rx_mini_pending = 0;
611         ring->rx_jumbo_pending = 0;
612 }
613
614 static int
615 e1000_set_ringparam(struct net_device *netdev,
616                     struct ethtool_ringparam *ring)
617 {
618         struct e1000_adapter *adapter = netdev_priv(netdev);
619         e1000_mac_type mac_type = adapter->hw.mac_type;
620         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
621         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
622         int i, err, tx_ring_size, rx_ring_size;
623
624         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
625                 return -EINVAL;
626
627         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
628         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
629
630         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
631                 msleep(1);
632
633         if (netif_running(adapter->netdev))
634                 e1000_down(adapter);
635
636         tx_old = adapter->tx_ring;
637         rx_old = adapter->rx_ring;
638
639         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
640         if (!adapter->tx_ring) {
641                 err = -ENOMEM;
642                 goto err_setup_rx;
643         }
644         memset(adapter->tx_ring, 0, tx_ring_size);
645
646         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
647         if (!adapter->rx_ring) {
648                 kfree(adapter->tx_ring);
649                 err = -ENOMEM;
650                 goto err_setup_rx;
651         }
652         memset(adapter->rx_ring, 0, rx_ring_size);
653
654         txdr = adapter->tx_ring;
655         rxdr = adapter->rx_ring;
656
657         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
658         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
659                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
660         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
661
662         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
663         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
664                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
665         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
666
667         for (i = 0; i < adapter->num_tx_queues; i++)
668                 txdr[i].count = txdr->count;
669         for (i = 0; i < adapter->num_rx_queues; i++)
670                 rxdr[i].count = rxdr->count;
671
672         if (netif_running(adapter->netdev)) {
673                 /* Try to get new resources before deleting old */
674                 if ((err = e1000_setup_all_rx_resources(adapter)))
675                         goto err_setup_rx;
676                 if ((err = e1000_setup_all_tx_resources(adapter)))
677                         goto err_setup_tx;
678
679                 /* save the new, restore the old in order to free it,
680                  * then restore the new back again */
681
682                 rx_new = adapter->rx_ring;
683                 tx_new = adapter->tx_ring;
684                 adapter->rx_ring = rx_old;
685                 adapter->tx_ring = tx_old;
686                 e1000_free_all_rx_resources(adapter);
687                 e1000_free_all_tx_resources(adapter);
688                 kfree(tx_old);
689                 kfree(rx_old);
690                 adapter->rx_ring = rx_new;
691                 adapter->tx_ring = tx_new;
692                 if ((err = e1000_up(adapter)))
693                         goto err_setup;
694         }
695
696         clear_bit(__E1000_RESETTING, &adapter->flags);
697
698         return 0;
699 err_setup_tx:
700         e1000_free_all_rx_resources(adapter);
701 err_setup_rx:
702         adapter->rx_ring = rx_old;
703         adapter->tx_ring = tx_old;
704         e1000_up(adapter);
705 err_setup:
706         clear_bit(__E1000_RESETTING, &adapter->flags);
707         return err;
708 }
709
710 #define REG_PATTERN_TEST(R, M, W)                                              \
711 {                                                                              \
712         uint32_t pat, value;                                                   \
713         uint32_t test[] =                                                      \
714                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
715         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
716                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
717                 value = E1000_READ_REG(&adapter->hw, R);                       \
718                 if (value != (test[pat] & W & M)) {                             \
719                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
720                                 "0x%08X expected 0x%08X\n",                    \
721                                 E1000_##R, value, (test[pat] & W & M));        \
722                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
723                                 E1000_82542_##R : E1000_##R;                   \
724                         return 1;                                              \
725                 }                                                              \
726         }                                                                      \
727 }
728
729 #define REG_SET_AND_CHECK(R, M, W)                                             \
730 {                                                                              \
731         uint32_t value;                                                        \
732         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
733         value = E1000_READ_REG(&adapter->hw, R);                               \
734         if ((W & M) != (value & M)) {                                          \
735                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
736                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
737                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
738                         E1000_82542_##R : E1000_##R;                           \
739                 return 1;                                                      \
740         }                                                                      \
741 }
742
743 static int
744 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
745 {
746         uint32_t value, before, after;
747         uint32_t i, toggle;
748
749         /* The status register is Read Only, so a write should fail.
750          * Some bits that get toggled are ignored.
751          */
752         switch (adapter->hw.mac_type) {
753         /* there are several bits on newer hardware that are r/w */
754         case e1000_82571:
755         case e1000_82572:
756         case e1000_80003es2lan:
757                 toggle = 0x7FFFF3FF;
758                 break;
759         case e1000_82573:
760                 toggle = 0x7FFFF033;
761                 break;
762         default:
763                 toggle = 0xFFFFF833;
764                 break;
765         }
766
767         before = E1000_READ_REG(&adapter->hw, STATUS);
768         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
769         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
770         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
771         if (value != after) {
772                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
773                         "0x%08X expected: 0x%08X\n", after, value);
774                 *data = 1;
775                 return 1;
776         }
777         /* restore previous status */
778         E1000_WRITE_REG(&adapter->hw, STATUS, before);
779
780         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
781         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
782         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
783         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
784         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
785         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
786         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
787         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
788         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
789         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
790         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
791         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
792         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
793         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
794
795         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
796         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
797         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
798
799         if (adapter->hw.mac_type >= e1000_82543) {
800
801                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
802                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
803                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
804                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
805                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
806
807                 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
808                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
809                                          0xFFFFFFFF);
810                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
811                                          0xFFFFFFFF);
812                 }
813
814         } else {
815
816                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
817                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
818                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
819                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
820
821         }
822
823         for (i = 0; i < E1000_MC_TBL_SIZE; i++)
824                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
825
826         *data = 0;
827         return 0;
828 }
829
830 static int
831 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
832 {
833         uint16_t temp;
834         uint16_t checksum = 0;
835         uint16_t i;
836
837         *data = 0;
838         /* Read and add up the contents of the EEPROM */
839         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
840                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
841                         *data = 1;
842                         break;
843                 }
844                 checksum += temp;
845         }
846
847         /* If Checksum is not Correct return error else test passed */
848         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
849                 *data = 2;
850
851         return *data;
852 }
853
854 static irqreturn_t
855 e1000_test_intr(int irq,
856                 void *data,
857                 struct pt_regs *regs)
858 {
859         struct net_device *netdev = (struct net_device *) data;
860         struct e1000_adapter *adapter = netdev_priv(netdev);
861
862         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
863
864         return IRQ_HANDLED;
865 }
866
867 static int
868 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
869 {
870         struct net_device *netdev = adapter->netdev;
871         uint32_t mask, i=0, shared_int = TRUE;
872         uint32_t irq = adapter->pdev->irq;
873
874         *data = 0;
875
876         /* Hook up test interrupt handler just for this test */
877         if (!request_irq(irq, &e1000_test_intr, SA_PROBEIRQ, netdev->name,
878                          netdev)) {
879                 shared_int = FALSE;
880         } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
881                               netdev->name, netdev)){
882                 *data = 1;
883                 return -1;
884         }
885         DPRINTK(PROBE,INFO, "testing %s interrupt\n",
886                 (shared_int ? "shared" : "unshared"));
887
888         /* Disable all the interrupts */
889         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
890         msec_delay(10);
891
892         /* Test each interrupt */
893         for (; i < 10; i++) {
894
895                 /* Interrupt to test */
896                 mask = 1 << i;
897
898                 if (!shared_int) {
899                         /* Disable the interrupt to be reported in
900                          * the cause register and then force the same
901                          * interrupt and see if one gets posted.  If
902                          * an interrupt was posted to the bus, the
903                          * test failed.
904                          */
905                         adapter->test_icr = 0;
906                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
907                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
908                         msec_delay(10);
909
910                         if (adapter->test_icr & mask) {
911                                 *data = 3;
912                                 break;
913                         }
914                 }
915
916                 /* Enable the interrupt to be reported in
917                  * the cause register and then force the same
918                  * interrupt and see if one gets posted.  If
919                  * an interrupt was not posted to the bus, the
920                  * test failed.
921                  */
922                 adapter->test_icr = 0;
923                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
924                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
925                 msec_delay(10);
926
927                 if (!(adapter->test_icr & mask)) {
928                         *data = 4;
929                         break;
930                 }
931
932                 if (!shared_int) {
933                         /* Disable the other interrupts to be reported in
934                          * the cause register and then force the other
935                          * interrupts and see if any get posted.  If
936                          * an interrupt was posted to the bus, the
937                          * test failed.
938                          */
939                         adapter->test_icr = 0;
940                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
941                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
942                         msec_delay(10);
943
944                         if (adapter->test_icr) {
945                                 *data = 5;
946                                 break;
947                         }
948                 }
949         }
950
951         /* Disable all the interrupts */
952         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
953         msec_delay(10);
954
955         /* Unhook test interrupt handler */
956         free_irq(irq, netdev);
957
958         return *data;
959 }
960
961 static void
962 e1000_free_desc_rings(struct e1000_adapter *adapter)
963 {
964         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
965         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
966         struct pci_dev *pdev = adapter->pdev;
967         int i;
968
969         if (txdr->desc && txdr->buffer_info) {
970                 for (i = 0; i < txdr->count; i++) {
971                         if (txdr->buffer_info[i].dma)
972                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
973                                                  txdr->buffer_info[i].length,
974                                                  PCI_DMA_TODEVICE);
975                         if (txdr->buffer_info[i].skb)
976                                 dev_kfree_skb(txdr->buffer_info[i].skb);
977                 }
978         }
979
980         if (rxdr->desc && rxdr->buffer_info) {
981                 for (i = 0; i < rxdr->count; i++) {
982                         if (rxdr->buffer_info[i].dma)
983                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
984                                                  rxdr->buffer_info[i].length,
985                                                  PCI_DMA_FROMDEVICE);
986                         if (rxdr->buffer_info[i].skb)
987                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
988                 }
989         }
990
991         if (txdr->desc) {
992                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
993                 txdr->desc = NULL;
994         }
995         if (rxdr->desc) {
996                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
997                 rxdr->desc = NULL;
998         }
999
1000         kfree(txdr->buffer_info);
1001         txdr->buffer_info = NULL;
1002         kfree(rxdr->buffer_info);
1003         rxdr->buffer_info = NULL;
1004
1005         return;
1006 }
1007
1008 static int
1009 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1010 {
1011         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1012         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1013         struct pci_dev *pdev = adapter->pdev;
1014         uint32_t rctl;
1015         int size, i, ret_val;
1016
1017         /* Setup Tx descriptor ring and Tx buffers */
1018
1019         if (!txdr->count)
1020                 txdr->count = E1000_DEFAULT_TXD;
1021
1022         size = txdr->count * sizeof(struct e1000_buffer);
1023         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1024                 ret_val = 1;
1025                 goto err_nomem;
1026         }
1027         memset(txdr->buffer_info, 0, size);
1028
1029         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1030         E1000_ROUNDUP(txdr->size, 4096);
1031         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1032                 ret_val = 2;
1033                 goto err_nomem;
1034         }
1035         memset(txdr->desc, 0, txdr->size);
1036         txdr->next_to_use = txdr->next_to_clean = 0;
1037
1038         E1000_WRITE_REG(&adapter->hw, TDBAL,
1039                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1040         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1041         E1000_WRITE_REG(&adapter->hw, TDLEN,
1042                         txdr->count * sizeof(struct e1000_tx_desc));
1043         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1044         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1045         E1000_WRITE_REG(&adapter->hw, TCTL,
1046                         E1000_TCTL_PSP | E1000_TCTL_EN |
1047                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1048                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1049
1050         for (i = 0; i < txdr->count; i++) {
1051                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1052                 struct sk_buff *skb;
1053                 unsigned int size = 1024;
1054
1055                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1056                         ret_val = 3;
1057                         goto err_nomem;
1058                 }
1059                 skb_put(skb, size);
1060                 txdr->buffer_info[i].skb = skb;
1061                 txdr->buffer_info[i].length = skb->len;
1062                 txdr->buffer_info[i].dma =
1063                         pci_map_single(pdev, skb->data, skb->len,
1064                                        PCI_DMA_TODEVICE);
1065                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1066                 tx_desc->lower.data = cpu_to_le32(skb->len);
1067                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1068                                                    E1000_TXD_CMD_IFCS |
1069                                                    E1000_TXD_CMD_RPS);
1070                 tx_desc->upper.data = 0;
1071         }
1072
1073         /* Setup Rx descriptor ring and Rx buffers */
1074
1075         if (!rxdr->count)
1076                 rxdr->count = E1000_DEFAULT_RXD;
1077
1078         size = rxdr->count * sizeof(struct e1000_buffer);
1079         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1080                 ret_val = 4;
1081                 goto err_nomem;
1082         }
1083         memset(rxdr->buffer_info, 0, size);
1084
1085         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1086         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1087                 ret_val = 5;
1088                 goto err_nomem;
1089         }
1090         memset(rxdr->desc, 0, rxdr->size);
1091         rxdr->next_to_use = rxdr->next_to_clean = 0;
1092
1093         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1094         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1095         E1000_WRITE_REG(&adapter->hw, RDBAL,
1096                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1097         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1098         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1099         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1100         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1101         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1102                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1103                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1104         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1105
1106         for (i = 0; i < rxdr->count; i++) {
1107                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1108                 struct sk_buff *skb;
1109
1110                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1111                                 GFP_KERNEL))) {
1112                         ret_val = 6;
1113                         goto err_nomem;
1114                 }
1115                 skb_reserve(skb, NET_IP_ALIGN);
1116                 rxdr->buffer_info[i].skb = skb;
1117                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1118                 rxdr->buffer_info[i].dma =
1119                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1120                                        PCI_DMA_FROMDEVICE);
1121                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1122                 memset(skb->data, 0x00, skb->len);
1123         }
1124
1125         return 0;
1126
1127 err_nomem:
1128         e1000_free_desc_rings(adapter);
1129         return ret_val;
1130 }
1131
1132 static void
1133 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1134 {
1135         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1136         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1137         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1138         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1139         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1140 }
1141
1142 static void
1143 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1144 {
1145         uint16_t phy_reg;
1146
1147         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1148          * Extended PHY Specific Control Register to 25MHz clock.  This
1149          * value defaults back to a 2.5MHz clock when the PHY is reset.
1150          */
1151         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1152         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1153         e1000_write_phy_reg(&adapter->hw,
1154                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1155
1156         /* In addition, because of the s/w reset above, we need to enable
1157          * CRS on TX.  This must be set for both full and half duplex
1158          * operation.
1159          */
1160         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1161         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1162         e1000_write_phy_reg(&adapter->hw,
1163                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1164 }
1165
1166 static int
1167 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1168 {
1169         uint32_t ctrl_reg;
1170         uint16_t phy_reg;
1171
1172         /* Setup the Device Control Register for PHY loopback test. */
1173
1174         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1175         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1176                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1177                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1178                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1179                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1180
1181         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1182
1183         /* Read the PHY Specific Control Register (0x10) */
1184         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1185
1186         /* Clear Auto-Crossover bits in PHY Specific Control Register
1187          * (bits 6:5).
1188          */
1189         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1190         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1191
1192         /* Perform software reset on the PHY */
1193         e1000_phy_reset(&adapter->hw);
1194
1195         /* Have to setup TX_CLK and TX_CRS after software reset */
1196         e1000_phy_reset_clk_and_crs(adapter);
1197
1198         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1199
1200         /* Wait for reset to complete. */
1201         udelay(500);
1202
1203         /* Have to setup TX_CLK and TX_CRS after software reset */
1204         e1000_phy_reset_clk_and_crs(adapter);
1205
1206         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1207         e1000_phy_disable_receiver(adapter);
1208
1209         /* Set the loopback bit in the PHY control register. */
1210         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1211         phy_reg |= MII_CR_LOOPBACK;
1212         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1213
1214         /* Setup TX_CLK and TX_CRS one more time. */
1215         e1000_phy_reset_clk_and_crs(adapter);
1216
1217         /* Check Phy Configuration */
1218         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1219         if (phy_reg != 0x4100)
1220                  return 9;
1221
1222         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1223         if (phy_reg != 0x0070)
1224                 return 10;
1225
1226         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1227         if (phy_reg != 0x001A)
1228                 return 11;
1229
1230         return 0;
1231 }
1232
1233 static int
1234 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1235 {
1236         uint32_t ctrl_reg = 0;
1237         uint32_t stat_reg = 0;
1238
1239         adapter->hw.autoneg = FALSE;
1240
1241         if (adapter->hw.phy_type == e1000_phy_m88) {
1242                 /* Auto-MDI/MDIX Off */
1243                 e1000_write_phy_reg(&adapter->hw,
1244                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1245                 /* reset to update Auto-MDI/MDIX */
1246                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1247                 /* autoneg off */
1248                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1249         } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
1250                 e1000_write_phy_reg(&adapter->hw,
1251                                     GG82563_PHY_KMRN_MODE_CTRL,
1252                                     0x1CC);
1253         }
1254         /* force 1000, set loopback */
1255         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1256
1257         /* Now set up the MAC to the same speed/duplex as the PHY. */
1258         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1259         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1260         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1261                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1262                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1263                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1264
1265         if (adapter->hw.media_type == e1000_media_type_copper &&
1266            adapter->hw.phy_type == e1000_phy_m88) {
1267                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1268         } else {
1269                 /* Set the ILOS bit on the fiber Nic is half
1270                  * duplex link is detected. */
1271                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1272                 if ((stat_reg & E1000_STATUS_FD) == 0)
1273                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1274         }
1275
1276         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1277
1278         /* Disable the receiver on the PHY so when a cable is plugged in, the
1279          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1280          */
1281         if (adapter->hw.phy_type == e1000_phy_m88)
1282                 e1000_phy_disable_receiver(adapter);
1283
1284         udelay(500);
1285
1286         return 0;
1287 }
1288
1289 static int
1290 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1291 {
1292         uint16_t phy_reg = 0;
1293         uint16_t count = 0;
1294
1295         switch (adapter->hw.mac_type) {
1296         case e1000_82543:
1297                 if (adapter->hw.media_type == e1000_media_type_copper) {
1298                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1299                          * Some PHY registers get corrupted at random, so
1300                          * attempt this 10 times.
1301                          */
1302                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1303                               count++ < 10);
1304                         if (count < 11)
1305                                 return 0;
1306                 }
1307                 break;
1308
1309         case e1000_82544:
1310         case e1000_82540:
1311         case e1000_82545:
1312         case e1000_82545_rev_3:
1313         case e1000_82546:
1314         case e1000_82546_rev_3:
1315         case e1000_82541:
1316         case e1000_82541_rev_2:
1317         case e1000_82547:
1318         case e1000_82547_rev_2:
1319         case e1000_82571:
1320         case e1000_82572:
1321         case e1000_82573:
1322         case e1000_80003es2lan:
1323                 return e1000_integrated_phy_loopback(adapter);
1324                 break;
1325
1326         default:
1327                 /* Default PHY loopback work is to read the MII
1328                  * control register and assert bit 14 (loopback mode).
1329                  */
1330                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1331                 phy_reg |= MII_CR_LOOPBACK;
1332                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1333                 return 0;
1334                 break;
1335         }
1336
1337         return 8;
1338 }
1339
1340 static int
1341 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1342 {
1343         struct e1000_hw *hw = &adapter->hw;
1344         uint32_t rctl;
1345
1346         if (hw->media_type == e1000_media_type_fiber ||
1347             hw->media_type == e1000_media_type_internal_serdes) {
1348                 switch (hw->mac_type) {
1349                 case e1000_82545:
1350                 case e1000_82546:
1351                 case e1000_82545_rev_3:
1352                 case e1000_82546_rev_3:
1353                         return e1000_set_phy_loopback(adapter);
1354                         break;
1355                 case e1000_82571:
1356                 case e1000_82572:
1357 #define E1000_SERDES_LB_ON 0x410
1358                         e1000_set_phy_loopback(adapter);
1359                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1360                         msec_delay(10);
1361                         return 0;
1362                         break;
1363                 default:
1364                         rctl = E1000_READ_REG(hw, RCTL);
1365                         rctl |= E1000_RCTL_LBM_TCVR;
1366                         E1000_WRITE_REG(hw, RCTL, rctl);
1367                         return 0;
1368                 }
1369         } else if (hw->media_type == e1000_media_type_copper)
1370                 return e1000_set_phy_loopback(adapter);
1371
1372         return 7;
1373 }
1374
1375 static void
1376 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1377 {
1378         struct e1000_hw *hw = &adapter->hw;
1379         uint32_t rctl;
1380         uint16_t phy_reg;
1381
1382         rctl = E1000_READ_REG(hw, RCTL);
1383         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1384         E1000_WRITE_REG(hw, RCTL, rctl);
1385
1386         switch (hw->mac_type) {
1387         case e1000_82571:
1388         case e1000_82572:
1389                 if (hw->media_type == e1000_media_type_fiber ||
1390                     hw->media_type == e1000_media_type_internal_serdes) {
1391 #define E1000_SERDES_LB_OFF 0x400
1392                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1393                         msec_delay(10);
1394                         break;
1395                 }
1396                 /* Fall Through */
1397         case e1000_82545:
1398         case e1000_82546:
1399         case e1000_82545_rev_3:
1400         case e1000_82546_rev_3:
1401         default:
1402                 hw->autoneg = TRUE;
1403                 if (hw->phy_type == e1000_phy_gg82563) {
1404                         e1000_write_phy_reg(hw,
1405                                             GG82563_PHY_KMRN_MODE_CTRL,
1406                                             0x180);
1407                 }
1408                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1409                 if (phy_reg & MII_CR_LOOPBACK) {
1410                         phy_reg &= ~MII_CR_LOOPBACK;
1411                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1412                         e1000_phy_reset(hw);
1413                 }
1414                 break;
1415         }
1416 }
1417
1418 static void
1419 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1420 {
1421         memset(skb->data, 0xFF, frame_size);
1422         frame_size &= ~1;
1423         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1424         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1425         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1426 }
1427
1428 static int
1429 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1430 {
1431         frame_size &= ~1;
1432         if (*(skb->data + 3) == 0xFF) {
1433                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1434                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1435                         return 0;
1436                 }
1437         }
1438         return 13;
1439 }
1440
1441 static int
1442 e1000_run_loopback_test(struct e1000_adapter *adapter)
1443 {
1444         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1445         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1446         struct pci_dev *pdev = adapter->pdev;
1447         int i, j, k, l, lc, good_cnt, ret_val=0;
1448         unsigned long time;
1449
1450         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1451
1452         /* Calculate the loop count based on the largest descriptor ring
1453          * The idea is to wrap the largest ring a number of times using 64
1454          * send/receive pairs during each loop
1455          */
1456
1457         if (rxdr->count <= txdr->count)
1458                 lc = ((txdr->count / 64) * 2) + 1;
1459         else
1460                 lc = ((rxdr->count / 64) * 2) + 1;
1461
1462         k = l = 0;
1463         for (j = 0; j <= lc; j++) { /* loop count loop */
1464                 for (i = 0; i < 64; i++) { /* send the packets */
1465                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1466                                         1024);
1467                         pci_dma_sync_single_for_device(pdev,
1468                                         txdr->buffer_info[k].dma,
1469                                         txdr->buffer_info[k].length,
1470                                         PCI_DMA_TODEVICE);
1471                         if (unlikely(++k == txdr->count)) k = 0;
1472                 }
1473                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1474                 msec_delay(200);
1475                 time = jiffies; /* set the start time for the receive */
1476                 good_cnt = 0;
1477                 do { /* receive the sent packets */
1478                         pci_dma_sync_single_for_cpu(pdev,
1479                                         rxdr->buffer_info[l].dma,
1480                                         rxdr->buffer_info[l].length,
1481                                         PCI_DMA_FROMDEVICE);
1482
1483                         ret_val = e1000_check_lbtest_frame(
1484                                         rxdr->buffer_info[l].skb,
1485                                         1024);
1486                         if (!ret_val)
1487                                 good_cnt++;
1488                         if (unlikely(++l == rxdr->count)) l = 0;
1489                         /* time + 20 msecs (200 msecs on 2.4) is more than
1490                          * enough time to complete the receives, if it's
1491                          * exceeded, break and error off
1492                          */
1493                 } while (good_cnt < 64 && jiffies < (time + 20));
1494                 if (good_cnt != 64) {
1495                         ret_val = 13; /* ret_val is the same as mis-compare */
1496                         break;
1497                 }
1498                 if (jiffies >= (time + 2)) {
1499                         ret_val = 14; /* error code for time out error */
1500                         break;
1501                 }
1502         } /* end loop count loop */
1503         return ret_val;
1504 }
1505
1506 static int
1507 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1508 {
1509         /* PHY loopback cannot be performed if SoL/IDER
1510          * sessions are active */
1511         if (e1000_check_phy_reset_block(&adapter->hw)) {
1512                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1513                         "when SoL/IDER is active.\n");
1514                 *data = 0;
1515                 goto out;
1516         }
1517
1518         if ((*data = e1000_setup_desc_rings(adapter)))
1519                 goto out;
1520         if ((*data = e1000_setup_loopback_test(adapter)))
1521                 goto err_loopback;
1522         *data = e1000_run_loopback_test(adapter);
1523         e1000_loopback_cleanup(adapter);
1524
1525 err_loopback:
1526         e1000_free_desc_rings(adapter);
1527 out:
1528         return *data;
1529 }
1530
1531 static int
1532 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1533 {
1534         *data = 0;
1535         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1536                 int i = 0;
1537                 adapter->hw.serdes_link_down = TRUE;
1538
1539                 /* On some blade server designs, link establishment
1540                  * could take as long as 2-3 minutes */
1541                 do {
1542                         e1000_check_for_link(&adapter->hw);
1543                         if (adapter->hw.serdes_link_down == FALSE)
1544                                 return *data;
1545                         msec_delay(20);
1546                 } while (i++ < 3750);
1547
1548                 *data = 1;
1549         } else {
1550                 e1000_check_for_link(&adapter->hw);
1551                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1552                         msec_delay(4000);
1553
1554                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1555                         *data = 1;
1556                 }
1557         }
1558         return *data;
1559 }
1560
1561 static int
1562 e1000_diag_test_count(struct net_device *netdev)
1563 {
1564         return E1000_TEST_LEN;
1565 }
1566
1567 static void
1568 e1000_diag_test(struct net_device *netdev,
1569                    struct ethtool_test *eth_test, uint64_t *data)
1570 {
1571         struct e1000_adapter *adapter = netdev_priv(netdev);
1572         boolean_t if_running = netif_running(netdev);
1573
1574         set_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1575         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1576                 /* Offline tests */
1577
1578                 /* save speed, duplex, autoneg settings */
1579                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1580                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1581                 uint8_t autoneg = adapter->hw.autoneg;
1582
1583                 /* Link test performed before hardware reset so autoneg doesn't
1584                  * interfere with test result */
1585                 if (e1000_link_test(adapter, &data[4]))
1586                         eth_test->flags |= ETH_TEST_FL_FAILED;
1587
1588                 if (if_running)
1589                         /* indicate we're in test mode */
1590                         dev_close(netdev);
1591                 else
1592                         e1000_reset(adapter);
1593
1594                 if (e1000_reg_test(adapter, &data[0]))
1595                         eth_test->flags |= ETH_TEST_FL_FAILED;
1596
1597                 e1000_reset(adapter);
1598                 if (e1000_eeprom_test(adapter, &data[1]))
1599                         eth_test->flags |= ETH_TEST_FL_FAILED;
1600
1601                 e1000_reset(adapter);
1602                 if (e1000_intr_test(adapter, &data[2]))
1603                         eth_test->flags |= ETH_TEST_FL_FAILED;
1604
1605                 e1000_reset(adapter);
1606                 if (e1000_loopback_test(adapter, &data[3]))
1607                         eth_test->flags |= ETH_TEST_FL_FAILED;
1608
1609                 /* restore speed, duplex, autoneg settings */
1610                 adapter->hw.autoneg_advertised = autoneg_advertised;
1611                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1612                 adapter->hw.autoneg = autoneg;
1613
1614                 e1000_reset(adapter);
1615                 clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1616                 if (if_running)
1617                         dev_open(netdev);
1618         } else {
1619                 /* Online tests */
1620                 if (e1000_link_test(adapter, &data[4]))
1621                         eth_test->flags |= ETH_TEST_FL_FAILED;
1622
1623                 /* Offline tests aren't run; pass by default */
1624                 data[0] = 0;
1625                 data[1] = 0;
1626                 data[2] = 0;
1627                 data[3] = 0;
1628
1629                 clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1630         }
1631         msleep_interruptible(4 * 1000);
1632 }
1633
1634 static void
1635 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1636 {
1637         struct e1000_adapter *adapter = netdev_priv(netdev);
1638         struct e1000_hw *hw = &adapter->hw;
1639
1640         switch (adapter->hw.device_id) {
1641         case E1000_DEV_ID_82542:
1642         case E1000_DEV_ID_82543GC_FIBER:
1643         case E1000_DEV_ID_82543GC_COPPER:
1644         case E1000_DEV_ID_82544EI_FIBER:
1645         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1646         case E1000_DEV_ID_82545EM_FIBER:
1647         case E1000_DEV_ID_82545EM_COPPER:
1648         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1649                 wol->supported = 0;
1650                 wol->wolopts   = 0;
1651                 return;
1652
1653         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1654                 /* device id 10B5 port-A supports wol */
1655                 if (!adapter->ksp3_port_a) {
1656                         wol->supported = 0;
1657                         return;
1658                 }
1659                 /* KSP3 does not suppport UCAST wake-ups for any interface */
1660                 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1661
1662                 if (adapter->wol & E1000_WUFC_EX)
1663                         DPRINTK(DRV, ERR, "Interface does not support "
1664                         "directed (unicast) frame wake-up packets\n");
1665                 wol->wolopts = 0;
1666                 goto do_defaults;
1667
1668         case E1000_DEV_ID_82546EB_FIBER:
1669         case E1000_DEV_ID_82546GB_FIBER:
1670         case E1000_DEV_ID_82571EB_FIBER:
1671                 /* Wake events only supported on port A for dual fiber */
1672                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1673                         wol->supported = 0;
1674                         wol->wolopts   = 0;
1675                         return;
1676                 }
1677                 /* Fall Through */
1678
1679         default:
1680                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1681                                  WAKE_BCAST | WAKE_MAGIC;
1682                 wol->wolopts = 0;
1683
1684 do_defaults:
1685                 if (adapter->wol & E1000_WUFC_EX)
1686                         wol->wolopts |= WAKE_UCAST;
1687                 if (adapter->wol & E1000_WUFC_MC)
1688                         wol->wolopts |= WAKE_MCAST;
1689                 if (adapter->wol & E1000_WUFC_BC)
1690                         wol->wolopts |= WAKE_BCAST;
1691                 if (adapter->wol & E1000_WUFC_MAG)
1692                         wol->wolopts |= WAKE_MAGIC;
1693                 return;
1694         }
1695 }
1696
1697 static int
1698 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1699 {
1700         struct e1000_adapter *adapter = netdev_priv(netdev);
1701         struct e1000_hw *hw = &adapter->hw;
1702
1703         switch (adapter->hw.device_id) {
1704         case E1000_DEV_ID_82542:
1705         case E1000_DEV_ID_82543GC_FIBER:
1706         case E1000_DEV_ID_82543GC_COPPER:
1707         case E1000_DEV_ID_82544EI_FIBER:
1708         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1709         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1710         case E1000_DEV_ID_82545EM_FIBER:
1711         case E1000_DEV_ID_82545EM_COPPER:
1712                 return wol->wolopts ? -EOPNOTSUPP : 0;
1713
1714         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1715                 /* device id 10B5 port-A supports wol */
1716                 if (!adapter->ksp3_port_a)
1717                         return wol->wolopts ? -EOPNOTSUPP : 0;
1718
1719                 if (wol->wolopts & WAKE_UCAST) {
1720                         DPRINTK(DRV, ERR, "Interface does not support "
1721                         "directed (unicast) frame wake-up packets\n");
1722                         return -EOPNOTSUPP;
1723                 }
1724
1725         case E1000_DEV_ID_82546EB_FIBER:
1726         case E1000_DEV_ID_82546GB_FIBER:
1727         case E1000_DEV_ID_82571EB_FIBER:
1728                 /* Wake events only supported on port A for dual fiber */
1729                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1730                         return wol->wolopts ? -EOPNOTSUPP : 0;
1731                 /* Fall Through */
1732
1733         default:
1734                 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1735                         return -EOPNOTSUPP;
1736
1737                 adapter->wol = 0;
1738
1739                 if (wol->wolopts & WAKE_UCAST)
1740                         adapter->wol |= E1000_WUFC_EX;
1741                 if (wol->wolopts & WAKE_MCAST)
1742                         adapter->wol |= E1000_WUFC_MC;
1743                 if (wol->wolopts & WAKE_BCAST)
1744                         adapter->wol |= E1000_WUFC_BC;
1745                 if (wol->wolopts & WAKE_MAGIC)
1746                         adapter->wol |= E1000_WUFC_MAG;
1747         }
1748
1749         return 0;
1750 }
1751
1752 /* toggle LED 4 times per second = 2 "blinks" per second */
1753 #define E1000_ID_INTERVAL       (HZ/4)
1754
1755 /* bit defines for adapter->led_status */
1756 #define E1000_LED_ON            0
1757
1758 static void
1759 e1000_led_blink_callback(unsigned long data)
1760 {
1761         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1762
1763         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1764                 e1000_led_off(&adapter->hw);
1765         else
1766                 e1000_led_on(&adapter->hw);
1767
1768         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1769 }
1770
1771 static int
1772 e1000_phys_id(struct net_device *netdev, uint32_t data)
1773 {
1774         struct e1000_adapter *adapter = netdev_priv(netdev);
1775
1776         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1777                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1778
1779         if (adapter->hw.mac_type < e1000_82571) {
1780                 if (!adapter->blink_timer.function) {
1781                         init_timer(&adapter->blink_timer);
1782                         adapter->blink_timer.function = e1000_led_blink_callback;
1783                         adapter->blink_timer.data = (unsigned long) adapter;
1784                 }
1785                 e1000_setup_led(&adapter->hw);
1786                 mod_timer(&adapter->blink_timer, jiffies);
1787                 msleep_interruptible(data * 1000);
1788                 del_timer_sync(&adapter->blink_timer);
1789         } else if (adapter->hw.mac_type < e1000_82573) {
1790                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1791                         (E1000_LEDCTL_LED2_BLINK_RATE |
1792                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1793                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1794                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1795                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1796                 msleep_interruptible(data * 1000);
1797         } else {
1798                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1799                         (E1000_LEDCTL_LED2_BLINK_RATE |
1800                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1801                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1802                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1803                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1804                 msleep_interruptible(data * 1000);
1805         }
1806
1807         e1000_led_off(&adapter->hw);
1808         clear_bit(E1000_LED_ON, &adapter->led_status);
1809         e1000_cleanup_led(&adapter->hw);
1810
1811         return 0;
1812 }
1813
1814 static int
1815 e1000_nway_reset(struct net_device *netdev)
1816 {
1817         struct e1000_adapter *adapter = netdev_priv(netdev);
1818         if (netif_running(netdev))
1819                 e1000_reinit_locked(adapter);
1820         return 0;
1821 }
1822
1823 static int
1824 e1000_get_stats_count(struct net_device *netdev)
1825 {
1826         return E1000_STATS_LEN;
1827 }
1828
1829 static void
1830 e1000_get_ethtool_stats(struct net_device *netdev,
1831                 struct ethtool_stats *stats, uint64_t *data)
1832 {
1833         struct e1000_adapter *adapter = netdev_priv(netdev);
1834         int i;
1835
1836         e1000_update_stats(adapter);
1837         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1838                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1839                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1840                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1841         }
1842 /*      BUG_ON(i != E1000_STATS_LEN); */
1843 }
1844
1845 static void
1846 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1847 {
1848         uint8_t *p = data;
1849         int i;
1850
1851         switch (stringset) {
1852         case ETH_SS_TEST:
1853                 memcpy(data, *e1000_gstrings_test,
1854                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1855                 break;
1856         case ETH_SS_STATS:
1857                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1858                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1859                                ETH_GSTRING_LEN);
1860                         p += ETH_GSTRING_LEN;
1861                 }
1862 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1863                 break;
1864         }
1865 }
1866
1867 static struct ethtool_ops e1000_ethtool_ops = {
1868         .get_settings           = e1000_get_settings,
1869         .set_settings           = e1000_set_settings,
1870         .get_drvinfo            = e1000_get_drvinfo,
1871         .get_regs_len           = e1000_get_regs_len,
1872         .get_regs               = e1000_get_regs,
1873         .get_wol                = e1000_get_wol,
1874         .set_wol                = e1000_set_wol,
1875         .get_msglevel           = e1000_get_msglevel,
1876         .set_msglevel           = e1000_set_msglevel,
1877         .nway_reset             = e1000_nway_reset,
1878         .get_link               = ethtool_op_get_link,
1879         .get_eeprom_len         = e1000_get_eeprom_len,
1880         .get_eeprom             = e1000_get_eeprom,
1881         .set_eeprom             = e1000_set_eeprom,
1882         .get_ringparam          = e1000_get_ringparam,
1883         .set_ringparam          = e1000_set_ringparam,
1884         .get_pauseparam         = e1000_get_pauseparam,
1885         .set_pauseparam         = e1000_set_pauseparam,
1886         .get_rx_csum            = e1000_get_rx_csum,
1887         .set_rx_csum            = e1000_set_rx_csum,
1888         .get_tx_csum            = e1000_get_tx_csum,
1889         .set_tx_csum            = e1000_set_tx_csum,
1890         .get_sg                 = ethtool_op_get_sg,
1891         .set_sg                 = ethtool_op_set_sg,
1892 #ifdef NETIF_F_TSO
1893         .get_tso                = ethtool_op_get_tso,
1894         .set_tso                = e1000_set_tso,
1895 #endif
1896         .self_test_count        = e1000_diag_test_count,
1897         .self_test              = e1000_diag_test,
1898         .get_strings            = e1000_get_strings,
1899         .phys_id                = e1000_phys_id,
1900         .get_stats_count        = e1000_get_stats_count,
1901         .get_ethtool_stats      = e1000_get_ethtool_stats,
1902         .get_perm_addr          = ethtool_op_get_perm_addr,
1903 };
1904
1905 void e1000_set_ethtool_ops(struct net_device *netdev)
1906 {
1907         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1908 }