Merge branch 'for-linus' of git://git.kernel.dk/linux-2.6-block
[pandora-kernel.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *      auto-placement support, read-while load support, various fixes
12  *
13  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *      Flex-OneNAND support
15  *      Amul Kumar Saha <amul.saha at samsung.com>
16  *      OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
35
36 #include <asm/io.h>
37
38 /*
39  * Multiblock erase if number of blocks to erase is 2 or more.
40  * Maximum number of blocks for simultaneous erase is 64.
41  */
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
44
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
47
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
50                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51                                 "DIE_BDRY: SLC boundary of the die"
52                                 "LOCK: Locking information for SLC boundary"
53                                 "    : 0->Set boundary in unlocked status"
54                                 "    : 1->Set boundary in locked status");
55
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
58
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
61                         "Syntax : otp=LOCK_TYPE"
62                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63                         "          : 0 -> Default (No Blocks Locked)"
64                         "          : 1 -> OTP Block lock"
65                         "          : 2 -> 1st Block lock"
66                         "          : 3 -> BOTH OTP Block and 1st Block lock");
67
68 /**
69  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
70  *  For now, we expose only 64 out of 80 ecc bytes
71  */
72 static struct nand_ecclayout onenand_oob_128 = {
73         .eccbytes       = 64,
74         .eccpos         = {
75                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81                 102, 103, 104, 105
82                 },
83         .oobfree        = {
84                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
86         }
87 };
88
89 /**
90  * onenand_oob_64 - oob info for large (2KB) page
91  */
92 static struct nand_ecclayout onenand_oob_64 = {
93         .eccbytes       = 20,
94         .eccpos         = {
95                 8, 9, 10, 11, 12,
96                 24, 25, 26, 27, 28,
97                 40, 41, 42, 43, 44,
98                 56, 57, 58, 59, 60,
99                 },
100         .oobfree        = {
101                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
102                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
103         }
104 };
105
106 /**
107  * onenand_oob_32 - oob info for middle (1KB) page
108  */
109 static struct nand_ecclayout onenand_oob_32 = {
110         .eccbytes       = 10,
111         .eccpos         = {
112                 8, 9, 10, 11, 12,
113                 24, 25, 26, 27, 28,
114                 },
115         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
116 };
117
118 static const unsigned char ffchars[] = {
119         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
121         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
123         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
125         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
127         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
129         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
130         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
131         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
132         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
133         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
134         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
135 };
136
137 /**
138  * onenand_readw - [OneNAND Interface] Read OneNAND register
139  * @param addr          address to read
140  *
141  * Read OneNAND register
142  */
143 static unsigned short onenand_readw(void __iomem *addr)
144 {
145         return readw(addr);
146 }
147
148 /**
149  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
150  * @param value         value to write
151  * @param addr          address to write
152  *
153  * Write OneNAND register with value
154  */
155 static void onenand_writew(unsigned short value, void __iomem *addr)
156 {
157         writew(value, addr);
158 }
159
160 /**
161  * onenand_block_address - [DEFAULT] Get block address
162  * @param this          onenand chip data structure
163  * @param block         the block
164  * @return              translated block address if DDP, otherwise same
165  *
166  * Setup Start Address 1 Register (F100h)
167  */
168 static int onenand_block_address(struct onenand_chip *this, int block)
169 {
170         /* Device Flash Core select, NAND Flash Block Address */
171         if (block & this->density_mask)
172                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
173
174         return block;
175 }
176
177 /**
178  * onenand_bufferram_address - [DEFAULT] Get bufferram address
179  * @param this          onenand chip data structure
180  * @param block         the block
181  * @return              set DBS value if DDP, otherwise 0
182  *
183  * Setup Start Address 2 Register (F101h) for DDP
184  */
185 static int onenand_bufferram_address(struct onenand_chip *this, int block)
186 {
187         /* Device BufferRAM Select */
188         if (block & this->density_mask)
189                 return ONENAND_DDP_CHIP1;
190
191         return ONENAND_DDP_CHIP0;
192 }
193
194 /**
195  * onenand_page_address - [DEFAULT] Get page address
196  * @param page          the page address
197  * @param sector        the sector address
198  * @return              combined page and sector address
199  *
200  * Setup Start Address 8 Register (F107h)
201  */
202 static int onenand_page_address(int page, int sector)
203 {
204         /* Flash Page Address, Flash Sector Address */
205         int fpa, fsa;
206
207         fpa = page & ONENAND_FPA_MASK;
208         fsa = sector & ONENAND_FSA_MASK;
209
210         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
211 }
212
213 /**
214  * onenand_buffer_address - [DEFAULT] Get buffer address
215  * @param dataram1      DataRAM index
216  * @param sectors       the sector address
217  * @param count         the number of sectors
218  * @return              the start buffer value
219  *
220  * Setup Start Buffer Register (F200h)
221  */
222 static int onenand_buffer_address(int dataram1, int sectors, int count)
223 {
224         int bsa, bsc;
225
226         /* BufferRAM Sector Address */
227         bsa = sectors & ONENAND_BSA_MASK;
228
229         if (dataram1)
230                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
231         else
232                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
233
234         /* BufferRAM Sector Count */
235         bsc = count & ONENAND_BSC_MASK;
236
237         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
238 }
239
240 /**
241  * flexonenand_block- For given address return block number
242  * @param this         - OneNAND device structure
243  * @param addr          - Address for which block number is needed
244  */
245 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
246 {
247         unsigned boundary, blk, die = 0;
248
249         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
250                 die = 1;
251                 addr -= this->diesize[0];
252         }
253
254         boundary = this->boundary[die];
255
256         blk = addr >> (this->erase_shift - 1);
257         if (blk > boundary)
258                 blk = (blk + boundary + 1) >> 1;
259
260         blk += die ? this->density_mask : 0;
261         return blk;
262 }
263
264 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
265 {
266         if (!FLEXONENAND(this))
267                 return addr >> this->erase_shift;
268         return flexonenand_block(this, addr);
269 }
270
271 /**
272  * flexonenand_addr - Return address of the block
273  * @this:               OneNAND device structure
274  * @block:              Block number on Flex-OneNAND
275  *
276  * Return address of the block
277  */
278 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
279 {
280         loff_t ofs = 0;
281         int die = 0, boundary;
282
283         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
284                 block -= this->density_mask;
285                 die = 1;
286                 ofs = this->diesize[0];
287         }
288
289         boundary = this->boundary[die];
290         ofs += (loff_t)block << (this->erase_shift - 1);
291         if (block > (boundary + 1))
292                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
293         return ofs;
294 }
295
296 loff_t onenand_addr(struct onenand_chip *this, int block)
297 {
298         if (!FLEXONENAND(this))
299                 return (loff_t)block << this->erase_shift;
300         return flexonenand_addr(this, block);
301 }
302 EXPORT_SYMBOL(onenand_addr);
303
304 /**
305  * onenand_get_density - [DEFAULT] Get OneNAND density
306  * @param dev_id        OneNAND device ID
307  *
308  * Get OneNAND density from device ID
309  */
310 static inline int onenand_get_density(int dev_id)
311 {
312         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
313         return (density & ONENAND_DEVICE_DENSITY_MASK);
314 }
315
316 /**
317  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
318  * @param mtd           MTD device structure
319  * @param addr          address whose erase region needs to be identified
320  */
321 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
322 {
323         int i;
324
325         for (i = 0; i < mtd->numeraseregions; i++)
326                 if (addr < mtd->eraseregions[i].offset)
327                         break;
328         return i - 1;
329 }
330 EXPORT_SYMBOL(flexonenand_region);
331
332 /**
333  * onenand_command - [DEFAULT] Send command to OneNAND device
334  * @param mtd           MTD device structure
335  * @param cmd           the command to be sent
336  * @param addr          offset to read from or write to
337  * @param len           number of bytes to read or write
338  *
339  * Send command to OneNAND device. This function is used for middle/large page
340  * devices (1KB/2KB Bytes per page)
341  */
342 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
343 {
344         struct onenand_chip *this = mtd->priv;
345         int value, block, page;
346
347         /* Address translation */
348         switch (cmd) {
349         case ONENAND_CMD_UNLOCK:
350         case ONENAND_CMD_LOCK:
351         case ONENAND_CMD_LOCK_TIGHT:
352         case ONENAND_CMD_UNLOCK_ALL:
353                 block = -1;
354                 page = -1;
355                 break;
356
357         case FLEXONENAND_CMD_PI_ACCESS:
358                 /* addr contains die index */
359                 block = addr * this->density_mask;
360                 page = -1;
361                 break;
362
363         case ONENAND_CMD_ERASE:
364         case ONENAND_CMD_MULTIBLOCK_ERASE:
365         case ONENAND_CMD_ERASE_VERIFY:
366         case ONENAND_CMD_BUFFERRAM:
367         case ONENAND_CMD_OTP_ACCESS:
368                 block = onenand_block(this, addr);
369                 page = -1;
370                 break;
371
372         case FLEXONENAND_CMD_READ_PI:
373                 cmd = ONENAND_CMD_READ;
374                 block = addr * this->density_mask;
375                 page = 0;
376                 break;
377
378         default:
379                 block = onenand_block(this, addr);
380                 if (FLEXONENAND(this))
381                         page = (int) (addr - onenand_addr(this, block))>>\
382                                 this->page_shift;
383                 else
384                         page = (int) (addr >> this->page_shift);
385                 if (ONENAND_IS_2PLANE(this)) {
386                         /* Make the even block number */
387                         block &= ~1;
388                         /* Is it the odd plane? */
389                         if (addr & this->writesize)
390                                 block++;
391                         page >>= 1;
392                 }
393                 page &= this->page_mask;
394                 break;
395         }
396
397         /* NOTE: The setting order of the registers is very important! */
398         if (cmd == ONENAND_CMD_BUFFERRAM) {
399                 /* Select DataRAM for DDP */
400                 value = onenand_bufferram_address(this, block);
401                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
402
403                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
404                         /* It is always BufferRAM0 */
405                         ONENAND_SET_BUFFERRAM0(this);
406                 else
407                         /* Switch to the next data buffer */
408                         ONENAND_SET_NEXT_BUFFERRAM(this);
409
410                 return 0;
411         }
412
413         if (block != -1) {
414                 /* Write 'DFS, FBA' of Flash */
415                 value = onenand_block_address(this, block);
416                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
417
418                 /* Select DataRAM for DDP */
419                 value = onenand_bufferram_address(this, block);
420                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
421         }
422
423         if (page != -1) {
424                 /* Now we use page size operation */
425                 int sectors = 0, count = 0;
426                 int dataram;
427
428                 switch (cmd) {
429                 case FLEXONENAND_CMD_RECOVER_LSB:
430                 case ONENAND_CMD_READ:
431                 case ONENAND_CMD_READOOB:
432                         if (ONENAND_IS_4KB_PAGE(this))
433                                 /* It is always BufferRAM0 */
434                                 dataram = ONENAND_SET_BUFFERRAM0(this);
435                         else
436                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
437                         break;
438
439                 default:
440                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
441                                 cmd = ONENAND_CMD_2X_PROG;
442                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
443                         break;
444                 }
445
446                 /* Write 'FPA, FSA' of Flash */
447                 value = onenand_page_address(page, sectors);
448                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
449
450                 /* Write 'BSA, BSC' of DataRAM */
451                 value = onenand_buffer_address(dataram, sectors, count);
452                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
453         }
454
455         /* Interrupt clear */
456         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
457
458         /* Write command */
459         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
460
461         return 0;
462 }
463
464 /**
465  * onenand_read_ecc - return ecc status
466  * @param this          onenand chip structure
467  */
468 static inline int onenand_read_ecc(struct onenand_chip *this)
469 {
470         int ecc, i, result = 0;
471
472         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
473                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
474
475         for (i = 0; i < 4; i++) {
476                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
477                 if (likely(!ecc))
478                         continue;
479                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
480                         return ONENAND_ECC_2BIT_ALL;
481                 else
482                         result = ONENAND_ECC_1BIT_ALL;
483         }
484
485         return result;
486 }
487
488 /**
489  * onenand_wait - [DEFAULT] wait until the command is done
490  * @param mtd           MTD device structure
491  * @param state         state to select the max. timeout value
492  *
493  * Wait for command done. This applies to all OneNAND command
494  * Read can take up to 30us, erase up to 2ms and program up to 350us
495  * according to general OneNAND specs
496  */
497 static int onenand_wait(struct mtd_info *mtd, int state)
498 {
499         struct onenand_chip * this = mtd->priv;
500         unsigned long timeout;
501         unsigned int flags = ONENAND_INT_MASTER;
502         unsigned int interrupt = 0;
503         unsigned int ctrl;
504
505         /* The 20 msec is enough */
506         timeout = jiffies + msecs_to_jiffies(20);
507         while (time_before(jiffies, timeout)) {
508                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
509
510                 if (interrupt & flags)
511                         break;
512
513                 if (state != FL_READING && state != FL_PREPARING_ERASE)
514                         cond_resched();
515         }
516         /* To get correct interrupt status in timeout case */
517         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
518
519         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
520
521         /*
522          * In the Spec. it checks the controller status first
523          * However if you get the correct information in case of
524          * power off recovery (POR) test, it should read ECC status first
525          */
526         if (interrupt & ONENAND_INT_READ) {
527                 int ecc = onenand_read_ecc(this);
528                 if (ecc) {
529                         if (ecc & ONENAND_ECC_2BIT_ALL) {
530                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
531                                         __func__, ecc);
532                                 mtd->ecc_stats.failed++;
533                                 return -EBADMSG;
534                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
535                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
536                                         __func__, ecc);
537                                 mtd->ecc_stats.corrected++;
538                         }
539                 }
540         } else if (state == FL_READING) {
541                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
542                         __func__, ctrl, interrupt);
543                 return -EIO;
544         }
545
546         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
547                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
548                        __func__, ctrl, interrupt);
549                 return -EIO;
550         }
551
552         if (!(interrupt & ONENAND_INT_MASTER)) {
553                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
554                        __func__, ctrl, interrupt);
555                 return -EIO;
556         }
557
558         /* If there's controller error, it's a real error */
559         if (ctrl & ONENAND_CTRL_ERROR) {
560                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
561                         __func__, ctrl);
562                 if (ctrl & ONENAND_CTRL_LOCK)
563                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
564                 return -EIO;
565         }
566
567         return 0;
568 }
569
570 /*
571  * onenand_interrupt - [DEFAULT] onenand interrupt handler
572  * @param irq           onenand interrupt number
573  * @param dev_id        interrupt data
574  *
575  * complete the work
576  */
577 static irqreturn_t onenand_interrupt(int irq, void *data)
578 {
579         struct onenand_chip *this = data;
580
581         /* To handle shared interrupt */
582         if (!this->complete.done)
583                 complete(&this->complete);
584
585         return IRQ_HANDLED;
586 }
587
588 /*
589  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
590  * @param mtd           MTD device structure
591  * @param state         state to select the max. timeout value
592  *
593  * Wait for command done.
594  */
595 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
596 {
597         struct onenand_chip *this = mtd->priv;
598
599         wait_for_completion(&this->complete);
600
601         return onenand_wait(mtd, state);
602 }
603
604 /*
605  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
606  * @param mtd           MTD device structure
607  * @param state         state to select the max. timeout value
608  *
609  * Try interrupt based wait (It is used one-time)
610  */
611 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
612 {
613         struct onenand_chip *this = mtd->priv;
614         unsigned long remain, timeout;
615
616         /* We use interrupt wait first */
617         this->wait = onenand_interrupt_wait;
618
619         timeout = msecs_to_jiffies(100);
620         remain = wait_for_completion_timeout(&this->complete, timeout);
621         if (!remain) {
622                 printk(KERN_INFO "OneNAND: There's no interrupt. "
623                                 "We use the normal wait\n");
624
625                 /* Release the irq */
626                 free_irq(this->irq, this);
627
628                 this->wait = onenand_wait;
629         }
630
631         return onenand_wait(mtd, state);
632 }
633
634 /*
635  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
636  * @param mtd           MTD device structure
637  *
638  * There's two method to wait onenand work
639  * 1. polling - read interrupt status register
640  * 2. interrupt - use the kernel interrupt method
641  */
642 static void onenand_setup_wait(struct mtd_info *mtd)
643 {
644         struct onenand_chip *this = mtd->priv;
645         int syscfg;
646
647         init_completion(&this->complete);
648
649         if (this->irq <= 0) {
650                 this->wait = onenand_wait;
651                 return;
652         }
653
654         if (request_irq(this->irq, &onenand_interrupt,
655                                 IRQF_SHARED, "onenand", this)) {
656                 /* If we can't get irq, use the normal wait */
657                 this->wait = onenand_wait;
658                 return;
659         }
660
661         /* Enable interrupt */
662         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
663         syscfg |= ONENAND_SYS_CFG1_IOBE;
664         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
665
666         this->wait = onenand_try_interrupt_wait;
667 }
668
669 /**
670  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
671  * @param mtd           MTD data structure
672  * @param area          BufferRAM area
673  * @return              offset given area
674  *
675  * Return BufferRAM offset given area
676  */
677 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
678 {
679         struct onenand_chip *this = mtd->priv;
680
681         if (ONENAND_CURRENT_BUFFERRAM(this)) {
682                 /* Note: the 'this->writesize' is a real page size */
683                 if (area == ONENAND_DATARAM)
684                         return this->writesize;
685                 if (area == ONENAND_SPARERAM)
686                         return mtd->oobsize;
687         }
688
689         return 0;
690 }
691
692 /**
693  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
694  * @param mtd           MTD data structure
695  * @param area          BufferRAM area
696  * @param buffer        the databuffer to put/get data
697  * @param offset        offset to read from or write to
698  * @param count         number of bytes to read/write
699  *
700  * Read the BufferRAM area
701  */
702 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
703                 unsigned char *buffer, int offset, size_t count)
704 {
705         struct onenand_chip *this = mtd->priv;
706         void __iomem *bufferram;
707
708         bufferram = this->base + area;
709
710         bufferram += onenand_bufferram_offset(mtd, area);
711
712         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
713                 unsigned short word;
714
715                 /* Align with word(16-bit) size */
716                 count--;
717
718                 /* Read word and save byte */
719                 word = this->read_word(bufferram + offset + count);
720                 buffer[count] = (word & 0xff);
721         }
722
723         memcpy(buffer, bufferram + offset, count);
724
725         return 0;
726 }
727
728 /**
729  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
730  * @param mtd           MTD data structure
731  * @param area          BufferRAM area
732  * @param buffer        the databuffer to put/get data
733  * @param offset        offset to read from or write to
734  * @param count         number of bytes to read/write
735  *
736  * Read the BufferRAM area with Sync. Burst Mode
737  */
738 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
739                 unsigned char *buffer, int offset, size_t count)
740 {
741         struct onenand_chip *this = mtd->priv;
742         void __iomem *bufferram;
743
744         bufferram = this->base + area;
745
746         bufferram += onenand_bufferram_offset(mtd, area);
747
748         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
749
750         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
751                 unsigned short word;
752
753                 /* Align with word(16-bit) size */
754                 count--;
755
756                 /* Read word and save byte */
757                 word = this->read_word(bufferram + offset + count);
758                 buffer[count] = (word & 0xff);
759         }
760
761         memcpy(buffer, bufferram + offset, count);
762
763         this->mmcontrol(mtd, 0);
764
765         return 0;
766 }
767
768 /**
769  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
770  * @param mtd           MTD data structure
771  * @param area          BufferRAM area
772  * @param buffer        the databuffer to put/get data
773  * @param offset        offset to read from or write to
774  * @param count         number of bytes to read/write
775  *
776  * Write the BufferRAM area
777  */
778 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
779                 const unsigned char *buffer, int offset, size_t count)
780 {
781         struct onenand_chip *this = mtd->priv;
782         void __iomem *bufferram;
783
784         bufferram = this->base + area;
785
786         bufferram += onenand_bufferram_offset(mtd, area);
787
788         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
789                 unsigned short word;
790                 int byte_offset;
791
792                 /* Align with word(16-bit) size */
793                 count--;
794
795                 /* Calculate byte access offset */
796                 byte_offset = offset + count;
797
798                 /* Read word and save byte */
799                 word = this->read_word(bufferram + byte_offset);
800                 word = (word & ~0xff) | buffer[count];
801                 this->write_word(word, bufferram + byte_offset);
802         }
803
804         memcpy(bufferram + offset, buffer, count);
805
806         return 0;
807 }
808
809 /**
810  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
811  * @param mtd           MTD data structure
812  * @param addr          address to check
813  * @return              blockpage address
814  *
815  * Get blockpage address at 2x program mode
816  */
817 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
818 {
819         struct onenand_chip *this = mtd->priv;
820         int blockpage, block, page;
821
822         /* Calculate the even block number */
823         block = (int) (addr >> this->erase_shift) & ~1;
824         /* Is it the odd plane? */
825         if (addr & this->writesize)
826                 block++;
827         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
828         blockpage = (block << 7) | page;
829
830         return blockpage;
831 }
832
833 /**
834  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
835  * @param mtd           MTD data structure
836  * @param addr          address to check
837  * @return              1 if there are valid data, otherwise 0
838  *
839  * Check bufferram if there is data we required
840  */
841 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
842 {
843         struct onenand_chip *this = mtd->priv;
844         int blockpage, found = 0;
845         unsigned int i;
846
847         if (ONENAND_IS_2PLANE(this))
848                 blockpage = onenand_get_2x_blockpage(mtd, addr);
849         else
850                 blockpage = (int) (addr >> this->page_shift);
851
852         /* Is there valid data? */
853         i = ONENAND_CURRENT_BUFFERRAM(this);
854         if (this->bufferram[i].blockpage == blockpage)
855                 found = 1;
856         else {
857                 /* Check another BufferRAM */
858                 i = ONENAND_NEXT_BUFFERRAM(this);
859                 if (this->bufferram[i].blockpage == blockpage) {
860                         ONENAND_SET_NEXT_BUFFERRAM(this);
861                         found = 1;
862                 }
863         }
864
865         if (found && ONENAND_IS_DDP(this)) {
866                 /* Select DataRAM for DDP */
867                 int block = onenand_block(this, addr);
868                 int value = onenand_bufferram_address(this, block);
869                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
870         }
871
872         return found;
873 }
874
875 /**
876  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
877  * @param mtd           MTD data structure
878  * @param addr          address to update
879  * @param valid         valid flag
880  *
881  * Update BufferRAM information
882  */
883 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
884                 int valid)
885 {
886         struct onenand_chip *this = mtd->priv;
887         int blockpage;
888         unsigned int i;
889
890         if (ONENAND_IS_2PLANE(this))
891                 blockpage = onenand_get_2x_blockpage(mtd, addr);
892         else
893                 blockpage = (int) (addr >> this->page_shift);
894
895         /* Invalidate another BufferRAM */
896         i = ONENAND_NEXT_BUFFERRAM(this);
897         if (this->bufferram[i].blockpage == blockpage)
898                 this->bufferram[i].blockpage = -1;
899
900         /* Update BufferRAM */
901         i = ONENAND_CURRENT_BUFFERRAM(this);
902         if (valid)
903                 this->bufferram[i].blockpage = blockpage;
904         else
905                 this->bufferram[i].blockpage = -1;
906 }
907
908 /**
909  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
910  * @param mtd           MTD data structure
911  * @param addr          start address to invalidate
912  * @param len           length to invalidate
913  *
914  * Invalidate BufferRAM information
915  */
916 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
917                 unsigned int len)
918 {
919         struct onenand_chip *this = mtd->priv;
920         int i;
921         loff_t end_addr = addr + len;
922
923         /* Invalidate BufferRAM */
924         for (i = 0; i < MAX_BUFFERRAM; i++) {
925                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
926                 if (buf_addr >= addr && buf_addr < end_addr)
927                         this->bufferram[i].blockpage = -1;
928         }
929 }
930
931 /**
932  * onenand_get_device - [GENERIC] Get chip for selected access
933  * @param mtd           MTD device structure
934  * @param new_state     the state which is requested
935  *
936  * Get the device and lock it for exclusive access
937  */
938 static int onenand_get_device(struct mtd_info *mtd, int new_state)
939 {
940         struct onenand_chip *this = mtd->priv;
941         DECLARE_WAITQUEUE(wait, current);
942
943         /*
944          * Grab the lock and see if the device is available
945          */
946         while (1) {
947                 spin_lock(&this->chip_lock);
948                 if (this->state == FL_READY) {
949                         this->state = new_state;
950                         spin_unlock(&this->chip_lock);
951                         if (new_state != FL_PM_SUSPENDED && this->enable)
952                                 this->enable(mtd);
953                         break;
954                 }
955                 if (new_state == FL_PM_SUSPENDED) {
956                         spin_unlock(&this->chip_lock);
957                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
958                 }
959                 set_current_state(TASK_UNINTERRUPTIBLE);
960                 add_wait_queue(&this->wq, &wait);
961                 spin_unlock(&this->chip_lock);
962                 schedule();
963                 remove_wait_queue(&this->wq, &wait);
964         }
965
966         return 0;
967 }
968
969 /**
970  * onenand_release_device - [GENERIC] release chip
971  * @param mtd           MTD device structure
972  *
973  * Deselect, release chip lock and wake up anyone waiting on the device
974  */
975 static void onenand_release_device(struct mtd_info *mtd)
976 {
977         struct onenand_chip *this = mtd->priv;
978
979         if (this->state != FL_PM_SUSPENDED && this->disable)
980                 this->disable(mtd);
981         /* Release the chip */
982         spin_lock(&this->chip_lock);
983         this->state = FL_READY;
984         wake_up(&this->wq);
985         spin_unlock(&this->chip_lock);
986 }
987
988 /**
989  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
990  * @param mtd           MTD device structure
991  * @param buf           destination address
992  * @param column        oob offset to read from
993  * @param thislen       oob length to read
994  */
995 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
996                                 int thislen)
997 {
998         struct onenand_chip *this = mtd->priv;
999         struct nand_oobfree *free;
1000         int readcol = column;
1001         int readend = column + thislen;
1002         int lastgap = 0;
1003         unsigned int i;
1004         uint8_t *oob_buf = this->oob_buf;
1005
1006         free = this->ecclayout->oobfree;
1007         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1008                 if (readcol >= lastgap)
1009                         readcol += free->offset - lastgap;
1010                 if (readend >= lastgap)
1011                         readend += free->offset - lastgap;
1012                 lastgap = free->offset + free->length;
1013         }
1014         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1015         free = this->ecclayout->oobfree;
1016         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1017                 int free_end = free->offset + free->length;
1018                 if (free->offset < readend && free_end > readcol) {
1019                         int st = max_t(int,free->offset,readcol);
1020                         int ed = min_t(int,free_end,readend);
1021                         int n = ed - st;
1022                         memcpy(buf, oob_buf + st, n);
1023                         buf += n;
1024                 } else if (column == 0)
1025                         break;
1026         }
1027         return 0;
1028 }
1029
1030 /**
1031  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1032  * @param mtd           MTD device structure
1033  * @param addr          address to recover
1034  * @param status        return value from onenand_wait / onenand_bbt_wait
1035  *
1036  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1037  * lower page address and MSB page has higher page address in paired pages.
1038  * If power off occurs during MSB page program, the paired LSB page data can
1039  * become corrupt. LSB page recovery read is a way to read LSB page though page
1040  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1041  * read after power up, issue LSB page recovery read.
1042  */
1043 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1044 {
1045         struct onenand_chip *this = mtd->priv;
1046         int i;
1047
1048         /* Recovery is only for Flex-OneNAND */
1049         if (!FLEXONENAND(this))
1050                 return status;
1051
1052         /* check if we failed due to uncorrectable error */
1053         if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1054                 return status;
1055
1056         /* check if address lies in MLC region */
1057         i = flexonenand_region(mtd, addr);
1058         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1059                 return status;
1060
1061         /* We are attempting to reread, so decrement stats.failed
1062          * which was incremented by onenand_wait due to read failure
1063          */
1064         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1065                 __func__);
1066         mtd->ecc_stats.failed--;
1067
1068         /* Issue the LSB page recovery command */
1069         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1070         return this->wait(mtd, FL_READING);
1071 }
1072
1073 /**
1074  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1075  * @param mtd           MTD device structure
1076  * @param from          offset to read from
1077  * @param ops:          oob operation description structure
1078  *
1079  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1080  * So, read-while-load is not present.
1081  */
1082 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1083                                 struct mtd_oob_ops *ops)
1084 {
1085         struct onenand_chip *this = mtd->priv;
1086         struct mtd_ecc_stats stats;
1087         size_t len = ops->len;
1088         size_t ooblen = ops->ooblen;
1089         u_char *buf = ops->datbuf;
1090         u_char *oobbuf = ops->oobbuf;
1091         int read = 0, column, thislen;
1092         int oobread = 0, oobcolumn, thisooblen, oobsize;
1093         int ret = 0;
1094         int writesize = this->writesize;
1095
1096         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1097               __func__, (unsigned int) from, (int) len);
1098
1099         if (ops->mode == MTD_OOB_AUTO)
1100                 oobsize = this->ecclayout->oobavail;
1101         else
1102                 oobsize = mtd->oobsize;
1103
1104         oobcolumn = from & (mtd->oobsize - 1);
1105
1106         /* Do not allow reads past end of device */
1107         if (from + len > mtd->size) {
1108                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1109                         __func__);
1110                 ops->retlen = 0;
1111                 ops->oobretlen = 0;
1112                 return -EINVAL;
1113         }
1114
1115         stats = mtd->ecc_stats;
1116
1117         while (read < len) {
1118                 cond_resched();
1119
1120                 thislen = min_t(int, writesize, len - read);
1121
1122                 column = from & (writesize - 1);
1123                 if (column + thislen > writesize)
1124                         thislen = writesize - column;
1125
1126                 if (!onenand_check_bufferram(mtd, from)) {
1127                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1128
1129                         ret = this->wait(mtd, FL_READING);
1130                         if (unlikely(ret))
1131                                 ret = onenand_recover_lsb(mtd, from, ret);
1132                         onenand_update_bufferram(mtd, from, !ret);
1133                         if (ret == -EBADMSG)
1134                                 ret = 0;
1135                         if (ret)
1136                                 break;
1137                 }
1138
1139                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1140                 if (oobbuf) {
1141                         thisooblen = oobsize - oobcolumn;
1142                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1143
1144                         if (ops->mode == MTD_OOB_AUTO)
1145                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1146                         else
1147                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1148                         oobread += thisooblen;
1149                         oobbuf += thisooblen;
1150                         oobcolumn = 0;
1151                 }
1152
1153                 read += thislen;
1154                 if (read == len)
1155                         break;
1156
1157                 from += thislen;
1158                 buf += thislen;
1159         }
1160
1161         /*
1162          * Return success, if no ECC failures, else -EBADMSG
1163          * fs driver will take care of that, because
1164          * retlen == desired len and result == -EBADMSG
1165          */
1166         ops->retlen = read;
1167         ops->oobretlen = oobread;
1168
1169         if (ret)
1170                 return ret;
1171
1172         if (mtd->ecc_stats.failed - stats.failed)
1173                 return -EBADMSG;
1174
1175         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1176 }
1177
1178 /**
1179  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1180  * @param mtd           MTD device structure
1181  * @param from          offset to read from
1182  * @param ops:          oob operation description structure
1183  *
1184  * OneNAND read main and/or out-of-band data
1185  */
1186 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1187                                 struct mtd_oob_ops *ops)
1188 {
1189         struct onenand_chip *this = mtd->priv;
1190         struct mtd_ecc_stats stats;
1191         size_t len = ops->len;
1192         size_t ooblen = ops->ooblen;
1193         u_char *buf = ops->datbuf;
1194         u_char *oobbuf = ops->oobbuf;
1195         int read = 0, column, thislen;
1196         int oobread = 0, oobcolumn, thisooblen, oobsize;
1197         int ret = 0, boundary = 0;
1198         int writesize = this->writesize;
1199
1200         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1201                         __func__, (unsigned int) from, (int) len);
1202
1203         if (ops->mode == MTD_OOB_AUTO)
1204                 oobsize = this->ecclayout->oobavail;
1205         else
1206                 oobsize = mtd->oobsize;
1207
1208         oobcolumn = from & (mtd->oobsize - 1);
1209
1210         /* Do not allow reads past end of device */
1211         if ((from + len) > mtd->size) {
1212                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1213                         __func__);
1214                 ops->retlen = 0;
1215                 ops->oobretlen = 0;
1216                 return -EINVAL;
1217         }
1218
1219         stats = mtd->ecc_stats;
1220
1221         /* Read-while-load method */
1222
1223         /* Do first load to bufferRAM */
1224         if (read < len) {
1225                 if (!onenand_check_bufferram(mtd, from)) {
1226                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1227                         ret = this->wait(mtd, FL_READING);
1228                         onenand_update_bufferram(mtd, from, !ret);
1229                         if (ret == -EBADMSG)
1230                                 ret = 0;
1231                 }
1232         }
1233
1234         thislen = min_t(int, writesize, len - read);
1235         column = from & (writesize - 1);
1236         if (column + thislen > writesize)
1237                 thislen = writesize - column;
1238
1239         while (!ret) {
1240                 /* If there is more to load then start next load */
1241                 from += thislen;
1242                 if (read + thislen < len) {
1243                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1244                         /*
1245                          * Chip boundary handling in DDP
1246                          * Now we issued chip 1 read and pointed chip 1
1247                          * bufferram so we have to point chip 0 bufferram.
1248                          */
1249                         if (ONENAND_IS_DDP(this) &&
1250                             unlikely(from == (this->chipsize >> 1))) {
1251                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1252                                 boundary = 1;
1253                         } else
1254                                 boundary = 0;
1255                         ONENAND_SET_PREV_BUFFERRAM(this);
1256                 }
1257                 /* While load is going, read from last bufferRAM */
1258                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1259
1260                 /* Read oob area if needed */
1261                 if (oobbuf) {
1262                         thisooblen = oobsize - oobcolumn;
1263                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1264
1265                         if (ops->mode == MTD_OOB_AUTO)
1266                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1267                         else
1268                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1269                         oobread += thisooblen;
1270                         oobbuf += thisooblen;
1271                         oobcolumn = 0;
1272                 }
1273
1274                 /* See if we are done */
1275                 read += thislen;
1276                 if (read == len)
1277                         break;
1278                 /* Set up for next read from bufferRAM */
1279                 if (unlikely(boundary))
1280                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1281                 ONENAND_SET_NEXT_BUFFERRAM(this);
1282                 buf += thislen;
1283                 thislen = min_t(int, writesize, len - read);
1284                 column = 0;
1285                 cond_resched();
1286                 /* Now wait for load */
1287                 ret = this->wait(mtd, FL_READING);
1288                 onenand_update_bufferram(mtd, from, !ret);
1289                 if (ret == -EBADMSG)
1290                         ret = 0;
1291         }
1292
1293         /*
1294          * Return success, if no ECC failures, else -EBADMSG
1295          * fs driver will take care of that, because
1296          * retlen == desired len and result == -EBADMSG
1297          */
1298         ops->retlen = read;
1299         ops->oobretlen = oobread;
1300
1301         if (ret)
1302                 return ret;
1303
1304         if (mtd->ecc_stats.failed - stats.failed)
1305                 return -EBADMSG;
1306
1307         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1308 }
1309
1310 /**
1311  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1312  * @param mtd           MTD device structure
1313  * @param from          offset to read from
1314  * @param ops:          oob operation description structure
1315  *
1316  * OneNAND read out-of-band data from the spare area
1317  */
1318 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1319                         struct mtd_oob_ops *ops)
1320 {
1321         struct onenand_chip *this = mtd->priv;
1322         struct mtd_ecc_stats stats;
1323         int read = 0, thislen, column, oobsize;
1324         size_t len = ops->ooblen;
1325         mtd_oob_mode_t mode = ops->mode;
1326         u_char *buf = ops->oobbuf;
1327         int ret = 0, readcmd;
1328
1329         from += ops->ooboffs;
1330
1331         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1332                 __func__, (unsigned int) from, (int) len);
1333
1334         /* Initialize return length value */
1335         ops->oobretlen = 0;
1336
1337         if (mode == MTD_OOB_AUTO)
1338                 oobsize = this->ecclayout->oobavail;
1339         else
1340                 oobsize = mtd->oobsize;
1341
1342         column = from & (mtd->oobsize - 1);
1343
1344         if (unlikely(column >= oobsize)) {
1345                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1346                         __func__);
1347                 return -EINVAL;
1348         }
1349
1350         /* Do not allow reads past end of device */
1351         if (unlikely(from >= mtd->size ||
1352                      column + len > ((mtd->size >> this->page_shift) -
1353                                      (from >> this->page_shift)) * oobsize)) {
1354                 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1355                         __func__);
1356                 return -EINVAL;
1357         }
1358
1359         stats = mtd->ecc_stats;
1360
1361         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1362
1363         while (read < len) {
1364                 cond_resched();
1365
1366                 thislen = oobsize - column;
1367                 thislen = min_t(int, thislen, len);
1368
1369                 this->command(mtd, readcmd, from, mtd->oobsize);
1370
1371                 onenand_update_bufferram(mtd, from, 0);
1372
1373                 ret = this->wait(mtd, FL_READING);
1374                 if (unlikely(ret))
1375                         ret = onenand_recover_lsb(mtd, from, ret);
1376
1377                 if (ret && ret != -EBADMSG) {
1378                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1379                                 __func__, ret);
1380                         break;
1381                 }
1382
1383                 if (mode == MTD_OOB_AUTO)
1384                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1385                 else
1386                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1387
1388                 read += thislen;
1389
1390                 if (read == len)
1391                         break;
1392
1393                 buf += thislen;
1394
1395                 /* Read more? */
1396                 if (read < len) {
1397                         /* Page size */
1398                         from += mtd->writesize;
1399                         column = 0;
1400                 }
1401         }
1402
1403         ops->oobretlen = read;
1404
1405         if (ret)
1406                 return ret;
1407
1408         if (mtd->ecc_stats.failed - stats.failed)
1409                 return -EBADMSG;
1410
1411         return 0;
1412 }
1413
1414 /**
1415  * onenand_read - [MTD Interface] Read data from flash
1416  * @param mtd           MTD device structure
1417  * @param from          offset to read from
1418  * @param len           number of bytes to read
1419  * @param retlen        pointer to variable to store the number of read bytes
1420  * @param buf           the databuffer to put data
1421  *
1422  * Read with ecc
1423 */
1424 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1425         size_t *retlen, u_char *buf)
1426 {
1427         struct onenand_chip *this = mtd->priv;
1428         struct mtd_oob_ops ops = {
1429                 .len    = len,
1430                 .ooblen = 0,
1431                 .datbuf = buf,
1432                 .oobbuf = NULL,
1433         };
1434         int ret;
1435
1436         onenand_get_device(mtd, FL_READING);
1437         ret = ONENAND_IS_4KB_PAGE(this) ?
1438                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1439                 onenand_read_ops_nolock(mtd, from, &ops);
1440         onenand_release_device(mtd);
1441
1442         *retlen = ops.retlen;
1443         return ret;
1444 }
1445
1446 /**
1447  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1448  * @param mtd:          MTD device structure
1449  * @param from:         offset to read from
1450  * @param ops:          oob operation description structure
1451
1452  * Read main and/or out-of-band
1453  */
1454 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1455                             struct mtd_oob_ops *ops)
1456 {
1457         struct onenand_chip *this = mtd->priv;
1458         int ret;
1459
1460         switch (ops->mode) {
1461         case MTD_OOB_PLACE:
1462         case MTD_OOB_AUTO:
1463                 break;
1464         case MTD_OOB_RAW:
1465                 /* Not implemented yet */
1466         default:
1467                 return -EINVAL;
1468         }
1469
1470         onenand_get_device(mtd, FL_READING);
1471         if (ops->datbuf)
1472                 ret = ONENAND_IS_4KB_PAGE(this) ?
1473                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1474                         onenand_read_ops_nolock(mtd, from, ops);
1475         else
1476                 ret = onenand_read_oob_nolock(mtd, from, ops);
1477         onenand_release_device(mtd);
1478
1479         return ret;
1480 }
1481
1482 /**
1483  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1484  * @param mtd           MTD device structure
1485  * @param state         state to select the max. timeout value
1486  *
1487  * Wait for command done.
1488  */
1489 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1490 {
1491         struct onenand_chip *this = mtd->priv;
1492         unsigned long timeout;
1493         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1494
1495         /* The 20 msec is enough */
1496         timeout = jiffies + msecs_to_jiffies(20);
1497         while (time_before(jiffies, timeout)) {
1498                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1499                 if (interrupt & ONENAND_INT_MASTER)
1500                         break;
1501         }
1502         /* To get correct interrupt status in timeout case */
1503         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1504         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1505         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1506         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1507
1508         if (interrupt & ONENAND_INT_READ) {
1509                 ecc = onenand_read_ecc(this);
1510                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1511                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1512                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1513                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1514                         return ONENAND_BBT_READ_ECC_ERROR;
1515                 }
1516         } else {
1517                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1518                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1519                        __func__, ctrl, interrupt, addr1, addr8);
1520                 return ONENAND_BBT_READ_FATAL_ERROR;
1521         }
1522
1523         /* Initial bad block case: 0x2400 or 0x0400 */
1524         if (ctrl & ONENAND_CTRL_ERROR) {
1525                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1526                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1527                 return ONENAND_BBT_READ_ERROR;
1528         }
1529
1530         return 0;
1531 }
1532
1533 /**
1534  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1535  * @param mtd           MTD device structure
1536  * @param from          offset to read from
1537  * @param ops           oob operation description structure
1538  *
1539  * OneNAND read out-of-band data from the spare area for bbt scan
1540  */
1541 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1542                             struct mtd_oob_ops *ops)
1543 {
1544         struct onenand_chip *this = mtd->priv;
1545         int read = 0, thislen, column;
1546         int ret = 0, readcmd;
1547         size_t len = ops->ooblen;
1548         u_char *buf = ops->oobbuf;
1549
1550         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1551                 __func__, (unsigned int) from, len);
1552
1553         /* Initialize return value */
1554         ops->oobretlen = 0;
1555
1556         /* Do not allow reads past end of device */
1557         if (unlikely((from + len) > mtd->size)) {
1558                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1559                         __func__);
1560                 return ONENAND_BBT_READ_FATAL_ERROR;
1561         }
1562
1563         /* Grab the lock and see if the device is available */
1564         onenand_get_device(mtd, FL_READING);
1565
1566         column = from & (mtd->oobsize - 1);
1567
1568         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1569
1570         while (read < len) {
1571                 cond_resched();
1572
1573                 thislen = mtd->oobsize - column;
1574                 thislen = min_t(int, thislen, len);
1575
1576                 this->command(mtd, readcmd, from, mtd->oobsize);
1577
1578                 onenand_update_bufferram(mtd, from, 0);
1579
1580                 ret = this->bbt_wait(mtd, FL_READING);
1581                 if (unlikely(ret))
1582                         ret = onenand_recover_lsb(mtd, from, ret);
1583
1584                 if (ret)
1585                         break;
1586
1587                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1588                 read += thislen;
1589                 if (read == len)
1590                         break;
1591
1592                 buf += thislen;
1593
1594                 /* Read more? */
1595                 if (read < len) {
1596                         /* Update Page size */
1597                         from += this->writesize;
1598                         column = 0;
1599                 }
1600         }
1601
1602         /* Deselect and wake up anyone waiting on the device */
1603         onenand_release_device(mtd);
1604
1605         ops->oobretlen = read;
1606         return ret;
1607 }
1608
1609 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1610 /**
1611  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1612  * @param mtd           MTD device structure
1613  * @param buf           the databuffer to verify
1614  * @param to            offset to read from
1615  */
1616 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1617 {
1618         struct onenand_chip *this = mtd->priv;
1619         u_char *oob_buf = this->oob_buf;
1620         int status, i, readcmd;
1621
1622         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1623
1624         this->command(mtd, readcmd, to, mtd->oobsize);
1625         onenand_update_bufferram(mtd, to, 0);
1626         status = this->wait(mtd, FL_READING);
1627         if (status)
1628                 return status;
1629
1630         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1631         for (i = 0; i < mtd->oobsize; i++)
1632                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1633                         return -EBADMSG;
1634
1635         return 0;
1636 }
1637
1638 /**
1639  * onenand_verify - [GENERIC] verify the chip contents after a write
1640  * @param mtd          MTD device structure
1641  * @param buf          the databuffer to verify
1642  * @param addr         offset to read from
1643  * @param len          number of bytes to read and compare
1644  */
1645 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1646 {
1647         struct onenand_chip *this = mtd->priv;
1648         int ret = 0;
1649         int thislen, column;
1650
1651         column = addr & (this->writesize - 1);
1652
1653         while (len != 0) {
1654                 thislen = min_t(int, this->writesize - column, len);
1655
1656                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1657
1658                 onenand_update_bufferram(mtd, addr, 0);
1659
1660                 ret = this->wait(mtd, FL_READING);
1661                 if (ret)
1662                         return ret;
1663
1664                 onenand_update_bufferram(mtd, addr, 1);
1665
1666                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1667
1668                 if (memcmp(buf, this->verify_buf + column, thislen))
1669                         return -EBADMSG;
1670
1671                 len -= thislen;
1672                 buf += thislen;
1673                 addr += thislen;
1674                 column = 0;
1675         }
1676
1677         return 0;
1678 }
1679 #else
1680 #define onenand_verify(...)             (0)
1681 #define onenand_verify_oob(...)         (0)
1682 #endif
1683
1684 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1685
1686 static void onenand_panic_wait(struct mtd_info *mtd)
1687 {
1688         struct onenand_chip *this = mtd->priv;
1689         unsigned int interrupt;
1690         int i;
1691         
1692         for (i = 0; i < 2000; i++) {
1693                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1694                 if (interrupt & ONENAND_INT_MASTER)
1695                         break;
1696                 udelay(10);
1697         }
1698 }
1699
1700 /**
1701  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1702  * @param mtd           MTD device structure
1703  * @param to            offset to write to
1704  * @param len           number of bytes to write
1705  * @param retlen        pointer to variable to store the number of written bytes
1706  * @param buf           the data to write
1707  *
1708  * Write with ECC
1709  */
1710 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1711                          size_t *retlen, const u_char *buf)
1712 {
1713         struct onenand_chip *this = mtd->priv;
1714         int column, subpage;
1715         int written = 0;
1716         int ret = 0;
1717
1718         if (this->state == FL_PM_SUSPENDED)
1719                 return -EBUSY;
1720
1721         /* Wait for any existing operation to clear */
1722         onenand_panic_wait(mtd);
1723
1724         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1725                 __func__, (unsigned int) to, (int) len);
1726
1727         /* Initialize retlen, in case of early exit */
1728         *retlen = 0;
1729
1730         /* Do not allow writes past end of device */
1731         if (unlikely((to + len) > mtd->size)) {
1732                 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1733                         __func__);
1734                 return -EINVAL;
1735         }
1736
1737         /* Reject writes, which are not page aligned */
1738         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1739                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1740                         __func__);
1741                 return -EINVAL;
1742         }
1743
1744         column = to & (mtd->writesize - 1);
1745
1746         /* Loop until all data write */
1747         while (written < len) {
1748                 int thislen = min_t(int, mtd->writesize - column, len - written);
1749                 u_char *wbuf = (u_char *) buf;
1750
1751                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1752
1753                 /* Partial page write */
1754                 subpage = thislen < mtd->writesize;
1755                 if (subpage) {
1756                         memset(this->page_buf, 0xff, mtd->writesize);
1757                         memcpy(this->page_buf + column, buf, thislen);
1758                         wbuf = this->page_buf;
1759                 }
1760
1761                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1762                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1763
1764                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1765
1766                 onenand_panic_wait(mtd);
1767
1768                 /* In partial page write we don't update bufferram */
1769                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1770                 if (ONENAND_IS_2PLANE(this)) {
1771                         ONENAND_SET_BUFFERRAM1(this);
1772                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1773                 }
1774
1775                 if (ret) {
1776                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1777                         break;
1778                 }
1779
1780                 written += thislen;
1781
1782                 if (written == len)
1783                         break;
1784
1785                 column = 0;
1786                 to += thislen;
1787                 buf += thislen;
1788         }
1789
1790         *retlen = written;
1791         return ret;
1792 }
1793
1794 /**
1795  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1796  * @param mtd           MTD device structure
1797  * @param oob_buf       oob buffer
1798  * @param buf           source address
1799  * @param column        oob offset to write to
1800  * @param thislen       oob length to write
1801  */
1802 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1803                                   const u_char *buf, int column, int thislen)
1804 {
1805         struct onenand_chip *this = mtd->priv;
1806         struct nand_oobfree *free;
1807         int writecol = column;
1808         int writeend = column + thislen;
1809         int lastgap = 0;
1810         unsigned int i;
1811
1812         free = this->ecclayout->oobfree;
1813         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1814                 if (writecol >= lastgap)
1815                         writecol += free->offset - lastgap;
1816                 if (writeend >= lastgap)
1817                         writeend += free->offset - lastgap;
1818                 lastgap = free->offset + free->length;
1819         }
1820         free = this->ecclayout->oobfree;
1821         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1822                 int free_end = free->offset + free->length;
1823                 if (free->offset < writeend && free_end > writecol) {
1824                         int st = max_t(int,free->offset,writecol);
1825                         int ed = min_t(int,free_end,writeend);
1826                         int n = ed - st;
1827                         memcpy(oob_buf + st, buf, n);
1828                         buf += n;
1829                 } else if (column == 0)
1830                         break;
1831         }
1832         return 0;
1833 }
1834
1835 /**
1836  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1837  * @param mtd           MTD device structure
1838  * @param to            offset to write to
1839  * @param ops           oob operation description structure
1840  *
1841  * Write main and/or oob with ECC
1842  */
1843 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1844                                 struct mtd_oob_ops *ops)
1845 {
1846         struct onenand_chip *this = mtd->priv;
1847         int written = 0, column, thislen = 0, subpage = 0;
1848         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1849         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1850         size_t len = ops->len;
1851         size_t ooblen = ops->ooblen;
1852         const u_char *buf = ops->datbuf;
1853         const u_char *oob = ops->oobbuf;
1854         u_char *oobbuf;
1855         int ret = 0, cmd;
1856
1857         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1858                 __func__, (unsigned int) to, (int) len);
1859
1860         /* Initialize retlen, in case of early exit */
1861         ops->retlen = 0;
1862         ops->oobretlen = 0;
1863
1864         /* Do not allow writes past end of device */
1865         if (unlikely((to + len) > mtd->size)) {
1866                 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1867                         __func__);
1868                 return -EINVAL;
1869         }
1870
1871         /* Reject writes, which are not page aligned */
1872         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1873                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1874                         __func__);
1875                 return -EINVAL;
1876         }
1877
1878         /* Check zero length */
1879         if (!len)
1880                 return 0;
1881
1882         if (ops->mode == MTD_OOB_AUTO)
1883                 oobsize = this->ecclayout->oobavail;
1884         else
1885                 oobsize = mtd->oobsize;
1886
1887         oobcolumn = to & (mtd->oobsize - 1);
1888
1889         column = to & (mtd->writesize - 1);
1890
1891         /* Loop until all data write */
1892         while (1) {
1893                 if (written < len) {
1894                         u_char *wbuf = (u_char *) buf;
1895
1896                         thislen = min_t(int, mtd->writesize - column, len - written);
1897                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1898
1899                         cond_resched();
1900
1901                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1902
1903                         /* Partial page write */
1904                         subpage = thislen < mtd->writesize;
1905                         if (subpage) {
1906                                 memset(this->page_buf, 0xff, mtd->writesize);
1907                                 memcpy(this->page_buf + column, buf, thislen);
1908                                 wbuf = this->page_buf;
1909                         }
1910
1911                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1912
1913                         if (oob) {
1914                                 oobbuf = this->oob_buf;
1915
1916                                 /* We send data to spare ram with oobsize
1917                                  * to prevent byte access */
1918                                 memset(oobbuf, 0xff, mtd->oobsize);
1919                                 if (ops->mode == MTD_OOB_AUTO)
1920                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1921                                 else
1922                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1923
1924                                 oobwritten += thisooblen;
1925                                 oob += thisooblen;
1926                                 oobcolumn = 0;
1927                         } else
1928                                 oobbuf = (u_char *) ffchars;
1929
1930                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1931                 } else
1932                         ONENAND_SET_NEXT_BUFFERRAM(this);
1933
1934                 /*
1935                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1936                  * write-while-program feature.
1937                  */
1938                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1939                         ONENAND_SET_PREV_BUFFERRAM(this);
1940
1941                         ret = this->wait(mtd, FL_WRITING);
1942
1943                         /* In partial page write we don't update bufferram */
1944                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1945                         if (ret) {
1946                                 written -= prevlen;
1947                                 printk(KERN_ERR "%s: write failed %d\n",
1948                                         __func__, ret);
1949                                 break;
1950                         }
1951
1952                         if (written == len) {
1953                                 /* Only check verify write turn on */
1954                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1955                                 if (ret)
1956                                         printk(KERN_ERR "%s: verify failed %d\n",
1957                                                 __func__, ret);
1958                                 break;
1959                         }
1960
1961                         ONENAND_SET_NEXT_BUFFERRAM(this);
1962                 }
1963
1964                 this->ongoing = 0;
1965                 cmd = ONENAND_CMD_PROG;
1966
1967                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1968                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1969                     likely(onenand_block(this, to) != 0) &&
1970                     ONENAND_IS_4KB_PAGE(this) &&
1971                     ((written + thislen) < len)) {
1972                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1973                         this->ongoing = 1;
1974                 }
1975
1976                 this->command(mtd, cmd, to, mtd->writesize);
1977
1978                 /*
1979                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1980                  */
1981                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1982                         ret = this->wait(mtd, FL_WRITING);
1983
1984                         /* In partial page write we don't update bufferram */
1985                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1986                         if (ret) {
1987                                 printk(KERN_ERR "%s: write failed %d\n",
1988                                         __func__, ret);
1989                                 break;
1990                         }
1991
1992                         /* Only check verify write turn on */
1993                         ret = onenand_verify(mtd, buf, to, thislen);
1994                         if (ret) {
1995                                 printk(KERN_ERR "%s: verify failed %d\n",
1996                                         __func__, ret);
1997                                 break;
1998                         }
1999
2000                         written += thislen;
2001
2002                         if (written == len)
2003                                 break;
2004
2005                 } else
2006                         written += thislen;
2007
2008                 column = 0;
2009                 prev_subpage = subpage;
2010                 prev = to;
2011                 prevlen = thislen;
2012                 to += thislen;
2013                 buf += thislen;
2014                 first = 0;
2015         }
2016
2017         /* In error case, clear all bufferrams */
2018         if (written != len)
2019                 onenand_invalidate_bufferram(mtd, 0, -1);
2020
2021         ops->retlen = written;
2022         ops->oobretlen = oobwritten;
2023
2024         return ret;
2025 }
2026
2027
2028 /**
2029  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2030  * @param mtd           MTD device structure
2031  * @param to            offset to write to
2032  * @param len           number of bytes to write
2033  * @param retlen        pointer to variable to store the number of written bytes
2034  * @param buf           the data to write
2035  * @param mode          operation mode
2036  *
2037  * OneNAND write out-of-band
2038  */
2039 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2040                                     struct mtd_oob_ops *ops)
2041 {
2042         struct onenand_chip *this = mtd->priv;
2043         int column, ret = 0, oobsize;
2044         int written = 0, oobcmd;
2045         u_char *oobbuf;
2046         size_t len = ops->ooblen;
2047         const u_char *buf = ops->oobbuf;
2048         mtd_oob_mode_t mode = ops->mode;
2049
2050         to += ops->ooboffs;
2051
2052         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2053                 __func__, (unsigned int) to, (int) len);
2054
2055         /* Initialize retlen, in case of early exit */
2056         ops->oobretlen = 0;
2057
2058         if (mode == MTD_OOB_AUTO)
2059                 oobsize = this->ecclayout->oobavail;
2060         else
2061                 oobsize = mtd->oobsize;
2062
2063         column = to & (mtd->oobsize - 1);
2064
2065         if (unlikely(column >= oobsize)) {
2066                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2067                         __func__);
2068                 return -EINVAL;
2069         }
2070
2071         /* For compatibility with NAND: Do not allow write past end of page */
2072         if (unlikely(column + len > oobsize)) {
2073                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2074                         __func__);
2075                 return -EINVAL;
2076         }
2077
2078         /* Do not allow reads past end of device */
2079         if (unlikely(to >= mtd->size ||
2080                      column + len > ((mtd->size >> this->page_shift) -
2081                                      (to >> this->page_shift)) * oobsize)) {
2082                 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2083                        __func__);
2084                 return -EINVAL;
2085         }
2086
2087         oobbuf = this->oob_buf;
2088
2089         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2090
2091         /* Loop until all data write */
2092         while (written < len) {
2093                 int thislen = min_t(int, oobsize, len - written);
2094
2095                 cond_resched();
2096
2097                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2098
2099                 /* We send data to spare ram with oobsize
2100                  * to prevent byte access */
2101                 memset(oobbuf, 0xff, mtd->oobsize);
2102                 if (mode == MTD_OOB_AUTO)
2103                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2104                 else
2105                         memcpy(oobbuf + column, buf, thislen);
2106                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2107
2108                 if (ONENAND_IS_4KB_PAGE(this)) {
2109                         /* Set main area of DataRAM to 0xff*/
2110                         memset(this->page_buf, 0xff, mtd->writesize);
2111                         this->write_bufferram(mtd, ONENAND_DATARAM,
2112                                          this->page_buf, 0, mtd->writesize);
2113                 }
2114
2115                 this->command(mtd, oobcmd, to, mtd->oobsize);
2116
2117                 onenand_update_bufferram(mtd, to, 0);
2118                 if (ONENAND_IS_2PLANE(this)) {
2119                         ONENAND_SET_BUFFERRAM1(this);
2120                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2121                 }
2122
2123                 ret = this->wait(mtd, FL_WRITING);
2124                 if (ret) {
2125                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2126                         break;
2127                 }
2128
2129                 ret = onenand_verify_oob(mtd, oobbuf, to);
2130                 if (ret) {
2131                         printk(KERN_ERR "%s: verify failed %d\n",
2132                                 __func__, ret);
2133                         break;
2134                 }
2135
2136                 written += thislen;
2137                 if (written == len)
2138                         break;
2139
2140                 to += mtd->writesize;
2141                 buf += thislen;
2142                 column = 0;
2143         }
2144
2145         ops->oobretlen = written;
2146
2147         return ret;
2148 }
2149
2150 /**
2151  * onenand_write - [MTD Interface] write buffer to FLASH
2152  * @param mtd           MTD device structure
2153  * @param to            offset to write to
2154  * @param len           number of bytes to write
2155  * @param retlen        pointer to variable to store the number of written bytes
2156  * @param buf           the data to write
2157  *
2158  * Write with ECC
2159  */
2160 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2161         size_t *retlen, const u_char *buf)
2162 {
2163         struct mtd_oob_ops ops = {
2164                 .len    = len,
2165                 .ooblen = 0,
2166                 .datbuf = (u_char *) buf,
2167                 .oobbuf = NULL,
2168         };
2169         int ret;
2170
2171         onenand_get_device(mtd, FL_WRITING);
2172         ret = onenand_write_ops_nolock(mtd, to, &ops);
2173         onenand_release_device(mtd);
2174
2175         *retlen = ops.retlen;
2176         return ret;
2177 }
2178
2179 /**
2180  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2181  * @param mtd:          MTD device structure
2182  * @param to:           offset to write
2183  * @param ops:          oob operation description structure
2184  */
2185 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2186                              struct mtd_oob_ops *ops)
2187 {
2188         int ret;
2189
2190         switch (ops->mode) {
2191         case MTD_OOB_PLACE:
2192         case MTD_OOB_AUTO:
2193                 break;
2194         case MTD_OOB_RAW:
2195                 /* Not implemented yet */
2196         default:
2197                 return -EINVAL;
2198         }
2199
2200         onenand_get_device(mtd, FL_WRITING);
2201         if (ops->datbuf)
2202                 ret = onenand_write_ops_nolock(mtd, to, ops);
2203         else
2204                 ret = onenand_write_oob_nolock(mtd, to, ops);
2205         onenand_release_device(mtd);
2206
2207         return ret;
2208 }
2209
2210 /**
2211  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2212  * @param mtd           MTD device structure
2213  * @param ofs           offset from device start
2214  * @param allowbbt      1, if its allowed to access the bbt area
2215  *
2216  * Check, if the block is bad. Either by reading the bad block table or
2217  * calling of the scan function.
2218  */
2219 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2220 {
2221         struct onenand_chip *this = mtd->priv;
2222         struct bbm_info *bbm = this->bbm;
2223
2224         /* Return info from the table */
2225         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2226 }
2227
2228
2229 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2230                                            struct erase_info *instr)
2231 {
2232         struct onenand_chip *this = mtd->priv;
2233         loff_t addr = instr->addr;
2234         int len = instr->len;
2235         unsigned int block_size = (1 << this->erase_shift);
2236         int ret = 0;
2237
2238         while (len) {
2239                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2240                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2241                 if (ret) {
2242                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2243                                __func__, onenand_block(this, addr));
2244                         instr->state = MTD_ERASE_FAILED;
2245                         instr->fail_addr = addr;
2246                         return -1;
2247                 }
2248                 len -= block_size;
2249                 addr += block_size;
2250         }
2251         return 0;
2252 }
2253
2254 /**
2255  * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2256  * @param mtd           MTD device structure
2257  * @param instr         erase instruction
2258  * @param region        erase region
2259  *
2260  * Erase one or more blocks up to 64 block at a time
2261  */
2262 static int onenand_multiblock_erase(struct mtd_info *mtd,
2263                                     struct erase_info *instr,
2264                                     unsigned int block_size)
2265 {
2266         struct onenand_chip *this = mtd->priv;
2267         loff_t addr = instr->addr;
2268         int len = instr->len;
2269         int eb_count = 0;
2270         int ret = 0;
2271         int bdry_block = 0;
2272
2273         instr->state = MTD_ERASING;
2274
2275         if (ONENAND_IS_DDP(this)) {
2276                 loff_t bdry_addr = this->chipsize >> 1;
2277                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2278                         bdry_block = bdry_addr >> this->erase_shift;
2279         }
2280
2281         /* Pre-check bbs */
2282         while (len) {
2283                 /* Check if we have a bad block, we do not erase bad blocks */
2284                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2285                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2286                                "at addr 0x%012llx\n",
2287                                __func__, (unsigned long long) addr);
2288                         instr->state = MTD_ERASE_FAILED;
2289                         return -EIO;
2290                 }
2291                 len -= block_size;
2292                 addr += block_size;
2293         }
2294
2295         len = instr->len;
2296         addr = instr->addr;
2297
2298         /* loop over 64 eb batches */
2299         while (len) {
2300                 struct erase_info verify_instr = *instr;
2301                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2302
2303                 verify_instr.addr = addr;
2304                 verify_instr.len = 0;
2305
2306                 /* do not cross chip boundary */
2307                 if (bdry_block) {
2308                         int this_block = (addr >> this->erase_shift);
2309
2310                         if (this_block < bdry_block) {
2311                                 max_eb_count = min(max_eb_count,
2312                                                    (bdry_block - this_block));
2313                         }
2314                 }
2315
2316                 eb_count = 0;
2317
2318                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2319                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2320                                       addr, block_size);
2321                         onenand_invalidate_bufferram(mtd, addr, block_size);
2322
2323                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2324                         if (ret) {
2325                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2326                                        "block %d\n", __func__,
2327                                        onenand_block(this, addr));
2328                                 instr->state = MTD_ERASE_FAILED;
2329                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2330                                 return -EIO;
2331                         }
2332
2333                         len -= block_size;
2334                         addr += block_size;
2335                         eb_count++;
2336                 }
2337
2338                 /* last block of 64-eb series */
2339                 cond_resched();
2340                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2341                 onenand_invalidate_bufferram(mtd, addr, block_size);
2342
2343                 ret = this->wait(mtd, FL_ERASING);
2344                 /* Check if it is write protected */
2345                 if (ret) {
2346                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2347                                __func__, onenand_block(this, addr));
2348                         instr->state = MTD_ERASE_FAILED;
2349                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2350                         return -EIO;
2351                 }
2352
2353                 len -= block_size;
2354                 addr += block_size;
2355                 eb_count++;
2356
2357                 /* verify */
2358                 verify_instr.len = eb_count * block_size;
2359                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2360                         instr->state = verify_instr.state;
2361                         instr->fail_addr = verify_instr.fail_addr;
2362                         return -EIO;
2363                 }
2364
2365         }
2366         return 0;
2367 }
2368
2369
2370 /**
2371  * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2372  * @param mtd           MTD device structure
2373  * @param instr         erase instruction
2374  * @param region        erase region
2375  * @param block_size    erase block size
2376  *
2377  * Erase one or more blocks one block at a time
2378  */
2379 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2380                                         struct erase_info *instr,
2381                                         struct mtd_erase_region_info *region,
2382                                         unsigned int block_size)
2383 {
2384         struct onenand_chip *this = mtd->priv;
2385         loff_t addr = instr->addr;
2386         int len = instr->len;
2387         loff_t region_end = 0;
2388         int ret = 0;
2389
2390         if (region) {
2391                 /* region is set for Flex-OneNAND */
2392                 region_end = region->offset + region->erasesize * region->numblocks;
2393         }
2394
2395         instr->state = MTD_ERASING;
2396
2397         /* Loop through the blocks */
2398         while (len) {
2399                 cond_resched();
2400
2401                 /* Check if we have a bad block, we do not erase bad blocks */
2402                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2403                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2404                                         "at addr 0x%012llx\n",
2405                                         __func__, (unsigned long long) addr);
2406                         instr->state = MTD_ERASE_FAILED;
2407                         return -EIO;
2408                 }
2409
2410                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2411
2412                 onenand_invalidate_bufferram(mtd, addr, block_size);
2413
2414                 ret = this->wait(mtd, FL_ERASING);
2415                 /* Check, if it is write protected */
2416                 if (ret) {
2417                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2418                                 __func__, onenand_block(this, addr));
2419                         instr->state = MTD_ERASE_FAILED;
2420                         instr->fail_addr = addr;
2421                         return -EIO;
2422                 }
2423
2424                 len -= block_size;
2425                 addr += block_size;
2426
2427                 if (addr == region_end) {
2428                         if (!len)
2429                                 break;
2430                         region++;
2431
2432                         block_size = region->erasesize;
2433                         region_end = region->offset + region->erasesize * region->numblocks;
2434
2435                         if (len & (block_size - 1)) {
2436                                 /* FIXME: This should be handled at MTD partitioning level. */
2437                                 printk(KERN_ERR "%s: Unaligned address\n",
2438                                         __func__);
2439                                 return -EIO;
2440                         }
2441                 }
2442         }
2443         return 0;
2444 }
2445
2446 /**
2447  * onenand_erase - [MTD Interface] erase block(s)
2448  * @param mtd           MTD device structure
2449  * @param instr         erase instruction
2450  *
2451  * Erase one or more blocks
2452  */
2453 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2454 {
2455         struct onenand_chip *this = mtd->priv;
2456         unsigned int block_size;
2457         loff_t addr = instr->addr;
2458         loff_t len = instr->len;
2459         int ret = 0;
2460         struct mtd_erase_region_info *region = NULL;
2461         loff_t region_offset = 0;
2462
2463         DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2464               (unsigned long long) instr->addr, (unsigned long long) instr->len);
2465
2466         /* Do not allow erase past end of device */
2467         if (unlikely((len + addr) > mtd->size)) {
2468                 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2469                 return -EINVAL;
2470         }
2471
2472         if (FLEXONENAND(this)) {
2473                 /* Find the eraseregion of this address */
2474                 int i = flexonenand_region(mtd, addr);
2475
2476                 region = &mtd->eraseregions[i];
2477                 block_size = region->erasesize;
2478
2479                 /* Start address within region must align on block boundary.
2480                  * Erase region's start offset is always block start address.
2481                  */
2482                 region_offset = region->offset;
2483         } else
2484                 block_size = 1 << this->erase_shift;
2485
2486         /* Start address must align on block boundary */
2487         if (unlikely((addr - region_offset) & (block_size - 1))) {
2488                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2489                 return -EINVAL;
2490         }
2491
2492         /* Length must align on block boundary */
2493         if (unlikely(len & (block_size - 1))) {
2494                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2495                 return -EINVAL;
2496         }
2497
2498         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2499
2500         /* Grab the lock and see if the device is available */
2501         onenand_get_device(mtd, FL_ERASING);
2502
2503         if (ONENAND_IS_4KB_PAGE(this) || region ||
2504             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2505                 /* region is set for Flex-OneNAND (no mb erase) */
2506                 ret = onenand_block_by_block_erase(mtd, instr,
2507                                                    region, block_size);
2508         } else {
2509                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2510         }
2511
2512         /* Deselect and wake up anyone waiting on the device */
2513         onenand_release_device(mtd);
2514
2515         /* Do call back function */
2516         if (!ret) {
2517                 instr->state = MTD_ERASE_DONE;
2518                 mtd_erase_callback(instr);
2519         }
2520
2521         return ret;
2522 }
2523
2524 /**
2525  * onenand_sync - [MTD Interface] sync
2526  * @param mtd           MTD device structure
2527  *
2528  * Sync is actually a wait for chip ready function
2529  */
2530 static void onenand_sync(struct mtd_info *mtd)
2531 {
2532         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2533
2534         /* Grab the lock and see if the device is available */
2535         onenand_get_device(mtd, FL_SYNCING);
2536
2537         /* Release it and go back */
2538         onenand_release_device(mtd);
2539 }
2540
2541 /**
2542  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2543  * @param mtd           MTD device structure
2544  * @param ofs           offset relative to mtd start
2545  *
2546  * Check whether the block is bad
2547  */
2548 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2549 {
2550         int ret;
2551
2552         /* Check for invalid offset */
2553         if (ofs > mtd->size)
2554                 return -EINVAL;
2555
2556         onenand_get_device(mtd, FL_READING);
2557         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2558         onenand_release_device(mtd);
2559         return ret;
2560 }
2561
2562 /**
2563  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2564  * @param mtd           MTD device structure
2565  * @param ofs           offset from device start
2566  *
2567  * This is the default implementation, which can be overridden by
2568  * a hardware specific driver.
2569  */
2570 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2571 {
2572         struct onenand_chip *this = mtd->priv;
2573         struct bbm_info *bbm = this->bbm;
2574         u_char buf[2] = {0, 0};
2575         struct mtd_oob_ops ops = {
2576                 .mode = MTD_OOB_PLACE,
2577                 .ooblen = 2,
2578                 .oobbuf = buf,
2579                 .ooboffs = 0,
2580         };
2581         int block;
2582
2583         /* Get block number */
2584         block = onenand_block(this, ofs);
2585         if (bbm->bbt)
2586                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2587
2588         /* We write two bytes, so we don't have to mess with 16-bit access */
2589         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2590         /* FIXME : What to do when marking SLC block in partition
2591          *         with MLC erasesize? For now, it is not advisable to
2592          *         create partitions containing both SLC and MLC regions.
2593          */
2594         return onenand_write_oob_nolock(mtd, ofs, &ops);
2595 }
2596
2597 /**
2598  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2599  * @param mtd           MTD device structure
2600  * @param ofs           offset relative to mtd start
2601  *
2602  * Mark the block as bad
2603  */
2604 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2605 {
2606         struct onenand_chip *this = mtd->priv;
2607         int ret;
2608
2609         ret = onenand_block_isbad(mtd, ofs);
2610         if (ret) {
2611                 /* If it was bad already, return success and do nothing */
2612                 if (ret > 0)
2613                         return 0;
2614                 return ret;
2615         }
2616
2617         onenand_get_device(mtd, FL_WRITING);
2618         ret = this->block_markbad(mtd, ofs);
2619         onenand_release_device(mtd);
2620         return ret;
2621 }
2622
2623 /**
2624  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2625  * @param mtd           MTD device structure
2626  * @param ofs           offset relative to mtd start
2627  * @param len           number of bytes to lock or unlock
2628  * @param cmd           lock or unlock command
2629  *
2630  * Lock or unlock one or more blocks
2631  */
2632 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2633 {
2634         struct onenand_chip *this = mtd->priv;
2635         int start, end, block, value, status;
2636         int wp_status_mask;
2637
2638         start = onenand_block(this, ofs);
2639         end = onenand_block(this, ofs + len) - 1;
2640
2641         if (cmd == ONENAND_CMD_LOCK)
2642                 wp_status_mask = ONENAND_WP_LS;
2643         else
2644                 wp_status_mask = ONENAND_WP_US;
2645
2646         /* Continuous lock scheme */
2647         if (this->options & ONENAND_HAS_CONT_LOCK) {
2648                 /* Set start block address */
2649                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2650                 /* Set end block address */
2651                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2652                 /* Write lock command */
2653                 this->command(mtd, cmd, 0, 0);
2654
2655                 /* There's no return value */
2656                 this->wait(mtd, FL_LOCKING);
2657
2658                 /* Sanity check */
2659                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2660                     & ONENAND_CTRL_ONGO)
2661                         continue;
2662
2663                 /* Check lock status */
2664                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2665                 if (!(status & wp_status_mask))
2666                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2667                                 __func__, status);
2668
2669                 return 0;
2670         }
2671
2672         /* Block lock scheme */
2673         for (block = start; block < end + 1; block++) {
2674                 /* Set block address */
2675                 value = onenand_block_address(this, block);
2676                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2677                 /* Select DataRAM for DDP */
2678                 value = onenand_bufferram_address(this, block);
2679                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2680                 /* Set start block address */
2681                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2682                 /* Write lock command */
2683                 this->command(mtd, cmd, 0, 0);
2684
2685                 /* There's no return value */
2686                 this->wait(mtd, FL_LOCKING);
2687
2688                 /* Sanity check */
2689                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2690                     & ONENAND_CTRL_ONGO)
2691                         continue;
2692
2693                 /* Check lock status */
2694                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2695                 if (!(status & wp_status_mask))
2696                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2697                                 __func__, block, status);
2698         }
2699
2700         return 0;
2701 }
2702
2703 /**
2704  * onenand_lock - [MTD Interface] Lock block(s)
2705  * @param mtd           MTD device structure
2706  * @param ofs           offset relative to mtd start
2707  * @param len           number of bytes to unlock
2708  *
2709  * Lock one or more blocks
2710  */
2711 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2712 {
2713         int ret;
2714
2715         onenand_get_device(mtd, FL_LOCKING);
2716         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2717         onenand_release_device(mtd);
2718         return ret;
2719 }
2720
2721 /**
2722  * onenand_unlock - [MTD Interface] Unlock block(s)
2723  * @param mtd           MTD device structure
2724  * @param ofs           offset relative to mtd start
2725  * @param len           number of bytes to unlock
2726  *
2727  * Unlock one or more blocks
2728  */
2729 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2730 {
2731         int ret;
2732
2733         onenand_get_device(mtd, FL_LOCKING);
2734         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2735         onenand_release_device(mtd);
2736         return ret;
2737 }
2738
2739 /**
2740  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2741  * @param this          onenand chip data structure
2742  *
2743  * Check lock status
2744  */
2745 static int onenand_check_lock_status(struct onenand_chip *this)
2746 {
2747         unsigned int value, block, status;
2748         unsigned int end;
2749
2750         end = this->chipsize >> this->erase_shift;
2751         for (block = 0; block < end; block++) {
2752                 /* Set block address */
2753                 value = onenand_block_address(this, block);
2754                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2755                 /* Select DataRAM for DDP */
2756                 value = onenand_bufferram_address(this, block);
2757                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2758                 /* Set start block address */
2759                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2760
2761                 /* Check lock status */
2762                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2763                 if (!(status & ONENAND_WP_US)) {
2764                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2765                                 __func__, block, status);
2766                         return 0;
2767                 }
2768         }
2769
2770         return 1;
2771 }
2772
2773 /**
2774  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2775  * @param mtd           MTD device structure
2776  *
2777  * Unlock all blocks
2778  */
2779 static void onenand_unlock_all(struct mtd_info *mtd)
2780 {
2781         struct onenand_chip *this = mtd->priv;
2782         loff_t ofs = 0;
2783         loff_t len = mtd->size;
2784
2785         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2786                 /* Set start block address */
2787                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2788                 /* Write unlock command */
2789                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2790
2791                 /* There's no return value */
2792                 this->wait(mtd, FL_LOCKING);
2793
2794                 /* Sanity check */
2795                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2796                     & ONENAND_CTRL_ONGO)
2797                         continue;
2798
2799                 /* Don't check lock status */
2800                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2801                         return;
2802
2803                 /* Check lock status */
2804                 if (onenand_check_lock_status(this))
2805                         return;
2806
2807                 /* Workaround for all block unlock in DDP */
2808                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2809                         /* All blocks on another chip */
2810                         ofs = this->chipsize >> 1;
2811                         len = this->chipsize >> 1;
2812                 }
2813         }
2814
2815         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2816 }
2817
2818 #ifdef CONFIG_MTD_ONENAND_OTP
2819
2820 /**
2821  * onenand_otp_command - Send OTP specific command to OneNAND device
2822  * @param mtd    MTD device structure
2823  * @param cmd    the command to be sent
2824  * @param addr   offset to read from or write to
2825  * @param len    number of bytes to read or write
2826  */
2827 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2828                                 size_t len)
2829 {
2830         struct onenand_chip *this = mtd->priv;
2831         int value, block, page;
2832
2833         /* Address translation */
2834         switch (cmd) {
2835         case ONENAND_CMD_OTP_ACCESS:
2836                 block = (int) (addr >> this->erase_shift);
2837                 page = -1;
2838                 break;
2839
2840         default:
2841                 block = (int) (addr >> this->erase_shift);
2842                 page = (int) (addr >> this->page_shift);
2843
2844                 if (ONENAND_IS_2PLANE(this)) {
2845                         /* Make the even block number */
2846                         block &= ~1;
2847                         /* Is it the odd plane? */
2848                         if (addr & this->writesize)
2849                                 block++;
2850                         page >>= 1;
2851                 }
2852                 page &= this->page_mask;
2853                 break;
2854         }
2855
2856         if (block != -1) {
2857                 /* Write 'DFS, FBA' of Flash */
2858                 value = onenand_block_address(this, block);
2859                 this->write_word(value, this->base +
2860                                 ONENAND_REG_START_ADDRESS1);
2861         }
2862
2863         if (page != -1) {
2864                 /* Now we use page size operation */
2865                 int sectors = 4, count = 4;
2866                 int dataram;
2867
2868                 switch (cmd) {
2869                 default:
2870                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2871                                 cmd = ONENAND_CMD_2X_PROG;
2872                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2873                         break;
2874                 }
2875
2876                 /* Write 'FPA, FSA' of Flash */
2877                 value = onenand_page_address(page, sectors);
2878                 this->write_word(value, this->base +
2879                                 ONENAND_REG_START_ADDRESS8);
2880
2881                 /* Write 'BSA, BSC' of DataRAM */
2882                 value = onenand_buffer_address(dataram, sectors, count);
2883                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2884         }
2885
2886         /* Interrupt clear */
2887         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2888
2889         /* Write command */
2890         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2891
2892         return 0;
2893 }
2894
2895 /**
2896  * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2897  * @param mtd           MTD device structure
2898  * @param to            offset to write to
2899  * @param len           number of bytes to write
2900  * @param retlen        pointer to variable to store the number of written bytes
2901  * @param buf           the data to write
2902  *
2903  * OneNAND write out-of-band only for OTP
2904  */
2905 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2906                                     struct mtd_oob_ops *ops)
2907 {
2908         struct onenand_chip *this = mtd->priv;
2909         int column, ret = 0, oobsize;
2910         int written = 0;
2911         u_char *oobbuf;
2912         size_t len = ops->ooblen;
2913         const u_char *buf = ops->oobbuf;
2914         int block, value, status;
2915
2916         to += ops->ooboffs;
2917
2918         /* Initialize retlen, in case of early exit */
2919         ops->oobretlen = 0;
2920
2921         oobsize = mtd->oobsize;
2922
2923         column = to & (mtd->oobsize - 1);
2924
2925         oobbuf = this->oob_buf;
2926
2927         /* Loop until all data write */
2928         while (written < len) {
2929                 int thislen = min_t(int, oobsize, len - written);
2930
2931                 cond_resched();
2932
2933                 block = (int) (to >> this->erase_shift);
2934                 /*
2935                  * Write 'DFS, FBA' of Flash
2936                  * Add: F100h DQ=DFS, FBA
2937                  */
2938
2939                 value = onenand_block_address(this, block);
2940                 this->write_word(value, this->base +
2941                                 ONENAND_REG_START_ADDRESS1);
2942
2943                 /*
2944                  * Select DataRAM for DDP
2945                  * Add: F101h DQ=DBS
2946                  */
2947
2948                 value = onenand_bufferram_address(this, block);
2949                 this->write_word(value, this->base +
2950                                 ONENAND_REG_START_ADDRESS2);
2951                 ONENAND_SET_NEXT_BUFFERRAM(this);
2952
2953                 /*
2954                  * Enter OTP access mode
2955                  */
2956                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2957                 this->wait(mtd, FL_OTPING);
2958
2959                 /* We send data to spare ram with oobsize
2960                  * to prevent byte access */
2961                 memcpy(oobbuf + column, buf, thislen);
2962
2963                 /*
2964                  * Write Data into DataRAM
2965                  * Add: 8th Word
2966                  * in sector0/spare/page0
2967                  * DQ=XXFCh
2968                  */
2969                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2970                                         oobbuf, 0, mtd->oobsize);
2971
2972                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2973                 onenand_update_bufferram(mtd, to, 0);
2974                 if (ONENAND_IS_2PLANE(this)) {
2975                         ONENAND_SET_BUFFERRAM1(this);
2976                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2977                 }
2978
2979                 ret = this->wait(mtd, FL_WRITING);
2980                 if (ret) {
2981                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2982                         break;
2983                 }
2984
2985                 /* Exit OTP access mode */
2986                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2987                 this->wait(mtd, FL_RESETING);
2988
2989                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2990                 status &= 0x60;
2991
2992                 if (status == 0x60) {
2993                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2994                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2995                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2996                 } else if (status == 0x20) {
2997                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2998                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2999                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
3000                 } else if (status == 0x40) {
3001                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3002                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
3003                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3004                 } else {
3005                         printk(KERN_DEBUG "Reboot to check\n");
3006                 }
3007
3008                 written += thislen;
3009                 if (written == len)
3010                         break;
3011
3012                 to += mtd->writesize;
3013                 buf += thislen;
3014                 column = 0;
3015         }
3016
3017         ops->oobretlen = written;
3018
3019         return ret;
3020 }
3021
3022 /* Internal OTP operation */
3023 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3024                 size_t *retlen, u_char *buf);
3025
3026 /**
3027  * do_otp_read - [DEFAULT] Read OTP block area
3028  * @param mtd           MTD device structure
3029  * @param from          The offset to read
3030  * @param len           number of bytes to read
3031  * @param retlen        pointer to variable to store the number of readbytes
3032  * @param buf           the databuffer to put/get data
3033  *
3034  * Read OTP block area.
3035  */
3036 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3037                 size_t *retlen, u_char *buf)
3038 {
3039         struct onenand_chip *this = mtd->priv;
3040         struct mtd_oob_ops ops = {
3041                 .len    = len,
3042                 .ooblen = 0,
3043                 .datbuf = buf,
3044                 .oobbuf = NULL,
3045         };
3046         int ret;
3047
3048         /* Enter OTP access mode */
3049         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3050         this->wait(mtd, FL_OTPING);
3051
3052         ret = ONENAND_IS_4KB_PAGE(this) ?
3053                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3054                 onenand_read_ops_nolock(mtd, from, &ops);
3055
3056         /* Exit OTP access mode */
3057         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3058         this->wait(mtd, FL_RESETING);
3059
3060         return ret;
3061 }
3062
3063 /**
3064  * do_otp_write - [DEFAULT] Write OTP block area
3065  * @param mtd           MTD device structure
3066  * @param to            The offset to write
3067  * @param len           number of bytes to write
3068  * @param retlen        pointer to variable to store the number of write bytes
3069  * @param buf           the databuffer to put/get data
3070  *
3071  * Write OTP block area.
3072  */
3073 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3074                 size_t *retlen, u_char *buf)
3075 {
3076         struct onenand_chip *this = mtd->priv;
3077         unsigned char *pbuf = buf;
3078         int ret;
3079         struct mtd_oob_ops ops;
3080
3081         /* Force buffer page aligned */
3082         if (len < mtd->writesize) {
3083                 memcpy(this->page_buf, buf, len);
3084                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3085                 pbuf = this->page_buf;
3086                 len = mtd->writesize;
3087         }
3088
3089         /* Enter OTP access mode */
3090         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3091         this->wait(mtd, FL_OTPING);
3092
3093         ops.len = len;
3094         ops.ooblen = 0;
3095         ops.datbuf = pbuf;
3096         ops.oobbuf = NULL;
3097         ret = onenand_write_ops_nolock(mtd, to, &ops);
3098         *retlen = ops.retlen;
3099
3100         /* Exit OTP access mode */
3101         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3102         this->wait(mtd, FL_RESETING);
3103
3104         return ret;
3105 }
3106
3107 /**
3108  * do_otp_lock - [DEFAULT] Lock OTP block area
3109  * @param mtd           MTD device structure
3110  * @param from          The offset to lock
3111  * @param len           number of bytes to lock
3112  * @param retlen        pointer to variable to store the number of lock bytes
3113  * @param buf           the databuffer to put/get data
3114  *
3115  * Lock OTP block area.
3116  */
3117 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3118                 size_t *retlen, u_char *buf)
3119 {
3120         struct onenand_chip *this = mtd->priv;
3121         struct mtd_oob_ops ops;
3122         int ret;
3123
3124         if (FLEXONENAND(this)) {
3125
3126                 /* Enter OTP access mode */
3127                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3128                 this->wait(mtd, FL_OTPING);
3129                 /*
3130                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3131                  * main area of page 49.
3132                  */
3133                 ops.len = mtd->writesize;
3134                 ops.ooblen = 0;
3135                 ops.datbuf = buf;
3136                 ops.oobbuf = NULL;
3137                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3138                 *retlen = ops.retlen;
3139
3140                 /* Exit OTP access mode */
3141                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3142                 this->wait(mtd, FL_RESETING);
3143         } else {
3144                 ops.mode = MTD_OOB_PLACE;
3145                 ops.ooblen = len;
3146                 ops.oobbuf = buf;
3147                 ops.ooboffs = 0;
3148                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3149                 *retlen = ops.oobretlen;
3150         }
3151
3152         return ret;
3153 }
3154
3155 /**
3156  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3157  * @param mtd           MTD device structure
3158  * @param from          The offset to read/write
3159  * @param len           number of bytes to read/write
3160  * @param retlen        pointer to variable to store the number of read bytes
3161  * @param buf           the databuffer to put/get data
3162  * @param action        do given action
3163  * @param mode          specify user and factory
3164  *
3165  * Handle OTP operation.
3166  */
3167 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3168                         size_t *retlen, u_char *buf,
3169                         otp_op_t action, int mode)
3170 {
3171         struct onenand_chip *this = mtd->priv;
3172         int otp_pages;
3173         int density;
3174         int ret = 0;
3175
3176         *retlen = 0;
3177
3178         density = onenand_get_density(this->device_id);
3179         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3180                 otp_pages = 20;
3181         else
3182                 otp_pages = 50;
3183
3184         if (mode == MTD_OTP_FACTORY) {
3185                 from += mtd->writesize * otp_pages;
3186                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3187         }
3188
3189         /* Check User/Factory boundary */
3190         if (mode == MTD_OTP_USER) {
3191                 if (mtd->writesize * otp_pages < from + len)
3192                         return 0;
3193         } else {
3194                 if (mtd->writesize * otp_pages <  len)
3195                         return 0;
3196         }
3197
3198         onenand_get_device(mtd, FL_OTPING);
3199         while (len > 0 && otp_pages > 0) {
3200                 if (!action) {  /* OTP Info functions */
3201                         struct otp_info *otpinfo;
3202
3203                         len -= sizeof(struct otp_info);
3204                         if (len <= 0) {
3205                                 ret = -ENOSPC;
3206                                 break;
3207                         }
3208
3209                         otpinfo = (struct otp_info *) buf;
3210                         otpinfo->start = from;
3211                         otpinfo->length = mtd->writesize;
3212                         otpinfo->locked = 0;
3213
3214                         from += mtd->writesize;
3215                         buf += sizeof(struct otp_info);
3216                         *retlen += sizeof(struct otp_info);
3217                 } else {
3218                         size_t tmp_retlen;
3219
3220                         ret = action(mtd, from, len, &tmp_retlen, buf);
3221
3222                         buf += tmp_retlen;
3223                         len -= tmp_retlen;
3224                         *retlen += tmp_retlen;
3225
3226                         if (ret)
3227                                 break;
3228                 }
3229                 otp_pages--;
3230         }
3231         onenand_release_device(mtd);
3232
3233         return ret;
3234 }
3235
3236 /**
3237  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3238  * @param mtd           MTD device structure
3239  * @param buf           the databuffer to put/get data
3240  * @param len           number of bytes to read
3241  *
3242  * Read factory OTP info.
3243  */
3244 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3245                         struct otp_info *buf, size_t len)
3246 {
3247         size_t retlen;
3248         int ret;
3249
3250         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3251
3252         return ret ? : retlen;
3253 }
3254
3255 /**
3256  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3257  * @param mtd           MTD device structure
3258  * @param from          The offset to read
3259  * @param len           number of bytes to read
3260  * @param retlen        pointer to variable to store the number of read bytes
3261  * @param buf           the databuffer to put/get data
3262  *
3263  * Read factory OTP area.
3264  */
3265 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3266                         size_t len, size_t *retlen, u_char *buf)
3267 {
3268         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3269 }
3270
3271 /**
3272  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3273  * @param mtd           MTD device structure
3274  * @param buf           the databuffer to put/get data
3275  * @param len           number of bytes to read
3276  *
3277  * Read user OTP info.
3278  */
3279 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3280                         struct otp_info *buf, size_t len)
3281 {
3282         size_t retlen;
3283         int ret;
3284
3285         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3286
3287         return ret ? : retlen;
3288 }
3289
3290 /**
3291  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3292  * @param mtd           MTD device structure
3293  * @param from          The offset to read
3294  * @param len           number of bytes to read
3295  * @param retlen        pointer to variable to store the number of read bytes
3296  * @param buf           the databuffer to put/get data
3297  *
3298  * Read user OTP area.
3299  */
3300 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3301                         size_t len, size_t *retlen, u_char *buf)
3302 {
3303         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3304 }
3305
3306 /**
3307  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3308  * @param mtd           MTD device structure
3309  * @param from          The offset to write
3310  * @param len           number of bytes to write
3311  * @param retlen        pointer to variable to store the number of write bytes
3312  * @param buf           the databuffer to put/get data
3313  *
3314  * Write user OTP area.
3315  */
3316 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3317                         size_t len, size_t *retlen, u_char *buf)
3318 {
3319         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3320 }
3321
3322 /**
3323  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3324  * @param mtd           MTD device structure
3325  * @param from          The offset to lock
3326  * @param len           number of bytes to unlock
3327  *
3328  * Write lock mark on spare area in page 0 in OTP block
3329  */
3330 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3331                         size_t len)
3332 {
3333         struct onenand_chip *this = mtd->priv;
3334         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3335         size_t retlen;
3336         int ret;
3337         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3338
3339         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3340                                                  : mtd->oobsize);
3341         /*
3342          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3343          * We write 16 bytes spare area instead of 2 bytes.
3344          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3345          * main area of page 49.
3346          */
3347
3348         from = 0;
3349         len = FLEXONENAND(this) ? mtd->writesize : 16;
3350
3351         /*
3352          * Note: OTP lock operation
3353          *       OTP block : 0xXXFC                     XX 1111 1100
3354          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3355          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3356          */
3357         if (FLEXONENAND(this))
3358                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3359
3360         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3361         if (otp == 1)
3362                 buf[otp_lock_offset] = 0xFC;
3363         else if (otp == 2)
3364                 buf[otp_lock_offset] = 0xF3;
3365         else if (otp == 3)
3366                 buf[otp_lock_offset] = 0xF0;
3367         else if (otp != 0)
3368                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3369
3370         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3371
3372         return ret ? : retlen;
3373 }
3374
3375 #endif  /* CONFIG_MTD_ONENAND_OTP */
3376
3377 /**
3378  * onenand_check_features - Check and set OneNAND features
3379  * @param mtd           MTD data structure
3380  *
3381  * Check and set OneNAND features
3382  * - lock scheme
3383  * - two plane
3384  */
3385 static void onenand_check_features(struct mtd_info *mtd)
3386 {
3387         struct onenand_chip *this = mtd->priv;
3388         unsigned int density, process, numbufs;
3389
3390         /* Lock scheme depends on density and process */
3391         density = onenand_get_density(this->device_id);
3392         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3393         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3394
3395         /* Lock scheme */
3396         switch (density) {
3397         case ONENAND_DEVICE_DENSITY_4Gb:
3398                 if (ONENAND_IS_DDP(this))
3399                         this->options |= ONENAND_HAS_2PLANE;
3400                 else if (numbufs == 1) {
3401                         this->options |= ONENAND_HAS_4KB_PAGE;
3402                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3403                 }
3404
3405         case ONENAND_DEVICE_DENSITY_2Gb:
3406                 /* 2Gb DDP does not have 2 plane */
3407                 if (!ONENAND_IS_DDP(this))
3408                         this->options |= ONENAND_HAS_2PLANE;
3409                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3410
3411         case ONENAND_DEVICE_DENSITY_1Gb:
3412                 /* A-Die has all block unlock */
3413                 if (process)
3414                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3415                 break;
3416
3417         default:
3418                 /* Some OneNAND has continuous lock scheme */
3419                 if (!process)
3420                         this->options |= ONENAND_HAS_CONT_LOCK;
3421                 break;
3422         }
3423
3424         /* The MLC has 4KiB pagesize. */
3425         if (ONENAND_IS_MLC(this))
3426                 this->options |= ONENAND_HAS_4KB_PAGE;
3427
3428         if (ONENAND_IS_4KB_PAGE(this))
3429                 this->options &= ~ONENAND_HAS_2PLANE;
3430
3431         if (FLEXONENAND(this)) {
3432                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3433                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3434         }
3435
3436         if (this->options & ONENAND_HAS_CONT_LOCK)
3437                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3438         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3439                 printk(KERN_DEBUG "Chip support all block unlock\n");
3440         if (this->options & ONENAND_HAS_2PLANE)
3441                 printk(KERN_DEBUG "Chip has 2 plane\n");
3442         if (this->options & ONENAND_HAS_4KB_PAGE)
3443                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3444         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3445                 printk(KERN_DEBUG "Chip has cache program feature\n");
3446 }
3447
3448 /**
3449  * onenand_print_device_info - Print device & version ID
3450  * @param device        device ID
3451  * @param version       version ID
3452  *
3453  * Print device & version ID
3454  */
3455 static void onenand_print_device_info(int device, int version)
3456 {
3457         int vcc, demuxed, ddp, density, flexonenand;
3458
3459         vcc = device & ONENAND_DEVICE_VCC_MASK;
3460         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3461         ddp = device & ONENAND_DEVICE_IS_DDP;
3462         density = onenand_get_density(device);
3463         flexonenand = device & DEVICE_IS_FLEXONENAND;
3464         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3465                 demuxed ? "" : "Muxed ",
3466                 flexonenand ? "Flex-" : "",
3467                 ddp ? "(DDP)" : "",
3468                 (16 << density),
3469                 vcc ? "2.65/3.3" : "1.8",
3470                 device);
3471         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3472 }
3473
3474 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3475         {ONENAND_MFR_SAMSUNG, "Samsung"},
3476         {ONENAND_MFR_NUMONYX, "Numonyx"},
3477 };
3478
3479 /**
3480  * onenand_check_maf - Check manufacturer ID
3481  * @param manuf         manufacturer ID
3482  *
3483  * Check manufacturer ID
3484  */
3485 static int onenand_check_maf(int manuf)
3486 {
3487         int size = ARRAY_SIZE(onenand_manuf_ids);
3488         char *name;
3489         int i;
3490
3491         for (i = 0; i < size; i++)
3492                 if (manuf == onenand_manuf_ids[i].id)
3493                         break;
3494
3495         if (i < size)
3496                 name = onenand_manuf_ids[i].name;
3497         else
3498                 name = "Unknown";
3499
3500         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3501
3502         return (i == size);
3503 }
3504
3505 /**
3506 * flexonenand_get_boundary      - Reads the SLC boundary
3507 * @param onenand_info           - onenand info structure
3508 **/
3509 static int flexonenand_get_boundary(struct mtd_info *mtd)
3510 {
3511         struct onenand_chip *this = mtd->priv;
3512         unsigned die, bdry;
3513         int ret, syscfg, locked;
3514
3515         /* Disable ECC */
3516         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3517         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3518
3519         for (die = 0; die < this->dies; die++) {
3520                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3521                 this->wait(mtd, FL_SYNCING);
3522
3523                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3524                 ret = this->wait(mtd, FL_READING);
3525
3526                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3527                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3528                         locked = 0;
3529                 else
3530                         locked = 1;
3531                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3532
3533                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3534                 ret = this->wait(mtd, FL_RESETING);
3535
3536                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3537                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3538         }
3539
3540         /* Enable ECC */
3541         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3542         return 0;
3543 }
3544
3545 /**
3546  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3547  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3548  * @param mtd           - MTD device structure
3549  */
3550 static void flexonenand_get_size(struct mtd_info *mtd)
3551 {
3552         struct onenand_chip *this = mtd->priv;
3553         int die, i, eraseshift, density;
3554         int blksperdie, maxbdry;
3555         loff_t ofs;
3556
3557         density = onenand_get_density(this->device_id);
3558         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3559         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3560         maxbdry = blksperdie - 1;
3561         eraseshift = this->erase_shift - 1;
3562
3563         mtd->numeraseregions = this->dies << 1;
3564
3565         /* This fills up the device boundary */
3566         flexonenand_get_boundary(mtd);
3567         die = ofs = 0;
3568         i = -1;
3569         for (; die < this->dies; die++) {
3570                 if (!die || this->boundary[die-1] != maxbdry) {
3571                         i++;
3572                         mtd->eraseregions[i].offset = ofs;
3573                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3574                         mtd->eraseregions[i].numblocks =
3575                                                         this->boundary[die] + 1;
3576                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3577                         eraseshift++;
3578                 } else {
3579                         mtd->numeraseregions -= 1;
3580                         mtd->eraseregions[i].numblocks +=
3581                                                         this->boundary[die] + 1;
3582                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3583                 }
3584                 if (this->boundary[die] != maxbdry) {
3585                         i++;
3586                         mtd->eraseregions[i].offset = ofs;
3587                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3588                         mtd->eraseregions[i].numblocks = maxbdry ^
3589                                                          this->boundary[die];
3590                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3591                         eraseshift--;
3592                 } else
3593                         mtd->numeraseregions -= 1;
3594         }
3595
3596         /* Expose MLC erase size except when all blocks are SLC */
3597         mtd->erasesize = 1 << this->erase_shift;
3598         if (mtd->numeraseregions == 1)
3599                 mtd->erasesize >>= 1;
3600
3601         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3602         for (i = 0; i < mtd->numeraseregions; i++)
3603                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3604                         " numblocks: %04u]\n",
3605                         (unsigned int) mtd->eraseregions[i].offset,
3606                         mtd->eraseregions[i].erasesize,
3607                         mtd->eraseregions[i].numblocks);
3608
3609         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3610                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3611                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3612                                                  << (this->erase_shift - 1);
3613                 mtd->size += this->diesize[die];
3614         }
3615 }
3616
3617 /**
3618  * flexonenand_check_blocks_erased - Check if blocks are erased
3619  * @param mtd_info      - mtd info structure
3620  * @param start         - first erase block to check
3621  * @param end           - last erase block to check
3622  *
3623  * Converting an unerased block from MLC to SLC
3624  * causes byte values to change. Since both data and its ECC
3625  * have changed, reads on the block give uncorrectable error.
3626  * This might lead to the block being detected as bad.
3627  *
3628  * Avoid this by ensuring that the block to be converted is
3629  * erased.
3630  */
3631 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3632 {
3633         struct onenand_chip *this = mtd->priv;
3634         int i, ret;
3635         int block;
3636         struct mtd_oob_ops ops = {
3637                 .mode = MTD_OOB_PLACE,
3638                 .ooboffs = 0,
3639                 .ooblen = mtd->oobsize,
3640                 .datbuf = NULL,
3641                 .oobbuf = this->oob_buf,
3642         };
3643         loff_t addr;
3644
3645         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3646
3647         for (block = start; block <= end; block++) {
3648                 addr = flexonenand_addr(this, block);
3649                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3650                         continue;
3651
3652                 /*
3653                  * Since main area write results in ECC write to spare,
3654                  * it is sufficient to check only ECC bytes for change.
3655                  */
3656                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3657                 if (ret)
3658                         return ret;
3659
3660                 for (i = 0; i < mtd->oobsize; i++)
3661                         if (this->oob_buf[i] != 0xff)
3662                                 break;
3663
3664                 if (i != mtd->oobsize) {
3665                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3666                                 __func__, block);
3667                         return 1;
3668                 }
3669         }
3670
3671         return 0;
3672 }
3673
3674 /**
3675  * flexonenand_set_boundary     - Writes the SLC boundary
3676  * @param mtd                   - mtd info structure
3677  */
3678 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3679                                     int boundary, int lock)
3680 {
3681         struct onenand_chip *this = mtd->priv;
3682         int ret, density, blksperdie, old, new, thisboundary;
3683         loff_t addr;
3684
3685         /* Change only once for SDP Flex-OneNAND */
3686         if (die && (!ONENAND_IS_DDP(this)))
3687                 return 0;
3688
3689         /* boundary value of -1 indicates no required change */
3690         if (boundary < 0 || boundary == this->boundary[die])
3691                 return 0;
3692
3693         density = onenand_get_density(this->device_id);
3694         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3695         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3696
3697         if (boundary >= blksperdie) {
3698                 printk(KERN_ERR "%s: Invalid boundary value. "
3699                                 "Boundary not changed.\n", __func__);
3700                 return -EINVAL;
3701         }
3702
3703         /* Check if converting blocks are erased */
3704         old = this->boundary[die] + (die * this->density_mask);
3705         new = boundary + (die * this->density_mask);
3706         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3707         if (ret) {
3708                 printk(KERN_ERR "%s: Please erase blocks "
3709                                 "before boundary change\n", __func__);
3710                 return ret;
3711         }
3712
3713         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3714         this->wait(mtd, FL_SYNCING);
3715
3716         /* Check is boundary is locked */
3717         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3718         ret = this->wait(mtd, FL_READING);
3719
3720         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3721         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3722                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3723                 ret = 1;
3724                 goto out;
3725         }
3726
3727         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3728                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3729
3730         addr = die ? this->diesize[0] : 0;
3731
3732         boundary &= FLEXONENAND_PI_MASK;
3733         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3734
3735         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3736         ret = this->wait(mtd, FL_ERASING);
3737         if (ret) {
3738                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3739                        __func__, die);
3740                 goto out;
3741         }
3742
3743         this->write_word(boundary, this->base + ONENAND_DATARAM);
3744         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3745         ret = this->wait(mtd, FL_WRITING);
3746         if (ret) {
3747                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3748                         __func__, die);
3749                 goto out;
3750         }
3751
3752         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3753         ret = this->wait(mtd, FL_WRITING);
3754 out:
3755         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3756         this->wait(mtd, FL_RESETING);
3757         if (!ret)
3758                 /* Recalculate device size on boundary change*/
3759                 flexonenand_get_size(mtd);
3760
3761         return ret;
3762 }
3763
3764 /**
3765  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3766  * @param mtd           MTD device structure
3767  *
3768  * OneNAND detection method:
3769  *   Compare the values from command with ones from register
3770  */
3771 static int onenand_chip_probe(struct mtd_info *mtd)
3772 {
3773         struct onenand_chip *this = mtd->priv;
3774         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3775         int syscfg;
3776
3777         /* Save system configuration 1 */
3778         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3779         /* Clear Sync. Burst Read mode to read BootRAM */
3780         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3781
3782         /* Send the command for reading device ID from BootRAM */
3783         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3784
3785         /* Read manufacturer and device IDs from BootRAM */
3786         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3787         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3788
3789         /* Reset OneNAND to read default register values */
3790         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3791         /* Wait reset */
3792         this->wait(mtd, FL_RESETING);
3793
3794         /* Restore system configuration 1 */
3795         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3796
3797         /* Check manufacturer ID */
3798         if (onenand_check_maf(bram_maf_id))
3799                 return -ENXIO;
3800
3801         /* Read manufacturer and device IDs from Register */
3802         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3803         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3804
3805         /* Check OneNAND device */
3806         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3807                 return -ENXIO;
3808
3809         return 0;
3810 }
3811
3812 /**
3813  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3814  * @param mtd           MTD device structure
3815  */
3816 static int onenand_probe(struct mtd_info *mtd)
3817 {
3818         struct onenand_chip *this = mtd->priv;
3819         int maf_id, dev_id, ver_id;
3820         int density;
3821         int ret;
3822
3823         ret = this->chip_probe(mtd);
3824         if (ret)
3825                 return ret;
3826
3827         /* Read manufacturer and device IDs from Register */
3828         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3829         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3830         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3831         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3832
3833         /* Flash device information */
3834         onenand_print_device_info(dev_id, ver_id);
3835         this->device_id = dev_id;
3836         this->version_id = ver_id;
3837
3838         /* Check OneNAND features */
3839         onenand_check_features(mtd);
3840
3841         density = onenand_get_density(dev_id);
3842         if (FLEXONENAND(this)) {
3843                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3844                 /* Maximum possible erase regions */
3845                 mtd->numeraseregions = this->dies << 1;
3846                 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3847                                         * (this->dies << 1), GFP_KERNEL);
3848                 if (!mtd->eraseregions)
3849                         return -ENOMEM;
3850         }
3851
3852         /*
3853          * For Flex-OneNAND, chipsize represents maximum possible device size.
3854          * mtd->size represents the actual device size.
3855          */
3856         this->chipsize = (16 << density) << 20;
3857
3858         /* OneNAND page size & block size */
3859         /* The data buffer size is equal to page size */
3860         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3861         /* We use the full BufferRAM */
3862         if (ONENAND_IS_4KB_PAGE(this))
3863                 mtd->writesize <<= 1;
3864
3865         mtd->oobsize = mtd->writesize >> 5;
3866         /* Pages per a block are always 64 in OneNAND */
3867         mtd->erasesize = mtd->writesize << 6;
3868         /*
3869          * Flex-OneNAND SLC area has 64 pages per block.
3870          * Flex-OneNAND MLC area has 128 pages per block.
3871          * Expose MLC erase size to find erase_shift and page_mask.
3872          */
3873         if (FLEXONENAND(this))
3874                 mtd->erasesize <<= 1;
3875
3876         this->erase_shift = ffs(mtd->erasesize) - 1;
3877         this->page_shift = ffs(mtd->writesize) - 1;
3878         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3879         /* Set density mask. it is used for DDP */
3880         if (ONENAND_IS_DDP(this))
3881                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3882         /* It's real page size */
3883         this->writesize = mtd->writesize;
3884
3885         /* REVISIT: Multichip handling */
3886
3887         if (FLEXONENAND(this))
3888                 flexonenand_get_size(mtd);
3889         else
3890                 mtd->size = this->chipsize;
3891
3892         /*
3893          * We emulate the 4KiB page and 256KiB erase block size
3894          * But oobsize is still 64 bytes.
3895          * It is only valid if you turn on 2X program support,
3896          * Otherwise it will be ignored by compiler.
3897          */
3898         if (ONENAND_IS_2PLANE(this)) {
3899                 mtd->writesize <<= 1;
3900                 mtd->erasesize <<= 1;
3901         }
3902
3903         return 0;
3904 }
3905
3906 /**
3907  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3908  * @param mtd           MTD device structure
3909  */
3910 static int onenand_suspend(struct mtd_info *mtd)
3911 {
3912         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3913 }
3914
3915 /**
3916  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3917  * @param mtd           MTD device structure
3918  */
3919 static void onenand_resume(struct mtd_info *mtd)
3920 {
3921         struct onenand_chip *this = mtd->priv;
3922
3923         if (this->state == FL_PM_SUSPENDED)
3924                 onenand_release_device(mtd);
3925         else
3926                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3927                                 "in suspended state\n", __func__);
3928 }
3929
3930 /**
3931  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3932  * @param mtd           MTD device structure
3933  * @param maxchips      Number of chips to scan for
3934  *
3935  * This fills out all the not initialized function pointers
3936  * with the defaults.
3937  * The flash ID is read and the mtd/chip structures are
3938  * filled with the appropriate values.
3939  */
3940 int onenand_scan(struct mtd_info *mtd, int maxchips)
3941 {
3942         int i, ret;
3943         struct onenand_chip *this = mtd->priv;
3944
3945         if (!this->read_word)
3946                 this->read_word = onenand_readw;
3947         if (!this->write_word)
3948                 this->write_word = onenand_writew;
3949
3950         if (!this->command)
3951                 this->command = onenand_command;
3952         if (!this->wait)
3953                 onenand_setup_wait(mtd);
3954         if (!this->bbt_wait)
3955                 this->bbt_wait = onenand_bbt_wait;
3956         if (!this->unlock_all)
3957                 this->unlock_all = onenand_unlock_all;
3958
3959         if (!this->chip_probe)
3960                 this->chip_probe = onenand_chip_probe;
3961
3962         if (!this->read_bufferram)
3963                 this->read_bufferram = onenand_read_bufferram;
3964         if (!this->write_bufferram)
3965                 this->write_bufferram = onenand_write_bufferram;
3966
3967         if (!this->block_markbad)
3968                 this->block_markbad = onenand_default_block_markbad;
3969         if (!this->scan_bbt)
3970                 this->scan_bbt = onenand_default_bbt;
3971
3972         if (onenand_probe(mtd))
3973                 return -ENXIO;
3974
3975         /* Set Sync. Burst Read after probing */
3976         if (this->mmcontrol) {
3977                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3978                 this->read_bufferram = onenand_sync_read_bufferram;
3979         }
3980
3981         /* Allocate buffers, if necessary */
3982         if (!this->page_buf) {
3983                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3984                 if (!this->page_buf) {
3985                         printk(KERN_ERR "%s: Can't allocate page_buf\n",
3986                                 __func__);
3987                         return -ENOMEM;
3988                 }
3989 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3990                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3991                 if (!this->verify_buf) {
3992                         kfree(this->page_buf);
3993                         return -ENOMEM;
3994                 }
3995 #endif
3996                 this->options |= ONENAND_PAGEBUF_ALLOC;
3997         }
3998         if (!this->oob_buf) {
3999                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
4000                 if (!this->oob_buf) {
4001                         printk(KERN_ERR "%s: Can't allocate oob_buf\n",
4002                                 __func__);
4003                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4004                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
4005                                 kfree(this->page_buf);
4006                         }
4007                         return -ENOMEM;
4008                 }
4009                 this->options |= ONENAND_OOBBUF_ALLOC;
4010         }
4011
4012         this->state = FL_READY;
4013         init_waitqueue_head(&this->wq);
4014         spin_lock_init(&this->chip_lock);
4015
4016         /*
4017          * Allow subpage writes up to oobsize.
4018          */
4019         switch (mtd->oobsize) {
4020         case 128:
4021                 this->ecclayout = &onenand_oob_128;
4022                 mtd->subpage_sft = 0;
4023                 break;
4024         case 64:
4025                 this->ecclayout = &onenand_oob_64;
4026                 mtd->subpage_sft = 2;
4027                 break;
4028
4029         case 32:
4030                 this->ecclayout = &onenand_oob_32;
4031                 mtd->subpage_sft = 1;
4032                 break;
4033
4034         default:
4035                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4036                         __func__, mtd->oobsize);
4037                 mtd->subpage_sft = 0;
4038                 /* To prevent kernel oops */
4039                 this->ecclayout = &onenand_oob_32;
4040                 break;
4041         }
4042
4043         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4044
4045         /*
4046          * The number of bytes available for a client to place data into
4047          * the out of band area
4048          */
4049         this->ecclayout->oobavail = 0;
4050         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4051             this->ecclayout->oobfree[i].length; i++)
4052                 this->ecclayout->oobavail +=
4053                         this->ecclayout->oobfree[i].length;
4054         mtd->oobavail = this->ecclayout->oobavail;
4055
4056         mtd->ecclayout = this->ecclayout;
4057
4058         /* Fill in remaining MTD driver data */
4059         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4060         mtd->flags = MTD_CAP_NANDFLASH;
4061         mtd->erase = onenand_erase;
4062         mtd->point = NULL;
4063         mtd->unpoint = NULL;
4064         mtd->read = onenand_read;
4065         mtd->write = onenand_write;
4066         mtd->read_oob = onenand_read_oob;
4067         mtd->write_oob = onenand_write_oob;
4068         mtd->panic_write = onenand_panic_write;
4069 #ifdef CONFIG_MTD_ONENAND_OTP
4070         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4071         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4072         mtd->get_user_prot_info = onenand_get_user_prot_info;
4073         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4074         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4075         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4076 #endif
4077         mtd->sync = onenand_sync;
4078         mtd->lock = onenand_lock;
4079         mtd->unlock = onenand_unlock;
4080         mtd->suspend = onenand_suspend;
4081         mtd->resume = onenand_resume;
4082         mtd->block_isbad = onenand_block_isbad;
4083         mtd->block_markbad = onenand_block_markbad;
4084         mtd->owner = THIS_MODULE;
4085         mtd->writebufsize = mtd->writesize;
4086
4087         /* Unlock whole block */
4088         if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4089                 this->unlock_all(mtd);
4090
4091         ret = this->scan_bbt(mtd);
4092         if ((!FLEXONENAND(this)) || ret)
4093                 return ret;
4094
4095         /* Change Flex-OneNAND boundaries if required */
4096         for (i = 0; i < MAX_DIES; i++)
4097                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4098                                                  flex_bdry[(2 * i) + 1]);
4099
4100         return 0;
4101 }
4102
4103 /**
4104  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4105  * @param mtd           MTD device structure
4106  */
4107 void onenand_release(struct mtd_info *mtd)
4108 {
4109         struct onenand_chip *this = mtd->priv;
4110
4111 #ifdef CONFIG_MTD_PARTITIONS
4112         /* Deregister partitions */
4113         del_mtd_partitions (mtd);
4114 #endif
4115         /* Deregister the device */
4116         del_mtd_device (mtd);
4117
4118         /* Free bad block table memory, if allocated */
4119         if (this->bbm) {
4120                 struct bbm_info *bbm = this->bbm;
4121                 kfree(bbm->bbt);
4122                 kfree(this->bbm);
4123         }
4124         /* Buffers allocated by onenand_scan */
4125         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4126                 kfree(this->page_buf);
4127 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4128                 kfree(this->verify_buf);
4129 #endif
4130         }
4131         if (this->options & ONENAND_OOBBUF_ALLOC)
4132                 kfree(this->oob_buf);
4133         kfree(mtd->eraseregions);
4134 }
4135
4136 EXPORT_SYMBOL_GPL(onenand_scan);
4137 EXPORT_SYMBOL_GPL(onenand_release);
4138
4139 MODULE_LICENSE("GPL");
4140 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4141 MODULE_DESCRIPTION("Generic OneNAND flash driver code");