mtd: nand: extend NAND flash detection to new MLC chips
[pandora-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <asm/io.h>
50
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
53 #endif
54
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8 = {
57         .eccbytes = 3,
58         .eccpos = {0, 1, 2},
59         .oobfree = {
60                 {.offset = 3,
61                  .length = 2},
62                 {.offset = 6,
63                  .length = 2}}
64 };
65
66 static struct nand_ecclayout nand_oob_16 = {
67         .eccbytes = 6,
68         .eccpos = {0, 1, 2, 3, 6, 7},
69         .oobfree = {
70                 {.offset = 8,
71                  . length = 8}}
72 };
73
74 static struct nand_ecclayout nand_oob_64 = {
75         .eccbytes = 24,
76         .eccpos = {
77                    40, 41, 42, 43, 44, 45, 46, 47,
78                    48, 49, 50, 51, 52, 53, 54, 55,
79                    56, 57, 58, 59, 60, 61, 62, 63},
80         .oobfree = {
81                 {.offset = 2,
82                  .length = 38}}
83 };
84
85 static struct nand_ecclayout nand_oob_128 = {
86         .eccbytes = 48,
87         .eccpos = {
88                    80, 81, 82, 83, 84, 85, 86, 87,
89                    88, 89, 90, 91, 92, 93, 94, 95,
90                    96, 97, 98, 99, 100, 101, 102, 103,
91                    104, 105, 106, 107, 108, 109, 110, 111,
92                    112, 113, 114, 115, 116, 117, 118, 119,
93                    120, 121, 122, 123, 124, 125, 126, 127},
94         .oobfree = {
95                 {.offset = 2,
96                  .length = 78}}
97 };
98
99 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
100                            int new_state);
101
102 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103                              struct mtd_oob_ops *ops);
104
105 /*
106  * For devices which display every fart in the system on a separate LED. Is
107  * compiled away when LED support is disabled.
108  */
109 DEFINE_LED_TRIGGER(nand_led_trigger);
110
111 static int check_offs_len(struct mtd_info *mtd,
112                                         loff_t ofs, uint64_t len)
113 {
114         struct nand_chip *chip = mtd->priv;
115         int ret = 0;
116
117         /* Start address must align on block boundary */
118         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
119                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
120                 ret = -EINVAL;
121         }
122
123         /* Length must align on block boundary */
124         if (len & ((1 << chip->phys_erase_shift) - 1)) {
125                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
126                                         __func__);
127                 ret = -EINVAL;
128         }
129
130         /* Do not allow past end of device */
131         if (ofs + len > mtd->size) {
132                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
133                                         __func__);
134                 ret = -EINVAL;
135         }
136
137         return ret;
138 }
139
140 /**
141  * nand_release_device - [GENERIC] release chip
142  * @mtd:        MTD device structure
143  *
144  * Deselect, release chip lock and wake up anyone waiting on the device
145  */
146 static void nand_release_device(struct mtd_info *mtd)
147 {
148         struct nand_chip *chip = mtd->priv;
149
150         /* De-select the NAND device */
151         chip->select_chip(mtd, -1);
152
153         /* Release the controller and the chip */
154         spin_lock(&chip->controller->lock);
155         chip->controller->active = NULL;
156         chip->state = FL_READY;
157         wake_up(&chip->controller->wq);
158         spin_unlock(&chip->controller->lock);
159 }
160
161 /**
162  * nand_read_byte - [DEFAULT] read one byte from the chip
163  * @mtd:        MTD device structure
164  *
165  * Default read function for 8bit buswith
166  */
167 static uint8_t nand_read_byte(struct mtd_info *mtd)
168 {
169         struct nand_chip *chip = mtd->priv;
170         return readb(chip->IO_ADDR_R);
171 }
172
173 /**
174  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
175  * @mtd:        MTD device structure
176  *
177  * Default read function for 16bit buswith with
178  * endianess conversion
179  */
180 static uint8_t nand_read_byte16(struct mtd_info *mtd)
181 {
182         struct nand_chip *chip = mtd->priv;
183         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
184 }
185
186 /**
187  * nand_read_word - [DEFAULT] read one word from the chip
188  * @mtd:        MTD device structure
189  *
190  * Default read function for 16bit buswith without
191  * endianess conversion
192  */
193 static u16 nand_read_word(struct mtd_info *mtd)
194 {
195         struct nand_chip *chip = mtd->priv;
196         return readw(chip->IO_ADDR_R);
197 }
198
199 /**
200  * nand_select_chip - [DEFAULT] control CE line
201  * @mtd:        MTD device structure
202  * @chipnr:     chipnumber to select, -1 for deselect
203  *
204  * Default select function for 1 chip devices.
205  */
206 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
207 {
208         struct nand_chip *chip = mtd->priv;
209
210         switch (chipnr) {
211         case -1:
212                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
213                 break;
214         case 0:
215                 break;
216
217         default:
218                 BUG();
219         }
220 }
221
222 /**
223  * nand_write_buf - [DEFAULT] write buffer to chip
224  * @mtd:        MTD device structure
225  * @buf:        data buffer
226  * @len:        number of bytes to write
227  *
228  * Default write function for 8bit buswith
229  */
230 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
231 {
232         int i;
233         struct nand_chip *chip = mtd->priv;
234
235         for (i = 0; i < len; i++)
236                 writeb(buf[i], chip->IO_ADDR_W);
237 }
238
239 /**
240  * nand_read_buf - [DEFAULT] read chip data into buffer
241  * @mtd:        MTD device structure
242  * @buf:        buffer to store date
243  * @len:        number of bytes to read
244  *
245  * Default read function for 8bit buswith
246  */
247 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
248 {
249         int i;
250         struct nand_chip *chip = mtd->priv;
251
252         for (i = 0; i < len; i++)
253                 buf[i] = readb(chip->IO_ADDR_R);
254 }
255
256 /**
257  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
258  * @mtd:        MTD device structure
259  * @buf:        buffer containing the data to compare
260  * @len:        number of bytes to compare
261  *
262  * Default verify function for 8bit buswith
263  */
264 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
265 {
266         int i;
267         struct nand_chip *chip = mtd->priv;
268
269         for (i = 0; i < len; i++)
270                 if (buf[i] != readb(chip->IO_ADDR_R))
271                         return -EFAULT;
272         return 0;
273 }
274
275 /**
276  * nand_write_buf16 - [DEFAULT] write buffer to chip
277  * @mtd:        MTD device structure
278  * @buf:        data buffer
279  * @len:        number of bytes to write
280  *
281  * Default write function for 16bit buswith
282  */
283 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
284 {
285         int i;
286         struct nand_chip *chip = mtd->priv;
287         u16 *p = (u16 *) buf;
288         len >>= 1;
289
290         for (i = 0; i < len; i++)
291                 writew(p[i], chip->IO_ADDR_W);
292
293 }
294
295 /**
296  * nand_read_buf16 - [DEFAULT] read chip data into buffer
297  * @mtd:        MTD device structure
298  * @buf:        buffer to store date
299  * @len:        number of bytes to read
300  *
301  * Default read function for 16bit buswith
302  */
303 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
304 {
305         int i;
306         struct nand_chip *chip = mtd->priv;
307         u16 *p = (u16 *) buf;
308         len >>= 1;
309
310         for (i = 0; i < len; i++)
311                 p[i] = readw(chip->IO_ADDR_R);
312 }
313
314 /**
315  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
316  * @mtd:        MTD device structure
317  * @buf:        buffer containing the data to compare
318  * @len:        number of bytes to compare
319  *
320  * Default verify function for 16bit buswith
321  */
322 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
323 {
324         int i;
325         struct nand_chip *chip = mtd->priv;
326         u16 *p = (u16 *) buf;
327         len >>= 1;
328
329         for (i = 0; i < len; i++)
330                 if (p[i] != readw(chip->IO_ADDR_R))
331                         return -EFAULT;
332
333         return 0;
334 }
335
336 /**
337  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
338  * @mtd:        MTD device structure
339  * @ofs:        offset from device start
340  * @getchip:    0, if the chip is already selected
341  *
342  * Check, if the block is bad.
343  */
344 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
345 {
346         int page, chipnr, res = 0;
347         struct nand_chip *chip = mtd->priv;
348         u16 bad;
349
350         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
351
352         if (getchip) {
353                 chipnr = (int)(ofs >> chip->chip_shift);
354
355                 nand_get_device(chip, mtd, FL_READING);
356
357                 /* Select the NAND device */
358                 chip->select_chip(mtd, chipnr);
359         }
360
361         if (chip->options & NAND_BUSWIDTH_16) {
362                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
363                               page);
364                 bad = cpu_to_le16(chip->read_word(mtd));
365                 if (chip->badblockpos & 0x1)
366                         bad >>= 8;
367                 else
368                         bad &= 0xFF;
369         } else {
370                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
371                 bad = chip->read_byte(mtd);
372         }
373
374         if (likely(chip->badblockbits == 8))
375                 res = bad != 0xFF;
376         else
377                 res = hweight8(bad) < chip->badblockbits;
378
379         if (getchip)
380                 nand_release_device(mtd);
381
382         return res;
383 }
384
385 /**
386  * nand_default_block_markbad - [DEFAULT] mark a block bad
387  * @mtd:        MTD device structure
388  * @ofs:        offset from device start
389  *
390  * This is the default implementation, which can be overridden by
391  * a hardware specific driver.
392 */
393 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
394 {
395         struct nand_chip *chip = mtd->priv;
396         uint8_t buf[2] = { 0, 0 };
397         int block, ret;
398
399         /* Get block number */
400         block = (int)(ofs >> chip->bbt_erase_shift);
401         if (chip->bbt)
402                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
403
404         /* Do we have a flash based bad block table ? */
405         if (chip->options & NAND_USE_FLASH_BBT)
406                 ret = nand_update_bbt(mtd, ofs);
407         else {
408                 /* We write two bytes, so we dont have to mess with 16 bit
409                  * access
410                  */
411                 nand_get_device(chip, mtd, FL_WRITING);
412                 ofs += mtd->oobsize;
413                 chip->ops.len = chip->ops.ooblen = 2;
414                 chip->ops.datbuf = NULL;
415                 chip->ops.oobbuf = buf;
416                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
417
418                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
419                 nand_release_device(mtd);
420         }
421         if (!ret)
422                 mtd->ecc_stats.badblocks++;
423
424         return ret;
425 }
426
427 /**
428  * nand_check_wp - [GENERIC] check if the chip is write protected
429  * @mtd:        MTD device structure
430  * Check, if the device is write protected
431  *
432  * The function expects, that the device is already selected
433  */
434 static int nand_check_wp(struct mtd_info *mtd)
435 {
436         struct nand_chip *chip = mtd->priv;
437
438         /* broken xD cards report WP despite being writable */
439         if (chip->options & NAND_BROKEN_XD)
440                 return 0;
441
442         /* Check the WP bit */
443         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
444         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
445 }
446
447 /**
448  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
449  * @mtd:        MTD device structure
450  * @ofs:        offset from device start
451  * @getchip:    0, if the chip is already selected
452  * @allowbbt:   1, if its allowed to access the bbt area
453  *
454  * Check, if the block is bad. Either by reading the bad block table or
455  * calling of the scan function.
456  */
457 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
458                                int allowbbt)
459 {
460         struct nand_chip *chip = mtd->priv;
461
462         if (!chip->bbt)
463                 return chip->block_bad(mtd, ofs, getchip);
464
465         /* Return info from the table */
466         return nand_isbad_bbt(mtd, ofs, allowbbt);
467 }
468
469 /**
470  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
471  * @mtd:        MTD device structure
472  * @timeo:      Timeout
473  *
474  * Helper function for nand_wait_ready used when needing to wait in interrupt
475  * context.
476  */
477 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
478 {
479         struct nand_chip *chip = mtd->priv;
480         int i;
481
482         /* Wait for the device to get ready */
483         for (i = 0; i < timeo; i++) {
484                 if (chip->dev_ready(mtd))
485                         break;
486                 touch_softlockup_watchdog();
487                 mdelay(1);
488         }
489 }
490
491 /*
492  * Wait for the ready pin, after a command
493  * The timeout is catched later.
494  */
495 void nand_wait_ready(struct mtd_info *mtd)
496 {
497         struct nand_chip *chip = mtd->priv;
498         unsigned long timeo = jiffies + 2;
499
500         /* 400ms timeout */
501         if (in_interrupt() || oops_in_progress)
502                 return panic_nand_wait_ready(mtd, 400);
503
504         led_trigger_event(nand_led_trigger, LED_FULL);
505         /* wait until command is processed or timeout occures */
506         do {
507                 if (chip->dev_ready(mtd))
508                         break;
509                 touch_softlockup_watchdog();
510         } while (time_before(jiffies, timeo));
511         led_trigger_event(nand_led_trigger, LED_OFF);
512 }
513 EXPORT_SYMBOL_GPL(nand_wait_ready);
514
515 /**
516  * nand_command - [DEFAULT] Send command to NAND device
517  * @mtd:        MTD device structure
518  * @command:    the command to be sent
519  * @column:     the column address for this command, -1 if none
520  * @page_addr:  the page address for this command, -1 if none
521  *
522  * Send command to NAND device. This function is used for small page
523  * devices (256/512 Bytes per page)
524  */
525 static void nand_command(struct mtd_info *mtd, unsigned int command,
526                          int column, int page_addr)
527 {
528         register struct nand_chip *chip = mtd->priv;
529         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
530
531         /*
532          * Write out the command to the device.
533          */
534         if (command == NAND_CMD_SEQIN) {
535                 int readcmd;
536
537                 if (column >= mtd->writesize) {
538                         /* OOB area */
539                         column -= mtd->writesize;
540                         readcmd = NAND_CMD_READOOB;
541                 } else if (column < 256) {
542                         /* First 256 bytes --> READ0 */
543                         readcmd = NAND_CMD_READ0;
544                 } else {
545                         column -= 256;
546                         readcmd = NAND_CMD_READ1;
547                 }
548                 chip->cmd_ctrl(mtd, readcmd, ctrl);
549                 ctrl &= ~NAND_CTRL_CHANGE;
550         }
551         chip->cmd_ctrl(mtd, command, ctrl);
552
553         /*
554          * Address cycle, when necessary
555          */
556         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
557         /* Serially input address */
558         if (column != -1) {
559                 /* Adjust columns for 16 bit buswidth */
560                 if (chip->options & NAND_BUSWIDTH_16)
561                         column >>= 1;
562                 chip->cmd_ctrl(mtd, column, ctrl);
563                 ctrl &= ~NAND_CTRL_CHANGE;
564         }
565         if (page_addr != -1) {
566                 chip->cmd_ctrl(mtd, page_addr, ctrl);
567                 ctrl &= ~NAND_CTRL_CHANGE;
568                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
569                 /* One more address cycle for devices > 32MiB */
570                 if (chip->chipsize > (32 << 20))
571                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
572         }
573         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
574
575         /*
576          * program and erase have their own busy handlers
577          * status and sequential in needs no delay
578          */
579         switch (command) {
580
581         case NAND_CMD_PAGEPROG:
582         case NAND_CMD_ERASE1:
583         case NAND_CMD_ERASE2:
584         case NAND_CMD_SEQIN:
585         case NAND_CMD_STATUS:
586                 return;
587
588         case NAND_CMD_RESET:
589                 if (chip->dev_ready)
590                         break;
591                 udelay(chip->chip_delay);
592                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
593                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
594                 chip->cmd_ctrl(mtd,
595                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
596                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
597                 return;
598
599                 /* This applies to read commands */
600         default:
601                 /*
602                  * If we don't have access to the busy pin, we apply the given
603                  * command delay
604                  */
605                 if (!chip->dev_ready) {
606                         udelay(chip->chip_delay);
607                         return;
608                 }
609         }
610         /* Apply this short delay always to ensure that we do wait tWB in
611          * any case on any machine. */
612         ndelay(100);
613
614         nand_wait_ready(mtd);
615 }
616
617 /**
618  * nand_command_lp - [DEFAULT] Send command to NAND large page device
619  * @mtd:        MTD device structure
620  * @command:    the command to be sent
621  * @column:     the column address for this command, -1 if none
622  * @page_addr:  the page address for this command, -1 if none
623  *
624  * Send command to NAND device. This is the version for the new large page
625  * devices We dont have the separate regions as we have in the small page
626  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
627  */
628 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
629                             int column, int page_addr)
630 {
631         register struct nand_chip *chip = mtd->priv;
632
633         /* Emulate NAND_CMD_READOOB */
634         if (command == NAND_CMD_READOOB) {
635                 column += mtd->writesize;
636                 command = NAND_CMD_READ0;
637         }
638
639         /* Command latch cycle */
640         chip->cmd_ctrl(mtd, command & 0xff,
641                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
642
643         if (column != -1 || page_addr != -1) {
644                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
645
646                 /* Serially input address */
647                 if (column != -1) {
648                         /* Adjust columns for 16 bit buswidth */
649                         if (chip->options & NAND_BUSWIDTH_16)
650                                 column >>= 1;
651                         chip->cmd_ctrl(mtd, column, ctrl);
652                         ctrl &= ~NAND_CTRL_CHANGE;
653                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
654                 }
655                 if (page_addr != -1) {
656                         chip->cmd_ctrl(mtd, page_addr, ctrl);
657                         chip->cmd_ctrl(mtd, page_addr >> 8,
658                                        NAND_NCE | NAND_ALE);
659                         /* One more address cycle for devices > 128MiB */
660                         if (chip->chipsize > (128 << 20))
661                                 chip->cmd_ctrl(mtd, page_addr >> 16,
662                                                NAND_NCE | NAND_ALE);
663                 }
664         }
665         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
666
667         /*
668          * program and erase have their own busy handlers
669          * status, sequential in, and deplete1 need no delay
670          */
671         switch (command) {
672
673         case NAND_CMD_CACHEDPROG:
674         case NAND_CMD_PAGEPROG:
675         case NAND_CMD_ERASE1:
676         case NAND_CMD_ERASE2:
677         case NAND_CMD_SEQIN:
678         case NAND_CMD_RNDIN:
679         case NAND_CMD_STATUS:
680         case NAND_CMD_DEPLETE1:
681                 return;
682
683                 /*
684                  * read error status commands require only a short delay
685                  */
686         case NAND_CMD_STATUS_ERROR:
687         case NAND_CMD_STATUS_ERROR0:
688         case NAND_CMD_STATUS_ERROR1:
689         case NAND_CMD_STATUS_ERROR2:
690         case NAND_CMD_STATUS_ERROR3:
691                 udelay(chip->chip_delay);
692                 return;
693
694         case NAND_CMD_RESET:
695                 if (chip->dev_ready)
696                         break;
697                 udelay(chip->chip_delay);
698                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
699                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
700                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
701                                NAND_NCE | NAND_CTRL_CHANGE);
702                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
703                 return;
704
705         case NAND_CMD_RNDOUT:
706                 /* No ready / busy check necessary */
707                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
708                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
709                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
710                                NAND_NCE | NAND_CTRL_CHANGE);
711                 return;
712
713         case NAND_CMD_READ0:
714                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
715                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
716                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
717                                NAND_NCE | NAND_CTRL_CHANGE);
718
719                 /* This applies to read commands */
720         default:
721                 /*
722                  * If we don't have access to the busy pin, we apply the given
723                  * command delay
724                  */
725                 if (!chip->dev_ready) {
726                         udelay(chip->chip_delay);
727                         return;
728                 }
729         }
730
731         /* Apply this short delay always to ensure that we do wait tWB in
732          * any case on any machine. */
733         ndelay(100);
734
735         nand_wait_ready(mtd);
736 }
737
738 /**
739  * panic_nand_get_device - [GENERIC] Get chip for selected access
740  * @chip:       the nand chip descriptor
741  * @mtd:        MTD device structure
742  * @new_state:  the state which is requested
743  *
744  * Used when in panic, no locks are taken.
745  */
746 static void panic_nand_get_device(struct nand_chip *chip,
747                       struct mtd_info *mtd, int new_state)
748 {
749         /* Hardware controller shared among independend devices */
750         chip->controller->active = chip;
751         chip->state = new_state;
752 }
753
754 /**
755  * nand_get_device - [GENERIC] Get chip for selected access
756  * @chip:       the nand chip descriptor
757  * @mtd:        MTD device structure
758  * @new_state:  the state which is requested
759  *
760  * Get the device and lock it for exclusive access
761  */
762 static int
763 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
764 {
765         spinlock_t *lock = &chip->controller->lock;
766         wait_queue_head_t *wq = &chip->controller->wq;
767         DECLARE_WAITQUEUE(wait, current);
768  retry:
769         spin_lock(lock);
770
771         /* Hardware controller shared among independent devices */
772         if (!chip->controller->active)
773                 chip->controller->active = chip;
774
775         if (chip->controller->active == chip && chip->state == FL_READY) {
776                 chip->state = new_state;
777                 spin_unlock(lock);
778                 return 0;
779         }
780         if (new_state == FL_PM_SUSPENDED) {
781                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
782                         chip->state = FL_PM_SUSPENDED;
783                         spin_unlock(lock);
784                         return 0;
785                 }
786         }
787         set_current_state(TASK_UNINTERRUPTIBLE);
788         add_wait_queue(wq, &wait);
789         spin_unlock(lock);
790         schedule();
791         remove_wait_queue(wq, &wait);
792         goto retry;
793 }
794
795 /**
796  * panic_nand_wait - [GENERIC]  wait until the command is done
797  * @mtd:        MTD device structure
798  * @chip:       NAND chip structure
799  * @timeo:      Timeout
800  *
801  * Wait for command done. This is a helper function for nand_wait used when
802  * we are in interrupt context. May happen when in panic and trying to write
803  * an oops trough mtdoops.
804  */
805 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
806                             unsigned long timeo)
807 {
808         int i;
809         for (i = 0; i < timeo; i++) {
810                 if (chip->dev_ready) {
811                         if (chip->dev_ready(mtd))
812                                 break;
813                 } else {
814                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
815                                 break;
816                 }
817                 mdelay(1);
818         }
819 }
820
821 /**
822  * nand_wait - [DEFAULT]  wait until the command is done
823  * @mtd:        MTD device structure
824  * @chip:       NAND chip structure
825  *
826  * Wait for command done. This applies to erase and program only
827  * Erase can take up to 400ms and program up to 20ms according to
828  * general NAND and SmartMedia specs
829  */
830 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
831 {
832
833         unsigned long timeo = jiffies;
834         int status, state = chip->state;
835
836         if (state == FL_ERASING)
837                 timeo += (HZ * 400) / 1000;
838         else
839                 timeo += (HZ * 20) / 1000;
840
841         led_trigger_event(nand_led_trigger, LED_FULL);
842
843         /* Apply this short delay always to ensure that we do wait tWB in
844          * any case on any machine. */
845         ndelay(100);
846
847         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
848                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
849         else
850                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
851
852         if (in_interrupt() || oops_in_progress)
853                 panic_nand_wait(mtd, chip, timeo);
854         else {
855                 while (time_before(jiffies, timeo)) {
856                         if (chip->dev_ready) {
857                                 if (chip->dev_ready(mtd))
858                                         break;
859                         } else {
860                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
861                                         break;
862                         }
863                         cond_resched();
864                 }
865         }
866         led_trigger_event(nand_led_trigger, LED_OFF);
867
868         status = (int)chip->read_byte(mtd);
869         return status;
870 }
871
872 /**
873  * __nand_unlock - [REPLACABLE] unlocks specified locked blockes
874  *
875  * @param mtd - mtd info
876  * @param ofs - offset to start unlock from
877  * @param len - length to unlock
878  * @invert -  when = 0, unlock the range of blocks within the lower and
879  *                      upper boundary address
880  *            whne = 1, unlock the range of blocks outside the boundaries
881  *                      of the lower and upper boundary address
882  *
883  * @return - unlock status
884  */
885 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
886                                         uint64_t len, int invert)
887 {
888         int ret = 0;
889         int status, page;
890         struct nand_chip *chip = mtd->priv;
891
892         /* Submit address of first page to unlock */
893         page = ofs >> chip->page_shift;
894         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
895
896         /* Submit address of last page to unlock */
897         page = (ofs + len) >> chip->page_shift;
898         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
899                                 (page | invert) & chip->pagemask);
900
901         /* Call wait ready function */
902         status = chip->waitfunc(mtd, chip);
903         udelay(1000);
904         /* See if device thinks it succeeded */
905         if (status & 0x01) {
906                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
907                                         __func__, status);
908                 ret = -EIO;
909         }
910
911         return ret;
912 }
913
914 /**
915  * nand_unlock - [REPLACABLE] unlocks specified locked blockes
916  *
917  * @param mtd - mtd info
918  * @param ofs - offset to start unlock from
919  * @param len - length to unlock
920  *
921  * @return - unlock status
922  */
923 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
924 {
925         int ret = 0;
926         int chipnr;
927         struct nand_chip *chip = mtd->priv;
928
929         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
930                         __func__, (unsigned long long)ofs, len);
931
932         if (check_offs_len(mtd, ofs, len))
933                 ret = -EINVAL;
934
935         /* Align to last block address if size addresses end of the device */
936         if (ofs + len == mtd->size)
937                 len -= mtd->erasesize;
938
939         nand_get_device(chip, mtd, FL_UNLOCKING);
940
941         /* Shift to get chip number */
942         chipnr = ofs >> chip->chip_shift;
943
944         chip->select_chip(mtd, chipnr);
945
946         /* Check, if it is write protected */
947         if (nand_check_wp(mtd)) {
948                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
949                                         __func__);
950                 ret = -EIO;
951                 goto out;
952         }
953
954         ret = __nand_unlock(mtd, ofs, len, 0);
955
956 out:
957         /* de-select the NAND device */
958         chip->select_chip(mtd, -1);
959
960         nand_release_device(mtd);
961
962         return ret;
963 }
964
965 /**
966  * nand_lock - [REPLACABLE] locks all blockes present in the device
967  *
968  * @param mtd - mtd info
969  * @param ofs - offset to start unlock from
970  * @param len - length to unlock
971  *
972  * @return - lock status
973  *
974  * This feature is not support in many NAND parts. 'Micron' NAND parts
975  * do have this feature, but it allows only to lock all blocks not for
976  * specified range for block.
977  *
978  * Implementing 'lock' feature by making use of 'unlock', for now.
979  */
980 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
981 {
982         int ret = 0;
983         int chipnr, status, page;
984         struct nand_chip *chip = mtd->priv;
985
986         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
987                         __func__, (unsigned long long)ofs, len);
988
989         if (check_offs_len(mtd, ofs, len))
990                 ret = -EINVAL;
991
992         nand_get_device(chip, mtd, FL_LOCKING);
993
994         /* Shift to get chip number */
995         chipnr = ofs >> chip->chip_shift;
996
997         chip->select_chip(mtd, chipnr);
998
999         /* Check, if it is write protected */
1000         if (nand_check_wp(mtd)) {
1001                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1002                                         __func__);
1003                 status = MTD_ERASE_FAILED;
1004                 ret = -EIO;
1005                 goto out;
1006         }
1007
1008         /* Submit address of first page to lock */
1009         page = ofs >> chip->page_shift;
1010         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1011
1012         /* Call wait ready function */
1013         status = chip->waitfunc(mtd, chip);
1014         udelay(1000);
1015         /* See if device thinks it succeeded */
1016         if (status & 0x01) {
1017                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1018                                         __func__, status);
1019                 ret = -EIO;
1020                 goto out;
1021         }
1022
1023         ret = __nand_unlock(mtd, ofs, len, 0x1);
1024
1025 out:
1026         /* de-select the NAND device */
1027         chip->select_chip(mtd, -1);
1028
1029         nand_release_device(mtd);
1030
1031         return ret;
1032 }
1033
1034 /**
1035  * nand_read_page_raw - [Intern] read raw page data without ecc
1036  * @mtd:        mtd info structure
1037  * @chip:       nand chip info structure
1038  * @buf:        buffer to store read data
1039  * @page:       page number to read
1040  *
1041  * Not for syndrome calculating ecc controllers, which use a special oob layout
1042  */
1043 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1044                               uint8_t *buf, int page)
1045 {
1046         chip->read_buf(mtd, buf, mtd->writesize);
1047         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1048         return 0;
1049 }
1050
1051 /**
1052  * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1053  * @mtd:        mtd info structure
1054  * @chip:       nand chip info structure
1055  * @buf:        buffer to store read data
1056  * @page:       page number to read
1057  *
1058  * We need a special oob layout and handling even when OOB isn't used.
1059  */
1060 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1061                               uint8_t *buf, int page)
1062 {
1063         int eccsize = chip->ecc.size;
1064         int eccbytes = chip->ecc.bytes;
1065         uint8_t *oob = chip->oob_poi;
1066         int steps, size;
1067
1068         for (steps = chip->ecc.steps; steps > 0; steps--) {
1069                 chip->read_buf(mtd, buf, eccsize);
1070                 buf += eccsize;
1071
1072                 if (chip->ecc.prepad) {
1073                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1074                         oob += chip->ecc.prepad;
1075                 }
1076
1077                 chip->read_buf(mtd, oob, eccbytes);
1078                 oob += eccbytes;
1079
1080                 if (chip->ecc.postpad) {
1081                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1082                         oob += chip->ecc.postpad;
1083                 }
1084         }
1085
1086         size = mtd->oobsize - (oob - chip->oob_poi);
1087         if (size)
1088                 chip->read_buf(mtd, oob, size);
1089
1090         return 0;
1091 }
1092
1093 /**
1094  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1095  * @mtd:        mtd info structure
1096  * @chip:       nand chip info structure
1097  * @buf:        buffer to store read data
1098  * @page:       page number to read
1099  */
1100 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1101                                 uint8_t *buf, int page)
1102 {
1103         int i, eccsize = chip->ecc.size;
1104         int eccbytes = chip->ecc.bytes;
1105         int eccsteps = chip->ecc.steps;
1106         uint8_t *p = buf;
1107         uint8_t *ecc_calc = chip->buffers->ecccalc;
1108         uint8_t *ecc_code = chip->buffers->ecccode;
1109         uint32_t *eccpos = chip->ecc.layout->eccpos;
1110
1111         chip->ecc.read_page_raw(mtd, chip, buf, page);
1112
1113         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1114                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1115
1116         for (i = 0; i < chip->ecc.total; i++)
1117                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1118
1119         eccsteps = chip->ecc.steps;
1120         p = buf;
1121
1122         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1123                 int stat;
1124
1125                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1126                 if (stat < 0)
1127                         mtd->ecc_stats.failed++;
1128                 else
1129                         mtd->ecc_stats.corrected += stat;
1130         }
1131         return 0;
1132 }
1133
1134 /**
1135  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1136  * @mtd:        mtd info structure
1137  * @chip:       nand chip info structure
1138  * @data_offs:  offset of requested data within the page
1139  * @readlen:    data length
1140  * @bufpoi:     buffer to store read data
1141  */
1142 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1143 {
1144         int start_step, end_step, num_steps;
1145         uint32_t *eccpos = chip->ecc.layout->eccpos;
1146         uint8_t *p;
1147         int data_col_addr, i, gaps = 0;
1148         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1149         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1150
1151         /* Column address wihin the page aligned to ECC size (256bytes). */
1152         start_step = data_offs / chip->ecc.size;
1153         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1154         num_steps = end_step - start_step + 1;
1155
1156         /* Data size aligned to ECC ecc.size*/
1157         datafrag_len = num_steps * chip->ecc.size;
1158         eccfrag_len = num_steps * chip->ecc.bytes;
1159
1160         data_col_addr = start_step * chip->ecc.size;
1161         /* If we read not a page aligned data */
1162         if (data_col_addr != 0)
1163                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1164
1165         p = bufpoi + data_col_addr;
1166         chip->read_buf(mtd, p, datafrag_len);
1167
1168         /* Calculate  ECC */
1169         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1170                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1171
1172         /* The performance is faster if to position offsets
1173            according to ecc.pos. Let make sure here that
1174            there are no gaps in ecc positions */
1175         for (i = 0; i < eccfrag_len - 1; i++) {
1176                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1177                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1178                         gaps = 1;
1179                         break;
1180                 }
1181         }
1182         if (gaps) {
1183                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1184                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1185         } else {
1186                 /* send the command to read the particular ecc bytes */
1187                 /* take care about buswidth alignment in read_buf */
1188                 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1189                 aligned_len = eccfrag_len;
1190                 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1191                         aligned_len++;
1192                 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1193                         aligned_len++;
1194
1195                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1196                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1197         }
1198
1199         for (i = 0; i < eccfrag_len; i++)
1200                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1201
1202         p = bufpoi + data_col_addr;
1203         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1204                 int stat;
1205
1206                 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1207                 if (stat == -1)
1208                         mtd->ecc_stats.failed++;
1209                 else
1210                         mtd->ecc_stats.corrected += stat;
1211         }
1212         return 0;
1213 }
1214
1215 /**
1216  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1217  * @mtd:        mtd info structure
1218  * @chip:       nand chip info structure
1219  * @buf:        buffer to store read data
1220  * @page:       page number to read
1221  *
1222  * Not for syndrome calculating ecc controllers which need a special oob layout
1223  */
1224 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1225                                 uint8_t *buf, int page)
1226 {
1227         int i, eccsize = chip->ecc.size;
1228         int eccbytes = chip->ecc.bytes;
1229         int eccsteps = chip->ecc.steps;
1230         uint8_t *p = buf;
1231         uint8_t *ecc_calc = chip->buffers->ecccalc;
1232         uint8_t *ecc_code = chip->buffers->ecccode;
1233         uint32_t *eccpos = chip->ecc.layout->eccpos;
1234
1235         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1236                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1237                 chip->read_buf(mtd, p, eccsize);
1238                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1239         }
1240         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1241
1242         for (i = 0; i < chip->ecc.total; i++)
1243                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1244
1245         eccsteps = chip->ecc.steps;
1246         p = buf;
1247
1248         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1249                 int stat;
1250
1251                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1252                 if (stat < 0)
1253                         mtd->ecc_stats.failed++;
1254                 else
1255                         mtd->ecc_stats.corrected += stat;
1256         }
1257         return 0;
1258 }
1259
1260 /**
1261  * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1262  * @mtd:        mtd info structure
1263  * @chip:       nand chip info structure
1264  * @buf:        buffer to store read data
1265  * @page:       page number to read
1266  *
1267  * Hardware ECC for large page chips, require OOB to be read first.
1268  * For this ECC mode, the write_page method is re-used from ECC_HW.
1269  * These methods read/write ECC from the OOB area, unlike the
1270  * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1271  * "infix ECC" scheme and reads/writes ECC from the data area, by
1272  * overwriting the NAND manufacturer bad block markings.
1273  */
1274 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1275         struct nand_chip *chip, uint8_t *buf, int page)
1276 {
1277         int i, eccsize = chip->ecc.size;
1278         int eccbytes = chip->ecc.bytes;
1279         int eccsteps = chip->ecc.steps;
1280         uint8_t *p = buf;
1281         uint8_t *ecc_code = chip->buffers->ecccode;
1282         uint32_t *eccpos = chip->ecc.layout->eccpos;
1283         uint8_t *ecc_calc = chip->buffers->ecccalc;
1284
1285         /* Read the OOB area first */
1286         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1287         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1288         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1289
1290         for (i = 0; i < chip->ecc.total; i++)
1291                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1292
1293         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1294                 int stat;
1295
1296                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1297                 chip->read_buf(mtd, p, eccsize);
1298                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1299
1300                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1301                 if (stat < 0)
1302                         mtd->ecc_stats.failed++;
1303                 else
1304                         mtd->ecc_stats.corrected += stat;
1305         }
1306         return 0;
1307 }
1308
1309 /**
1310  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1311  * @mtd:        mtd info structure
1312  * @chip:       nand chip info structure
1313  * @buf:        buffer to store read data
1314  * @page:       page number to read
1315  *
1316  * The hw generator calculates the error syndrome automatically. Therefor
1317  * we need a special oob layout and handling.
1318  */
1319 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1320                                    uint8_t *buf, int page)
1321 {
1322         int i, eccsize = chip->ecc.size;
1323         int eccbytes = chip->ecc.bytes;
1324         int eccsteps = chip->ecc.steps;
1325         uint8_t *p = buf;
1326         uint8_t *oob = chip->oob_poi;
1327
1328         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1329                 int stat;
1330
1331                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1332                 chip->read_buf(mtd, p, eccsize);
1333
1334                 if (chip->ecc.prepad) {
1335                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1336                         oob += chip->ecc.prepad;
1337                 }
1338
1339                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1340                 chip->read_buf(mtd, oob, eccbytes);
1341                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1342
1343                 if (stat < 0)
1344                         mtd->ecc_stats.failed++;
1345                 else
1346                         mtd->ecc_stats.corrected += stat;
1347
1348                 oob += eccbytes;
1349
1350                 if (chip->ecc.postpad) {
1351                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1352                         oob += chip->ecc.postpad;
1353                 }
1354         }
1355
1356         /* Calculate remaining oob bytes */
1357         i = mtd->oobsize - (oob - chip->oob_poi);
1358         if (i)
1359                 chip->read_buf(mtd, oob, i);
1360
1361         return 0;
1362 }
1363
1364 /**
1365  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1366  * @chip:       nand chip structure
1367  * @oob:        oob destination address
1368  * @ops:        oob ops structure
1369  * @len:        size of oob to transfer
1370  */
1371 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1372                                   struct mtd_oob_ops *ops, size_t len)
1373 {
1374         switch(ops->mode) {
1375
1376         case MTD_OOB_PLACE:
1377         case MTD_OOB_RAW:
1378                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1379                 return oob + len;
1380
1381         case MTD_OOB_AUTO: {
1382                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1383                 uint32_t boffs = 0, roffs = ops->ooboffs;
1384                 size_t bytes = 0;
1385
1386                 for(; free->length && len; free++, len -= bytes) {
1387                         /* Read request not from offset 0 ? */
1388                         if (unlikely(roffs)) {
1389                                 if (roffs >= free->length) {
1390                                         roffs -= free->length;
1391                                         continue;
1392                                 }
1393                                 boffs = free->offset + roffs;
1394                                 bytes = min_t(size_t, len,
1395                                               (free->length - roffs));
1396                                 roffs = 0;
1397                         } else {
1398                                 bytes = min_t(size_t, len, free->length);
1399                                 boffs = free->offset;
1400                         }
1401                         memcpy(oob, chip->oob_poi + boffs, bytes);
1402                         oob += bytes;
1403                 }
1404                 return oob;
1405         }
1406         default:
1407                 BUG();
1408         }
1409         return NULL;
1410 }
1411
1412 /**
1413  * nand_do_read_ops - [Internal] Read data with ECC
1414  *
1415  * @mtd:        MTD device structure
1416  * @from:       offset to read from
1417  * @ops:        oob ops structure
1418  *
1419  * Internal function. Called with chip held.
1420  */
1421 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1422                             struct mtd_oob_ops *ops)
1423 {
1424         int chipnr, page, realpage, col, bytes, aligned;
1425         struct nand_chip *chip = mtd->priv;
1426         struct mtd_ecc_stats stats;
1427         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1428         int sndcmd = 1;
1429         int ret = 0;
1430         uint32_t readlen = ops->len;
1431         uint32_t oobreadlen = ops->ooblen;
1432         uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1433                 mtd->oobavail : mtd->oobsize;
1434
1435         uint8_t *bufpoi, *oob, *buf;
1436
1437         stats = mtd->ecc_stats;
1438
1439         chipnr = (int)(from >> chip->chip_shift);
1440         chip->select_chip(mtd, chipnr);
1441
1442         realpage = (int)(from >> chip->page_shift);
1443         page = realpage & chip->pagemask;
1444
1445         col = (int)(from & (mtd->writesize - 1));
1446
1447         buf = ops->datbuf;
1448         oob = ops->oobbuf;
1449
1450         while(1) {
1451                 bytes = min(mtd->writesize - col, readlen);
1452                 aligned = (bytes == mtd->writesize);
1453
1454                 /* Is the current page in the buffer ? */
1455                 if (realpage != chip->pagebuf || oob) {
1456                         bufpoi = aligned ? buf : chip->buffers->databuf;
1457
1458                         if (likely(sndcmd)) {
1459                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1460                                 sndcmd = 0;
1461                         }
1462
1463                         /* Now read the page into the buffer */
1464                         if (unlikely(ops->mode == MTD_OOB_RAW))
1465                                 ret = chip->ecc.read_page_raw(mtd, chip,
1466                                                               bufpoi, page);
1467                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1468                                 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1469                         else
1470                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1471                                                           page);
1472                         if (ret < 0)
1473                                 break;
1474
1475                         /* Transfer not aligned data */
1476                         if (!aligned) {
1477                                 if (!NAND_SUBPAGE_READ(chip) && !oob)
1478                                         chip->pagebuf = realpage;
1479                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1480                         }
1481
1482                         buf += bytes;
1483
1484                         if (unlikely(oob)) {
1485
1486                                 int toread = min(oobreadlen, max_oobsize);
1487
1488                                 if (toread) {
1489                                         oob = nand_transfer_oob(chip,
1490                                                 oob, ops, toread);
1491                                         oobreadlen -= toread;
1492                                 }
1493                         }
1494
1495                         if (!(chip->options & NAND_NO_READRDY)) {
1496                                 /*
1497                                  * Apply delay or wait for ready/busy pin. Do
1498                                  * this before the AUTOINCR check, so no
1499                                  * problems arise if a chip which does auto
1500                                  * increment is marked as NOAUTOINCR by the
1501                                  * board driver.
1502                                  */
1503                                 if (!chip->dev_ready)
1504                                         udelay(chip->chip_delay);
1505                                 else
1506                                         nand_wait_ready(mtd);
1507                         }
1508                 } else {
1509                         memcpy(buf, chip->buffers->databuf + col, bytes);
1510                         buf += bytes;
1511                 }
1512
1513                 readlen -= bytes;
1514
1515                 if (!readlen)
1516                         break;
1517
1518                 /* For subsequent reads align to page boundary. */
1519                 col = 0;
1520                 /* Increment page address */
1521                 realpage++;
1522
1523                 page = realpage & chip->pagemask;
1524                 /* Check, if we cross a chip boundary */
1525                 if (!page) {
1526                         chipnr++;
1527                         chip->select_chip(mtd, -1);
1528                         chip->select_chip(mtd, chipnr);
1529                 }
1530
1531                 /* Check, if the chip supports auto page increment
1532                  * or if we have hit a block boundary.
1533                  */
1534                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1535                         sndcmd = 1;
1536         }
1537
1538         ops->retlen = ops->len - (size_t) readlen;
1539         if (oob)
1540                 ops->oobretlen = ops->ooblen - oobreadlen;
1541
1542         if (ret)
1543                 return ret;
1544
1545         if (mtd->ecc_stats.failed - stats.failed)
1546                 return -EBADMSG;
1547
1548         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1549 }
1550
1551 /**
1552  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1553  * @mtd:        MTD device structure
1554  * @from:       offset to read from
1555  * @len:        number of bytes to read
1556  * @retlen:     pointer to variable to store the number of read bytes
1557  * @buf:        the databuffer to put data
1558  *
1559  * Get hold of the chip and call nand_do_read
1560  */
1561 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1562                      size_t *retlen, uint8_t *buf)
1563 {
1564         struct nand_chip *chip = mtd->priv;
1565         int ret;
1566
1567         /* Do not allow reads past end of device */
1568         if ((from + len) > mtd->size)
1569                 return -EINVAL;
1570         if (!len)
1571                 return 0;
1572
1573         nand_get_device(chip, mtd, FL_READING);
1574
1575         chip->ops.len = len;
1576         chip->ops.datbuf = buf;
1577         chip->ops.oobbuf = NULL;
1578
1579         ret = nand_do_read_ops(mtd, from, &chip->ops);
1580
1581         *retlen = chip->ops.retlen;
1582
1583         nand_release_device(mtd);
1584
1585         return ret;
1586 }
1587
1588 /**
1589  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1590  * @mtd:        mtd info structure
1591  * @chip:       nand chip info structure
1592  * @page:       page number to read
1593  * @sndcmd:     flag whether to issue read command or not
1594  */
1595 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1596                              int page, int sndcmd)
1597 {
1598         if (sndcmd) {
1599                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1600                 sndcmd = 0;
1601         }
1602         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1603         return sndcmd;
1604 }
1605
1606 /**
1607  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1608  *                          with syndromes
1609  * @mtd:        mtd info structure
1610  * @chip:       nand chip info structure
1611  * @page:       page number to read
1612  * @sndcmd:     flag whether to issue read command or not
1613  */
1614 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1615                                   int page, int sndcmd)
1616 {
1617         uint8_t *buf = chip->oob_poi;
1618         int length = mtd->oobsize;
1619         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1620         int eccsize = chip->ecc.size;
1621         uint8_t *bufpoi = buf;
1622         int i, toread, sndrnd = 0, pos;
1623
1624         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1625         for (i = 0; i < chip->ecc.steps; i++) {
1626                 if (sndrnd) {
1627                         pos = eccsize + i * (eccsize + chunk);
1628                         if (mtd->writesize > 512)
1629                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1630                         else
1631                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1632                 } else
1633                         sndrnd = 1;
1634                 toread = min_t(int, length, chunk);
1635                 chip->read_buf(mtd, bufpoi, toread);
1636                 bufpoi += toread;
1637                 length -= toread;
1638         }
1639         if (length > 0)
1640                 chip->read_buf(mtd, bufpoi, length);
1641
1642         return 1;
1643 }
1644
1645 /**
1646  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1647  * @mtd:        mtd info structure
1648  * @chip:       nand chip info structure
1649  * @page:       page number to write
1650  */
1651 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1652                               int page)
1653 {
1654         int status = 0;
1655         const uint8_t *buf = chip->oob_poi;
1656         int length = mtd->oobsize;
1657
1658         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1659         chip->write_buf(mtd, buf, length);
1660         /* Send command to program the OOB data */
1661         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1662
1663         status = chip->waitfunc(mtd, chip);
1664
1665         return status & NAND_STATUS_FAIL ? -EIO : 0;
1666 }
1667
1668 /**
1669  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1670  *                           with syndrome - only for large page flash !
1671  * @mtd:        mtd info structure
1672  * @chip:       nand chip info structure
1673  * @page:       page number to write
1674  */
1675 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1676                                    struct nand_chip *chip, int page)
1677 {
1678         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1679         int eccsize = chip->ecc.size, length = mtd->oobsize;
1680         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1681         const uint8_t *bufpoi = chip->oob_poi;
1682
1683         /*
1684          * data-ecc-data-ecc ... ecc-oob
1685          * or
1686          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1687          */
1688         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1689                 pos = steps * (eccsize + chunk);
1690                 steps = 0;
1691         } else
1692                 pos = eccsize;
1693
1694         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1695         for (i = 0; i < steps; i++) {
1696                 if (sndcmd) {
1697                         if (mtd->writesize <= 512) {
1698                                 uint32_t fill = 0xFFFFFFFF;
1699
1700                                 len = eccsize;
1701                                 while (len > 0) {
1702                                         int num = min_t(int, len, 4);
1703                                         chip->write_buf(mtd, (uint8_t *)&fill,
1704                                                         num);
1705                                         len -= num;
1706                                 }
1707                         } else {
1708                                 pos = eccsize + i * (eccsize + chunk);
1709                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1710                         }
1711                 } else
1712                         sndcmd = 1;
1713                 len = min_t(int, length, chunk);
1714                 chip->write_buf(mtd, bufpoi, len);
1715                 bufpoi += len;
1716                 length -= len;
1717         }
1718         if (length > 0)
1719                 chip->write_buf(mtd, bufpoi, length);
1720
1721         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1722         status = chip->waitfunc(mtd, chip);
1723
1724         return status & NAND_STATUS_FAIL ? -EIO : 0;
1725 }
1726
1727 /**
1728  * nand_do_read_oob - [Intern] NAND read out-of-band
1729  * @mtd:        MTD device structure
1730  * @from:       offset to read from
1731  * @ops:        oob operations description structure
1732  *
1733  * NAND read out-of-band data from the spare area
1734  */
1735 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1736                             struct mtd_oob_ops *ops)
1737 {
1738         int page, realpage, chipnr, sndcmd = 1;
1739         struct nand_chip *chip = mtd->priv;
1740         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1741         int readlen = ops->ooblen;
1742         int len;
1743         uint8_t *buf = ops->oobbuf;
1744
1745         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1746                         __func__, (unsigned long long)from, readlen);
1747
1748         if (ops->mode == MTD_OOB_AUTO)
1749                 len = chip->ecc.layout->oobavail;
1750         else
1751                 len = mtd->oobsize;
1752
1753         if (unlikely(ops->ooboffs >= len)) {
1754                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1755                                         "outside oob\n", __func__);
1756                 return -EINVAL;
1757         }
1758
1759         /* Do not allow reads past end of device */
1760         if (unlikely(from >= mtd->size ||
1761                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1762                                         (from >> chip->page_shift)) * len)) {
1763                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1764                                         "of device\n", __func__);
1765                 return -EINVAL;
1766         }
1767
1768         chipnr = (int)(from >> chip->chip_shift);
1769         chip->select_chip(mtd, chipnr);
1770
1771         /* Shift to get page */
1772         realpage = (int)(from >> chip->page_shift);
1773         page = realpage & chip->pagemask;
1774
1775         while(1) {
1776                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1777
1778                 len = min(len, readlen);
1779                 buf = nand_transfer_oob(chip, buf, ops, len);
1780
1781                 if (!(chip->options & NAND_NO_READRDY)) {
1782                         /*
1783                          * Apply delay or wait for ready/busy pin. Do this
1784                          * before the AUTOINCR check, so no problems arise if a
1785                          * chip which does auto increment is marked as
1786                          * NOAUTOINCR by the board driver.
1787                          */
1788                         if (!chip->dev_ready)
1789                                 udelay(chip->chip_delay);
1790                         else
1791                                 nand_wait_ready(mtd);
1792                 }
1793
1794                 readlen -= len;
1795                 if (!readlen)
1796                         break;
1797
1798                 /* Increment page address */
1799                 realpage++;
1800
1801                 page = realpage & chip->pagemask;
1802                 /* Check, if we cross a chip boundary */
1803                 if (!page) {
1804                         chipnr++;
1805                         chip->select_chip(mtd, -1);
1806                         chip->select_chip(mtd, chipnr);
1807                 }
1808
1809                 /* Check, if the chip supports auto page increment
1810                  * or if we have hit a block boundary.
1811                  */
1812                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1813                         sndcmd = 1;
1814         }
1815
1816         ops->oobretlen = ops->ooblen;
1817         return 0;
1818 }
1819
1820 /**
1821  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1822  * @mtd:        MTD device structure
1823  * @from:       offset to read from
1824  * @ops:        oob operation description structure
1825  *
1826  * NAND read data and/or out-of-band data
1827  */
1828 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1829                          struct mtd_oob_ops *ops)
1830 {
1831         struct nand_chip *chip = mtd->priv;
1832         int ret = -ENOTSUPP;
1833
1834         ops->retlen = 0;
1835
1836         /* Do not allow reads past end of device */
1837         if (ops->datbuf && (from + ops->len) > mtd->size) {
1838                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1839                                 "beyond end of device\n", __func__);
1840                 return -EINVAL;
1841         }
1842
1843         nand_get_device(chip, mtd, FL_READING);
1844
1845         switch(ops->mode) {
1846         case MTD_OOB_PLACE:
1847         case MTD_OOB_AUTO:
1848         case MTD_OOB_RAW:
1849                 break;
1850
1851         default:
1852                 goto out;
1853         }
1854
1855         if (!ops->datbuf)
1856                 ret = nand_do_read_oob(mtd, from, ops);
1857         else
1858                 ret = nand_do_read_ops(mtd, from, ops);
1859
1860  out:
1861         nand_release_device(mtd);
1862         return ret;
1863 }
1864
1865
1866 /**
1867  * nand_write_page_raw - [Intern] raw page write function
1868  * @mtd:        mtd info structure
1869  * @chip:       nand chip info structure
1870  * @buf:        data buffer
1871  *
1872  * Not for syndrome calculating ecc controllers, which use a special oob layout
1873  */
1874 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1875                                 const uint8_t *buf)
1876 {
1877         chip->write_buf(mtd, buf, mtd->writesize);
1878         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1879 }
1880
1881 /**
1882  * nand_write_page_raw_syndrome - [Intern] raw page write function
1883  * @mtd:        mtd info structure
1884  * @chip:       nand chip info structure
1885  * @buf:        data buffer
1886  *
1887  * We need a special oob layout and handling even when ECC isn't checked.
1888  */
1889 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1890                                 const uint8_t *buf)
1891 {
1892         int eccsize = chip->ecc.size;
1893         int eccbytes = chip->ecc.bytes;
1894         uint8_t *oob = chip->oob_poi;
1895         int steps, size;
1896
1897         for (steps = chip->ecc.steps; steps > 0; steps--) {
1898                 chip->write_buf(mtd, buf, eccsize);
1899                 buf += eccsize;
1900
1901                 if (chip->ecc.prepad) {
1902                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1903                         oob += chip->ecc.prepad;
1904                 }
1905
1906                 chip->read_buf(mtd, oob, eccbytes);
1907                 oob += eccbytes;
1908
1909                 if (chip->ecc.postpad) {
1910                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1911                         oob += chip->ecc.postpad;
1912                 }
1913         }
1914
1915         size = mtd->oobsize - (oob - chip->oob_poi);
1916         if (size)
1917                 chip->write_buf(mtd, oob, size);
1918 }
1919 /**
1920  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1921  * @mtd:        mtd info structure
1922  * @chip:       nand chip info structure
1923  * @buf:        data buffer
1924  */
1925 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1926                                   const uint8_t *buf)
1927 {
1928         int i, eccsize = chip->ecc.size;
1929         int eccbytes = chip->ecc.bytes;
1930         int eccsteps = chip->ecc.steps;
1931         uint8_t *ecc_calc = chip->buffers->ecccalc;
1932         const uint8_t *p = buf;
1933         uint32_t *eccpos = chip->ecc.layout->eccpos;
1934
1935         /* Software ecc calculation */
1936         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1937                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1938
1939         for (i = 0; i < chip->ecc.total; i++)
1940                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1941
1942         chip->ecc.write_page_raw(mtd, chip, buf);
1943 }
1944
1945 /**
1946  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1947  * @mtd:        mtd info structure
1948  * @chip:       nand chip info structure
1949  * @buf:        data buffer
1950  */
1951 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1952                                   const uint8_t *buf)
1953 {
1954         int i, eccsize = chip->ecc.size;
1955         int eccbytes = chip->ecc.bytes;
1956         int eccsteps = chip->ecc.steps;
1957         uint8_t *ecc_calc = chip->buffers->ecccalc;
1958         const uint8_t *p = buf;
1959         uint32_t *eccpos = chip->ecc.layout->eccpos;
1960
1961         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1962                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1963                 chip->write_buf(mtd, p, eccsize);
1964                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1965         }
1966
1967         for (i = 0; i < chip->ecc.total; i++)
1968                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1969
1970         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1971 }
1972
1973 /**
1974  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1975  * @mtd:        mtd info structure
1976  * @chip:       nand chip info structure
1977  * @buf:        data buffer
1978  *
1979  * The hw generator calculates the error syndrome automatically. Therefor
1980  * we need a special oob layout and handling.
1981  */
1982 static void nand_write_page_syndrome(struct mtd_info *mtd,
1983                                     struct nand_chip *chip, const uint8_t *buf)
1984 {
1985         int i, eccsize = chip->ecc.size;
1986         int eccbytes = chip->ecc.bytes;
1987         int eccsteps = chip->ecc.steps;
1988         const uint8_t *p = buf;
1989         uint8_t *oob = chip->oob_poi;
1990
1991         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1992
1993                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1994                 chip->write_buf(mtd, p, eccsize);
1995
1996                 if (chip->ecc.prepad) {
1997                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1998                         oob += chip->ecc.prepad;
1999                 }
2000
2001                 chip->ecc.calculate(mtd, p, oob);
2002                 chip->write_buf(mtd, oob, eccbytes);
2003                 oob += eccbytes;
2004
2005                 if (chip->ecc.postpad) {
2006                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2007                         oob += chip->ecc.postpad;
2008                 }
2009         }
2010
2011         /* Calculate remaining oob bytes */
2012         i = mtd->oobsize - (oob - chip->oob_poi);
2013         if (i)
2014                 chip->write_buf(mtd, oob, i);
2015 }
2016
2017 /**
2018  * nand_write_page - [REPLACEABLE] write one page
2019  * @mtd:        MTD device structure
2020  * @chip:       NAND chip descriptor
2021  * @buf:        the data to write
2022  * @page:       page number to write
2023  * @cached:     cached programming
2024  * @raw:        use _raw version of write_page
2025  */
2026 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2027                            const uint8_t *buf, int page, int cached, int raw)
2028 {
2029         int status;
2030
2031         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2032
2033         if (unlikely(raw))
2034                 chip->ecc.write_page_raw(mtd, chip, buf);
2035         else
2036                 chip->ecc.write_page(mtd, chip, buf);
2037
2038         /*
2039          * Cached progamming disabled for now, Not sure if its worth the
2040          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2041          */
2042         cached = 0;
2043
2044         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2045
2046                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2047                 status = chip->waitfunc(mtd, chip);
2048                 /*
2049                  * See if operation failed and additional status checks are
2050                  * available
2051                  */
2052                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2053                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2054                                                page);
2055
2056                 if (status & NAND_STATUS_FAIL)
2057                         return -EIO;
2058         } else {
2059                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2060                 status = chip->waitfunc(mtd, chip);
2061         }
2062
2063 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2064         /* Send command to read back the data */
2065         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2066
2067         if (chip->verify_buf(mtd, buf, mtd->writesize))
2068                 return -EIO;
2069 #endif
2070         return 0;
2071 }
2072
2073 /**
2074  * nand_fill_oob - [Internal] Transfer client buffer to oob
2075  * @chip:       nand chip structure
2076  * @oob:        oob data buffer
2077  * @ops:        oob ops structure
2078  */
2079 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2080                                                 struct mtd_oob_ops *ops)
2081 {
2082         switch(ops->mode) {
2083
2084         case MTD_OOB_PLACE:
2085         case MTD_OOB_RAW:
2086                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2087                 return oob + len;
2088
2089         case MTD_OOB_AUTO: {
2090                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2091                 uint32_t boffs = 0, woffs = ops->ooboffs;
2092                 size_t bytes = 0;
2093
2094                 for(; free->length && len; free++, len -= bytes) {
2095                         /* Write request not from offset 0 ? */
2096                         if (unlikely(woffs)) {
2097                                 if (woffs >= free->length) {
2098                                         woffs -= free->length;
2099                                         continue;
2100                                 }
2101                                 boffs = free->offset + woffs;
2102                                 bytes = min_t(size_t, len,
2103                                               (free->length - woffs));
2104                                 woffs = 0;
2105                         } else {
2106                                 bytes = min_t(size_t, len, free->length);
2107                                 boffs = free->offset;
2108                         }
2109                         memcpy(chip->oob_poi + boffs, oob, bytes);
2110                         oob += bytes;
2111                 }
2112                 return oob;
2113         }
2114         default:
2115                 BUG();
2116         }
2117         return NULL;
2118 }
2119
2120 #define NOTALIGNED(x)   (x & (chip->subpagesize - 1)) != 0
2121
2122 /**
2123  * nand_do_write_ops - [Internal] NAND write with ECC
2124  * @mtd:        MTD device structure
2125  * @to:         offset to write to
2126  * @ops:        oob operations description structure
2127  *
2128  * NAND write with ECC
2129  */
2130 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2131                              struct mtd_oob_ops *ops)
2132 {
2133         int chipnr, realpage, page, blockmask, column;
2134         struct nand_chip *chip = mtd->priv;
2135         uint32_t writelen = ops->len;
2136
2137         uint32_t oobwritelen = ops->ooblen;
2138         uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2139                                 mtd->oobavail : mtd->oobsize;
2140
2141         uint8_t *oob = ops->oobbuf;
2142         uint8_t *buf = ops->datbuf;
2143         int ret, subpage;
2144
2145         ops->retlen = 0;
2146         if (!writelen)
2147                 return 0;
2148
2149         /* reject writes, which are not page aligned */
2150         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2151                 printk(KERN_NOTICE "%s: Attempt to write not "
2152                                 "page aligned data\n", __func__);
2153                 return -EINVAL;
2154         }
2155
2156         column = to & (mtd->writesize - 1);
2157         subpage = column || (writelen & (mtd->writesize - 1));
2158
2159         if (subpage && oob)
2160                 return -EINVAL;
2161
2162         chipnr = (int)(to >> chip->chip_shift);
2163         chip->select_chip(mtd, chipnr);
2164
2165         /* Check, if it is write protected */
2166         if (nand_check_wp(mtd))
2167                 return -EIO;
2168
2169         realpage = (int)(to >> chip->page_shift);
2170         page = realpage & chip->pagemask;
2171         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2172
2173         /* Invalidate the page cache, when we write to the cached page */
2174         if (to <= (chip->pagebuf << chip->page_shift) &&
2175             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2176                 chip->pagebuf = -1;
2177
2178         /* If we're not given explicit OOB data, let it be 0xFF */
2179         if (likely(!oob))
2180                 memset(chip->oob_poi, 0xff, mtd->oobsize);
2181
2182         /* Don't allow multipage oob writes with offset */
2183         if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2184                 return -EINVAL;
2185
2186         while(1) {
2187                 int bytes = mtd->writesize;
2188                 int cached = writelen > bytes && page != blockmask;
2189                 uint8_t *wbuf = buf;
2190
2191                 /* Partial page write ? */
2192                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2193                         cached = 0;
2194                         bytes = min_t(int, bytes - column, (int) writelen);
2195                         chip->pagebuf = -1;
2196                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2197                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2198                         wbuf = chip->buffers->databuf;
2199                 }
2200
2201                 if (unlikely(oob)) {
2202                         size_t len = min(oobwritelen, oobmaxlen);
2203                         oob = nand_fill_oob(chip, oob, len, ops);
2204                         oobwritelen -= len;
2205                 }
2206
2207                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2208                                        (ops->mode == MTD_OOB_RAW));
2209                 if (ret)
2210                         break;
2211
2212                 writelen -= bytes;
2213                 if (!writelen)
2214                         break;
2215
2216                 column = 0;
2217                 buf += bytes;
2218                 realpage++;
2219
2220                 page = realpage & chip->pagemask;
2221                 /* Check, if we cross a chip boundary */
2222                 if (!page) {
2223                         chipnr++;
2224                         chip->select_chip(mtd, -1);
2225                         chip->select_chip(mtd, chipnr);
2226                 }
2227         }
2228
2229         ops->retlen = ops->len - writelen;
2230         if (unlikely(oob))
2231                 ops->oobretlen = ops->ooblen;
2232         return ret;
2233 }
2234
2235 /**
2236  * panic_nand_write - [MTD Interface] NAND write with ECC
2237  * @mtd:        MTD device structure
2238  * @to:         offset to write to
2239  * @len:        number of bytes to write
2240  * @retlen:     pointer to variable to store the number of written bytes
2241  * @buf:        the data to write
2242  *
2243  * NAND write with ECC. Used when performing writes in interrupt context, this
2244  * may for example be called by mtdoops when writing an oops while in panic.
2245  */
2246 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2247                             size_t *retlen, const uint8_t *buf)
2248 {
2249         struct nand_chip *chip = mtd->priv;
2250         int ret;
2251
2252         /* Do not allow reads past end of device */
2253         if ((to + len) > mtd->size)
2254                 return -EINVAL;
2255         if (!len)
2256                 return 0;
2257
2258         /* Wait for the device to get ready.  */
2259         panic_nand_wait(mtd, chip, 400);
2260
2261         /* Grab the device.  */
2262         panic_nand_get_device(chip, mtd, FL_WRITING);
2263
2264         chip->ops.len = len;
2265         chip->ops.datbuf = (uint8_t *)buf;
2266         chip->ops.oobbuf = NULL;
2267
2268         ret = nand_do_write_ops(mtd, to, &chip->ops);
2269
2270         *retlen = chip->ops.retlen;
2271         return ret;
2272 }
2273
2274 /**
2275  * nand_write - [MTD Interface] NAND write with ECC
2276  * @mtd:        MTD device structure
2277  * @to:         offset to write to
2278  * @len:        number of bytes to write
2279  * @retlen:     pointer to variable to store the number of written bytes
2280  * @buf:        the data to write
2281  *
2282  * NAND write with ECC
2283  */
2284 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2285                           size_t *retlen, const uint8_t *buf)
2286 {
2287         struct nand_chip *chip = mtd->priv;
2288         int ret;
2289
2290         /* Do not allow reads past end of device */
2291         if ((to + len) > mtd->size)
2292                 return -EINVAL;
2293         if (!len)
2294                 return 0;
2295
2296         nand_get_device(chip, mtd, FL_WRITING);
2297
2298         chip->ops.len = len;
2299         chip->ops.datbuf = (uint8_t *)buf;
2300         chip->ops.oobbuf = NULL;
2301
2302         ret = nand_do_write_ops(mtd, to, &chip->ops);
2303
2304         *retlen = chip->ops.retlen;
2305
2306         nand_release_device(mtd);
2307
2308         return ret;
2309 }
2310
2311 /**
2312  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2313  * @mtd:        MTD device structure
2314  * @to:         offset to write to
2315  * @ops:        oob operation description structure
2316  *
2317  * NAND write out-of-band
2318  */
2319 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2320                              struct mtd_oob_ops *ops)
2321 {
2322         int chipnr, page, status, len;
2323         struct nand_chip *chip = mtd->priv;
2324
2325         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2326                          __func__, (unsigned int)to, (int)ops->ooblen);
2327
2328         if (ops->mode == MTD_OOB_AUTO)
2329                 len = chip->ecc.layout->oobavail;
2330         else
2331                 len = mtd->oobsize;
2332
2333         /* Do not allow write past end of page */
2334         if ((ops->ooboffs + ops->ooblen) > len) {
2335                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2336                                 "past end of page\n", __func__);
2337                 return -EINVAL;
2338         }
2339
2340         if (unlikely(ops->ooboffs >= len)) {
2341                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2342                                 "write outside oob\n", __func__);
2343                 return -EINVAL;
2344         }
2345
2346         /* Do not allow reads past end of device */
2347         if (unlikely(to >= mtd->size ||
2348                      ops->ooboffs + ops->ooblen >
2349                         ((mtd->size >> chip->page_shift) -
2350                          (to >> chip->page_shift)) * len)) {
2351                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2352                                 "end of device\n", __func__);
2353                 return -EINVAL;
2354         }
2355
2356         chipnr = (int)(to >> chip->chip_shift);
2357         chip->select_chip(mtd, chipnr);
2358
2359         /* Shift to get page */
2360         page = (int)(to >> chip->page_shift);
2361
2362         /*
2363          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2364          * of my DiskOnChip 2000 test units) will clear the whole data page too
2365          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2366          * it in the doc2000 driver in August 1999.  dwmw2.
2367          */
2368         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2369
2370         /* Check, if it is write protected */
2371         if (nand_check_wp(mtd))
2372                 return -EROFS;
2373
2374         /* Invalidate the page cache, if we write to the cached page */
2375         if (page == chip->pagebuf)
2376                 chip->pagebuf = -1;
2377
2378         memset(chip->oob_poi, 0xff, mtd->oobsize);
2379         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2380         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2381         memset(chip->oob_poi, 0xff, mtd->oobsize);
2382
2383         if (status)
2384                 return status;
2385
2386         ops->oobretlen = ops->ooblen;
2387
2388         return 0;
2389 }
2390
2391 /**
2392  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2393  * @mtd:        MTD device structure
2394  * @to:         offset to write to
2395  * @ops:        oob operation description structure
2396  */
2397 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2398                           struct mtd_oob_ops *ops)
2399 {
2400         struct nand_chip *chip = mtd->priv;
2401         int ret = -ENOTSUPP;
2402
2403         ops->retlen = 0;
2404
2405         /* Do not allow writes past end of device */
2406         if (ops->datbuf && (to + ops->len) > mtd->size) {
2407                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2408                                 "end of device\n", __func__);
2409                 return -EINVAL;
2410         }
2411
2412         nand_get_device(chip, mtd, FL_WRITING);
2413
2414         switch(ops->mode) {
2415         case MTD_OOB_PLACE:
2416         case MTD_OOB_AUTO:
2417         case MTD_OOB_RAW:
2418                 break;
2419
2420         default:
2421                 goto out;
2422         }
2423
2424         if (!ops->datbuf)
2425                 ret = nand_do_write_oob(mtd, to, ops);
2426         else
2427                 ret = nand_do_write_ops(mtd, to, ops);
2428
2429  out:
2430         nand_release_device(mtd);
2431         return ret;
2432 }
2433
2434 /**
2435  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2436  * @mtd:        MTD device structure
2437  * @page:       the page address of the block which will be erased
2438  *
2439  * Standard erase command for NAND chips
2440  */
2441 static void single_erase_cmd(struct mtd_info *mtd, int page)
2442 {
2443         struct nand_chip *chip = mtd->priv;
2444         /* Send commands to erase a block */
2445         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2446         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2447 }
2448
2449 /**
2450  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2451  * @mtd:        MTD device structure
2452  * @page:       the page address of the block which will be erased
2453  *
2454  * AND multi block erase command function
2455  * Erase 4 consecutive blocks
2456  */
2457 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2458 {
2459         struct nand_chip *chip = mtd->priv;
2460         /* Send commands to erase a block */
2461         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2462         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2463         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2464         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2465         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2466 }
2467
2468 /**
2469  * nand_erase - [MTD Interface] erase block(s)
2470  * @mtd:        MTD device structure
2471  * @instr:      erase instruction
2472  *
2473  * Erase one ore more blocks
2474  */
2475 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2476 {
2477         return nand_erase_nand(mtd, instr, 0);
2478 }
2479
2480 #define BBT_PAGE_MASK   0xffffff3f
2481 /**
2482  * nand_erase_nand - [Internal] erase block(s)
2483  * @mtd:        MTD device structure
2484  * @instr:      erase instruction
2485  * @allowbbt:   allow erasing the bbt area
2486  *
2487  * Erase one ore more blocks
2488  */
2489 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2490                     int allowbbt)
2491 {
2492         int page, status, pages_per_block, ret, chipnr;
2493         struct nand_chip *chip = mtd->priv;
2494         loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2495         unsigned int bbt_masked_page = 0xffffffff;
2496         loff_t len;
2497
2498         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2499                                 __func__, (unsigned long long)instr->addr,
2500                                 (unsigned long long)instr->len);
2501
2502         if (check_offs_len(mtd, instr->addr, instr->len))
2503                 return -EINVAL;
2504
2505         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2506
2507         /* Grab the lock and see if the device is available */
2508         nand_get_device(chip, mtd, FL_ERASING);
2509
2510         /* Shift to get first page */
2511         page = (int)(instr->addr >> chip->page_shift);
2512         chipnr = (int)(instr->addr >> chip->chip_shift);
2513
2514         /* Calculate pages in each block */
2515         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2516
2517         /* Select the NAND device */
2518         chip->select_chip(mtd, chipnr);
2519
2520         /* Check, if it is write protected */
2521         if (nand_check_wp(mtd)) {
2522                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2523                                         __func__);
2524                 instr->state = MTD_ERASE_FAILED;
2525                 goto erase_exit;
2526         }
2527
2528         /*
2529          * If BBT requires refresh, set the BBT page mask to see if the BBT
2530          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2531          * can not be matched. This is also done when the bbt is actually
2532          * erased to avoid recusrsive updates
2533          */
2534         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2535                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2536
2537         /* Loop through the pages */
2538         len = instr->len;
2539
2540         instr->state = MTD_ERASING;
2541
2542         while (len) {
2543                 /*
2544                  * heck if we have a bad block, we do not erase bad blocks !
2545                  */
2546                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2547                                         chip->page_shift, 0, allowbbt)) {
2548                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2549                                         "at page 0x%08x\n", __func__, page);
2550                         instr->state = MTD_ERASE_FAILED;
2551                         goto erase_exit;
2552                 }
2553
2554                 /*
2555                  * Invalidate the page cache, if we erase the block which
2556                  * contains the current cached page
2557                  */
2558                 if (page <= chip->pagebuf && chip->pagebuf <
2559                     (page + pages_per_block))
2560                         chip->pagebuf = -1;
2561
2562                 chip->erase_cmd(mtd, page & chip->pagemask);
2563
2564                 status = chip->waitfunc(mtd, chip);
2565
2566                 /*
2567                  * See if operation failed and additional status checks are
2568                  * available
2569                  */
2570                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2571                         status = chip->errstat(mtd, chip, FL_ERASING,
2572                                                status, page);
2573
2574                 /* See if block erase succeeded */
2575                 if (status & NAND_STATUS_FAIL) {
2576                         DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2577                                         "page 0x%08x\n", __func__, page);
2578                         instr->state = MTD_ERASE_FAILED;
2579                         instr->fail_addr =
2580                                 ((loff_t)page << chip->page_shift);
2581                         goto erase_exit;
2582                 }
2583
2584                 /*
2585                  * If BBT requires refresh, set the BBT rewrite flag to the
2586                  * page being erased
2587                  */
2588                 if (bbt_masked_page != 0xffffffff &&
2589                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2590                             rewrite_bbt[chipnr] =
2591                                         ((loff_t)page << chip->page_shift);
2592
2593                 /* Increment page address and decrement length */
2594                 len -= (1 << chip->phys_erase_shift);
2595                 page += pages_per_block;
2596
2597                 /* Check, if we cross a chip boundary */
2598                 if (len && !(page & chip->pagemask)) {
2599                         chipnr++;
2600                         chip->select_chip(mtd, -1);
2601                         chip->select_chip(mtd, chipnr);
2602
2603                         /*
2604                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2605                          * page mask to see if this BBT should be rewritten
2606                          */
2607                         if (bbt_masked_page != 0xffffffff &&
2608                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2609                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2610                                         BBT_PAGE_MASK;
2611                 }
2612         }
2613         instr->state = MTD_ERASE_DONE;
2614
2615  erase_exit:
2616
2617         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2618
2619         /* Deselect and wake up anyone waiting on the device */
2620         nand_release_device(mtd);
2621
2622         /* Do call back function */
2623         if (!ret)
2624                 mtd_erase_callback(instr);
2625
2626         /*
2627          * If BBT requires refresh and erase was successful, rewrite any
2628          * selected bad block tables
2629          */
2630         if (bbt_masked_page == 0xffffffff || ret)
2631                 return ret;
2632
2633         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2634                 if (!rewrite_bbt[chipnr])
2635                         continue;
2636                 /* update the BBT for chip */
2637                 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2638                         "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2639                         rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2640                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2641         }
2642
2643         /* Return more or less happy */
2644         return ret;
2645 }
2646
2647 /**
2648  * nand_sync - [MTD Interface] sync
2649  * @mtd:        MTD device structure
2650  *
2651  * Sync is actually a wait for chip ready function
2652  */
2653 static void nand_sync(struct mtd_info *mtd)
2654 {
2655         struct nand_chip *chip = mtd->priv;
2656
2657         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2658
2659         /* Grab the lock and see if the device is available */
2660         nand_get_device(chip, mtd, FL_SYNCING);
2661         /* Release it and go back */
2662         nand_release_device(mtd);
2663 }
2664
2665 /**
2666  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2667  * @mtd:        MTD device structure
2668  * @offs:       offset relative to mtd start
2669  */
2670 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2671 {
2672         /* Check for invalid offset */
2673         if (offs > mtd->size)
2674                 return -EINVAL;
2675
2676         return nand_block_checkbad(mtd, offs, 1, 0);
2677 }
2678
2679 /**
2680  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2681  * @mtd:        MTD device structure
2682  * @ofs:        offset relative to mtd start
2683  */
2684 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2685 {
2686         struct nand_chip *chip = mtd->priv;
2687         int ret;
2688
2689         if ((ret = nand_block_isbad(mtd, ofs))) {
2690                 /* If it was bad already, return success and do nothing. */
2691                 if (ret > 0)
2692                         return 0;
2693                 return ret;
2694         }
2695
2696         return chip->block_markbad(mtd, ofs);
2697 }
2698
2699 /**
2700  * nand_suspend - [MTD Interface] Suspend the NAND flash
2701  * @mtd:        MTD device structure
2702  */
2703 static int nand_suspend(struct mtd_info *mtd)
2704 {
2705         struct nand_chip *chip = mtd->priv;
2706
2707         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2708 }
2709
2710 /**
2711  * nand_resume - [MTD Interface] Resume the NAND flash
2712  * @mtd:        MTD device structure
2713  */
2714 static void nand_resume(struct mtd_info *mtd)
2715 {
2716         struct nand_chip *chip = mtd->priv;
2717
2718         if (chip->state == FL_PM_SUSPENDED)
2719                 nand_release_device(mtd);
2720         else
2721                 printk(KERN_ERR "%s called for a chip which is not "
2722                        "in suspended state\n", __func__);
2723 }
2724
2725 /*
2726  * Set default functions
2727  */
2728 static void nand_set_defaults(struct nand_chip *chip, int busw)
2729 {
2730         /* check for proper chip_delay setup, set 20us if not */
2731         if (!chip->chip_delay)
2732                 chip->chip_delay = 20;
2733
2734         /* check, if a user supplied command function given */
2735         if (chip->cmdfunc == NULL)
2736                 chip->cmdfunc = nand_command;
2737
2738         /* check, if a user supplied wait function given */
2739         if (chip->waitfunc == NULL)
2740                 chip->waitfunc = nand_wait;
2741
2742         if (!chip->select_chip)
2743                 chip->select_chip = nand_select_chip;
2744         if (!chip->read_byte)
2745                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2746         if (!chip->read_word)
2747                 chip->read_word = nand_read_word;
2748         if (!chip->block_bad)
2749                 chip->block_bad = nand_block_bad;
2750         if (!chip->block_markbad)
2751                 chip->block_markbad = nand_default_block_markbad;
2752         if (!chip->write_buf)
2753                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2754         if (!chip->read_buf)
2755                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2756         if (!chip->verify_buf)
2757                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2758         if (!chip->scan_bbt)
2759                 chip->scan_bbt = nand_default_bbt;
2760
2761         if (!chip->controller) {
2762                 chip->controller = &chip->hwcontrol;
2763                 spin_lock_init(&chip->controller->lock);
2764                 init_waitqueue_head(&chip->controller->wq);
2765         }
2766
2767 }
2768
2769 /*
2770  * Get the flash and manufacturer id and lookup if the type is supported
2771  */
2772 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2773                                                   struct nand_chip *chip,
2774                                                   int busw, int *maf_id,
2775                                                   struct nand_flash_dev *type)
2776 {
2777         int i, dev_id, maf_idx;
2778         u8 id_data[8];
2779
2780         /* Select the device */
2781         chip->select_chip(mtd, 0);
2782
2783         /*
2784          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2785          * after power-up
2786          */
2787         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2788
2789         /* Send the command for reading device ID */
2790         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2791
2792         /* Read manufacturer and device IDs */
2793         *maf_id = chip->read_byte(mtd);
2794         dev_id = chip->read_byte(mtd);
2795
2796         /* Try again to make sure, as some systems the bus-hold or other
2797          * interface concerns can cause random data which looks like a
2798          * possibly credible NAND flash to appear. If the two results do
2799          * not match, ignore the device completely.
2800          */
2801
2802         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2803
2804         /* Read entire ID string */
2805
2806         for (i = 0; i < 8; i++)
2807                 id_data[i] = chip->read_byte(mtd);
2808
2809         if (id_data[0] != *maf_id || id_data[1] != dev_id) {
2810                 printk(KERN_INFO "%s: second ID read did not match "
2811                        "%02x,%02x against %02x,%02x\n", __func__,
2812                        *maf_id, dev_id, id_data[0], id_data[1]);
2813                 return ERR_PTR(-ENODEV);
2814         }
2815
2816         if (!type)
2817                 type = nand_flash_ids;
2818
2819         for (; type->name != NULL; type++)
2820                 if (dev_id == type->id)
2821                         break;
2822
2823         if (!type->name)
2824                 return ERR_PTR(-ENODEV);
2825
2826         if (!mtd->name)
2827                 mtd->name = type->name;
2828
2829         chip->chipsize = (uint64_t)type->chipsize << 20;
2830
2831         /* Newer devices have all the information in additional id bytes */
2832         if (!type->pagesize) {
2833                 int extid;
2834                 /* The 3rd id byte holds MLC / multichip data */
2835                 chip->cellinfo = id_data[2];
2836                 /* The 4th id byte is the important one */
2837                 extid = id_data[3];
2838
2839                 /*
2840                  * Field definitions are in the following datasheets:
2841                  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2842                  * New style   (6 byte ID): Samsung K9GAG08U0D (p.40)
2843                  *
2844                  * Check for wraparound + Samsung ID + nonzero 6th byte
2845                  * to decide what to do.
2846                  */
2847                 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2848                                 id_data[0] == NAND_MFR_SAMSUNG &&
2849                                 id_data[5] != 0x00) {
2850                         /* Calc pagesize */
2851                         mtd->writesize = 2048 << (extid & 0x03);
2852                         extid >>= 2;
2853                         /* Calc oobsize */
2854                         mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218;
2855                         extid >>= 2;
2856                         /* Calc blocksize */
2857                         mtd->erasesize = (128 * 1024) <<
2858                                 (((extid >> 1) & 0x04) | (extid & 0x03));
2859                         busw = 0;
2860                 } else {
2861                         /* Calc pagesize */
2862                         mtd->writesize = 1024 << (extid & 0x03);
2863                         extid >>= 2;
2864                         /* Calc oobsize */
2865                         mtd->oobsize = (8 << (extid & 0x01)) *
2866                                 (mtd->writesize >> 9);
2867                         extid >>= 2;
2868                         /* Calc blocksize. Blocksize is multiples of 64KiB */
2869                         mtd->erasesize = (64 * 1024) << (extid & 0x03);
2870                         extid >>= 2;
2871                         /* Get buswidth information */
2872                         busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2873                 }
2874         } else {
2875                 /*
2876                  * Old devices have chip data hardcoded in the device id table
2877                  */
2878                 mtd->erasesize = type->erasesize;
2879                 mtd->writesize = type->pagesize;
2880                 mtd->oobsize = mtd->writesize / 32;
2881                 busw = type->options & NAND_BUSWIDTH_16;
2882         }
2883
2884         /* Try to identify manufacturer */
2885         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2886                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2887                         break;
2888         }
2889
2890         /*
2891          * Check, if buswidth is correct. Hardware drivers should set
2892          * chip correct !
2893          */
2894         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2895                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2896                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2897                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2898                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2899                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2900                        busw ? 16 : 8);
2901                 return ERR_PTR(-EINVAL);
2902         }
2903
2904         /* Calculate the address shift from the page size */
2905         chip->page_shift = ffs(mtd->writesize) - 1;
2906         /* Convert chipsize to number of pages per chip -1. */
2907         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2908
2909         chip->bbt_erase_shift = chip->phys_erase_shift =
2910                 ffs(mtd->erasesize) - 1;
2911         if (chip->chipsize & 0xffffffff)
2912                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2913         else
2914                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2915
2916         /* Set the bad block position */
2917         chip->badblockpos = mtd->writesize > 512 ?
2918                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2919         chip->badblockbits = 8;
2920
2921         /* Get chip options, preserve non chip based options */
2922         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2923         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2924
2925         /*
2926          * Set chip as a default. Board drivers can override it, if necessary
2927          */
2928         chip->options |= NAND_NO_AUTOINCR;
2929
2930         /* Check if chip is a not a samsung device. Do not clear the
2931          * options for chips which are not having an extended id.
2932          */
2933         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2934                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2935
2936         /* Check for AND chips with 4 page planes */
2937         if (chip->options & NAND_4PAGE_ARRAY)
2938                 chip->erase_cmd = multi_erase_cmd;
2939         else
2940                 chip->erase_cmd = single_erase_cmd;
2941
2942         /* Do not replace user supplied command function ! */
2943         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2944                 chip->cmdfunc = nand_command_lp;
2945
2946         printk(KERN_INFO "NAND device: Manufacturer ID:"
2947                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2948                nand_manuf_ids[maf_idx].name, type->name);
2949
2950         return type;
2951 }
2952
2953 /**
2954  * nand_scan_ident - [NAND Interface] Scan for the NAND device
2955  * @mtd:             MTD device structure
2956  * @maxchips:        Number of chips to scan for
2957  * @table:           Alternative NAND ID table
2958  *
2959  * This is the first phase of the normal nand_scan() function. It
2960  * reads the flash ID and sets up MTD fields accordingly.
2961  *
2962  * The mtd->owner field must be set to the module of the caller.
2963  */
2964 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
2965                     struct nand_flash_dev *table)
2966 {
2967         int i, busw, nand_maf_id;
2968         struct nand_chip *chip = mtd->priv;
2969         struct nand_flash_dev *type;
2970
2971         /* Get buswidth to select the correct functions */
2972         busw = chip->options & NAND_BUSWIDTH_16;
2973         /* Set the default functions */
2974         nand_set_defaults(chip, busw);
2975
2976         /* Read the flash type */
2977         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table);
2978
2979         if (IS_ERR(type)) {
2980                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
2981                         printk(KERN_WARNING "No NAND device found.\n");
2982                 chip->select_chip(mtd, -1);
2983                 return PTR_ERR(type);
2984         }
2985
2986         /* Check for a chip array */
2987         for (i = 1; i < maxchips; i++) {
2988                 chip->select_chip(mtd, i);
2989                 /* See comment in nand_get_flash_type for reset */
2990                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2991                 /* Send the command for reading device ID */
2992                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2993                 /* Read manufacturer and device IDs */
2994                 if (nand_maf_id != chip->read_byte(mtd) ||
2995                     type->id != chip->read_byte(mtd))
2996                         break;
2997         }
2998         if (i > 1)
2999                 printk(KERN_INFO "%d NAND chips detected\n", i);
3000
3001         /* Store the number of chips and calc total size for mtd */
3002         chip->numchips = i;
3003         mtd->size = i * chip->chipsize;
3004
3005         return 0;
3006 }
3007
3008
3009 /**
3010  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3011  * @mtd:            MTD device structure
3012  *
3013  * This is the second phase of the normal nand_scan() function. It
3014  * fills out all the uninitialized function pointers with the defaults
3015  * and scans for a bad block table if appropriate.
3016  */
3017 int nand_scan_tail(struct mtd_info *mtd)
3018 {
3019         int i;
3020         struct nand_chip *chip = mtd->priv;
3021
3022         if (!(chip->options & NAND_OWN_BUFFERS))
3023                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3024         if (!chip->buffers)
3025                 return -ENOMEM;
3026
3027         /* Set the internal oob buffer location, just after the page data */
3028         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3029
3030         /*
3031          * If no default placement scheme is given, select an appropriate one
3032          */
3033         if (!chip->ecc.layout) {
3034                 switch (mtd->oobsize) {
3035                 case 8:
3036                         chip->ecc.layout = &nand_oob_8;
3037                         break;
3038                 case 16:
3039                         chip->ecc.layout = &nand_oob_16;
3040                         break;
3041                 case 64:
3042                         chip->ecc.layout = &nand_oob_64;
3043                         break;
3044                 case 128:
3045                         chip->ecc.layout = &nand_oob_128;
3046                         break;
3047                 default:
3048                         printk(KERN_WARNING "No oob scheme defined for "
3049                                "oobsize %d\n", mtd->oobsize);
3050                         BUG();
3051                 }
3052         }
3053
3054         if (!chip->write_page)
3055                 chip->write_page = nand_write_page;
3056
3057         /*
3058          * check ECC mode, default to software if 3byte/512byte hardware ECC is
3059          * selected and we have 256 byte pagesize fallback to software ECC
3060          */
3061
3062         switch (chip->ecc.mode) {
3063         case NAND_ECC_HW_OOB_FIRST:
3064                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3065                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3066                      !chip->ecc.hwctl) {
3067                         printk(KERN_WARNING "No ECC functions supplied; "
3068                                "Hardware ECC not possible\n");
3069                         BUG();
3070                 }
3071                 if (!chip->ecc.read_page)
3072                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3073
3074         case NAND_ECC_HW:
3075                 /* Use standard hwecc read page function ? */
3076                 if (!chip->ecc.read_page)
3077                         chip->ecc.read_page = nand_read_page_hwecc;
3078                 if (!chip->ecc.write_page)
3079                         chip->ecc.write_page = nand_write_page_hwecc;
3080                 if (!chip->ecc.read_page_raw)
3081                         chip->ecc.read_page_raw = nand_read_page_raw;
3082                 if (!chip->ecc.write_page_raw)
3083                         chip->ecc.write_page_raw = nand_write_page_raw;
3084                 if (!chip->ecc.read_oob)
3085                         chip->ecc.read_oob = nand_read_oob_std;
3086                 if (!chip->ecc.write_oob)
3087                         chip->ecc.write_oob = nand_write_oob_std;
3088
3089         case NAND_ECC_HW_SYNDROME:
3090                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3091                      !chip->ecc.hwctl) &&
3092                     (!chip->ecc.read_page ||
3093                      chip->ecc.read_page == nand_read_page_hwecc ||
3094                      !chip->ecc.write_page ||
3095                      chip->ecc.write_page == nand_write_page_hwecc)) {
3096                         printk(KERN_WARNING "No ECC functions supplied; "
3097                                "Hardware ECC not possible\n");
3098                         BUG();
3099                 }
3100                 /* Use standard syndrome read/write page function ? */
3101                 if (!chip->ecc.read_page)
3102                         chip->ecc.read_page = nand_read_page_syndrome;
3103                 if (!chip->ecc.write_page)
3104                         chip->ecc.write_page = nand_write_page_syndrome;
3105                 if (!chip->ecc.read_page_raw)
3106                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3107                 if (!chip->ecc.write_page_raw)
3108                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3109                 if (!chip->ecc.read_oob)
3110                         chip->ecc.read_oob = nand_read_oob_syndrome;
3111                 if (!chip->ecc.write_oob)
3112                         chip->ecc.write_oob = nand_write_oob_syndrome;
3113
3114                 if (mtd->writesize >= chip->ecc.size)
3115                         break;
3116                 printk(KERN_WARNING "%d byte HW ECC not possible on "
3117                        "%d byte page size, fallback to SW ECC\n",
3118                        chip->ecc.size, mtd->writesize);
3119                 chip->ecc.mode = NAND_ECC_SOFT;
3120
3121         case NAND_ECC_SOFT:
3122                 chip->ecc.calculate = nand_calculate_ecc;
3123                 chip->ecc.correct = nand_correct_data;
3124                 chip->ecc.read_page = nand_read_page_swecc;
3125                 chip->ecc.read_subpage = nand_read_subpage;
3126                 chip->ecc.write_page = nand_write_page_swecc;
3127                 chip->ecc.read_page_raw = nand_read_page_raw;
3128                 chip->ecc.write_page_raw = nand_write_page_raw;
3129                 chip->ecc.read_oob = nand_read_oob_std;
3130                 chip->ecc.write_oob = nand_write_oob_std;
3131                 if (!chip->ecc.size)
3132                         chip->ecc.size = 256;
3133                 chip->ecc.bytes = 3;
3134                 break;
3135
3136         case NAND_ECC_NONE:
3137                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3138                        "This is not recommended !!\n");
3139                 chip->ecc.read_page = nand_read_page_raw;
3140                 chip->ecc.write_page = nand_write_page_raw;
3141                 chip->ecc.read_oob = nand_read_oob_std;
3142                 chip->ecc.read_page_raw = nand_read_page_raw;
3143                 chip->ecc.write_page_raw = nand_write_page_raw;
3144                 chip->ecc.write_oob = nand_write_oob_std;
3145                 chip->ecc.size = mtd->writesize;
3146                 chip->ecc.bytes = 0;
3147                 break;
3148
3149         default:
3150                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3151                        chip->ecc.mode);
3152                 BUG();
3153         }
3154
3155         /*
3156          * The number of bytes available for a client to place data into
3157          * the out of band area
3158          */
3159         chip->ecc.layout->oobavail = 0;
3160         for (i = 0; chip->ecc.layout->oobfree[i].length
3161                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3162                 chip->ecc.layout->oobavail +=
3163                         chip->ecc.layout->oobfree[i].length;
3164         mtd->oobavail = chip->ecc.layout->oobavail;
3165
3166         /*
3167          * Set the number of read / write steps for one page depending on ECC
3168          * mode
3169          */
3170         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3171         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3172                 printk(KERN_WARNING "Invalid ecc parameters\n");
3173                 BUG();
3174         }
3175         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3176
3177         /*
3178          * Allow subpage writes up to ecc.steps. Not possible for MLC
3179          * FLASH.
3180          */
3181         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3182             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3183                 switch(chip->ecc.steps) {
3184                 case 2:
3185                         mtd->subpage_sft = 1;
3186                         break;
3187                 case 4:
3188                 case 8:
3189                 case 16:
3190                         mtd->subpage_sft = 2;
3191                         break;
3192                 }
3193         }
3194         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3195
3196         /* Initialize state */
3197         chip->state = FL_READY;
3198
3199         /* De-select the device */
3200         chip->select_chip(mtd, -1);
3201
3202         /* Invalidate the pagebuffer reference */
3203         chip->pagebuf = -1;
3204
3205         /* Fill in remaining MTD driver data */
3206         mtd->type = MTD_NANDFLASH;
3207         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3208                                                 MTD_CAP_NANDFLASH;
3209         mtd->erase = nand_erase;
3210         mtd->point = NULL;
3211         mtd->unpoint = NULL;
3212         mtd->read = nand_read;
3213         mtd->write = nand_write;
3214         mtd->panic_write = panic_nand_write;
3215         mtd->read_oob = nand_read_oob;
3216         mtd->write_oob = nand_write_oob;
3217         mtd->sync = nand_sync;
3218         mtd->lock = NULL;
3219         mtd->unlock = NULL;
3220         mtd->suspend = nand_suspend;
3221         mtd->resume = nand_resume;
3222         mtd->block_isbad = nand_block_isbad;
3223         mtd->block_markbad = nand_block_markbad;
3224
3225         /* propagate ecc.layout to mtd_info */
3226         mtd->ecclayout = chip->ecc.layout;
3227
3228         /* Check, if we should skip the bad block table scan */
3229         if (chip->options & NAND_SKIP_BBTSCAN)
3230                 return 0;
3231
3232         /* Build bad block table */
3233         return chip->scan_bbt(mtd);
3234 }
3235
3236 /* is_module_text_address() isn't exported, and it's mostly a pointless
3237    test if this is a module _anyway_ -- they'd have to try _really_ hard
3238    to call us from in-kernel code if the core NAND support is modular. */
3239 #ifdef MODULE
3240 #define caller_is_module() (1)
3241 #else
3242 #define caller_is_module() \
3243         is_module_text_address((unsigned long)__builtin_return_address(0))
3244 #endif
3245
3246 /**
3247  * nand_scan - [NAND Interface] Scan for the NAND device
3248  * @mtd:        MTD device structure
3249  * @maxchips:   Number of chips to scan for
3250  *
3251  * This fills out all the uninitialized function pointers
3252  * with the defaults.
3253  * The flash ID is read and the mtd/chip structures are
3254  * filled with the appropriate values.
3255  * The mtd->owner field must be set to the module of the caller
3256  *
3257  */
3258 int nand_scan(struct mtd_info *mtd, int maxchips)
3259 {
3260         int ret;
3261
3262         /* Many callers got this wrong, so check for it for a while... */
3263         if (!mtd->owner && caller_is_module()) {
3264                 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3265                                 __func__);
3266                 BUG();
3267         }
3268
3269         ret = nand_scan_ident(mtd, maxchips, NULL);
3270         if (!ret)
3271                 ret = nand_scan_tail(mtd);
3272         return ret;
3273 }
3274
3275 /**
3276  * nand_release - [NAND Interface] Free resources held by the NAND device
3277  * @mtd:        MTD device structure
3278 */
3279 void nand_release(struct mtd_info *mtd)
3280 {
3281         struct nand_chip *chip = mtd->priv;
3282
3283 #ifdef CONFIG_MTD_PARTITIONS
3284         /* Deregister partitions */
3285         del_mtd_partitions(mtd);
3286 #endif
3287         /* Deregister the device */
3288         del_mtd_device(mtd);
3289
3290         /* Free bad block table memory */
3291         kfree(chip->bbt);
3292         if (!(chip->options & NAND_OWN_BUFFERS))
3293                 kfree(chip->buffers);
3294 }
3295
3296 EXPORT_SYMBOL_GPL(nand_lock);
3297 EXPORT_SYMBOL_GPL(nand_unlock);
3298 EXPORT_SYMBOL_GPL(nand_scan);
3299 EXPORT_SYMBOL_GPL(nand_scan_ident);
3300 EXPORT_SYMBOL_GPL(nand_scan_tail);
3301 EXPORT_SYMBOL_GPL(nand_release);
3302
3303 static int __init nand_base_init(void)
3304 {
3305         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3306         return 0;
3307 }
3308
3309 static void __exit nand_base_exit(void)
3310 {
3311         led_trigger_unregister_simple(nand_led_trigger);
3312 }
3313
3314 module_init(nand_base_init);
3315 module_exit(nand_base_exit);
3316
3317 MODULE_LICENSE("GPL");
3318 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3319 MODULE_DESCRIPTION("Generic NAND flash driver code");