drm/radeon/kms: enable use of unmappable VRAM V2
[pandora-kernel.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <asm/uaccess.h>
50
51 #include "common.h"
52 #include "cxgb3_ioctl.h"
53 #include "regs.h"
54 #include "cxgb3_offload.h"
55 #include "version.h"
56
57 #include "cxgb3_ctl_defs.h"
58 #include "t3_cpl.h"
59 #include "firmware_exports.h"
60
61 enum {
62         MAX_TXQ_ENTRIES = 16384,
63         MAX_CTRL_TXQ_ENTRIES = 1024,
64         MAX_RSPQ_ENTRIES = 16384,
65         MAX_RX_BUFFERS = 16384,
66         MAX_RX_JUMBO_BUFFERS = 16384,
67         MIN_TXQ_ENTRIES = 4,
68         MIN_CTRL_TXQ_ENTRIES = 4,
69         MIN_RSPQ_ENTRIES = 32,
70         MIN_FL_ENTRIES = 32
71 };
72
73 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
74
75 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
76                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
77                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
78
79 #define EEPROM_MAGIC 0x38E2F10C
80
81 #define CH_DEVICE(devid, idx) \
82         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
83
84 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
85         CH_DEVICE(0x20, 0),     /* PE9000 */
86         CH_DEVICE(0x21, 1),     /* T302E */
87         CH_DEVICE(0x22, 2),     /* T310E */
88         CH_DEVICE(0x23, 3),     /* T320X */
89         CH_DEVICE(0x24, 1),     /* T302X */
90         CH_DEVICE(0x25, 3),     /* T320E */
91         CH_DEVICE(0x26, 2),     /* T310X */
92         CH_DEVICE(0x30, 2),     /* T3B10 */
93         CH_DEVICE(0x31, 3),     /* T3B20 */
94         CH_DEVICE(0x32, 1),     /* T3B02 */
95         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
96         CH_DEVICE(0x36, 3),     /* S320E-CR */
97         CH_DEVICE(0x37, 7),     /* N320E-G2 */
98         {0,}
99 };
100
101 MODULE_DESCRIPTION(DRV_DESC);
102 MODULE_AUTHOR("Chelsio Communications");
103 MODULE_LICENSE("Dual BSD/GPL");
104 MODULE_VERSION(DRV_VERSION);
105 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
106
107 static int dflt_msg_enable = DFLT_MSG_ENABLE;
108
109 module_param(dflt_msg_enable, int, 0644);
110 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
111
112 /*
113  * The driver uses the best interrupt scheme available on a platform in the
114  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
115  * of these schemes the driver may consider as follows:
116  *
117  * msi = 2: choose from among all three options
118  * msi = 1: only consider MSI and pin interrupts
119  * msi = 0: force pin interrupts
120  */
121 static int msi = 2;
122
123 module_param(msi, int, 0644);
124 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
125
126 /*
127  * The driver enables offload as a default.
128  * To disable it, use ofld_disable = 1.
129  */
130
131 static int ofld_disable = 0;
132
133 module_param(ofld_disable, int, 0644);
134 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
135
136 /*
137  * We have work elements that we need to cancel when an interface is taken
138  * down.  Normally the work elements would be executed by keventd but that
139  * can deadlock because of linkwatch.  If our close method takes the rtnl
140  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
141  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
142  * for our work to complete.  Get our own work queue to solve this.
143  */
144 struct workqueue_struct *cxgb3_wq;
145
146 /**
147  *      link_report - show link status and link speed/duplex
148  *      @p: the port whose settings are to be reported
149  *
150  *      Shows the link status, speed, and duplex of a port.
151  */
152 static void link_report(struct net_device *dev)
153 {
154         if (!netif_carrier_ok(dev))
155                 printk(KERN_INFO "%s: link down\n", dev->name);
156         else {
157                 const char *s = "10Mbps";
158                 const struct port_info *p = netdev_priv(dev);
159
160                 switch (p->link_config.speed) {
161                 case SPEED_10000:
162                         s = "10Gbps";
163                         break;
164                 case SPEED_1000:
165                         s = "1000Mbps";
166                         break;
167                 case SPEED_100:
168                         s = "100Mbps";
169                         break;
170                 }
171
172                 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
173                        p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
174         }
175 }
176
177 static void enable_tx_fifo_drain(struct adapter *adapter,
178                                  struct port_info *pi)
179 {
180         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
181                          F_ENDROPPKT);
182         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
183         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
184         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
185 }
186
187 static void disable_tx_fifo_drain(struct adapter *adapter,
188                                   struct port_info *pi)
189 {
190         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
191                          F_ENDROPPKT, 0);
192 }
193
194 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
195 {
196         struct net_device *dev = adap->port[port_id];
197         struct port_info *pi = netdev_priv(dev);
198
199         if (state == netif_carrier_ok(dev))
200                 return;
201
202         if (state) {
203                 struct cmac *mac = &pi->mac;
204
205                 netif_carrier_on(dev);
206
207                 disable_tx_fifo_drain(adap, pi);
208
209                 /* Clear local faults */
210                 t3_xgm_intr_disable(adap, pi->port_id);
211                 t3_read_reg(adap, A_XGM_INT_STATUS +
212                                     pi->mac.offset);
213                 t3_write_reg(adap,
214                              A_XGM_INT_CAUSE + pi->mac.offset,
215                              F_XGM_INT);
216
217                 t3_set_reg_field(adap,
218                                  A_XGM_INT_ENABLE +
219                                  pi->mac.offset,
220                                  F_XGM_INT, F_XGM_INT);
221                 t3_xgm_intr_enable(adap, pi->port_id);
222
223                 t3_mac_enable(mac, MAC_DIRECTION_TX);
224         } else {
225                 netif_carrier_off(dev);
226
227                 /* Flush TX FIFO */
228                 enable_tx_fifo_drain(adap, pi);
229         }
230         link_report(dev);
231 }
232
233 /**
234  *      t3_os_link_changed - handle link status changes
235  *      @adapter: the adapter associated with the link change
236  *      @port_id: the port index whose limk status has changed
237  *      @link_stat: the new status of the link
238  *      @speed: the new speed setting
239  *      @duplex: the new duplex setting
240  *      @pause: the new flow-control setting
241  *
242  *      This is the OS-dependent handler for link status changes.  The OS
243  *      neutral handler takes care of most of the processing for these events,
244  *      then calls this handler for any OS-specific processing.
245  */
246 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
247                         int speed, int duplex, int pause)
248 {
249         struct net_device *dev = adapter->port[port_id];
250         struct port_info *pi = netdev_priv(dev);
251         struct cmac *mac = &pi->mac;
252
253         /* Skip changes from disabled ports. */
254         if (!netif_running(dev))
255                 return;
256
257         if (link_stat != netif_carrier_ok(dev)) {
258                 if (link_stat) {
259                         disable_tx_fifo_drain(adapter, pi);
260
261                         t3_mac_enable(mac, MAC_DIRECTION_RX);
262
263                         /* Clear local faults */
264                         t3_xgm_intr_disable(adapter, pi->port_id);
265                         t3_read_reg(adapter, A_XGM_INT_STATUS +
266                                     pi->mac.offset);
267                         t3_write_reg(adapter,
268                                      A_XGM_INT_CAUSE + pi->mac.offset,
269                                      F_XGM_INT);
270
271                         t3_set_reg_field(adapter,
272                                          A_XGM_INT_ENABLE + pi->mac.offset,
273                                          F_XGM_INT, F_XGM_INT);
274                         t3_xgm_intr_enable(adapter, pi->port_id);
275
276                         netif_carrier_on(dev);
277                 } else {
278                         netif_carrier_off(dev);
279
280                         t3_xgm_intr_disable(adapter, pi->port_id);
281                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
282                         t3_set_reg_field(adapter,
283                                          A_XGM_INT_ENABLE + pi->mac.offset,
284                                          F_XGM_INT, 0);
285
286                         if (is_10G(adapter))
287                                 pi->phy.ops->power_down(&pi->phy, 1);
288
289                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
290                         t3_mac_disable(mac, MAC_DIRECTION_RX);
291                         t3_link_start(&pi->phy, mac, &pi->link_config);
292
293                         /* Flush TX FIFO */
294                         enable_tx_fifo_drain(adapter, pi);
295                 }
296
297                 link_report(dev);
298         }
299 }
300
301 /**
302  *      t3_os_phymod_changed - handle PHY module changes
303  *      @phy: the PHY reporting the module change
304  *      @mod_type: new module type
305  *
306  *      This is the OS-dependent handler for PHY module changes.  It is
307  *      invoked when a PHY module is removed or inserted for any OS-specific
308  *      processing.
309  */
310 void t3_os_phymod_changed(struct adapter *adap, int port_id)
311 {
312         static const char *mod_str[] = {
313                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
314         };
315
316         const struct net_device *dev = adap->port[port_id];
317         const struct port_info *pi = netdev_priv(dev);
318
319         if (pi->phy.modtype == phy_modtype_none)
320                 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
321         else
322                 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
323                        mod_str[pi->phy.modtype]);
324 }
325
326 static void cxgb_set_rxmode(struct net_device *dev)
327 {
328         struct port_info *pi = netdev_priv(dev);
329
330         t3_mac_set_rx_mode(&pi->mac, dev);
331 }
332
333 /**
334  *      link_start - enable a port
335  *      @dev: the device to enable
336  *
337  *      Performs the MAC and PHY actions needed to enable a port.
338  */
339 static void link_start(struct net_device *dev)
340 {
341         struct port_info *pi = netdev_priv(dev);
342         struct cmac *mac = &pi->mac;
343
344         t3_mac_reset(mac);
345         t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
346         t3_mac_set_mtu(mac, dev->mtu);
347         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
348         t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
349         t3_mac_set_rx_mode(mac, dev);
350         t3_link_start(&pi->phy, mac, &pi->link_config);
351         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
352 }
353
354 static inline void cxgb_disable_msi(struct adapter *adapter)
355 {
356         if (adapter->flags & USING_MSIX) {
357                 pci_disable_msix(adapter->pdev);
358                 adapter->flags &= ~USING_MSIX;
359         } else if (adapter->flags & USING_MSI) {
360                 pci_disable_msi(adapter->pdev);
361                 adapter->flags &= ~USING_MSI;
362         }
363 }
364
365 /*
366  * Interrupt handler for asynchronous events used with MSI-X.
367  */
368 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
369 {
370         t3_slow_intr_handler(cookie);
371         return IRQ_HANDLED;
372 }
373
374 /*
375  * Name the MSI-X interrupts.
376  */
377 static void name_msix_vecs(struct adapter *adap)
378 {
379         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
380
381         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
382         adap->msix_info[0].desc[n] = 0;
383
384         for_each_port(adap, j) {
385                 struct net_device *d = adap->port[j];
386                 const struct port_info *pi = netdev_priv(d);
387
388                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
389                         snprintf(adap->msix_info[msi_idx].desc, n,
390                                  "%s-%d", d->name, pi->first_qset + i);
391                         adap->msix_info[msi_idx].desc[n] = 0;
392                 }
393         }
394 }
395
396 static int request_msix_data_irqs(struct adapter *adap)
397 {
398         int i, j, err, qidx = 0;
399
400         for_each_port(adap, i) {
401                 int nqsets = adap2pinfo(adap, i)->nqsets;
402
403                 for (j = 0; j < nqsets; ++j) {
404                         err = request_irq(adap->msix_info[qidx + 1].vec,
405                                           t3_intr_handler(adap,
406                                                           adap->sge.qs[qidx].
407                                                           rspq.polling), 0,
408                                           adap->msix_info[qidx + 1].desc,
409                                           &adap->sge.qs[qidx]);
410                         if (err) {
411                                 while (--qidx >= 0)
412                                         free_irq(adap->msix_info[qidx + 1].vec,
413                                                  &adap->sge.qs[qidx]);
414                                 return err;
415                         }
416                         qidx++;
417                 }
418         }
419         return 0;
420 }
421
422 static void free_irq_resources(struct adapter *adapter)
423 {
424         if (adapter->flags & USING_MSIX) {
425                 int i, n = 0;
426
427                 free_irq(adapter->msix_info[0].vec, adapter);
428                 for_each_port(adapter, i)
429                         n += adap2pinfo(adapter, i)->nqsets;
430
431                 for (i = 0; i < n; ++i)
432                         free_irq(adapter->msix_info[i + 1].vec,
433                                  &adapter->sge.qs[i]);
434         } else
435                 free_irq(adapter->pdev->irq, adapter);
436 }
437
438 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
439                               unsigned long n)
440 {
441         int attempts = 5;
442
443         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
444                 if (!--attempts)
445                         return -ETIMEDOUT;
446                 msleep(10);
447         }
448         return 0;
449 }
450
451 static int init_tp_parity(struct adapter *adap)
452 {
453         int i;
454         struct sk_buff *skb;
455         struct cpl_set_tcb_field *greq;
456         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
457
458         t3_tp_set_offload_mode(adap, 1);
459
460         for (i = 0; i < 16; i++) {
461                 struct cpl_smt_write_req *req;
462
463                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
464                 if (!skb)
465                         skb = adap->nofail_skb;
466                 if (!skb)
467                         goto alloc_skb_fail;
468
469                 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
470                 memset(req, 0, sizeof(*req));
471                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
472                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
473                 req->mtu_idx = NMTUS - 1;
474                 req->iff = i;
475                 t3_mgmt_tx(adap, skb);
476                 if (skb == adap->nofail_skb) {
477                         await_mgmt_replies(adap, cnt, i + 1);
478                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
479                         if (!adap->nofail_skb)
480                                 goto alloc_skb_fail;
481                 }
482         }
483
484         for (i = 0; i < 2048; i++) {
485                 struct cpl_l2t_write_req *req;
486
487                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
488                 if (!skb)
489                         skb = adap->nofail_skb;
490                 if (!skb)
491                         goto alloc_skb_fail;
492
493                 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
494                 memset(req, 0, sizeof(*req));
495                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
496                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
497                 req->params = htonl(V_L2T_W_IDX(i));
498                 t3_mgmt_tx(adap, skb);
499                 if (skb == adap->nofail_skb) {
500                         await_mgmt_replies(adap, cnt, 16 + i + 1);
501                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
502                         if (!adap->nofail_skb)
503                                 goto alloc_skb_fail;
504                 }
505         }
506
507         for (i = 0; i < 2048; i++) {
508                 struct cpl_rte_write_req *req;
509
510                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
511                 if (!skb)
512                         skb = adap->nofail_skb;
513                 if (!skb)
514                         goto alloc_skb_fail;
515
516                 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
517                 memset(req, 0, sizeof(*req));
518                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
519                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
520                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
521                 t3_mgmt_tx(adap, skb);
522                 if (skb == adap->nofail_skb) {
523                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
524                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
525                         if (!adap->nofail_skb)
526                                 goto alloc_skb_fail;
527                 }
528         }
529
530         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
531         if (!skb)
532                 skb = adap->nofail_skb;
533         if (!skb)
534                 goto alloc_skb_fail;
535
536         greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
537         memset(greq, 0, sizeof(*greq));
538         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
539         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
540         greq->mask = cpu_to_be64(1);
541         t3_mgmt_tx(adap, skb);
542
543         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
544         if (skb == adap->nofail_skb) {
545                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
546                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
547         }
548
549         t3_tp_set_offload_mode(adap, 0);
550         return i;
551
552 alloc_skb_fail:
553         t3_tp_set_offload_mode(adap, 0);
554         return -ENOMEM;
555 }
556
557 /**
558  *      setup_rss - configure RSS
559  *      @adap: the adapter
560  *
561  *      Sets up RSS to distribute packets to multiple receive queues.  We
562  *      configure the RSS CPU lookup table to distribute to the number of HW
563  *      receive queues, and the response queue lookup table to narrow that
564  *      down to the response queues actually configured for each port.
565  *      We always configure the RSS mapping for two ports since the mapping
566  *      table has plenty of entries.
567  */
568 static void setup_rss(struct adapter *adap)
569 {
570         int i;
571         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
572         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
573         u8 cpus[SGE_QSETS + 1];
574         u16 rspq_map[RSS_TABLE_SIZE];
575
576         for (i = 0; i < SGE_QSETS; ++i)
577                 cpus[i] = i;
578         cpus[SGE_QSETS] = 0xff; /* terminator */
579
580         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
581                 rspq_map[i] = i % nq0;
582                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
583         }
584
585         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
586                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
587                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
588 }
589
590 static void ring_dbs(struct adapter *adap)
591 {
592         int i, j;
593
594         for (i = 0; i < SGE_QSETS; i++) {
595                 struct sge_qset *qs = &adap->sge.qs[i];
596
597                 if (qs->adap)
598                         for (j = 0; j < SGE_TXQ_PER_SET; j++)
599                                 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
600         }
601 }
602
603 static void init_napi(struct adapter *adap)
604 {
605         int i;
606
607         for (i = 0; i < SGE_QSETS; i++) {
608                 struct sge_qset *qs = &adap->sge.qs[i];
609
610                 if (qs->adap)
611                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
612                                        64);
613         }
614
615         /*
616          * netif_napi_add() can be called only once per napi_struct because it
617          * adds each new napi_struct to a list.  Be careful not to call it a
618          * second time, e.g., during EEH recovery, by making a note of it.
619          */
620         adap->flags |= NAPI_INIT;
621 }
622
623 /*
624  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
625  * both netdevices representing interfaces and the dummy ones for the extra
626  * queues.
627  */
628 static void quiesce_rx(struct adapter *adap)
629 {
630         int i;
631
632         for (i = 0; i < SGE_QSETS; i++)
633                 if (adap->sge.qs[i].adap)
634                         napi_disable(&adap->sge.qs[i].napi);
635 }
636
637 static void enable_all_napi(struct adapter *adap)
638 {
639         int i;
640         for (i = 0; i < SGE_QSETS; i++)
641                 if (adap->sge.qs[i].adap)
642                         napi_enable(&adap->sge.qs[i].napi);
643 }
644
645 /**
646  *      set_qset_lro - Turn a queue set's LRO capability on and off
647  *      @dev: the device the qset is attached to
648  *      @qset_idx: the queue set index
649  *      @val: the LRO switch
650  *
651  *      Sets LRO on or off for a particular queue set.
652  *      the device's features flag is updated to reflect the LRO
653  *      capability when all queues belonging to the device are
654  *      in the same state.
655  */
656 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
657 {
658         struct port_info *pi = netdev_priv(dev);
659         struct adapter *adapter = pi->adapter;
660
661         adapter->params.sge.qset[qset_idx].lro = !!val;
662         adapter->sge.qs[qset_idx].lro_enabled = !!val;
663 }
664
665 /**
666  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
667  *      @adap: the adapter
668  *
669  *      Determines how many sets of SGE queues to use and initializes them.
670  *      We support multiple queue sets per port if we have MSI-X, otherwise
671  *      just one queue set per port.
672  */
673 static int setup_sge_qsets(struct adapter *adap)
674 {
675         int i, j, err, irq_idx = 0, qset_idx = 0;
676         unsigned int ntxq = SGE_TXQ_PER_SET;
677
678         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
679                 irq_idx = -1;
680
681         for_each_port(adap, i) {
682                 struct net_device *dev = adap->port[i];
683                 struct port_info *pi = netdev_priv(dev);
684
685                 pi->qs = &adap->sge.qs[pi->first_qset];
686                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
687                         set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
688                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
689                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
690                                                              irq_idx,
691                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
692                                 netdev_get_tx_queue(dev, j));
693                         if (err) {
694                                 t3_free_sge_resources(adap);
695                                 return err;
696                         }
697                 }
698         }
699
700         return 0;
701 }
702
703 static ssize_t attr_show(struct device *d, char *buf,
704                          ssize_t(*format) (struct net_device *, char *))
705 {
706         ssize_t len;
707
708         /* Synchronize with ioctls that may shut down the device */
709         rtnl_lock();
710         len = (*format) (to_net_dev(d), buf);
711         rtnl_unlock();
712         return len;
713 }
714
715 static ssize_t attr_store(struct device *d,
716                           const char *buf, size_t len,
717                           ssize_t(*set) (struct net_device *, unsigned int),
718                           unsigned int min_val, unsigned int max_val)
719 {
720         char *endp;
721         ssize_t ret;
722         unsigned int val;
723
724         if (!capable(CAP_NET_ADMIN))
725                 return -EPERM;
726
727         val = simple_strtoul(buf, &endp, 0);
728         if (endp == buf || val < min_val || val > max_val)
729                 return -EINVAL;
730
731         rtnl_lock();
732         ret = (*set) (to_net_dev(d), val);
733         if (!ret)
734                 ret = len;
735         rtnl_unlock();
736         return ret;
737 }
738
739 #define CXGB3_SHOW(name, val_expr) \
740 static ssize_t format_##name(struct net_device *dev, char *buf) \
741 { \
742         struct port_info *pi = netdev_priv(dev); \
743         struct adapter *adap = pi->adapter; \
744         return sprintf(buf, "%u\n", val_expr); \
745 } \
746 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
747                            char *buf) \
748 { \
749         return attr_show(d, buf, format_##name); \
750 }
751
752 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
753 {
754         struct port_info *pi = netdev_priv(dev);
755         struct adapter *adap = pi->adapter;
756         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
757
758         if (adap->flags & FULL_INIT_DONE)
759                 return -EBUSY;
760         if (val && adap->params.rev == 0)
761                 return -EINVAL;
762         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
763             min_tids)
764                 return -EINVAL;
765         adap->params.mc5.nfilters = val;
766         return 0;
767 }
768
769 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
770                               const char *buf, size_t len)
771 {
772         return attr_store(d, buf, len, set_nfilters, 0, ~0);
773 }
774
775 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
776 {
777         struct port_info *pi = netdev_priv(dev);
778         struct adapter *adap = pi->adapter;
779
780         if (adap->flags & FULL_INIT_DONE)
781                 return -EBUSY;
782         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
783             MC5_MIN_TIDS)
784                 return -EINVAL;
785         adap->params.mc5.nservers = val;
786         return 0;
787 }
788
789 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
790                               const char *buf, size_t len)
791 {
792         return attr_store(d, buf, len, set_nservers, 0, ~0);
793 }
794
795 #define CXGB3_ATTR_R(name, val_expr) \
796 CXGB3_SHOW(name, val_expr) \
797 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
798
799 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
800 CXGB3_SHOW(name, val_expr) \
801 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
802
803 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
804 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
805 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
806
807 static struct attribute *cxgb3_attrs[] = {
808         &dev_attr_cam_size.attr,
809         &dev_attr_nfilters.attr,
810         &dev_attr_nservers.attr,
811         NULL
812 };
813
814 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
815
816 static ssize_t tm_attr_show(struct device *d,
817                             char *buf, int sched)
818 {
819         struct port_info *pi = netdev_priv(to_net_dev(d));
820         struct adapter *adap = pi->adapter;
821         unsigned int v, addr, bpt, cpt;
822         ssize_t len;
823
824         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
825         rtnl_lock();
826         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
827         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
828         if (sched & 1)
829                 v >>= 16;
830         bpt = (v >> 8) & 0xff;
831         cpt = v & 0xff;
832         if (!cpt)
833                 len = sprintf(buf, "disabled\n");
834         else {
835                 v = (adap->params.vpd.cclk * 1000) / cpt;
836                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
837         }
838         rtnl_unlock();
839         return len;
840 }
841
842 static ssize_t tm_attr_store(struct device *d,
843                              const char *buf, size_t len, int sched)
844 {
845         struct port_info *pi = netdev_priv(to_net_dev(d));
846         struct adapter *adap = pi->adapter;
847         unsigned int val;
848         char *endp;
849         ssize_t ret;
850
851         if (!capable(CAP_NET_ADMIN))
852                 return -EPERM;
853
854         val = simple_strtoul(buf, &endp, 0);
855         if (endp == buf || val > 10000000)
856                 return -EINVAL;
857
858         rtnl_lock();
859         ret = t3_config_sched(adap, val, sched);
860         if (!ret)
861                 ret = len;
862         rtnl_unlock();
863         return ret;
864 }
865
866 #define TM_ATTR(name, sched) \
867 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
868                            char *buf) \
869 { \
870         return tm_attr_show(d, buf, sched); \
871 } \
872 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
873                             const char *buf, size_t len) \
874 { \
875         return tm_attr_store(d, buf, len, sched); \
876 } \
877 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
878
879 TM_ATTR(sched0, 0);
880 TM_ATTR(sched1, 1);
881 TM_ATTR(sched2, 2);
882 TM_ATTR(sched3, 3);
883 TM_ATTR(sched4, 4);
884 TM_ATTR(sched5, 5);
885 TM_ATTR(sched6, 6);
886 TM_ATTR(sched7, 7);
887
888 static struct attribute *offload_attrs[] = {
889         &dev_attr_sched0.attr,
890         &dev_attr_sched1.attr,
891         &dev_attr_sched2.attr,
892         &dev_attr_sched3.attr,
893         &dev_attr_sched4.attr,
894         &dev_attr_sched5.attr,
895         &dev_attr_sched6.attr,
896         &dev_attr_sched7.attr,
897         NULL
898 };
899
900 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
901
902 /*
903  * Sends an sk_buff to an offload queue driver
904  * after dealing with any active network taps.
905  */
906 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
907 {
908         int ret;
909
910         local_bh_disable();
911         ret = t3_offload_tx(tdev, skb);
912         local_bh_enable();
913         return ret;
914 }
915
916 static int write_smt_entry(struct adapter *adapter, int idx)
917 {
918         struct cpl_smt_write_req *req;
919         struct port_info *pi = netdev_priv(adapter->port[idx]);
920         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
921
922         if (!skb)
923                 return -ENOMEM;
924
925         req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
926         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
927         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
928         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
929         req->iff = idx;
930         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
931         memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
932         skb->priority = 1;
933         offload_tx(&adapter->tdev, skb);
934         return 0;
935 }
936
937 static int init_smt(struct adapter *adapter)
938 {
939         int i;
940
941         for_each_port(adapter, i)
942             write_smt_entry(adapter, i);
943         return 0;
944 }
945
946 static void init_port_mtus(struct adapter *adapter)
947 {
948         unsigned int mtus = adapter->port[0]->mtu;
949
950         if (adapter->port[1])
951                 mtus |= adapter->port[1]->mtu << 16;
952         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
953 }
954
955 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
956                               int hi, int port)
957 {
958         struct sk_buff *skb;
959         struct mngt_pktsched_wr *req;
960         int ret;
961
962         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
963         if (!skb)
964                 skb = adap->nofail_skb;
965         if (!skb)
966                 return -ENOMEM;
967
968         req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
969         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
970         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
971         req->sched = sched;
972         req->idx = qidx;
973         req->min = lo;
974         req->max = hi;
975         req->binding = port;
976         ret = t3_mgmt_tx(adap, skb);
977         if (skb == adap->nofail_skb) {
978                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
979                                              GFP_KERNEL);
980                 if (!adap->nofail_skb)
981                         ret = -ENOMEM;
982         }
983
984         return ret;
985 }
986
987 static int bind_qsets(struct adapter *adap)
988 {
989         int i, j, err = 0;
990
991         for_each_port(adap, i) {
992                 const struct port_info *pi = adap2pinfo(adap, i);
993
994                 for (j = 0; j < pi->nqsets; ++j) {
995                         int ret = send_pktsched_cmd(adap, 1,
996                                                     pi->first_qset + j, -1,
997                                                     -1, i);
998                         if (ret)
999                                 err = ret;
1000                 }
1001         }
1002
1003         return err;
1004 }
1005
1006 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."                    \
1007         __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
1008 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
1009 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."                \
1010         __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
1011 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
1012 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1013 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1014 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1015 MODULE_FIRMWARE(FW_FNAME);
1016 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1017 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1018 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1019 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1020 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1021
1022 static inline const char *get_edc_fw_name(int edc_idx)
1023 {
1024         const char *fw_name = NULL;
1025
1026         switch (edc_idx) {
1027         case EDC_OPT_AEL2005:
1028                 fw_name = AEL2005_OPT_EDC_NAME;
1029                 break;
1030         case EDC_TWX_AEL2005:
1031                 fw_name = AEL2005_TWX_EDC_NAME;
1032                 break;
1033         case EDC_TWX_AEL2020:
1034                 fw_name = AEL2020_TWX_EDC_NAME;
1035                 break;
1036         }
1037         return fw_name;
1038 }
1039
1040 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1041 {
1042         struct adapter *adapter = phy->adapter;
1043         const struct firmware *fw;
1044         char buf[64];
1045         u32 csum;
1046         const __be32 *p;
1047         u16 *cache = phy->phy_cache;
1048         int i, ret;
1049
1050         snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1051
1052         ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1053         if (ret < 0) {
1054                 dev_err(&adapter->pdev->dev,
1055                         "could not upgrade firmware: unable to load %s\n",
1056                         buf);
1057                 return ret;
1058         }
1059
1060         /* check size, take checksum in account */
1061         if (fw->size > size + 4) {
1062                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1063                        (unsigned int)fw->size, size + 4);
1064                 ret = -EINVAL;
1065         }
1066
1067         /* compute checksum */
1068         p = (const __be32 *)fw->data;
1069         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1070                 csum += ntohl(p[i]);
1071
1072         if (csum != 0xffffffff) {
1073                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1074                        csum);
1075                 ret = -EINVAL;
1076         }
1077
1078         for (i = 0; i < size / 4 ; i++) {
1079                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1080                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1081         }
1082
1083         release_firmware(fw);
1084
1085         return ret;
1086 }
1087
1088 static int upgrade_fw(struct adapter *adap)
1089 {
1090         int ret;
1091         const struct firmware *fw;
1092         struct device *dev = &adap->pdev->dev;
1093
1094         ret = request_firmware(&fw, FW_FNAME, dev);
1095         if (ret < 0) {
1096                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1097                         FW_FNAME);
1098                 return ret;
1099         }
1100         ret = t3_load_fw(adap, fw->data, fw->size);
1101         release_firmware(fw);
1102
1103         if (ret == 0)
1104                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1105                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1106         else
1107                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1108                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1109
1110         return ret;
1111 }
1112
1113 static inline char t3rev2char(struct adapter *adapter)
1114 {
1115         char rev = 0;
1116
1117         switch(adapter->params.rev) {
1118         case T3_REV_B:
1119         case T3_REV_B2:
1120                 rev = 'b';
1121                 break;
1122         case T3_REV_C:
1123                 rev = 'c';
1124                 break;
1125         }
1126         return rev;
1127 }
1128
1129 static int update_tpsram(struct adapter *adap)
1130 {
1131         const struct firmware *tpsram;
1132         char buf[64];
1133         struct device *dev = &adap->pdev->dev;
1134         int ret;
1135         char rev;
1136
1137         rev = t3rev2char(adap);
1138         if (!rev)
1139                 return 0;
1140
1141         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1142
1143         ret = request_firmware(&tpsram, buf, dev);
1144         if (ret < 0) {
1145                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1146                         buf);
1147                 return ret;
1148         }
1149
1150         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1151         if (ret)
1152                 goto release_tpsram;
1153
1154         ret = t3_set_proto_sram(adap, tpsram->data);
1155         if (ret == 0)
1156                 dev_info(dev,
1157                          "successful update of protocol engine "
1158                          "to %d.%d.%d\n",
1159                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1160         else
1161                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1162                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1163         if (ret)
1164                 dev_err(dev, "loading protocol SRAM failed\n");
1165
1166 release_tpsram:
1167         release_firmware(tpsram);
1168
1169         return ret;
1170 }
1171
1172 /**
1173  *      cxgb_up - enable the adapter
1174  *      @adapter: adapter being enabled
1175  *
1176  *      Called when the first port is enabled, this function performs the
1177  *      actions necessary to make an adapter operational, such as completing
1178  *      the initialization of HW modules, and enabling interrupts.
1179  *
1180  *      Must be called with the rtnl lock held.
1181  */
1182 static int cxgb_up(struct adapter *adap)
1183 {
1184         int err;
1185
1186         if (!(adap->flags & FULL_INIT_DONE)) {
1187                 err = t3_check_fw_version(adap);
1188                 if (err == -EINVAL) {
1189                         err = upgrade_fw(adap);
1190                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1191                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1192                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1193                 }
1194
1195                 err = t3_check_tpsram_version(adap);
1196                 if (err == -EINVAL) {
1197                         err = update_tpsram(adap);
1198                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1199                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1200                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1201                 }
1202
1203                 /*
1204                  * Clear interrupts now to catch errors if t3_init_hw fails.
1205                  * We clear them again later as initialization may trigger
1206                  * conditions that can interrupt.
1207                  */
1208                 t3_intr_clear(adap);
1209
1210                 err = t3_init_hw(adap, 0);
1211                 if (err)
1212                         goto out;
1213
1214                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1215                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1216
1217                 err = setup_sge_qsets(adap);
1218                 if (err)
1219                         goto out;
1220
1221                 setup_rss(adap);
1222                 if (!(adap->flags & NAPI_INIT))
1223                         init_napi(adap);
1224
1225                 t3_start_sge_timers(adap);
1226                 adap->flags |= FULL_INIT_DONE;
1227         }
1228
1229         t3_intr_clear(adap);
1230
1231         if (adap->flags & USING_MSIX) {
1232                 name_msix_vecs(adap);
1233                 err = request_irq(adap->msix_info[0].vec,
1234                                   t3_async_intr_handler, 0,
1235                                   adap->msix_info[0].desc, adap);
1236                 if (err)
1237                         goto irq_err;
1238
1239                 err = request_msix_data_irqs(adap);
1240                 if (err) {
1241                         free_irq(adap->msix_info[0].vec, adap);
1242                         goto irq_err;
1243                 }
1244         } else if ((err = request_irq(adap->pdev->irq,
1245                                       t3_intr_handler(adap,
1246                                                       adap->sge.qs[0].rspq.
1247                                                       polling),
1248                                       (adap->flags & USING_MSI) ?
1249                                        0 : IRQF_SHARED,
1250                                       adap->name, adap)))
1251                 goto irq_err;
1252
1253         enable_all_napi(adap);
1254         t3_sge_start(adap);
1255         t3_intr_enable(adap);
1256
1257         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1258             is_offload(adap) && init_tp_parity(adap) == 0)
1259                 adap->flags |= TP_PARITY_INIT;
1260
1261         if (adap->flags & TP_PARITY_INIT) {
1262                 t3_write_reg(adap, A_TP_INT_CAUSE,
1263                              F_CMCACHEPERR | F_ARPLUTPERR);
1264                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1265         }
1266
1267         if (!(adap->flags & QUEUES_BOUND)) {
1268                 err = bind_qsets(adap);
1269                 if (err) {
1270                         CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1271                         t3_intr_disable(adap);
1272                         free_irq_resources(adap);
1273                         goto out;
1274                 }
1275                 adap->flags |= QUEUES_BOUND;
1276         }
1277
1278 out:
1279         return err;
1280 irq_err:
1281         CH_ERR(adap, "request_irq failed, err %d\n", err);
1282         goto out;
1283 }
1284
1285 /*
1286  * Release resources when all the ports and offloading have been stopped.
1287  */
1288 static void cxgb_down(struct adapter *adapter)
1289 {
1290         t3_sge_stop(adapter);
1291         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1292         t3_intr_disable(adapter);
1293         spin_unlock_irq(&adapter->work_lock);
1294
1295         free_irq_resources(adapter);
1296         quiesce_rx(adapter);
1297         t3_sge_stop(adapter);
1298         flush_workqueue(cxgb3_wq);      /* wait for external IRQ handler */
1299 }
1300
1301 static void schedule_chk_task(struct adapter *adap)
1302 {
1303         unsigned int timeo;
1304
1305         timeo = adap->params.linkpoll_period ?
1306             (HZ * adap->params.linkpoll_period) / 10 :
1307             adap->params.stats_update_period * HZ;
1308         if (timeo)
1309                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1310 }
1311
1312 static int offload_open(struct net_device *dev)
1313 {
1314         struct port_info *pi = netdev_priv(dev);
1315         struct adapter *adapter = pi->adapter;
1316         struct t3cdev *tdev = dev2t3cdev(dev);
1317         int adap_up = adapter->open_device_map & PORT_MASK;
1318         int err;
1319
1320         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1321                 return 0;
1322
1323         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1324                 goto out;
1325
1326         t3_tp_set_offload_mode(adapter, 1);
1327         tdev->lldev = adapter->port[0];
1328         err = cxgb3_offload_activate(adapter);
1329         if (err)
1330                 goto out;
1331
1332         init_port_mtus(adapter);
1333         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1334                      adapter->params.b_wnd,
1335                      adapter->params.rev == 0 ?
1336                      adapter->port[0]->mtu : 0xffff);
1337         init_smt(adapter);
1338
1339         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1340                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1341
1342         /* Call back all registered clients */
1343         cxgb3_add_clients(tdev);
1344
1345 out:
1346         /* restore them in case the offload module has changed them */
1347         if (err) {
1348                 t3_tp_set_offload_mode(adapter, 0);
1349                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1350                 cxgb3_set_dummy_ops(tdev);
1351         }
1352         return err;
1353 }
1354
1355 static int offload_close(struct t3cdev *tdev)
1356 {
1357         struct adapter *adapter = tdev2adap(tdev);
1358
1359         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1360                 return 0;
1361
1362         /* Call back all registered clients */
1363         cxgb3_remove_clients(tdev);
1364
1365         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1366
1367         /* Flush work scheduled while releasing TIDs */
1368         flush_scheduled_work();
1369
1370         tdev->lldev = NULL;
1371         cxgb3_set_dummy_ops(tdev);
1372         t3_tp_set_offload_mode(adapter, 0);
1373         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1374
1375         if (!adapter->open_device_map)
1376                 cxgb_down(adapter);
1377
1378         cxgb3_offload_deactivate(adapter);
1379         return 0;
1380 }
1381
1382 static int cxgb_open(struct net_device *dev)
1383 {
1384         struct port_info *pi = netdev_priv(dev);
1385         struct adapter *adapter = pi->adapter;
1386         int other_ports = adapter->open_device_map & PORT_MASK;
1387         int err;
1388
1389         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1390                 return err;
1391
1392         set_bit(pi->port_id, &adapter->open_device_map);
1393         if (is_offload(adapter) && !ofld_disable) {
1394                 err = offload_open(dev);
1395                 if (err)
1396                         printk(KERN_WARNING
1397                                "Could not initialize offload capabilities\n");
1398         }
1399
1400         dev->real_num_tx_queues = pi->nqsets;
1401         link_start(dev);
1402         t3_port_intr_enable(adapter, pi->port_id);
1403         netif_tx_start_all_queues(dev);
1404         if (!other_ports)
1405                 schedule_chk_task(adapter);
1406
1407         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1408         return 0;
1409 }
1410
1411 static int cxgb_close(struct net_device *dev)
1412 {
1413         struct port_info *pi = netdev_priv(dev);
1414         struct adapter *adapter = pi->adapter;
1415
1416         
1417         if (!adapter->open_device_map)
1418                 return 0;
1419
1420         /* Stop link fault interrupts */
1421         t3_xgm_intr_disable(adapter, pi->port_id);
1422         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1423
1424         t3_port_intr_disable(adapter, pi->port_id);
1425         netif_tx_stop_all_queues(dev);
1426         pi->phy.ops->power_down(&pi->phy, 1);
1427         netif_carrier_off(dev);
1428         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1429
1430         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1431         clear_bit(pi->port_id, &adapter->open_device_map);
1432         spin_unlock_irq(&adapter->work_lock);
1433
1434         if (!(adapter->open_device_map & PORT_MASK))
1435                 cancel_delayed_work_sync(&adapter->adap_check_task);
1436
1437         if (!adapter->open_device_map)
1438                 cxgb_down(adapter);
1439
1440         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1441         return 0;
1442 }
1443
1444 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1445 {
1446         struct port_info *pi = netdev_priv(dev);
1447         struct adapter *adapter = pi->adapter;
1448         struct net_device_stats *ns = &pi->netstats;
1449         const struct mac_stats *pstats;
1450
1451         spin_lock(&adapter->stats_lock);
1452         pstats = t3_mac_update_stats(&pi->mac);
1453         spin_unlock(&adapter->stats_lock);
1454
1455         ns->tx_bytes = pstats->tx_octets;
1456         ns->tx_packets = pstats->tx_frames;
1457         ns->rx_bytes = pstats->rx_octets;
1458         ns->rx_packets = pstats->rx_frames;
1459         ns->multicast = pstats->rx_mcast_frames;
1460
1461         ns->tx_errors = pstats->tx_underrun;
1462         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1463             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1464             pstats->rx_fifo_ovfl;
1465
1466         /* detailed rx_errors */
1467         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1468         ns->rx_over_errors = 0;
1469         ns->rx_crc_errors = pstats->rx_fcs_errs;
1470         ns->rx_frame_errors = pstats->rx_symbol_errs;
1471         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1472         ns->rx_missed_errors = pstats->rx_cong_drops;
1473
1474         /* detailed tx_errors */
1475         ns->tx_aborted_errors = 0;
1476         ns->tx_carrier_errors = 0;
1477         ns->tx_fifo_errors = pstats->tx_underrun;
1478         ns->tx_heartbeat_errors = 0;
1479         ns->tx_window_errors = 0;
1480         return ns;
1481 }
1482
1483 static u32 get_msglevel(struct net_device *dev)
1484 {
1485         struct port_info *pi = netdev_priv(dev);
1486         struct adapter *adapter = pi->adapter;
1487
1488         return adapter->msg_enable;
1489 }
1490
1491 static void set_msglevel(struct net_device *dev, u32 val)
1492 {
1493         struct port_info *pi = netdev_priv(dev);
1494         struct adapter *adapter = pi->adapter;
1495
1496         adapter->msg_enable = val;
1497 }
1498
1499 static char stats_strings[][ETH_GSTRING_LEN] = {
1500         "TxOctetsOK         ",
1501         "TxFramesOK         ",
1502         "TxMulticastFramesOK",
1503         "TxBroadcastFramesOK",
1504         "TxPauseFrames      ",
1505         "TxUnderrun         ",
1506         "TxExtUnderrun      ",
1507
1508         "TxFrames64         ",
1509         "TxFrames65To127    ",
1510         "TxFrames128To255   ",
1511         "TxFrames256To511   ",
1512         "TxFrames512To1023  ",
1513         "TxFrames1024To1518 ",
1514         "TxFrames1519ToMax  ",
1515
1516         "RxOctetsOK         ",
1517         "RxFramesOK         ",
1518         "RxMulticastFramesOK",
1519         "RxBroadcastFramesOK",
1520         "RxPauseFrames      ",
1521         "RxFCSErrors        ",
1522         "RxSymbolErrors     ",
1523         "RxShortErrors      ",
1524         "RxJabberErrors     ",
1525         "RxLengthErrors     ",
1526         "RxFIFOoverflow     ",
1527
1528         "RxFrames64         ",
1529         "RxFrames65To127    ",
1530         "RxFrames128To255   ",
1531         "RxFrames256To511   ",
1532         "RxFrames512To1023  ",
1533         "RxFrames1024To1518 ",
1534         "RxFrames1519ToMax  ",
1535
1536         "PhyFIFOErrors      ",
1537         "TSO                ",
1538         "VLANextractions    ",
1539         "VLANinsertions     ",
1540         "TxCsumOffload      ",
1541         "RxCsumGood         ",
1542         "LroAggregated      ",
1543         "LroFlushed         ",
1544         "LroNoDesc          ",
1545         "RxDrops            ",
1546
1547         "CheckTXEnToggled   ",
1548         "CheckResets        ",
1549
1550         "LinkFaults         ",
1551 };
1552
1553 static int get_sset_count(struct net_device *dev, int sset)
1554 {
1555         switch (sset) {
1556         case ETH_SS_STATS:
1557                 return ARRAY_SIZE(stats_strings);
1558         default:
1559                 return -EOPNOTSUPP;
1560         }
1561 }
1562
1563 #define T3_REGMAP_SIZE (3 * 1024)
1564
1565 static int get_regs_len(struct net_device *dev)
1566 {
1567         return T3_REGMAP_SIZE;
1568 }
1569
1570 static int get_eeprom_len(struct net_device *dev)
1571 {
1572         return EEPROMSIZE;
1573 }
1574
1575 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1576 {
1577         struct port_info *pi = netdev_priv(dev);
1578         struct adapter *adapter = pi->adapter;
1579         u32 fw_vers = 0;
1580         u32 tp_vers = 0;
1581
1582         spin_lock(&adapter->stats_lock);
1583         t3_get_fw_version(adapter, &fw_vers);
1584         t3_get_tp_version(adapter, &tp_vers);
1585         spin_unlock(&adapter->stats_lock);
1586
1587         strcpy(info->driver, DRV_NAME);
1588         strcpy(info->version, DRV_VERSION);
1589         strcpy(info->bus_info, pci_name(adapter->pdev));
1590         if (!fw_vers)
1591                 strcpy(info->fw_version, "N/A");
1592         else {
1593                 snprintf(info->fw_version, sizeof(info->fw_version),
1594                          "%s %u.%u.%u TP %u.%u.%u",
1595                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1596                          G_FW_VERSION_MAJOR(fw_vers),
1597                          G_FW_VERSION_MINOR(fw_vers),
1598                          G_FW_VERSION_MICRO(fw_vers),
1599                          G_TP_VERSION_MAJOR(tp_vers),
1600                          G_TP_VERSION_MINOR(tp_vers),
1601                          G_TP_VERSION_MICRO(tp_vers));
1602         }
1603 }
1604
1605 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1606 {
1607         if (stringset == ETH_SS_STATS)
1608                 memcpy(data, stats_strings, sizeof(stats_strings));
1609 }
1610
1611 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1612                                             struct port_info *p, int idx)
1613 {
1614         int i;
1615         unsigned long tot = 0;
1616
1617         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1618                 tot += adapter->sge.qs[i].port_stats[idx];
1619         return tot;
1620 }
1621
1622 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1623                       u64 *data)
1624 {
1625         struct port_info *pi = netdev_priv(dev);
1626         struct adapter *adapter = pi->adapter;
1627         const struct mac_stats *s;
1628
1629         spin_lock(&adapter->stats_lock);
1630         s = t3_mac_update_stats(&pi->mac);
1631         spin_unlock(&adapter->stats_lock);
1632
1633         *data++ = s->tx_octets;
1634         *data++ = s->tx_frames;
1635         *data++ = s->tx_mcast_frames;
1636         *data++ = s->tx_bcast_frames;
1637         *data++ = s->tx_pause;
1638         *data++ = s->tx_underrun;
1639         *data++ = s->tx_fifo_urun;
1640
1641         *data++ = s->tx_frames_64;
1642         *data++ = s->tx_frames_65_127;
1643         *data++ = s->tx_frames_128_255;
1644         *data++ = s->tx_frames_256_511;
1645         *data++ = s->tx_frames_512_1023;
1646         *data++ = s->tx_frames_1024_1518;
1647         *data++ = s->tx_frames_1519_max;
1648
1649         *data++ = s->rx_octets;
1650         *data++ = s->rx_frames;
1651         *data++ = s->rx_mcast_frames;
1652         *data++ = s->rx_bcast_frames;
1653         *data++ = s->rx_pause;
1654         *data++ = s->rx_fcs_errs;
1655         *data++ = s->rx_symbol_errs;
1656         *data++ = s->rx_short;
1657         *data++ = s->rx_jabber;
1658         *data++ = s->rx_too_long;
1659         *data++ = s->rx_fifo_ovfl;
1660
1661         *data++ = s->rx_frames_64;
1662         *data++ = s->rx_frames_65_127;
1663         *data++ = s->rx_frames_128_255;
1664         *data++ = s->rx_frames_256_511;
1665         *data++ = s->rx_frames_512_1023;
1666         *data++ = s->rx_frames_1024_1518;
1667         *data++ = s->rx_frames_1519_max;
1668
1669         *data++ = pi->phy.fifo_errors;
1670
1671         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1672         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1673         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1674         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1675         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1676         *data++ = 0;
1677         *data++ = 0;
1678         *data++ = 0;
1679         *data++ = s->rx_cong_drops;
1680
1681         *data++ = s->num_toggled;
1682         *data++ = s->num_resets;
1683
1684         *data++ = s->link_faults;
1685 }
1686
1687 static inline void reg_block_dump(struct adapter *ap, void *buf,
1688                                   unsigned int start, unsigned int end)
1689 {
1690         u32 *p = buf + start;
1691
1692         for (; start <= end; start += sizeof(u32))
1693                 *p++ = t3_read_reg(ap, start);
1694 }
1695
1696 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1697                      void *buf)
1698 {
1699         struct port_info *pi = netdev_priv(dev);
1700         struct adapter *ap = pi->adapter;
1701
1702         /*
1703          * Version scheme:
1704          * bits 0..9: chip version
1705          * bits 10..15: chip revision
1706          * bit 31: set for PCIe cards
1707          */
1708         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1709
1710         /*
1711          * We skip the MAC statistics registers because they are clear-on-read.
1712          * Also reading multi-register stats would need to synchronize with the
1713          * periodic mac stats accumulation.  Hard to justify the complexity.
1714          */
1715         memset(buf, 0, T3_REGMAP_SIZE);
1716         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1717         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1718         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1719         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1720         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1721         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1722                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1723         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1724                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1725 }
1726
1727 static int restart_autoneg(struct net_device *dev)
1728 {
1729         struct port_info *p = netdev_priv(dev);
1730
1731         if (!netif_running(dev))
1732                 return -EAGAIN;
1733         if (p->link_config.autoneg != AUTONEG_ENABLE)
1734                 return -EINVAL;
1735         p->phy.ops->autoneg_restart(&p->phy);
1736         return 0;
1737 }
1738
1739 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1740 {
1741         struct port_info *pi = netdev_priv(dev);
1742         struct adapter *adapter = pi->adapter;
1743         int i;
1744
1745         if (data == 0)
1746                 data = 2;
1747
1748         for (i = 0; i < data * 2; i++) {
1749                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1750                                  (i & 1) ? F_GPIO0_OUT_VAL : 0);
1751                 if (msleep_interruptible(500))
1752                         break;
1753         }
1754         t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1755                          F_GPIO0_OUT_VAL);
1756         return 0;
1757 }
1758
1759 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1760 {
1761         struct port_info *p = netdev_priv(dev);
1762
1763         cmd->supported = p->link_config.supported;
1764         cmd->advertising = p->link_config.advertising;
1765
1766         if (netif_carrier_ok(dev)) {
1767                 cmd->speed = p->link_config.speed;
1768                 cmd->duplex = p->link_config.duplex;
1769         } else {
1770                 cmd->speed = -1;
1771                 cmd->duplex = -1;
1772         }
1773
1774         cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1775         cmd->phy_address = p->phy.mdio.prtad;
1776         cmd->transceiver = XCVR_EXTERNAL;
1777         cmd->autoneg = p->link_config.autoneg;
1778         cmd->maxtxpkt = 0;
1779         cmd->maxrxpkt = 0;
1780         return 0;
1781 }
1782
1783 static int speed_duplex_to_caps(int speed, int duplex)
1784 {
1785         int cap = 0;
1786
1787         switch (speed) {
1788         case SPEED_10:
1789                 if (duplex == DUPLEX_FULL)
1790                         cap = SUPPORTED_10baseT_Full;
1791                 else
1792                         cap = SUPPORTED_10baseT_Half;
1793                 break;
1794         case SPEED_100:
1795                 if (duplex == DUPLEX_FULL)
1796                         cap = SUPPORTED_100baseT_Full;
1797                 else
1798                         cap = SUPPORTED_100baseT_Half;
1799                 break;
1800         case SPEED_1000:
1801                 if (duplex == DUPLEX_FULL)
1802                         cap = SUPPORTED_1000baseT_Full;
1803                 else
1804                         cap = SUPPORTED_1000baseT_Half;
1805                 break;
1806         case SPEED_10000:
1807                 if (duplex == DUPLEX_FULL)
1808                         cap = SUPPORTED_10000baseT_Full;
1809         }
1810         return cap;
1811 }
1812
1813 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1814                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1815                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1816                       ADVERTISED_10000baseT_Full)
1817
1818 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1819 {
1820         struct port_info *p = netdev_priv(dev);
1821         struct link_config *lc = &p->link_config;
1822
1823         if (!(lc->supported & SUPPORTED_Autoneg)) {
1824                 /*
1825                  * PHY offers a single speed/duplex.  See if that's what's
1826                  * being requested.
1827                  */
1828                 if (cmd->autoneg == AUTONEG_DISABLE) {
1829                         int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1830                         if (lc->supported & cap)
1831                                 return 0;
1832                 }
1833                 return -EINVAL;
1834         }
1835
1836         if (cmd->autoneg == AUTONEG_DISABLE) {
1837                 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1838
1839                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1840                         return -EINVAL;
1841                 lc->requested_speed = cmd->speed;
1842                 lc->requested_duplex = cmd->duplex;
1843                 lc->advertising = 0;
1844         } else {
1845                 cmd->advertising &= ADVERTISED_MASK;
1846                 cmd->advertising &= lc->supported;
1847                 if (!cmd->advertising)
1848                         return -EINVAL;
1849                 lc->requested_speed = SPEED_INVALID;
1850                 lc->requested_duplex = DUPLEX_INVALID;
1851                 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1852         }
1853         lc->autoneg = cmd->autoneg;
1854         if (netif_running(dev))
1855                 t3_link_start(&p->phy, &p->mac, lc);
1856         return 0;
1857 }
1858
1859 static void get_pauseparam(struct net_device *dev,
1860                            struct ethtool_pauseparam *epause)
1861 {
1862         struct port_info *p = netdev_priv(dev);
1863
1864         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1865         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1866         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1867 }
1868
1869 static int set_pauseparam(struct net_device *dev,
1870                           struct ethtool_pauseparam *epause)
1871 {
1872         struct port_info *p = netdev_priv(dev);
1873         struct link_config *lc = &p->link_config;
1874
1875         if (epause->autoneg == AUTONEG_DISABLE)
1876                 lc->requested_fc = 0;
1877         else if (lc->supported & SUPPORTED_Autoneg)
1878                 lc->requested_fc = PAUSE_AUTONEG;
1879         else
1880                 return -EINVAL;
1881
1882         if (epause->rx_pause)
1883                 lc->requested_fc |= PAUSE_RX;
1884         if (epause->tx_pause)
1885                 lc->requested_fc |= PAUSE_TX;
1886         if (lc->autoneg == AUTONEG_ENABLE) {
1887                 if (netif_running(dev))
1888                         t3_link_start(&p->phy, &p->mac, lc);
1889         } else {
1890                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1891                 if (netif_running(dev))
1892                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1893         }
1894         return 0;
1895 }
1896
1897 static u32 get_rx_csum(struct net_device *dev)
1898 {
1899         struct port_info *p = netdev_priv(dev);
1900
1901         return p->rx_offload & T3_RX_CSUM;
1902 }
1903
1904 static int set_rx_csum(struct net_device *dev, u32 data)
1905 {
1906         struct port_info *p = netdev_priv(dev);
1907
1908         if (data) {
1909                 p->rx_offload |= T3_RX_CSUM;
1910         } else {
1911                 int i;
1912
1913                 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1914                 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1915                         set_qset_lro(dev, i, 0);
1916         }
1917         return 0;
1918 }
1919
1920 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1921 {
1922         struct port_info *pi = netdev_priv(dev);
1923         struct adapter *adapter = pi->adapter;
1924         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1925
1926         e->rx_max_pending = MAX_RX_BUFFERS;
1927         e->rx_mini_max_pending = 0;
1928         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1929         e->tx_max_pending = MAX_TXQ_ENTRIES;
1930
1931         e->rx_pending = q->fl_size;
1932         e->rx_mini_pending = q->rspq_size;
1933         e->rx_jumbo_pending = q->jumbo_size;
1934         e->tx_pending = q->txq_size[0];
1935 }
1936
1937 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1938 {
1939         struct port_info *pi = netdev_priv(dev);
1940         struct adapter *adapter = pi->adapter;
1941         struct qset_params *q;
1942         int i;
1943
1944         if (e->rx_pending > MAX_RX_BUFFERS ||
1945             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1946             e->tx_pending > MAX_TXQ_ENTRIES ||
1947             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1948             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1949             e->rx_pending < MIN_FL_ENTRIES ||
1950             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1951             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1952                 return -EINVAL;
1953
1954         if (adapter->flags & FULL_INIT_DONE)
1955                 return -EBUSY;
1956
1957         q = &adapter->params.sge.qset[pi->first_qset];
1958         for (i = 0; i < pi->nqsets; ++i, ++q) {
1959                 q->rspq_size = e->rx_mini_pending;
1960                 q->fl_size = e->rx_pending;
1961                 q->jumbo_size = e->rx_jumbo_pending;
1962                 q->txq_size[0] = e->tx_pending;
1963                 q->txq_size[1] = e->tx_pending;
1964                 q->txq_size[2] = e->tx_pending;
1965         }
1966         return 0;
1967 }
1968
1969 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1970 {
1971         struct port_info *pi = netdev_priv(dev);
1972         struct adapter *adapter = pi->adapter;
1973         struct qset_params *qsp = &adapter->params.sge.qset[0];
1974         struct sge_qset *qs = &adapter->sge.qs[0];
1975
1976         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1977                 return -EINVAL;
1978
1979         qsp->coalesce_usecs = c->rx_coalesce_usecs;
1980         t3_update_qset_coalesce(qs, qsp);
1981         return 0;
1982 }
1983
1984 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1985 {
1986         struct port_info *pi = netdev_priv(dev);
1987         struct adapter *adapter = pi->adapter;
1988         struct qset_params *q = adapter->params.sge.qset;
1989
1990         c->rx_coalesce_usecs = q->coalesce_usecs;
1991         return 0;
1992 }
1993
1994 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1995                       u8 * data)
1996 {
1997         struct port_info *pi = netdev_priv(dev);
1998         struct adapter *adapter = pi->adapter;
1999         int i, err = 0;
2000
2001         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2002         if (!buf)
2003                 return -ENOMEM;
2004
2005         e->magic = EEPROM_MAGIC;
2006         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2007                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2008
2009         if (!err)
2010                 memcpy(data, buf + e->offset, e->len);
2011         kfree(buf);
2012         return err;
2013 }
2014
2015 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2016                       u8 * data)
2017 {
2018         struct port_info *pi = netdev_priv(dev);
2019         struct adapter *adapter = pi->adapter;
2020         u32 aligned_offset, aligned_len;
2021         __le32 *p;
2022         u8 *buf;
2023         int err;
2024
2025         if (eeprom->magic != EEPROM_MAGIC)
2026                 return -EINVAL;
2027
2028         aligned_offset = eeprom->offset & ~3;
2029         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2030
2031         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2032                 buf = kmalloc(aligned_len, GFP_KERNEL);
2033                 if (!buf)
2034                         return -ENOMEM;
2035                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2036                 if (!err && aligned_len > 4)
2037                         err = t3_seeprom_read(adapter,
2038                                               aligned_offset + aligned_len - 4,
2039                                               (__le32 *) & buf[aligned_len - 4]);
2040                 if (err)
2041                         goto out;
2042                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2043         } else
2044                 buf = data;
2045
2046         err = t3_seeprom_wp(adapter, 0);
2047         if (err)
2048                 goto out;
2049
2050         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2051                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2052                 aligned_offset += 4;
2053         }
2054
2055         if (!err)
2056                 err = t3_seeprom_wp(adapter, 1);
2057 out:
2058         if (buf != data)
2059                 kfree(buf);
2060         return err;
2061 }
2062
2063 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2064 {
2065         wol->supported = 0;
2066         wol->wolopts = 0;
2067         memset(&wol->sopass, 0, sizeof(wol->sopass));
2068 }
2069
2070 static const struct ethtool_ops cxgb_ethtool_ops = {
2071         .get_settings = get_settings,
2072         .set_settings = set_settings,
2073         .get_drvinfo = get_drvinfo,
2074         .get_msglevel = get_msglevel,
2075         .set_msglevel = set_msglevel,
2076         .get_ringparam = get_sge_param,
2077         .set_ringparam = set_sge_param,
2078         .get_coalesce = get_coalesce,
2079         .set_coalesce = set_coalesce,
2080         .get_eeprom_len = get_eeprom_len,
2081         .get_eeprom = get_eeprom,
2082         .set_eeprom = set_eeprom,
2083         .get_pauseparam = get_pauseparam,
2084         .set_pauseparam = set_pauseparam,
2085         .get_rx_csum = get_rx_csum,
2086         .set_rx_csum = set_rx_csum,
2087         .set_tx_csum = ethtool_op_set_tx_csum,
2088         .set_sg = ethtool_op_set_sg,
2089         .get_link = ethtool_op_get_link,
2090         .get_strings = get_strings,
2091         .phys_id = cxgb3_phys_id,
2092         .nway_reset = restart_autoneg,
2093         .get_sset_count = get_sset_count,
2094         .get_ethtool_stats = get_stats,
2095         .get_regs_len = get_regs_len,
2096         .get_regs = get_regs,
2097         .get_wol = get_wol,
2098         .set_tso = ethtool_op_set_tso,
2099 };
2100
2101 static int in_range(int val, int lo, int hi)
2102 {
2103         return val < 0 || (val <= hi && val >= lo);
2104 }
2105
2106 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2107 {
2108         struct port_info *pi = netdev_priv(dev);
2109         struct adapter *adapter = pi->adapter;
2110         u32 cmd;
2111         int ret;
2112
2113         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2114                 return -EFAULT;
2115
2116         switch (cmd) {
2117         case CHELSIO_SET_QSET_PARAMS:{
2118                 int i;
2119                 struct qset_params *q;
2120                 struct ch_qset_params t;
2121                 int q1 = pi->first_qset;
2122                 int nqsets = pi->nqsets;
2123
2124                 if (!capable(CAP_NET_ADMIN))
2125                         return -EPERM;
2126                 if (copy_from_user(&t, useraddr, sizeof(t)))
2127                         return -EFAULT;
2128                 if (t.qset_idx >= SGE_QSETS)
2129                         return -EINVAL;
2130                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2131                     !in_range(t.cong_thres, 0, 255) ||
2132                     !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2133                               MAX_TXQ_ENTRIES) ||
2134                     !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2135                               MAX_TXQ_ENTRIES) ||
2136                     !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2137                               MAX_CTRL_TXQ_ENTRIES) ||
2138                     !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2139                               MAX_RX_BUFFERS) ||
2140                     !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2141                               MAX_RX_JUMBO_BUFFERS) ||
2142                     !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2143                               MAX_RSPQ_ENTRIES))
2144                         return -EINVAL;
2145
2146                 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2147                         for_each_port(adapter, i) {
2148                                 pi = adap2pinfo(adapter, i);
2149                                 if (t.qset_idx >= pi->first_qset &&
2150                                     t.qset_idx < pi->first_qset + pi->nqsets &&
2151                                     !(pi->rx_offload & T3_RX_CSUM))
2152                                         return -EINVAL;
2153                         }
2154
2155                 if ((adapter->flags & FULL_INIT_DONE) &&
2156                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2157                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2158                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2159                         t.polling >= 0 || t.cong_thres >= 0))
2160                         return -EBUSY;
2161
2162                 /* Allow setting of any available qset when offload enabled */
2163                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2164                         q1 = 0;
2165                         for_each_port(adapter, i) {
2166                                 pi = adap2pinfo(adapter, i);
2167                                 nqsets += pi->first_qset + pi->nqsets;
2168                         }
2169                 }
2170
2171                 if (t.qset_idx < q1)
2172                         return -EINVAL;
2173                 if (t.qset_idx > q1 + nqsets - 1)
2174                         return -EINVAL;
2175
2176                 q = &adapter->params.sge.qset[t.qset_idx];
2177
2178                 if (t.rspq_size >= 0)
2179                         q->rspq_size = t.rspq_size;
2180                 if (t.fl_size[0] >= 0)
2181                         q->fl_size = t.fl_size[0];
2182                 if (t.fl_size[1] >= 0)
2183                         q->jumbo_size = t.fl_size[1];
2184                 if (t.txq_size[0] >= 0)
2185                         q->txq_size[0] = t.txq_size[0];
2186                 if (t.txq_size[1] >= 0)
2187                         q->txq_size[1] = t.txq_size[1];
2188                 if (t.txq_size[2] >= 0)
2189                         q->txq_size[2] = t.txq_size[2];
2190                 if (t.cong_thres >= 0)
2191                         q->cong_thres = t.cong_thres;
2192                 if (t.intr_lat >= 0) {
2193                         struct sge_qset *qs =
2194                                 &adapter->sge.qs[t.qset_idx];
2195
2196                         q->coalesce_usecs = t.intr_lat;
2197                         t3_update_qset_coalesce(qs, q);
2198                 }
2199                 if (t.polling >= 0) {
2200                         if (adapter->flags & USING_MSIX)
2201                                 q->polling = t.polling;
2202                         else {
2203                                 /* No polling with INTx for T3A */
2204                                 if (adapter->params.rev == 0 &&
2205                                         !(adapter->flags & USING_MSI))
2206                                         t.polling = 0;
2207
2208                                 for (i = 0; i < SGE_QSETS; i++) {
2209                                         q = &adapter->params.sge.
2210                                                 qset[i];
2211                                         q->polling = t.polling;
2212                                 }
2213                         }
2214                 }
2215                 if (t.lro >= 0)
2216                         set_qset_lro(dev, t.qset_idx, t.lro);
2217
2218                 break;
2219         }
2220         case CHELSIO_GET_QSET_PARAMS:{
2221                 struct qset_params *q;
2222                 struct ch_qset_params t;
2223                 int q1 = pi->first_qset;
2224                 int nqsets = pi->nqsets;
2225                 int i;
2226
2227                 if (copy_from_user(&t, useraddr, sizeof(t)))
2228                         return -EFAULT;
2229
2230                 /* Display qsets for all ports when offload enabled */
2231                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2232                         q1 = 0;
2233                         for_each_port(adapter, i) {
2234                                 pi = adap2pinfo(adapter, i);
2235                                 nqsets = pi->first_qset + pi->nqsets;
2236                         }
2237                 }
2238
2239                 if (t.qset_idx >= nqsets)
2240                         return -EINVAL;
2241
2242                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2243                 t.rspq_size = q->rspq_size;
2244                 t.txq_size[0] = q->txq_size[0];
2245                 t.txq_size[1] = q->txq_size[1];
2246                 t.txq_size[2] = q->txq_size[2];
2247                 t.fl_size[0] = q->fl_size;
2248                 t.fl_size[1] = q->jumbo_size;
2249                 t.polling = q->polling;
2250                 t.lro = q->lro;
2251                 t.intr_lat = q->coalesce_usecs;
2252                 t.cong_thres = q->cong_thres;
2253                 t.qnum = q1;
2254
2255                 if (adapter->flags & USING_MSIX)
2256                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2257                 else
2258                         t.vector = adapter->pdev->irq;
2259
2260                 if (copy_to_user(useraddr, &t, sizeof(t)))
2261                         return -EFAULT;
2262                 break;
2263         }
2264         case CHELSIO_SET_QSET_NUM:{
2265                 struct ch_reg edata;
2266                 unsigned int i, first_qset = 0, other_qsets = 0;
2267
2268                 if (!capable(CAP_NET_ADMIN))
2269                         return -EPERM;
2270                 if (adapter->flags & FULL_INIT_DONE)
2271                         return -EBUSY;
2272                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2273                         return -EFAULT;
2274                 if (edata.val < 1 ||
2275                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2276                         return -EINVAL;
2277
2278                 for_each_port(adapter, i)
2279                         if (adapter->port[i] && adapter->port[i] != dev)
2280                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2281
2282                 if (edata.val + other_qsets > SGE_QSETS)
2283                         return -EINVAL;
2284
2285                 pi->nqsets = edata.val;
2286
2287                 for_each_port(adapter, i)
2288                         if (adapter->port[i]) {
2289                                 pi = adap2pinfo(adapter, i);
2290                                 pi->first_qset = first_qset;
2291                                 first_qset += pi->nqsets;
2292                         }
2293                 break;
2294         }
2295         case CHELSIO_GET_QSET_NUM:{
2296                 struct ch_reg edata;
2297
2298                 edata.cmd = CHELSIO_GET_QSET_NUM;
2299                 edata.val = pi->nqsets;
2300                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2301                         return -EFAULT;
2302                 break;
2303         }
2304         case CHELSIO_LOAD_FW:{
2305                 u8 *fw_data;
2306                 struct ch_mem_range t;
2307
2308                 if (!capable(CAP_SYS_RAWIO))
2309                         return -EPERM;
2310                 if (copy_from_user(&t, useraddr, sizeof(t)))
2311                         return -EFAULT;
2312                 /* Check t.len sanity ? */
2313                 fw_data = kmalloc(t.len, GFP_KERNEL);
2314                 if (!fw_data)
2315                         return -ENOMEM;
2316
2317                 if (copy_from_user
2318                         (fw_data, useraddr + sizeof(t), t.len)) {
2319                         kfree(fw_data);
2320                         return -EFAULT;
2321                 }
2322
2323                 ret = t3_load_fw(adapter, fw_data, t.len);
2324                 kfree(fw_data);
2325                 if (ret)
2326                         return ret;
2327                 break;
2328         }
2329         case CHELSIO_SETMTUTAB:{
2330                 struct ch_mtus m;
2331                 int i;
2332
2333                 if (!is_offload(adapter))
2334                         return -EOPNOTSUPP;
2335                 if (!capable(CAP_NET_ADMIN))
2336                         return -EPERM;
2337                 if (offload_running(adapter))
2338                         return -EBUSY;
2339                 if (copy_from_user(&m, useraddr, sizeof(m)))
2340                         return -EFAULT;
2341                 if (m.nmtus != NMTUS)
2342                         return -EINVAL;
2343                 if (m.mtus[0] < 81)     /* accommodate SACK */
2344                         return -EINVAL;
2345
2346                 /* MTUs must be in ascending order */
2347                 for (i = 1; i < NMTUS; ++i)
2348                         if (m.mtus[i] < m.mtus[i - 1])
2349                                 return -EINVAL;
2350
2351                 memcpy(adapter->params.mtus, m.mtus,
2352                         sizeof(adapter->params.mtus));
2353                 break;
2354         }
2355         case CHELSIO_GET_PM:{
2356                 struct tp_params *p = &adapter->params.tp;
2357                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2358
2359                 if (!is_offload(adapter))
2360                         return -EOPNOTSUPP;
2361                 m.tx_pg_sz = p->tx_pg_size;
2362                 m.tx_num_pg = p->tx_num_pgs;
2363                 m.rx_pg_sz = p->rx_pg_size;
2364                 m.rx_num_pg = p->rx_num_pgs;
2365                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2366                 if (copy_to_user(useraddr, &m, sizeof(m)))
2367                         return -EFAULT;
2368                 break;
2369         }
2370         case CHELSIO_SET_PM:{
2371                 struct ch_pm m;
2372                 struct tp_params *p = &adapter->params.tp;
2373
2374                 if (!is_offload(adapter))
2375                         return -EOPNOTSUPP;
2376                 if (!capable(CAP_NET_ADMIN))
2377                         return -EPERM;
2378                 if (adapter->flags & FULL_INIT_DONE)
2379                         return -EBUSY;
2380                 if (copy_from_user(&m, useraddr, sizeof(m)))
2381                         return -EFAULT;
2382                 if (!is_power_of_2(m.rx_pg_sz) ||
2383                         !is_power_of_2(m.tx_pg_sz))
2384                         return -EINVAL; /* not power of 2 */
2385                 if (!(m.rx_pg_sz & 0x14000))
2386                         return -EINVAL; /* not 16KB or 64KB */
2387                 if (!(m.tx_pg_sz & 0x1554000))
2388                         return -EINVAL;
2389                 if (m.tx_num_pg == -1)
2390                         m.tx_num_pg = p->tx_num_pgs;
2391                 if (m.rx_num_pg == -1)
2392                         m.rx_num_pg = p->rx_num_pgs;
2393                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2394                         return -EINVAL;
2395                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2396                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2397                         return -EINVAL;
2398                 p->rx_pg_size = m.rx_pg_sz;
2399                 p->tx_pg_size = m.tx_pg_sz;
2400                 p->rx_num_pgs = m.rx_num_pg;
2401                 p->tx_num_pgs = m.tx_num_pg;
2402                 break;
2403         }
2404         case CHELSIO_GET_MEM:{
2405                 struct ch_mem_range t;
2406                 struct mc7 *mem;
2407                 u64 buf[32];
2408
2409                 if (!is_offload(adapter))
2410                         return -EOPNOTSUPP;
2411                 if (!(adapter->flags & FULL_INIT_DONE))
2412                         return -EIO;    /* need the memory controllers */
2413                 if (copy_from_user(&t, useraddr, sizeof(t)))
2414                         return -EFAULT;
2415                 if ((t.addr & 7) || (t.len & 7))
2416                         return -EINVAL;
2417                 if (t.mem_id == MEM_CM)
2418                         mem = &adapter->cm;
2419                 else if (t.mem_id == MEM_PMRX)
2420                         mem = &adapter->pmrx;
2421                 else if (t.mem_id == MEM_PMTX)
2422                         mem = &adapter->pmtx;
2423                 else
2424                         return -EINVAL;
2425
2426                 /*
2427                  * Version scheme:
2428                  * bits 0..9: chip version
2429                  * bits 10..15: chip revision
2430                  */
2431                 t.version = 3 | (adapter->params.rev << 10);
2432                 if (copy_to_user(useraddr, &t, sizeof(t)))
2433                         return -EFAULT;
2434
2435                 /*
2436                  * Read 256 bytes at a time as len can be large and we don't
2437                  * want to use huge intermediate buffers.
2438                  */
2439                 useraddr += sizeof(t);  /* advance to start of buffer */
2440                 while (t.len) {
2441                         unsigned int chunk =
2442                                 min_t(unsigned int, t.len, sizeof(buf));
2443
2444                         ret =
2445                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2446                                                 buf);
2447                         if (ret)
2448                                 return ret;
2449                         if (copy_to_user(useraddr, buf, chunk))
2450                                 return -EFAULT;
2451                         useraddr += chunk;
2452                         t.addr += chunk;
2453                         t.len -= chunk;
2454                 }
2455                 break;
2456         }
2457         case CHELSIO_SET_TRACE_FILTER:{
2458                 struct ch_trace t;
2459                 const struct trace_params *tp;
2460
2461                 if (!capable(CAP_NET_ADMIN))
2462                         return -EPERM;
2463                 if (!offload_running(adapter))
2464                         return -EAGAIN;
2465                 if (copy_from_user(&t, useraddr, sizeof(t)))
2466                         return -EFAULT;
2467
2468                 tp = (const struct trace_params *)&t.sip;
2469                 if (t.config_tx)
2470                         t3_config_trace_filter(adapter, tp, 0,
2471                                                 t.invert_match,
2472                                                 t.trace_tx);
2473                 if (t.config_rx)
2474                         t3_config_trace_filter(adapter, tp, 1,
2475                                                 t.invert_match,
2476                                                 t.trace_rx);
2477                 break;
2478         }
2479         default:
2480                 return -EOPNOTSUPP;
2481         }
2482         return 0;
2483 }
2484
2485 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2486 {
2487         struct mii_ioctl_data *data = if_mii(req);
2488         struct port_info *pi = netdev_priv(dev);
2489         struct adapter *adapter = pi->adapter;
2490
2491         switch (cmd) {
2492         case SIOCGMIIREG:
2493         case SIOCSMIIREG:
2494                 /* Convert phy_id from older PRTAD/DEVAD format */
2495                 if (is_10G(adapter) &&
2496                     !mdio_phy_id_is_c45(data->phy_id) &&
2497                     (data->phy_id & 0x1f00) &&
2498                     !(data->phy_id & 0xe0e0))
2499                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2500                                                        data->phy_id & 0x1f);
2501                 /* FALLTHRU */
2502         case SIOCGMIIPHY:
2503                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2504         case SIOCCHIOCTL:
2505                 return cxgb_extension_ioctl(dev, req->ifr_data);
2506         default:
2507                 return -EOPNOTSUPP;
2508         }
2509 }
2510
2511 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2512 {
2513         struct port_info *pi = netdev_priv(dev);
2514         struct adapter *adapter = pi->adapter;
2515         int ret;
2516
2517         if (new_mtu < 81)       /* accommodate SACK */
2518                 return -EINVAL;
2519         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2520                 return ret;
2521         dev->mtu = new_mtu;
2522         init_port_mtus(adapter);
2523         if (adapter->params.rev == 0 && offload_running(adapter))
2524                 t3_load_mtus(adapter, adapter->params.mtus,
2525                              adapter->params.a_wnd, adapter->params.b_wnd,
2526                              adapter->port[0]->mtu);
2527         return 0;
2528 }
2529
2530 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2531 {
2532         struct port_info *pi = netdev_priv(dev);
2533         struct adapter *adapter = pi->adapter;
2534         struct sockaddr *addr = p;
2535
2536         if (!is_valid_ether_addr(addr->sa_data))
2537                 return -EINVAL;
2538
2539         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2540         t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2541         if (offload_running(adapter))
2542                 write_smt_entry(adapter, pi->port_id);
2543         return 0;
2544 }
2545
2546 /**
2547  * t3_synchronize_rx - wait for current Rx processing on a port to complete
2548  * @adap: the adapter
2549  * @p: the port
2550  *
2551  * Ensures that current Rx processing on any of the queues associated with
2552  * the given port completes before returning.  We do this by acquiring and
2553  * releasing the locks of the response queues associated with the port.
2554  */
2555 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2556 {
2557         int i;
2558
2559         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2560                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2561
2562                 spin_lock_irq(&q->lock);
2563                 spin_unlock_irq(&q->lock);
2564         }
2565 }
2566
2567 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2568 {
2569         struct port_info *pi = netdev_priv(dev);
2570         struct adapter *adapter = pi->adapter;
2571
2572         pi->vlan_grp = grp;
2573         if (adapter->params.rev > 0)
2574                 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2575         else {
2576                 /* single control for all ports */
2577                 unsigned int i, have_vlans = 0;
2578                 for_each_port(adapter, i)
2579                     have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2580
2581                 t3_set_vlan_accel(adapter, 1, have_vlans);
2582         }
2583         t3_synchronize_rx(adapter, pi);
2584 }
2585
2586 #ifdef CONFIG_NET_POLL_CONTROLLER
2587 static void cxgb_netpoll(struct net_device *dev)
2588 {
2589         struct port_info *pi = netdev_priv(dev);
2590         struct adapter *adapter = pi->adapter;
2591         int qidx;
2592
2593         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2594                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2595                 void *source;
2596
2597                 if (adapter->flags & USING_MSIX)
2598                         source = qs;
2599                 else
2600                         source = adapter;
2601
2602                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2603         }
2604 }
2605 #endif
2606
2607 /*
2608  * Periodic accumulation of MAC statistics.
2609  */
2610 static void mac_stats_update(struct adapter *adapter)
2611 {
2612         int i;
2613
2614         for_each_port(adapter, i) {
2615                 struct net_device *dev = adapter->port[i];
2616                 struct port_info *p = netdev_priv(dev);
2617
2618                 if (netif_running(dev)) {
2619                         spin_lock(&adapter->stats_lock);
2620                         t3_mac_update_stats(&p->mac);
2621                         spin_unlock(&adapter->stats_lock);
2622                 }
2623         }
2624 }
2625
2626 static void check_link_status(struct adapter *adapter)
2627 {
2628         int i;
2629
2630         for_each_port(adapter, i) {
2631                 struct net_device *dev = adapter->port[i];
2632                 struct port_info *p = netdev_priv(dev);
2633                 int link_fault;
2634
2635                 spin_lock_irq(&adapter->work_lock);
2636                 link_fault = p->link_fault;
2637                 spin_unlock_irq(&adapter->work_lock);
2638
2639                 if (link_fault) {
2640                         t3_link_fault(adapter, i);
2641                         continue;
2642                 }
2643
2644                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2645                         t3_xgm_intr_disable(adapter, i);
2646                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2647
2648                         t3_link_changed(adapter, i);
2649                         t3_xgm_intr_enable(adapter, i);
2650                 }
2651         }
2652 }
2653
2654 static void check_t3b2_mac(struct adapter *adapter)
2655 {
2656         int i;
2657
2658         if (!rtnl_trylock())    /* synchronize with ifdown */
2659                 return;
2660
2661         for_each_port(adapter, i) {
2662                 struct net_device *dev = adapter->port[i];
2663                 struct port_info *p = netdev_priv(dev);
2664                 int status;
2665
2666                 if (!netif_running(dev))
2667                         continue;
2668
2669                 status = 0;
2670                 if (netif_running(dev) && netif_carrier_ok(dev))
2671                         status = t3b2_mac_watchdog_task(&p->mac);
2672                 if (status == 1)
2673                         p->mac.stats.num_toggled++;
2674                 else if (status == 2) {
2675                         struct cmac *mac = &p->mac;
2676
2677                         t3_mac_set_mtu(mac, dev->mtu);
2678                         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2679                         cxgb_set_rxmode(dev);
2680                         t3_link_start(&p->phy, mac, &p->link_config);
2681                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2682                         t3_port_intr_enable(adapter, p->port_id);
2683                         p->mac.stats.num_resets++;
2684                 }
2685         }
2686         rtnl_unlock();
2687 }
2688
2689
2690 static void t3_adap_check_task(struct work_struct *work)
2691 {
2692         struct adapter *adapter = container_of(work, struct adapter,
2693                                                adap_check_task.work);
2694         const struct adapter_params *p = &adapter->params;
2695         int port;
2696         unsigned int v, status, reset;
2697
2698         adapter->check_task_cnt++;
2699
2700         check_link_status(adapter);
2701
2702         /* Accumulate MAC stats if needed */
2703         if (!p->linkpoll_period ||
2704             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2705             p->stats_update_period) {
2706                 mac_stats_update(adapter);
2707                 adapter->check_task_cnt = 0;
2708         }
2709
2710         if (p->rev == T3_REV_B2)
2711                 check_t3b2_mac(adapter);
2712
2713         /*
2714          * Scan the XGMAC's to check for various conditions which we want to
2715          * monitor in a periodic polling manner rather than via an interrupt
2716          * condition.  This is used for conditions which would otherwise flood
2717          * the system with interrupts and we only really need to know that the
2718          * conditions are "happening" ...  For each condition we count the
2719          * detection of the condition and reset it for the next polling loop.
2720          */
2721         for_each_port(adapter, port) {
2722                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2723                 u32 cause;
2724
2725                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2726                 reset = 0;
2727                 if (cause & F_RXFIFO_OVERFLOW) {
2728                         mac->stats.rx_fifo_ovfl++;
2729                         reset |= F_RXFIFO_OVERFLOW;
2730                 }
2731
2732                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2733         }
2734
2735         /*
2736          * We do the same as above for FL_EMPTY interrupts.
2737          */
2738         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2739         reset = 0;
2740
2741         if (status & F_FLEMPTY) {
2742                 struct sge_qset *qs = &adapter->sge.qs[0];
2743                 int i = 0;
2744
2745                 reset |= F_FLEMPTY;
2746
2747                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2748                     0xffff;
2749
2750                 while (v) {
2751                         qs->fl[i].empty += (v & 1);
2752                         if (i)
2753                                 qs++;
2754                         i ^= 1;
2755                         v >>= 1;
2756                 }
2757         }
2758
2759         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2760
2761         /* Schedule the next check update if any port is active. */
2762         spin_lock_irq(&adapter->work_lock);
2763         if (adapter->open_device_map & PORT_MASK)
2764                 schedule_chk_task(adapter);
2765         spin_unlock_irq(&adapter->work_lock);
2766 }
2767
2768 static void db_full_task(struct work_struct *work)
2769 {
2770         struct adapter *adapter = container_of(work, struct adapter,
2771                                                db_full_task);
2772
2773         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2774 }
2775
2776 static void db_empty_task(struct work_struct *work)
2777 {
2778         struct adapter *adapter = container_of(work, struct adapter,
2779                                                db_empty_task);
2780
2781         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2782 }
2783
2784 static void db_drop_task(struct work_struct *work)
2785 {
2786         struct adapter *adapter = container_of(work, struct adapter,
2787                                                db_drop_task);
2788         unsigned long delay = 1000;
2789         unsigned short r;
2790
2791         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2792
2793         /*
2794          * Sleep a while before ringing the driver qset dbs.
2795          * The delay is between 1000-2023 usecs.
2796          */
2797         get_random_bytes(&r, 2);
2798         delay += r & 1023;
2799         set_current_state(TASK_UNINTERRUPTIBLE);
2800         schedule_timeout(usecs_to_jiffies(delay));
2801         ring_dbs(adapter);
2802 }
2803
2804 /*
2805  * Processes external (PHY) interrupts in process context.
2806  */
2807 static void ext_intr_task(struct work_struct *work)
2808 {
2809         struct adapter *adapter = container_of(work, struct adapter,
2810                                                ext_intr_handler_task);
2811         int i;
2812
2813         /* Disable link fault interrupts */
2814         for_each_port(adapter, i) {
2815                 struct net_device *dev = adapter->port[i];
2816                 struct port_info *p = netdev_priv(dev);
2817
2818                 t3_xgm_intr_disable(adapter, i);
2819                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2820         }
2821
2822         /* Re-enable link fault interrupts */
2823         t3_phy_intr_handler(adapter);
2824
2825         for_each_port(adapter, i)
2826                 t3_xgm_intr_enable(adapter, i);
2827
2828         /* Now reenable external interrupts */
2829         spin_lock_irq(&adapter->work_lock);
2830         if (adapter->slow_intr_mask) {
2831                 adapter->slow_intr_mask |= F_T3DBG;
2832                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2833                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2834                              adapter->slow_intr_mask);
2835         }
2836         spin_unlock_irq(&adapter->work_lock);
2837 }
2838
2839 /*
2840  * Interrupt-context handler for external (PHY) interrupts.
2841  */
2842 void t3_os_ext_intr_handler(struct adapter *adapter)
2843 {
2844         /*
2845          * Schedule a task to handle external interrupts as they may be slow
2846          * and we use a mutex to protect MDIO registers.  We disable PHY
2847          * interrupts in the meantime and let the task reenable them when
2848          * it's done.
2849          */
2850         spin_lock(&adapter->work_lock);
2851         if (adapter->slow_intr_mask) {
2852                 adapter->slow_intr_mask &= ~F_T3DBG;
2853                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2854                              adapter->slow_intr_mask);
2855                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2856         }
2857         spin_unlock(&adapter->work_lock);
2858 }
2859
2860 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2861 {
2862         struct net_device *netdev = adapter->port[port_id];
2863         struct port_info *pi = netdev_priv(netdev);
2864
2865         spin_lock(&adapter->work_lock);
2866         pi->link_fault = 1;
2867         spin_unlock(&adapter->work_lock);
2868 }
2869
2870 static int t3_adapter_error(struct adapter *adapter, int reset)
2871 {
2872         int i, ret = 0;
2873
2874         if (is_offload(adapter) &&
2875             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2876                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2877                 offload_close(&adapter->tdev);
2878         }
2879
2880         /* Stop all ports */
2881         for_each_port(adapter, i) {
2882                 struct net_device *netdev = adapter->port[i];
2883
2884                 if (netif_running(netdev))
2885                         cxgb_close(netdev);
2886         }
2887
2888         /* Stop SGE timers */
2889         t3_stop_sge_timers(adapter);
2890
2891         adapter->flags &= ~FULL_INIT_DONE;
2892
2893         if (reset)
2894                 ret = t3_reset_adapter(adapter);
2895
2896         pci_disable_device(adapter->pdev);
2897
2898         return ret;
2899 }
2900
2901 static int t3_reenable_adapter(struct adapter *adapter)
2902 {
2903         if (pci_enable_device(adapter->pdev)) {
2904                 dev_err(&adapter->pdev->dev,
2905                         "Cannot re-enable PCI device after reset.\n");
2906                 goto err;
2907         }
2908         pci_set_master(adapter->pdev);
2909         pci_restore_state(adapter->pdev);
2910         pci_save_state(adapter->pdev);
2911
2912         /* Free sge resources */
2913         t3_free_sge_resources(adapter);
2914
2915         if (t3_replay_prep_adapter(adapter))
2916                 goto err;
2917
2918         return 0;
2919 err:
2920         return -1;
2921 }
2922
2923 static void t3_resume_ports(struct adapter *adapter)
2924 {
2925         int i;
2926
2927         /* Restart the ports */
2928         for_each_port(adapter, i) {
2929                 struct net_device *netdev = adapter->port[i];
2930
2931                 if (netif_running(netdev)) {
2932                         if (cxgb_open(netdev)) {
2933                                 dev_err(&adapter->pdev->dev,
2934                                         "can't bring device back up"
2935                                         " after reset\n");
2936                                 continue;
2937                         }
2938                 }
2939         }
2940
2941         if (is_offload(adapter) && !ofld_disable)
2942                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2943 }
2944
2945 /*
2946  * processes a fatal error.
2947  * Bring the ports down, reset the chip, bring the ports back up.
2948  */
2949 static void fatal_error_task(struct work_struct *work)
2950 {
2951         struct adapter *adapter = container_of(work, struct adapter,
2952                                                fatal_error_handler_task);
2953         int err = 0;
2954
2955         rtnl_lock();
2956         err = t3_adapter_error(adapter, 1);
2957         if (!err)
2958                 err = t3_reenable_adapter(adapter);
2959         if (!err)
2960                 t3_resume_ports(adapter);
2961
2962         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2963         rtnl_unlock();
2964 }
2965
2966 void t3_fatal_err(struct adapter *adapter)
2967 {
2968         unsigned int fw_status[4];
2969
2970         if (adapter->flags & FULL_INIT_DONE) {
2971                 t3_sge_stop(adapter);
2972                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2973                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2974                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2975                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2976
2977                 spin_lock(&adapter->work_lock);
2978                 t3_intr_disable(adapter);
2979                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2980                 spin_unlock(&adapter->work_lock);
2981         }
2982         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2983         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2984                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2985                          fw_status[0], fw_status[1],
2986                          fw_status[2], fw_status[3]);
2987 }
2988
2989 /**
2990  * t3_io_error_detected - called when PCI error is detected
2991  * @pdev: Pointer to PCI device
2992  * @state: The current pci connection state
2993  *
2994  * This function is called after a PCI bus error affecting
2995  * this device has been detected.
2996  */
2997 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2998                                              pci_channel_state_t state)
2999 {
3000         struct adapter *adapter = pci_get_drvdata(pdev);
3001         int ret;
3002
3003         if (state == pci_channel_io_perm_failure)
3004                 return PCI_ERS_RESULT_DISCONNECT;
3005
3006         ret = t3_adapter_error(adapter, 0);
3007
3008         /* Request a slot reset. */
3009         return PCI_ERS_RESULT_NEED_RESET;
3010 }
3011
3012 /**
3013  * t3_io_slot_reset - called after the pci bus has been reset.
3014  * @pdev: Pointer to PCI device
3015  *
3016  * Restart the card from scratch, as if from a cold-boot.
3017  */
3018 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3019 {
3020         struct adapter *adapter = pci_get_drvdata(pdev);
3021
3022         if (!t3_reenable_adapter(adapter))
3023                 return PCI_ERS_RESULT_RECOVERED;
3024
3025         return PCI_ERS_RESULT_DISCONNECT;
3026 }
3027
3028 /**
3029  * t3_io_resume - called when traffic can start flowing again.
3030  * @pdev: Pointer to PCI device
3031  *
3032  * This callback is called when the error recovery driver tells us that
3033  * its OK to resume normal operation.
3034  */
3035 static void t3_io_resume(struct pci_dev *pdev)
3036 {
3037         struct adapter *adapter = pci_get_drvdata(pdev);
3038
3039         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3040                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
3041
3042         t3_resume_ports(adapter);
3043 }
3044
3045 static struct pci_error_handlers t3_err_handler = {
3046         .error_detected = t3_io_error_detected,
3047         .slot_reset = t3_io_slot_reset,
3048         .resume = t3_io_resume,
3049 };
3050
3051 /*
3052  * Set the number of qsets based on the number of CPUs and the number of ports,
3053  * not to exceed the number of available qsets, assuming there are enough qsets
3054  * per port in HW.
3055  */
3056 static void set_nqsets(struct adapter *adap)
3057 {
3058         int i, j = 0;
3059         int num_cpus = num_online_cpus();
3060         int hwports = adap->params.nports;
3061         int nqsets = adap->msix_nvectors - 1;
3062
3063         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3064                 if (hwports == 2 &&
3065                     (hwports * nqsets > SGE_QSETS ||
3066                      num_cpus >= nqsets / hwports))
3067                         nqsets /= hwports;
3068                 if (nqsets > num_cpus)
3069                         nqsets = num_cpus;
3070                 if (nqsets < 1 || hwports == 4)
3071                         nqsets = 1;
3072         } else
3073                 nqsets = 1;
3074
3075         for_each_port(adap, i) {
3076                 struct port_info *pi = adap2pinfo(adap, i);
3077
3078                 pi->first_qset = j;
3079                 pi->nqsets = nqsets;
3080                 j = pi->first_qset + nqsets;
3081
3082                 dev_info(&adap->pdev->dev,
3083                          "Port %d using %d queue sets.\n", i, nqsets);
3084         }
3085 }
3086
3087 static int __devinit cxgb_enable_msix(struct adapter *adap)
3088 {
3089         struct msix_entry entries[SGE_QSETS + 1];
3090         int vectors;
3091         int i, err;
3092
3093         vectors = ARRAY_SIZE(entries);
3094         for (i = 0; i < vectors; ++i)
3095                 entries[i].entry = i;
3096
3097         while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3098                 vectors = err;
3099
3100         if (err < 0)
3101                 pci_disable_msix(adap->pdev);
3102
3103         if (!err && vectors < (adap->params.nports + 1)) {
3104                 pci_disable_msix(adap->pdev);
3105                 err = -1;
3106         }
3107
3108         if (!err) {
3109                 for (i = 0; i < vectors; ++i)
3110                         adap->msix_info[i].vec = entries[i].vector;
3111                 adap->msix_nvectors = vectors;
3112         }
3113
3114         return err;
3115 }
3116
3117 static void __devinit print_port_info(struct adapter *adap,
3118                                       const struct adapter_info *ai)
3119 {
3120         static const char *pci_variant[] = {
3121                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3122         };
3123
3124         int i;
3125         char buf[80];
3126
3127         if (is_pcie(adap))
3128                 snprintf(buf, sizeof(buf), "%s x%d",
3129                          pci_variant[adap->params.pci.variant],
3130                          adap->params.pci.width);
3131         else
3132                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3133                          pci_variant[adap->params.pci.variant],
3134                          adap->params.pci.speed, adap->params.pci.width);
3135
3136         for_each_port(adap, i) {
3137                 struct net_device *dev = adap->port[i];
3138                 const struct port_info *pi = netdev_priv(dev);
3139
3140                 if (!test_bit(i, &adap->registered_device_map))
3141                         continue;
3142                 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3143                        dev->name, ai->desc, pi->phy.desc,
3144                        is_offload(adap) ? "R" : "", adap->params.rev, buf,
3145                        (adap->flags & USING_MSIX) ? " MSI-X" :
3146                        (adap->flags & USING_MSI) ? " MSI" : "");
3147                 if (adap->name == dev->name && adap->params.vpd.mclk)
3148                         printk(KERN_INFO
3149                                "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3150                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3151                                t3_mc7_size(&adap->pmtx) >> 20,
3152                                t3_mc7_size(&adap->pmrx) >> 20,
3153                                adap->params.vpd.sn);
3154         }
3155 }
3156
3157 static const struct net_device_ops cxgb_netdev_ops = {
3158         .ndo_open               = cxgb_open,
3159         .ndo_stop               = cxgb_close,
3160         .ndo_start_xmit         = t3_eth_xmit,
3161         .ndo_get_stats          = cxgb_get_stats,
3162         .ndo_validate_addr      = eth_validate_addr,
3163         .ndo_set_multicast_list = cxgb_set_rxmode,
3164         .ndo_do_ioctl           = cxgb_ioctl,
3165         .ndo_change_mtu         = cxgb_change_mtu,
3166         .ndo_set_mac_address    = cxgb_set_mac_addr,
3167         .ndo_vlan_rx_register   = vlan_rx_register,
3168 #ifdef CONFIG_NET_POLL_CONTROLLER
3169         .ndo_poll_controller    = cxgb_netpoll,
3170 #endif
3171 };
3172
3173 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3174 {
3175         struct port_info *pi = netdev_priv(dev);
3176
3177         memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3178         pi->iscsic.mac_addr[3] |= 0x80;
3179 }
3180
3181 static int __devinit init_one(struct pci_dev *pdev,
3182                               const struct pci_device_id *ent)
3183 {
3184         static int version_printed;
3185
3186         int i, err, pci_using_dac = 0;
3187         resource_size_t mmio_start, mmio_len;
3188         const struct adapter_info *ai;
3189         struct adapter *adapter = NULL;
3190         struct port_info *pi;
3191
3192         if (!version_printed) {
3193                 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3194                 ++version_printed;
3195         }
3196
3197         if (!cxgb3_wq) {
3198                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3199                 if (!cxgb3_wq) {
3200                         printk(KERN_ERR DRV_NAME
3201                                ": cannot initialize work queue\n");
3202                         return -ENOMEM;
3203                 }
3204         }
3205
3206         err = pci_request_regions(pdev, DRV_NAME);
3207         if (err) {
3208                 /* Just info, some other driver may have claimed the device. */
3209                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3210                 return err;
3211         }
3212
3213         err = pci_enable_device(pdev);
3214         if (err) {
3215                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3216                 goto out_release_regions;
3217         }
3218
3219         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3220                 pci_using_dac = 1;
3221                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3222                 if (err) {
3223                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3224                                "coherent allocations\n");
3225                         goto out_disable_device;
3226                 }
3227         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3228                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3229                 goto out_disable_device;
3230         }
3231
3232         pci_set_master(pdev);
3233         pci_save_state(pdev);
3234
3235         mmio_start = pci_resource_start(pdev, 0);
3236         mmio_len = pci_resource_len(pdev, 0);
3237         ai = t3_get_adapter_info(ent->driver_data);
3238
3239         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3240         if (!adapter) {
3241                 err = -ENOMEM;
3242                 goto out_disable_device;
3243         }
3244
3245         adapter->nofail_skb =
3246                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3247         if (!adapter->nofail_skb) {
3248                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3249                 err = -ENOMEM;
3250                 goto out_free_adapter;
3251         }
3252
3253         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3254         if (!adapter->regs) {
3255                 dev_err(&pdev->dev, "cannot map device registers\n");
3256                 err = -ENOMEM;
3257                 goto out_free_adapter;
3258         }
3259
3260         adapter->pdev = pdev;
3261         adapter->name = pci_name(pdev);
3262         adapter->msg_enable = dflt_msg_enable;
3263         adapter->mmio_len = mmio_len;
3264
3265         mutex_init(&adapter->mdio_lock);
3266         spin_lock_init(&adapter->work_lock);
3267         spin_lock_init(&adapter->stats_lock);
3268
3269         INIT_LIST_HEAD(&adapter->adapter_list);
3270         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3271         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3272
3273         INIT_WORK(&adapter->db_full_task, db_full_task);
3274         INIT_WORK(&adapter->db_empty_task, db_empty_task);
3275         INIT_WORK(&adapter->db_drop_task, db_drop_task);
3276
3277         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3278
3279         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3280                 struct net_device *netdev;
3281
3282                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3283                 if (!netdev) {
3284                         err = -ENOMEM;
3285                         goto out_free_dev;
3286                 }
3287
3288                 SET_NETDEV_DEV(netdev, &pdev->dev);
3289
3290                 adapter->port[i] = netdev;
3291                 pi = netdev_priv(netdev);
3292                 pi->adapter = adapter;
3293                 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3294                 pi->port_id = i;
3295                 netif_carrier_off(netdev);
3296                 netif_tx_stop_all_queues(netdev);
3297                 netdev->irq = pdev->irq;
3298                 netdev->mem_start = mmio_start;
3299                 netdev->mem_end = mmio_start + mmio_len - 1;
3300                 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3301                 netdev->features |= NETIF_F_GRO;
3302                 if (pci_using_dac)
3303                         netdev->features |= NETIF_F_HIGHDMA;
3304
3305                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3306                 netdev->netdev_ops = &cxgb_netdev_ops;
3307                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3308         }
3309
3310         pci_set_drvdata(pdev, adapter);
3311         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3312                 err = -ENODEV;
3313                 goto out_free_dev;
3314         }
3315
3316         /*
3317          * The card is now ready to go.  If any errors occur during device
3318          * registration we do not fail the whole card but rather proceed only
3319          * with the ports we manage to register successfully.  However we must
3320          * register at least one net device.
3321          */
3322         for_each_port(adapter, i) {
3323                 err = register_netdev(adapter->port[i]);
3324                 if (err)
3325                         dev_warn(&pdev->dev,
3326                                  "cannot register net device %s, skipping\n",
3327                                  adapter->port[i]->name);
3328                 else {
3329                         /*
3330                          * Change the name we use for messages to the name of
3331                          * the first successfully registered interface.
3332                          */
3333                         if (!adapter->registered_device_map)
3334                                 adapter->name = adapter->port[i]->name;
3335
3336                         __set_bit(i, &adapter->registered_device_map);
3337                 }
3338         }
3339         if (!adapter->registered_device_map) {
3340                 dev_err(&pdev->dev, "could not register any net devices\n");
3341                 goto out_free_dev;
3342         }
3343
3344         for_each_port(adapter, i)
3345                 cxgb3_init_iscsi_mac(adapter->port[i]);
3346
3347         /* Driver's ready. Reflect it on LEDs */
3348         t3_led_ready(adapter);
3349
3350         if (is_offload(adapter)) {
3351                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3352                 cxgb3_adapter_ofld(adapter);
3353         }
3354
3355         /* See what interrupts we'll be using */
3356         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3357                 adapter->flags |= USING_MSIX;
3358         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3359                 adapter->flags |= USING_MSI;
3360
3361         set_nqsets(adapter);
3362
3363         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3364                                  &cxgb3_attr_group);
3365
3366         print_port_info(adapter, ai);
3367         return 0;
3368
3369 out_free_dev:
3370         iounmap(adapter->regs);
3371         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3372                 if (adapter->port[i])
3373                         free_netdev(adapter->port[i]);
3374
3375 out_free_adapter:
3376         kfree(adapter);
3377
3378 out_disable_device:
3379         pci_disable_device(pdev);
3380 out_release_regions:
3381         pci_release_regions(pdev);
3382         pci_set_drvdata(pdev, NULL);
3383         return err;
3384 }
3385
3386 static void __devexit remove_one(struct pci_dev *pdev)
3387 {
3388         struct adapter *adapter = pci_get_drvdata(pdev);
3389
3390         if (adapter) {
3391                 int i;
3392
3393                 t3_sge_stop(adapter);
3394                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3395                                    &cxgb3_attr_group);
3396
3397                 if (is_offload(adapter)) {
3398                         cxgb3_adapter_unofld(adapter);
3399                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3400                                      &adapter->open_device_map))
3401                                 offload_close(&adapter->tdev);
3402                 }
3403
3404                 for_each_port(adapter, i)
3405                     if (test_bit(i, &adapter->registered_device_map))
3406                         unregister_netdev(adapter->port[i]);
3407
3408                 t3_stop_sge_timers(adapter);
3409                 t3_free_sge_resources(adapter);
3410                 cxgb_disable_msi(adapter);
3411
3412                 for_each_port(adapter, i)
3413                         if (adapter->port[i])
3414                                 free_netdev(adapter->port[i]);
3415
3416                 iounmap(adapter->regs);
3417                 if (adapter->nofail_skb)
3418                         kfree_skb(adapter->nofail_skb);
3419                 kfree(adapter);
3420                 pci_release_regions(pdev);
3421                 pci_disable_device(pdev);
3422                 pci_set_drvdata(pdev, NULL);
3423         }
3424 }
3425
3426 static struct pci_driver driver = {
3427         .name = DRV_NAME,
3428         .id_table = cxgb3_pci_tbl,
3429         .probe = init_one,
3430         .remove = __devexit_p(remove_one),
3431         .err_handler = &t3_err_handler,
3432 };
3433
3434 static int __init cxgb3_init_module(void)
3435 {
3436         int ret;
3437
3438         cxgb3_offload_init();
3439
3440         ret = pci_register_driver(&driver);
3441         return ret;
3442 }
3443
3444 static void __exit cxgb3_cleanup_module(void)
3445 {
3446         pci_unregister_driver(&driver);
3447         if (cxgb3_wq)
3448                 destroy_workqueue(cxgb3_wq);
3449 }
3450
3451 module_init(cxgb3_init_module);
3452 module_exit(cxgb3_cleanup_module);