Merge branch 'devel' of git://git.kernel.org/pub/scm/linux/kernel/git/ycmiao/pxa...
[pandora-kernel.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *      auto-placement support, read-while load support, various fixes
12  *
13  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *      Flex-OneNAND support
15  *      Amul Kumar Saha <amul.saha at samsung.com>
16  *      OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
35
36 #include <asm/io.h>
37
38 /*
39  * Multiblock erase if number of blocks to erase is 2 or more.
40  * Maximum number of blocks for simultaneous erase is 64.
41  */
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
44
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
47
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
50                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51                                 "DIE_BDRY: SLC boundary of the die"
52                                 "LOCK: Locking information for SLC boundary"
53                                 "    : 0->Set boundary in unlocked status"
54                                 "    : 1->Set boundary in locked status");
55
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
58
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
61                         "Syntax : otp=LOCK_TYPE"
62                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63                         "          : 0 -> Default (No Blocks Locked)"
64                         "          : 1 -> OTP Block lock"
65                         "          : 2 -> 1st Block lock"
66                         "          : 3 -> BOTH OTP Block and 1st Block lock");
67
68 /**
69  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
70  *  For now, we expose only 64 out of 80 ecc bytes
71  */
72 static struct nand_ecclayout onenand_oob_128 = {
73         .eccbytes       = 64,
74         .eccpos         = {
75                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81                 102, 103, 104, 105
82                 },
83         .oobfree        = {
84                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
86         }
87 };
88
89 /**
90  * onenand_oob_64 - oob info for large (2KB) page
91  */
92 static struct nand_ecclayout onenand_oob_64 = {
93         .eccbytes       = 20,
94         .eccpos         = {
95                 8, 9, 10, 11, 12,
96                 24, 25, 26, 27, 28,
97                 40, 41, 42, 43, 44,
98                 56, 57, 58, 59, 60,
99                 },
100         .oobfree        = {
101                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
102                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
103         }
104 };
105
106 /**
107  * onenand_oob_32 - oob info for middle (1KB) page
108  */
109 static struct nand_ecclayout onenand_oob_32 = {
110         .eccbytes       = 10,
111         .eccpos         = {
112                 8, 9, 10, 11, 12,
113                 24, 25, 26, 27, 28,
114                 },
115         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
116 };
117
118 static const unsigned char ffchars[] = {
119         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
121         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
123         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
125         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
127         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
129         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
130         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
131         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
132         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
133         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
134         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
135 };
136
137 /**
138  * onenand_readw - [OneNAND Interface] Read OneNAND register
139  * @param addr          address to read
140  *
141  * Read OneNAND register
142  */
143 static unsigned short onenand_readw(void __iomem *addr)
144 {
145         return readw(addr);
146 }
147
148 /**
149  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
150  * @param value         value to write
151  * @param addr          address to write
152  *
153  * Write OneNAND register with value
154  */
155 static void onenand_writew(unsigned short value, void __iomem *addr)
156 {
157         writew(value, addr);
158 }
159
160 /**
161  * onenand_block_address - [DEFAULT] Get block address
162  * @param this          onenand chip data structure
163  * @param block         the block
164  * @return              translated block address if DDP, otherwise same
165  *
166  * Setup Start Address 1 Register (F100h)
167  */
168 static int onenand_block_address(struct onenand_chip *this, int block)
169 {
170         /* Device Flash Core select, NAND Flash Block Address */
171         if (block & this->density_mask)
172                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
173
174         return block;
175 }
176
177 /**
178  * onenand_bufferram_address - [DEFAULT] Get bufferram address
179  * @param this          onenand chip data structure
180  * @param block         the block
181  * @return              set DBS value if DDP, otherwise 0
182  *
183  * Setup Start Address 2 Register (F101h) for DDP
184  */
185 static int onenand_bufferram_address(struct onenand_chip *this, int block)
186 {
187         /* Device BufferRAM Select */
188         if (block & this->density_mask)
189                 return ONENAND_DDP_CHIP1;
190
191         return ONENAND_DDP_CHIP0;
192 }
193
194 /**
195  * onenand_page_address - [DEFAULT] Get page address
196  * @param page          the page address
197  * @param sector        the sector address
198  * @return              combined page and sector address
199  *
200  * Setup Start Address 8 Register (F107h)
201  */
202 static int onenand_page_address(int page, int sector)
203 {
204         /* Flash Page Address, Flash Sector Address */
205         int fpa, fsa;
206
207         fpa = page & ONENAND_FPA_MASK;
208         fsa = sector & ONENAND_FSA_MASK;
209
210         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
211 }
212
213 /**
214  * onenand_buffer_address - [DEFAULT] Get buffer address
215  * @param dataram1      DataRAM index
216  * @param sectors       the sector address
217  * @param count         the number of sectors
218  * @return              the start buffer value
219  *
220  * Setup Start Buffer Register (F200h)
221  */
222 static int onenand_buffer_address(int dataram1, int sectors, int count)
223 {
224         int bsa, bsc;
225
226         /* BufferRAM Sector Address */
227         bsa = sectors & ONENAND_BSA_MASK;
228
229         if (dataram1)
230                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
231         else
232                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
233
234         /* BufferRAM Sector Count */
235         bsc = count & ONENAND_BSC_MASK;
236
237         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
238 }
239
240 /**
241  * flexonenand_block- For given address return block number
242  * @param this         - OneNAND device structure
243  * @param addr          - Address for which block number is needed
244  */
245 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
246 {
247         unsigned boundary, blk, die = 0;
248
249         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
250                 die = 1;
251                 addr -= this->diesize[0];
252         }
253
254         boundary = this->boundary[die];
255
256         blk = addr >> (this->erase_shift - 1);
257         if (blk > boundary)
258                 blk = (blk + boundary + 1) >> 1;
259
260         blk += die ? this->density_mask : 0;
261         return blk;
262 }
263
264 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
265 {
266         if (!FLEXONENAND(this))
267                 return addr >> this->erase_shift;
268         return flexonenand_block(this, addr);
269 }
270
271 /**
272  * flexonenand_addr - Return address of the block
273  * @this:               OneNAND device structure
274  * @block:              Block number on Flex-OneNAND
275  *
276  * Return address of the block
277  */
278 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
279 {
280         loff_t ofs = 0;
281         int die = 0, boundary;
282
283         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
284                 block -= this->density_mask;
285                 die = 1;
286                 ofs = this->diesize[0];
287         }
288
289         boundary = this->boundary[die];
290         ofs += (loff_t)block << (this->erase_shift - 1);
291         if (block > (boundary + 1))
292                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
293         return ofs;
294 }
295
296 loff_t onenand_addr(struct onenand_chip *this, int block)
297 {
298         if (!FLEXONENAND(this))
299                 return (loff_t)block << this->erase_shift;
300         return flexonenand_addr(this, block);
301 }
302 EXPORT_SYMBOL(onenand_addr);
303
304 /**
305  * onenand_get_density - [DEFAULT] Get OneNAND density
306  * @param dev_id        OneNAND device ID
307  *
308  * Get OneNAND density from device ID
309  */
310 static inline int onenand_get_density(int dev_id)
311 {
312         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
313         return (density & ONENAND_DEVICE_DENSITY_MASK);
314 }
315
316 /**
317  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
318  * @param mtd           MTD device structure
319  * @param addr          address whose erase region needs to be identified
320  */
321 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
322 {
323         int i;
324
325         for (i = 0; i < mtd->numeraseregions; i++)
326                 if (addr < mtd->eraseregions[i].offset)
327                         break;
328         return i - 1;
329 }
330 EXPORT_SYMBOL(flexonenand_region);
331
332 /**
333  * onenand_command - [DEFAULT] Send command to OneNAND device
334  * @param mtd           MTD device structure
335  * @param cmd           the command to be sent
336  * @param addr          offset to read from or write to
337  * @param len           number of bytes to read or write
338  *
339  * Send command to OneNAND device. This function is used for middle/large page
340  * devices (1KB/2KB Bytes per page)
341  */
342 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
343 {
344         struct onenand_chip *this = mtd->priv;
345         int value, block, page;
346
347         /* Address translation */
348         switch (cmd) {
349         case ONENAND_CMD_UNLOCK:
350         case ONENAND_CMD_LOCK:
351         case ONENAND_CMD_LOCK_TIGHT:
352         case ONENAND_CMD_UNLOCK_ALL:
353                 block = -1;
354                 page = -1;
355                 break;
356
357         case FLEXONENAND_CMD_PI_ACCESS:
358                 /* addr contains die index */
359                 block = addr * this->density_mask;
360                 page = -1;
361                 break;
362
363         case ONENAND_CMD_ERASE:
364         case ONENAND_CMD_MULTIBLOCK_ERASE:
365         case ONENAND_CMD_ERASE_VERIFY:
366         case ONENAND_CMD_BUFFERRAM:
367         case ONENAND_CMD_OTP_ACCESS:
368                 block = onenand_block(this, addr);
369                 page = -1;
370                 break;
371
372         case FLEXONENAND_CMD_READ_PI:
373                 cmd = ONENAND_CMD_READ;
374                 block = addr * this->density_mask;
375                 page = 0;
376                 break;
377
378         default:
379                 block = onenand_block(this, addr);
380                 if (FLEXONENAND(this))
381                         page = (int) (addr - onenand_addr(this, block))>>\
382                                 this->page_shift;
383                 else
384                         page = (int) (addr >> this->page_shift);
385                 if (ONENAND_IS_2PLANE(this)) {
386                         /* Make the even block number */
387                         block &= ~1;
388                         /* Is it the odd plane? */
389                         if (addr & this->writesize)
390                                 block++;
391                         page >>= 1;
392                 }
393                 page &= this->page_mask;
394                 break;
395         }
396
397         /* NOTE: The setting order of the registers is very important! */
398         if (cmd == ONENAND_CMD_BUFFERRAM) {
399                 /* Select DataRAM for DDP */
400                 value = onenand_bufferram_address(this, block);
401                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
402
403                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
404                         /* It is always BufferRAM0 */
405                         ONENAND_SET_BUFFERRAM0(this);
406                 else
407                         /* Switch to the next data buffer */
408                         ONENAND_SET_NEXT_BUFFERRAM(this);
409
410                 return 0;
411         }
412
413         if (block != -1) {
414                 /* Write 'DFS, FBA' of Flash */
415                 value = onenand_block_address(this, block);
416                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
417
418                 /* Select DataRAM for DDP */
419                 value = onenand_bufferram_address(this, block);
420                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
421         }
422
423         if (page != -1) {
424                 /* Now we use page size operation */
425                 int sectors = 0, count = 0;
426                 int dataram;
427
428                 switch (cmd) {
429                 case FLEXONENAND_CMD_RECOVER_LSB:
430                 case ONENAND_CMD_READ:
431                 case ONENAND_CMD_READOOB:
432                         if (ONENAND_IS_4KB_PAGE(this))
433                                 /* It is always BufferRAM0 */
434                                 dataram = ONENAND_SET_BUFFERRAM0(this);
435                         else
436                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
437                         break;
438
439                 default:
440                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
441                                 cmd = ONENAND_CMD_2X_PROG;
442                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
443                         break;
444                 }
445
446                 /* Write 'FPA, FSA' of Flash */
447                 value = onenand_page_address(page, sectors);
448                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
449
450                 /* Write 'BSA, BSC' of DataRAM */
451                 value = onenand_buffer_address(dataram, sectors, count);
452                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
453         }
454
455         /* Interrupt clear */
456         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
457
458         /* Write command */
459         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
460
461         return 0;
462 }
463
464 /**
465  * onenand_read_ecc - return ecc status
466  * @param this          onenand chip structure
467  */
468 static inline int onenand_read_ecc(struct onenand_chip *this)
469 {
470         int ecc, i, result = 0;
471
472         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
473                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
474
475         for (i = 0; i < 4; i++) {
476                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
477                 if (likely(!ecc))
478                         continue;
479                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
480                         return ONENAND_ECC_2BIT_ALL;
481                 else
482                         result = ONENAND_ECC_1BIT_ALL;
483         }
484
485         return result;
486 }
487
488 /**
489  * onenand_wait - [DEFAULT] wait until the command is done
490  * @param mtd           MTD device structure
491  * @param state         state to select the max. timeout value
492  *
493  * Wait for command done. This applies to all OneNAND command
494  * Read can take up to 30us, erase up to 2ms and program up to 350us
495  * according to general OneNAND specs
496  */
497 static int onenand_wait(struct mtd_info *mtd, int state)
498 {
499         struct onenand_chip * this = mtd->priv;
500         unsigned long timeout;
501         unsigned int flags = ONENAND_INT_MASTER;
502         unsigned int interrupt = 0;
503         unsigned int ctrl;
504
505         /* The 20 msec is enough */
506         timeout = jiffies + msecs_to_jiffies(20);
507         while (time_before(jiffies, timeout)) {
508                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
509
510                 if (interrupt & flags)
511                         break;
512
513                 if (state != FL_READING && state != FL_PREPARING_ERASE)
514                         cond_resched();
515         }
516         /* To get correct interrupt status in timeout case */
517         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
518
519         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
520
521         /*
522          * In the Spec. it checks the controller status first
523          * However if you get the correct information in case of
524          * power off recovery (POR) test, it should read ECC status first
525          */
526         if (interrupt & ONENAND_INT_READ) {
527                 int ecc = onenand_read_ecc(this);
528                 if (ecc) {
529                         if (ecc & ONENAND_ECC_2BIT_ALL) {
530                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
531                                         __func__, ecc);
532                                 mtd->ecc_stats.failed++;
533                                 return -EBADMSG;
534                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
535                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
536                                         __func__, ecc);
537                                 mtd->ecc_stats.corrected++;
538                         }
539                 }
540         } else if (state == FL_READING) {
541                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
542                         __func__, ctrl, interrupt);
543                 return -EIO;
544         }
545
546         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
547                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
548                        __func__, ctrl, interrupt);
549                 return -EIO;
550         }
551
552         if (!(interrupt & ONENAND_INT_MASTER)) {
553                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
554                        __func__, ctrl, interrupt);
555                 return -EIO;
556         }
557
558         /* If there's controller error, it's a real error */
559         if (ctrl & ONENAND_CTRL_ERROR) {
560                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
561                         __func__, ctrl);
562                 if (ctrl & ONENAND_CTRL_LOCK)
563                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
564                 return -EIO;
565         }
566
567         return 0;
568 }
569
570 /*
571  * onenand_interrupt - [DEFAULT] onenand interrupt handler
572  * @param irq           onenand interrupt number
573  * @param dev_id        interrupt data
574  *
575  * complete the work
576  */
577 static irqreturn_t onenand_interrupt(int irq, void *data)
578 {
579         struct onenand_chip *this = data;
580
581         /* To handle shared interrupt */
582         if (!this->complete.done)
583                 complete(&this->complete);
584
585         return IRQ_HANDLED;
586 }
587
588 /*
589  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
590  * @param mtd           MTD device structure
591  * @param state         state to select the max. timeout value
592  *
593  * Wait for command done.
594  */
595 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
596 {
597         struct onenand_chip *this = mtd->priv;
598
599         wait_for_completion(&this->complete);
600
601         return onenand_wait(mtd, state);
602 }
603
604 /*
605  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
606  * @param mtd           MTD device structure
607  * @param state         state to select the max. timeout value
608  *
609  * Try interrupt based wait (It is used one-time)
610  */
611 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
612 {
613         struct onenand_chip *this = mtd->priv;
614         unsigned long remain, timeout;
615
616         /* We use interrupt wait first */
617         this->wait = onenand_interrupt_wait;
618
619         timeout = msecs_to_jiffies(100);
620         remain = wait_for_completion_timeout(&this->complete, timeout);
621         if (!remain) {
622                 printk(KERN_INFO "OneNAND: There's no interrupt. "
623                                 "We use the normal wait\n");
624
625                 /* Release the irq */
626                 free_irq(this->irq, this);
627
628                 this->wait = onenand_wait;
629         }
630
631         return onenand_wait(mtd, state);
632 }
633
634 /*
635  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
636  * @param mtd           MTD device structure
637  *
638  * There's two method to wait onenand work
639  * 1. polling - read interrupt status register
640  * 2. interrupt - use the kernel interrupt method
641  */
642 static void onenand_setup_wait(struct mtd_info *mtd)
643 {
644         struct onenand_chip *this = mtd->priv;
645         int syscfg;
646
647         init_completion(&this->complete);
648
649         if (this->irq <= 0) {
650                 this->wait = onenand_wait;
651                 return;
652         }
653
654         if (request_irq(this->irq, &onenand_interrupt,
655                                 IRQF_SHARED, "onenand", this)) {
656                 /* If we can't get irq, use the normal wait */
657                 this->wait = onenand_wait;
658                 return;
659         }
660
661         /* Enable interrupt */
662         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
663         syscfg |= ONENAND_SYS_CFG1_IOBE;
664         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
665
666         this->wait = onenand_try_interrupt_wait;
667 }
668
669 /**
670  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
671  * @param mtd           MTD data structure
672  * @param area          BufferRAM area
673  * @return              offset given area
674  *
675  * Return BufferRAM offset given area
676  */
677 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
678 {
679         struct onenand_chip *this = mtd->priv;
680
681         if (ONENAND_CURRENT_BUFFERRAM(this)) {
682                 /* Note: the 'this->writesize' is a real page size */
683                 if (area == ONENAND_DATARAM)
684                         return this->writesize;
685                 if (area == ONENAND_SPARERAM)
686                         return mtd->oobsize;
687         }
688
689         return 0;
690 }
691
692 /**
693  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
694  * @param mtd           MTD data structure
695  * @param area          BufferRAM area
696  * @param buffer        the databuffer to put/get data
697  * @param offset        offset to read from or write to
698  * @param count         number of bytes to read/write
699  *
700  * Read the BufferRAM area
701  */
702 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
703                 unsigned char *buffer, int offset, size_t count)
704 {
705         struct onenand_chip *this = mtd->priv;
706         void __iomem *bufferram;
707
708         bufferram = this->base + area;
709
710         bufferram += onenand_bufferram_offset(mtd, area);
711
712         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
713                 unsigned short word;
714
715                 /* Align with word(16-bit) size */
716                 count--;
717
718                 /* Read word and save byte */
719                 word = this->read_word(bufferram + offset + count);
720                 buffer[count] = (word & 0xff);
721         }
722
723         memcpy(buffer, bufferram + offset, count);
724
725         return 0;
726 }
727
728 /**
729  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
730  * @param mtd           MTD data structure
731  * @param area          BufferRAM area
732  * @param buffer        the databuffer to put/get data
733  * @param offset        offset to read from or write to
734  * @param count         number of bytes to read/write
735  *
736  * Read the BufferRAM area with Sync. Burst Mode
737  */
738 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
739                 unsigned char *buffer, int offset, size_t count)
740 {
741         struct onenand_chip *this = mtd->priv;
742         void __iomem *bufferram;
743
744         bufferram = this->base + area;
745
746         bufferram += onenand_bufferram_offset(mtd, area);
747
748         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
749
750         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
751                 unsigned short word;
752
753                 /* Align with word(16-bit) size */
754                 count--;
755
756                 /* Read word and save byte */
757                 word = this->read_word(bufferram + offset + count);
758                 buffer[count] = (word & 0xff);
759         }
760
761         memcpy(buffer, bufferram + offset, count);
762
763         this->mmcontrol(mtd, 0);
764
765         return 0;
766 }
767
768 /**
769  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
770  * @param mtd           MTD data structure
771  * @param area          BufferRAM area
772  * @param buffer        the databuffer to put/get data
773  * @param offset        offset to read from or write to
774  * @param count         number of bytes to read/write
775  *
776  * Write the BufferRAM area
777  */
778 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
779                 const unsigned char *buffer, int offset, size_t count)
780 {
781         struct onenand_chip *this = mtd->priv;
782         void __iomem *bufferram;
783
784         bufferram = this->base + area;
785
786         bufferram += onenand_bufferram_offset(mtd, area);
787
788         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
789                 unsigned short word;
790                 int byte_offset;
791
792                 /* Align with word(16-bit) size */
793                 count--;
794
795                 /* Calculate byte access offset */
796                 byte_offset = offset + count;
797
798                 /* Read word and save byte */
799                 word = this->read_word(bufferram + byte_offset);
800                 word = (word & ~0xff) | buffer[count];
801                 this->write_word(word, bufferram + byte_offset);
802         }
803
804         memcpy(bufferram + offset, buffer, count);
805
806         return 0;
807 }
808
809 /**
810  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
811  * @param mtd           MTD data structure
812  * @param addr          address to check
813  * @return              blockpage address
814  *
815  * Get blockpage address at 2x program mode
816  */
817 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
818 {
819         struct onenand_chip *this = mtd->priv;
820         int blockpage, block, page;
821
822         /* Calculate the even block number */
823         block = (int) (addr >> this->erase_shift) & ~1;
824         /* Is it the odd plane? */
825         if (addr & this->writesize)
826                 block++;
827         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
828         blockpage = (block << 7) | page;
829
830         return blockpage;
831 }
832
833 /**
834  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
835  * @param mtd           MTD data structure
836  * @param addr          address to check
837  * @return              1 if there are valid data, otherwise 0
838  *
839  * Check bufferram if there is data we required
840  */
841 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
842 {
843         struct onenand_chip *this = mtd->priv;
844         int blockpage, found = 0;
845         unsigned int i;
846
847         if (ONENAND_IS_2PLANE(this))
848                 blockpage = onenand_get_2x_blockpage(mtd, addr);
849         else
850                 blockpage = (int) (addr >> this->page_shift);
851
852         /* Is there valid data? */
853         i = ONENAND_CURRENT_BUFFERRAM(this);
854         if (this->bufferram[i].blockpage == blockpage)
855                 found = 1;
856         else {
857                 /* Check another BufferRAM */
858                 i = ONENAND_NEXT_BUFFERRAM(this);
859                 if (this->bufferram[i].blockpage == blockpage) {
860                         ONENAND_SET_NEXT_BUFFERRAM(this);
861                         found = 1;
862                 }
863         }
864
865         if (found && ONENAND_IS_DDP(this)) {
866                 /* Select DataRAM for DDP */
867                 int block = onenand_block(this, addr);
868                 int value = onenand_bufferram_address(this, block);
869                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
870         }
871
872         return found;
873 }
874
875 /**
876  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
877  * @param mtd           MTD data structure
878  * @param addr          address to update
879  * @param valid         valid flag
880  *
881  * Update BufferRAM information
882  */
883 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
884                 int valid)
885 {
886         struct onenand_chip *this = mtd->priv;
887         int blockpage;
888         unsigned int i;
889
890         if (ONENAND_IS_2PLANE(this))
891                 blockpage = onenand_get_2x_blockpage(mtd, addr);
892         else
893                 blockpage = (int) (addr >> this->page_shift);
894
895         /* Invalidate another BufferRAM */
896         i = ONENAND_NEXT_BUFFERRAM(this);
897         if (this->bufferram[i].blockpage == blockpage)
898                 this->bufferram[i].blockpage = -1;
899
900         /* Update BufferRAM */
901         i = ONENAND_CURRENT_BUFFERRAM(this);
902         if (valid)
903                 this->bufferram[i].blockpage = blockpage;
904         else
905                 this->bufferram[i].blockpage = -1;
906 }
907
908 /**
909  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
910  * @param mtd           MTD data structure
911  * @param addr          start address to invalidate
912  * @param len           length to invalidate
913  *
914  * Invalidate BufferRAM information
915  */
916 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
917                 unsigned int len)
918 {
919         struct onenand_chip *this = mtd->priv;
920         int i;
921         loff_t end_addr = addr + len;
922
923         /* Invalidate BufferRAM */
924         for (i = 0; i < MAX_BUFFERRAM; i++) {
925                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
926                 if (buf_addr >= addr && buf_addr < end_addr)
927                         this->bufferram[i].blockpage = -1;
928         }
929 }
930
931 /**
932  * onenand_get_device - [GENERIC] Get chip for selected access
933  * @param mtd           MTD device structure
934  * @param new_state     the state which is requested
935  *
936  * Get the device and lock it for exclusive access
937  */
938 static int onenand_get_device(struct mtd_info *mtd, int new_state)
939 {
940         struct onenand_chip *this = mtd->priv;
941         DECLARE_WAITQUEUE(wait, current);
942
943         /*
944          * Grab the lock and see if the device is available
945          */
946         while (1) {
947                 spin_lock(&this->chip_lock);
948                 if (this->state == FL_READY) {
949                         this->state = new_state;
950                         spin_unlock(&this->chip_lock);
951                         if (new_state != FL_PM_SUSPENDED && this->enable)
952                                 this->enable(mtd);
953                         break;
954                 }
955                 if (new_state == FL_PM_SUSPENDED) {
956                         spin_unlock(&this->chip_lock);
957                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
958                 }
959                 set_current_state(TASK_UNINTERRUPTIBLE);
960                 add_wait_queue(&this->wq, &wait);
961                 spin_unlock(&this->chip_lock);
962                 schedule();
963                 remove_wait_queue(&this->wq, &wait);
964         }
965
966         return 0;
967 }
968
969 /**
970  * onenand_release_device - [GENERIC] release chip
971  * @param mtd           MTD device structure
972  *
973  * Deselect, release chip lock and wake up anyone waiting on the device
974  */
975 static void onenand_release_device(struct mtd_info *mtd)
976 {
977         struct onenand_chip *this = mtd->priv;
978
979         if (this->state != FL_PM_SUSPENDED && this->disable)
980                 this->disable(mtd);
981         /* Release the chip */
982         spin_lock(&this->chip_lock);
983         this->state = FL_READY;
984         wake_up(&this->wq);
985         spin_unlock(&this->chip_lock);
986 }
987
988 /**
989  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
990  * @param mtd           MTD device structure
991  * @param buf           destination address
992  * @param column        oob offset to read from
993  * @param thislen       oob length to read
994  */
995 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
996                                 int thislen)
997 {
998         struct onenand_chip *this = mtd->priv;
999         struct nand_oobfree *free;
1000         int readcol = column;
1001         int readend = column + thislen;
1002         int lastgap = 0;
1003         unsigned int i;
1004         uint8_t *oob_buf = this->oob_buf;
1005
1006         free = this->ecclayout->oobfree;
1007         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1008                 if (readcol >= lastgap)
1009                         readcol += free->offset - lastgap;
1010                 if (readend >= lastgap)
1011                         readend += free->offset - lastgap;
1012                 lastgap = free->offset + free->length;
1013         }
1014         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1015         free = this->ecclayout->oobfree;
1016         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1017                 int free_end = free->offset + free->length;
1018                 if (free->offset < readend && free_end > readcol) {
1019                         int st = max_t(int,free->offset,readcol);
1020                         int ed = min_t(int,free_end,readend);
1021                         int n = ed - st;
1022                         memcpy(buf, oob_buf + st, n);
1023                         buf += n;
1024                 } else if (column == 0)
1025                         break;
1026         }
1027         return 0;
1028 }
1029
1030 /**
1031  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1032  * @param mtd           MTD device structure
1033  * @param addr          address to recover
1034  * @param status        return value from onenand_wait / onenand_bbt_wait
1035  *
1036  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1037  * lower page address and MSB page has higher page address in paired pages.
1038  * If power off occurs during MSB page program, the paired LSB page data can
1039  * become corrupt. LSB page recovery read is a way to read LSB page though page
1040  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1041  * read after power up, issue LSB page recovery read.
1042  */
1043 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1044 {
1045         struct onenand_chip *this = mtd->priv;
1046         int i;
1047
1048         /* Recovery is only for Flex-OneNAND */
1049         if (!FLEXONENAND(this))
1050                 return status;
1051
1052         /* check if we failed due to uncorrectable error */
1053         if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1054                 return status;
1055
1056         /* check if address lies in MLC region */
1057         i = flexonenand_region(mtd, addr);
1058         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1059                 return status;
1060
1061         /* We are attempting to reread, so decrement stats.failed
1062          * which was incremented by onenand_wait due to read failure
1063          */
1064         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1065                 __func__);
1066         mtd->ecc_stats.failed--;
1067
1068         /* Issue the LSB page recovery command */
1069         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1070         return this->wait(mtd, FL_READING);
1071 }
1072
1073 /**
1074  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1075  * @param mtd           MTD device structure
1076  * @param from          offset to read from
1077  * @param ops:          oob operation description structure
1078  *
1079  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1080  * So, read-while-load is not present.
1081  */
1082 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1083                                 struct mtd_oob_ops *ops)
1084 {
1085         struct onenand_chip *this = mtd->priv;
1086         struct mtd_ecc_stats stats;
1087         size_t len = ops->len;
1088         size_t ooblen = ops->ooblen;
1089         u_char *buf = ops->datbuf;
1090         u_char *oobbuf = ops->oobbuf;
1091         int read = 0, column, thislen;
1092         int oobread = 0, oobcolumn, thisooblen, oobsize;
1093         int ret = 0;
1094         int writesize = this->writesize;
1095
1096         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1097               __func__, (unsigned int) from, (int) len);
1098
1099         if (ops->mode == MTD_OOB_AUTO)
1100                 oobsize = this->ecclayout->oobavail;
1101         else
1102                 oobsize = mtd->oobsize;
1103
1104         oobcolumn = from & (mtd->oobsize - 1);
1105
1106         /* Do not allow reads past end of device */
1107         if (from + len > mtd->size) {
1108                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1109                         __func__);
1110                 ops->retlen = 0;
1111                 ops->oobretlen = 0;
1112                 return -EINVAL;
1113         }
1114
1115         stats = mtd->ecc_stats;
1116
1117         while (read < len) {
1118                 cond_resched();
1119
1120                 thislen = min_t(int, writesize, len - read);
1121
1122                 column = from & (writesize - 1);
1123                 if (column + thislen > writesize)
1124                         thislen = writesize - column;
1125
1126                 if (!onenand_check_bufferram(mtd, from)) {
1127                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1128
1129                         ret = this->wait(mtd, FL_READING);
1130                         if (unlikely(ret))
1131                                 ret = onenand_recover_lsb(mtd, from, ret);
1132                         onenand_update_bufferram(mtd, from, !ret);
1133                         if (ret == -EBADMSG)
1134                                 ret = 0;
1135                 }
1136
1137                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1138                 if (oobbuf) {
1139                         thisooblen = oobsize - oobcolumn;
1140                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1141
1142                         if (ops->mode == MTD_OOB_AUTO)
1143                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1144                         else
1145                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1146                         oobread += thisooblen;
1147                         oobbuf += thisooblen;
1148                         oobcolumn = 0;
1149                 }
1150
1151                 read += thislen;
1152                 if (read == len)
1153                         break;
1154
1155                 from += thislen;
1156                 buf += thislen;
1157         }
1158
1159         /*
1160          * Return success, if no ECC failures, else -EBADMSG
1161          * fs driver will take care of that, because
1162          * retlen == desired len and result == -EBADMSG
1163          */
1164         ops->retlen = read;
1165         ops->oobretlen = oobread;
1166
1167         if (ret)
1168                 return ret;
1169
1170         if (mtd->ecc_stats.failed - stats.failed)
1171                 return -EBADMSG;
1172
1173         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1174 }
1175
1176 /**
1177  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1178  * @param mtd           MTD device structure
1179  * @param from          offset to read from
1180  * @param ops:          oob operation description structure
1181  *
1182  * OneNAND read main and/or out-of-band data
1183  */
1184 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1185                                 struct mtd_oob_ops *ops)
1186 {
1187         struct onenand_chip *this = mtd->priv;
1188         struct mtd_ecc_stats stats;
1189         size_t len = ops->len;
1190         size_t ooblen = ops->ooblen;
1191         u_char *buf = ops->datbuf;
1192         u_char *oobbuf = ops->oobbuf;
1193         int read = 0, column, thislen;
1194         int oobread = 0, oobcolumn, thisooblen, oobsize;
1195         int ret = 0, boundary = 0;
1196         int writesize = this->writesize;
1197
1198         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1199                         __func__, (unsigned int) from, (int) len);
1200
1201         if (ops->mode == MTD_OOB_AUTO)
1202                 oobsize = this->ecclayout->oobavail;
1203         else
1204                 oobsize = mtd->oobsize;
1205
1206         oobcolumn = from & (mtd->oobsize - 1);
1207
1208         /* Do not allow reads past end of device */
1209         if ((from + len) > mtd->size) {
1210                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1211                         __func__);
1212                 ops->retlen = 0;
1213                 ops->oobretlen = 0;
1214                 return -EINVAL;
1215         }
1216
1217         stats = mtd->ecc_stats;
1218
1219         /* Read-while-load method */
1220
1221         /* Do first load to bufferRAM */
1222         if (read < len) {
1223                 if (!onenand_check_bufferram(mtd, from)) {
1224                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1225                         ret = this->wait(mtd, FL_READING);
1226                         onenand_update_bufferram(mtd, from, !ret);
1227                         if (ret == -EBADMSG)
1228                                 ret = 0;
1229                 }
1230         }
1231
1232         thislen = min_t(int, writesize, len - read);
1233         column = from & (writesize - 1);
1234         if (column + thislen > writesize)
1235                 thislen = writesize - column;
1236
1237         while (!ret) {
1238                 /* If there is more to load then start next load */
1239                 from += thislen;
1240                 if (read + thislen < len) {
1241                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1242                         /*
1243                          * Chip boundary handling in DDP
1244                          * Now we issued chip 1 read and pointed chip 1
1245                          * bufferram so we have to point chip 0 bufferram.
1246                          */
1247                         if (ONENAND_IS_DDP(this) &&
1248                             unlikely(from == (this->chipsize >> 1))) {
1249                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1250                                 boundary = 1;
1251                         } else
1252                                 boundary = 0;
1253                         ONENAND_SET_PREV_BUFFERRAM(this);
1254                 }
1255                 /* While load is going, read from last bufferRAM */
1256                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1257
1258                 /* Read oob area if needed */
1259                 if (oobbuf) {
1260                         thisooblen = oobsize - oobcolumn;
1261                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1262
1263                         if (ops->mode == MTD_OOB_AUTO)
1264                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1265                         else
1266                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1267                         oobread += thisooblen;
1268                         oobbuf += thisooblen;
1269                         oobcolumn = 0;
1270                 }
1271
1272                 /* See if we are done */
1273                 read += thislen;
1274                 if (read == len)
1275                         break;
1276                 /* Set up for next read from bufferRAM */
1277                 if (unlikely(boundary))
1278                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1279                 ONENAND_SET_NEXT_BUFFERRAM(this);
1280                 buf += thislen;
1281                 thislen = min_t(int, writesize, len - read);
1282                 column = 0;
1283                 cond_resched();
1284                 /* Now wait for load */
1285                 ret = this->wait(mtd, FL_READING);
1286                 onenand_update_bufferram(mtd, from, !ret);
1287                 if (ret == -EBADMSG)
1288                         ret = 0;
1289         }
1290
1291         /*
1292          * Return success, if no ECC failures, else -EBADMSG
1293          * fs driver will take care of that, because
1294          * retlen == desired len and result == -EBADMSG
1295          */
1296         ops->retlen = read;
1297         ops->oobretlen = oobread;
1298
1299         if (ret)
1300                 return ret;
1301
1302         if (mtd->ecc_stats.failed - stats.failed)
1303                 return -EBADMSG;
1304
1305         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1306 }
1307
1308 /**
1309  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1310  * @param mtd           MTD device structure
1311  * @param from          offset to read from
1312  * @param ops:          oob operation description structure
1313  *
1314  * OneNAND read out-of-band data from the spare area
1315  */
1316 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1317                         struct mtd_oob_ops *ops)
1318 {
1319         struct onenand_chip *this = mtd->priv;
1320         struct mtd_ecc_stats stats;
1321         int read = 0, thislen, column, oobsize;
1322         size_t len = ops->ooblen;
1323         mtd_oob_mode_t mode = ops->mode;
1324         u_char *buf = ops->oobbuf;
1325         int ret = 0, readcmd;
1326
1327         from += ops->ooboffs;
1328
1329         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1330                 __func__, (unsigned int) from, (int) len);
1331
1332         /* Initialize return length value */
1333         ops->oobretlen = 0;
1334
1335         if (mode == MTD_OOB_AUTO)
1336                 oobsize = this->ecclayout->oobavail;
1337         else
1338                 oobsize = mtd->oobsize;
1339
1340         column = from & (mtd->oobsize - 1);
1341
1342         if (unlikely(column >= oobsize)) {
1343                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1344                         __func__);
1345                 return -EINVAL;
1346         }
1347
1348         /* Do not allow reads past end of device */
1349         if (unlikely(from >= mtd->size ||
1350                      column + len > ((mtd->size >> this->page_shift) -
1351                                      (from >> this->page_shift)) * oobsize)) {
1352                 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1353                         __func__);
1354                 return -EINVAL;
1355         }
1356
1357         stats = mtd->ecc_stats;
1358
1359         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1360
1361         while (read < len) {
1362                 cond_resched();
1363
1364                 thislen = oobsize - column;
1365                 thislen = min_t(int, thislen, len);
1366
1367                 this->command(mtd, readcmd, from, mtd->oobsize);
1368
1369                 onenand_update_bufferram(mtd, from, 0);
1370
1371                 ret = this->wait(mtd, FL_READING);
1372                 if (unlikely(ret))
1373                         ret = onenand_recover_lsb(mtd, from, ret);
1374
1375                 if (ret && ret != -EBADMSG) {
1376                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1377                                 __func__, ret);
1378                         break;
1379                 }
1380
1381                 if (mode == MTD_OOB_AUTO)
1382                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1383                 else
1384                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1385
1386                 read += thislen;
1387
1388                 if (read == len)
1389                         break;
1390
1391                 buf += thislen;
1392
1393                 /* Read more? */
1394                 if (read < len) {
1395                         /* Page size */
1396                         from += mtd->writesize;
1397                         column = 0;
1398                 }
1399         }
1400
1401         ops->oobretlen = read;
1402
1403         if (ret)
1404                 return ret;
1405
1406         if (mtd->ecc_stats.failed - stats.failed)
1407                 return -EBADMSG;
1408
1409         return 0;
1410 }
1411
1412 /**
1413  * onenand_read - [MTD Interface] Read data from flash
1414  * @param mtd           MTD device structure
1415  * @param from          offset to read from
1416  * @param len           number of bytes to read
1417  * @param retlen        pointer to variable to store the number of read bytes
1418  * @param buf           the databuffer to put data
1419  *
1420  * Read with ecc
1421 */
1422 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1423         size_t *retlen, u_char *buf)
1424 {
1425         struct onenand_chip *this = mtd->priv;
1426         struct mtd_oob_ops ops = {
1427                 .len    = len,
1428                 .ooblen = 0,
1429                 .datbuf = buf,
1430                 .oobbuf = NULL,
1431         };
1432         int ret;
1433
1434         onenand_get_device(mtd, FL_READING);
1435         ret = ONENAND_IS_4KB_PAGE(this) ?
1436                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1437                 onenand_read_ops_nolock(mtd, from, &ops);
1438         onenand_release_device(mtd);
1439
1440         *retlen = ops.retlen;
1441         return ret;
1442 }
1443
1444 /**
1445  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1446  * @param mtd:          MTD device structure
1447  * @param from:         offset to read from
1448  * @param ops:          oob operation description structure
1449
1450  * Read main and/or out-of-band
1451  */
1452 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1453                             struct mtd_oob_ops *ops)
1454 {
1455         struct onenand_chip *this = mtd->priv;
1456         int ret;
1457
1458         switch (ops->mode) {
1459         case MTD_OOB_PLACE:
1460         case MTD_OOB_AUTO:
1461                 break;
1462         case MTD_OOB_RAW:
1463                 /* Not implemented yet */
1464         default:
1465                 return -EINVAL;
1466         }
1467
1468         onenand_get_device(mtd, FL_READING);
1469         if (ops->datbuf)
1470                 ret = ONENAND_IS_4KB_PAGE(this) ?
1471                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1472                         onenand_read_ops_nolock(mtd, from, ops);
1473         else
1474                 ret = onenand_read_oob_nolock(mtd, from, ops);
1475         onenand_release_device(mtd);
1476
1477         return ret;
1478 }
1479
1480 /**
1481  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1482  * @param mtd           MTD device structure
1483  * @param state         state to select the max. timeout value
1484  *
1485  * Wait for command done.
1486  */
1487 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1488 {
1489         struct onenand_chip *this = mtd->priv;
1490         unsigned long timeout;
1491         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1492
1493         /* The 20 msec is enough */
1494         timeout = jiffies + msecs_to_jiffies(20);
1495         while (time_before(jiffies, timeout)) {
1496                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1497                 if (interrupt & ONENAND_INT_MASTER)
1498                         break;
1499         }
1500         /* To get correct interrupt status in timeout case */
1501         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1502         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1503         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1504         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1505
1506         if (interrupt & ONENAND_INT_READ) {
1507                 ecc = onenand_read_ecc(this);
1508                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1509                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1510                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1511                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1512                         return ONENAND_BBT_READ_ECC_ERROR;
1513                 }
1514         } else {
1515                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1516                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1517                        __func__, ctrl, interrupt, addr1, addr8);
1518                 return ONENAND_BBT_READ_FATAL_ERROR;
1519         }
1520
1521         /* Initial bad block case: 0x2400 or 0x0400 */
1522         if (ctrl & ONENAND_CTRL_ERROR) {
1523                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1524                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1525                 return ONENAND_BBT_READ_ERROR;
1526         }
1527
1528         return 0;
1529 }
1530
1531 /**
1532  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1533  * @param mtd           MTD device structure
1534  * @param from          offset to read from
1535  * @param ops           oob operation description structure
1536  *
1537  * OneNAND read out-of-band data from the spare area for bbt scan
1538  */
1539 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1540                             struct mtd_oob_ops *ops)
1541 {
1542         struct onenand_chip *this = mtd->priv;
1543         int read = 0, thislen, column;
1544         int ret = 0, readcmd;
1545         size_t len = ops->ooblen;
1546         u_char *buf = ops->oobbuf;
1547
1548         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1549                 __func__, (unsigned int) from, len);
1550
1551         /* Initialize return value */
1552         ops->oobretlen = 0;
1553
1554         /* Do not allow reads past end of device */
1555         if (unlikely((from + len) > mtd->size)) {
1556                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1557                         __func__);
1558                 return ONENAND_BBT_READ_FATAL_ERROR;
1559         }
1560
1561         /* Grab the lock and see if the device is available */
1562         onenand_get_device(mtd, FL_READING);
1563
1564         column = from & (mtd->oobsize - 1);
1565
1566         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1567
1568         while (read < len) {
1569                 cond_resched();
1570
1571                 thislen = mtd->oobsize - column;
1572                 thislen = min_t(int, thislen, len);
1573
1574                 this->command(mtd, readcmd, from, mtd->oobsize);
1575
1576                 onenand_update_bufferram(mtd, from, 0);
1577
1578                 ret = this->bbt_wait(mtd, FL_READING);
1579                 if (unlikely(ret))
1580                         ret = onenand_recover_lsb(mtd, from, ret);
1581
1582                 if (ret)
1583                         break;
1584
1585                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1586                 read += thislen;
1587                 if (read == len)
1588                         break;
1589
1590                 buf += thislen;
1591
1592                 /* Read more? */
1593                 if (read < len) {
1594                         /* Update Page size */
1595                         from += this->writesize;
1596                         column = 0;
1597                 }
1598         }
1599
1600         /* Deselect and wake up anyone waiting on the device */
1601         onenand_release_device(mtd);
1602
1603         ops->oobretlen = read;
1604         return ret;
1605 }
1606
1607 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1608 /**
1609  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1610  * @param mtd           MTD device structure
1611  * @param buf           the databuffer to verify
1612  * @param to            offset to read from
1613  */
1614 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1615 {
1616         struct onenand_chip *this = mtd->priv;
1617         u_char *oob_buf = this->oob_buf;
1618         int status, i, readcmd;
1619
1620         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1621
1622         this->command(mtd, readcmd, to, mtd->oobsize);
1623         onenand_update_bufferram(mtd, to, 0);
1624         status = this->wait(mtd, FL_READING);
1625         if (status)
1626                 return status;
1627
1628         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1629         for (i = 0; i < mtd->oobsize; i++)
1630                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1631                         return -EBADMSG;
1632
1633         return 0;
1634 }
1635
1636 /**
1637  * onenand_verify - [GENERIC] verify the chip contents after a write
1638  * @param mtd          MTD device structure
1639  * @param buf          the databuffer to verify
1640  * @param addr         offset to read from
1641  * @param len          number of bytes to read and compare
1642  */
1643 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1644 {
1645         struct onenand_chip *this = mtd->priv;
1646         int ret = 0;
1647         int thislen, column;
1648
1649         while (len != 0) {
1650                 thislen = min_t(int, this->writesize, len);
1651                 column = addr & (this->writesize - 1);
1652                 if (column + thislen > this->writesize)
1653                         thislen = this->writesize - column;
1654
1655                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1656
1657                 onenand_update_bufferram(mtd, addr, 0);
1658
1659                 ret = this->wait(mtd, FL_READING);
1660                 if (ret)
1661                         return ret;
1662
1663                 onenand_update_bufferram(mtd, addr, 1);
1664
1665                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1666
1667                 if (memcmp(buf, this->verify_buf, thislen))
1668                         return -EBADMSG;
1669
1670                 len -= thislen;
1671                 buf += thislen;
1672                 addr += thislen;
1673         }
1674
1675         return 0;
1676 }
1677 #else
1678 #define onenand_verify(...)             (0)
1679 #define onenand_verify_oob(...)         (0)
1680 #endif
1681
1682 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1683
1684 static void onenand_panic_wait(struct mtd_info *mtd)
1685 {
1686         struct onenand_chip *this = mtd->priv;
1687         unsigned int interrupt;
1688         int i;
1689         
1690         for (i = 0; i < 2000; i++) {
1691                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1692                 if (interrupt & ONENAND_INT_MASTER)
1693                         break;
1694                 udelay(10);
1695         }
1696 }
1697
1698 /**
1699  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1700  * @param mtd           MTD device structure
1701  * @param to            offset to write to
1702  * @param len           number of bytes to write
1703  * @param retlen        pointer to variable to store the number of written bytes
1704  * @param buf           the data to write
1705  *
1706  * Write with ECC
1707  */
1708 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1709                          size_t *retlen, const u_char *buf)
1710 {
1711         struct onenand_chip *this = mtd->priv;
1712         int column, subpage;
1713         int written = 0;
1714         int ret = 0;
1715
1716         if (this->state == FL_PM_SUSPENDED)
1717                 return -EBUSY;
1718
1719         /* Wait for any existing operation to clear */
1720         onenand_panic_wait(mtd);
1721
1722         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1723                 __func__, (unsigned int) to, (int) len);
1724
1725         /* Initialize retlen, in case of early exit */
1726         *retlen = 0;
1727
1728         /* Do not allow writes past end of device */
1729         if (unlikely((to + len) > mtd->size)) {
1730                 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1731                         __func__);
1732                 return -EINVAL;
1733         }
1734
1735         /* Reject writes, which are not page aligned */
1736         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1737                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1738                         __func__);
1739                 return -EINVAL;
1740         }
1741
1742         column = to & (mtd->writesize - 1);
1743
1744         /* Loop until all data write */
1745         while (written < len) {
1746                 int thislen = min_t(int, mtd->writesize - column, len - written);
1747                 u_char *wbuf = (u_char *) buf;
1748
1749                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1750
1751                 /* Partial page write */
1752                 subpage = thislen < mtd->writesize;
1753                 if (subpage) {
1754                         memset(this->page_buf, 0xff, mtd->writesize);
1755                         memcpy(this->page_buf + column, buf, thislen);
1756                         wbuf = this->page_buf;
1757                 }
1758
1759                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1760                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1761
1762                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1763
1764                 onenand_panic_wait(mtd);
1765
1766                 /* In partial page write we don't update bufferram */
1767                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1768                 if (ONENAND_IS_2PLANE(this)) {
1769                         ONENAND_SET_BUFFERRAM1(this);
1770                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1771                 }
1772
1773                 if (ret) {
1774                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1775                         break;
1776                 }
1777
1778                 written += thislen;
1779
1780                 if (written == len)
1781                         break;
1782
1783                 column = 0;
1784                 to += thislen;
1785                 buf += thislen;
1786         }
1787
1788         *retlen = written;
1789         return ret;
1790 }
1791
1792 /**
1793  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1794  * @param mtd           MTD device structure
1795  * @param oob_buf       oob buffer
1796  * @param buf           source address
1797  * @param column        oob offset to write to
1798  * @param thislen       oob length to write
1799  */
1800 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1801                                   const u_char *buf, int column, int thislen)
1802 {
1803         struct onenand_chip *this = mtd->priv;
1804         struct nand_oobfree *free;
1805         int writecol = column;
1806         int writeend = column + thislen;
1807         int lastgap = 0;
1808         unsigned int i;
1809
1810         free = this->ecclayout->oobfree;
1811         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1812                 if (writecol >= lastgap)
1813                         writecol += free->offset - lastgap;
1814                 if (writeend >= lastgap)
1815                         writeend += free->offset - lastgap;
1816                 lastgap = free->offset + free->length;
1817         }
1818         free = this->ecclayout->oobfree;
1819         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1820                 int free_end = free->offset + free->length;
1821                 if (free->offset < writeend && free_end > writecol) {
1822                         int st = max_t(int,free->offset,writecol);
1823                         int ed = min_t(int,free_end,writeend);
1824                         int n = ed - st;
1825                         memcpy(oob_buf + st, buf, n);
1826                         buf += n;
1827                 } else if (column == 0)
1828                         break;
1829         }
1830         return 0;
1831 }
1832
1833 /**
1834  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1835  * @param mtd           MTD device structure
1836  * @param to            offset to write to
1837  * @param ops           oob operation description structure
1838  *
1839  * Write main and/or oob with ECC
1840  */
1841 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1842                                 struct mtd_oob_ops *ops)
1843 {
1844         struct onenand_chip *this = mtd->priv;
1845         int written = 0, column, thislen = 0, subpage = 0;
1846         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1847         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1848         size_t len = ops->len;
1849         size_t ooblen = ops->ooblen;
1850         const u_char *buf = ops->datbuf;
1851         const u_char *oob = ops->oobbuf;
1852         u_char *oobbuf;
1853         int ret = 0, cmd;
1854
1855         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1856                 __func__, (unsigned int) to, (int) len);
1857
1858         /* Initialize retlen, in case of early exit */
1859         ops->retlen = 0;
1860         ops->oobretlen = 0;
1861
1862         /* Do not allow writes past end of device */
1863         if (unlikely((to + len) > mtd->size)) {
1864                 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1865                         __func__);
1866                 return -EINVAL;
1867         }
1868
1869         /* Reject writes, which are not page aligned */
1870         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1871                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1872                         __func__);
1873                 return -EINVAL;
1874         }
1875
1876         /* Check zero length */
1877         if (!len)
1878                 return 0;
1879
1880         if (ops->mode == MTD_OOB_AUTO)
1881                 oobsize = this->ecclayout->oobavail;
1882         else
1883                 oobsize = mtd->oobsize;
1884
1885         oobcolumn = to & (mtd->oobsize - 1);
1886
1887         column = to & (mtd->writesize - 1);
1888
1889         /* Loop until all data write */
1890         while (1) {
1891                 if (written < len) {
1892                         u_char *wbuf = (u_char *) buf;
1893
1894                         thislen = min_t(int, mtd->writesize - column, len - written);
1895                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1896
1897                         cond_resched();
1898
1899                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1900
1901                         /* Partial page write */
1902                         subpage = thislen < mtd->writesize;
1903                         if (subpage) {
1904                                 memset(this->page_buf, 0xff, mtd->writesize);
1905                                 memcpy(this->page_buf + column, buf, thislen);
1906                                 wbuf = this->page_buf;
1907                         }
1908
1909                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1910
1911                         if (oob) {
1912                                 oobbuf = this->oob_buf;
1913
1914                                 /* We send data to spare ram with oobsize
1915                                  * to prevent byte access */
1916                                 memset(oobbuf, 0xff, mtd->oobsize);
1917                                 if (ops->mode == MTD_OOB_AUTO)
1918                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1919                                 else
1920                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1921
1922                                 oobwritten += thisooblen;
1923                                 oob += thisooblen;
1924                                 oobcolumn = 0;
1925                         } else
1926                                 oobbuf = (u_char *) ffchars;
1927
1928                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1929                 } else
1930                         ONENAND_SET_NEXT_BUFFERRAM(this);
1931
1932                 /*
1933                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1934                  * write-while-program feature.
1935                  */
1936                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1937                         ONENAND_SET_PREV_BUFFERRAM(this);
1938
1939                         ret = this->wait(mtd, FL_WRITING);
1940
1941                         /* In partial page write we don't update bufferram */
1942                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1943                         if (ret) {
1944                                 written -= prevlen;
1945                                 printk(KERN_ERR "%s: write failed %d\n",
1946                                         __func__, ret);
1947                                 break;
1948                         }
1949
1950                         if (written == len) {
1951                                 /* Only check verify write turn on */
1952                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1953                                 if (ret)
1954                                         printk(KERN_ERR "%s: verify failed %d\n",
1955                                                 __func__, ret);
1956                                 break;
1957                         }
1958
1959                         ONENAND_SET_NEXT_BUFFERRAM(this);
1960                 }
1961
1962                 this->ongoing = 0;
1963                 cmd = ONENAND_CMD_PROG;
1964
1965                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1966                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1967                     likely(onenand_block(this, to) != 0) &&
1968                     ONENAND_IS_4KB_PAGE(this) &&
1969                     ((written + thislen) < len)) {
1970                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1971                         this->ongoing = 1;
1972                 }
1973
1974                 this->command(mtd, cmd, to, mtd->writesize);
1975
1976                 /*
1977                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1978                  */
1979                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1980                         ret = this->wait(mtd, FL_WRITING);
1981
1982                         /* In partial page write we don't update bufferram */
1983                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1984                         if (ret) {
1985                                 printk(KERN_ERR "%s: write failed %d\n",
1986                                         __func__, ret);
1987                                 break;
1988                         }
1989
1990                         /* Only check verify write turn on */
1991                         ret = onenand_verify(mtd, buf, to, thislen);
1992                         if (ret) {
1993                                 printk(KERN_ERR "%s: verify failed %d\n",
1994                                         __func__, ret);
1995                                 break;
1996                         }
1997
1998                         written += thislen;
1999
2000                         if (written == len)
2001                                 break;
2002
2003                 } else
2004                         written += thislen;
2005
2006                 column = 0;
2007                 prev_subpage = subpage;
2008                 prev = to;
2009                 prevlen = thislen;
2010                 to += thislen;
2011                 buf += thislen;
2012                 first = 0;
2013         }
2014
2015         /* In error case, clear all bufferrams */
2016         if (written != len)
2017                 onenand_invalidate_bufferram(mtd, 0, -1);
2018
2019         ops->retlen = written;
2020         ops->oobretlen = oobwritten;
2021
2022         return ret;
2023 }
2024
2025
2026 /**
2027  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2028  * @param mtd           MTD device structure
2029  * @param to            offset to write to
2030  * @param len           number of bytes to write
2031  * @param retlen        pointer to variable to store the number of written bytes
2032  * @param buf           the data to write
2033  * @param mode          operation mode
2034  *
2035  * OneNAND write out-of-band
2036  */
2037 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2038                                     struct mtd_oob_ops *ops)
2039 {
2040         struct onenand_chip *this = mtd->priv;
2041         int column, ret = 0, oobsize;
2042         int written = 0, oobcmd;
2043         u_char *oobbuf;
2044         size_t len = ops->ooblen;
2045         const u_char *buf = ops->oobbuf;
2046         mtd_oob_mode_t mode = ops->mode;
2047
2048         to += ops->ooboffs;
2049
2050         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2051                 __func__, (unsigned int) to, (int) len);
2052
2053         /* Initialize retlen, in case of early exit */
2054         ops->oobretlen = 0;
2055
2056         if (mode == MTD_OOB_AUTO)
2057                 oobsize = this->ecclayout->oobavail;
2058         else
2059                 oobsize = mtd->oobsize;
2060
2061         column = to & (mtd->oobsize - 1);
2062
2063         if (unlikely(column >= oobsize)) {
2064                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2065                         __func__);
2066                 return -EINVAL;
2067         }
2068
2069         /* For compatibility with NAND: Do not allow write past end of page */
2070         if (unlikely(column + len > oobsize)) {
2071                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2072                         __func__);
2073                 return -EINVAL;
2074         }
2075
2076         /* Do not allow reads past end of device */
2077         if (unlikely(to >= mtd->size ||
2078                      column + len > ((mtd->size >> this->page_shift) -
2079                                      (to >> this->page_shift)) * oobsize)) {
2080                 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2081                        __func__);
2082                 return -EINVAL;
2083         }
2084
2085         oobbuf = this->oob_buf;
2086
2087         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2088
2089         /* Loop until all data write */
2090         while (written < len) {
2091                 int thislen = min_t(int, oobsize, len - written);
2092
2093                 cond_resched();
2094
2095                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2096
2097                 /* We send data to spare ram with oobsize
2098                  * to prevent byte access */
2099                 memset(oobbuf, 0xff, mtd->oobsize);
2100                 if (mode == MTD_OOB_AUTO)
2101                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2102                 else
2103                         memcpy(oobbuf + column, buf, thislen);
2104                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2105
2106                 if (ONENAND_IS_4KB_PAGE(this)) {
2107                         /* Set main area of DataRAM to 0xff*/
2108                         memset(this->page_buf, 0xff, mtd->writesize);
2109                         this->write_bufferram(mtd, ONENAND_DATARAM,
2110                                          this->page_buf, 0, mtd->writesize);
2111                 }
2112
2113                 this->command(mtd, oobcmd, to, mtd->oobsize);
2114
2115                 onenand_update_bufferram(mtd, to, 0);
2116                 if (ONENAND_IS_2PLANE(this)) {
2117                         ONENAND_SET_BUFFERRAM1(this);
2118                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2119                 }
2120
2121                 ret = this->wait(mtd, FL_WRITING);
2122                 if (ret) {
2123                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2124                         break;
2125                 }
2126
2127                 ret = onenand_verify_oob(mtd, oobbuf, to);
2128                 if (ret) {
2129                         printk(KERN_ERR "%s: verify failed %d\n",
2130                                 __func__, ret);
2131                         break;
2132                 }
2133
2134                 written += thislen;
2135                 if (written == len)
2136                         break;
2137
2138                 to += mtd->writesize;
2139                 buf += thislen;
2140                 column = 0;
2141         }
2142
2143         ops->oobretlen = written;
2144
2145         return ret;
2146 }
2147
2148 /**
2149  * onenand_write - [MTD Interface] write buffer to FLASH
2150  * @param mtd           MTD device structure
2151  * @param to            offset to write to
2152  * @param len           number of bytes to write
2153  * @param retlen        pointer to variable to store the number of written bytes
2154  * @param buf           the data to write
2155  *
2156  * Write with ECC
2157  */
2158 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2159         size_t *retlen, const u_char *buf)
2160 {
2161         struct mtd_oob_ops ops = {
2162                 .len    = len,
2163                 .ooblen = 0,
2164                 .datbuf = (u_char *) buf,
2165                 .oobbuf = NULL,
2166         };
2167         int ret;
2168
2169         onenand_get_device(mtd, FL_WRITING);
2170         ret = onenand_write_ops_nolock(mtd, to, &ops);
2171         onenand_release_device(mtd);
2172
2173         *retlen = ops.retlen;
2174         return ret;
2175 }
2176
2177 /**
2178  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2179  * @param mtd:          MTD device structure
2180  * @param to:           offset to write
2181  * @param ops:          oob operation description structure
2182  */
2183 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2184                              struct mtd_oob_ops *ops)
2185 {
2186         int ret;
2187
2188         switch (ops->mode) {
2189         case MTD_OOB_PLACE:
2190         case MTD_OOB_AUTO:
2191                 break;
2192         case MTD_OOB_RAW:
2193                 /* Not implemented yet */
2194         default:
2195                 return -EINVAL;
2196         }
2197
2198         onenand_get_device(mtd, FL_WRITING);
2199         if (ops->datbuf)
2200                 ret = onenand_write_ops_nolock(mtd, to, ops);
2201         else
2202                 ret = onenand_write_oob_nolock(mtd, to, ops);
2203         onenand_release_device(mtd);
2204
2205         return ret;
2206 }
2207
2208 /**
2209  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2210  * @param mtd           MTD device structure
2211  * @param ofs           offset from device start
2212  * @param allowbbt      1, if its allowed to access the bbt area
2213  *
2214  * Check, if the block is bad. Either by reading the bad block table or
2215  * calling of the scan function.
2216  */
2217 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2218 {
2219         struct onenand_chip *this = mtd->priv;
2220         struct bbm_info *bbm = this->bbm;
2221
2222         /* Return info from the table */
2223         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2224 }
2225
2226
2227 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2228                                            struct erase_info *instr)
2229 {
2230         struct onenand_chip *this = mtd->priv;
2231         loff_t addr = instr->addr;
2232         int len = instr->len;
2233         unsigned int block_size = (1 << this->erase_shift);
2234         int ret = 0;
2235
2236         while (len) {
2237                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2238                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2239                 if (ret) {
2240                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2241                                __func__, onenand_block(this, addr));
2242                         instr->state = MTD_ERASE_FAILED;
2243                         instr->fail_addr = addr;
2244                         return -1;
2245                 }
2246                 len -= block_size;
2247                 addr += block_size;
2248         }
2249         return 0;
2250 }
2251
2252 /**
2253  * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2254  * @param mtd           MTD device structure
2255  * @param instr         erase instruction
2256  * @param region        erase region
2257  *
2258  * Erase one or more blocks up to 64 block at a time
2259  */
2260 static int onenand_multiblock_erase(struct mtd_info *mtd,
2261                                     struct erase_info *instr,
2262                                     unsigned int block_size)
2263 {
2264         struct onenand_chip *this = mtd->priv;
2265         loff_t addr = instr->addr;
2266         int len = instr->len;
2267         int eb_count = 0;
2268         int ret = 0;
2269         int bdry_block = 0;
2270
2271         instr->state = MTD_ERASING;
2272
2273         if (ONENAND_IS_DDP(this)) {
2274                 loff_t bdry_addr = this->chipsize >> 1;
2275                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2276                         bdry_block = bdry_addr >> this->erase_shift;
2277         }
2278
2279         /* Pre-check bbs */
2280         while (len) {
2281                 /* Check if we have a bad block, we do not erase bad blocks */
2282                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2283                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2284                                "at addr 0x%012llx\n",
2285                                __func__, (unsigned long long) addr);
2286                         instr->state = MTD_ERASE_FAILED;
2287                         return -EIO;
2288                 }
2289                 len -= block_size;
2290                 addr += block_size;
2291         }
2292
2293         len = instr->len;
2294         addr = instr->addr;
2295
2296         /* loop over 64 eb batches */
2297         while (len) {
2298                 struct erase_info verify_instr = *instr;
2299                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2300
2301                 verify_instr.addr = addr;
2302                 verify_instr.len = 0;
2303
2304                 /* do not cross chip boundary */
2305                 if (bdry_block) {
2306                         int this_block = (addr >> this->erase_shift);
2307
2308                         if (this_block < bdry_block) {
2309                                 max_eb_count = min(max_eb_count,
2310                                                    (bdry_block - this_block));
2311                         }
2312                 }
2313
2314                 eb_count = 0;
2315
2316                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2317                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2318                                       addr, block_size);
2319                         onenand_invalidate_bufferram(mtd, addr, block_size);
2320
2321                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2322                         if (ret) {
2323                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2324                                        "block %d\n", __func__,
2325                                        onenand_block(this, addr));
2326                                 instr->state = MTD_ERASE_FAILED;
2327                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2328                                 return -EIO;
2329                         }
2330
2331                         len -= block_size;
2332                         addr += block_size;
2333                         eb_count++;
2334                 }
2335
2336                 /* last block of 64-eb series */
2337                 cond_resched();
2338                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2339                 onenand_invalidate_bufferram(mtd, addr, block_size);
2340
2341                 ret = this->wait(mtd, FL_ERASING);
2342                 /* Check if it is write protected */
2343                 if (ret) {
2344                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2345                                __func__, onenand_block(this, addr));
2346                         instr->state = MTD_ERASE_FAILED;
2347                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2348                         return -EIO;
2349                 }
2350
2351                 len -= block_size;
2352                 addr += block_size;
2353                 eb_count++;
2354
2355                 /* verify */
2356                 verify_instr.len = eb_count * block_size;
2357                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2358                         instr->state = verify_instr.state;
2359                         instr->fail_addr = verify_instr.fail_addr;
2360                         return -EIO;
2361                 }
2362
2363         }
2364         return 0;
2365 }
2366
2367
2368 /**
2369  * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2370  * @param mtd           MTD device structure
2371  * @param instr         erase instruction
2372  * @param region        erase region
2373  * @param block_size    erase block size
2374  *
2375  * Erase one or more blocks one block at a time
2376  */
2377 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2378                                         struct erase_info *instr,
2379                                         struct mtd_erase_region_info *region,
2380                                         unsigned int block_size)
2381 {
2382         struct onenand_chip *this = mtd->priv;
2383         loff_t addr = instr->addr;
2384         int len = instr->len;
2385         loff_t region_end = 0;
2386         int ret = 0;
2387
2388         if (region) {
2389                 /* region is set for Flex-OneNAND */
2390                 region_end = region->offset + region->erasesize * region->numblocks;
2391         }
2392
2393         instr->state = MTD_ERASING;
2394
2395         /* Loop through the blocks */
2396         while (len) {
2397                 cond_resched();
2398
2399                 /* Check if we have a bad block, we do not erase bad blocks */
2400                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2401                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2402                                         "at addr 0x%012llx\n",
2403                                         __func__, (unsigned long long) addr);
2404                         instr->state = MTD_ERASE_FAILED;
2405                         return -EIO;
2406                 }
2407
2408                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2409
2410                 onenand_invalidate_bufferram(mtd, addr, block_size);
2411
2412                 ret = this->wait(mtd, FL_ERASING);
2413                 /* Check, if it is write protected */
2414                 if (ret) {
2415                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2416                                 __func__, onenand_block(this, addr));
2417                         instr->state = MTD_ERASE_FAILED;
2418                         instr->fail_addr = addr;
2419                         return -EIO;
2420                 }
2421
2422                 len -= block_size;
2423                 addr += block_size;
2424
2425                 if (addr == region_end) {
2426                         if (!len)
2427                                 break;
2428                         region++;
2429
2430                         block_size = region->erasesize;
2431                         region_end = region->offset + region->erasesize * region->numblocks;
2432
2433                         if (len & (block_size - 1)) {
2434                                 /* FIXME: This should be handled at MTD partitioning level. */
2435                                 printk(KERN_ERR "%s: Unaligned address\n",
2436                                         __func__);
2437                                 return -EIO;
2438                         }
2439                 }
2440         }
2441         return 0;
2442 }
2443
2444 /**
2445  * onenand_erase - [MTD Interface] erase block(s)
2446  * @param mtd           MTD device structure
2447  * @param instr         erase instruction
2448  *
2449  * Erase one or more blocks
2450  */
2451 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2452 {
2453         struct onenand_chip *this = mtd->priv;
2454         unsigned int block_size;
2455         loff_t addr = instr->addr;
2456         loff_t len = instr->len;
2457         int ret = 0;
2458         struct mtd_erase_region_info *region = NULL;
2459         loff_t region_offset = 0;
2460
2461         DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2462               (unsigned long long) instr->addr, (unsigned long long) instr->len);
2463
2464         /* Do not allow erase past end of device */
2465         if (unlikely((len + addr) > mtd->size)) {
2466                 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2467                 return -EINVAL;
2468         }
2469
2470         if (FLEXONENAND(this)) {
2471                 /* Find the eraseregion of this address */
2472                 int i = flexonenand_region(mtd, addr);
2473
2474                 region = &mtd->eraseregions[i];
2475                 block_size = region->erasesize;
2476
2477                 /* Start address within region must align on block boundary.
2478                  * Erase region's start offset is always block start address.
2479                  */
2480                 region_offset = region->offset;
2481         } else
2482                 block_size = 1 << this->erase_shift;
2483
2484         /* Start address must align on block boundary */
2485         if (unlikely((addr - region_offset) & (block_size - 1))) {
2486                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2487                 return -EINVAL;
2488         }
2489
2490         /* Length must align on block boundary */
2491         if (unlikely(len & (block_size - 1))) {
2492                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2493                 return -EINVAL;
2494         }
2495
2496         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2497
2498         /* Grab the lock and see if the device is available */
2499         onenand_get_device(mtd, FL_ERASING);
2500
2501         if (ONENAND_IS_4KB_PAGE(this) || region ||
2502             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2503                 /* region is set for Flex-OneNAND (no mb erase) */
2504                 ret = onenand_block_by_block_erase(mtd, instr,
2505                                                    region, block_size);
2506         } else {
2507                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2508         }
2509
2510         /* Deselect and wake up anyone waiting on the device */
2511         onenand_release_device(mtd);
2512
2513         /* Do call back function */
2514         if (!ret) {
2515                 instr->state = MTD_ERASE_DONE;
2516                 mtd_erase_callback(instr);
2517         }
2518
2519         return ret;
2520 }
2521
2522 /**
2523  * onenand_sync - [MTD Interface] sync
2524  * @param mtd           MTD device structure
2525  *
2526  * Sync is actually a wait for chip ready function
2527  */
2528 static void onenand_sync(struct mtd_info *mtd)
2529 {
2530         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2531
2532         /* Grab the lock and see if the device is available */
2533         onenand_get_device(mtd, FL_SYNCING);
2534
2535         /* Release it and go back */
2536         onenand_release_device(mtd);
2537 }
2538
2539 /**
2540  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2541  * @param mtd           MTD device structure
2542  * @param ofs           offset relative to mtd start
2543  *
2544  * Check whether the block is bad
2545  */
2546 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2547 {
2548         int ret;
2549
2550         /* Check for invalid offset */
2551         if (ofs > mtd->size)
2552                 return -EINVAL;
2553
2554         onenand_get_device(mtd, FL_READING);
2555         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2556         onenand_release_device(mtd);
2557         return ret;
2558 }
2559
2560 /**
2561  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2562  * @param mtd           MTD device structure
2563  * @param ofs           offset from device start
2564  *
2565  * This is the default implementation, which can be overridden by
2566  * a hardware specific driver.
2567  */
2568 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2569 {
2570         struct onenand_chip *this = mtd->priv;
2571         struct bbm_info *bbm = this->bbm;
2572         u_char buf[2] = {0, 0};
2573         struct mtd_oob_ops ops = {
2574                 .mode = MTD_OOB_PLACE,
2575                 .ooblen = 2,
2576                 .oobbuf = buf,
2577                 .ooboffs = 0,
2578         };
2579         int block;
2580
2581         /* Get block number */
2582         block = onenand_block(this, ofs);
2583         if (bbm->bbt)
2584                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2585
2586         /* We write two bytes, so we don't have to mess with 16-bit access */
2587         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2588         /* FIXME : What to do when marking SLC block in partition
2589          *         with MLC erasesize? For now, it is not advisable to
2590          *         create partitions containing both SLC and MLC regions.
2591          */
2592         return onenand_write_oob_nolock(mtd, ofs, &ops);
2593 }
2594
2595 /**
2596  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2597  * @param mtd           MTD device structure
2598  * @param ofs           offset relative to mtd start
2599  *
2600  * Mark the block as bad
2601  */
2602 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2603 {
2604         struct onenand_chip *this = mtd->priv;
2605         int ret;
2606
2607         ret = onenand_block_isbad(mtd, ofs);
2608         if (ret) {
2609                 /* If it was bad already, return success and do nothing */
2610                 if (ret > 0)
2611                         return 0;
2612                 return ret;
2613         }
2614
2615         onenand_get_device(mtd, FL_WRITING);
2616         ret = this->block_markbad(mtd, ofs);
2617         onenand_release_device(mtd);
2618         return ret;
2619 }
2620
2621 /**
2622  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2623  * @param mtd           MTD device structure
2624  * @param ofs           offset relative to mtd start
2625  * @param len           number of bytes to lock or unlock
2626  * @param cmd           lock or unlock command
2627  *
2628  * Lock or unlock one or more blocks
2629  */
2630 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2631 {
2632         struct onenand_chip *this = mtd->priv;
2633         int start, end, block, value, status;
2634         int wp_status_mask;
2635
2636         start = onenand_block(this, ofs);
2637         end = onenand_block(this, ofs + len) - 1;
2638
2639         if (cmd == ONENAND_CMD_LOCK)
2640                 wp_status_mask = ONENAND_WP_LS;
2641         else
2642                 wp_status_mask = ONENAND_WP_US;
2643
2644         /* Continuous lock scheme */
2645         if (this->options & ONENAND_HAS_CONT_LOCK) {
2646                 /* Set start block address */
2647                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2648                 /* Set end block address */
2649                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2650                 /* Write lock command */
2651                 this->command(mtd, cmd, 0, 0);
2652
2653                 /* There's no return value */
2654                 this->wait(mtd, FL_LOCKING);
2655
2656                 /* Sanity check */
2657                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2658                     & ONENAND_CTRL_ONGO)
2659                         continue;
2660
2661                 /* Check lock status */
2662                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2663                 if (!(status & wp_status_mask))
2664                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2665                                 __func__, status);
2666
2667                 return 0;
2668         }
2669
2670         /* Block lock scheme */
2671         for (block = start; block < end + 1; block++) {
2672                 /* Set block address */
2673                 value = onenand_block_address(this, block);
2674                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2675                 /* Select DataRAM for DDP */
2676                 value = onenand_bufferram_address(this, block);
2677                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2678                 /* Set start block address */
2679                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2680                 /* Write lock command */
2681                 this->command(mtd, cmd, 0, 0);
2682
2683                 /* There's no return value */
2684                 this->wait(mtd, FL_LOCKING);
2685
2686                 /* Sanity check */
2687                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2688                     & ONENAND_CTRL_ONGO)
2689                         continue;
2690
2691                 /* Check lock status */
2692                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2693                 if (!(status & wp_status_mask))
2694                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2695                                 __func__, block, status);
2696         }
2697
2698         return 0;
2699 }
2700
2701 /**
2702  * onenand_lock - [MTD Interface] Lock block(s)
2703  * @param mtd           MTD device structure
2704  * @param ofs           offset relative to mtd start
2705  * @param len           number of bytes to unlock
2706  *
2707  * Lock one or more blocks
2708  */
2709 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2710 {
2711         int ret;
2712
2713         onenand_get_device(mtd, FL_LOCKING);
2714         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2715         onenand_release_device(mtd);
2716         return ret;
2717 }
2718
2719 /**
2720  * onenand_unlock - [MTD Interface] Unlock block(s)
2721  * @param mtd           MTD device structure
2722  * @param ofs           offset relative to mtd start
2723  * @param len           number of bytes to unlock
2724  *
2725  * Unlock one or more blocks
2726  */
2727 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2728 {
2729         int ret;
2730
2731         onenand_get_device(mtd, FL_LOCKING);
2732         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2733         onenand_release_device(mtd);
2734         return ret;
2735 }
2736
2737 /**
2738  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2739  * @param this          onenand chip data structure
2740  *
2741  * Check lock status
2742  */
2743 static int onenand_check_lock_status(struct onenand_chip *this)
2744 {
2745         unsigned int value, block, status;
2746         unsigned int end;
2747
2748         end = this->chipsize >> this->erase_shift;
2749         for (block = 0; block < end; block++) {
2750                 /* Set block address */
2751                 value = onenand_block_address(this, block);
2752                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2753                 /* Select DataRAM for DDP */
2754                 value = onenand_bufferram_address(this, block);
2755                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2756                 /* Set start block address */
2757                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2758
2759                 /* Check lock status */
2760                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2761                 if (!(status & ONENAND_WP_US)) {
2762                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2763                                 __func__, block, status);
2764                         return 0;
2765                 }
2766         }
2767
2768         return 1;
2769 }
2770
2771 /**
2772  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2773  * @param mtd           MTD device structure
2774  *
2775  * Unlock all blocks
2776  */
2777 static void onenand_unlock_all(struct mtd_info *mtd)
2778 {
2779         struct onenand_chip *this = mtd->priv;
2780         loff_t ofs = 0;
2781         loff_t len = mtd->size;
2782
2783         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2784                 /* Set start block address */
2785                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2786                 /* Write unlock command */
2787                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2788
2789                 /* There's no return value */
2790                 this->wait(mtd, FL_LOCKING);
2791
2792                 /* Sanity check */
2793                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2794                     & ONENAND_CTRL_ONGO)
2795                         continue;
2796
2797                 /* Don't check lock status */
2798                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2799                         return;
2800
2801                 /* Check lock status */
2802                 if (onenand_check_lock_status(this))
2803                         return;
2804
2805                 /* Workaround for all block unlock in DDP */
2806                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2807                         /* All blocks on another chip */
2808                         ofs = this->chipsize >> 1;
2809                         len = this->chipsize >> 1;
2810                 }
2811         }
2812
2813         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2814 }
2815
2816 #ifdef CONFIG_MTD_ONENAND_OTP
2817
2818 /**
2819  * onenand_otp_command - Send OTP specific command to OneNAND device
2820  * @param mtd    MTD device structure
2821  * @param cmd    the command to be sent
2822  * @param addr   offset to read from or write to
2823  * @param len    number of bytes to read or write
2824  */
2825 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2826                                 size_t len)
2827 {
2828         struct onenand_chip *this = mtd->priv;
2829         int value, block, page;
2830
2831         /* Address translation */
2832         switch (cmd) {
2833         case ONENAND_CMD_OTP_ACCESS:
2834                 block = (int) (addr >> this->erase_shift);
2835                 page = -1;
2836                 break;
2837
2838         default:
2839                 block = (int) (addr >> this->erase_shift);
2840                 page = (int) (addr >> this->page_shift);
2841
2842                 if (ONENAND_IS_2PLANE(this)) {
2843                         /* Make the even block number */
2844                         block &= ~1;
2845                         /* Is it the odd plane? */
2846                         if (addr & this->writesize)
2847                                 block++;
2848                         page >>= 1;
2849                 }
2850                 page &= this->page_mask;
2851                 break;
2852         }
2853
2854         if (block != -1) {
2855                 /* Write 'DFS, FBA' of Flash */
2856                 value = onenand_block_address(this, block);
2857                 this->write_word(value, this->base +
2858                                 ONENAND_REG_START_ADDRESS1);
2859         }
2860
2861         if (page != -1) {
2862                 /* Now we use page size operation */
2863                 int sectors = 4, count = 4;
2864                 int dataram;
2865
2866                 switch (cmd) {
2867                 default:
2868                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2869                                 cmd = ONENAND_CMD_2X_PROG;
2870                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2871                         break;
2872                 }
2873
2874                 /* Write 'FPA, FSA' of Flash */
2875                 value = onenand_page_address(page, sectors);
2876                 this->write_word(value, this->base +
2877                                 ONENAND_REG_START_ADDRESS8);
2878
2879                 /* Write 'BSA, BSC' of DataRAM */
2880                 value = onenand_buffer_address(dataram, sectors, count);
2881                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2882         }
2883
2884         /* Interrupt clear */
2885         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2886
2887         /* Write command */
2888         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2889
2890         return 0;
2891 }
2892
2893 /**
2894  * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2895  * @param mtd           MTD device structure
2896  * @param to            offset to write to
2897  * @param len           number of bytes to write
2898  * @param retlen        pointer to variable to store the number of written bytes
2899  * @param buf           the data to write
2900  *
2901  * OneNAND write out-of-band only for OTP
2902  */
2903 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2904                                     struct mtd_oob_ops *ops)
2905 {
2906         struct onenand_chip *this = mtd->priv;
2907         int column, ret = 0, oobsize;
2908         int written = 0;
2909         u_char *oobbuf;
2910         size_t len = ops->ooblen;
2911         const u_char *buf = ops->oobbuf;
2912         int block, value, status;
2913
2914         to += ops->ooboffs;
2915
2916         /* Initialize retlen, in case of early exit */
2917         ops->oobretlen = 0;
2918
2919         oobsize = mtd->oobsize;
2920
2921         column = to & (mtd->oobsize - 1);
2922
2923         oobbuf = this->oob_buf;
2924
2925         /* Loop until all data write */
2926         while (written < len) {
2927                 int thislen = min_t(int, oobsize, len - written);
2928
2929                 cond_resched();
2930
2931                 block = (int) (to >> this->erase_shift);
2932                 /*
2933                  * Write 'DFS, FBA' of Flash
2934                  * Add: F100h DQ=DFS, FBA
2935                  */
2936
2937                 value = onenand_block_address(this, block);
2938                 this->write_word(value, this->base +
2939                                 ONENAND_REG_START_ADDRESS1);
2940
2941                 /*
2942                  * Select DataRAM for DDP
2943                  * Add: F101h DQ=DBS
2944                  */
2945
2946                 value = onenand_bufferram_address(this, block);
2947                 this->write_word(value, this->base +
2948                                 ONENAND_REG_START_ADDRESS2);
2949                 ONENAND_SET_NEXT_BUFFERRAM(this);
2950
2951                 /*
2952                  * Enter OTP access mode
2953                  */
2954                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2955                 this->wait(mtd, FL_OTPING);
2956
2957                 /* We send data to spare ram with oobsize
2958                  * to prevent byte access */
2959                 memcpy(oobbuf + column, buf, thislen);
2960
2961                 /*
2962                  * Write Data into DataRAM
2963                  * Add: 8th Word
2964                  * in sector0/spare/page0
2965                  * DQ=XXFCh
2966                  */
2967                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2968                                         oobbuf, 0, mtd->oobsize);
2969
2970                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2971                 onenand_update_bufferram(mtd, to, 0);
2972                 if (ONENAND_IS_2PLANE(this)) {
2973                         ONENAND_SET_BUFFERRAM1(this);
2974                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2975                 }
2976
2977                 ret = this->wait(mtd, FL_WRITING);
2978                 if (ret) {
2979                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2980                         break;
2981                 }
2982
2983                 /* Exit OTP access mode */
2984                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2985                 this->wait(mtd, FL_RESETING);
2986
2987                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2988                 status &= 0x60;
2989
2990                 if (status == 0x60) {
2991                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2992                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2993                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2994                 } else if (status == 0x20) {
2995                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2996                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2997                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2998                 } else if (status == 0x40) {
2999                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3000                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
3001                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3002                 } else {
3003                         printk(KERN_DEBUG "Reboot to check\n");
3004                 }
3005
3006                 written += thislen;
3007                 if (written == len)
3008                         break;
3009
3010                 to += mtd->writesize;
3011                 buf += thislen;
3012                 column = 0;
3013         }
3014
3015         ops->oobretlen = written;
3016
3017         return ret;
3018 }
3019
3020 /* Internal OTP operation */
3021 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3022                 size_t *retlen, u_char *buf);
3023
3024 /**
3025  * do_otp_read - [DEFAULT] Read OTP block area
3026  * @param mtd           MTD device structure
3027  * @param from          The offset to read
3028  * @param len           number of bytes to read
3029  * @param retlen        pointer to variable to store the number of readbytes
3030  * @param buf           the databuffer to put/get data
3031  *
3032  * Read OTP block area.
3033  */
3034 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3035                 size_t *retlen, u_char *buf)
3036 {
3037         struct onenand_chip *this = mtd->priv;
3038         struct mtd_oob_ops ops = {
3039                 .len    = len,
3040                 .ooblen = 0,
3041                 .datbuf = buf,
3042                 .oobbuf = NULL,
3043         };
3044         int ret;
3045
3046         /* Enter OTP access mode */
3047         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3048         this->wait(mtd, FL_OTPING);
3049
3050         ret = ONENAND_IS_4KB_PAGE(this) ?
3051                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3052                 onenand_read_ops_nolock(mtd, from, &ops);
3053
3054         /* Exit OTP access mode */
3055         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3056         this->wait(mtd, FL_RESETING);
3057
3058         return ret;
3059 }
3060
3061 /**
3062  * do_otp_write - [DEFAULT] Write OTP block area
3063  * @param mtd           MTD device structure
3064  * @param to            The offset to write
3065  * @param len           number of bytes to write
3066  * @param retlen        pointer to variable to store the number of write bytes
3067  * @param buf           the databuffer to put/get data
3068  *
3069  * Write OTP block area.
3070  */
3071 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3072                 size_t *retlen, u_char *buf)
3073 {
3074         struct onenand_chip *this = mtd->priv;
3075         unsigned char *pbuf = buf;
3076         int ret;
3077         struct mtd_oob_ops ops;
3078
3079         /* Force buffer page aligned */
3080         if (len < mtd->writesize) {
3081                 memcpy(this->page_buf, buf, len);
3082                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3083                 pbuf = this->page_buf;
3084                 len = mtd->writesize;
3085         }
3086
3087         /* Enter OTP access mode */
3088         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3089         this->wait(mtd, FL_OTPING);
3090
3091         ops.len = len;
3092         ops.ooblen = 0;
3093         ops.datbuf = pbuf;
3094         ops.oobbuf = NULL;
3095         ret = onenand_write_ops_nolock(mtd, to, &ops);
3096         *retlen = ops.retlen;
3097
3098         /* Exit OTP access mode */
3099         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3100         this->wait(mtd, FL_RESETING);
3101
3102         return ret;
3103 }
3104
3105 /**
3106  * do_otp_lock - [DEFAULT] Lock OTP block area
3107  * @param mtd           MTD device structure
3108  * @param from          The offset to lock
3109  * @param len           number of bytes to lock
3110  * @param retlen        pointer to variable to store the number of lock bytes
3111  * @param buf           the databuffer to put/get data
3112  *
3113  * Lock OTP block area.
3114  */
3115 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3116                 size_t *retlen, u_char *buf)
3117 {
3118         struct onenand_chip *this = mtd->priv;
3119         struct mtd_oob_ops ops;
3120         int ret;
3121
3122         if (FLEXONENAND(this)) {
3123
3124                 /* Enter OTP access mode */
3125                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3126                 this->wait(mtd, FL_OTPING);
3127                 /*
3128                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3129                  * main area of page 49.
3130                  */
3131                 ops.len = mtd->writesize;
3132                 ops.ooblen = 0;
3133                 ops.datbuf = buf;
3134                 ops.oobbuf = NULL;
3135                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3136                 *retlen = ops.retlen;
3137
3138                 /* Exit OTP access mode */
3139                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3140                 this->wait(mtd, FL_RESETING);
3141         } else {
3142                 ops.mode = MTD_OOB_PLACE;
3143                 ops.ooblen = len;
3144                 ops.oobbuf = buf;
3145                 ops.ooboffs = 0;
3146                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3147                 *retlen = ops.oobretlen;
3148         }
3149
3150         return ret;
3151 }
3152
3153 /**
3154  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3155  * @param mtd           MTD device structure
3156  * @param from          The offset to read/write
3157  * @param len           number of bytes to read/write
3158  * @param retlen        pointer to variable to store the number of read bytes
3159  * @param buf           the databuffer to put/get data
3160  * @param action        do given action
3161  * @param mode          specify user and factory
3162  *
3163  * Handle OTP operation.
3164  */
3165 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3166                         size_t *retlen, u_char *buf,
3167                         otp_op_t action, int mode)
3168 {
3169         struct onenand_chip *this = mtd->priv;
3170         int otp_pages;
3171         int density;
3172         int ret = 0;
3173
3174         *retlen = 0;
3175
3176         density = onenand_get_density(this->device_id);
3177         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3178                 otp_pages = 20;
3179         else
3180                 otp_pages = 50;
3181
3182         if (mode == MTD_OTP_FACTORY) {
3183                 from += mtd->writesize * otp_pages;
3184                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3185         }
3186
3187         /* Check User/Factory boundary */
3188         if (mode == MTD_OTP_USER) {
3189                 if (mtd->writesize * otp_pages < from + len)
3190                         return 0;
3191         } else {
3192                 if (mtd->writesize * otp_pages <  len)
3193                         return 0;
3194         }
3195
3196         onenand_get_device(mtd, FL_OTPING);
3197         while (len > 0 && otp_pages > 0) {
3198                 if (!action) {  /* OTP Info functions */
3199                         struct otp_info *otpinfo;
3200
3201                         len -= sizeof(struct otp_info);
3202                         if (len <= 0) {
3203                                 ret = -ENOSPC;
3204                                 break;
3205                         }
3206
3207                         otpinfo = (struct otp_info *) buf;
3208                         otpinfo->start = from;
3209                         otpinfo->length = mtd->writesize;
3210                         otpinfo->locked = 0;
3211
3212                         from += mtd->writesize;
3213                         buf += sizeof(struct otp_info);
3214                         *retlen += sizeof(struct otp_info);
3215                 } else {
3216                         size_t tmp_retlen;
3217
3218                         ret = action(mtd, from, len, &tmp_retlen, buf);
3219
3220                         buf += tmp_retlen;
3221                         len -= tmp_retlen;
3222                         *retlen += tmp_retlen;
3223
3224                         if (ret)
3225                                 break;
3226                 }
3227                 otp_pages--;
3228         }
3229         onenand_release_device(mtd);
3230
3231         return ret;
3232 }
3233
3234 /**
3235  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3236  * @param mtd           MTD device structure
3237  * @param buf           the databuffer to put/get data
3238  * @param len           number of bytes to read
3239  *
3240  * Read factory OTP info.
3241  */
3242 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3243                         struct otp_info *buf, size_t len)
3244 {
3245         size_t retlen;
3246         int ret;
3247
3248         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3249
3250         return ret ? : retlen;
3251 }
3252
3253 /**
3254  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3255  * @param mtd           MTD device structure
3256  * @param from          The offset to read
3257  * @param len           number of bytes to read
3258  * @param retlen        pointer to variable to store the number of read bytes
3259  * @param buf           the databuffer to put/get data
3260  *
3261  * Read factory OTP area.
3262  */
3263 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3264                         size_t len, size_t *retlen, u_char *buf)
3265 {
3266         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3267 }
3268
3269 /**
3270  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3271  * @param mtd           MTD device structure
3272  * @param buf           the databuffer to put/get data
3273  * @param len           number of bytes to read
3274  *
3275  * Read user OTP info.
3276  */
3277 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3278                         struct otp_info *buf, size_t len)
3279 {
3280         size_t retlen;
3281         int ret;
3282
3283         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3284
3285         return ret ? : retlen;
3286 }
3287
3288 /**
3289  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3290  * @param mtd           MTD device structure
3291  * @param from          The offset to read
3292  * @param len           number of bytes to read
3293  * @param retlen        pointer to variable to store the number of read bytes
3294  * @param buf           the databuffer to put/get data
3295  *
3296  * Read user OTP area.
3297  */
3298 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3299                         size_t len, size_t *retlen, u_char *buf)
3300 {
3301         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3302 }
3303
3304 /**
3305  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3306  * @param mtd           MTD device structure
3307  * @param from          The offset to write
3308  * @param len           number of bytes to write
3309  * @param retlen        pointer to variable to store the number of write bytes
3310  * @param buf           the databuffer to put/get data
3311  *
3312  * Write user OTP area.
3313  */
3314 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3315                         size_t len, size_t *retlen, u_char *buf)
3316 {
3317         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3318 }
3319
3320 /**
3321  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3322  * @param mtd           MTD device structure
3323  * @param from          The offset to lock
3324  * @param len           number of bytes to unlock
3325  *
3326  * Write lock mark on spare area in page 0 in OTP block
3327  */
3328 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3329                         size_t len)
3330 {
3331         struct onenand_chip *this = mtd->priv;
3332         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3333         size_t retlen;
3334         int ret;
3335         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3336
3337         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3338                                                  : mtd->oobsize);
3339         /*
3340          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3341          * We write 16 bytes spare area instead of 2 bytes.
3342          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3343          * main area of page 49.
3344          */
3345
3346         from = 0;
3347         len = FLEXONENAND(this) ? mtd->writesize : 16;
3348
3349         /*
3350          * Note: OTP lock operation
3351          *       OTP block : 0xXXFC                     XX 1111 1100
3352          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3353          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3354          */
3355         if (FLEXONENAND(this))
3356                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3357
3358         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3359         if (otp == 1)
3360                 buf[otp_lock_offset] = 0xFC;
3361         else if (otp == 2)
3362                 buf[otp_lock_offset] = 0xF3;
3363         else if (otp == 3)
3364                 buf[otp_lock_offset] = 0xF0;
3365         else if (otp != 0)
3366                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3367
3368         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3369
3370         return ret ? : retlen;
3371 }
3372
3373 #endif  /* CONFIG_MTD_ONENAND_OTP */
3374
3375 /**
3376  * onenand_check_features - Check and set OneNAND features
3377  * @param mtd           MTD data structure
3378  *
3379  * Check and set OneNAND features
3380  * - lock scheme
3381  * - two plane
3382  */
3383 static void onenand_check_features(struct mtd_info *mtd)
3384 {
3385         struct onenand_chip *this = mtd->priv;
3386         unsigned int density, process, numbufs;
3387
3388         /* Lock scheme depends on density and process */
3389         density = onenand_get_density(this->device_id);
3390         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3391         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3392
3393         /* Lock scheme */
3394         switch (density) {
3395         case ONENAND_DEVICE_DENSITY_4Gb:
3396                 if (ONENAND_IS_DDP(this))
3397                         this->options |= ONENAND_HAS_2PLANE;
3398                 else if (numbufs == 1) {
3399                         this->options |= ONENAND_HAS_4KB_PAGE;
3400                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3401                 }
3402
3403         case ONENAND_DEVICE_DENSITY_2Gb:
3404                 /* 2Gb DDP does not have 2 plane */
3405                 if (!ONENAND_IS_DDP(this))
3406                         this->options |= ONENAND_HAS_2PLANE;
3407                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3408
3409         case ONENAND_DEVICE_DENSITY_1Gb:
3410                 /* A-Die has all block unlock */
3411                 if (process)
3412                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3413                 break;
3414
3415         default:
3416                 /* Some OneNAND has continuous lock scheme */
3417                 if (!process)
3418                         this->options |= ONENAND_HAS_CONT_LOCK;
3419                 break;
3420         }
3421
3422         /* The MLC has 4KiB pagesize. */
3423         if (ONENAND_IS_MLC(this))
3424                 this->options |= ONENAND_HAS_4KB_PAGE;
3425
3426         if (ONENAND_IS_4KB_PAGE(this))
3427                 this->options &= ~ONENAND_HAS_2PLANE;
3428
3429         if (FLEXONENAND(this)) {
3430                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3431                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3432         }
3433
3434         if (this->options & ONENAND_HAS_CONT_LOCK)
3435                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3436         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3437                 printk(KERN_DEBUG "Chip support all block unlock\n");
3438         if (this->options & ONENAND_HAS_2PLANE)
3439                 printk(KERN_DEBUG "Chip has 2 plane\n");
3440         if (this->options & ONENAND_HAS_4KB_PAGE)
3441                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3442         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3443                 printk(KERN_DEBUG "Chip has cache program feature\n");
3444 }
3445
3446 /**
3447  * onenand_print_device_info - Print device & version ID
3448  * @param device        device ID
3449  * @param version       version ID
3450  *
3451  * Print device & version ID
3452  */
3453 static void onenand_print_device_info(int device, int version)
3454 {
3455         int vcc, demuxed, ddp, density, flexonenand;
3456
3457         vcc = device & ONENAND_DEVICE_VCC_MASK;
3458         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3459         ddp = device & ONENAND_DEVICE_IS_DDP;
3460         density = onenand_get_density(device);
3461         flexonenand = device & DEVICE_IS_FLEXONENAND;
3462         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3463                 demuxed ? "" : "Muxed ",
3464                 flexonenand ? "Flex-" : "",
3465                 ddp ? "(DDP)" : "",
3466                 (16 << density),
3467                 vcc ? "2.65/3.3" : "1.8",
3468                 device);
3469         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3470 }
3471
3472 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3473         {ONENAND_MFR_SAMSUNG, "Samsung"},
3474         {ONENAND_MFR_NUMONYX, "Numonyx"},
3475 };
3476
3477 /**
3478  * onenand_check_maf - Check manufacturer ID
3479  * @param manuf         manufacturer ID
3480  *
3481  * Check manufacturer ID
3482  */
3483 static int onenand_check_maf(int manuf)
3484 {
3485         int size = ARRAY_SIZE(onenand_manuf_ids);
3486         char *name;
3487         int i;
3488
3489         for (i = 0; i < size; i++)
3490                 if (manuf == onenand_manuf_ids[i].id)
3491                         break;
3492
3493         if (i < size)
3494                 name = onenand_manuf_ids[i].name;
3495         else
3496                 name = "Unknown";
3497
3498         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3499
3500         return (i == size);
3501 }
3502
3503 /**
3504 * flexonenand_get_boundary      - Reads the SLC boundary
3505 * @param onenand_info           - onenand info structure
3506 **/
3507 static int flexonenand_get_boundary(struct mtd_info *mtd)
3508 {
3509         struct onenand_chip *this = mtd->priv;
3510         unsigned die, bdry;
3511         int ret, syscfg, locked;
3512
3513         /* Disable ECC */
3514         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3515         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3516
3517         for (die = 0; die < this->dies; die++) {
3518                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3519                 this->wait(mtd, FL_SYNCING);
3520
3521                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3522                 ret = this->wait(mtd, FL_READING);
3523
3524                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3525                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3526                         locked = 0;
3527                 else
3528                         locked = 1;
3529                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3530
3531                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3532                 ret = this->wait(mtd, FL_RESETING);
3533
3534                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3535                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3536         }
3537
3538         /* Enable ECC */
3539         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3540         return 0;
3541 }
3542
3543 /**
3544  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3545  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3546  * @param mtd           - MTD device structure
3547  */
3548 static void flexonenand_get_size(struct mtd_info *mtd)
3549 {
3550         struct onenand_chip *this = mtd->priv;
3551         int die, i, eraseshift, density;
3552         int blksperdie, maxbdry;
3553         loff_t ofs;
3554
3555         density = onenand_get_density(this->device_id);
3556         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3557         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3558         maxbdry = blksperdie - 1;
3559         eraseshift = this->erase_shift - 1;
3560
3561         mtd->numeraseregions = this->dies << 1;
3562
3563         /* This fills up the device boundary */
3564         flexonenand_get_boundary(mtd);
3565         die = ofs = 0;
3566         i = -1;
3567         for (; die < this->dies; die++) {
3568                 if (!die || this->boundary[die-1] != maxbdry) {
3569                         i++;
3570                         mtd->eraseregions[i].offset = ofs;
3571                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3572                         mtd->eraseregions[i].numblocks =
3573                                                         this->boundary[die] + 1;
3574                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3575                         eraseshift++;
3576                 } else {
3577                         mtd->numeraseregions -= 1;
3578                         mtd->eraseregions[i].numblocks +=
3579                                                         this->boundary[die] + 1;
3580                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3581                 }
3582                 if (this->boundary[die] != maxbdry) {
3583                         i++;
3584                         mtd->eraseregions[i].offset = ofs;
3585                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3586                         mtd->eraseregions[i].numblocks = maxbdry ^
3587                                                          this->boundary[die];
3588                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3589                         eraseshift--;
3590                 } else
3591                         mtd->numeraseregions -= 1;
3592         }
3593
3594         /* Expose MLC erase size except when all blocks are SLC */
3595         mtd->erasesize = 1 << this->erase_shift;
3596         if (mtd->numeraseregions == 1)
3597                 mtd->erasesize >>= 1;
3598
3599         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3600         for (i = 0; i < mtd->numeraseregions; i++)
3601                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3602                         " numblocks: %04u]\n",
3603                         (unsigned int) mtd->eraseregions[i].offset,
3604                         mtd->eraseregions[i].erasesize,
3605                         mtd->eraseregions[i].numblocks);
3606
3607         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3608                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3609                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3610                                                  << (this->erase_shift - 1);
3611                 mtd->size += this->diesize[die];
3612         }
3613 }
3614
3615 /**
3616  * flexonenand_check_blocks_erased - Check if blocks are erased
3617  * @param mtd_info      - mtd info structure
3618  * @param start         - first erase block to check
3619  * @param end           - last erase block to check
3620  *
3621  * Converting an unerased block from MLC to SLC
3622  * causes byte values to change. Since both data and its ECC
3623  * have changed, reads on the block give uncorrectable error.
3624  * This might lead to the block being detected as bad.
3625  *
3626  * Avoid this by ensuring that the block to be converted is
3627  * erased.
3628  */
3629 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3630 {
3631         struct onenand_chip *this = mtd->priv;
3632         int i, ret;
3633         int block;
3634         struct mtd_oob_ops ops = {
3635                 .mode = MTD_OOB_PLACE,
3636                 .ooboffs = 0,
3637                 .ooblen = mtd->oobsize,
3638                 .datbuf = NULL,
3639                 .oobbuf = this->oob_buf,
3640         };
3641         loff_t addr;
3642
3643         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3644
3645         for (block = start; block <= end; block++) {
3646                 addr = flexonenand_addr(this, block);
3647                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3648                         continue;
3649
3650                 /*
3651                  * Since main area write results in ECC write to spare,
3652                  * it is sufficient to check only ECC bytes for change.
3653                  */
3654                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3655                 if (ret)
3656                         return ret;
3657
3658                 for (i = 0; i < mtd->oobsize; i++)
3659                         if (this->oob_buf[i] != 0xff)
3660                                 break;
3661
3662                 if (i != mtd->oobsize) {
3663                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3664                                 __func__, block);
3665                         return 1;
3666                 }
3667         }
3668
3669         return 0;
3670 }
3671
3672 /**
3673  * flexonenand_set_boundary     - Writes the SLC boundary
3674  * @param mtd                   - mtd info structure
3675  */
3676 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3677                                     int boundary, int lock)
3678 {
3679         struct onenand_chip *this = mtd->priv;
3680         int ret, density, blksperdie, old, new, thisboundary;
3681         loff_t addr;
3682
3683         /* Change only once for SDP Flex-OneNAND */
3684         if (die && (!ONENAND_IS_DDP(this)))
3685                 return 0;
3686
3687         /* boundary value of -1 indicates no required change */
3688         if (boundary < 0 || boundary == this->boundary[die])
3689                 return 0;
3690
3691         density = onenand_get_density(this->device_id);
3692         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3693         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3694
3695         if (boundary >= blksperdie) {
3696                 printk(KERN_ERR "%s: Invalid boundary value. "
3697                                 "Boundary not changed.\n", __func__);
3698                 return -EINVAL;
3699         }
3700
3701         /* Check if converting blocks are erased */
3702         old = this->boundary[die] + (die * this->density_mask);
3703         new = boundary + (die * this->density_mask);
3704         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3705         if (ret) {
3706                 printk(KERN_ERR "%s: Please erase blocks "
3707                                 "before boundary change\n", __func__);
3708                 return ret;
3709         }
3710
3711         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3712         this->wait(mtd, FL_SYNCING);
3713
3714         /* Check is boundary is locked */
3715         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3716         ret = this->wait(mtd, FL_READING);
3717
3718         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3719         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3720                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3721                 ret = 1;
3722                 goto out;
3723         }
3724
3725         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3726                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3727
3728         addr = die ? this->diesize[0] : 0;
3729
3730         boundary &= FLEXONENAND_PI_MASK;
3731         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3732
3733         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3734         ret = this->wait(mtd, FL_ERASING);
3735         if (ret) {
3736                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3737                        __func__, die);
3738                 goto out;
3739         }
3740
3741         this->write_word(boundary, this->base + ONENAND_DATARAM);
3742         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3743         ret = this->wait(mtd, FL_WRITING);
3744         if (ret) {
3745                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3746                         __func__, die);
3747                 goto out;
3748         }
3749
3750         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3751         ret = this->wait(mtd, FL_WRITING);
3752 out:
3753         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3754         this->wait(mtd, FL_RESETING);
3755         if (!ret)
3756                 /* Recalculate device size on boundary change*/
3757                 flexonenand_get_size(mtd);
3758
3759         return ret;
3760 }
3761
3762 /**
3763  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3764  * @param mtd           MTD device structure
3765  *
3766  * OneNAND detection method:
3767  *   Compare the values from command with ones from register
3768  */
3769 static int onenand_chip_probe(struct mtd_info *mtd)
3770 {
3771         struct onenand_chip *this = mtd->priv;
3772         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3773         int syscfg;
3774
3775         /* Save system configuration 1 */
3776         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3777         /* Clear Sync. Burst Read mode to read BootRAM */
3778         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3779
3780         /* Send the command for reading device ID from BootRAM */
3781         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3782
3783         /* Read manufacturer and device IDs from BootRAM */
3784         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3785         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3786
3787         /* Reset OneNAND to read default register values */
3788         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3789         /* Wait reset */
3790         this->wait(mtd, FL_RESETING);
3791
3792         /* Restore system configuration 1 */
3793         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3794
3795         /* Check manufacturer ID */
3796         if (onenand_check_maf(bram_maf_id))
3797                 return -ENXIO;
3798
3799         /* Read manufacturer and device IDs from Register */
3800         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3801         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3802
3803         /* Check OneNAND device */
3804         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3805                 return -ENXIO;
3806
3807         return 0;
3808 }
3809
3810 /**
3811  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3812  * @param mtd           MTD device structure
3813  */
3814 static int onenand_probe(struct mtd_info *mtd)
3815 {
3816         struct onenand_chip *this = mtd->priv;
3817         int maf_id, dev_id, ver_id;
3818         int density;
3819         int ret;
3820
3821         ret = this->chip_probe(mtd);
3822         if (ret)
3823                 return ret;
3824
3825         /* Read manufacturer and device IDs from Register */
3826         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3827         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3828         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3829         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3830
3831         /* Flash device information */
3832         onenand_print_device_info(dev_id, ver_id);
3833         this->device_id = dev_id;
3834         this->version_id = ver_id;
3835
3836         /* Check OneNAND features */
3837         onenand_check_features(mtd);
3838
3839         density = onenand_get_density(dev_id);
3840         if (FLEXONENAND(this)) {
3841                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3842                 /* Maximum possible erase regions */
3843                 mtd->numeraseregions = this->dies << 1;
3844                 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3845                                         * (this->dies << 1), GFP_KERNEL);
3846                 if (!mtd->eraseregions)
3847                         return -ENOMEM;
3848         }
3849
3850         /*
3851          * For Flex-OneNAND, chipsize represents maximum possible device size.
3852          * mtd->size represents the actual device size.
3853          */
3854         this->chipsize = (16 << density) << 20;
3855
3856         /* OneNAND page size & block size */
3857         /* The data buffer size is equal to page size */
3858         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3859         /* We use the full BufferRAM */
3860         if (ONENAND_IS_4KB_PAGE(this))
3861                 mtd->writesize <<= 1;
3862
3863         mtd->oobsize = mtd->writesize >> 5;
3864         /* Pages per a block are always 64 in OneNAND */
3865         mtd->erasesize = mtd->writesize << 6;
3866         /*
3867          * Flex-OneNAND SLC area has 64 pages per block.
3868          * Flex-OneNAND MLC area has 128 pages per block.
3869          * Expose MLC erase size to find erase_shift and page_mask.
3870          */
3871         if (FLEXONENAND(this))
3872                 mtd->erasesize <<= 1;
3873
3874         this->erase_shift = ffs(mtd->erasesize) - 1;
3875         this->page_shift = ffs(mtd->writesize) - 1;
3876         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3877         /* Set density mask. it is used for DDP */
3878         if (ONENAND_IS_DDP(this))
3879                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3880         /* It's real page size */
3881         this->writesize = mtd->writesize;
3882
3883         /* REVISIT: Multichip handling */
3884
3885         if (FLEXONENAND(this))
3886                 flexonenand_get_size(mtd);
3887         else
3888                 mtd->size = this->chipsize;
3889
3890         /*
3891          * We emulate the 4KiB page and 256KiB erase block size
3892          * But oobsize is still 64 bytes.
3893          * It is only valid if you turn on 2X program support,
3894          * Otherwise it will be ignored by compiler.
3895          */
3896         if (ONENAND_IS_2PLANE(this)) {
3897                 mtd->writesize <<= 1;
3898                 mtd->erasesize <<= 1;
3899         }
3900
3901         return 0;
3902 }
3903
3904 /**
3905  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3906  * @param mtd           MTD device structure
3907  */
3908 static int onenand_suspend(struct mtd_info *mtd)
3909 {
3910         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3911 }
3912
3913 /**
3914  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3915  * @param mtd           MTD device structure
3916  */
3917 static void onenand_resume(struct mtd_info *mtd)
3918 {
3919         struct onenand_chip *this = mtd->priv;
3920
3921         if (this->state == FL_PM_SUSPENDED)
3922                 onenand_release_device(mtd);
3923         else
3924                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3925                                 "in suspended state\n", __func__);
3926 }
3927
3928 /**
3929  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3930  * @param mtd           MTD device structure
3931  * @param maxchips      Number of chips to scan for
3932  *
3933  * This fills out all the not initialized function pointers
3934  * with the defaults.
3935  * The flash ID is read and the mtd/chip structures are
3936  * filled with the appropriate values.
3937  */
3938 int onenand_scan(struct mtd_info *mtd, int maxchips)
3939 {
3940         int i, ret;
3941         struct onenand_chip *this = mtd->priv;
3942
3943         if (!this->read_word)
3944                 this->read_word = onenand_readw;
3945         if (!this->write_word)
3946                 this->write_word = onenand_writew;
3947
3948         if (!this->command)
3949                 this->command = onenand_command;
3950         if (!this->wait)
3951                 onenand_setup_wait(mtd);
3952         if (!this->bbt_wait)
3953                 this->bbt_wait = onenand_bbt_wait;
3954         if (!this->unlock_all)
3955                 this->unlock_all = onenand_unlock_all;
3956
3957         if (!this->chip_probe)
3958                 this->chip_probe = onenand_chip_probe;
3959
3960         if (!this->read_bufferram)
3961                 this->read_bufferram = onenand_read_bufferram;
3962         if (!this->write_bufferram)
3963                 this->write_bufferram = onenand_write_bufferram;
3964
3965         if (!this->block_markbad)
3966                 this->block_markbad = onenand_default_block_markbad;
3967         if (!this->scan_bbt)
3968                 this->scan_bbt = onenand_default_bbt;
3969
3970         if (onenand_probe(mtd))
3971                 return -ENXIO;
3972
3973         /* Set Sync. Burst Read after probing */
3974         if (this->mmcontrol) {
3975                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3976                 this->read_bufferram = onenand_sync_read_bufferram;
3977         }
3978
3979         /* Allocate buffers, if necessary */
3980         if (!this->page_buf) {
3981                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3982                 if (!this->page_buf) {
3983                         printk(KERN_ERR "%s: Can't allocate page_buf\n",
3984                                 __func__);
3985                         return -ENOMEM;
3986                 }
3987 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3988                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3989                 if (!this->verify_buf) {
3990                         kfree(this->page_buf);
3991                         return -ENOMEM;
3992                 }
3993 #endif
3994                 this->options |= ONENAND_PAGEBUF_ALLOC;
3995         }
3996         if (!this->oob_buf) {
3997                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3998                 if (!this->oob_buf) {
3999                         printk(KERN_ERR "%s: Can't allocate oob_buf\n",
4000                                 __func__);
4001                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4002                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
4003                                 kfree(this->page_buf);
4004                         }
4005                         return -ENOMEM;
4006                 }
4007                 this->options |= ONENAND_OOBBUF_ALLOC;
4008         }
4009
4010         this->state = FL_READY;
4011         init_waitqueue_head(&this->wq);
4012         spin_lock_init(&this->chip_lock);
4013
4014         /*
4015          * Allow subpage writes up to oobsize.
4016          */
4017         switch (mtd->oobsize) {
4018         case 128:
4019                 this->ecclayout = &onenand_oob_128;
4020                 mtd->subpage_sft = 0;
4021                 break;
4022         case 64:
4023                 this->ecclayout = &onenand_oob_64;
4024                 mtd->subpage_sft = 2;
4025                 break;
4026
4027         case 32:
4028                 this->ecclayout = &onenand_oob_32;
4029                 mtd->subpage_sft = 1;
4030                 break;
4031
4032         default:
4033                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4034                         __func__, mtd->oobsize);
4035                 mtd->subpage_sft = 0;
4036                 /* To prevent kernel oops */
4037                 this->ecclayout = &onenand_oob_32;
4038                 break;
4039         }
4040
4041         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4042
4043         /*
4044          * The number of bytes available for a client to place data into
4045          * the out of band area
4046          */
4047         this->ecclayout->oobavail = 0;
4048         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4049             this->ecclayout->oobfree[i].length; i++)
4050                 this->ecclayout->oobavail +=
4051                         this->ecclayout->oobfree[i].length;
4052         mtd->oobavail = this->ecclayout->oobavail;
4053
4054         mtd->ecclayout = this->ecclayout;
4055
4056         /* Fill in remaining MTD driver data */
4057         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4058         mtd->flags = MTD_CAP_NANDFLASH;
4059         mtd->erase = onenand_erase;
4060         mtd->point = NULL;
4061         mtd->unpoint = NULL;
4062         mtd->read = onenand_read;
4063         mtd->write = onenand_write;
4064         mtd->read_oob = onenand_read_oob;
4065         mtd->write_oob = onenand_write_oob;
4066         mtd->panic_write = onenand_panic_write;
4067 #ifdef CONFIG_MTD_ONENAND_OTP
4068         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4069         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4070         mtd->get_user_prot_info = onenand_get_user_prot_info;
4071         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4072         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4073         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4074 #endif
4075         mtd->sync = onenand_sync;
4076         mtd->lock = onenand_lock;
4077         mtd->unlock = onenand_unlock;
4078         mtd->suspend = onenand_suspend;
4079         mtd->resume = onenand_resume;
4080         mtd->block_isbad = onenand_block_isbad;
4081         mtd->block_markbad = onenand_block_markbad;
4082         mtd->owner = THIS_MODULE;
4083         mtd->writebufsize = mtd->writesize;
4084
4085         /* Unlock whole block */
4086         this->unlock_all(mtd);
4087
4088         ret = this->scan_bbt(mtd);
4089         if ((!FLEXONENAND(this)) || ret)
4090                 return ret;
4091
4092         /* Change Flex-OneNAND boundaries if required */
4093         for (i = 0; i < MAX_DIES; i++)
4094                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4095                                                  flex_bdry[(2 * i) + 1]);
4096
4097         return 0;
4098 }
4099
4100 /**
4101  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4102  * @param mtd           MTD device structure
4103  */
4104 void onenand_release(struct mtd_info *mtd)
4105 {
4106         struct onenand_chip *this = mtd->priv;
4107
4108 #ifdef CONFIG_MTD_PARTITIONS
4109         /* Deregister partitions */
4110         del_mtd_partitions (mtd);
4111 #endif
4112         /* Deregister the device */
4113         del_mtd_device (mtd);
4114
4115         /* Free bad block table memory, if allocated */
4116         if (this->bbm) {
4117                 struct bbm_info *bbm = this->bbm;
4118                 kfree(bbm->bbt);
4119                 kfree(this->bbm);
4120         }
4121         /* Buffers allocated by onenand_scan */
4122         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4123                 kfree(this->page_buf);
4124 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4125                 kfree(this->verify_buf);
4126 #endif
4127         }
4128         if (this->options & ONENAND_OOBBUF_ALLOC)
4129                 kfree(this->oob_buf);
4130         kfree(mtd->eraseregions);
4131 }
4132
4133 EXPORT_SYMBOL_GPL(onenand_scan);
4134 EXPORT_SYMBOL_GPL(onenand_release);
4135
4136 MODULE_LICENSE("GPL");
4137 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4138 MODULE_DESCRIPTION("Generic OneNAND flash driver code");