Merge branch 'sh/genirq-threading' into sh-latest
[pandora-kernel.git] / drivers / net / chelsio / sge.c
1 /*****************************************************************************
2  *                                                                           *
3  * File: sge.c                                                               *
4  * $Revision: 1.26 $                                                         *
5  * $Date: 2005/06/21 18:29:48 $                                              *
6  * Description:                                                              *
7  *  DMA engine.                                                              *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, write to the Free Software Foundation, Inc.,   *
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
17  *                                                                           *
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
21  *                                                                           *
22  * http://www.chelsio.com                                                    *
23  *                                                                           *
24  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
25  * All rights reserved.                                                      *
26  *                                                                           *
27  * Maintainers: maintainers@chelsio.com                                      *
28  *                                                                           *
29  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
30  *          Tina Yang               <tainay@chelsio.com>                     *
31  *          Felix Marti             <felix@chelsio.com>                      *
32  *          Scott Bardone           <sbardone@chelsio.com>                   *
33  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
34  *          Frank DiMambro          <frank@chelsio.com>                      *
35  *                                                                           *
36  * History:                                                                  *
37  *                                                                           *
38  ****************************************************************************/
39
40 #include "common.h"
41
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
57
58 #include "cpl5_cmd.h"
59 #include "sge.h"
60 #include "regs.h"
61 #include "espi.h"
62
63 /* This belongs in if_ether.h */
64 #define ETH_P_CPL5 0xf
65
66 #define SGE_CMDQ_N              2
67 #define SGE_FREELQ_N            2
68 #define SGE_CMDQ0_E_N           1024
69 #define SGE_CMDQ1_E_N           128
70 #define SGE_FREEL_SIZE          4096
71 #define SGE_JUMBO_FREEL_SIZE    512
72 #define SGE_FREEL_REFILL_THRESH 16
73 #define SGE_RESPQ_E_N           1024
74 #define SGE_INTRTIMER_NRES      1000
75 #define SGE_RX_SM_BUF_SIZE      1536
76 #define SGE_TX_DESC_MAX_PLEN    16384
77
78 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
79
80 /*
81  * Period of the TX buffer reclaim timer.  This timer does not need to run
82  * frequently as TX buffers are usually reclaimed by new TX packets.
83  */
84 #define TX_RECLAIM_PERIOD (HZ / 4)
85
86 #define M_CMD_LEN       0x7fffffff
87 #define V_CMD_LEN(v)    (v)
88 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
89 #define V_CMD_GEN1(v)   ((v) << 31)
90 #define V_CMD_GEN2(v)   (v)
91 #define F_CMD_DATAVALID (1 << 1)
92 #define F_CMD_SOP       (1 << 2)
93 #define V_CMD_EOP(v)    ((v) << 3)
94
95 /*
96  * Command queue, receive buffer list, and response queue descriptors.
97  */
98 #if defined(__BIG_ENDIAN_BITFIELD)
99 struct cmdQ_e {
100         u32 addr_lo;
101         u32 len_gen;
102         u32 flags;
103         u32 addr_hi;
104 };
105
106 struct freelQ_e {
107         u32 addr_lo;
108         u32 len_gen;
109         u32 gen2;
110         u32 addr_hi;
111 };
112
113 struct respQ_e {
114         u32 Qsleeping           : 4;
115         u32 Cmdq1CreditReturn   : 5;
116         u32 Cmdq1DmaComplete    : 5;
117         u32 Cmdq0CreditReturn   : 5;
118         u32 Cmdq0DmaComplete    : 5;
119         u32 FreelistQid         : 2;
120         u32 CreditValid         : 1;
121         u32 DataValid           : 1;
122         u32 Offload             : 1;
123         u32 Eop                 : 1;
124         u32 Sop                 : 1;
125         u32 GenerationBit       : 1;
126         u32 BufferLength;
127 };
128 #elif defined(__LITTLE_ENDIAN_BITFIELD)
129 struct cmdQ_e {
130         u32 len_gen;
131         u32 addr_lo;
132         u32 addr_hi;
133         u32 flags;
134 };
135
136 struct freelQ_e {
137         u32 len_gen;
138         u32 addr_lo;
139         u32 addr_hi;
140         u32 gen2;
141 };
142
143 struct respQ_e {
144         u32 BufferLength;
145         u32 GenerationBit       : 1;
146         u32 Sop                 : 1;
147         u32 Eop                 : 1;
148         u32 Offload             : 1;
149         u32 DataValid           : 1;
150         u32 CreditValid         : 1;
151         u32 FreelistQid         : 2;
152         u32 Cmdq0DmaComplete    : 5;
153         u32 Cmdq0CreditReturn   : 5;
154         u32 Cmdq1DmaComplete    : 5;
155         u32 Cmdq1CreditReturn   : 5;
156         u32 Qsleeping           : 4;
157 } ;
158 #endif
159
160 /*
161  * SW Context Command and Freelist Queue Descriptors
162  */
163 struct cmdQ_ce {
164         struct sk_buff *skb;
165         DEFINE_DMA_UNMAP_ADDR(dma_addr);
166         DEFINE_DMA_UNMAP_LEN(dma_len);
167 };
168
169 struct freelQ_ce {
170         struct sk_buff *skb;
171         DEFINE_DMA_UNMAP_ADDR(dma_addr);
172         DEFINE_DMA_UNMAP_LEN(dma_len);
173 };
174
175 /*
176  * SW command, freelist and response rings
177  */
178 struct cmdQ {
179         unsigned long   status;         /* HW DMA fetch status */
180         unsigned int    in_use;         /* # of in-use command descriptors */
181         unsigned int    size;           /* # of descriptors */
182         unsigned int    processed;      /* total # of descs HW has processed */
183         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
184         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
185         u16             pidx;           /* producer index (SW) */
186         u16             cidx;           /* consumer index (HW) */
187         u8              genbit;         /* current generation (=valid) bit */
188         u8              sop;            /* is next entry start of packet? */
189         struct cmdQ_e  *entries;        /* HW command descriptor Q */
190         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
191         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
192         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
193 };
194
195 struct freelQ {
196         unsigned int    credits;        /* # of available RX buffers */
197         unsigned int    size;           /* free list capacity */
198         u16             pidx;           /* producer index (SW) */
199         u16             cidx;           /* consumer index (HW) */
200         u16             rx_buffer_size; /* Buffer size on this free list */
201         u16             dma_offset;     /* DMA offset to align IP headers */
202         u16             recycleq_idx;   /* skb recycle q to use */
203         u8              genbit;         /* current generation (=valid) bit */
204         struct freelQ_e *entries;       /* HW freelist descriptor Q */
205         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
206         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
207 };
208
209 struct respQ {
210         unsigned int    credits;        /* credits to be returned to SGE */
211         unsigned int    size;           /* # of response Q descriptors */
212         u16             cidx;           /* consumer index (SW) */
213         u8              genbit;         /* current generation(=valid) bit */
214         struct respQ_e *entries;        /* HW response descriptor Q */
215         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
216 };
217
218 /* Bit flags for cmdQ.status */
219 enum {
220         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
221         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
222 };
223
224 /* T204 TX SW scheduler */
225
226 /* Per T204 TX port */
227 struct sched_port {
228         unsigned int    avail;          /* available bits - quota */
229         unsigned int    drain_bits_per_1024ns; /* drain rate */
230         unsigned int    speed;          /* drain rate, mbps */
231         unsigned int    mtu;            /* mtu size */
232         struct sk_buff_head skbq;       /* pending skbs */
233 };
234
235 /* Per T204 device */
236 struct sched {
237         ktime_t         last_updated;   /* last time quotas were computed */
238         unsigned int    max_avail;      /* max bits to be sent to any port */
239         unsigned int    port;           /* port index (round robin ports) */
240         unsigned int    num;            /* num skbs in per port queues */
241         struct sched_port p[MAX_NPORTS];
242         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
243 };
244 static void restart_sched(unsigned long);
245
246
247 /*
248  * Main SGE data structure
249  *
250  * Interrupts are handled by a single CPU and it is likely that on a MP system
251  * the application is migrated to another CPU. In that scenario, we try to
252  * separate the RX(in irq context) and TX state in order to decrease memory
253  * contention.
254  */
255 struct sge {
256         struct adapter *adapter;        /* adapter backpointer */
257         struct net_device *netdev;      /* netdevice backpointer */
258         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
259         struct respQ    respQ;          /* response Q */
260         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
261         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
262         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
263         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
264         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
265         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
266         struct timer_list espibug_timer;
267         unsigned long   espibug_timeout;
268         struct sk_buff  *espibug_skb[MAX_NPORTS];
269         u32             sge_control;    /* shadow value of sge control reg */
270         struct sge_intr_counts stats;
271         struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
272         struct sched    *tx_sched;
273         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
274 };
275
276 static const u8 ch_mac_addr[ETH_ALEN] = {
277         0x0, 0x7, 0x43, 0x0, 0x0, 0x0
278 };
279
280 /*
281  * stop tasklet and free all pending skb's
282  */
283 static void tx_sched_stop(struct sge *sge)
284 {
285         struct sched *s = sge->tx_sched;
286         int i;
287
288         tasklet_kill(&s->sched_tsk);
289
290         for (i = 0; i < MAX_NPORTS; i++)
291                 __skb_queue_purge(&s->p[s->port].skbq);
292 }
293
294 /*
295  * t1_sched_update_parms() is called when the MTU or link speed changes. It
296  * re-computes scheduler parameters to scope with the change.
297  */
298 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
299                                    unsigned int mtu, unsigned int speed)
300 {
301         struct sched *s = sge->tx_sched;
302         struct sched_port *p = &s->p[port];
303         unsigned int max_avail_segs;
304
305         pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
306         if (speed)
307                 p->speed = speed;
308         if (mtu)
309                 p->mtu = mtu;
310
311         if (speed || mtu) {
312                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
313                 do_div(drain, (p->mtu + 50) * 1000);
314                 p->drain_bits_per_1024ns = (unsigned int) drain;
315
316                 if (p->speed < 1000)
317                         p->drain_bits_per_1024ns =
318                                 90 * p->drain_bits_per_1024ns / 100;
319         }
320
321         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
322                 p->drain_bits_per_1024ns -= 16;
323                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
324                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
325         } else {
326                 s->max_avail = 16384;
327                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
328         }
329
330         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
331                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
332                  p->speed, s->max_avail, max_avail_segs,
333                  p->drain_bits_per_1024ns);
334
335         return max_avail_segs * (p->mtu - 40);
336 }
337
338 #if 0
339
340 /*
341  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
342  * data that can be pushed per port.
343  */
344 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
345 {
346         struct sched *s = sge->tx_sched;
347         unsigned int i;
348
349         s->max_avail = val;
350         for (i = 0; i < MAX_NPORTS; i++)
351                 t1_sched_update_parms(sge, i, 0, 0);
352 }
353
354 /*
355  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
356  * is draining.
357  */
358 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
359                                          unsigned int val)
360 {
361         struct sched *s = sge->tx_sched;
362         struct sched_port *p = &s->p[port];
363         p->drain_bits_per_1024ns = val * 1024 / 1000;
364         t1_sched_update_parms(sge, port, 0, 0);
365 }
366
367 #endif  /*  0  */
368
369
370 /*
371  * get_clock() implements a ns clock (see ktime_get)
372  */
373 static inline ktime_t get_clock(void)
374 {
375         struct timespec ts;
376
377         ktime_get_ts(&ts);
378         return timespec_to_ktime(ts);
379 }
380
381 /*
382  * tx_sched_init() allocates resources and does basic initialization.
383  */
384 static int tx_sched_init(struct sge *sge)
385 {
386         struct sched *s;
387         int i;
388
389         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
390         if (!s)
391                 return -ENOMEM;
392
393         pr_debug("tx_sched_init\n");
394         tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
395         sge->tx_sched = s;
396
397         for (i = 0; i < MAX_NPORTS; i++) {
398                 skb_queue_head_init(&s->p[i].skbq);
399                 t1_sched_update_parms(sge, i, 1500, 1000);
400         }
401
402         return 0;
403 }
404
405 /*
406  * sched_update_avail() computes the delta since the last time it was called
407  * and updates the per port quota (number of bits that can be sent to the any
408  * port).
409  */
410 static inline int sched_update_avail(struct sge *sge)
411 {
412         struct sched *s = sge->tx_sched;
413         ktime_t now = get_clock();
414         unsigned int i;
415         long long delta_time_ns;
416
417         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
418
419         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
420         if (delta_time_ns < 15000)
421                 return 0;
422
423         for (i = 0; i < MAX_NPORTS; i++) {
424                 struct sched_port *p = &s->p[i];
425                 unsigned int delta_avail;
426
427                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
428                 p->avail = min(p->avail + delta_avail, s->max_avail);
429         }
430
431         s->last_updated = now;
432
433         return 1;
434 }
435
436 /*
437  * sched_skb() is called from two different places. In the tx path, any
438  * packet generating load on an output port will call sched_skb()
439  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
440  * context (skb == NULL).
441  * The scheduler only returns a skb (which will then be sent) if the
442  * length of the skb is <= the current quota of the output port.
443  */
444 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
445                                 unsigned int credits)
446 {
447         struct sched *s = sge->tx_sched;
448         struct sk_buff_head *skbq;
449         unsigned int i, len, update = 1;
450
451         pr_debug("sched_skb %p\n", skb);
452         if (!skb) {
453                 if (!s->num)
454                         return NULL;
455         } else {
456                 skbq = &s->p[skb->dev->if_port].skbq;
457                 __skb_queue_tail(skbq, skb);
458                 s->num++;
459                 skb = NULL;
460         }
461
462         if (credits < MAX_SKB_FRAGS + 1)
463                 goto out;
464
465 again:
466         for (i = 0; i < MAX_NPORTS; i++) {
467                 s->port = (s->port + 1) & (MAX_NPORTS - 1);
468                 skbq = &s->p[s->port].skbq;
469
470                 skb = skb_peek(skbq);
471
472                 if (!skb)
473                         continue;
474
475                 len = skb->len;
476                 if (len <= s->p[s->port].avail) {
477                         s->p[s->port].avail -= len;
478                         s->num--;
479                         __skb_unlink(skb, skbq);
480                         goto out;
481                 }
482                 skb = NULL;
483         }
484
485         if (update-- && sched_update_avail(sge))
486                 goto again;
487
488 out:
489         /* If there are more pending skbs, we use the hardware to schedule us
490          * again.
491          */
492         if (s->num && !skb) {
493                 struct cmdQ *q = &sge->cmdQ[0];
494                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
495                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
496                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
497                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
498                 }
499         }
500         pr_debug("sched_skb ret %p\n", skb);
501
502         return skb;
503 }
504
505 /*
506  * PIO to indicate that memory mapped Q contains valid descriptor(s).
507  */
508 static inline void doorbell_pio(struct adapter *adapter, u32 val)
509 {
510         wmb();
511         writel(val, adapter->regs + A_SG_DOORBELL);
512 }
513
514 /*
515  * Frees all RX buffers on the freelist Q. The caller must make sure that
516  * the SGE is turned off before calling this function.
517  */
518 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
519 {
520         unsigned int cidx = q->cidx;
521
522         while (q->credits--) {
523                 struct freelQ_ce *ce = &q->centries[cidx];
524
525                 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
526                                  dma_unmap_len(ce, dma_len),
527                                  PCI_DMA_FROMDEVICE);
528                 dev_kfree_skb(ce->skb);
529                 ce->skb = NULL;
530                 if (++cidx == q->size)
531                         cidx = 0;
532         }
533 }
534
535 /*
536  * Free RX free list and response queue resources.
537  */
538 static void free_rx_resources(struct sge *sge)
539 {
540         struct pci_dev *pdev = sge->adapter->pdev;
541         unsigned int size, i;
542
543         if (sge->respQ.entries) {
544                 size = sizeof(struct respQ_e) * sge->respQ.size;
545                 pci_free_consistent(pdev, size, sge->respQ.entries,
546                                     sge->respQ.dma_addr);
547         }
548
549         for (i = 0; i < SGE_FREELQ_N; i++) {
550                 struct freelQ *q = &sge->freelQ[i];
551
552                 if (q->centries) {
553                         free_freelQ_buffers(pdev, q);
554                         kfree(q->centries);
555                 }
556                 if (q->entries) {
557                         size = sizeof(struct freelQ_e) * q->size;
558                         pci_free_consistent(pdev, size, q->entries,
559                                             q->dma_addr);
560                 }
561         }
562 }
563
564 /*
565  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
566  * response queue.
567  */
568 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
569 {
570         struct pci_dev *pdev = sge->adapter->pdev;
571         unsigned int size, i;
572
573         for (i = 0; i < SGE_FREELQ_N; i++) {
574                 struct freelQ *q = &sge->freelQ[i];
575
576                 q->genbit = 1;
577                 q->size = p->freelQ_size[i];
578                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
579                 size = sizeof(struct freelQ_e) * q->size;
580                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
581                 if (!q->entries)
582                         goto err_no_mem;
583
584                 size = sizeof(struct freelQ_ce) * q->size;
585                 q->centries = kzalloc(size, GFP_KERNEL);
586                 if (!q->centries)
587                         goto err_no_mem;
588         }
589
590         /*
591          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
592          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
593          * including all the sk_buff overhead.
594          *
595          * Note: For T2 FL0 and FL1 are reversed.
596          */
597         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
598                 sizeof(struct cpl_rx_data) +
599                 sge->freelQ[!sge->jumbo_fl].dma_offset;
600
601                 size = (16 * 1024) -
602                     SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
603
604         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
605
606         /*
607          * Setup which skb recycle Q should be used when recycling buffers from
608          * each free list.
609          */
610         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
611         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
612
613         sge->respQ.genbit = 1;
614         sge->respQ.size = SGE_RESPQ_E_N;
615         sge->respQ.credits = 0;
616         size = sizeof(struct respQ_e) * sge->respQ.size;
617         sge->respQ.entries =
618                 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
619         if (!sge->respQ.entries)
620                 goto err_no_mem;
621         return 0;
622
623 err_no_mem:
624         free_rx_resources(sge);
625         return -ENOMEM;
626 }
627
628 /*
629  * Reclaims n TX descriptors and frees the buffers associated with them.
630  */
631 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
632 {
633         struct cmdQ_ce *ce;
634         struct pci_dev *pdev = sge->adapter->pdev;
635         unsigned int cidx = q->cidx;
636
637         q->in_use -= n;
638         ce = &q->centries[cidx];
639         while (n--) {
640                 if (likely(dma_unmap_len(ce, dma_len))) {
641                         pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
642                                          dma_unmap_len(ce, dma_len),
643                                          PCI_DMA_TODEVICE);
644                         if (q->sop)
645                                 q->sop = 0;
646                 }
647                 if (ce->skb) {
648                         dev_kfree_skb_any(ce->skb);
649                         q->sop = 1;
650                 }
651                 ce++;
652                 if (++cidx == q->size) {
653                         cidx = 0;
654                         ce = q->centries;
655                 }
656         }
657         q->cidx = cidx;
658 }
659
660 /*
661  * Free TX resources.
662  *
663  * Assumes that SGE is stopped and all interrupts are disabled.
664  */
665 static void free_tx_resources(struct sge *sge)
666 {
667         struct pci_dev *pdev = sge->adapter->pdev;
668         unsigned int size, i;
669
670         for (i = 0; i < SGE_CMDQ_N; i++) {
671                 struct cmdQ *q = &sge->cmdQ[i];
672
673                 if (q->centries) {
674                         if (q->in_use)
675                                 free_cmdQ_buffers(sge, q, q->in_use);
676                         kfree(q->centries);
677                 }
678                 if (q->entries) {
679                         size = sizeof(struct cmdQ_e) * q->size;
680                         pci_free_consistent(pdev, size, q->entries,
681                                             q->dma_addr);
682                 }
683         }
684 }
685
686 /*
687  * Allocates basic TX resources, consisting of memory mapped command Qs.
688  */
689 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
690 {
691         struct pci_dev *pdev = sge->adapter->pdev;
692         unsigned int size, i;
693
694         for (i = 0; i < SGE_CMDQ_N; i++) {
695                 struct cmdQ *q = &sge->cmdQ[i];
696
697                 q->genbit = 1;
698                 q->sop = 1;
699                 q->size = p->cmdQ_size[i];
700                 q->in_use = 0;
701                 q->status = 0;
702                 q->processed = q->cleaned = 0;
703                 q->stop_thres = 0;
704                 spin_lock_init(&q->lock);
705                 size = sizeof(struct cmdQ_e) * q->size;
706                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
707                 if (!q->entries)
708                         goto err_no_mem;
709
710                 size = sizeof(struct cmdQ_ce) * q->size;
711                 q->centries = kzalloc(size, GFP_KERNEL);
712                 if (!q->centries)
713                         goto err_no_mem;
714         }
715
716         /*
717          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
718          * only.  For queue 0 set the stop threshold so we can handle one more
719          * packet from each port, plus reserve an additional 24 entries for
720          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
721          * space for Ethernet packets.
722          */
723         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
724                 (MAX_SKB_FRAGS + 1);
725         return 0;
726
727 err_no_mem:
728         free_tx_resources(sge);
729         return -ENOMEM;
730 }
731
732 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
733                                      u32 size, int base_reg_lo,
734                                      int base_reg_hi, int size_reg)
735 {
736         writel((u32)addr, adapter->regs + base_reg_lo);
737         writel(addr >> 32, adapter->regs + base_reg_hi);
738         writel(size, adapter->regs + size_reg);
739 }
740
741 /*
742  * Enable/disable VLAN acceleration.
743  */
744 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
745 {
746         struct sge *sge = adapter->sge;
747
748         sge->sge_control &= ~F_VLAN_XTRACT;
749         if (on_off)
750                 sge->sge_control |= F_VLAN_XTRACT;
751         if (adapter->open_device_map) {
752                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
753                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
754         }
755 }
756
757 /*
758  * Programs the various SGE registers. However, the engine is not yet enabled,
759  * but sge->sge_control is setup and ready to go.
760  */
761 static void configure_sge(struct sge *sge, struct sge_params *p)
762 {
763         struct adapter *ap = sge->adapter;
764
765         writel(0, ap->regs + A_SG_CONTROL);
766         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
767                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
768         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
769                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
770         setup_ring_params(ap, sge->freelQ[0].dma_addr,
771                           sge->freelQ[0].size, A_SG_FL0BASELWR,
772                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
773         setup_ring_params(ap, sge->freelQ[1].dma_addr,
774                           sge->freelQ[1].size, A_SG_FL1BASELWR,
775                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
776
777         /* The threshold comparison uses <. */
778         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
779
780         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
781                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
782         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
783
784         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
785                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
786                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
787                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
788
789 #if defined(__BIG_ENDIAN_BITFIELD)
790         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
791 #endif
792
793         /* Initialize no-resource timer */
794         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
795
796         t1_sge_set_coalesce_params(sge, p);
797 }
798
799 /*
800  * Return the payload capacity of the jumbo free-list buffers.
801  */
802 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
803 {
804         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
805                 sge->freelQ[sge->jumbo_fl].dma_offset -
806                 sizeof(struct cpl_rx_data);
807 }
808
809 /*
810  * Frees all SGE related resources and the sge structure itself
811  */
812 void t1_sge_destroy(struct sge *sge)
813 {
814         int i;
815
816         for_each_port(sge->adapter, i)
817                 free_percpu(sge->port_stats[i]);
818
819         kfree(sge->tx_sched);
820         free_tx_resources(sge);
821         free_rx_resources(sge);
822         kfree(sge);
823 }
824
825 /*
826  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
827  * context Q) until the Q is full or alloc_skb fails.
828  *
829  * It is possible that the generation bits already match, indicating that the
830  * buffer is already valid and nothing needs to be done. This happens when we
831  * copied a received buffer into a new sk_buff during the interrupt processing.
832  *
833  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
834  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
835  * aligned.
836  */
837 static void refill_free_list(struct sge *sge, struct freelQ *q)
838 {
839         struct pci_dev *pdev = sge->adapter->pdev;
840         struct freelQ_ce *ce = &q->centries[q->pidx];
841         struct freelQ_e *e = &q->entries[q->pidx];
842         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
843
844         while (q->credits < q->size) {
845                 struct sk_buff *skb;
846                 dma_addr_t mapping;
847
848                 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
849                 if (!skb)
850                         break;
851
852                 skb_reserve(skb, q->dma_offset);
853                 mapping = pci_map_single(pdev, skb->data, dma_len,
854                                          PCI_DMA_FROMDEVICE);
855                 skb_reserve(skb, sge->rx_pkt_pad);
856
857                 ce->skb = skb;
858                 dma_unmap_addr_set(ce, dma_addr, mapping);
859                 dma_unmap_len_set(ce, dma_len, dma_len);
860                 e->addr_lo = (u32)mapping;
861                 e->addr_hi = (u64)mapping >> 32;
862                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
863                 wmb();
864                 e->gen2 = V_CMD_GEN2(q->genbit);
865
866                 e++;
867                 ce++;
868                 if (++q->pidx == q->size) {
869                         q->pidx = 0;
870                         q->genbit ^= 1;
871                         ce = q->centries;
872                         e = q->entries;
873                 }
874                 q->credits++;
875         }
876 }
877
878 /*
879  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
880  * of both rings, we go into 'few interrupt mode' in order to give the system
881  * time to free up resources.
882  */
883 static void freelQs_empty(struct sge *sge)
884 {
885         struct adapter *adapter = sge->adapter;
886         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
887         u32 irqholdoff_reg;
888
889         refill_free_list(sge, &sge->freelQ[0]);
890         refill_free_list(sge, &sge->freelQ[1]);
891
892         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
893             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
894                 irq_reg |= F_FL_EXHAUSTED;
895                 irqholdoff_reg = sge->fixed_intrtimer;
896         } else {
897                 /* Clear the F_FL_EXHAUSTED interrupts for now */
898                 irq_reg &= ~F_FL_EXHAUSTED;
899                 irqholdoff_reg = sge->intrtimer_nres;
900         }
901         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
902         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
903
904         /* We reenable the Qs to force a freelist GTS interrupt later */
905         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
906 }
907
908 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
909 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
910 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
911                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
912
913 /*
914  * Disable SGE Interrupts
915  */
916 void t1_sge_intr_disable(struct sge *sge)
917 {
918         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
919
920         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
921         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
922 }
923
924 /*
925  * Enable SGE interrupts.
926  */
927 void t1_sge_intr_enable(struct sge *sge)
928 {
929         u32 en = SGE_INT_ENABLE;
930         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
931
932         if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
933                 en &= ~F_PACKET_TOO_BIG;
934         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
935         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
936 }
937
938 /*
939  * Clear SGE interrupts.
940  */
941 void t1_sge_intr_clear(struct sge *sge)
942 {
943         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
944         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
945 }
946
947 /*
948  * SGE 'Error' interrupt handler
949  */
950 int t1_sge_intr_error_handler(struct sge *sge)
951 {
952         struct adapter *adapter = sge->adapter;
953         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
954
955         if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
956                 cause &= ~F_PACKET_TOO_BIG;
957         if (cause & F_RESPQ_EXHAUSTED)
958                 sge->stats.respQ_empty++;
959         if (cause & F_RESPQ_OVERFLOW) {
960                 sge->stats.respQ_overflow++;
961                 pr_alert("%s: SGE response queue overflow\n",
962                          adapter->name);
963         }
964         if (cause & F_FL_EXHAUSTED) {
965                 sge->stats.freelistQ_empty++;
966                 freelQs_empty(sge);
967         }
968         if (cause & F_PACKET_TOO_BIG) {
969                 sge->stats.pkt_too_big++;
970                 pr_alert("%s: SGE max packet size exceeded\n",
971                          adapter->name);
972         }
973         if (cause & F_PACKET_MISMATCH) {
974                 sge->stats.pkt_mismatch++;
975                 pr_alert("%s: SGE packet mismatch\n", adapter->name);
976         }
977         if (cause & SGE_INT_FATAL)
978                 t1_fatal_err(adapter);
979
980         writel(cause, adapter->regs + A_SG_INT_CAUSE);
981         return 0;
982 }
983
984 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
985 {
986         return &sge->stats;
987 }
988
989 void t1_sge_get_port_stats(const struct sge *sge, int port,
990                            struct sge_port_stats *ss)
991 {
992         int cpu;
993
994         memset(ss, 0, sizeof(*ss));
995         for_each_possible_cpu(cpu) {
996                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
997
998                 ss->rx_cso_good += st->rx_cso_good;
999                 ss->tx_cso += st->tx_cso;
1000                 ss->tx_tso += st->tx_tso;
1001                 ss->tx_need_hdrroom += st->tx_need_hdrroom;
1002                 ss->vlan_xtract += st->vlan_xtract;
1003                 ss->vlan_insert += st->vlan_insert;
1004         }
1005 }
1006
1007 /**
1008  *      recycle_fl_buf - recycle a free list buffer
1009  *      @fl: the free list
1010  *      @idx: index of buffer to recycle
1011  *
1012  *      Recycles the specified buffer on the given free list by adding it at
1013  *      the next available slot on the list.
1014  */
1015 static void recycle_fl_buf(struct freelQ *fl, int idx)
1016 {
1017         struct freelQ_e *from = &fl->entries[idx];
1018         struct freelQ_e *to = &fl->entries[fl->pidx];
1019
1020         fl->centries[fl->pidx] = fl->centries[idx];
1021         to->addr_lo = from->addr_lo;
1022         to->addr_hi = from->addr_hi;
1023         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1024         wmb();
1025         to->gen2 = V_CMD_GEN2(fl->genbit);
1026         fl->credits++;
1027
1028         if (++fl->pidx == fl->size) {
1029                 fl->pidx = 0;
1030                 fl->genbit ^= 1;
1031         }
1032 }
1033
1034 static int copybreak __read_mostly = 256;
1035 module_param(copybreak, int, 0);
1036 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1037
1038 /**
1039  *      get_packet - return the next ingress packet buffer
1040  *      @pdev: the PCI device that received the packet
1041  *      @fl: the SGE free list holding the packet
1042  *      @len: the actual packet length, excluding any SGE padding
1043  *
1044  *      Get the next packet from a free list and complete setup of the
1045  *      sk_buff.  If the packet is small we make a copy and recycle the
1046  *      original buffer, otherwise we use the original buffer itself.  If a
1047  *      positive drop threshold is supplied packets are dropped and their
1048  *      buffers recycled if (a) the number of remaining buffers is under the
1049  *      threshold and the packet is too big to copy, or (b) the packet should
1050  *      be copied but there is no memory for the copy.
1051  */
1052 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1053                                          struct freelQ *fl, unsigned int len)
1054 {
1055         struct sk_buff *skb;
1056         const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1057
1058         if (len < copybreak) {
1059                 skb = alloc_skb(len + 2, GFP_ATOMIC);
1060                 if (!skb)
1061                         goto use_orig_buf;
1062
1063                 skb_reserve(skb, 2);    /* align IP header */
1064                 skb_put(skb, len);
1065                 pci_dma_sync_single_for_cpu(pdev,
1066                                             dma_unmap_addr(ce, dma_addr),
1067                                             dma_unmap_len(ce, dma_len),
1068                                             PCI_DMA_FROMDEVICE);
1069                 skb_copy_from_linear_data(ce->skb, skb->data, len);
1070                 pci_dma_sync_single_for_device(pdev,
1071                                                dma_unmap_addr(ce, dma_addr),
1072                                                dma_unmap_len(ce, dma_len),
1073                                                PCI_DMA_FROMDEVICE);
1074                 recycle_fl_buf(fl, fl->cidx);
1075                 return skb;
1076         }
1077
1078 use_orig_buf:
1079         if (fl->credits < 2) {
1080                 recycle_fl_buf(fl, fl->cidx);
1081                 return NULL;
1082         }
1083
1084         pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1085                          dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1086         skb = ce->skb;
1087         prefetch(skb->data);
1088
1089         skb_put(skb, len);
1090         return skb;
1091 }
1092
1093 /**
1094  *      unexpected_offload - handle an unexpected offload packet
1095  *      @adapter: the adapter
1096  *      @fl: the free list that received the packet
1097  *
1098  *      Called when we receive an unexpected offload packet (e.g., the TOE
1099  *      function is disabled or the card is a NIC).  Prints a message and
1100  *      recycles the buffer.
1101  */
1102 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1103 {
1104         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1105         struct sk_buff *skb = ce->skb;
1106
1107         pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1108                             dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1109         pr_err("%s: unexpected offload packet, cmd %u\n",
1110                adapter->name, *skb->data);
1111         recycle_fl_buf(fl, fl->cidx);
1112 }
1113
1114 /*
1115  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1116  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1117  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1118  * Note that the *_large_page_tx_descs stuff will be optimized out when
1119  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1120  *
1121  * compute_large_page_descs() computes how many additional descriptors are
1122  * required to break down the stack's request.
1123  */
1124 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1125 {
1126         unsigned int count = 0;
1127
1128         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1129                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1130                 unsigned int i, len = skb_headlen(skb);
1131                 while (len > SGE_TX_DESC_MAX_PLEN) {
1132                         count++;
1133                         len -= SGE_TX_DESC_MAX_PLEN;
1134                 }
1135                 for (i = 0; nfrags--; i++) {
1136                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1137                         len = frag->size;
1138                         while (len > SGE_TX_DESC_MAX_PLEN) {
1139                                 count++;
1140                                 len -= SGE_TX_DESC_MAX_PLEN;
1141                         }
1142                 }
1143         }
1144         return count;
1145 }
1146
1147 /*
1148  * Write a cmdQ entry.
1149  *
1150  * Since this function writes the 'flags' field, it must not be used to
1151  * write the first cmdQ entry.
1152  */
1153 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1154                                  unsigned int len, unsigned int gen,
1155                                  unsigned int eop)
1156 {
1157         BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1158
1159         e->addr_lo = (u32)mapping;
1160         e->addr_hi = (u64)mapping >> 32;
1161         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1162         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1163 }
1164
1165 /*
1166  * See comment for previous function.
1167  *
1168  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1169  * *desc_len exceeds HW's capability.
1170  */
1171 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1172                                                      struct cmdQ_e **e,
1173                                                      struct cmdQ_ce **ce,
1174                                                      unsigned int *gen,
1175                                                      dma_addr_t *desc_mapping,
1176                                                      unsigned int *desc_len,
1177                                                      unsigned int nfrags,
1178                                                      struct cmdQ *q)
1179 {
1180         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1181                 struct cmdQ_e *e1 = *e;
1182                 struct cmdQ_ce *ce1 = *ce;
1183
1184                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1185                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1186                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1187                                       *gen, nfrags == 0 && *desc_len == 0);
1188                         ce1->skb = NULL;
1189                         dma_unmap_len_set(ce1, dma_len, 0);
1190                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1191                         if (*desc_len) {
1192                                 ce1++;
1193                                 e1++;
1194                                 if (++pidx == q->size) {
1195                                         pidx = 0;
1196                                         *gen ^= 1;
1197                                         ce1 = q->centries;
1198                                         e1 = q->entries;
1199                                 }
1200                         }
1201                 }
1202                 *e = e1;
1203                 *ce = ce1;
1204         }
1205         return pidx;
1206 }
1207
1208 /*
1209  * Write the command descriptors to transmit the given skb starting at
1210  * descriptor pidx with the given generation.
1211  */
1212 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1213                                   unsigned int pidx, unsigned int gen,
1214                                   struct cmdQ *q)
1215 {
1216         dma_addr_t mapping, desc_mapping;
1217         struct cmdQ_e *e, *e1;
1218         struct cmdQ_ce *ce;
1219         unsigned int i, flags, first_desc_len, desc_len,
1220             nfrags = skb_shinfo(skb)->nr_frags;
1221
1222         e = e1 = &q->entries[pidx];
1223         ce = &q->centries[pidx];
1224
1225         mapping = pci_map_single(adapter->pdev, skb->data,
1226                                  skb_headlen(skb), PCI_DMA_TODEVICE);
1227
1228         desc_mapping = mapping;
1229         desc_len = skb_headlen(skb);
1230
1231         flags = F_CMD_DATAVALID | F_CMD_SOP |
1232             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1233             V_CMD_GEN2(gen);
1234         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1235             desc_len : SGE_TX_DESC_MAX_PLEN;
1236         e->addr_lo = (u32)desc_mapping;
1237         e->addr_hi = (u64)desc_mapping >> 32;
1238         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1239         ce->skb = NULL;
1240         dma_unmap_len_set(ce, dma_len, 0);
1241
1242         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1243             desc_len > SGE_TX_DESC_MAX_PLEN) {
1244                 desc_mapping += first_desc_len;
1245                 desc_len -= first_desc_len;
1246                 e1++;
1247                 ce++;
1248                 if (++pidx == q->size) {
1249                         pidx = 0;
1250                         gen ^= 1;
1251                         e1 = q->entries;
1252                         ce = q->centries;
1253                 }
1254                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1255                                                  &desc_mapping, &desc_len,
1256                                                  nfrags, q);
1257
1258                 if (likely(desc_len))
1259                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1260                                       nfrags == 0);
1261         }
1262
1263         ce->skb = NULL;
1264         dma_unmap_addr_set(ce, dma_addr, mapping);
1265         dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1266
1267         for (i = 0; nfrags--; i++) {
1268                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1269                 e1++;
1270                 ce++;
1271                 if (++pidx == q->size) {
1272                         pidx = 0;
1273                         gen ^= 1;
1274                         e1 = q->entries;
1275                         ce = q->centries;
1276                 }
1277
1278                 mapping = pci_map_page(adapter->pdev, frag->page,
1279                                        frag->page_offset, frag->size,
1280                                        PCI_DMA_TODEVICE);
1281                 desc_mapping = mapping;
1282                 desc_len = frag->size;
1283
1284                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1285                                                  &desc_mapping, &desc_len,
1286                                                  nfrags, q);
1287                 if (likely(desc_len))
1288                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1289                                       nfrags == 0);
1290                 ce->skb = NULL;
1291                 dma_unmap_addr_set(ce, dma_addr, mapping);
1292                 dma_unmap_len_set(ce, dma_len, frag->size);
1293         }
1294         ce->skb = skb;
1295         wmb();
1296         e->flags = flags;
1297 }
1298
1299 /*
1300  * Clean up completed Tx buffers.
1301  */
1302 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1303 {
1304         unsigned int reclaim = q->processed - q->cleaned;
1305
1306         if (reclaim) {
1307                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1308                          q->processed, q->cleaned);
1309                 free_cmdQ_buffers(sge, q, reclaim);
1310                 q->cleaned += reclaim;
1311         }
1312 }
1313
1314 /*
1315  * Called from tasklet. Checks the scheduler for any
1316  * pending skbs that can be sent.
1317  */
1318 static void restart_sched(unsigned long arg)
1319 {
1320         struct sge *sge = (struct sge *) arg;
1321         struct adapter *adapter = sge->adapter;
1322         struct cmdQ *q = &sge->cmdQ[0];
1323         struct sk_buff *skb;
1324         unsigned int credits, queued_skb = 0;
1325
1326         spin_lock(&q->lock);
1327         reclaim_completed_tx(sge, q);
1328
1329         credits = q->size - q->in_use;
1330         pr_debug("restart_sched credits=%d\n", credits);
1331         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1332                 unsigned int genbit, pidx, count;
1333                 count = 1 + skb_shinfo(skb)->nr_frags;
1334                 count += compute_large_page_tx_descs(skb);
1335                 q->in_use += count;
1336                 genbit = q->genbit;
1337                 pidx = q->pidx;
1338                 q->pidx += count;
1339                 if (q->pidx >= q->size) {
1340                         q->pidx -= q->size;
1341                         q->genbit ^= 1;
1342                 }
1343                 write_tx_descs(adapter, skb, pidx, genbit, q);
1344                 credits = q->size - q->in_use;
1345                 queued_skb = 1;
1346         }
1347
1348         if (queued_skb) {
1349                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1350                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1351                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1352                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1353                 }
1354         }
1355         spin_unlock(&q->lock);
1356 }
1357
1358 /**
1359  *      sge_rx - process an ingress ethernet packet
1360  *      @sge: the sge structure
1361  *      @fl: the free list that contains the packet buffer
1362  *      @len: the packet length
1363  *
1364  *      Process an ingress ethernet pakcet and deliver it to the stack.
1365  */
1366 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1367 {
1368         struct sk_buff *skb;
1369         const struct cpl_rx_pkt *p;
1370         struct adapter *adapter = sge->adapter;
1371         struct sge_port_stats *st;
1372         struct net_device *dev;
1373
1374         skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1375         if (unlikely(!skb)) {
1376                 sge->stats.rx_drops++;
1377                 return;
1378         }
1379
1380         p = (const struct cpl_rx_pkt *) skb->data;
1381         if (p->iff >= adapter->params.nports) {
1382                 kfree_skb(skb);
1383                 return;
1384         }
1385         __skb_pull(skb, sizeof(*p));
1386
1387         st = this_cpu_ptr(sge->port_stats[p->iff]);
1388         dev = adapter->port[p->iff].dev;
1389
1390         skb->protocol = eth_type_trans(skb, dev);
1391         if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1392             skb->protocol == htons(ETH_P_IP) &&
1393             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1394                 ++st->rx_cso_good;
1395                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1396         } else
1397                 skb_checksum_none_assert(skb);
1398
1399         if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1400                 st->vlan_xtract++;
1401                 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1402                                          ntohs(p->vlan));
1403         } else
1404                 netif_receive_skb(skb);
1405 }
1406
1407 /*
1408  * Returns true if a command queue has enough available descriptors that
1409  * we can resume Tx operation after temporarily disabling its packet queue.
1410  */
1411 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1412 {
1413         unsigned int r = q->processed - q->cleaned;
1414
1415         return q->in_use - r < (q->size >> 1);
1416 }
1417
1418 /*
1419  * Called when sufficient space has become available in the SGE command queues
1420  * after the Tx packet schedulers have been suspended to restart the Tx path.
1421  */
1422 static void restart_tx_queues(struct sge *sge)
1423 {
1424         struct adapter *adap = sge->adapter;
1425         int i;
1426
1427         if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1428                 return;
1429
1430         for_each_port(adap, i) {
1431                 struct net_device *nd = adap->port[i].dev;
1432
1433                 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1434                     netif_running(nd)) {
1435                         sge->stats.cmdQ_restarted[2]++;
1436                         netif_wake_queue(nd);
1437                 }
1438         }
1439 }
1440
1441 /*
1442  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1443  * information.
1444  */
1445 static unsigned int update_tx_info(struct adapter *adapter,
1446                                           unsigned int flags,
1447                                           unsigned int pr0)
1448 {
1449         struct sge *sge = adapter->sge;
1450         struct cmdQ *cmdq = &sge->cmdQ[0];
1451
1452         cmdq->processed += pr0;
1453         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1454                 freelQs_empty(sge);
1455                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1456         }
1457         if (flags & F_CMDQ0_ENABLE) {
1458                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1459
1460                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1461                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1462                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1463                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1464                 }
1465                 if (sge->tx_sched)
1466                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1467
1468                 flags &= ~F_CMDQ0_ENABLE;
1469         }
1470
1471         if (unlikely(sge->stopped_tx_queues != 0))
1472                 restart_tx_queues(sge);
1473
1474         return flags;
1475 }
1476
1477 /*
1478  * Process SGE responses, up to the supplied budget.  Returns the number of
1479  * responses processed.  A negative budget is effectively unlimited.
1480  */
1481 static int process_responses(struct adapter *adapter, int budget)
1482 {
1483         struct sge *sge = adapter->sge;
1484         struct respQ *q = &sge->respQ;
1485         struct respQ_e *e = &q->entries[q->cidx];
1486         int done = 0;
1487         unsigned int flags = 0;
1488         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1489
1490         while (done < budget && e->GenerationBit == q->genbit) {
1491                 flags |= e->Qsleeping;
1492
1493                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1494                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1495
1496                 /* We batch updates to the TX side to avoid cacheline
1497                  * ping-pong of TX state information on MP where the sender
1498                  * might run on a different CPU than this function...
1499                  */
1500                 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1501                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1502                         cmdq_processed[0] = 0;
1503                 }
1504
1505                 if (unlikely(cmdq_processed[1] > 16)) {
1506                         sge->cmdQ[1].processed += cmdq_processed[1];
1507                         cmdq_processed[1] = 0;
1508                 }
1509
1510                 if (likely(e->DataValid)) {
1511                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1512
1513                         BUG_ON(!e->Sop || !e->Eop);
1514                         if (unlikely(e->Offload))
1515                                 unexpected_offload(adapter, fl);
1516                         else
1517                                 sge_rx(sge, fl, e->BufferLength);
1518
1519                         ++done;
1520
1521                         /*
1522                          * Note: this depends on each packet consuming a
1523                          * single free-list buffer; cf. the BUG above.
1524                          */
1525                         if (++fl->cidx == fl->size)
1526                                 fl->cidx = 0;
1527                         prefetch(fl->centries[fl->cidx].skb);
1528
1529                         if (unlikely(--fl->credits <
1530                                      fl->size - SGE_FREEL_REFILL_THRESH))
1531                                 refill_free_list(sge, fl);
1532                 } else
1533                         sge->stats.pure_rsps++;
1534
1535                 e++;
1536                 if (unlikely(++q->cidx == q->size)) {
1537                         q->cidx = 0;
1538                         q->genbit ^= 1;
1539                         e = q->entries;
1540                 }
1541                 prefetch(e);
1542
1543                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1544                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1545                         q->credits = 0;
1546                 }
1547         }
1548
1549         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1550         sge->cmdQ[1].processed += cmdq_processed[1];
1551
1552         return done;
1553 }
1554
1555 static inline int responses_pending(const struct adapter *adapter)
1556 {
1557         const struct respQ *Q = &adapter->sge->respQ;
1558         const struct respQ_e *e = &Q->entries[Q->cidx];
1559
1560         return e->GenerationBit == Q->genbit;
1561 }
1562
1563 /*
1564  * A simpler version of process_responses() that handles only pure (i.e.,
1565  * non data-carrying) responses.  Such respones are too light-weight to justify
1566  * calling a softirq when using NAPI, so we handle them specially in hard
1567  * interrupt context.  The function is called with a pointer to a response,
1568  * which the caller must ensure is a valid pure response.  Returns 1 if it
1569  * encounters a valid data-carrying response, 0 otherwise.
1570  */
1571 static int process_pure_responses(struct adapter *adapter)
1572 {
1573         struct sge *sge = adapter->sge;
1574         struct respQ *q = &sge->respQ;
1575         struct respQ_e *e = &q->entries[q->cidx];
1576         const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1577         unsigned int flags = 0;
1578         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1579
1580         prefetch(fl->centries[fl->cidx].skb);
1581         if (e->DataValid)
1582                 return 1;
1583
1584         do {
1585                 flags |= e->Qsleeping;
1586
1587                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1588                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1589
1590                 e++;
1591                 if (unlikely(++q->cidx == q->size)) {
1592                         q->cidx = 0;
1593                         q->genbit ^= 1;
1594                         e = q->entries;
1595                 }
1596                 prefetch(e);
1597
1598                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1599                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1600                         q->credits = 0;
1601                 }
1602                 sge->stats.pure_rsps++;
1603         } while (e->GenerationBit == q->genbit && !e->DataValid);
1604
1605         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1606         sge->cmdQ[1].processed += cmdq_processed[1];
1607
1608         return e->GenerationBit == q->genbit;
1609 }
1610
1611 /*
1612  * Handler for new data events when using NAPI.  This does not need any locking
1613  * or protection from interrupts as data interrupts are off at this point and
1614  * other adapter interrupts do not interfere.
1615  */
1616 int t1_poll(struct napi_struct *napi, int budget)
1617 {
1618         struct adapter *adapter = container_of(napi, struct adapter, napi);
1619         int work_done = process_responses(adapter, budget);
1620
1621         if (likely(work_done < budget)) {
1622                 napi_complete(napi);
1623                 writel(adapter->sge->respQ.cidx,
1624                        adapter->regs + A_SG_SLEEPING);
1625         }
1626         return work_done;
1627 }
1628
1629 irqreturn_t t1_interrupt(int irq, void *data)
1630 {
1631         struct adapter *adapter = data;
1632         struct sge *sge = adapter->sge;
1633         int handled;
1634
1635         if (likely(responses_pending(adapter))) {
1636                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1637
1638                 if (napi_schedule_prep(&adapter->napi)) {
1639                         if (process_pure_responses(adapter))
1640                                 __napi_schedule(&adapter->napi);
1641                         else {
1642                                 /* no data, no NAPI needed */
1643                                 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1644                                 /* undo schedule_prep */
1645                                 napi_enable(&adapter->napi);
1646                         }
1647                 }
1648                 return IRQ_HANDLED;
1649         }
1650
1651         spin_lock(&adapter->async_lock);
1652         handled = t1_slow_intr_handler(adapter);
1653         spin_unlock(&adapter->async_lock);
1654
1655         if (!handled)
1656                 sge->stats.unhandled_irqs++;
1657
1658         return IRQ_RETVAL(handled != 0);
1659 }
1660
1661 /*
1662  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1663  *
1664  * The code figures out how many entries the sk_buff will require in the
1665  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1666  * has complete. Then, it doesn't access the global structure anymore, but
1667  * uses the corresponding fields on the stack. In conjunction with a spinlock
1668  * around that code, we can make the function reentrant without holding the
1669  * lock when we actually enqueue (which might be expensive, especially on
1670  * architectures with IO MMUs).
1671  *
1672  * This runs with softirqs disabled.
1673  */
1674 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1675                      unsigned int qid, struct net_device *dev)
1676 {
1677         struct sge *sge = adapter->sge;
1678         struct cmdQ *q = &sge->cmdQ[qid];
1679         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1680
1681         if (!spin_trylock(&q->lock))
1682                 return NETDEV_TX_LOCKED;
1683
1684         reclaim_completed_tx(sge, q);
1685
1686         pidx = q->pidx;
1687         credits = q->size - q->in_use;
1688         count = 1 + skb_shinfo(skb)->nr_frags;
1689         count += compute_large_page_tx_descs(skb);
1690
1691         /* Ethernet packet */
1692         if (unlikely(credits < count)) {
1693                 if (!netif_queue_stopped(dev)) {
1694                         netif_stop_queue(dev);
1695                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1696                         sge->stats.cmdQ_full[2]++;
1697                         pr_err("%s: Tx ring full while queue awake!\n",
1698                                adapter->name);
1699                 }
1700                 spin_unlock(&q->lock);
1701                 return NETDEV_TX_BUSY;
1702         }
1703
1704         if (unlikely(credits - count < q->stop_thres)) {
1705                 netif_stop_queue(dev);
1706                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1707                 sge->stats.cmdQ_full[2]++;
1708         }
1709
1710         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1711          * through the scheduler.
1712          */
1713         if (sge->tx_sched && !qid && skb->dev) {
1714 use_sched:
1715                 use_sched_skb = 1;
1716                 /* Note that the scheduler might return a different skb than
1717                  * the one passed in.
1718                  */
1719                 skb = sched_skb(sge, skb, credits);
1720                 if (!skb) {
1721                         spin_unlock(&q->lock);
1722                         return NETDEV_TX_OK;
1723                 }
1724                 pidx = q->pidx;
1725                 count = 1 + skb_shinfo(skb)->nr_frags;
1726                 count += compute_large_page_tx_descs(skb);
1727         }
1728
1729         q->in_use += count;
1730         genbit = q->genbit;
1731         pidx = q->pidx;
1732         q->pidx += count;
1733         if (q->pidx >= q->size) {
1734                 q->pidx -= q->size;
1735                 q->genbit ^= 1;
1736         }
1737         spin_unlock(&q->lock);
1738
1739         write_tx_descs(adapter, skb, pidx, genbit, q);
1740
1741         /*
1742          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1743          * the doorbell if the Q is asleep. There is a natural race, where
1744          * the hardware is going to sleep just after we checked, however,
1745          * then the interrupt handler will detect the outstanding TX packet
1746          * and ring the doorbell for us.
1747          */
1748         if (qid)
1749                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1750         else {
1751                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1752                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1753                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1754                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1755                 }
1756         }
1757
1758         if (use_sched_skb) {
1759                 if (spin_trylock(&q->lock)) {
1760                         credits = q->size - q->in_use;
1761                         skb = NULL;
1762                         goto use_sched;
1763                 }
1764         }
1765         return NETDEV_TX_OK;
1766 }
1767
1768 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1769
1770 /*
1771  *      eth_hdr_len - return the length of an Ethernet header
1772  *      @data: pointer to the start of the Ethernet header
1773  *
1774  *      Returns the length of an Ethernet header, including optional VLAN tag.
1775  */
1776 static inline int eth_hdr_len(const void *data)
1777 {
1778         const struct ethhdr *e = data;
1779
1780         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1781 }
1782
1783 /*
1784  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1785  */
1786 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1787 {
1788         struct adapter *adapter = dev->ml_priv;
1789         struct sge *sge = adapter->sge;
1790         struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1791         struct cpl_tx_pkt *cpl;
1792         struct sk_buff *orig_skb = skb;
1793         int ret;
1794
1795         if (skb->protocol == htons(ETH_P_CPL5))
1796                 goto send;
1797
1798         /*
1799          * We are using a non-standard hard_header_len.
1800          * Allocate more header room in the rare cases it is not big enough.
1801          */
1802         if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1803                 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1804                 ++st->tx_need_hdrroom;
1805                 dev_kfree_skb_any(orig_skb);
1806                 if (!skb)
1807                         return NETDEV_TX_OK;
1808         }
1809
1810         if (skb_shinfo(skb)->gso_size) {
1811                 int eth_type;
1812                 struct cpl_tx_pkt_lso *hdr;
1813
1814                 ++st->tx_tso;
1815
1816                 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1817                         CPL_ETH_II : CPL_ETH_II_VLAN;
1818
1819                 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1820                 hdr->opcode = CPL_TX_PKT_LSO;
1821                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1822                 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1823                 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1824                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1825                                                           skb_shinfo(skb)->gso_size));
1826                 hdr->len = htonl(skb->len - sizeof(*hdr));
1827                 cpl = (struct cpl_tx_pkt *)hdr;
1828         } else {
1829                 /*
1830                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1831                  * early.  Also, we may get oversized packets because some
1832                  * parts of the kernel don't handle our unusual hard_header_len
1833                  * right, drop those too.
1834                  */
1835                 if (unlikely(skb->len < ETH_HLEN ||
1836                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1837                         pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1838                                  skb->len, eth_hdr_len(skb->data), dev->mtu);
1839                         dev_kfree_skb_any(skb);
1840                         return NETDEV_TX_OK;
1841                 }
1842
1843                 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1844                     ip_hdr(skb)->protocol == IPPROTO_UDP) {
1845                         if (unlikely(skb_checksum_help(skb))) {
1846                                 pr_debug("%s: unable to do udp checksum\n", dev->name);
1847                                 dev_kfree_skb_any(skb);
1848                                 return NETDEV_TX_OK;
1849                         }
1850                 }
1851
1852                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1853                  * it to flush out stuck espi packets...
1854                  */
1855                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1856                         if (skb->protocol == htons(ETH_P_ARP) &&
1857                             arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1858                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1859                                 /* We want to re-use this skb later. We
1860                                  * simply bump the reference count and it
1861                                  * will not be freed...
1862                                  */
1863                                 skb = skb_get(skb);
1864                         }
1865                 }
1866
1867                 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1868                 cpl->opcode = CPL_TX_PKT;
1869                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1870                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1871                 /* the length field isn't used so don't bother setting it */
1872
1873                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1874         }
1875         cpl->iff = dev->if_port;
1876
1877 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1878         if (vlan_tx_tag_present(skb)) {
1879                 cpl->vlan_valid = 1;
1880                 cpl->vlan = htons(vlan_tx_tag_get(skb));
1881                 st->vlan_insert++;
1882         } else
1883 #endif
1884                 cpl->vlan_valid = 0;
1885
1886 send:
1887         ret = t1_sge_tx(skb, adapter, 0, dev);
1888
1889         /* If transmit busy, and we reallocated skb's due to headroom limit,
1890          * then silently discard to avoid leak.
1891          */
1892         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1893                 dev_kfree_skb_any(skb);
1894                 ret = NETDEV_TX_OK;
1895         }
1896         return ret;
1897 }
1898
1899 /*
1900  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1901  */
1902 static void sge_tx_reclaim_cb(unsigned long data)
1903 {
1904         int i;
1905         struct sge *sge = (struct sge *)data;
1906
1907         for (i = 0; i < SGE_CMDQ_N; ++i) {
1908                 struct cmdQ *q = &sge->cmdQ[i];
1909
1910                 if (!spin_trylock(&q->lock))
1911                         continue;
1912
1913                 reclaim_completed_tx(sge, q);
1914                 if (i == 0 && q->in_use) {    /* flush pending credits */
1915                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1916                 }
1917                 spin_unlock(&q->lock);
1918         }
1919         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1920 }
1921
1922 /*
1923  * Propagate changes of the SGE coalescing parameters to the HW.
1924  */
1925 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1926 {
1927         sge->fixed_intrtimer = p->rx_coalesce_usecs *
1928                 core_ticks_per_usec(sge->adapter);
1929         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1930         return 0;
1931 }
1932
1933 /*
1934  * Allocates both RX and TX resources and configures the SGE. However,
1935  * the hardware is not enabled yet.
1936  */
1937 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1938 {
1939         if (alloc_rx_resources(sge, p))
1940                 return -ENOMEM;
1941         if (alloc_tx_resources(sge, p)) {
1942                 free_rx_resources(sge);
1943                 return -ENOMEM;
1944         }
1945         configure_sge(sge, p);
1946
1947         /*
1948          * Now that we have sized the free lists calculate the payload
1949          * capacity of the large buffers.  Other parts of the driver use
1950          * this to set the max offload coalescing size so that RX packets
1951          * do not overflow our large buffers.
1952          */
1953         p->large_buf_capacity = jumbo_payload_capacity(sge);
1954         return 0;
1955 }
1956
1957 /*
1958  * Disables the DMA engine.
1959  */
1960 void t1_sge_stop(struct sge *sge)
1961 {
1962         int i;
1963         writel(0, sge->adapter->regs + A_SG_CONTROL);
1964         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1965
1966         if (is_T2(sge->adapter))
1967                 del_timer_sync(&sge->espibug_timer);
1968
1969         del_timer_sync(&sge->tx_reclaim_timer);
1970         if (sge->tx_sched)
1971                 tx_sched_stop(sge);
1972
1973         for (i = 0; i < MAX_NPORTS; i++)
1974                 kfree_skb(sge->espibug_skb[i]);
1975 }
1976
1977 /*
1978  * Enables the DMA engine.
1979  */
1980 void t1_sge_start(struct sge *sge)
1981 {
1982         refill_free_list(sge, &sge->freelQ[0]);
1983         refill_free_list(sge, &sge->freelQ[1]);
1984
1985         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1986         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1987         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1988
1989         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1990
1991         if (is_T2(sge->adapter))
1992                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1993 }
1994
1995 /*
1996  * Callback for the T2 ESPI 'stuck packet feature' workaorund
1997  */
1998 static void espibug_workaround_t204(unsigned long data)
1999 {
2000         struct adapter *adapter = (struct adapter *)data;
2001         struct sge *sge = adapter->sge;
2002         unsigned int nports = adapter->params.nports;
2003         u32 seop[MAX_NPORTS];
2004
2005         if (adapter->open_device_map & PORT_MASK) {
2006                 int i;
2007
2008                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2009                         return;
2010
2011                 for (i = 0; i < nports; i++) {
2012                         struct sk_buff *skb = sge->espibug_skb[i];
2013
2014                         if (!netif_running(adapter->port[i].dev) ||
2015                             netif_queue_stopped(adapter->port[i].dev) ||
2016                             !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2017                                 continue;
2018
2019                         if (!skb->cb[0]) {
2020                                 skb_copy_to_linear_data_offset(skb,
2021                                                     sizeof(struct cpl_tx_pkt),
2022                                                                ch_mac_addr,
2023                                                                ETH_ALEN);
2024                                 skb_copy_to_linear_data_offset(skb,
2025                                                                skb->len - 10,
2026                                                                ch_mac_addr,
2027                                                                ETH_ALEN);
2028                                 skb->cb[0] = 0xff;
2029                         }
2030
2031                         /* bump the reference count to avoid freeing of
2032                          * the skb once the DMA has completed.
2033                          */
2034                         skb = skb_get(skb);
2035                         t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2036                 }
2037         }
2038         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2039 }
2040
2041 static void espibug_workaround(unsigned long data)
2042 {
2043         struct adapter *adapter = (struct adapter *)data;
2044         struct sge *sge = adapter->sge;
2045
2046         if (netif_running(adapter->port[0].dev)) {
2047                 struct sk_buff *skb = sge->espibug_skb[0];
2048                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2049
2050                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2051                         if (!skb->cb[0]) {
2052                                 skb_copy_to_linear_data_offset(skb,
2053                                                      sizeof(struct cpl_tx_pkt),
2054                                                                ch_mac_addr,
2055                                                                ETH_ALEN);
2056                                 skb_copy_to_linear_data_offset(skb,
2057                                                                skb->len - 10,
2058                                                                ch_mac_addr,
2059                                                                ETH_ALEN);
2060                                 skb->cb[0] = 0xff;
2061                         }
2062
2063                         /* bump the reference count to avoid freeing of the
2064                          * skb once the DMA has completed.
2065                          */
2066                         skb = skb_get(skb);
2067                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2068                 }
2069         }
2070         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2071 }
2072
2073 /*
2074  * Creates a t1_sge structure and returns suggested resource parameters.
2075  */
2076 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2077                                      struct sge_params *p)
2078 {
2079         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2080         int i;
2081
2082         if (!sge)
2083                 return NULL;
2084
2085         sge->adapter = adapter;
2086         sge->netdev = adapter->port[0].dev;
2087         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2088         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2089
2090         for_each_port(adapter, i) {
2091                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2092                 if (!sge->port_stats[i])
2093                         goto nomem_port;
2094         }
2095
2096         init_timer(&sge->tx_reclaim_timer);
2097         sge->tx_reclaim_timer.data = (unsigned long)sge;
2098         sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2099
2100         if (is_T2(sge->adapter)) {
2101                 init_timer(&sge->espibug_timer);
2102
2103                 if (adapter->params.nports > 1) {
2104                         tx_sched_init(sge);
2105                         sge->espibug_timer.function = espibug_workaround_t204;
2106                 } else
2107                         sge->espibug_timer.function = espibug_workaround;
2108                 sge->espibug_timer.data = (unsigned long)sge->adapter;
2109
2110                 sge->espibug_timeout = 1;
2111                 /* for T204, every 10ms */
2112                 if (adapter->params.nports > 1)
2113                         sge->espibug_timeout = HZ/100;
2114         }
2115
2116
2117         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2118         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2119         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2120         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2121         if (sge->tx_sched) {
2122                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2123                         p->rx_coalesce_usecs = 15;
2124                 else
2125                         p->rx_coalesce_usecs = 50;
2126         } else
2127                 p->rx_coalesce_usecs = 50;
2128
2129         p->coalesce_enable = 0;
2130         p->sample_interval_usecs = 0;
2131
2132         return sge;
2133 nomem_port:
2134         while (i >= 0) {
2135                 free_percpu(sge->port_stats[i]);
2136                 --i;
2137         }
2138         kfree(sge);
2139         return NULL;
2140
2141 }