Merge branch 'nfs-for-2.6.37' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6
[pandora-kernel.git] / drivers / net / cpmac.c
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
22
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/gpio.h>
42 #include <asm/atomic.h>
43
44 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
45 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
46 MODULE_LICENSE("GPL");
47 MODULE_ALIAS("platform:cpmac");
48
49 static int debug_level = 8;
50 static int dumb_switch;
51
52 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
53 module_param(debug_level, int, 0444);
54 module_param(dumb_switch, int, 0444);
55
56 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
57 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
58
59 #define CPMAC_VERSION "0.5.2"
60 /* frame size + 802.1q tag + FCS size */
61 #define CPMAC_SKB_SIZE          (ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
62 #define CPMAC_QUEUES    8
63
64 /* Ethernet registers */
65 #define CPMAC_TX_CONTROL                0x0004
66 #define CPMAC_TX_TEARDOWN               0x0008
67 #define CPMAC_RX_CONTROL                0x0014
68 #define CPMAC_RX_TEARDOWN               0x0018
69 #define CPMAC_MBP                       0x0100
70 # define MBP_RXPASSCRC                  0x40000000
71 # define MBP_RXQOS                      0x20000000
72 # define MBP_RXNOCHAIN                  0x10000000
73 # define MBP_RXCMF                      0x01000000
74 # define MBP_RXSHORT                    0x00800000
75 # define MBP_RXCEF                      0x00400000
76 # define MBP_RXPROMISC                  0x00200000
77 # define MBP_PROMISCCHAN(channel)       (((channel) & 0x7) << 16)
78 # define MBP_RXBCAST                    0x00002000
79 # define MBP_BCASTCHAN(channel)         (((channel) & 0x7) << 8)
80 # define MBP_RXMCAST                    0x00000020
81 # define MBP_MCASTCHAN(channel)         ((channel) & 0x7)
82 #define CPMAC_UNICAST_ENABLE            0x0104
83 #define CPMAC_UNICAST_CLEAR             0x0108
84 #define CPMAC_MAX_LENGTH                0x010c
85 #define CPMAC_BUFFER_OFFSET             0x0110
86 #define CPMAC_MAC_CONTROL               0x0160
87 # define MAC_TXPTYPE                    0x00000200
88 # define MAC_TXPACE                     0x00000040
89 # define MAC_MII                        0x00000020
90 # define MAC_TXFLOW                     0x00000010
91 # define MAC_RXFLOW                     0x00000008
92 # define MAC_MTEST                      0x00000004
93 # define MAC_LOOPBACK                   0x00000002
94 # define MAC_FDX                        0x00000001
95 #define CPMAC_MAC_STATUS                0x0164
96 # define MAC_STATUS_QOS                 0x00000004
97 # define MAC_STATUS_RXFLOW              0x00000002
98 # define MAC_STATUS_TXFLOW              0x00000001
99 #define CPMAC_TX_INT_ENABLE             0x0178
100 #define CPMAC_TX_INT_CLEAR              0x017c
101 #define CPMAC_MAC_INT_VECTOR            0x0180
102 # define MAC_INT_STATUS                 0x00080000
103 # define MAC_INT_HOST                   0x00040000
104 # define MAC_INT_RX                     0x00020000
105 # define MAC_INT_TX                     0x00010000
106 #define CPMAC_MAC_EOI_VECTOR            0x0184
107 #define CPMAC_RX_INT_ENABLE             0x0198
108 #define CPMAC_RX_INT_CLEAR              0x019c
109 #define CPMAC_MAC_INT_ENABLE            0x01a8
110 #define CPMAC_MAC_INT_CLEAR             0x01ac
111 #define CPMAC_MAC_ADDR_LO(channel)      (0x01b0 + (channel) * 4)
112 #define CPMAC_MAC_ADDR_MID              0x01d0
113 #define CPMAC_MAC_ADDR_HI               0x01d4
114 #define CPMAC_MAC_HASH_LO               0x01d8
115 #define CPMAC_MAC_HASH_HI               0x01dc
116 #define CPMAC_TX_PTR(channel)           (0x0600 + (channel) * 4)
117 #define CPMAC_RX_PTR(channel)           (0x0620 + (channel) * 4)
118 #define CPMAC_TX_ACK(channel)           (0x0640 + (channel) * 4)
119 #define CPMAC_RX_ACK(channel)           (0x0660 + (channel) * 4)
120 #define CPMAC_REG_END                   0x0680
121 /*
122  * Rx/Tx statistics
123  * TODO: use some of them to fill stats in cpmac_stats()
124  */
125 #define CPMAC_STATS_RX_GOOD             0x0200
126 #define CPMAC_STATS_RX_BCAST            0x0204
127 #define CPMAC_STATS_RX_MCAST            0x0208
128 #define CPMAC_STATS_RX_PAUSE            0x020c
129 #define CPMAC_STATS_RX_CRC              0x0210
130 #define CPMAC_STATS_RX_ALIGN            0x0214
131 #define CPMAC_STATS_RX_OVER             0x0218
132 #define CPMAC_STATS_RX_JABBER           0x021c
133 #define CPMAC_STATS_RX_UNDER            0x0220
134 #define CPMAC_STATS_RX_FRAG             0x0224
135 #define CPMAC_STATS_RX_FILTER           0x0228
136 #define CPMAC_STATS_RX_QOSFILTER        0x022c
137 #define CPMAC_STATS_RX_OCTETS           0x0230
138
139 #define CPMAC_STATS_TX_GOOD             0x0234
140 #define CPMAC_STATS_TX_BCAST            0x0238
141 #define CPMAC_STATS_TX_MCAST            0x023c
142 #define CPMAC_STATS_TX_PAUSE            0x0240
143 #define CPMAC_STATS_TX_DEFER            0x0244
144 #define CPMAC_STATS_TX_COLLISION        0x0248
145 #define CPMAC_STATS_TX_SINGLECOLL       0x024c
146 #define CPMAC_STATS_TX_MULTICOLL        0x0250
147 #define CPMAC_STATS_TX_EXCESSCOLL       0x0254
148 #define CPMAC_STATS_TX_LATECOLL         0x0258
149 #define CPMAC_STATS_TX_UNDERRUN         0x025c
150 #define CPMAC_STATS_TX_CARRIERSENSE     0x0260
151 #define CPMAC_STATS_TX_OCTETS           0x0264
152
153 #define cpmac_read(base, reg)           (readl((void __iomem *)(base) + (reg)))
154 #define cpmac_write(base, reg, val)     (writel(val, (void __iomem *)(base) + \
155                                                 (reg)))
156
157 /* MDIO bus */
158 #define CPMAC_MDIO_VERSION              0x0000
159 #define CPMAC_MDIO_CONTROL              0x0004
160 # define MDIOC_IDLE                     0x80000000
161 # define MDIOC_ENABLE                   0x40000000
162 # define MDIOC_PREAMBLE                 0x00100000
163 # define MDIOC_FAULT                    0x00080000
164 # define MDIOC_FAULTDETECT              0x00040000
165 # define MDIOC_INTTEST                  0x00020000
166 # define MDIOC_CLKDIV(div)              ((div) & 0xff)
167 #define CPMAC_MDIO_ALIVE                0x0008
168 #define CPMAC_MDIO_LINK                 0x000c
169 #define CPMAC_MDIO_ACCESS(channel)      (0x0080 + (channel) * 8)
170 # define MDIO_BUSY                      0x80000000
171 # define MDIO_WRITE                     0x40000000
172 # define MDIO_REG(reg)                  (((reg) & 0x1f) << 21)
173 # define MDIO_PHY(phy)                  (((phy) & 0x1f) << 16)
174 # define MDIO_DATA(data)                ((data) & 0xffff)
175 #define CPMAC_MDIO_PHYSEL(channel)      (0x0084 + (channel) * 8)
176 # define PHYSEL_LINKSEL                 0x00000040
177 # define PHYSEL_LINKINT                 0x00000020
178
179 struct cpmac_desc {
180         u32 hw_next;
181         u32 hw_data;
182         u16 buflen;
183         u16 bufflags;
184         u16 datalen;
185         u16 dataflags;
186 #define CPMAC_SOP                       0x8000
187 #define CPMAC_EOP                       0x4000
188 #define CPMAC_OWN                       0x2000
189 #define CPMAC_EOQ                       0x1000
190         struct sk_buff *skb;
191         struct cpmac_desc *next;
192         struct cpmac_desc *prev;
193         dma_addr_t mapping;
194         dma_addr_t data_mapping;
195 };
196
197 struct cpmac_priv {
198         spinlock_t lock;
199         spinlock_t rx_lock;
200         struct cpmac_desc *rx_head;
201         int ring_size;
202         struct cpmac_desc *desc_ring;
203         dma_addr_t dma_ring;
204         void __iomem *regs;
205         struct mii_bus *mii_bus;
206         struct phy_device *phy;
207         char phy_name[MII_BUS_ID_SIZE + 3];
208         int oldlink, oldspeed, oldduplex;
209         u32 msg_enable;
210         struct net_device *dev;
211         struct work_struct reset_work;
212         struct platform_device *pdev;
213         struct napi_struct napi;
214         atomic_t reset_pending;
215 };
216
217 static irqreturn_t cpmac_irq(int, void *);
218 static void cpmac_hw_start(struct net_device *dev);
219 static void cpmac_hw_stop(struct net_device *dev);
220 static int cpmac_stop(struct net_device *dev);
221 static int cpmac_open(struct net_device *dev);
222
223 static void cpmac_dump_regs(struct net_device *dev)
224 {
225         int i;
226         struct cpmac_priv *priv = netdev_priv(dev);
227         for (i = 0; i < CPMAC_REG_END; i += 4) {
228                 if (i % 16 == 0) {
229                         if (i)
230                                 pr_cont("\n");
231                         printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
232                                priv->regs + i);
233                 }
234                 printk(" %08x", cpmac_read(priv->regs, i));
235         }
236         printk("\n");
237 }
238
239 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
240 {
241         int i;
242         printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
243         for (i = 0; i < sizeof(*desc) / 4; i++)
244                 printk(" %08x", ((u32 *)desc)[i]);
245         printk("\n");
246 }
247
248 static void cpmac_dump_all_desc(struct net_device *dev)
249 {
250         struct cpmac_priv *priv = netdev_priv(dev);
251         struct cpmac_desc *dump = priv->rx_head;
252         do {
253                 cpmac_dump_desc(dev, dump);
254                 dump = dump->next;
255         } while (dump != priv->rx_head);
256 }
257
258 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
259 {
260         int i;
261         printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
262         for (i = 0; i < skb->len; i++) {
263                 if (i % 16 == 0) {
264                         if (i)
265                                 pr_cont("\n");
266                         printk(KERN_DEBUG "%s: data[%p]:", dev->name,
267                                skb->data + i);
268                 }
269                 printk(" %02x", ((u8 *)skb->data)[i]);
270         }
271         printk("\n");
272 }
273
274 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
275 {
276         u32 val;
277
278         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
279                 cpu_relax();
280         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
281                     MDIO_PHY(phy_id));
282         while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
283                 cpu_relax();
284         return MDIO_DATA(val);
285 }
286
287 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
288                             int reg, u16 val)
289 {
290         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
291                 cpu_relax();
292         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
293                     MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
294         return 0;
295 }
296
297 static int cpmac_mdio_reset(struct mii_bus *bus)
298 {
299         struct clk *cpmac_clk;
300
301         cpmac_clk = clk_get(&bus->dev, "cpmac");
302         if (IS_ERR(cpmac_clk)) {
303                 printk(KERN_ERR "unable to get cpmac clock\n");
304                 return -1;
305         }
306         ar7_device_reset(AR7_RESET_BIT_MDIO);
307         cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
308                     MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
309         return 0;
310 }
311
312 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
313
314 static struct mii_bus *cpmac_mii;
315
316 static int cpmac_config(struct net_device *dev, struct ifmap *map)
317 {
318         if (dev->flags & IFF_UP)
319                 return -EBUSY;
320
321         /* Don't allow changing the I/O address */
322         if (map->base_addr != dev->base_addr)
323                 return -EOPNOTSUPP;
324
325         /* ignore other fields */
326         return 0;
327 }
328
329 static void cpmac_set_multicast_list(struct net_device *dev)
330 {
331         struct netdev_hw_addr *ha;
332         u8 tmp;
333         u32 mbp, bit, hash[2] = { 0, };
334         struct cpmac_priv *priv = netdev_priv(dev);
335
336         mbp = cpmac_read(priv->regs, CPMAC_MBP);
337         if (dev->flags & IFF_PROMISC) {
338                 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
339                             MBP_RXPROMISC);
340         } else {
341                 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
342                 if (dev->flags & IFF_ALLMULTI) {
343                         /* enable all multicast mode */
344                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
345                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
346                 } else {
347                         /*
348                          * cpmac uses some strange mac address hashing
349                          * (not crc32)
350                          */
351                         netdev_for_each_mc_addr(ha, dev) {
352                                 bit = 0;
353                                 tmp = ha->addr[0];
354                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
355                                 tmp = ha->addr[1];
356                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
357                                 tmp = ha->addr[2];
358                                 bit  ^= (tmp >> 6) ^ tmp;
359                                 tmp = ha->addr[3];
360                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
361                                 tmp = ha->addr[4];
362                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
363                                 tmp = ha->addr[5];
364                                 bit  ^= (tmp >> 6) ^ tmp;
365                                 bit &= 0x3f;
366                                 hash[bit / 32] |= 1 << (bit % 32);
367                         }
368
369                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
370                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
371                 }
372         }
373 }
374
375 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
376                                     struct cpmac_desc *desc)
377 {
378         struct sk_buff *skb, *result = NULL;
379
380         if (unlikely(netif_msg_hw(priv)))
381                 cpmac_dump_desc(priv->dev, desc);
382         cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
383         if (unlikely(!desc->datalen)) {
384                 if (netif_msg_rx_err(priv) && net_ratelimit())
385                         printk(KERN_WARNING "%s: rx: spurious interrupt\n",
386                                priv->dev->name);
387                 return NULL;
388         }
389
390         skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
391         if (likely(skb)) {
392                 skb_put(desc->skb, desc->datalen);
393                 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
394                 skb_checksum_none_assert(desc->skb);
395                 priv->dev->stats.rx_packets++;
396                 priv->dev->stats.rx_bytes += desc->datalen;
397                 result = desc->skb;
398                 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
399                                  CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
400                 desc->skb = skb;
401                 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
402                                                     CPMAC_SKB_SIZE,
403                                                     DMA_FROM_DEVICE);
404                 desc->hw_data = (u32)desc->data_mapping;
405                 if (unlikely(netif_msg_pktdata(priv))) {
406                         printk(KERN_DEBUG "%s: received packet:\n",
407                                priv->dev->name);
408                         cpmac_dump_skb(priv->dev, result);
409                 }
410         } else {
411                 if (netif_msg_rx_err(priv) && net_ratelimit())
412                         printk(KERN_WARNING
413                                "%s: low on skbs, dropping packet\n",
414                                priv->dev->name);
415                 priv->dev->stats.rx_dropped++;
416         }
417
418         desc->buflen = CPMAC_SKB_SIZE;
419         desc->dataflags = CPMAC_OWN;
420
421         return result;
422 }
423
424 static int cpmac_poll(struct napi_struct *napi, int budget)
425 {
426         struct sk_buff *skb;
427         struct cpmac_desc *desc, *restart;
428         struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
429         int received = 0, processed = 0;
430
431         spin_lock(&priv->rx_lock);
432         if (unlikely(!priv->rx_head)) {
433                 if (netif_msg_rx_err(priv) && net_ratelimit())
434                         printk(KERN_WARNING "%s: rx: polling, but no queue\n",
435                                priv->dev->name);
436                 spin_unlock(&priv->rx_lock);
437                 napi_complete(napi);
438                 return 0;
439         }
440
441         desc = priv->rx_head;
442         restart = NULL;
443         while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
444                 processed++;
445
446                 if ((desc->dataflags & CPMAC_EOQ) != 0) {
447                         /* The last update to eoq->hw_next didn't happen
448                         * soon enough, and the receiver stopped here.
449                         *Remember this descriptor so we can restart
450                         * the receiver after freeing some space.
451                         */
452                         if (unlikely(restart)) {
453                                 if (netif_msg_rx_err(priv))
454                                         printk(KERN_ERR "%s: poll found a"
455                                                 " duplicate EOQ: %p and %p\n",
456                                                 priv->dev->name, restart, desc);
457                                 goto fatal_error;
458                         }
459
460                         restart = desc->next;
461                 }
462
463                 skb = cpmac_rx_one(priv, desc);
464                 if (likely(skb)) {
465                         netif_receive_skb(skb);
466                         received++;
467                 }
468                 desc = desc->next;
469         }
470
471         if (desc != priv->rx_head) {
472                 /* We freed some buffers, but not the whole ring,
473                  * add what we did free to the rx list */
474                 desc->prev->hw_next = (u32)0;
475                 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
476         }
477
478         /* Optimization: If we did not actually process an EOQ (perhaps because
479          * of quota limits), check to see if the tail of the queue has EOQ set.
480         * We should immediately restart in that case so that the receiver can
481         * restart and run in parallel with more packet processing.
482         * This lets us handle slightly larger bursts before running
483         * out of ring space (assuming dev->weight < ring_size) */
484
485         if (!restart &&
486              (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
487                     == CPMAC_EOQ &&
488              (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
489                 /* reset EOQ so the poll loop (above) doesn't try to
490                 * restart this when it eventually gets to this descriptor.
491                 */
492                 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
493                 restart = priv->rx_head;
494         }
495
496         if (restart) {
497                 priv->dev->stats.rx_errors++;
498                 priv->dev->stats.rx_fifo_errors++;
499                 if (netif_msg_rx_err(priv) && net_ratelimit())
500                         printk(KERN_WARNING "%s: rx dma ring overrun\n",
501                                priv->dev->name);
502
503                 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
504                         if (netif_msg_drv(priv))
505                                 printk(KERN_ERR "%s: cpmac_poll is trying to "
506                                         "restart rx from a descriptor that's "
507                                         "not free: %p\n",
508                                         priv->dev->name, restart);
509                         goto fatal_error;
510                 }
511
512                 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
513         }
514
515         priv->rx_head = desc;
516         spin_unlock(&priv->rx_lock);
517         if (unlikely(netif_msg_rx_status(priv)))
518                 printk(KERN_DEBUG "%s: poll processed %d packets\n",
519                        priv->dev->name, received);
520         if (processed == 0) {
521                 /* we ran out of packets to read,
522                  * revert to interrupt-driven mode */
523                 napi_complete(napi);
524                 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
525                 return 0;
526         }
527
528         return 1;
529
530 fatal_error:
531         /* Something went horribly wrong.
532          * Reset hardware to try to recover rather than wedging. */
533
534         if (netif_msg_drv(priv)) {
535                 printk(KERN_ERR "%s: cpmac_poll is confused. "
536                                 "Resetting hardware\n", priv->dev->name);
537                 cpmac_dump_all_desc(priv->dev);
538                 printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
539                         priv->dev->name,
540                         cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
541                         cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
542         }
543
544         spin_unlock(&priv->rx_lock);
545         napi_complete(napi);
546         netif_tx_stop_all_queues(priv->dev);
547         napi_disable(&priv->napi);
548
549         atomic_inc(&priv->reset_pending);
550         cpmac_hw_stop(priv->dev);
551         if (!schedule_work(&priv->reset_work))
552                 atomic_dec(&priv->reset_pending);
553         return 0;
554
555 }
556
557 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
558 {
559         int queue, len;
560         struct cpmac_desc *desc;
561         struct cpmac_priv *priv = netdev_priv(dev);
562
563         if (unlikely(atomic_read(&priv->reset_pending)))
564                 return NETDEV_TX_BUSY;
565
566         if (unlikely(skb_padto(skb, ETH_ZLEN)))
567                 return NETDEV_TX_OK;
568
569         len = max(skb->len, ETH_ZLEN);
570         queue = skb_get_queue_mapping(skb);
571         netif_stop_subqueue(dev, queue);
572
573         desc = &priv->desc_ring[queue];
574         if (unlikely(desc->dataflags & CPMAC_OWN)) {
575                 if (netif_msg_tx_err(priv) && net_ratelimit())
576                         printk(KERN_WARNING "%s: tx dma ring full\n",
577                                dev->name);
578                 return NETDEV_TX_BUSY;
579         }
580
581         spin_lock(&priv->lock);
582         spin_unlock(&priv->lock);
583         desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
584         desc->skb = skb;
585         desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
586                                             DMA_TO_DEVICE);
587         desc->hw_data = (u32)desc->data_mapping;
588         desc->datalen = len;
589         desc->buflen = len;
590         if (unlikely(netif_msg_tx_queued(priv)))
591                 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
592                        skb->len);
593         if (unlikely(netif_msg_hw(priv)))
594                 cpmac_dump_desc(dev, desc);
595         if (unlikely(netif_msg_pktdata(priv)))
596                 cpmac_dump_skb(dev, skb);
597         cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
598
599         return NETDEV_TX_OK;
600 }
601
602 static void cpmac_end_xmit(struct net_device *dev, int queue)
603 {
604         struct cpmac_desc *desc;
605         struct cpmac_priv *priv = netdev_priv(dev);
606
607         desc = &priv->desc_ring[queue];
608         cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
609         if (likely(desc->skb)) {
610                 spin_lock(&priv->lock);
611                 dev->stats.tx_packets++;
612                 dev->stats.tx_bytes += desc->skb->len;
613                 spin_unlock(&priv->lock);
614                 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
615                                  DMA_TO_DEVICE);
616
617                 if (unlikely(netif_msg_tx_done(priv)))
618                         printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
619                                desc->skb, desc->skb->len);
620
621                 dev_kfree_skb_irq(desc->skb);
622                 desc->skb = NULL;
623                 if (__netif_subqueue_stopped(dev, queue))
624                         netif_wake_subqueue(dev, queue);
625         } else {
626                 if (netif_msg_tx_err(priv) && net_ratelimit())
627                         printk(KERN_WARNING
628                                "%s: end_xmit: spurious interrupt\n", dev->name);
629                 if (__netif_subqueue_stopped(dev, queue))
630                         netif_wake_subqueue(dev, queue);
631         }
632 }
633
634 static void cpmac_hw_stop(struct net_device *dev)
635 {
636         int i;
637         struct cpmac_priv *priv = netdev_priv(dev);
638         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
639
640         ar7_device_reset(pdata->reset_bit);
641         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
642                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
643         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
644                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
645         for (i = 0; i < 8; i++) {
646                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
647                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
648         }
649         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
650         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
651         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
652         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
653         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
654                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
655 }
656
657 static void cpmac_hw_start(struct net_device *dev)
658 {
659         int i;
660         struct cpmac_priv *priv = netdev_priv(dev);
661         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
662
663         ar7_device_reset(pdata->reset_bit);
664         for (i = 0; i < 8; i++) {
665                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
666                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
667         }
668         cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
669
670         cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
671                     MBP_RXMCAST);
672         cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
673         for (i = 0; i < 8; i++)
674                 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
675         cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
676         cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
677                     (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
678                     (dev->dev_addr[3] << 24));
679         cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
680         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
681         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
682         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
683         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
684         cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
685         cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
686         cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
687         cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
688
689         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
690                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
691         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
692                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
693         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
694                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
695                     MAC_FDX);
696 }
697
698 static void cpmac_clear_rx(struct net_device *dev)
699 {
700         struct cpmac_priv *priv = netdev_priv(dev);
701         struct cpmac_desc *desc;
702         int i;
703         if (unlikely(!priv->rx_head))
704                 return;
705         desc = priv->rx_head;
706         for (i = 0; i < priv->ring_size; i++) {
707                 if ((desc->dataflags & CPMAC_OWN) == 0) {
708                         if (netif_msg_rx_err(priv) && net_ratelimit())
709                                 printk(KERN_WARNING "%s: packet dropped\n",
710                                        dev->name);
711                         if (unlikely(netif_msg_hw(priv)))
712                                 cpmac_dump_desc(dev, desc);
713                         desc->dataflags = CPMAC_OWN;
714                         dev->stats.rx_dropped++;
715                 }
716                 desc->hw_next = desc->next->mapping;
717                 desc = desc->next;
718         }
719         priv->rx_head->prev->hw_next = 0;
720 }
721
722 static void cpmac_clear_tx(struct net_device *dev)
723 {
724         struct cpmac_priv *priv = netdev_priv(dev);
725         int i;
726         if (unlikely(!priv->desc_ring))
727                 return;
728         for (i = 0; i < CPMAC_QUEUES; i++) {
729                 priv->desc_ring[i].dataflags = 0;
730                 if (priv->desc_ring[i].skb) {
731                         dev_kfree_skb_any(priv->desc_ring[i].skb);
732                         priv->desc_ring[i].skb = NULL;
733                 }
734         }
735 }
736
737 static void cpmac_hw_error(struct work_struct *work)
738 {
739         struct cpmac_priv *priv =
740                 container_of(work, struct cpmac_priv, reset_work);
741
742         spin_lock(&priv->rx_lock);
743         cpmac_clear_rx(priv->dev);
744         spin_unlock(&priv->rx_lock);
745         cpmac_clear_tx(priv->dev);
746         cpmac_hw_start(priv->dev);
747         barrier();
748         atomic_dec(&priv->reset_pending);
749
750         netif_tx_wake_all_queues(priv->dev);
751         cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
752 }
753
754 static void cpmac_check_status(struct net_device *dev)
755 {
756         struct cpmac_priv *priv = netdev_priv(dev);
757
758         u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
759         int rx_channel = (macstatus >> 8) & 7;
760         int rx_code = (macstatus >> 12) & 15;
761         int tx_channel = (macstatus >> 16) & 7;
762         int tx_code = (macstatus >> 20) & 15;
763
764         if (rx_code || tx_code) {
765                 if (netif_msg_drv(priv) && net_ratelimit()) {
766                         /* Can't find any documentation on what these
767                          *error codes actually are. So just log them and hope..
768                          */
769                         if (rx_code)
770                                 printk(KERN_WARNING "%s: host error %d on rx "
771                                      "channel %d (macstatus %08x), resetting\n",
772                                      dev->name, rx_code, rx_channel, macstatus);
773                         if (tx_code)
774                                 printk(KERN_WARNING "%s: host error %d on tx "
775                                      "channel %d (macstatus %08x), resetting\n",
776                                      dev->name, tx_code, tx_channel, macstatus);
777                 }
778
779                 netif_tx_stop_all_queues(dev);
780                 cpmac_hw_stop(dev);
781                 if (schedule_work(&priv->reset_work))
782                         atomic_inc(&priv->reset_pending);
783                 if (unlikely(netif_msg_hw(priv)))
784                         cpmac_dump_regs(dev);
785         }
786         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
787 }
788
789 static irqreturn_t cpmac_irq(int irq, void *dev_id)
790 {
791         struct net_device *dev = dev_id;
792         struct cpmac_priv *priv;
793         int queue;
794         u32 status;
795
796         priv = netdev_priv(dev);
797
798         status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
799
800         if (unlikely(netif_msg_intr(priv)))
801                 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
802                        status);
803
804         if (status & MAC_INT_TX)
805                 cpmac_end_xmit(dev, (status & 7));
806
807         if (status & MAC_INT_RX) {
808                 queue = (status >> 8) & 7;
809                 if (napi_schedule_prep(&priv->napi)) {
810                         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
811                         __napi_schedule(&priv->napi);
812                 }
813         }
814
815         cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
816
817         if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
818                 cpmac_check_status(dev);
819
820         return IRQ_HANDLED;
821 }
822
823 static void cpmac_tx_timeout(struct net_device *dev)
824 {
825         struct cpmac_priv *priv = netdev_priv(dev);
826
827         spin_lock(&priv->lock);
828         dev->stats.tx_errors++;
829         spin_unlock(&priv->lock);
830         if (netif_msg_tx_err(priv) && net_ratelimit())
831                 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
832
833         atomic_inc(&priv->reset_pending);
834         barrier();
835         cpmac_clear_tx(dev);
836         barrier();
837         atomic_dec(&priv->reset_pending);
838
839         netif_tx_wake_all_queues(priv->dev);
840 }
841
842 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
843 {
844         struct cpmac_priv *priv = netdev_priv(dev);
845         if (!(netif_running(dev)))
846                 return -EINVAL;
847         if (!priv->phy)
848                 return -EINVAL;
849
850         return phy_mii_ioctl(priv->phy, ifr, cmd);
851 }
852
853 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
854 {
855         struct cpmac_priv *priv = netdev_priv(dev);
856
857         if (priv->phy)
858                 return phy_ethtool_gset(priv->phy, cmd);
859
860         return -EINVAL;
861 }
862
863 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
864 {
865         struct cpmac_priv *priv = netdev_priv(dev);
866
867         if (!capable(CAP_NET_ADMIN))
868                 return -EPERM;
869
870         if (priv->phy)
871                 return phy_ethtool_sset(priv->phy, cmd);
872
873         return -EINVAL;
874 }
875
876 static void cpmac_get_ringparam(struct net_device *dev,
877                                                 struct ethtool_ringparam *ring)
878 {
879         struct cpmac_priv *priv = netdev_priv(dev);
880
881         ring->rx_max_pending = 1024;
882         ring->rx_mini_max_pending = 1;
883         ring->rx_jumbo_max_pending = 1;
884         ring->tx_max_pending = 1;
885
886         ring->rx_pending = priv->ring_size;
887         ring->rx_mini_pending = 1;
888         ring->rx_jumbo_pending = 1;
889         ring->tx_pending = 1;
890 }
891
892 static int cpmac_set_ringparam(struct net_device *dev,
893                                                 struct ethtool_ringparam *ring)
894 {
895         struct cpmac_priv *priv = netdev_priv(dev);
896
897         if (netif_running(dev))
898                 return -EBUSY;
899         priv->ring_size = ring->rx_pending;
900         return 0;
901 }
902
903 static void cpmac_get_drvinfo(struct net_device *dev,
904                               struct ethtool_drvinfo *info)
905 {
906         strcpy(info->driver, "cpmac");
907         strcpy(info->version, CPMAC_VERSION);
908         info->fw_version[0] = '\0';
909         sprintf(info->bus_info, "%s", "cpmac");
910         info->regdump_len = 0;
911 }
912
913 static const struct ethtool_ops cpmac_ethtool_ops = {
914         .get_settings = cpmac_get_settings,
915         .set_settings = cpmac_set_settings,
916         .get_drvinfo = cpmac_get_drvinfo,
917         .get_link = ethtool_op_get_link,
918         .get_ringparam = cpmac_get_ringparam,
919         .set_ringparam = cpmac_set_ringparam,
920 };
921
922 static void cpmac_adjust_link(struct net_device *dev)
923 {
924         struct cpmac_priv *priv = netdev_priv(dev);
925         int new_state = 0;
926
927         spin_lock(&priv->lock);
928         if (priv->phy->link) {
929                 netif_tx_start_all_queues(dev);
930                 if (priv->phy->duplex != priv->oldduplex) {
931                         new_state = 1;
932                         priv->oldduplex = priv->phy->duplex;
933                 }
934
935                 if (priv->phy->speed != priv->oldspeed) {
936                         new_state = 1;
937                         priv->oldspeed = priv->phy->speed;
938                 }
939
940                 if (!priv->oldlink) {
941                         new_state = 1;
942                         priv->oldlink = 1;
943                 }
944         } else if (priv->oldlink) {
945                 new_state = 1;
946                 priv->oldlink = 0;
947                 priv->oldspeed = 0;
948                 priv->oldduplex = -1;
949         }
950
951         if (new_state && netif_msg_link(priv) && net_ratelimit())
952                 phy_print_status(priv->phy);
953
954         spin_unlock(&priv->lock);
955 }
956
957 static int cpmac_open(struct net_device *dev)
958 {
959         int i, size, res;
960         struct cpmac_priv *priv = netdev_priv(dev);
961         struct resource *mem;
962         struct cpmac_desc *desc;
963         struct sk_buff *skb;
964
965         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
966         if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
967                 if (netif_msg_drv(priv))
968                         printk(KERN_ERR "%s: failed to request registers\n",
969                                dev->name);
970                 res = -ENXIO;
971                 goto fail_reserve;
972         }
973
974         priv->regs = ioremap(mem->start, resource_size(mem));
975         if (!priv->regs) {
976                 if (netif_msg_drv(priv))
977                         printk(KERN_ERR "%s: failed to remap registers\n",
978                                dev->name);
979                 res = -ENXIO;
980                 goto fail_remap;
981         }
982
983         size = priv->ring_size + CPMAC_QUEUES;
984         priv->desc_ring = dma_alloc_coherent(&dev->dev,
985                                              sizeof(struct cpmac_desc) * size,
986                                              &priv->dma_ring,
987                                              GFP_KERNEL);
988         if (!priv->desc_ring) {
989                 res = -ENOMEM;
990                 goto fail_alloc;
991         }
992
993         for (i = 0; i < size; i++)
994                 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
995
996         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
997         for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
998                 skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
999                 if (unlikely(!skb)) {
1000                         res = -ENOMEM;
1001                         goto fail_desc;
1002                 }
1003                 desc->skb = skb;
1004                 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1005                                                     CPMAC_SKB_SIZE,
1006                                                     DMA_FROM_DEVICE);
1007                 desc->hw_data = (u32)desc->data_mapping;
1008                 desc->buflen = CPMAC_SKB_SIZE;
1009                 desc->dataflags = CPMAC_OWN;
1010                 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1011                 desc->next->prev = desc;
1012                 desc->hw_next = (u32)desc->next->mapping;
1013         }
1014
1015         priv->rx_head->prev->hw_next = (u32)0;
1016
1017         res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1018         if (res) {
1019                 if (netif_msg_drv(priv))
1020                         printk(KERN_ERR "%s: failed to obtain irq\n",
1021                                dev->name);
1022                 goto fail_irq;
1023         }
1024
1025         atomic_set(&priv->reset_pending, 0);
1026         INIT_WORK(&priv->reset_work, cpmac_hw_error);
1027         cpmac_hw_start(dev);
1028
1029         napi_enable(&priv->napi);
1030         priv->phy->state = PHY_CHANGELINK;
1031         phy_start(priv->phy);
1032
1033         return 0;
1034
1035 fail_irq:
1036 fail_desc:
1037         for (i = 0; i < priv->ring_size; i++) {
1038                 if (priv->rx_head[i].skb) {
1039                         dma_unmap_single(&dev->dev,
1040                                          priv->rx_head[i].data_mapping,
1041                                          CPMAC_SKB_SIZE,
1042                                          DMA_FROM_DEVICE);
1043                         kfree_skb(priv->rx_head[i].skb);
1044                 }
1045         }
1046 fail_alloc:
1047         kfree(priv->desc_ring);
1048         iounmap(priv->regs);
1049
1050 fail_remap:
1051         release_mem_region(mem->start, resource_size(mem));
1052
1053 fail_reserve:
1054         return res;
1055 }
1056
1057 static int cpmac_stop(struct net_device *dev)
1058 {
1059         int i;
1060         struct cpmac_priv *priv = netdev_priv(dev);
1061         struct resource *mem;
1062
1063         netif_tx_stop_all_queues(dev);
1064
1065         cancel_work_sync(&priv->reset_work);
1066         napi_disable(&priv->napi);
1067         phy_stop(priv->phy);
1068
1069         cpmac_hw_stop(dev);
1070
1071         for (i = 0; i < 8; i++)
1072                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1073         cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1074         cpmac_write(priv->regs, CPMAC_MBP, 0);
1075
1076         free_irq(dev->irq, dev);
1077         iounmap(priv->regs);
1078         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1079         release_mem_region(mem->start, resource_size(mem));
1080         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1081         for (i = 0; i < priv->ring_size; i++) {
1082                 if (priv->rx_head[i].skb) {
1083                         dma_unmap_single(&dev->dev,
1084                                          priv->rx_head[i].data_mapping,
1085                                          CPMAC_SKB_SIZE,
1086                                          DMA_FROM_DEVICE);
1087                         kfree_skb(priv->rx_head[i].skb);
1088                 }
1089         }
1090
1091         dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1092                           (CPMAC_QUEUES + priv->ring_size),
1093                           priv->desc_ring, priv->dma_ring);
1094         return 0;
1095 }
1096
1097 static const struct net_device_ops cpmac_netdev_ops = {
1098         .ndo_open               = cpmac_open,
1099         .ndo_stop               = cpmac_stop,
1100         .ndo_start_xmit         = cpmac_start_xmit,
1101         .ndo_tx_timeout         = cpmac_tx_timeout,
1102         .ndo_set_multicast_list = cpmac_set_multicast_list,
1103         .ndo_do_ioctl           = cpmac_ioctl,
1104         .ndo_set_config         = cpmac_config,
1105         .ndo_change_mtu         = eth_change_mtu,
1106         .ndo_validate_addr      = eth_validate_addr,
1107         .ndo_set_mac_address    = eth_mac_addr,
1108 };
1109
1110 static int external_switch;
1111
1112 static int __devinit cpmac_probe(struct platform_device *pdev)
1113 {
1114         int rc, phy_id;
1115         char mdio_bus_id[MII_BUS_ID_SIZE];
1116         struct resource *mem;
1117         struct cpmac_priv *priv;
1118         struct net_device *dev;
1119         struct plat_cpmac_data *pdata;
1120
1121         pdata = pdev->dev.platform_data;
1122
1123         if (external_switch || dumb_switch) {
1124                 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1125                 phy_id = pdev->id;
1126         } else {
1127                 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1128                         if (!(pdata->phy_mask & (1 << phy_id)))
1129                                 continue;
1130                         if (!cpmac_mii->phy_map[phy_id])
1131                                 continue;
1132                         strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1133                         break;
1134                 }
1135         }
1136
1137         if (phy_id == PHY_MAX_ADDR) {
1138                 dev_err(&pdev->dev, "no PHY present, falling back "
1139                                         "to switch on MDIO bus 0\n");
1140                 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1141                 phy_id = pdev->id;
1142         }
1143
1144         dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1145
1146         if (!dev) {
1147                 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1148                 return -ENOMEM;
1149         }
1150
1151         platform_set_drvdata(pdev, dev);
1152         priv = netdev_priv(dev);
1153
1154         priv->pdev = pdev;
1155         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1156         if (!mem) {
1157                 rc = -ENODEV;
1158                 goto fail;
1159         }
1160
1161         dev->irq = platform_get_irq_byname(pdev, "irq");
1162
1163         dev->netdev_ops = &cpmac_netdev_ops;
1164         dev->ethtool_ops = &cpmac_ethtool_ops;
1165
1166         netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1167
1168         spin_lock_init(&priv->lock);
1169         spin_lock_init(&priv->rx_lock);
1170         priv->dev = dev;
1171         priv->ring_size = 64;
1172         priv->msg_enable = netif_msg_init(debug_level, 0xff);
1173         memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1174
1175         snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1176                                                 mdio_bus_id, phy_id);
1177
1178         priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link, 0,
1179                                                 PHY_INTERFACE_MODE_MII);
1180
1181         if (IS_ERR(priv->phy)) {
1182                 if (netif_msg_drv(priv))
1183                         printk(KERN_ERR "%s: Could not attach to PHY\n",
1184                                dev->name);
1185                 rc = PTR_ERR(priv->phy);
1186                 goto fail;
1187         }
1188
1189         rc = register_netdev(dev);
1190         if (rc) {
1191                 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1192                        dev->name);
1193                 goto fail;
1194         }
1195
1196         if (netif_msg_probe(priv)) {
1197                 printk(KERN_INFO
1198                        "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1199                        "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1200                        priv->phy_name, dev->dev_addr);
1201         }
1202         return 0;
1203
1204 fail:
1205         free_netdev(dev);
1206         return rc;
1207 }
1208
1209 static int __devexit cpmac_remove(struct platform_device *pdev)
1210 {
1211         struct net_device *dev = platform_get_drvdata(pdev);
1212         unregister_netdev(dev);
1213         free_netdev(dev);
1214         return 0;
1215 }
1216
1217 static struct platform_driver cpmac_driver = {
1218         .driver.name = "cpmac",
1219         .driver.owner = THIS_MODULE,
1220         .probe = cpmac_probe,
1221         .remove = __devexit_p(cpmac_remove),
1222 };
1223
1224 int __devinit cpmac_init(void)
1225 {
1226         u32 mask;
1227         int i, res;
1228
1229         cpmac_mii = mdiobus_alloc();
1230         if (cpmac_mii == NULL)
1231                 return -ENOMEM;
1232
1233         cpmac_mii->name = "cpmac-mii";
1234         cpmac_mii->read = cpmac_mdio_read;
1235         cpmac_mii->write = cpmac_mdio_write;
1236         cpmac_mii->reset = cpmac_mdio_reset;
1237         cpmac_mii->irq = mii_irqs;
1238
1239         cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1240
1241         if (!cpmac_mii->priv) {
1242                 printk(KERN_ERR "Can't ioremap mdio registers\n");
1243                 res = -ENXIO;
1244                 goto fail_alloc;
1245         }
1246
1247 #warning FIXME: unhardcode gpio&reset bits
1248         ar7_gpio_disable(26);
1249         ar7_gpio_disable(27);
1250         ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1251         ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1252         ar7_device_reset(AR7_RESET_BIT_EPHY);
1253
1254         cpmac_mii->reset(cpmac_mii);
1255
1256         for (i = 0; i < 300; i++) {
1257                 mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1258                 if (mask)
1259                         break;
1260                 else
1261                         msleep(10);
1262         }
1263
1264         mask &= 0x7fffffff;
1265         if (mask & (mask - 1)) {
1266                 external_switch = 1;
1267                 mask = 0;
1268         }
1269
1270         cpmac_mii->phy_mask = ~(mask | 0x80000000);
1271         snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "1");
1272
1273         res = mdiobus_register(cpmac_mii);
1274         if (res)
1275                 goto fail_mii;
1276
1277         res = platform_driver_register(&cpmac_driver);
1278         if (res)
1279                 goto fail_cpmac;
1280
1281         return 0;
1282
1283 fail_cpmac:
1284         mdiobus_unregister(cpmac_mii);
1285
1286 fail_mii:
1287         iounmap(cpmac_mii->priv);
1288
1289 fail_alloc:
1290         mdiobus_free(cpmac_mii);
1291
1292         return res;
1293 }
1294
1295 void __devexit cpmac_exit(void)
1296 {
1297         platform_driver_unregister(&cpmac_driver);
1298         mdiobus_unregister(cpmac_mii);
1299         iounmap(cpmac_mii->priv);
1300         mdiobus_free(cpmac_mii);
1301 }
1302
1303 module_init(cpmac_init);
1304 module_exit(cpmac_exit);