ALSA: hda - Add position_fix quirk for Biostar mobo
[pandora-kernel.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *      auto-placement support, read-while load support, various fixes
12  *
13  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *      Flex-OneNAND support
15  *      Amul Kumar Saha <amul.saha at samsung.com>
16  *      OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/onenand.h>
33 #include <linux/mtd/partitions.h>
34
35 #include <asm/io.h>
36
37 /*
38  * Multiblock erase if number of blocks to erase is 2 or more.
39  * Maximum number of blocks for simultaneous erase is 64.
40  */
41 #define MB_ERASE_MIN_BLK_COUNT 2
42 #define MB_ERASE_MAX_BLK_COUNT 64
43
44 /* Default Flex-OneNAND boundary and lock respectively */
45 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
46
47 module_param_array(flex_bdry, int, NULL, 0400);
48 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
49                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
50                                 "DIE_BDRY: SLC boundary of the die"
51                                 "LOCK: Locking information for SLC boundary"
52                                 "    : 0->Set boundary in unlocked status"
53                                 "    : 1->Set boundary in locked status");
54
55 /* Default OneNAND/Flex-OneNAND OTP options*/
56 static int otp;
57
58 module_param(otp, int, 0400);
59 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
60                         "Syntax : otp=LOCK_TYPE"
61                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
62                         "          : 0 -> Default (No Blocks Locked)"
63                         "          : 1 -> OTP Block lock"
64                         "          : 2 -> 1st Block lock"
65                         "          : 3 -> BOTH OTP Block and 1st Block lock");
66
67 /**
68  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
69  *  For now, we expose only 64 out of 80 ecc bytes
70  */
71 static struct nand_ecclayout onenand_oob_128 = {
72         .eccbytes       = 64,
73         .eccpos         = {
74                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
75                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
76                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
77                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
78                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
79                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
80                 102, 103, 104, 105
81                 },
82         .oobfree        = {
83                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
84                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
85         }
86 };
87
88 /**
89  * onenand_oob_64 - oob info for large (2KB) page
90  */
91 static struct nand_ecclayout onenand_oob_64 = {
92         .eccbytes       = 20,
93         .eccpos         = {
94                 8, 9, 10, 11, 12,
95                 24, 25, 26, 27, 28,
96                 40, 41, 42, 43, 44,
97                 56, 57, 58, 59, 60,
98                 },
99         .oobfree        = {
100                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
101                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
102         }
103 };
104
105 /**
106  * onenand_oob_32 - oob info for middle (1KB) page
107  */
108 static struct nand_ecclayout onenand_oob_32 = {
109         .eccbytes       = 10,
110         .eccpos         = {
111                 8, 9, 10, 11, 12,
112                 24, 25, 26, 27, 28,
113                 },
114         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
115 };
116
117 static const unsigned char ffchars[] = {
118         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
120         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
122         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
124         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
126         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
127         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
128         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
129         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
130         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
131         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
132         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
133         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
134 };
135
136 /**
137  * onenand_readw - [OneNAND Interface] Read OneNAND register
138  * @param addr          address to read
139  *
140  * Read OneNAND register
141  */
142 static unsigned short onenand_readw(void __iomem *addr)
143 {
144         return readw(addr);
145 }
146
147 /**
148  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
149  * @param value         value to write
150  * @param addr          address to write
151  *
152  * Write OneNAND register with value
153  */
154 static void onenand_writew(unsigned short value, void __iomem *addr)
155 {
156         writew(value, addr);
157 }
158
159 /**
160  * onenand_block_address - [DEFAULT] Get block address
161  * @param this          onenand chip data structure
162  * @param block         the block
163  * @return              translated block address if DDP, otherwise same
164  *
165  * Setup Start Address 1 Register (F100h)
166  */
167 static int onenand_block_address(struct onenand_chip *this, int block)
168 {
169         /* Device Flash Core select, NAND Flash Block Address */
170         if (block & this->density_mask)
171                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
172
173         return block;
174 }
175
176 /**
177  * onenand_bufferram_address - [DEFAULT] Get bufferram address
178  * @param this          onenand chip data structure
179  * @param block         the block
180  * @return              set DBS value if DDP, otherwise 0
181  *
182  * Setup Start Address 2 Register (F101h) for DDP
183  */
184 static int onenand_bufferram_address(struct onenand_chip *this, int block)
185 {
186         /* Device BufferRAM Select */
187         if (block & this->density_mask)
188                 return ONENAND_DDP_CHIP1;
189
190         return ONENAND_DDP_CHIP0;
191 }
192
193 /**
194  * onenand_page_address - [DEFAULT] Get page address
195  * @param page          the page address
196  * @param sector        the sector address
197  * @return              combined page and sector address
198  *
199  * Setup Start Address 8 Register (F107h)
200  */
201 static int onenand_page_address(int page, int sector)
202 {
203         /* Flash Page Address, Flash Sector Address */
204         int fpa, fsa;
205
206         fpa = page & ONENAND_FPA_MASK;
207         fsa = sector & ONENAND_FSA_MASK;
208
209         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
210 }
211
212 /**
213  * onenand_buffer_address - [DEFAULT] Get buffer address
214  * @param dataram1      DataRAM index
215  * @param sectors       the sector address
216  * @param count         the number of sectors
217  * @return              the start buffer value
218  *
219  * Setup Start Buffer Register (F200h)
220  */
221 static int onenand_buffer_address(int dataram1, int sectors, int count)
222 {
223         int bsa, bsc;
224
225         /* BufferRAM Sector Address */
226         bsa = sectors & ONENAND_BSA_MASK;
227
228         if (dataram1)
229                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
230         else
231                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
232
233         /* BufferRAM Sector Count */
234         bsc = count & ONENAND_BSC_MASK;
235
236         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
237 }
238
239 /**
240  * flexonenand_block- For given address return block number
241  * @param this         - OneNAND device structure
242  * @param addr          - Address for which block number is needed
243  */
244 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
245 {
246         unsigned boundary, blk, die = 0;
247
248         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
249                 die = 1;
250                 addr -= this->diesize[0];
251         }
252
253         boundary = this->boundary[die];
254
255         blk = addr >> (this->erase_shift - 1);
256         if (blk > boundary)
257                 blk = (blk + boundary + 1) >> 1;
258
259         blk += die ? this->density_mask : 0;
260         return blk;
261 }
262
263 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
264 {
265         if (!FLEXONENAND(this))
266                 return addr >> this->erase_shift;
267         return flexonenand_block(this, addr);
268 }
269
270 /**
271  * flexonenand_addr - Return address of the block
272  * @this:               OneNAND device structure
273  * @block:              Block number on Flex-OneNAND
274  *
275  * Return address of the block
276  */
277 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
278 {
279         loff_t ofs = 0;
280         int die = 0, boundary;
281
282         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
283                 block -= this->density_mask;
284                 die = 1;
285                 ofs = this->diesize[0];
286         }
287
288         boundary = this->boundary[die];
289         ofs += (loff_t)block << (this->erase_shift - 1);
290         if (block > (boundary + 1))
291                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
292         return ofs;
293 }
294
295 loff_t onenand_addr(struct onenand_chip *this, int block)
296 {
297         if (!FLEXONENAND(this))
298                 return (loff_t)block << this->erase_shift;
299         return flexonenand_addr(this, block);
300 }
301 EXPORT_SYMBOL(onenand_addr);
302
303 /**
304  * onenand_get_density - [DEFAULT] Get OneNAND density
305  * @param dev_id        OneNAND device ID
306  *
307  * Get OneNAND density from device ID
308  */
309 static inline int onenand_get_density(int dev_id)
310 {
311         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
312         return (density & ONENAND_DEVICE_DENSITY_MASK);
313 }
314
315 /**
316  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
317  * @param mtd           MTD device structure
318  * @param addr          address whose erase region needs to be identified
319  */
320 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
321 {
322         int i;
323
324         for (i = 0; i < mtd->numeraseregions; i++)
325                 if (addr < mtd->eraseregions[i].offset)
326                         break;
327         return i - 1;
328 }
329 EXPORT_SYMBOL(flexonenand_region);
330
331 /**
332  * onenand_command - [DEFAULT] Send command to OneNAND device
333  * @param mtd           MTD device structure
334  * @param cmd           the command to be sent
335  * @param addr          offset to read from or write to
336  * @param len           number of bytes to read or write
337  *
338  * Send command to OneNAND device. This function is used for middle/large page
339  * devices (1KB/2KB Bytes per page)
340  */
341 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
342 {
343         struct onenand_chip *this = mtd->priv;
344         int value, block, page;
345
346         /* Address translation */
347         switch (cmd) {
348         case ONENAND_CMD_UNLOCK:
349         case ONENAND_CMD_LOCK:
350         case ONENAND_CMD_LOCK_TIGHT:
351         case ONENAND_CMD_UNLOCK_ALL:
352                 block = -1;
353                 page = -1;
354                 break;
355
356         case FLEXONENAND_CMD_PI_ACCESS:
357                 /* addr contains die index */
358                 block = addr * this->density_mask;
359                 page = -1;
360                 break;
361
362         case ONENAND_CMD_ERASE:
363         case ONENAND_CMD_MULTIBLOCK_ERASE:
364         case ONENAND_CMD_ERASE_VERIFY:
365         case ONENAND_CMD_BUFFERRAM:
366         case ONENAND_CMD_OTP_ACCESS:
367                 block = onenand_block(this, addr);
368                 page = -1;
369                 break;
370
371         case FLEXONENAND_CMD_READ_PI:
372                 cmd = ONENAND_CMD_READ;
373                 block = addr * this->density_mask;
374                 page = 0;
375                 break;
376
377         default:
378                 block = onenand_block(this, addr);
379                 page = (int) (addr - onenand_addr(this, block)) >> this->page_shift;
380
381                 if (ONENAND_IS_2PLANE(this)) {
382                         /* Make the even block number */
383                         block &= ~1;
384                         /* Is it the odd plane? */
385                         if (addr & this->writesize)
386                                 block++;
387                         page >>= 1;
388                 }
389                 page &= this->page_mask;
390                 break;
391         }
392
393         /* NOTE: The setting order of the registers is very important! */
394         if (cmd == ONENAND_CMD_BUFFERRAM) {
395                 /* Select DataRAM for DDP */
396                 value = onenand_bufferram_address(this, block);
397                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
398
399                 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this))
400                         /* It is always BufferRAM0 */
401                         ONENAND_SET_BUFFERRAM0(this);
402                 else
403                         /* Switch to the next data buffer */
404                         ONENAND_SET_NEXT_BUFFERRAM(this);
405
406                 return 0;
407         }
408
409         if (block != -1) {
410                 /* Write 'DFS, FBA' of Flash */
411                 value = onenand_block_address(this, block);
412                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
413
414                 /* Select DataRAM for DDP */
415                 value = onenand_bufferram_address(this, block);
416                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
417         }
418
419         if (page != -1) {
420                 /* Now we use page size operation */
421                 int sectors = 0, count = 0;
422                 int dataram;
423
424                 switch (cmd) {
425                 case FLEXONENAND_CMD_RECOVER_LSB:
426                 case ONENAND_CMD_READ:
427                 case ONENAND_CMD_READOOB:
428                         if (ONENAND_IS_MLC(this))
429                                 /* It is always BufferRAM0 */
430                                 dataram = ONENAND_SET_BUFFERRAM0(this);
431                         else
432                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
433                         break;
434
435                 default:
436                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
437                                 cmd = ONENAND_CMD_2X_PROG;
438                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
439                         break;
440                 }
441
442                 /* Write 'FPA, FSA' of Flash */
443                 value = onenand_page_address(page, sectors);
444                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
445
446                 /* Write 'BSA, BSC' of DataRAM */
447                 value = onenand_buffer_address(dataram, sectors, count);
448                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
449         }
450
451         /* Interrupt clear */
452         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
453
454         /* Write command */
455         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
456
457         return 0;
458 }
459
460 /**
461  * onenand_read_ecc - return ecc status
462  * @param this          onenand chip structure
463  */
464 static inline int onenand_read_ecc(struct onenand_chip *this)
465 {
466         int ecc, i, result = 0;
467
468         if (!FLEXONENAND(this))
469                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
470
471         for (i = 0; i < 4; i++) {
472                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i);
473                 if (likely(!ecc))
474                         continue;
475                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
476                         return ONENAND_ECC_2BIT_ALL;
477                 else
478                         result = ONENAND_ECC_1BIT_ALL;
479         }
480
481         return result;
482 }
483
484 /**
485  * onenand_wait - [DEFAULT] wait until the command is done
486  * @param mtd           MTD device structure
487  * @param state         state to select the max. timeout value
488  *
489  * Wait for command done. This applies to all OneNAND command
490  * Read can take up to 30us, erase up to 2ms and program up to 350us
491  * according to general OneNAND specs
492  */
493 static int onenand_wait(struct mtd_info *mtd, int state)
494 {
495         struct onenand_chip * this = mtd->priv;
496         unsigned long timeout;
497         unsigned int flags = ONENAND_INT_MASTER;
498         unsigned int interrupt = 0;
499         unsigned int ctrl;
500
501         /* The 20 msec is enough */
502         timeout = jiffies + msecs_to_jiffies(20);
503         while (time_before(jiffies, timeout)) {
504                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
505
506                 if (interrupt & flags)
507                         break;
508
509                 if (state != FL_READING && state != FL_PREPARING_ERASE)
510                         cond_resched();
511         }
512         /* To get correct interrupt status in timeout case */
513         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
514
515         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
516
517         /*
518          * In the Spec. it checks the controller status first
519          * However if you get the correct information in case of
520          * power off recovery (POR) test, it should read ECC status first
521          */
522         if (interrupt & ONENAND_INT_READ) {
523                 int ecc = onenand_read_ecc(this);
524                 if (ecc) {
525                         if (ecc & ONENAND_ECC_2BIT_ALL) {
526                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
527                                         __func__, ecc);
528                                 mtd->ecc_stats.failed++;
529                                 return -EBADMSG;
530                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
531                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
532                                         __func__, ecc);
533                                 mtd->ecc_stats.corrected++;
534                         }
535                 }
536         } else if (state == FL_READING) {
537                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
538                         __func__, ctrl, interrupt);
539                 return -EIO;
540         }
541
542         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
543                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
544                        __func__, ctrl, interrupt);
545                 return -EIO;
546         }
547
548         if (!(interrupt & ONENAND_INT_MASTER)) {
549                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
550                        __func__, ctrl, interrupt);
551                 return -EIO;
552         }
553
554         /* If there's controller error, it's a real error */
555         if (ctrl & ONENAND_CTRL_ERROR) {
556                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
557                         __func__, ctrl);
558                 if (ctrl & ONENAND_CTRL_LOCK)
559                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
560                 return -EIO;
561         }
562
563         return 0;
564 }
565
566 /*
567  * onenand_interrupt - [DEFAULT] onenand interrupt handler
568  * @param irq           onenand interrupt number
569  * @param dev_id        interrupt data
570  *
571  * complete the work
572  */
573 static irqreturn_t onenand_interrupt(int irq, void *data)
574 {
575         struct onenand_chip *this = data;
576
577         /* To handle shared interrupt */
578         if (!this->complete.done)
579                 complete(&this->complete);
580
581         return IRQ_HANDLED;
582 }
583
584 /*
585  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
586  * @param mtd           MTD device structure
587  * @param state         state to select the max. timeout value
588  *
589  * Wait for command done.
590  */
591 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
592 {
593         struct onenand_chip *this = mtd->priv;
594
595         wait_for_completion(&this->complete);
596
597         return onenand_wait(mtd, state);
598 }
599
600 /*
601  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
602  * @param mtd           MTD device structure
603  * @param state         state to select the max. timeout value
604  *
605  * Try interrupt based wait (It is used one-time)
606  */
607 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
608 {
609         struct onenand_chip *this = mtd->priv;
610         unsigned long remain, timeout;
611
612         /* We use interrupt wait first */
613         this->wait = onenand_interrupt_wait;
614
615         timeout = msecs_to_jiffies(100);
616         remain = wait_for_completion_timeout(&this->complete, timeout);
617         if (!remain) {
618                 printk(KERN_INFO "OneNAND: There's no interrupt. "
619                                 "We use the normal wait\n");
620
621                 /* Release the irq */
622                 free_irq(this->irq, this);
623
624                 this->wait = onenand_wait;
625         }
626
627         return onenand_wait(mtd, state);
628 }
629
630 /*
631  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
632  * @param mtd           MTD device structure
633  *
634  * There's two method to wait onenand work
635  * 1. polling - read interrupt status register
636  * 2. interrupt - use the kernel interrupt method
637  */
638 static void onenand_setup_wait(struct mtd_info *mtd)
639 {
640         struct onenand_chip *this = mtd->priv;
641         int syscfg;
642
643         init_completion(&this->complete);
644
645         if (this->irq <= 0) {
646                 this->wait = onenand_wait;
647                 return;
648         }
649
650         if (request_irq(this->irq, &onenand_interrupt,
651                                 IRQF_SHARED, "onenand", this)) {
652                 /* If we can't get irq, use the normal wait */
653                 this->wait = onenand_wait;
654                 return;
655         }
656
657         /* Enable interrupt */
658         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
659         syscfg |= ONENAND_SYS_CFG1_IOBE;
660         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
661
662         this->wait = onenand_try_interrupt_wait;
663 }
664
665 /**
666  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
667  * @param mtd           MTD data structure
668  * @param area          BufferRAM area
669  * @return              offset given area
670  *
671  * Return BufferRAM offset given area
672  */
673 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
674 {
675         struct onenand_chip *this = mtd->priv;
676
677         if (ONENAND_CURRENT_BUFFERRAM(this)) {
678                 /* Note: the 'this->writesize' is a real page size */
679                 if (area == ONENAND_DATARAM)
680                         return this->writesize;
681                 if (area == ONENAND_SPARERAM)
682                         return mtd->oobsize;
683         }
684
685         return 0;
686 }
687
688 /**
689  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
690  * @param mtd           MTD data structure
691  * @param area          BufferRAM area
692  * @param buffer        the databuffer to put/get data
693  * @param offset        offset to read from or write to
694  * @param count         number of bytes to read/write
695  *
696  * Read the BufferRAM area
697  */
698 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
699                 unsigned char *buffer, int offset, size_t count)
700 {
701         struct onenand_chip *this = mtd->priv;
702         void __iomem *bufferram;
703
704         bufferram = this->base + area;
705
706         bufferram += onenand_bufferram_offset(mtd, area);
707
708         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
709                 unsigned short word;
710
711                 /* Align with word(16-bit) size */
712                 count--;
713
714                 /* Read word and save byte */
715                 word = this->read_word(bufferram + offset + count);
716                 buffer[count] = (word & 0xff);
717         }
718
719         memcpy(buffer, bufferram + offset, count);
720
721         return 0;
722 }
723
724 /**
725  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
726  * @param mtd           MTD data structure
727  * @param area          BufferRAM area
728  * @param buffer        the databuffer to put/get data
729  * @param offset        offset to read from or write to
730  * @param count         number of bytes to read/write
731  *
732  * Read the BufferRAM area with Sync. Burst Mode
733  */
734 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
735                 unsigned char *buffer, int offset, size_t count)
736 {
737         struct onenand_chip *this = mtd->priv;
738         void __iomem *bufferram;
739
740         bufferram = this->base + area;
741
742         bufferram += onenand_bufferram_offset(mtd, area);
743
744         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
745
746         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
747                 unsigned short word;
748
749                 /* Align with word(16-bit) size */
750                 count--;
751
752                 /* Read word and save byte */
753                 word = this->read_word(bufferram + offset + count);
754                 buffer[count] = (word & 0xff);
755         }
756
757         memcpy(buffer, bufferram + offset, count);
758
759         this->mmcontrol(mtd, 0);
760
761         return 0;
762 }
763
764 /**
765  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
766  * @param mtd           MTD data structure
767  * @param area          BufferRAM area
768  * @param buffer        the databuffer to put/get data
769  * @param offset        offset to read from or write to
770  * @param count         number of bytes to read/write
771  *
772  * Write the BufferRAM area
773  */
774 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
775                 const unsigned char *buffer, int offset, size_t count)
776 {
777         struct onenand_chip *this = mtd->priv;
778         void __iomem *bufferram;
779
780         bufferram = this->base + area;
781
782         bufferram += onenand_bufferram_offset(mtd, area);
783
784         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
785                 unsigned short word;
786                 int byte_offset;
787
788                 /* Align with word(16-bit) size */
789                 count--;
790
791                 /* Calculate byte access offset */
792                 byte_offset = offset + count;
793
794                 /* Read word and save byte */
795                 word = this->read_word(bufferram + byte_offset);
796                 word = (word & ~0xff) | buffer[count];
797                 this->write_word(word, bufferram + byte_offset);
798         }
799
800         memcpy(bufferram + offset, buffer, count);
801
802         return 0;
803 }
804
805 /**
806  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
807  * @param mtd           MTD data structure
808  * @param addr          address to check
809  * @return              blockpage address
810  *
811  * Get blockpage address at 2x program mode
812  */
813 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
814 {
815         struct onenand_chip *this = mtd->priv;
816         int blockpage, block, page;
817
818         /* Calculate the even block number */
819         block = (int) (addr >> this->erase_shift) & ~1;
820         /* Is it the odd plane? */
821         if (addr & this->writesize)
822                 block++;
823         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
824         blockpage = (block << 7) | page;
825
826         return blockpage;
827 }
828
829 /**
830  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
831  * @param mtd           MTD data structure
832  * @param addr          address to check
833  * @return              1 if there are valid data, otherwise 0
834  *
835  * Check bufferram if there is data we required
836  */
837 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
838 {
839         struct onenand_chip *this = mtd->priv;
840         int blockpage, found = 0;
841         unsigned int i;
842
843         if (ONENAND_IS_2PLANE(this))
844                 blockpage = onenand_get_2x_blockpage(mtd, addr);
845         else
846                 blockpage = (int) (addr >> this->page_shift);
847
848         /* Is there valid data? */
849         i = ONENAND_CURRENT_BUFFERRAM(this);
850         if (this->bufferram[i].blockpage == blockpage)
851                 found = 1;
852         else {
853                 /* Check another BufferRAM */
854                 i = ONENAND_NEXT_BUFFERRAM(this);
855                 if (this->bufferram[i].blockpage == blockpage) {
856                         ONENAND_SET_NEXT_BUFFERRAM(this);
857                         found = 1;
858                 }
859         }
860
861         if (found && ONENAND_IS_DDP(this)) {
862                 /* Select DataRAM for DDP */
863                 int block = onenand_block(this, addr);
864                 int value = onenand_bufferram_address(this, block);
865                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
866         }
867
868         return found;
869 }
870
871 /**
872  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
873  * @param mtd           MTD data structure
874  * @param addr          address to update
875  * @param valid         valid flag
876  *
877  * Update BufferRAM information
878  */
879 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
880                 int valid)
881 {
882         struct onenand_chip *this = mtd->priv;
883         int blockpage;
884         unsigned int i;
885
886         if (ONENAND_IS_2PLANE(this))
887                 blockpage = onenand_get_2x_blockpage(mtd, addr);
888         else
889                 blockpage = (int) (addr >> this->page_shift);
890
891         /* Invalidate another BufferRAM */
892         i = ONENAND_NEXT_BUFFERRAM(this);
893         if (this->bufferram[i].blockpage == blockpage)
894                 this->bufferram[i].blockpage = -1;
895
896         /* Update BufferRAM */
897         i = ONENAND_CURRENT_BUFFERRAM(this);
898         if (valid)
899                 this->bufferram[i].blockpage = blockpage;
900         else
901                 this->bufferram[i].blockpage = -1;
902 }
903
904 /**
905  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
906  * @param mtd           MTD data structure
907  * @param addr          start address to invalidate
908  * @param len           length to invalidate
909  *
910  * Invalidate BufferRAM information
911  */
912 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
913                 unsigned int len)
914 {
915         struct onenand_chip *this = mtd->priv;
916         int i;
917         loff_t end_addr = addr + len;
918
919         /* Invalidate BufferRAM */
920         for (i = 0; i < MAX_BUFFERRAM; i++) {
921                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
922                 if (buf_addr >= addr && buf_addr < end_addr)
923                         this->bufferram[i].blockpage = -1;
924         }
925 }
926
927 /**
928  * onenand_get_device - [GENERIC] Get chip for selected access
929  * @param mtd           MTD device structure
930  * @param new_state     the state which is requested
931  *
932  * Get the device and lock it for exclusive access
933  */
934 static int onenand_get_device(struct mtd_info *mtd, int new_state)
935 {
936         struct onenand_chip *this = mtd->priv;
937         DECLARE_WAITQUEUE(wait, current);
938
939         /*
940          * Grab the lock and see if the device is available
941          */
942         while (1) {
943                 spin_lock(&this->chip_lock);
944                 if (this->state == FL_READY) {
945                         this->state = new_state;
946                         spin_unlock(&this->chip_lock);
947                         break;
948                 }
949                 if (new_state == FL_PM_SUSPENDED) {
950                         spin_unlock(&this->chip_lock);
951                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
952                 }
953                 set_current_state(TASK_UNINTERRUPTIBLE);
954                 add_wait_queue(&this->wq, &wait);
955                 spin_unlock(&this->chip_lock);
956                 schedule();
957                 remove_wait_queue(&this->wq, &wait);
958         }
959
960         return 0;
961 }
962
963 /**
964  * onenand_release_device - [GENERIC] release chip
965  * @param mtd           MTD device structure
966  *
967  * Deselect, release chip lock and wake up anyone waiting on the device
968  */
969 static void onenand_release_device(struct mtd_info *mtd)
970 {
971         struct onenand_chip *this = mtd->priv;
972
973         /* Release the chip */
974         spin_lock(&this->chip_lock);
975         this->state = FL_READY;
976         wake_up(&this->wq);
977         spin_unlock(&this->chip_lock);
978 }
979
980 /**
981  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
982  * @param mtd           MTD device structure
983  * @param buf           destination address
984  * @param column        oob offset to read from
985  * @param thislen       oob length to read
986  */
987 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
988                                 int thislen)
989 {
990         struct onenand_chip *this = mtd->priv;
991         struct nand_oobfree *free;
992         int readcol = column;
993         int readend = column + thislen;
994         int lastgap = 0;
995         unsigned int i;
996         uint8_t *oob_buf = this->oob_buf;
997
998         free = this->ecclayout->oobfree;
999         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1000                 if (readcol >= lastgap)
1001                         readcol += free->offset - lastgap;
1002                 if (readend >= lastgap)
1003                         readend += free->offset - lastgap;
1004                 lastgap = free->offset + free->length;
1005         }
1006         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1007         free = this->ecclayout->oobfree;
1008         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1009                 int free_end = free->offset + free->length;
1010                 if (free->offset < readend && free_end > readcol) {
1011                         int st = max_t(int,free->offset,readcol);
1012                         int ed = min_t(int,free_end,readend);
1013                         int n = ed - st;
1014                         memcpy(buf, oob_buf + st, n);
1015                         buf += n;
1016                 } else if (column == 0)
1017                         break;
1018         }
1019         return 0;
1020 }
1021
1022 /**
1023  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1024  * @param mtd           MTD device structure
1025  * @param addr          address to recover
1026  * @param status        return value from onenand_wait / onenand_bbt_wait
1027  *
1028  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1029  * lower page address and MSB page has higher page address in paired pages.
1030  * If power off occurs during MSB page program, the paired LSB page data can
1031  * become corrupt. LSB page recovery read is a way to read LSB page though page
1032  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1033  * read after power up, issue LSB page recovery read.
1034  */
1035 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1036 {
1037         struct onenand_chip *this = mtd->priv;
1038         int i;
1039
1040         /* Recovery is only for Flex-OneNAND */
1041         if (!FLEXONENAND(this))
1042                 return status;
1043
1044         /* check if we failed due to uncorrectable error */
1045         if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1046                 return status;
1047
1048         /* check if address lies in MLC region */
1049         i = flexonenand_region(mtd, addr);
1050         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1051                 return status;
1052
1053         /* We are attempting to reread, so decrement stats.failed
1054          * which was incremented by onenand_wait due to read failure
1055          */
1056         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1057                 __func__);
1058         mtd->ecc_stats.failed--;
1059
1060         /* Issue the LSB page recovery command */
1061         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1062         return this->wait(mtd, FL_READING);
1063 }
1064
1065 /**
1066  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1067  * @param mtd           MTD device structure
1068  * @param from          offset to read from
1069  * @param ops:          oob operation description structure
1070  *
1071  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1072  * So, read-while-load is not present.
1073  */
1074 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1075                                 struct mtd_oob_ops *ops)
1076 {
1077         struct onenand_chip *this = mtd->priv;
1078         struct mtd_ecc_stats stats;
1079         size_t len = ops->len;
1080         size_t ooblen = ops->ooblen;
1081         u_char *buf = ops->datbuf;
1082         u_char *oobbuf = ops->oobbuf;
1083         int read = 0, column, thislen;
1084         int oobread = 0, oobcolumn, thisooblen, oobsize;
1085         int ret = 0;
1086         int writesize = this->writesize;
1087
1088         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1089               __func__, (unsigned int) from, (int) len);
1090
1091         if (ops->mode == MTD_OOB_AUTO)
1092                 oobsize = this->ecclayout->oobavail;
1093         else
1094                 oobsize = mtd->oobsize;
1095
1096         oobcolumn = from & (mtd->oobsize - 1);
1097
1098         /* Do not allow reads past end of device */
1099         if (from + len > mtd->size) {
1100                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1101                         __func__);
1102                 ops->retlen = 0;
1103                 ops->oobretlen = 0;
1104                 return -EINVAL;
1105         }
1106
1107         stats = mtd->ecc_stats;
1108
1109         while (read < len) {
1110                 cond_resched();
1111
1112                 thislen = min_t(int, writesize, len - read);
1113
1114                 column = from & (writesize - 1);
1115                 if (column + thislen > writesize)
1116                         thislen = writesize - column;
1117
1118                 if (!onenand_check_bufferram(mtd, from)) {
1119                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1120
1121                         ret = this->wait(mtd, FL_READING);
1122                         if (unlikely(ret))
1123                                 ret = onenand_recover_lsb(mtd, from, ret);
1124                         onenand_update_bufferram(mtd, from, !ret);
1125                         if (ret == -EBADMSG)
1126                                 ret = 0;
1127                 }
1128
1129                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1130                 if (oobbuf) {
1131                         thisooblen = oobsize - oobcolumn;
1132                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1133
1134                         if (ops->mode == MTD_OOB_AUTO)
1135                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1136                         else
1137                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1138                         oobread += thisooblen;
1139                         oobbuf += thisooblen;
1140                         oobcolumn = 0;
1141                 }
1142
1143                 read += thislen;
1144                 if (read == len)
1145                         break;
1146
1147                 from += thislen;
1148                 buf += thislen;
1149         }
1150
1151         /*
1152          * Return success, if no ECC failures, else -EBADMSG
1153          * fs driver will take care of that, because
1154          * retlen == desired len and result == -EBADMSG
1155          */
1156         ops->retlen = read;
1157         ops->oobretlen = oobread;
1158
1159         if (ret)
1160                 return ret;
1161
1162         if (mtd->ecc_stats.failed - stats.failed)
1163                 return -EBADMSG;
1164
1165         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1166 }
1167
1168 /**
1169  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1170  * @param mtd           MTD device structure
1171  * @param from          offset to read from
1172  * @param ops:          oob operation description structure
1173  *
1174  * OneNAND read main and/or out-of-band data
1175  */
1176 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1177                                 struct mtd_oob_ops *ops)
1178 {
1179         struct onenand_chip *this = mtd->priv;
1180         struct mtd_ecc_stats stats;
1181         size_t len = ops->len;
1182         size_t ooblen = ops->ooblen;
1183         u_char *buf = ops->datbuf;
1184         u_char *oobbuf = ops->oobbuf;
1185         int read = 0, column, thislen;
1186         int oobread = 0, oobcolumn, thisooblen, oobsize;
1187         int ret = 0, boundary = 0;
1188         int writesize = this->writesize;
1189
1190         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1191                         __func__, (unsigned int) from, (int) len);
1192
1193         if (ops->mode == MTD_OOB_AUTO)
1194                 oobsize = this->ecclayout->oobavail;
1195         else
1196                 oobsize = mtd->oobsize;
1197
1198         oobcolumn = from & (mtd->oobsize - 1);
1199
1200         /* Do not allow reads past end of device */
1201         if ((from + len) > mtd->size) {
1202                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1203                         __func__);
1204                 ops->retlen = 0;
1205                 ops->oobretlen = 0;
1206                 return -EINVAL;
1207         }
1208
1209         stats = mtd->ecc_stats;
1210
1211         /* Read-while-load method */
1212
1213         /* Do first load to bufferRAM */
1214         if (read < len) {
1215                 if (!onenand_check_bufferram(mtd, from)) {
1216                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1217                         ret = this->wait(mtd, FL_READING);
1218                         onenand_update_bufferram(mtd, from, !ret);
1219                         if (ret == -EBADMSG)
1220                                 ret = 0;
1221                 }
1222         }
1223
1224         thislen = min_t(int, writesize, len - read);
1225         column = from & (writesize - 1);
1226         if (column + thislen > writesize)
1227                 thislen = writesize - column;
1228
1229         while (!ret) {
1230                 /* If there is more to load then start next load */
1231                 from += thislen;
1232                 if (read + thislen < len) {
1233                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1234                         /*
1235                          * Chip boundary handling in DDP
1236                          * Now we issued chip 1 read and pointed chip 1
1237                          * bufferram so we have to point chip 0 bufferram.
1238                          */
1239                         if (ONENAND_IS_DDP(this) &&
1240                             unlikely(from == (this->chipsize >> 1))) {
1241                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1242                                 boundary = 1;
1243                         } else
1244                                 boundary = 0;
1245                         ONENAND_SET_PREV_BUFFERRAM(this);
1246                 }
1247                 /* While load is going, read from last bufferRAM */
1248                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1249
1250                 /* Read oob area if needed */
1251                 if (oobbuf) {
1252                         thisooblen = oobsize - oobcolumn;
1253                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1254
1255                         if (ops->mode == MTD_OOB_AUTO)
1256                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1257                         else
1258                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1259                         oobread += thisooblen;
1260                         oobbuf += thisooblen;
1261                         oobcolumn = 0;
1262                 }
1263
1264                 /* See if we are done */
1265                 read += thislen;
1266                 if (read == len)
1267                         break;
1268                 /* Set up for next read from bufferRAM */
1269                 if (unlikely(boundary))
1270                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1271                 ONENAND_SET_NEXT_BUFFERRAM(this);
1272                 buf += thislen;
1273                 thislen = min_t(int, writesize, len - read);
1274                 column = 0;
1275                 cond_resched();
1276                 /* Now wait for load */
1277                 ret = this->wait(mtd, FL_READING);
1278                 onenand_update_bufferram(mtd, from, !ret);
1279                 if (ret == -EBADMSG)
1280                         ret = 0;
1281         }
1282
1283         /*
1284          * Return success, if no ECC failures, else -EBADMSG
1285          * fs driver will take care of that, because
1286          * retlen == desired len and result == -EBADMSG
1287          */
1288         ops->retlen = read;
1289         ops->oobretlen = oobread;
1290
1291         if (ret)
1292                 return ret;
1293
1294         if (mtd->ecc_stats.failed - stats.failed)
1295                 return -EBADMSG;
1296
1297         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1298 }
1299
1300 /**
1301  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1302  * @param mtd           MTD device structure
1303  * @param from          offset to read from
1304  * @param ops:          oob operation description structure
1305  *
1306  * OneNAND read out-of-band data from the spare area
1307  */
1308 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1309                         struct mtd_oob_ops *ops)
1310 {
1311         struct onenand_chip *this = mtd->priv;
1312         struct mtd_ecc_stats stats;
1313         int read = 0, thislen, column, oobsize;
1314         size_t len = ops->ooblen;
1315         mtd_oob_mode_t mode = ops->mode;
1316         u_char *buf = ops->oobbuf;
1317         int ret = 0, readcmd;
1318
1319         from += ops->ooboffs;
1320
1321         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1322                 __func__, (unsigned int) from, (int) len);
1323
1324         /* Initialize return length value */
1325         ops->oobretlen = 0;
1326
1327         if (mode == MTD_OOB_AUTO)
1328                 oobsize = this->ecclayout->oobavail;
1329         else
1330                 oobsize = mtd->oobsize;
1331
1332         column = from & (mtd->oobsize - 1);
1333
1334         if (unlikely(column >= oobsize)) {
1335                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1336                         __func__);
1337                 return -EINVAL;
1338         }
1339
1340         /* Do not allow reads past end of device */
1341         if (unlikely(from >= mtd->size ||
1342                      column + len > ((mtd->size >> this->page_shift) -
1343                                      (from >> this->page_shift)) * oobsize)) {
1344                 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1345                         __func__);
1346                 return -EINVAL;
1347         }
1348
1349         stats = mtd->ecc_stats;
1350
1351         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1352
1353         while (read < len) {
1354                 cond_resched();
1355
1356                 thislen = oobsize - column;
1357                 thislen = min_t(int, thislen, len);
1358
1359                 this->command(mtd, readcmd, from, mtd->oobsize);
1360
1361                 onenand_update_bufferram(mtd, from, 0);
1362
1363                 ret = this->wait(mtd, FL_READING);
1364                 if (unlikely(ret))
1365                         ret = onenand_recover_lsb(mtd, from, ret);
1366
1367                 if (ret && ret != -EBADMSG) {
1368                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1369                                 __func__, ret);
1370                         break;
1371                 }
1372
1373                 if (mode == MTD_OOB_AUTO)
1374                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1375                 else
1376                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1377
1378                 read += thislen;
1379
1380                 if (read == len)
1381                         break;
1382
1383                 buf += thislen;
1384
1385                 /* Read more? */
1386                 if (read < len) {
1387                         /* Page size */
1388                         from += mtd->writesize;
1389                         column = 0;
1390                 }
1391         }
1392
1393         ops->oobretlen = read;
1394
1395         if (ret)
1396                 return ret;
1397
1398         if (mtd->ecc_stats.failed - stats.failed)
1399                 return -EBADMSG;
1400
1401         return 0;
1402 }
1403
1404 /**
1405  * onenand_read - [MTD Interface] Read data from flash
1406  * @param mtd           MTD device structure
1407  * @param from          offset to read from
1408  * @param len           number of bytes to read
1409  * @param retlen        pointer to variable to store the number of read bytes
1410  * @param buf           the databuffer to put data
1411  *
1412  * Read with ecc
1413 */
1414 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1415         size_t *retlen, u_char *buf)
1416 {
1417         struct onenand_chip *this = mtd->priv;
1418         struct mtd_oob_ops ops = {
1419                 .len    = len,
1420                 .ooblen = 0,
1421                 .datbuf = buf,
1422                 .oobbuf = NULL,
1423         };
1424         int ret;
1425
1426         onenand_get_device(mtd, FL_READING);
1427         ret = ONENAND_IS_MLC(this) ?
1428                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1429                 onenand_read_ops_nolock(mtd, from, &ops);
1430         onenand_release_device(mtd);
1431
1432         *retlen = ops.retlen;
1433         return ret;
1434 }
1435
1436 /**
1437  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1438  * @param mtd:          MTD device structure
1439  * @param from:         offset to read from
1440  * @param ops:          oob operation description structure
1441
1442  * Read main and/or out-of-band
1443  */
1444 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1445                             struct mtd_oob_ops *ops)
1446 {
1447         struct onenand_chip *this = mtd->priv;
1448         int ret;
1449
1450         switch (ops->mode) {
1451         case MTD_OOB_PLACE:
1452         case MTD_OOB_AUTO:
1453                 break;
1454         case MTD_OOB_RAW:
1455                 /* Not implemented yet */
1456         default:
1457                 return -EINVAL;
1458         }
1459
1460         onenand_get_device(mtd, FL_READING);
1461         if (ops->datbuf)
1462                 ret = ONENAND_IS_MLC(this) ?
1463                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1464                         onenand_read_ops_nolock(mtd, from, ops);
1465         else
1466                 ret = onenand_read_oob_nolock(mtd, from, ops);
1467         onenand_release_device(mtd);
1468
1469         return ret;
1470 }
1471
1472 /**
1473  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1474  * @param mtd           MTD device structure
1475  * @param state         state to select the max. timeout value
1476  *
1477  * Wait for command done.
1478  */
1479 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1480 {
1481         struct onenand_chip *this = mtd->priv;
1482         unsigned long timeout;
1483         unsigned int interrupt;
1484         unsigned int ctrl;
1485
1486         /* The 20 msec is enough */
1487         timeout = jiffies + msecs_to_jiffies(20);
1488         while (time_before(jiffies, timeout)) {
1489                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1490                 if (interrupt & ONENAND_INT_MASTER)
1491                         break;
1492         }
1493         /* To get correct interrupt status in timeout case */
1494         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1495         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1496
1497         if (interrupt & ONENAND_INT_READ) {
1498                 int ecc = onenand_read_ecc(this);
1499                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1500                         printk(KERN_WARNING "%s: ecc error = 0x%04x, "
1501                                 "controller error 0x%04x\n",
1502                                 __func__, ecc, ctrl);
1503                         return ONENAND_BBT_READ_ECC_ERROR;
1504                 }
1505         } else {
1506                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
1507                         __func__, ctrl, interrupt);
1508                 return ONENAND_BBT_READ_FATAL_ERROR;
1509         }
1510
1511         /* Initial bad block case: 0x2400 or 0x0400 */
1512         if (ctrl & ONENAND_CTRL_ERROR) {
1513                 printk(KERN_DEBUG "%s: controller error = 0x%04x\n",
1514                         __func__, ctrl);
1515                 return ONENAND_BBT_READ_ERROR;
1516         }
1517
1518         return 0;
1519 }
1520
1521 /**
1522  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1523  * @param mtd           MTD device structure
1524  * @param from          offset to read from
1525  * @param ops           oob operation description structure
1526  *
1527  * OneNAND read out-of-band data from the spare area for bbt scan
1528  */
1529 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1530                             struct mtd_oob_ops *ops)
1531 {
1532         struct onenand_chip *this = mtd->priv;
1533         int read = 0, thislen, column;
1534         int ret = 0, readcmd;
1535         size_t len = ops->ooblen;
1536         u_char *buf = ops->oobbuf;
1537
1538         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1539                 __func__, (unsigned int) from, len);
1540
1541         /* Initialize return value */
1542         ops->oobretlen = 0;
1543
1544         /* Do not allow reads past end of device */
1545         if (unlikely((from + len) > mtd->size)) {
1546                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1547                         __func__);
1548                 return ONENAND_BBT_READ_FATAL_ERROR;
1549         }
1550
1551         /* Grab the lock and see if the device is available */
1552         onenand_get_device(mtd, FL_READING);
1553
1554         column = from & (mtd->oobsize - 1);
1555
1556         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1557
1558         while (read < len) {
1559                 cond_resched();
1560
1561                 thislen = mtd->oobsize - column;
1562                 thislen = min_t(int, thislen, len);
1563
1564                 this->command(mtd, readcmd, from, mtd->oobsize);
1565
1566                 onenand_update_bufferram(mtd, from, 0);
1567
1568                 ret = this->bbt_wait(mtd, FL_READING);
1569                 if (unlikely(ret))
1570                         ret = onenand_recover_lsb(mtd, from, ret);
1571
1572                 if (ret)
1573                         break;
1574
1575                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1576                 read += thislen;
1577                 if (read == len)
1578                         break;
1579
1580                 buf += thislen;
1581
1582                 /* Read more? */
1583                 if (read < len) {
1584                         /* Update Page size */
1585                         from += this->writesize;
1586                         column = 0;
1587                 }
1588         }
1589
1590         /* Deselect and wake up anyone waiting on the device */
1591         onenand_release_device(mtd);
1592
1593         ops->oobretlen = read;
1594         return ret;
1595 }
1596
1597 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1598 /**
1599  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1600  * @param mtd           MTD device structure
1601  * @param buf           the databuffer to verify
1602  * @param to            offset to read from
1603  */
1604 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1605 {
1606         struct onenand_chip *this = mtd->priv;
1607         u_char *oob_buf = this->oob_buf;
1608         int status, i, readcmd;
1609
1610         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1611
1612         this->command(mtd, readcmd, to, mtd->oobsize);
1613         onenand_update_bufferram(mtd, to, 0);
1614         status = this->wait(mtd, FL_READING);
1615         if (status)
1616                 return status;
1617
1618         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1619         for (i = 0; i < mtd->oobsize; i++)
1620                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1621                         return -EBADMSG;
1622
1623         return 0;
1624 }
1625
1626 /**
1627  * onenand_verify - [GENERIC] verify the chip contents after a write
1628  * @param mtd          MTD device structure
1629  * @param buf          the databuffer to verify
1630  * @param addr         offset to read from
1631  * @param len          number of bytes to read and compare
1632  */
1633 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1634 {
1635         struct onenand_chip *this = mtd->priv;
1636         void __iomem *dataram;
1637         int ret = 0;
1638         int thislen, column;
1639
1640         while (len != 0) {
1641                 thislen = min_t(int, this->writesize, len);
1642                 column = addr & (this->writesize - 1);
1643                 if (column + thislen > this->writesize)
1644                         thislen = this->writesize - column;
1645
1646                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1647
1648                 onenand_update_bufferram(mtd, addr, 0);
1649
1650                 ret = this->wait(mtd, FL_READING);
1651                 if (ret)
1652                         return ret;
1653
1654                 onenand_update_bufferram(mtd, addr, 1);
1655
1656                 dataram = this->base + ONENAND_DATARAM;
1657                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1658
1659                 if (memcmp(buf, dataram + column, thislen))
1660                         return -EBADMSG;
1661
1662                 len -= thislen;
1663                 buf += thislen;
1664                 addr += thislen;
1665         }
1666
1667         return 0;
1668 }
1669 #else
1670 #define onenand_verify(...)             (0)
1671 #define onenand_verify_oob(...)         (0)
1672 #endif
1673
1674 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1675
1676 static void onenand_panic_wait(struct mtd_info *mtd)
1677 {
1678         struct onenand_chip *this = mtd->priv;
1679         unsigned int interrupt;
1680         int i;
1681         
1682         for (i = 0; i < 2000; i++) {
1683                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1684                 if (interrupt & ONENAND_INT_MASTER)
1685                         break;
1686                 udelay(10);
1687         }
1688 }
1689
1690 /**
1691  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1692  * @param mtd           MTD device structure
1693  * @param to            offset to write to
1694  * @param len           number of bytes to write
1695  * @param retlen        pointer to variable to store the number of written bytes
1696  * @param buf           the data to write
1697  *
1698  * Write with ECC
1699  */
1700 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1701                          size_t *retlen, const u_char *buf)
1702 {
1703         struct onenand_chip *this = mtd->priv;
1704         int column, subpage;
1705         int written = 0;
1706         int ret = 0;
1707
1708         if (this->state == FL_PM_SUSPENDED)
1709                 return -EBUSY;
1710
1711         /* Wait for any existing operation to clear */
1712         onenand_panic_wait(mtd);
1713
1714         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1715                 __func__, (unsigned int) to, (int) len);
1716
1717         /* Initialize retlen, in case of early exit */
1718         *retlen = 0;
1719
1720         /* Do not allow writes past end of device */
1721         if (unlikely((to + len) > mtd->size)) {
1722                 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1723                         __func__);
1724                 return -EINVAL;
1725         }
1726
1727         /* Reject writes, which are not page aligned */
1728         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1729                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1730                         __func__);
1731                 return -EINVAL;
1732         }
1733
1734         column = to & (mtd->writesize - 1);
1735
1736         /* Loop until all data write */
1737         while (written < len) {
1738                 int thislen = min_t(int, mtd->writesize - column, len - written);
1739                 u_char *wbuf = (u_char *) buf;
1740
1741                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1742
1743                 /* Partial page write */
1744                 subpage = thislen < mtd->writesize;
1745                 if (subpage) {
1746                         memset(this->page_buf, 0xff, mtd->writesize);
1747                         memcpy(this->page_buf + column, buf, thislen);
1748                         wbuf = this->page_buf;
1749                 }
1750
1751                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1752                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1753
1754                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1755
1756                 onenand_panic_wait(mtd);
1757
1758                 /* In partial page write we don't update bufferram */
1759                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1760                 if (ONENAND_IS_2PLANE(this)) {
1761                         ONENAND_SET_BUFFERRAM1(this);
1762                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1763                 }
1764
1765                 if (ret) {
1766                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1767                         break;
1768                 }
1769
1770                 written += thislen;
1771
1772                 if (written == len)
1773                         break;
1774
1775                 column = 0;
1776                 to += thislen;
1777                 buf += thislen;
1778         }
1779
1780         *retlen = written;
1781         return ret;
1782 }
1783
1784 /**
1785  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1786  * @param mtd           MTD device structure
1787  * @param oob_buf       oob buffer
1788  * @param buf           source address
1789  * @param column        oob offset to write to
1790  * @param thislen       oob length to write
1791  */
1792 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1793                                   const u_char *buf, int column, int thislen)
1794 {
1795         struct onenand_chip *this = mtd->priv;
1796         struct nand_oobfree *free;
1797         int writecol = column;
1798         int writeend = column + thislen;
1799         int lastgap = 0;
1800         unsigned int i;
1801
1802         free = this->ecclayout->oobfree;
1803         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1804                 if (writecol >= lastgap)
1805                         writecol += free->offset - lastgap;
1806                 if (writeend >= lastgap)
1807                         writeend += free->offset - lastgap;
1808                 lastgap = free->offset + free->length;
1809         }
1810         free = this->ecclayout->oobfree;
1811         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1812                 int free_end = free->offset + free->length;
1813                 if (free->offset < writeend && free_end > writecol) {
1814                         int st = max_t(int,free->offset,writecol);
1815                         int ed = min_t(int,free_end,writeend);
1816                         int n = ed - st;
1817                         memcpy(oob_buf + st, buf, n);
1818                         buf += n;
1819                 } else if (column == 0)
1820                         break;
1821         }
1822         return 0;
1823 }
1824
1825 /**
1826  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1827  * @param mtd           MTD device structure
1828  * @param to            offset to write to
1829  * @param ops           oob operation description structure
1830  *
1831  * Write main and/or oob with ECC
1832  */
1833 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1834                                 struct mtd_oob_ops *ops)
1835 {
1836         struct onenand_chip *this = mtd->priv;
1837         int written = 0, column, thislen = 0, subpage = 0;
1838         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1839         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1840         size_t len = ops->len;
1841         size_t ooblen = ops->ooblen;
1842         const u_char *buf = ops->datbuf;
1843         const u_char *oob = ops->oobbuf;
1844         u_char *oobbuf;
1845         int ret = 0;
1846
1847         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1848                 __func__, (unsigned int) to, (int) len);
1849
1850         /* Initialize retlen, in case of early exit */
1851         ops->retlen = 0;
1852         ops->oobretlen = 0;
1853
1854         /* Do not allow writes past end of device */
1855         if (unlikely((to + len) > mtd->size)) {
1856                 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1857                         __func__);
1858                 return -EINVAL;
1859         }
1860
1861         /* Reject writes, which are not page aligned */
1862         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1863                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1864                         __func__);
1865                 return -EINVAL;
1866         }
1867
1868         /* Check zero length */
1869         if (!len)
1870                 return 0;
1871
1872         if (ops->mode == MTD_OOB_AUTO)
1873                 oobsize = this->ecclayout->oobavail;
1874         else
1875                 oobsize = mtd->oobsize;
1876
1877         oobcolumn = to & (mtd->oobsize - 1);
1878
1879         column = to & (mtd->writesize - 1);
1880
1881         /* Loop until all data write */
1882         while (1) {
1883                 if (written < len) {
1884                         u_char *wbuf = (u_char *) buf;
1885
1886                         thislen = min_t(int, mtd->writesize - column, len - written);
1887                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1888
1889                         cond_resched();
1890
1891                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1892
1893                         /* Partial page write */
1894                         subpage = thislen < mtd->writesize;
1895                         if (subpage) {
1896                                 memset(this->page_buf, 0xff, mtd->writesize);
1897                                 memcpy(this->page_buf + column, buf, thislen);
1898                                 wbuf = this->page_buf;
1899                         }
1900
1901                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1902
1903                         if (oob) {
1904                                 oobbuf = this->oob_buf;
1905
1906                                 /* We send data to spare ram with oobsize
1907                                  * to prevent byte access */
1908                                 memset(oobbuf, 0xff, mtd->oobsize);
1909                                 if (ops->mode == MTD_OOB_AUTO)
1910                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1911                                 else
1912                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1913
1914                                 oobwritten += thisooblen;
1915                                 oob += thisooblen;
1916                                 oobcolumn = 0;
1917                         } else
1918                                 oobbuf = (u_char *) ffchars;
1919
1920                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1921                 } else
1922                         ONENAND_SET_NEXT_BUFFERRAM(this);
1923
1924                 /*
1925                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1926                  * write-while-program feature.
1927                  */
1928                 if (!ONENAND_IS_2PLANE(this) && !first) {
1929                         ONENAND_SET_PREV_BUFFERRAM(this);
1930
1931                         ret = this->wait(mtd, FL_WRITING);
1932
1933                         /* In partial page write we don't update bufferram */
1934                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1935                         if (ret) {
1936                                 written -= prevlen;
1937                                 printk(KERN_ERR "%s: write failed %d\n",
1938                                         __func__, ret);
1939                                 break;
1940                         }
1941
1942                         if (written == len) {
1943                                 /* Only check verify write turn on */
1944                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1945                                 if (ret)
1946                                         printk(KERN_ERR "%s: verify failed %d\n",
1947                                                 __func__, ret);
1948                                 break;
1949                         }
1950
1951                         ONENAND_SET_NEXT_BUFFERRAM(this);
1952                 }
1953
1954                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1955
1956                 /*
1957                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1958                  */
1959                 if (ONENAND_IS_2PLANE(this)) {
1960                         ret = this->wait(mtd, FL_WRITING);
1961
1962                         /* In partial page write we don't update bufferram */
1963                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1964                         if (ret) {
1965                                 printk(KERN_ERR "%s: write failed %d\n",
1966                                         __func__, ret);
1967                                 break;
1968                         }
1969
1970                         /* Only check verify write turn on */
1971                         ret = onenand_verify(mtd, buf, to, thislen);
1972                         if (ret) {
1973                                 printk(KERN_ERR "%s: verify failed %d\n",
1974                                         __func__, ret);
1975                                 break;
1976                         }
1977
1978                         written += thislen;
1979
1980                         if (written == len)
1981                                 break;
1982
1983                 } else
1984                         written += thislen;
1985
1986                 column = 0;
1987                 prev_subpage = subpage;
1988                 prev = to;
1989                 prevlen = thislen;
1990                 to += thislen;
1991                 buf += thislen;
1992                 first = 0;
1993         }
1994
1995         /* In error case, clear all bufferrams */
1996         if (written != len)
1997                 onenand_invalidate_bufferram(mtd, 0, -1);
1998
1999         ops->retlen = written;
2000         ops->oobretlen = oobwritten;
2001
2002         return ret;
2003 }
2004
2005
2006 /**
2007  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2008  * @param mtd           MTD device structure
2009  * @param to            offset to write to
2010  * @param len           number of bytes to write
2011  * @param retlen        pointer to variable to store the number of written bytes
2012  * @param buf           the data to write
2013  * @param mode          operation mode
2014  *
2015  * OneNAND write out-of-band
2016  */
2017 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2018                                     struct mtd_oob_ops *ops)
2019 {
2020         struct onenand_chip *this = mtd->priv;
2021         int column, ret = 0, oobsize;
2022         int written = 0, oobcmd;
2023         u_char *oobbuf;
2024         size_t len = ops->ooblen;
2025         const u_char *buf = ops->oobbuf;
2026         mtd_oob_mode_t mode = ops->mode;
2027
2028         to += ops->ooboffs;
2029
2030         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2031                 __func__, (unsigned int) to, (int) len);
2032
2033         /* Initialize retlen, in case of early exit */
2034         ops->oobretlen = 0;
2035
2036         if (mode == MTD_OOB_AUTO)
2037                 oobsize = this->ecclayout->oobavail;
2038         else
2039                 oobsize = mtd->oobsize;
2040
2041         column = to & (mtd->oobsize - 1);
2042
2043         if (unlikely(column >= oobsize)) {
2044                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2045                         __func__);
2046                 return -EINVAL;
2047         }
2048
2049         /* For compatibility with NAND: Do not allow write past end of page */
2050         if (unlikely(column + len > oobsize)) {
2051                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2052                         __func__);
2053                 return -EINVAL;
2054         }
2055
2056         /* Do not allow reads past end of device */
2057         if (unlikely(to >= mtd->size ||
2058                      column + len > ((mtd->size >> this->page_shift) -
2059                                      (to >> this->page_shift)) * oobsize)) {
2060                 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2061                        __func__);
2062                 return -EINVAL;
2063         }
2064
2065         oobbuf = this->oob_buf;
2066
2067         oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2068
2069         /* Loop until all data write */
2070         while (written < len) {
2071                 int thislen = min_t(int, oobsize, len - written);
2072
2073                 cond_resched();
2074
2075                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2076
2077                 /* We send data to spare ram with oobsize
2078                  * to prevent byte access */
2079                 memset(oobbuf, 0xff, mtd->oobsize);
2080                 if (mode == MTD_OOB_AUTO)
2081                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2082                 else
2083                         memcpy(oobbuf + column, buf, thislen);
2084                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2085
2086                 if (ONENAND_IS_MLC(this)) {
2087                         /* Set main area of DataRAM to 0xff*/
2088                         memset(this->page_buf, 0xff, mtd->writesize);
2089                         this->write_bufferram(mtd, ONENAND_DATARAM,
2090                                          this->page_buf, 0, mtd->writesize);
2091                 }
2092
2093                 this->command(mtd, oobcmd, to, mtd->oobsize);
2094
2095                 onenand_update_bufferram(mtd, to, 0);
2096                 if (ONENAND_IS_2PLANE(this)) {
2097                         ONENAND_SET_BUFFERRAM1(this);
2098                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2099                 }
2100
2101                 ret = this->wait(mtd, FL_WRITING);
2102                 if (ret) {
2103                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2104                         break;
2105                 }
2106
2107                 ret = onenand_verify_oob(mtd, oobbuf, to);
2108                 if (ret) {
2109                         printk(KERN_ERR "%s: verify failed %d\n",
2110                                 __func__, ret);
2111                         break;
2112                 }
2113
2114                 written += thislen;
2115                 if (written == len)
2116                         break;
2117
2118                 to += mtd->writesize;
2119                 buf += thislen;
2120                 column = 0;
2121         }
2122
2123         ops->oobretlen = written;
2124
2125         return ret;
2126 }
2127
2128 /**
2129  * onenand_write - [MTD Interface] write buffer to FLASH
2130  * @param mtd           MTD device structure
2131  * @param to            offset to write to
2132  * @param len           number of bytes to write
2133  * @param retlen        pointer to variable to store the number of written bytes
2134  * @param buf           the data to write
2135  *
2136  * Write with ECC
2137  */
2138 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2139         size_t *retlen, const u_char *buf)
2140 {
2141         struct mtd_oob_ops ops = {
2142                 .len    = len,
2143                 .ooblen = 0,
2144                 .datbuf = (u_char *) buf,
2145                 .oobbuf = NULL,
2146         };
2147         int ret;
2148
2149         onenand_get_device(mtd, FL_WRITING);
2150         ret = onenand_write_ops_nolock(mtd, to, &ops);
2151         onenand_release_device(mtd);
2152
2153         *retlen = ops.retlen;
2154         return ret;
2155 }
2156
2157 /**
2158  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2159  * @param mtd:          MTD device structure
2160  * @param to:           offset to write
2161  * @param ops:          oob operation description structure
2162  */
2163 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2164                              struct mtd_oob_ops *ops)
2165 {
2166         int ret;
2167
2168         switch (ops->mode) {
2169         case MTD_OOB_PLACE:
2170         case MTD_OOB_AUTO:
2171                 break;
2172         case MTD_OOB_RAW:
2173                 /* Not implemented yet */
2174         default:
2175                 return -EINVAL;
2176         }
2177
2178         onenand_get_device(mtd, FL_WRITING);
2179         if (ops->datbuf)
2180                 ret = onenand_write_ops_nolock(mtd, to, ops);
2181         else
2182                 ret = onenand_write_oob_nolock(mtd, to, ops);
2183         onenand_release_device(mtd);
2184
2185         return ret;
2186 }
2187
2188 /**
2189  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2190  * @param mtd           MTD device structure
2191  * @param ofs           offset from device start
2192  * @param allowbbt      1, if its allowed to access the bbt area
2193  *
2194  * Check, if the block is bad. Either by reading the bad block table or
2195  * calling of the scan function.
2196  */
2197 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2198 {
2199         struct onenand_chip *this = mtd->priv;
2200         struct bbm_info *bbm = this->bbm;
2201
2202         /* Return info from the table */
2203         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2204 }
2205
2206
2207 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2208                                            struct erase_info *instr)
2209 {
2210         struct onenand_chip *this = mtd->priv;
2211         loff_t addr = instr->addr;
2212         int len = instr->len;
2213         unsigned int block_size = (1 << this->erase_shift);
2214         int ret = 0;
2215
2216         while (len) {
2217                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2218                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2219                 if (ret) {
2220                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2221                                __func__, onenand_block(this, addr));
2222                         instr->state = MTD_ERASE_FAILED;
2223                         instr->fail_addr = addr;
2224                         return -1;
2225                 }
2226                 len -= block_size;
2227                 addr += block_size;
2228         }
2229         return 0;
2230 }
2231
2232 /**
2233  * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2234  * @param mtd           MTD device structure
2235  * @param instr         erase instruction
2236  * @param region        erase region
2237  *
2238  * Erase one or more blocks up to 64 block at a time
2239  */
2240 static int onenand_multiblock_erase(struct mtd_info *mtd,
2241                                     struct erase_info *instr,
2242                                     unsigned int block_size)
2243 {
2244         struct onenand_chip *this = mtd->priv;
2245         loff_t addr = instr->addr;
2246         int len = instr->len;
2247         int eb_count = 0;
2248         int ret = 0;
2249         int bdry_block = 0;
2250
2251         instr->state = MTD_ERASING;
2252
2253         if (ONENAND_IS_DDP(this)) {
2254                 loff_t bdry_addr = this->chipsize >> 1;
2255                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2256                         bdry_block = bdry_addr >> this->erase_shift;
2257         }
2258
2259         /* Pre-check bbs */
2260         while (len) {
2261                 /* Check if we have a bad block, we do not erase bad blocks */
2262                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2263                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2264                                "at addr 0x%012llx\n",
2265                                __func__, (unsigned long long) addr);
2266                         instr->state = MTD_ERASE_FAILED;
2267                         return -EIO;
2268                 }
2269                 len -= block_size;
2270                 addr += block_size;
2271         }
2272
2273         len = instr->len;
2274         addr = instr->addr;
2275
2276         /* loop over 64 eb batches */
2277         while (len) {
2278                 struct erase_info verify_instr = *instr;
2279                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2280
2281                 verify_instr.addr = addr;
2282                 verify_instr.len = 0;
2283
2284                 /* do not cross chip boundary */
2285                 if (bdry_block) {
2286                         int this_block = (addr >> this->erase_shift);
2287
2288                         if (this_block < bdry_block) {
2289                                 max_eb_count = min(max_eb_count,
2290                                                    (bdry_block - this_block));
2291                         }
2292                 }
2293
2294                 eb_count = 0;
2295
2296                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2297                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2298                                       addr, block_size);
2299                         onenand_invalidate_bufferram(mtd, addr, block_size);
2300
2301                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2302                         if (ret) {
2303                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2304                                        "block %d\n", __func__,
2305                                        onenand_block(this, addr));
2306                                 instr->state = MTD_ERASE_FAILED;
2307                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2308                                 return -EIO;
2309                         }
2310
2311                         len -= block_size;
2312                         addr += block_size;
2313                         eb_count++;
2314                 }
2315
2316                 /* last block of 64-eb series */
2317                 cond_resched();
2318                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2319                 onenand_invalidate_bufferram(mtd, addr, block_size);
2320
2321                 ret = this->wait(mtd, FL_ERASING);
2322                 /* Check if it is write protected */
2323                 if (ret) {
2324                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2325                                __func__, onenand_block(this, addr));
2326                         instr->state = MTD_ERASE_FAILED;
2327                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2328                         return -EIO;
2329                 }
2330
2331                 len -= block_size;
2332                 addr += block_size;
2333                 eb_count++;
2334
2335                 /* verify */
2336                 verify_instr.len = eb_count * block_size;
2337                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2338                         instr->state = verify_instr.state;
2339                         instr->fail_addr = verify_instr.fail_addr;
2340                         return -EIO;
2341                 }
2342
2343         }
2344         return 0;
2345 }
2346
2347
2348 /**
2349  * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2350  * @param mtd           MTD device structure
2351  * @param instr         erase instruction
2352  * @param region        erase region
2353  * @param block_size    erase block size
2354  *
2355  * Erase one or more blocks one block at a time
2356  */
2357 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2358                                         struct erase_info *instr,
2359                                         struct mtd_erase_region_info *region,
2360                                         unsigned int block_size)
2361 {
2362         struct onenand_chip *this = mtd->priv;
2363         loff_t addr = instr->addr;
2364         int len = instr->len;
2365         loff_t region_end = 0;
2366         int ret = 0;
2367
2368         if (region) {
2369                 /* region is set for Flex-OneNAND */
2370                 region_end = region->offset + region->erasesize * region->numblocks;
2371         }
2372
2373         instr->state = MTD_ERASING;
2374
2375         /* Loop through the blocks */
2376         while (len) {
2377                 cond_resched();
2378
2379                 /* Check if we have a bad block, we do not erase bad blocks */
2380                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2381                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2382                                         "at addr 0x%012llx\n",
2383                                         __func__, (unsigned long long) addr);
2384                         instr->state = MTD_ERASE_FAILED;
2385                         return -EIO;
2386                 }
2387
2388                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2389
2390                 onenand_invalidate_bufferram(mtd, addr, block_size);
2391
2392                 ret = this->wait(mtd, FL_ERASING);
2393                 /* Check, if it is write protected */
2394                 if (ret) {
2395                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2396                                 __func__, onenand_block(this, addr));
2397                         instr->state = MTD_ERASE_FAILED;
2398                         instr->fail_addr = addr;
2399                         return -EIO;
2400                 }
2401
2402                 len -= block_size;
2403                 addr += block_size;
2404
2405                 if (addr == region_end) {
2406                         if (!len)
2407                                 break;
2408                         region++;
2409
2410                         block_size = region->erasesize;
2411                         region_end = region->offset + region->erasesize * region->numblocks;
2412
2413                         if (len & (block_size - 1)) {
2414                                 /* FIXME: This should be handled at MTD partitioning level. */
2415                                 printk(KERN_ERR "%s: Unaligned address\n",
2416                                         __func__);
2417                                 return -EIO;
2418                         }
2419                 }
2420         }
2421         return 0;
2422 }
2423
2424 /**
2425  * onenand_erase - [MTD Interface] erase block(s)
2426  * @param mtd           MTD device structure
2427  * @param instr         erase instruction
2428  *
2429  * Erase one or more blocks
2430  */
2431 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2432 {
2433         struct onenand_chip *this = mtd->priv;
2434         unsigned int block_size;
2435         loff_t addr = instr->addr;
2436         loff_t len = instr->len;
2437         int ret = 0;
2438         struct mtd_erase_region_info *region = NULL;
2439         loff_t region_offset = 0;
2440
2441         DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2442               (unsigned long long) instr->addr, (unsigned long long) instr->len);
2443
2444         /* Do not allow erase past end of device */
2445         if (unlikely((len + addr) > mtd->size)) {
2446                 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2447                 return -EINVAL;
2448         }
2449
2450         if (FLEXONENAND(this)) {
2451                 /* Find the eraseregion of this address */
2452                 int i = flexonenand_region(mtd, addr);
2453
2454                 region = &mtd->eraseregions[i];
2455                 block_size = region->erasesize;
2456
2457                 /* Start address within region must align on block boundary.
2458                  * Erase region's start offset is always block start address.
2459                  */
2460                 region_offset = region->offset;
2461         } else
2462                 block_size = 1 << this->erase_shift;
2463
2464         /* Start address must align on block boundary */
2465         if (unlikely((addr - region_offset) & (block_size - 1))) {
2466                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2467                 return -EINVAL;
2468         }
2469
2470         /* Length must align on block boundary */
2471         if (unlikely(len & (block_size - 1))) {
2472                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2473                 return -EINVAL;
2474         }
2475
2476         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2477
2478         /* Grab the lock and see if the device is available */
2479         onenand_get_device(mtd, FL_ERASING);
2480
2481         if (region || instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2482                 /* region is set for Flex-OneNAND (no mb erase) */
2483                 ret = onenand_block_by_block_erase(mtd, instr,
2484                                                    region, block_size);
2485         } else {
2486                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2487         }
2488
2489         /* Deselect and wake up anyone waiting on the device */
2490         onenand_release_device(mtd);
2491
2492         /* Do call back function */
2493         if (!ret) {
2494                 instr->state = MTD_ERASE_DONE;
2495                 mtd_erase_callback(instr);
2496         }
2497
2498         return ret;
2499 }
2500
2501 /**
2502  * onenand_sync - [MTD Interface] sync
2503  * @param mtd           MTD device structure
2504  *
2505  * Sync is actually a wait for chip ready function
2506  */
2507 static void onenand_sync(struct mtd_info *mtd)
2508 {
2509         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2510
2511         /* Grab the lock and see if the device is available */
2512         onenand_get_device(mtd, FL_SYNCING);
2513
2514         /* Release it and go back */
2515         onenand_release_device(mtd);
2516 }
2517
2518 /**
2519  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2520  * @param mtd           MTD device structure
2521  * @param ofs           offset relative to mtd start
2522  *
2523  * Check whether the block is bad
2524  */
2525 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2526 {
2527         int ret;
2528
2529         /* Check for invalid offset */
2530         if (ofs > mtd->size)
2531                 return -EINVAL;
2532
2533         onenand_get_device(mtd, FL_READING);
2534         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2535         onenand_release_device(mtd);
2536         return ret;
2537 }
2538
2539 /**
2540  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2541  * @param mtd           MTD device structure
2542  * @param ofs           offset from device start
2543  *
2544  * This is the default implementation, which can be overridden by
2545  * a hardware specific driver.
2546  */
2547 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2548 {
2549         struct onenand_chip *this = mtd->priv;
2550         struct bbm_info *bbm = this->bbm;
2551         u_char buf[2] = {0, 0};
2552         struct mtd_oob_ops ops = {
2553                 .mode = MTD_OOB_PLACE,
2554                 .ooblen = 2,
2555                 .oobbuf = buf,
2556                 .ooboffs = 0,
2557         };
2558         int block;
2559
2560         /* Get block number */
2561         block = onenand_block(this, ofs);
2562         if (bbm->bbt)
2563                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2564
2565         /* We write two bytes, so we don't have to mess with 16-bit access */
2566         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2567         /* FIXME : What to do when marking SLC block in partition
2568          *         with MLC erasesize? For now, it is not advisable to
2569          *         create partitions containing both SLC and MLC regions.
2570          */
2571         return onenand_write_oob_nolock(mtd, ofs, &ops);
2572 }
2573
2574 /**
2575  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2576  * @param mtd           MTD device structure
2577  * @param ofs           offset relative to mtd start
2578  *
2579  * Mark the block as bad
2580  */
2581 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2582 {
2583         struct onenand_chip *this = mtd->priv;
2584         int ret;
2585
2586         ret = onenand_block_isbad(mtd, ofs);
2587         if (ret) {
2588                 /* If it was bad already, return success and do nothing */
2589                 if (ret > 0)
2590                         return 0;
2591                 return ret;
2592         }
2593
2594         onenand_get_device(mtd, FL_WRITING);
2595         ret = this->block_markbad(mtd, ofs);
2596         onenand_release_device(mtd);
2597         return ret;
2598 }
2599
2600 /**
2601  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2602  * @param mtd           MTD device structure
2603  * @param ofs           offset relative to mtd start
2604  * @param len           number of bytes to lock or unlock
2605  * @param cmd           lock or unlock command
2606  *
2607  * Lock or unlock one or more blocks
2608  */
2609 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2610 {
2611         struct onenand_chip *this = mtd->priv;
2612         int start, end, block, value, status;
2613         int wp_status_mask;
2614
2615         start = onenand_block(this, ofs);
2616         end = onenand_block(this, ofs + len) - 1;
2617
2618         if (cmd == ONENAND_CMD_LOCK)
2619                 wp_status_mask = ONENAND_WP_LS;
2620         else
2621                 wp_status_mask = ONENAND_WP_US;
2622
2623         /* Continuous lock scheme */
2624         if (this->options & ONENAND_HAS_CONT_LOCK) {
2625                 /* Set start block address */
2626                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2627                 /* Set end block address */
2628                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2629                 /* Write lock command */
2630                 this->command(mtd, cmd, 0, 0);
2631
2632                 /* There's no return value */
2633                 this->wait(mtd, FL_LOCKING);
2634
2635                 /* Sanity check */
2636                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2637                     & ONENAND_CTRL_ONGO)
2638                         continue;
2639
2640                 /* Check lock status */
2641                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2642                 if (!(status & wp_status_mask))
2643                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2644                                 __func__, status);
2645
2646                 return 0;
2647         }
2648
2649         /* Block lock scheme */
2650         for (block = start; block < end + 1; block++) {
2651                 /* Set block address */
2652                 value = onenand_block_address(this, block);
2653                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2654                 /* Select DataRAM for DDP */
2655                 value = onenand_bufferram_address(this, block);
2656                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2657                 /* Set start block address */
2658                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2659                 /* Write lock command */
2660                 this->command(mtd, cmd, 0, 0);
2661
2662                 /* There's no return value */
2663                 this->wait(mtd, FL_LOCKING);
2664
2665                 /* Sanity check */
2666                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2667                     & ONENAND_CTRL_ONGO)
2668                         continue;
2669
2670                 /* Check lock status */
2671                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2672                 if (!(status & wp_status_mask))
2673                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2674                                 __func__, block, status);
2675         }
2676
2677         return 0;
2678 }
2679
2680 /**
2681  * onenand_lock - [MTD Interface] Lock block(s)
2682  * @param mtd           MTD device structure
2683  * @param ofs           offset relative to mtd start
2684  * @param len           number of bytes to unlock
2685  *
2686  * Lock one or more blocks
2687  */
2688 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2689 {
2690         int ret;
2691
2692         onenand_get_device(mtd, FL_LOCKING);
2693         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2694         onenand_release_device(mtd);
2695         return ret;
2696 }
2697
2698 /**
2699  * onenand_unlock - [MTD Interface] Unlock block(s)
2700  * @param mtd           MTD device structure
2701  * @param ofs           offset relative to mtd start
2702  * @param len           number of bytes to unlock
2703  *
2704  * Unlock one or more blocks
2705  */
2706 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2707 {
2708         int ret;
2709
2710         onenand_get_device(mtd, FL_LOCKING);
2711         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2712         onenand_release_device(mtd);
2713         return ret;
2714 }
2715
2716 /**
2717  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2718  * @param this          onenand chip data structure
2719  *
2720  * Check lock status
2721  */
2722 static int onenand_check_lock_status(struct onenand_chip *this)
2723 {
2724         unsigned int value, block, status;
2725         unsigned int end;
2726
2727         end = this->chipsize >> this->erase_shift;
2728         for (block = 0; block < end; block++) {
2729                 /* Set block address */
2730                 value = onenand_block_address(this, block);
2731                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2732                 /* Select DataRAM for DDP */
2733                 value = onenand_bufferram_address(this, block);
2734                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2735                 /* Set start block address */
2736                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2737
2738                 /* Check lock status */
2739                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2740                 if (!(status & ONENAND_WP_US)) {
2741                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2742                                 __func__, block, status);
2743                         return 0;
2744                 }
2745         }
2746
2747         return 1;
2748 }
2749
2750 /**
2751  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2752  * @param mtd           MTD device structure
2753  *
2754  * Unlock all blocks
2755  */
2756 static void onenand_unlock_all(struct mtd_info *mtd)
2757 {
2758         struct onenand_chip *this = mtd->priv;
2759         loff_t ofs = 0;
2760         loff_t len = mtd->size;
2761
2762         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2763                 /* Set start block address */
2764                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2765                 /* Write unlock command */
2766                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2767
2768                 /* There's no return value */
2769                 this->wait(mtd, FL_LOCKING);
2770
2771                 /* Sanity check */
2772                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2773                     & ONENAND_CTRL_ONGO)
2774                         continue;
2775
2776                 /* Don't check lock status */
2777                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2778                         return;
2779
2780                 /* Check lock status */
2781                 if (onenand_check_lock_status(this))
2782                         return;
2783
2784                 /* Workaround for all block unlock in DDP */
2785                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2786                         /* All blocks on another chip */
2787                         ofs = this->chipsize >> 1;
2788                         len = this->chipsize >> 1;
2789                 }
2790         }
2791
2792         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2793 }
2794
2795 #ifdef CONFIG_MTD_ONENAND_OTP
2796
2797 /**
2798  * onenand_otp_command - Send OTP specific command to OneNAND device
2799  * @param mtd    MTD device structure
2800  * @param cmd    the command to be sent
2801  * @param addr   offset to read from or write to
2802  * @param len    number of bytes to read or write
2803  */
2804 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2805                                 size_t len)
2806 {
2807         struct onenand_chip *this = mtd->priv;
2808         int value, block, page;
2809
2810         /* Address translation */
2811         switch (cmd) {
2812         case ONENAND_CMD_OTP_ACCESS:
2813                 block = (int) (addr >> this->erase_shift);
2814                 page = -1;
2815                 break;
2816
2817         default:
2818                 block = (int) (addr >> this->erase_shift);
2819                 page = (int) (addr >> this->page_shift);
2820
2821                 if (ONENAND_IS_2PLANE(this)) {
2822                         /* Make the even block number */
2823                         block &= ~1;
2824                         /* Is it the odd plane? */
2825                         if (addr & this->writesize)
2826                                 block++;
2827                         page >>= 1;
2828                 }
2829                 page &= this->page_mask;
2830                 break;
2831         }
2832
2833         if (block != -1) {
2834                 /* Write 'DFS, FBA' of Flash */
2835                 value = onenand_block_address(this, block);
2836                 this->write_word(value, this->base +
2837                                 ONENAND_REG_START_ADDRESS1);
2838         }
2839
2840         if (page != -1) {
2841                 /* Now we use page size operation */
2842                 int sectors = 4, count = 4;
2843                 int dataram;
2844
2845                 switch (cmd) {
2846                 default:
2847                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2848                                 cmd = ONENAND_CMD_2X_PROG;
2849                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2850                         break;
2851                 }
2852
2853                 /* Write 'FPA, FSA' of Flash */
2854                 value = onenand_page_address(page, sectors);
2855                 this->write_word(value, this->base +
2856                                 ONENAND_REG_START_ADDRESS8);
2857
2858                 /* Write 'BSA, BSC' of DataRAM */
2859                 value = onenand_buffer_address(dataram, sectors, count);
2860                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2861         }
2862
2863         /* Interrupt clear */
2864         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2865
2866         /* Write command */
2867         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2868
2869         return 0;
2870 }
2871
2872 /**
2873  * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2874  * @param mtd           MTD device structure
2875  * @param to            offset to write to
2876  * @param len           number of bytes to write
2877  * @param retlen        pointer to variable to store the number of written bytes
2878  * @param buf           the data to write
2879  *
2880  * OneNAND write out-of-band only for OTP
2881  */
2882 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2883                                     struct mtd_oob_ops *ops)
2884 {
2885         struct onenand_chip *this = mtd->priv;
2886         int column, ret = 0, oobsize;
2887         int written = 0;
2888         u_char *oobbuf;
2889         size_t len = ops->ooblen;
2890         const u_char *buf = ops->oobbuf;
2891         int block, value, status;
2892
2893         to += ops->ooboffs;
2894
2895         /* Initialize retlen, in case of early exit */
2896         ops->oobretlen = 0;
2897
2898         oobsize = mtd->oobsize;
2899
2900         column = to & (mtd->oobsize - 1);
2901
2902         oobbuf = this->oob_buf;
2903
2904         /* Loop until all data write */
2905         while (written < len) {
2906                 int thislen = min_t(int, oobsize, len - written);
2907
2908                 cond_resched();
2909
2910                 block = (int) (to >> this->erase_shift);
2911                 /*
2912                  * Write 'DFS, FBA' of Flash
2913                  * Add: F100h DQ=DFS, FBA
2914                  */
2915
2916                 value = onenand_block_address(this, block);
2917                 this->write_word(value, this->base +
2918                                 ONENAND_REG_START_ADDRESS1);
2919
2920                 /*
2921                  * Select DataRAM for DDP
2922                  * Add: F101h DQ=DBS
2923                  */
2924
2925                 value = onenand_bufferram_address(this, block);
2926                 this->write_word(value, this->base +
2927                                 ONENAND_REG_START_ADDRESS2);
2928                 ONENAND_SET_NEXT_BUFFERRAM(this);
2929
2930                 /*
2931                  * Enter OTP access mode
2932                  */
2933                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2934                 this->wait(mtd, FL_OTPING);
2935
2936                 /* We send data to spare ram with oobsize
2937                  * to prevent byte access */
2938                 memcpy(oobbuf + column, buf, thislen);
2939
2940                 /*
2941                  * Write Data into DataRAM
2942                  * Add: 8th Word
2943                  * in sector0/spare/page0
2944                  * DQ=XXFCh
2945                  */
2946                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2947                                         oobbuf, 0, mtd->oobsize);
2948
2949                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2950                 onenand_update_bufferram(mtd, to, 0);
2951                 if (ONENAND_IS_2PLANE(this)) {
2952                         ONENAND_SET_BUFFERRAM1(this);
2953                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2954                 }
2955
2956                 ret = this->wait(mtd, FL_WRITING);
2957                 if (ret) {
2958                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2959                         break;
2960                 }
2961
2962                 /* Exit OTP access mode */
2963                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2964                 this->wait(mtd, FL_RESETING);
2965
2966                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2967                 status &= 0x60;
2968
2969                 if (status == 0x60) {
2970                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2971                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2972                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2973                 } else if (status == 0x20) {
2974                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2975                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2976                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2977                 } else if (status == 0x40) {
2978                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2979                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2980                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2981                 } else {
2982                         printk(KERN_DEBUG "Reboot to check\n");
2983                 }
2984
2985                 written += thislen;
2986                 if (written == len)
2987                         break;
2988
2989                 to += mtd->writesize;
2990                 buf += thislen;
2991                 column = 0;
2992         }
2993
2994         ops->oobretlen = written;
2995
2996         return ret;
2997 }
2998
2999 /* Internal OTP operation */
3000 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3001                 size_t *retlen, u_char *buf);
3002
3003 /**
3004  * do_otp_read - [DEFAULT] Read OTP block area
3005  * @param mtd           MTD device structure
3006  * @param from          The offset to read
3007  * @param len           number of bytes to read
3008  * @param retlen        pointer to variable to store the number of readbytes
3009  * @param buf           the databuffer to put/get data
3010  *
3011  * Read OTP block area.
3012  */
3013 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3014                 size_t *retlen, u_char *buf)
3015 {
3016         struct onenand_chip *this = mtd->priv;
3017         struct mtd_oob_ops ops = {
3018                 .len    = len,
3019                 .ooblen = 0,
3020                 .datbuf = buf,
3021                 .oobbuf = NULL,
3022         };
3023         int ret;
3024
3025         /* Enter OTP access mode */
3026         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3027         this->wait(mtd, FL_OTPING);
3028
3029         ret = ONENAND_IS_MLC(this) ?
3030                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3031                 onenand_read_ops_nolock(mtd, from, &ops);
3032
3033         /* Exit OTP access mode */
3034         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3035         this->wait(mtd, FL_RESETING);
3036
3037         return ret;
3038 }
3039
3040 /**
3041  * do_otp_write - [DEFAULT] Write OTP block area
3042  * @param mtd           MTD device structure
3043  * @param to            The offset to write
3044  * @param len           number of bytes to write
3045  * @param retlen        pointer to variable to store the number of write bytes
3046  * @param buf           the databuffer to put/get data
3047  *
3048  * Write OTP block area.
3049  */
3050 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3051                 size_t *retlen, u_char *buf)
3052 {
3053         struct onenand_chip *this = mtd->priv;
3054         unsigned char *pbuf = buf;
3055         int ret;
3056         struct mtd_oob_ops ops;
3057
3058         /* Force buffer page aligned */
3059         if (len < mtd->writesize) {
3060                 memcpy(this->page_buf, buf, len);
3061                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3062                 pbuf = this->page_buf;
3063                 len = mtd->writesize;
3064         }
3065
3066         /* Enter OTP access mode */
3067         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3068         this->wait(mtd, FL_OTPING);
3069
3070         ops.len = len;
3071         ops.ooblen = 0;
3072         ops.datbuf = pbuf;
3073         ops.oobbuf = NULL;
3074         ret = onenand_write_ops_nolock(mtd, to, &ops);
3075         *retlen = ops.retlen;
3076
3077         /* Exit OTP access mode */
3078         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3079         this->wait(mtd, FL_RESETING);
3080
3081         return ret;
3082 }
3083
3084 /**
3085  * do_otp_lock - [DEFAULT] Lock OTP block area
3086  * @param mtd           MTD device structure
3087  * @param from          The offset to lock
3088  * @param len           number of bytes to lock
3089  * @param retlen        pointer to variable to store the number of lock bytes
3090  * @param buf           the databuffer to put/get data
3091  *
3092  * Lock OTP block area.
3093  */
3094 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3095                 size_t *retlen, u_char *buf)
3096 {
3097         struct onenand_chip *this = mtd->priv;
3098         struct mtd_oob_ops ops;
3099         int ret;
3100
3101         if (FLEXONENAND(this)) {
3102
3103                 /* Enter OTP access mode */
3104                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3105                 this->wait(mtd, FL_OTPING);
3106                 /*
3107                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3108                  * main area of page 49.
3109                  */
3110                 ops.len = mtd->writesize;
3111                 ops.ooblen = 0;
3112                 ops.datbuf = buf;
3113                 ops.oobbuf = NULL;
3114                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3115                 *retlen = ops.retlen;
3116
3117                 /* Exit OTP access mode */
3118                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3119                 this->wait(mtd, FL_RESETING);
3120         } else {
3121                 ops.mode = MTD_OOB_PLACE;
3122                 ops.ooblen = len;
3123                 ops.oobbuf = buf;
3124                 ops.ooboffs = 0;
3125                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3126                 *retlen = ops.oobretlen;
3127         }
3128
3129         return ret;
3130 }
3131
3132 /**
3133  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3134  * @param mtd           MTD device structure
3135  * @param from          The offset to read/write
3136  * @param len           number of bytes to read/write
3137  * @param retlen        pointer to variable to store the number of read bytes
3138  * @param buf           the databuffer to put/get data
3139  * @param action        do given action
3140  * @param mode          specify user and factory
3141  *
3142  * Handle OTP operation.
3143  */
3144 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3145                         size_t *retlen, u_char *buf,
3146                         otp_op_t action, int mode)
3147 {
3148         struct onenand_chip *this = mtd->priv;
3149         int otp_pages;
3150         int density;
3151         int ret = 0;
3152
3153         *retlen = 0;
3154
3155         density = onenand_get_density(this->device_id);
3156         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3157                 otp_pages = 20;
3158         else
3159                 otp_pages = 50;
3160
3161         if (mode == MTD_OTP_FACTORY) {
3162                 from += mtd->writesize * otp_pages;
3163                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3164         }
3165
3166         /* Check User/Factory boundary */
3167         if (mode == MTD_OTP_USER) {
3168                 if (mtd->writesize * otp_pages < from + len)
3169                         return 0;
3170         } else {
3171                 if (mtd->writesize * otp_pages <  len)
3172                         return 0;
3173         }
3174
3175         onenand_get_device(mtd, FL_OTPING);
3176         while (len > 0 && otp_pages > 0) {
3177                 if (!action) {  /* OTP Info functions */
3178                         struct otp_info *otpinfo;
3179
3180                         len -= sizeof(struct otp_info);
3181                         if (len <= 0) {
3182                                 ret = -ENOSPC;
3183                                 break;
3184                         }
3185
3186                         otpinfo = (struct otp_info *) buf;
3187                         otpinfo->start = from;
3188                         otpinfo->length = mtd->writesize;
3189                         otpinfo->locked = 0;
3190
3191                         from += mtd->writesize;
3192                         buf += sizeof(struct otp_info);
3193                         *retlen += sizeof(struct otp_info);
3194                 } else {
3195                         size_t tmp_retlen;
3196
3197                         ret = action(mtd, from, len, &tmp_retlen, buf);
3198
3199                         buf += tmp_retlen;
3200                         len -= tmp_retlen;
3201                         *retlen += tmp_retlen;
3202
3203                         if (ret)
3204                                 break;
3205                 }
3206                 otp_pages--;
3207         }
3208         onenand_release_device(mtd);
3209
3210         return ret;
3211 }
3212
3213 /**
3214  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3215  * @param mtd           MTD device structure
3216  * @param buf           the databuffer to put/get data
3217  * @param len           number of bytes to read
3218  *
3219  * Read factory OTP info.
3220  */
3221 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3222                         struct otp_info *buf, size_t len)
3223 {
3224         size_t retlen;
3225         int ret;
3226
3227         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3228
3229         return ret ? : retlen;
3230 }
3231
3232 /**
3233  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3234  * @param mtd           MTD device structure
3235  * @param from          The offset to read
3236  * @param len           number of bytes to read
3237  * @param retlen        pointer to variable to store the number of read bytes
3238  * @param buf           the databuffer to put/get data
3239  *
3240  * Read factory OTP area.
3241  */
3242 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3243                         size_t len, size_t *retlen, u_char *buf)
3244 {
3245         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3246 }
3247
3248 /**
3249  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3250  * @param mtd           MTD device structure
3251  * @param buf           the databuffer to put/get data
3252  * @param len           number of bytes to read
3253  *
3254  * Read user OTP info.
3255  */
3256 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3257                         struct otp_info *buf, size_t len)
3258 {
3259         size_t retlen;
3260         int ret;
3261
3262         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3263
3264         return ret ? : retlen;
3265 }
3266
3267 /**
3268  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3269  * @param mtd           MTD device structure
3270  * @param from          The offset to read
3271  * @param len           number of bytes to read
3272  * @param retlen        pointer to variable to store the number of read bytes
3273  * @param buf           the databuffer to put/get data
3274  *
3275  * Read user OTP area.
3276  */
3277 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3278                         size_t len, size_t *retlen, u_char *buf)
3279 {
3280         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3281 }
3282
3283 /**
3284  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3285  * @param mtd           MTD device structure
3286  * @param from          The offset to write
3287  * @param len           number of bytes to write
3288  * @param retlen        pointer to variable to store the number of write bytes
3289  * @param buf           the databuffer to put/get data
3290  *
3291  * Write user OTP area.
3292  */
3293 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3294                         size_t len, size_t *retlen, u_char *buf)
3295 {
3296         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3297 }
3298
3299 /**
3300  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3301  * @param mtd           MTD device structure
3302  * @param from          The offset to lock
3303  * @param len           number of bytes to unlock
3304  *
3305  * Write lock mark on spare area in page 0 in OTP block
3306  */
3307 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3308                         size_t len)
3309 {
3310         struct onenand_chip *this = mtd->priv;
3311         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3312         size_t retlen;
3313         int ret;
3314         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3315
3316         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3317                                                  : mtd->oobsize);
3318         /*
3319          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3320          * We write 16 bytes spare area instead of 2 bytes.
3321          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3322          * main area of page 49.
3323          */
3324
3325         from = 0;
3326         len = FLEXONENAND(this) ? mtd->writesize : 16;
3327
3328         /*
3329          * Note: OTP lock operation
3330          *       OTP block : 0xXXFC                     XX 1111 1100
3331          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3332          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3333          */
3334         if (FLEXONENAND(this))
3335                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3336
3337         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3338         if (otp == 1)
3339                 buf[otp_lock_offset] = 0xFC;
3340         else if (otp == 2)
3341                 buf[otp_lock_offset] = 0xF3;
3342         else if (otp == 3)
3343                 buf[otp_lock_offset] = 0xF0;
3344         else if (otp != 0)
3345                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3346
3347         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3348
3349         return ret ? : retlen;
3350 }
3351
3352 #endif  /* CONFIG_MTD_ONENAND_OTP */
3353
3354 /**
3355  * onenand_check_features - Check and set OneNAND features
3356  * @param mtd           MTD data structure
3357  *
3358  * Check and set OneNAND features
3359  * - lock scheme
3360  * - two plane
3361  */
3362 static void onenand_check_features(struct mtd_info *mtd)
3363 {
3364         struct onenand_chip *this = mtd->priv;
3365         unsigned int density, process;
3366
3367         /* Lock scheme depends on density and process */
3368         density = onenand_get_density(this->device_id);
3369         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3370
3371         /* Lock scheme */
3372         switch (density) {
3373         case ONENAND_DEVICE_DENSITY_4Gb:
3374                 this->options |= ONENAND_HAS_2PLANE;
3375
3376         case ONENAND_DEVICE_DENSITY_2Gb:
3377                 /* 2Gb DDP does not have 2 plane */
3378                 if (!ONENAND_IS_DDP(this))
3379                         this->options |= ONENAND_HAS_2PLANE;
3380                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3381
3382         case ONENAND_DEVICE_DENSITY_1Gb:
3383                 /* A-Die has all block unlock */
3384                 if (process)
3385                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3386                 break;
3387
3388         default:
3389                 /* Some OneNAND has continuous lock scheme */
3390                 if (!process)
3391                         this->options |= ONENAND_HAS_CONT_LOCK;
3392                 break;
3393         }
3394
3395         if (ONENAND_IS_MLC(this))
3396                 this->options &= ~ONENAND_HAS_2PLANE;
3397
3398         if (FLEXONENAND(this)) {
3399                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3400                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3401         }
3402
3403         if (this->options & ONENAND_HAS_CONT_LOCK)
3404                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3405         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3406                 printk(KERN_DEBUG "Chip support all block unlock\n");
3407         if (this->options & ONENAND_HAS_2PLANE)
3408                 printk(KERN_DEBUG "Chip has 2 plane\n");
3409 }
3410
3411 /**
3412  * onenand_print_device_info - Print device & version ID
3413  * @param device        device ID
3414  * @param version       version ID
3415  *
3416  * Print device & version ID
3417  */
3418 static void onenand_print_device_info(int device, int version)
3419 {
3420         int vcc, demuxed, ddp, density, flexonenand;
3421
3422         vcc = device & ONENAND_DEVICE_VCC_MASK;
3423         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3424         ddp = device & ONENAND_DEVICE_IS_DDP;
3425         density = onenand_get_density(device);
3426         flexonenand = device & DEVICE_IS_FLEXONENAND;
3427         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3428                 demuxed ? "" : "Muxed ",
3429                 flexonenand ? "Flex-" : "",
3430                 ddp ? "(DDP)" : "",
3431                 (16 << density),
3432                 vcc ? "2.65/3.3" : "1.8",
3433                 device);
3434         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3435 }
3436
3437 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3438         {ONENAND_MFR_SAMSUNG, "Samsung"},
3439         {ONENAND_MFR_NUMONYX, "Numonyx"},
3440 };
3441
3442 /**
3443  * onenand_check_maf - Check manufacturer ID
3444  * @param manuf         manufacturer ID
3445  *
3446  * Check manufacturer ID
3447  */
3448 static int onenand_check_maf(int manuf)
3449 {
3450         int size = ARRAY_SIZE(onenand_manuf_ids);
3451         char *name;
3452         int i;
3453
3454         for (i = 0; i < size; i++)
3455                 if (manuf == onenand_manuf_ids[i].id)
3456                         break;
3457
3458         if (i < size)
3459                 name = onenand_manuf_ids[i].name;
3460         else
3461                 name = "Unknown";
3462
3463         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3464
3465         return (i == size);
3466 }
3467
3468 /**
3469 * flexonenand_get_boundary      - Reads the SLC boundary
3470 * @param onenand_info           - onenand info structure
3471 **/
3472 static int flexonenand_get_boundary(struct mtd_info *mtd)
3473 {
3474         struct onenand_chip *this = mtd->priv;
3475         unsigned die, bdry;
3476         int ret, syscfg, locked;
3477
3478         /* Disable ECC */
3479         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3480         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3481
3482         for (die = 0; die < this->dies; die++) {
3483                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3484                 this->wait(mtd, FL_SYNCING);
3485
3486                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3487                 ret = this->wait(mtd, FL_READING);
3488
3489                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3490                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3491                         locked = 0;
3492                 else
3493                         locked = 1;
3494                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3495
3496                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3497                 ret = this->wait(mtd, FL_RESETING);
3498
3499                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3500                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3501         }
3502
3503         /* Enable ECC */
3504         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3505         return 0;
3506 }
3507
3508 /**
3509  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3510  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3511  * @param mtd           - MTD device structure
3512  */
3513 static void flexonenand_get_size(struct mtd_info *mtd)
3514 {
3515         struct onenand_chip *this = mtd->priv;
3516         int die, i, eraseshift, density;
3517         int blksperdie, maxbdry;
3518         loff_t ofs;
3519
3520         density = onenand_get_density(this->device_id);
3521         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3522         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3523         maxbdry = blksperdie - 1;
3524         eraseshift = this->erase_shift - 1;
3525
3526         mtd->numeraseregions = this->dies << 1;
3527
3528         /* This fills up the device boundary */
3529         flexonenand_get_boundary(mtd);
3530         die = ofs = 0;
3531         i = -1;
3532         for (; die < this->dies; die++) {
3533                 if (!die || this->boundary[die-1] != maxbdry) {
3534                         i++;
3535                         mtd->eraseregions[i].offset = ofs;
3536                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3537                         mtd->eraseregions[i].numblocks =
3538                                                         this->boundary[die] + 1;
3539                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3540                         eraseshift++;
3541                 } else {
3542                         mtd->numeraseregions -= 1;
3543                         mtd->eraseregions[i].numblocks +=
3544                                                         this->boundary[die] + 1;
3545                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3546                 }
3547                 if (this->boundary[die] != maxbdry) {
3548                         i++;
3549                         mtd->eraseregions[i].offset = ofs;
3550                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3551                         mtd->eraseregions[i].numblocks = maxbdry ^
3552                                                          this->boundary[die];
3553                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3554                         eraseshift--;
3555                 } else
3556                         mtd->numeraseregions -= 1;
3557         }
3558
3559         /* Expose MLC erase size except when all blocks are SLC */
3560         mtd->erasesize = 1 << this->erase_shift;
3561         if (mtd->numeraseregions == 1)
3562                 mtd->erasesize >>= 1;
3563
3564         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3565         for (i = 0; i < mtd->numeraseregions; i++)
3566                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3567                         " numblocks: %04u]\n",
3568                         (unsigned int) mtd->eraseregions[i].offset,
3569                         mtd->eraseregions[i].erasesize,
3570                         mtd->eraseregions[i].numblocks);
3571
3572         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3573                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3574                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3575                                                  << (this->erase_shift - 1);
3576                 mtd->size += this->diesize[die];
3577         }
3578 }
3579
3580 /**
3581  * flexonenand_check_blocks_erased - Check if blocks are erased
3582  * @param mtd_info      - mtd info structure
3583  * @param start         - first erase block to check
3584  * @param end           - last erase block to check
3585  *
3586  * Converting an unerased block from MLC to SLC
3587  * causes byte values to change. Since both data and its ECC
3588  * have changed, reads on the block give uncorrectable error.
3589  * This might lead to the block being detected as bad.
3590  *
3591  * Avoid this by ensuring that the block to be converted is
3592  * erased.
3593  */
3594 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3595 {
3596         struct onenand_chip *this = mtd->priv;
3597         int i, ret;
3598         int block;
3599         struct mtd_oob_ops ops = {
3600                 .mode = MTD_OOB_PLACE,
3601                 .ooboffs = 0,
3602                 .ooblen = mtd->oobsize,
3603                 .datbuf = NULL,
3604                 .oobbuf = this->oob_buf,
3605         };
3606         loff_t addr;
3607
3608         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3609
3610         for (block = start; block <= end; block++) {
3611                 addr = flexonenand_addr(this, block);
3612                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3613                         continue;
3614
3615                 /*
3616                  * Since main area write results in ECC write to spare,
3617                  * it is sufficient to check only ECC bytes for change.
3618                  */
3619                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3620                 if (ret)
3621                         return ret;
3622
3623                 for (i = 0; i < mtd->oobsize; i++)
3624                         if (this->oob_buf[i] != 0xff)
3625                                 break;
3626
3627                 if (i != mtd->oobsize) {
3628                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3629                                 __func__, block);
3630                         return 1;
3631                 }
3632         }
3633
3634         return 0;
3635 }
3636
3637 /**
3638  * flexonenand_set_boundary     - Writes the SLC boundary
3639  * @param mtd                   - mtd info structure
3640  */
3641 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3642                                     int boundary, int lock)
3643 {
3644         struct onenand_chip *this = mtd->priv;
3645         int ret, density, blksperdie, old, new, thisboundary;
3646         loff_t addr;
3647
3648         /* Change only once for SDP Flex-OneNAND */
3649         if (die && (!ONENAND_IS_DDP(this)))
3650                 return 0;
3651
3652         /* boundary value of -1 indicates no required change */
3653         if (boundary < 0 || boundary == this->boundary[die])
3654                 return 0;
3655
3656         density = onenand_get_density(this->device_id);
3657         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3658         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3659
3660         if (boundary >= blksperdie) {
3661                 printk(KERN_ERR "%s: Invalid boundary value. "
3662                                 "Boundary not changed.\n", __func__);
3663                 return -EINVAL;
3664         }
3665
3666         /* Check if converting blocks are erased */
3667         old = this->boundary[die] + (die * this->density_mask);
3668         new = boundary + (die * this->density_mask);
3669         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3670         if (ret) {
3671                 printk(KERN_ERR "%s: Please erase blocks "
3672                                 "before boundary change\n", __func__);
3673                 return ret;
3674         }
3675
3676         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3677         this->wait(mtd, FL_SYNCING);
3678
3679         /* Check is boundary is locked */
3680         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3681         ret = this->wait(mtd, FL_READING);
3682
3683         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3684         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3685                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3686                 ret = 1;
3687                 goto out;
3688         }
3689
3690         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3691                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3692
3693         addr = die ? this->diesize[0] : 0;
3694
3695         boundary &= FLEXONENAND_PI_MASK;
3696         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3697
3698         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3699         ret = this->wait(mtd, FL_ERASING);
3700         if (ret) {
3701                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3702                        __func__, die);
3703                 goto out;
3704         }
3705
3706         this->write_word(boundary, this->base + ONENAND_DATARAM);
3707         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3708         ret = this->wait(mtd, FL_WRITING);
3709         if (ret) {
3710                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3711                         __func__, die);
3712                 goto out;
3713         }
3714
3715         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3716         ret = this->wait(mtd, FL_WRITING);
3717 out:
3718         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3719         this->wait(mtd, FL_RESETING);
3720         if (!ret)
3721                 /* Recalculate device size on boundary change*/
3722                 flexonenand_get_size(mtd);
3723
3724         return ret;
3725 }
3726
3727 /**
3728  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3729  * @param mtd           MTD device structure
3730  *
3731  * OneNAND detection method:
3732  *   Compare the values from command with ones from register
3733  */
3734 static int onenand_probe(struct mtd_info *mtd)
3735 {
3736         struct onenand_chip *this = mtd->priv;
3737         int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
3738         int density;
3739         int syscfg;
3740
3741         /* Save system configuration 1 */
3742         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3743         /* Clear Sync. Burst Read mode to read BootRAM */
3744         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3745
3746         /* Send the command for reading device ID from BootRAM */
3747         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3748
3749         /* Read manufacturer and device IDs from BootRAM */
3750         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3751         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3752
3753         /* Reset OneNAND to read default register values */
3754         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3755         /* Wait reset */
3756         this->wait(mtd, FL_RESETING);
3757
3758         /* Restore system configuration 1 */
3759         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3760
3761         /* Check manufacturer ID */
3762         if (onenand_check_maf(bram_maf_id))
3763                 return -ENXIO;
3764
3765         /* Read manufacturer and device IDs from Register */
3766         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3767         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3768         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3769         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3770
3771         /* Check OneNAND device */
3772         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3773                 return -ENXIO;
3774
3775         /* Flash device information */
3776         onenand_print_device_info(dev_id, ver_id);
3777         this->device_id = dev_id;
3778         this->version_id = ver_id;
3779
3780         density = onenand_get_density(dev_id);
3781         if (FLEXONENAND(this)) {
3782                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3783                 /* Maximum possible erase regions */
3784                 mtd->numeraseregions = this->dies << 1;
3785                 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3786                                         * (this->dies << 1), GFP_KERNEL);
3787                 if (!mtd->eraseregions)
3788                         return -ENOMEM;
3789         }
3790
3791         /*
3792          * For Flex-OneNAND, chipsize represents maximum possible device size.
3793          * mtd->size represents the actual device size.
3794          */
3795         this->chipsize = (16 << density) << 20;
3796
3797         /* OneNAND page size & block size */
3798         /* The data buffer size is equal to page size */
3799         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3800         /* We use the full BufferRAM */
3801         if (ONENAND_IS_MLC(this))
3802                 mtd->writesize <<= 1;
3803
3804         mtd->oobsize = mtd->writesize >> 5;
3805         /* Pages per a block are always 64 in OneNAND */
3806         mtd->erasesize = mtd->writesize << 6;
3807         /*
3808          * Flex-OneNAND SLC area has 64 pages per block.
3809          * Flex-OneNAND MLC area has 128 pages per block.
3810          * Expose MLC erase size to find erase_shift and page_mask.
3811          */
3812         if (FLEXONENAND(this))
3813                 mtd->erasesize <<= 1;
3814
3815         this->erase_shift = ffs(mtd->erasesize) - 1;
3816         this->page_shift = ffs(mtd->writesize) - 1;
3817         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3818         /* Set density mask. it is used for DDP */
3819         if (ONENAND_IS_DDP(this))
3820                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3821         /* It's real page size */
3822         this->writesize = mtd->writesize;
3823
3824         /* REVISIT: Multichip handling */
3825
3826         if (FLEXONENAND(this))
3827                 flexonenand_get_size(mtd);
3828         else
3829                 mtd->size = this->chipsize;
3830
3831         /* Check OneNAND features */
3832         onenand_check_features(mtd);
3833
3834         /*
3835          * We emulate the 4KiB page and 256KiB erase block size
3836          * But oobsize is still 64 bytes.
3837          * It is only valid if you turn on 2X program support,
3838          * Otherwise it will be ignored by compiler.
3839          */
3840         if (ONENAND_IS_2PLANE(this)) {
3841                 mtd->writesize <<= 1;
3842                 mtd->erasesize <<= 1;
3843         }
3844
3845         return 0;
3846 }
3847
3848 /**
3849  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3850  * @param mtd           MTD device structure
3851  */
3852 static int onenand_suspend(struct mtd_info *mtd)
3853 {
3854         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3855 }
3856
3857 /**
3858  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3859  * @param mtd           MTD device structure
3860  */
3861 static void onenand_resume(struct mtd_info *mtd)
3862 {
3863         struct onenand_chip *this = mtd->priv;
3864
3865         if (this->state == FL_PM_SUSPENDED)
3866                 onenand_release_device(mtd);
3867         else
3868                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3869                                 "in suspended state\n", __func__);
3870 }
3871
3872 /**
3873  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3874  * @param mtd           MTD device structure
3875  * @param maxchips      Number of chips to scan for
3876  *
3877  * This fills out all the not initialized function pointers
3878  * with the defaults.
3879  * The flash ID is read and the mtd/chip structures are
3880  * filled with the appropriate values.
3881  */
3882 int onenand_scan(struct mtd_info *mtd, int maxchips)
3883 {
3884         int i, ret;
3885         struct onenand_chip *this = mtd->priv;
3886
3887         if (!this->read_word)
3888                 this->read_word = onenand_readw;
3889         if (!this->write_word)
3890                 this->write_word = onenand_writew;
3891
3892         if (!this->command)
3893                 this->command = onenand_command;
3894         if (!this->wait)
3895                 onenand_setup_wait(mtd);
3896         if (!this->bbt_wait)
3897                 this->bbt_wait = onenand_bbt_wait;
3898         if (!this->unlock_all)
3899                 this->unlock_all = onenand_unlock_all;
3900
3901         if (!this->read_bufferram)
3902                 this->read_bufferram = onenand_read_bufferram;
3903         if (!this->write_bufferram)
3904                 this->write_bufferram = onenand_write_bufferram;
3905
3906         if (!this->block_markbad)
3907                 this->block_markbad = onenand_default_block_markbad;
3908         if (!this->scan_bbt)
3909                 this->scan_bbt = onenand_default_bbt;
3910
3911         if (onenand_probe(mtd))
3912                 return -ENXIO;
3913
3914         /* Set Sync. Burst Read after probing */
3915         if (this->mmcontrol) {
3916                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3917                 this->read_bufferram = onenand_sync_read_bufferram;
3918         }
3919
3920         /* Allocate buffers, if necessary */
3921         if (!this->page_buf) {
3922                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3923                 if (!this->page_buf) {
3924                         printk(KERN_ERR "%s: Can't allocate page_buf\n",
3925                                 __func__);
3926                         return -ENOMEM;
3927                 }
3928                 this->options |= ONENAND_PAGEBUF_ALLOC;
3929         }
3930         if (!this->oob_buf) {
3931                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3932                 if (!this->oob_buf) {
3933                         printk(KERN_ERR "%s: Can't allocate oob_buf\n",
3934                                 __func__);
3935                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
3936                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3937                                 kfree(this->page_buf);
3938                         }
3939                         return -ENOMEM;
3940                 }
3941                 this->options |= ONENAND_OOBBUF_ALLOC;
3942         }
3943
3944         this->state = FL_READY;
3945         init_waitqueue_head(&this->wq);
3946         spin_lock_init(&this->chip_lock);
3947
3948         /*
3949          * Allow subpage writes up to oobsize.
3950          */
3951         switch (mtd->oobsize) {
3952         case 128:
3953                 this->ecclayout = &onenand_oob_128;
3954                 mtd->subpage_sft = 0;
3955                 break;
3956         case 64:
3957                 this->ecclayout = &onenand_oob_64;
3958                 mtd->subpage_sft = 2;
3959                 break;
3960
3961         case 32:
3962                 this->ecclayout = &onenand_oob_32;
3963                 mtd->subpage_sft = 1;
3964                 break;
3965
3966         default:
3967                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3968                         __func__, mtd->oobsize);
3969                 mtd->subpage_sft = 0;
3970                 /* To prevent kernel oops */
3971                 this->ecclayout = &onenand_oob_32;
3972                 break;
3973         }
3974
3975         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3976
3977         /*
3978          * The number of bytes available for a client to place data into
3979          * the out of band area
3980          */
3981         this->ecclayout->oobavail = 0;
3982         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
3983             this->ecclayout->oobfree[i].length; i++)
3984                 this->ecclayout->oobavail +=
3985                         this->ecclayout->oobfree[i].length;
3986         mtd->oobavail = this->ecclayout->oobavail;
3987
3988         mtd->ecclayout = this->ecclayout;
3989
3990         /* Fill in remaining MTD driver data */
3991         mtd->type = MTD_NANDFLASH;
3992         mtd->flags = MTD_CAP_NANDFLASH;
3993         mtd->erase = onenand_erase;
3994         mtd->point = NULL;
3995         mtd->unpoint = NULL;
3996         mtd->read = onenand_read;
3997         mtd->write = onenand_write;
3998         mtd->read_oob = onenand_read_oob;
3999         mtd->write_oob = onenand_write_oob;
4000         mtd->panic_write = onenand_panic_write;
4001 #ifdef CONFIG_MTD_ONENAND_OTP
4002         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4003         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4004         mtd->get_user_prot_info = onenand_get_user_prot_info;
4005         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4006         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4007         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4008 #endif
4009         mtd->sync = onenand_sync;
4010         mtd->lock = onenand_lock;
4011         mtd->unlock = onenand_unlock;
4012         mtd->suspend = onenand_suspend;
4013         mtd->resume = onenand_resume;
4014         mtd->block_isbad = onenand_block_isbad;
4015         mtd->block_markbad = onenand_block_markbad;
4016         mtd->owner = THIS_MODULE;
4017
4018         /* Unlock whole block */
4019         this->unlock_all(mtd);
4020
4021         ret = this->scan_bbt(mtd);
4022         if ((!FLEXONENAND(this)) || ret)
4023                 return ret;
4024
4025         /* Change Flex-OneNAND boundaries if required */
4026         for (i = 0; i < MAX_DIES; i++)
4027                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4028                                                  flex_bdry[(2 * i) + 1]);
4029
4030         return 0;
4031 }
4032
4033 /**
4034  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4035  * @param mtd           MTD device structure
4036  */
4037 void onenand_release(struct mtd_info *mtd)
4038 {
4039         struct onenand_chip *this = mtd->priv;
4040
4041 #ifdef CONFIG_MTD_PARTITIONS
4042         /* Deregister partitions */
4043         del_mtd_partitions (mtd);
4044 #endif
4045         /* Deregister the device */
4046         del_mtd_device (mtd);
4047
4048         /* Free bad block table memory, if allocated */
4049         if (this->bbm) {
4050                 struct bbm_info *bbm = this->bbm;
4051                 kfree(bbm->bbt);
4052                 kfree(this->bbm);
4053         }
4054         /* Buffers allocated by onenand_scan */
4055         if (this->options & ONENAND_PAGEBUF_ALLOC)
4056                 kfree(this->page_buf);
4057         if (this->options & ONENAND_OOBBUF_ALLOC)
4058                 kfree(this->oob_buf);
4059         kfree(mtd->eraseregions);
4060 }
4061
4062 EXPORT_SYMBOL_GPL(onenand_scan);
4063 EXPORT_SYMBOL_GPL(onenand_release);
4064
4065 MODULE_LICENSE("GPL");
4066 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4067 MODULE_DESCRIPTION("Generic OneNAND flash driver code");