mtd: mxc_nand: Convert to module_platform_driver()
[pandora-kernel.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
37
38 #include <asm/mach/flash.h>
39 #include <mach/mxc_nand.h>
40 #include <mach/hardware.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 #define nfc_is_v21()            (cpu_is_mx25() || cpu_is_mx35())
45 #define nfc_is_v1()             (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
46 #define nfc_is_v3_2a()          cpu_is_mx51()
47 #define nfc_is_v3_2b()          cpu_is_mx53()
48
49 /* Addresses for NFC registers */
50 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
51 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
52 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
53 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
54 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
55 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
56 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
57 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
58 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
59 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
60 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
61 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
62 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
63 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
64 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
65 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
66 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
67 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
68 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
69 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
70 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
71 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
72
73 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
74 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
75 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
76 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
77 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
78 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
79 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
80 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
81 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
82 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
83
84 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
85
86 /*
87  * Operation modes for the NFC. Valid for v1, v2 and v3
88  * type controllers.
89  */
90 #define NFC_CMD                         (1 << 0)
91 #define NFC_ADDR                        (1 << 1)
92 #define NFC_INPUT                       (1 << 2)
93 #define NFC_OUTPUT                      (1 << 3)
94 #define NFC_ID                          (1 << 4)
95 #define NFC_STATUS                      (1 << 5)
96
97 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
98 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
99
100 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
101 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
102 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
103
104 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
105
106 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
107
108 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
109 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
110 #define NFC_V3_WRPROT_LOCK              (1 << 1)
111 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
112 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
113
114 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
115
116 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
117 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
118 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
119 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
120 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
121 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
122 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
123 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
124 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
125 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
126 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
127 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
128 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
129 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
130
131 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
132 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
133 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
134 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
135 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
136 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
137 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
138
139 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
140 #define NFC_V3_IPC_CREQ                 (1 << 0)
141 #define NFC_V3_IPC_INT                  (1 << 31)
142
143 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
144
145 struct mxc_nand_host;
146
147 struct mxc_nand_devtype_data {
148         void (*preset)(struct mtd_info *);
149         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
150         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
151         void (*send_page)(struct mtd_info *, unsigned int);
152         void (*send_read_id)(struct mxc_nand_host *);
153         uint16_t (*get_dev_status)(struct mxc_nand_host *);
154         int (*check_int)(struct mxc_nand_host *);
155         void (*irq_control)(struct mxc_nand_host *, int);
156         u32 (*get_ecc_status)(struct mxc_nand_host *);
157         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
158         void (*select_chip)(struct mtd_info *mtd, int chip);
159         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
160                         u_char *read_ecc, u_char *calc_ecc);
161
162         /*
163          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
164          * (CONFIG1:INT_MSK is set). To handle this the driver uses
165          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
166          */
167         int irqpending_quirk;
168         int needs_ip;
169
170         size_t regs_offset;
171         size_t spare0_offset;
172         size_t axi_offset;
173
174         int spare_len;
175         int eccbytes;
176         int eccsize;
177         int ppb_shift;
178 };
179
180 struct mxc_nand_host {
181         struct mtd_info         mtd;
182         struct nand_chip        nand;
183         struct device           *dev;
184
185         void __iomem            *spare0;
186         void __iomem            *main_area0;
187
188         void __iomem            *base;
189         void __iomem            *regs;
190         void __iomem            *regs_axi;
191         void __iomem            *regs_ip;
192         int                     status_request;
193         struct clk              *clk;
194         int                     clk_act;
195         int                     irq;
196         int                     eccsize;
197         int                     active_cs;
198
199         struct completion       op_completion;
200
201         uint8_t                 *data_buf;
202         unsigned int            buf_start;
203
204         const struct mxc_nand_devtype_data *devtype_data;
205         struct mxc_nand_platform_data pdata;
206 };
207
208 /* OOB placement block for use with hardware ecc generation */
209 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
210         .eccbytes = 5,
211         .eccpos = {6, 7, 8, 9, 10},
212         .oobfree = {{0, 5}, {12, 4}, }
213 };
214
215 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
216         .eccbytes = 20,
217         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
218                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
219         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
220 };
221
222 /* OOB description for 512 byte pages with 16 byte OOB */
223 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
224         .eccbytes = 1 * 9,
225         .eccpos = {
226                  7,  8,  9, 10, 11, 12, 13, 14, 15
227         },
228         .oobfree = {
229                 {.offset = 0, .length = 5}
230         }
231 };
232
233 /* OOB description for 2048 byte pages with 64 byte OOB */
234 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
235         .eccbytes = 4 * 9,
236         .eccpos = {
237                  7,  8,  9, 10, 11, 12, 13, 14, 15,
238                 23, 24, 25, 26, 27, 28, 29, 30, 31,
239                 39, 40, 41, 42, 43, 44, 45, 46, 47,
240                 55, 56, 57, 58, 59, 60, 61, 62, 63
241         },
242         .oobfree = {
243                 {.offset = 2, .length = 4},
244                 {.offset = 16, .length = 7},
245                 {.offset = 32, .length = 7},
246                 {.offset = 48, .length = 7}
247         }
248 };
249
250 /* OOB description for 4096 byte pages with 128 byte OOB */
251 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
252         .eccbytes = 8 * 9,
253         .eccpos = {
254                 7,  8,  9, 10, 11, 12, 13, 14, 15,
255                 23, 24, 25, 26, 27, 28, 29, 30, 31,
256                 39, 40, 41, 42, 43, 44, 45, 46, 47,
257                 55, 56, 57, 58, 59, 60, 61, 62, 63,
258                 71, 72, 73, 74, 75, 76, 77, 78, 79,
259                 87, 88, 89, 90, 91, 92, 93, 94, 95,
260                 103, 104, 105, 106, 107, 108, 109, 110, 111,
261                 119, 120, 121, 122, 123, 124, 125, 126, 127,
262         },
263         .oobfree = {
264                 {.offset = 2, .length = 4},
265                 {.offset = 16, .length = 7},
266                 {.offset = 32, .length = 7},
267                 {.offset = 48, .length = 7},
268                 {.offset = 64, .length = 7},
269                 {.offset = 80, .length = 7},
270                 {.offset = 96, .length = 7},
271                 {.offset = 112, .length = 7},
272         }
273 };
274
275 static const char *part_probes[] = { "RedBoot", "cmdlinepart", "ofpart", NULL };
276
277 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
278 {
279         int i;
280         u32 *t = trg;
281         const __iomem u32 *s = src;
282
283         for (i = 0; i < (size >> 2); i++)
284                 *t++ = __raw_readl(s++);
285 }
286
287 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
288 {
289         int i;
290         u32 __iomem *t = trg;
291         const u32 *s = src;
292
293         for (i = 0; i < (size >> 2); i++)
294                 __raw_writel(*s++, t++);
295 }
296
297 static int check_int_v3(struct mxc_nand_host *host)
298 {
299         uint32_t tmp;
300
301         tmp = readl(NFC_V3_IPC);
302         if (!(tmp & NFC_V3_IPC_INT))
303                 return 0;
304
305         tmp &= ~NFC_V3_IPC_INT;
306         writel(tmp, NFC_V3_IPC);
307
308         return 1;
309 }
310
311 static int check_int_v1_v2(struct mxc_nand_host *host)
312 {
313         uint32_t tmp;
314
315         tmp = readw(NFC_V1_V2_CONFIG2);
316         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
317                 return 0;
318
319         if (!host->devtype_data->irqpending_quirk)
320                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
321
322         return 1;
323 }
324
325 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
326 {
327         uint16_t tmp;
328
329         tmp = readw(NFC_V1_V2_CONFIG1);
330
331         if (activate)
332                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
333         else
334                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
335
336         writew(tmp, NFC_V1_V2_CONFIG1);
337 }
338
339 static void irq_control_v3(struct mxc_nand_host *host, int activate)
340 {
341         uint32_t tmp;
342
343         tmp = readl(NFC_V3_CONFIG2);
344
345         if (activate)
346                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
347         else
348                 tmp |= NFC_V3_CONFIG2_INT_MSK;
349
350         writel(tmp, NFC_V3_CONFIG2);
351 }
352
353 static void irq_control(struct mxc_nand_host *host, int activate)
354 {
355         if (host->devtype_data->irqpending_quirk) {
356                 if (activate)
357                         enable_irq(host->irq);
358                 else
359                         disable_irq_nosync(host->irq);
360         } else {
361                 host->devtype_data->irq_control(host, activate);
362         }
363 }
364
365 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
366 {
367         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
368 }
369
370 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
371 {
372         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
373 }
374
375 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
376 {
377         return readl(NFC_V3_ECC_STATUS_RESULT);
378 }
379
380 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
381 {
382         struct mxc_nand_host *host = dev_id;
383
384         if (!host->devtype_data->check_int(host))
385                 return IRQ_NONE;
386
387         irq_control(host, 0);
388
389         complete(&host->op_completion);
390
391         return IRQ_HANDLED;
392 }
393
394 /* This function polls the NANDFC to wait for the basic operation to
395  * complete by checking the INT bit of config2 register.
396  */
397 static void wait_op_done(struct mxc_nand_host *host, int useirq)
398 {
399         int max_retries = 8000;
400
401         if (useirq) {
402                 if (!host->devtype_data->check_int(host)) {
403                         INIT_COMPLETION(host->op_completion);
404                         irq_control(host, 1);
405                         wait_for_completion(&host->op_completion);
406                 }
407         } else {
408                 while (max_retries-- > 0) {
409                         if (host->devtype_data->check_int(host))
410                                 break;
411
412                         udelay(1);
413                 }
414                 if (max_retries < 0)
415                         pr_debug("%s: INT not set\n", __func__);
416         }
417 }
418
419 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
420 {
421         /* fill command */
422         writel(cmd, NFC_V3_FLASH_CMD);
423
424         /* send out command */
425         writel(NFC_CMD, NFC_V3_LAUNCH);
426
427         /* Wait for operation to complete */
428         wait_op_done(host, useirq);
429 }
430
431 /* This function issues the specified command to the NAND device and
432  * waits for completion. */
433 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
434 {
435         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
436
437         writew(cmd, NFC_V1_V2_FLASH_CMD);
438         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
439
440         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
441                 int max_retries = 100;
442                 /* Reset completion is indicated by NFC_CONFIG2 */
443                 /* being set to 0 */
444                 while (max_retries-- > 0) {
445                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
446                                 break;
447                         }
448                         udelay(1);
449                 }
450                 if (max_retries < 0)
451                         pr_debug("%s: RESET failed\n", __func__);
452         } else {
453                 /* Wait for operation to complete */
454                 wait_op_done(host, useirq);
455         }
456 }
457
458 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
459 {
460         /* fill address */
461         writel(addr, NFC_V3_FLASH_ADDR0);
462
463         /* send out address */
464         writel(NFC_ADDR, NFC_V3_LAUNCH);
465
466         wait_op_done(host, 0);
467 }
468
469 /* This function sends an address (or partial address) to the
470  * NAND device. The address is used to select the source/destination for
471  * a NAND command. */
472 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
473 {
474         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
475
476         writew(addr, NFC_V1_V2_FLASH_ADDR);
477         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
478
479         /* Wait for operation to complete */
480         wait_op_done(host, islast);
481 }
482
483 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
484 {
485         struct nand_chip *nand_chip = mtd->priv;
486         struct mxc_nand_host *host = nand_chip->priv;
487         uint32_t tmp;
488
489         tmp = readl(NFC_V3_CONFIG1);
490         tmp &= ~(7 << 4);
491         writel(tmp, NFC_V3_CONFIG1);
492
493         /* transfer data from NFC ram to nand */
494         writel(ops, NFC_V3_LAUNCH);
495
496         wait_op_done(host, false);
497 }
498
499 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
500 {
501         struct nand_chip *nand_chip = mtd->priv;
502         struct mxc_nand_host *host = nand_chip->priv;
503
504         /* NANDFC buffer 0 is used for page read/write */
505         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
506
507         writew(ops, NFC_V1_V2_CONFIG2);
508
509         /* Wait for operation to complete */
510         wait_op_done(host, true);
511 }
512
513 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
514 {
515         struct nand_chip *nand_chip = mtd->priv;
516         struct mxc_nand_host *host = nand_chip->priv;
517         int bufs, i;
518
519         if (mtd->writesize > 512)
520                 bufs = 4;
521         else
522                 bufs = 1;
523
524         for (i = 0; i < bufs; i++) {
525
526                 /* NANDFC buffer 0 is used for page read/write */
527                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
528
529                 writew(ops, NFC_V1_V2_CONFIG2);
530
531                 /* Wait for operation to complete */
532                 wait_op_done(host, true);
533         }
534 }
535
536 static void send_read_id_v3(struct mxc_nand_host *host)
537 {
538         /* Read ID into main buffer */
539         writel(NFC_ID, NFC_V3_LAUNCH);
540
541         wait_op_done(host, true);
542
543         memcpy32_fromio(host->data_buf, host->main_area0, 16);
544 }
545
546 /* Request the NANDFC to perform a read of the NAND device ID. */
547 static void send_read_id_v1_v2(struct mxc_nand_host *host)
548 {
549         struct nand_chip *this = &host->nand;
550
551         /* NANDFC buffer 0 is used for device ID output */
552         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
553
554         writew(NFC_ID, NFC_V1_V2_CONFIG2);
555
556         /* Wait for operation to complete */
557         wait_op_done(host, true);
558
559         memcpy32_fromio(host->data_buf, host->main_area0, 16);
560
561         if (this->options & NAND_BUSWIDTH_16) {
562                 /* compress the ID info */
563                 host->data_buf[1] = host->data_buf[2];
564                 host->data_buf[2] = host->data_buf[4];
565                 host->data_buf[3] = host->data_buf[6];
566                 host->data_buf[4] = host->data_buf[8];
567                 host->data_buf[5] = host->data_buf[10];
568         }
569 }
570
571 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
572 {
573         writew(NFC_STATUS, NFC_V3_LAUNCH);
574         wait_op_done(host, true);
575
576         return readl(NFC_V3_CONFIG1) >> 16;
577 }
578
579 /* This function requests the NANDFC to perform a read of the
580  * NAND device status and returns the current status. */
581 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
582 {
583         void __iomem *main_buf = host->main_area0;
584         uint32_t store;
585         uint16_t ret;
586
587         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
588
589         /*
590          * The device status is stored in main_area0. To
591          * prevent corruption of the buffer save the value
592          * and restore it afterwards.
593          */
594         store = readl(main_buf);
595
596         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
597         wait_op_done(host, true);
598
599         ret = readw(main_buf);
600
601         writel(store, main_buf);
602
603         return ret;
604 }
605
606 /* This functions is used by upper layer to checks if device is ready */
607 static int mxc_nand_dev_ready(struct mtd_info *mtd)
608 {
609         /*
610          * NFC handles R/B internally. Therefore, this function
611          * always returns status as ready.
612          */
613         return 1;
614 }
615
616 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
617 {
618         /*
619          * If HW ECC is enabled, we turn it on during init. There is
620          * no need to enable again here.
621          */
622 }
623
624 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
625                                  u_char *read_ecc, u_char *calc_ecc)
626 {
627         struct nand_chip *nand_chip = mtd->priv;
628         struct mxc_nand_host *host = nand_chip->priv;
629
630         /*
631          * 1-Bit errors are automatically corrected in HW.  No need for
632          * additional correction.  2-Bit errors cannot be corrected by
633          * HW ECC, so we need to return failure
634          */
635         uint16_t ecc_status = get_ecc_status_v1(host);
636
637         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
638                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
639                 return -1;
640         }
641
642         return 0;
643 }
644
645 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
646                                  u_char *read_ecc, u_char *calc_ecc)
647 {
648         struct nand_chip *nand_chip = mtd->priv;
649         struct mxc_nand_host *host = nand_chip->priv;
650         u32 ecc_stat, err;
651         int no_subpages = 1;
652         int ret = 0;
653         u8 ecc_bit_mask, err_limit;
654
655         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
656         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
657
658         no_subpages = mtd->writesize >> 9;
659
660         ecc_stat = host->devtype_data->get_ecc_status(host);
661
662         do {
663                 err = ecc_stat & ecc_bit_mask;
664                 if (err > err_limit) {
665                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
666                         return -1;
667                 } else {
668                         ret += err;
669                 }
670                 ecc_stat >>= 4;
671         } while (--no_subpages);
672
673         mtd->ecc_stats.corrected += ret;
674         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
675
676         return ret;
677 }
678
679 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
680                                   u_char *ecc_code)
681 {
682         return 0;
683 }
684
685 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
686 {
687         struct nand_chip *nand_chip = mtd->priv;
688         struct mxc_nand_host *host = nand_chip->priv;
689         uint8_t ret;
690
691         /* Check for status request */
692         if (host->status_request)
693                 return host->devtype_data->get_dev_status(host) & 0xFF;
694
695         ret = *(uint8_t *)(host->data_buf + host->buf_start);
696         host->buf_start++;
697
698         return ret;
699 }
700
701 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
702 {
703         struct nand_chip *nand_chip = mtd->priv;
704         struct mxc_nand_host *host = nand_chip->priv;
705         uint16_t ret;
706
707         ret = *(uint16_t *)(host->data_buf + host->buf_start);
708         host->buf_start += 2;
709
710         return ret;
711 }
712
713 /* Write data of length len to buffer buf. The data to be
714  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
715  * Operation by the NFC, the data is written to NAND Flash */
716 static void mxc_nand_write_buf(struct mtd_info *mtd,
717                                 const u_char *buf, int len)
718 {
719         struct nand_chip *nand_chip = mtd->priv;
720         struct mxc_nand_host *host = nand_chip->priv;
721         u16 col = host->buf_start;
722         int n = mtd->oobsize + mtd->writesize - col;
723
724         n = min(n, len);
725
726         memcpy(host->data_buf + col, buf, n);
727
728         host->buf_start += n;
729 }
730
731 /* Read the data buffer from the NAND Flash. To read the data from NAND
732  * Flash first the data output cycle is initiated by the NFC, which copies
733  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
734  */
735 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
736 {
737         struct nand_chip *nand_chip = mtd->priv;
738         struct mxc_nand_host *host = nand_chip->priv;
739         u16 col = host->buf_start;
740         int n = mtd->oobsize + mtd->writesize - col;
741
742         n = min(n, len);
743
744         memcpy(buf, host->data_buf + col, n);
745
746         host->buf_start += n;
747 }
748
749 /* This function is used by upper layer for select and
750  * deselect of the NAND chip */
751 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
752 {
753         struct nand_chip *nand_chip = mtd->priv;
754         struct mxc_nand_host *host = nand_chip->priv;
755
756         if (chip == -1) {
757                 /* Disable the NFC clock */
758                 if (host->clk_act) {
759                         clk_disable_unprepare(host->clk);
760                         host->clk_act = 0;
761                 }
762                 return;
763         }
764
765         if (!host->clk_act) {
766                 /* Enable the NFC clock */
767                 clk_prepare_enable(host->clk);
768                 host->clk_act = 1;
769         }
770 }
771
772 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
773 {
774         struct nand_chip *nand_chip = mtd->priv;
775         struct mxc_nand_host *host = nand_chip->priv;
776
777         if (chip == -1) {
778                 /* Disable the NFC clock */
779                 if (host->clk_act) {
780                         clk_disable_unprepare(host->clk);
781                         host->clk_act = 0;
782                 }
783                 return;
784         }
785
786         if (!host->clk_act) {
787                 /* Enable the NFC clock */
788                 clk_prepare_enable(host->clk);
789                 host->clk_act = 1;
790         }
791
792         host->active_cs = chip;
793         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
794 }
795
796 /*
797  * Function to transfer data to/from spare area.
798  */
799 static void copy_spare(struct mtd_info *mtd, bool bfrom)
800 {
801         struct nand_chip *this = mtd->priv;
802         struct mxc_nand_host *host = this->priv;
803         u16 i, j;
804         u16 n = mtd->writesize >> 9;
805         u8 *d = host->data_buf + mtd->writesize;
806         u8 __iomem *s = host->spare0;
807         u16 t = host->devtype_data->spare_len;
808
809         j = (mtd->oobsize / n >> 1) << 1;
810
811         if (bfrom) {
812                 for (i = 0; i < n - 1; i++)
813                         memcpy32_fromio(d + i * j, s + i * t, j);
814
815                 /* the last section */
816                 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
817         } else {
818                 for (i = 0; i < n - 1; i++)
819                         memcpy32_toio(&s[i * t], &d[i * j], j);
820
821                 /* the last section */
822                 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
823         }
824 }
825
826 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
827 {
828         struct nand_chip *nand_chip = mtd->priv;
829         struct mxc_nand_host *host = nand_chip->priv;
830
831         /* Write out column address, if necessary */
832         if (column != -1) {
833                 /*
834                  * MXC NANDFC can only perform full page+spare or
835                  * spare-only read/write.  When the upper layers
836                  * perform a read/write buf operation, the saved column
837                   * address is used to index into the full page.
838                  */
839                 host->devtype_data->send_addr(host, 0, page_addr == -1);
840                 if (mtd->writesize > 512)
841                         /* another col addr cycle for 2k page */
842                         host->devtype_data->send_addr(host, 0, false);
843         }
844
845         /* Write out page address, if necessary */
846         if (page_addr != -1) {
847                 /* paddr_0 - p_addr_7 */
848                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
849
850                 if (mtd->writesize > 512) {
851                         if (mtd->size >= 0x10000000) {
852                                 /* paddr_8 - paddr_15 */
853                                 host->devtype_data->send_addr(host,
854                                                 (page_addr >> 8) & 0xff,
855                                                 false);
856                                 host->devtype_data->send_addr(host,
857                                                 (page_addr >> 16) & 0xff,
858                                                 true);
859                         } else
860                                 /* paddr_8 - paddr_15 */
861                                 host->devtype_data->send_addr(host,
862                                                 (page_addr >> 8) & 0xff, true);
863                 } else {
864                         /* One more address cycle for higher density devices */
865                         if (mtd->size >= 0x4000000) {
866                                 /* paddr_8 - paddr_15 */
867                                 host->devtype_data->send_addr(host,
868                                                 (page_addr >> 8) & 0xff,
869                                                 false);
870                                 host->devtype_data->send_addr(host,
871                                                 (page_addr >> 16) & 0xff,
872                                                 true);
873                         } else
874                                 /* paddr_8 - paddr_15 */
875                                 host->devtype_data->send_addr(host,
876                                                 (page_addr >> 8) & 0xff, true);
877                 }
878         }
879 }
880
881 /*
882  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
883  * on how much oob the nand chip has. For 8bit ecc we need at least
884  * 26 bytes of oob data per 512 byte block.
885  */
886 static int get_eccsize(struct mtd_info *mtd)
887 {
888         int oobbytes_per_512 = 0;
889
890         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
891
892         if (oobbytes_per_512 < 26)
893                 return 4;
894         else
895                 return 8;
896 }
897
898 static void preset_v1(struct mtd_info *mtd)
899 {
900         struct nand_chip *nand_chip = mtd->priv;
901         struct mxc_nand_host *host = nand_chip->priv;
902         uint16_t config1 = 0;
903
904         if (nand_chip->ecc.mode == NAND_ECC_HW)
905                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
906
907         if (!host->devtype_data->irqpending_quirk)
908                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
909
910         host->eccsize = 1;
911
912         writew(config1, NFC_V1_V2_CONFIG1);
913         /* preset operation */
914
915         /* Unlock the internal RAM Buffer */
916         writew(0x2, NFC_V1_V2_CONFIG);
917
918         /* Blocks to be unlocked */
919         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
920         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
921
922         /* Unlock Block Command for given address range */
923         writew(0x4, NFC_V1_V2_WRPROT);
924 }
925
926 static void preset_v2(struct mtd_info *mtd)
927 {
928         struct nand_chip *nand_chip = mtd->priv;
929         struct mxc_nand_host *host = nand_chip->priv;
930         uint16_t config1 = 0;
931
932         if (nand_chip->ecc.mode == NAND_ECC_HW)
933                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
934
935         config1 |= NFC_V2_CONFIG1_FP_INT;
936
937         if (!host->devtype_data->irqpending_quirk)
938                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
939
940         if (mtd->writesize) {
941                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
942
943                 host->eccsize = get_eccsize(mtd);
944                 if (host->eccsize == 4)
945                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
946
947                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
948         } else {
949                 host->eccsize = 1;
950         }
951
952         writew(config1, NFC_V1_V2_CONFIG1);
953         /* preset operation */
954
955         /* Unlock the internal RAM Buffer */
956         writew(0x2, NFC_V1_V2_CONFIG);
957
958         /* Blocks to be unlocked */
959         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
960         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
961         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
962         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
963         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
964         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
965         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
966         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
967
968         /* Unlock Block Command for given address range */
969         writew(0x4, NFC_V1_V2_WRPROT);
970 }
971
972 static void preset_v3(struct mtd_info *mtd)
973 {
974         struct nand_chip *chip = mtd->priv;
975         struct mxc_nand_host *host = chip->priv;
976         uint32_t config2, config3;
977         int i, addr_phases;
978
979         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
980         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
981
982         /* Unlock the internal RAM Buffer */
983         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
984                         NFC_V3_WRPROT);
985
986         /* Blocks to be unlocked */
987         for (i = 0; i < NAND_MAX_CHIPS; i++)
988                 writel(0x0 |    (0xffff << 16),
989                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
990
991         writel(0, NFC_V3_IPC);
992
993         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
994                 NFC_V3_CONFIG2_2CMD_PHASES |
995                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
996                 NFC_V3_CONFIG2_ST_CMD(0x70) |
997                 NFC_V3_CONFIG2_INT_MSK |
998                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
999
1000         if (chip->ecc.mode == NAND_ECC_HW)
1001                 config2 |= NFC_V3_CONFIG2_ECC_EN;
1002
1003         addr_phases = fls(chip->pagemask) >> 3;
1004
1005         if (mtd->writesize == 2048) {
1006                 config2 |= NFC_V3_CONFIG2_PS_2048;
1007                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1008         } else if (mtd->writesize == 4096) {
1009                 config2 |= NFC_V3_CONFIG2_PS_4096;
1010                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1011         } else {
1012                 config2 |= NFC_V3_CONFIG2_PS_512;
1013                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1014         }
1015
1016         if (mtd->writesize) {
1017                 config2 |= NFC_V3_CONFIG2_PPB(
1018                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1019                                 host->devtype_data->ppb_shift);
1020                 host->eccsize = get_eccsize(mtd);
1021                 if (host->eccsize == 8)
1022                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1023         }
1024
1025         writel(config2, NFC_V3_CONFIG2);
1026
1027         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1028                         NFC_V3_CONFIG3_NO_SDMA |
1029                         NFC_V3_CONFIG3_RBB_MODE |
1030                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1031                         NFC_V3_CONFIG3_ADD_OP(0);
1032
1033         if (!(chip->options & NAND_BUSWIDTH_16))
1034                 config3 |= NFC_V3_CONFIG3_FW8;
1035
1036         writel(config3, NFC_V3_CONFIG3);
1037
1038         writel(0, NFC_V3_DELAY_LINE);
1039 }
1040
1041 /* Used by the upper layer to write command to NAND Flash for
1042  * different operations to be carried out on NAND Flash */
1043 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1044                                 int column, int page_addr)
1045 {
1046         struct nand_chip *nand_chip = mtd->priv;
1047         struct mxc_nand_host *host = nand_chip->priv;
1048
1049         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1050               command, column, page_addr);
1051
1052         /* Reset command state information */
1053         host->status_request = false;
1054
1055         /* Command pre-processing step */
1056         switch (command) {
1057         case NAND_CMD_RESET:
1058                 host->devtype_data->preset(mtd);
1059                 host->devtype_data->send_cmd(host, command, false);
1060                 break;
1061
1062         case NAND_CMD_STATUS:
1063                 host->buf_start = 0;
1064                 host->status_request = true;
1065
1066                 host->devtype_data->send_cmd(host, command, true);
1067                 mxc_do_addr_cycle(mtd, column, page_addr);
1068                 break;
1069
1070         case NAND_CMD_READ0:
1071         case NAND_CMD_READOOB:
1072                 if (command == NAND_CMD_READ0)
1073                         host->buf_start = column;
1074                 else
1075                         host->buf_start = column + mtd->writesize;
1076
1077                 command = NAND_CMD_READ0; /* only READ0 is valid */
1078
1079                 host->devtype_data->send_cmd(host, command, false);
1080                 mxc_do_addr_cycle(mtd, column, page_addr);
1081
1082                 if (mtd->writesize > 512)
1083                         host->devtype_data->send_cmd(host,
1084                                         NAND_CMD_READSTART, true);
1085
1086                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1087
1088                 memcpy32_fromio(host->data_buf, host->main_area0,
1089                                 mtd->writesize);
1090                 copy_spare(mtd, true);
1091                 break;
1092
1093         case NAND_CMD_SEQIN:
1094                 if (column >= mtd->writesize)
1095                         /* call ourself to read a page */
1096                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1097
1098                 host->buf_start = column;
1099
1100                 host->devtype_data->send_cmd(host, command, false);
1101                 mxc_do_addr_cycle(mtd, column, page_addr);
1102                 break;
1103
1104         case NAND_CMD_PAGEPROG:
1105                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1106                 copy_spare(mtd, false);
1107                 host->devtype_data->send_page(mtd, NFC_INPUT);
1108                 host->devtype_data->send_cmd(host, command, true);
1109                 mxc_do_addr_cycle(mtd, column, page_addr);
1110                 break;
1111
1112         case NAND_CMD_READID:
1113                 host->devtype_data->send_cmd(host, command, true);
1114                 mxc_do_addr_cycle(mtd, column, page_addr);
1115                 host->devtype_data->send_read_id(host);
1116                 host->buf_start = column;
1117                 break;
1118
1119         case NAND_CMD_ERASE1:
1120         case NAND_CMD_ERASE2:
1121                 host->devtype_data->send_cmd(host, command, false);
1122                 mxc_do_addr_cycle(mtd, column, page_addr);
1123
1124                 break;
1125         }
1126 }
1127
1128 /*
1129  * The generic flash bbt decriptors overlap with our ecc
1130  * hardware, so define some i.MX specific ones.
1131  */
1132 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1133 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1134
1135 static struct nand_bbt_descr bbt_main_descr = {
1136         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1137             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1138         .offs = 0,
1139         .len = 4,
1140         .veroffs = 4,
1141         .maxblocks = 4,
1142         .pattern = bbt_pattern,
1143 };
1144
1145 static struct nand_bbt_descr bbt_mirror_descr = {
1146         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1147             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1148         .offs = 0,
1149         .len = 4,
1150         .veroffs = 4,
1151         .maxblocks = 4,
1152         .pattern = mirror_pattern,
1153 };
1154
1155 /* v1 + irqpending_quirk: i.MX21 */
1156 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1157         .preset = preset_v1,
1158         .send_cmd = send_cmd_v1_v2,
1159         .send_addr = send_addr_v1_v2,
1160         .send_page = send_page_v1,
1161         .send_read_id = send_read_id_v1_v2,
1162         .get_dev_status = get_dev_status_v1_v2,
1163         .check_int = check_int_v1_v2,
1164         .irq_control = irq_control_v1_v2,
1165         .get_ecc_status = get_ecc_status_v1,
1166         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1167         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1168         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1169         .select_chip = mxc_nand_select_chip_v1_v3,
1170         .correct_data = mxc_nand_correct_data_v1,
1171         .irqpending_quirk = 1,
1172         .needs_ip = 0,
1173         .regs_offset = 0xe00,
1174         .spare0_offset = 0x800,
1175         .spare_len = 16,
1176         .eccbytes = 3,
1177         .eccsize = 1,
1178 };
1179
1180 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1181 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1182         .preset = preset_v1,
1183         .send_cmd = send_cmd_v1_v2,
1184         .send_addr = send_addr_v1_v2,
1185         .send_page = send_page_v1,
1186         .send_read_id = send_read_id_v1_v2,
1187         .get_dev_status = get_dev_status_v1_v2,
1188         .check_int = check_int_v1_v2,
1189         .irq_control = irq_control_v1_v2,
1190         .get_ecc_status = get_ecc_status_v1,
1191         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1192         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1193         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1194         .select_chip = mxc_nand_select_chip_v1_v3,
1195         .correct_data = mxc_nand_correct_data_v1,
1196         .irqpending_quirk = 0,
1197         .needs_ip = 0,
1198         .regs_offset = 0xe00,
1199         .spare0_offset = 0x800,
1200         .axi_offset = 0,
1201         .spare_len = 16,
1202         .eccbytes = 3,
1203         .eccsize = 1,
1204 };
1205
1206 /* v21: i.MX25, i.MX35 */
1207 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1208         .preset = preset_v2,
1209         .send_cmd = send_cmd_v1_v2,
1210         .send_addr = send_addr_v1_v2,
1211         .send_page = send_page_v2,
1212         .send_read_id = send_read_id_v1_v2,
1213         .get_dev_status = get_dev_status_v1_v2,
1214         .check_int = check_int_v1_v2,
1215         .irq_control = irq_control_v1_v2,
1216         .get_ecc_status = get_ecc_status_v2,
1217         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1218         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1219         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1220         .select_chip = mxc_nand_select_chip_v2,
1221         .correct_data = mxc_nand_correct_data_v2_v3,
1222         .irqpending_quirk = 0,
1223         .needs_ip = 0,
1224         .regs_offset = 0x1e00,
1225         .spare0_offset = 0x1000,
1226         .axi_offset = 0,
1227         .spare_len = 64,
1228         .eccbytes = 9,
1229         .eccsize = 0,
1230 };
1231
1232 /* v3.2a: i.MX51 */
1233 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1234         .preset = preset_v3,
1235         .send_cmd = send_cmd_v3,
1236         .send_addr = send_addr_v3,
1237         .send_page = send_page_v3,
1238         .send_read_id = send_read_id_v3,
1239         .get_dev_status = get_dev_status_v3,
1240         .check_int = check_int_v3,
1241         .irq_control = irq_control_v3,
1242         .get_ecc_status = get_ecc_status_v3,
1243         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1244         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1245         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1246         .select_chip = mxc_nand_select_chip_v1_v3,
1247         .correct_data = mxc_nand_correct_data_v2_v3,
1248         .irqpending_quirk = 0,
1249         .needs_ip = 1,
1250         .regs_offset = 0,
1251         .spare0_offset = 0x1000,
1252         .axi_offset = 0x1e00,
1253         .spare_len = 64,
1254         .eccbytes = 0,
1255         .eccsize = 0,
1256         .ppb_shift = 7,
1257 };
1258
1259 /* v3.2b: i.MX53 */
1260 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1261         .preset = preset_v3,
1262         .send_cmd = send_cmd_v3,
1263         .send_addr = send_addr_v3,
1264         .send_page = send_page_v3,
1265         .send_read_id = send_read_id_v3,
1266         .get_dev_status = get_dev_status_v3,
1267         .check_int = check_int_v3,
1268         .irq_control = irq_control_v3,
1269         .get_ecc_status = get_ecc_status_v3,
1270         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1271         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1272         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1273         .select_chip = mxc_nand_select_chip_v1_v3,
1274         .correct_data = mxc_nand_correct_data_v2_v3,
1275         .irqpending_quirk = 0,
1276         .needs_ip = 1,
1277         .regs_offset = 0,
1278         .spare0_offset = 0x1000,
1279         .axi_offset = 0x1e00,
1280         .spare_len = 64,
1281         .eccbytes = 0,
1282         .eccsize = 0,
1283         .ppb_shift = 8,
1284 };
1285
1286 #ifdef CONFIG_OF_MTD
1287 static const struct of_device_id mxcnd_dt_ids[] = {
1288         {
1289                 .compatible = "fsl,imx21-nand",
1290                 .data = &imx21_nand_devtype_data,
1291         }, {
1292                 .compatible = "fsl,imx27-nand",
1293                 .data = &imx27_nand_devtype_data,
1294         }, {
1295                 .compatible = "fsl,imx25-nand",
1296                 .data = &imx25_nand_devtype_data,
1297         }, {
1298                 .compatible = "fsl,imx51-nand",
1299                 .data = &imx51_nand_devtype_data,
1300         }, {
1301                 .compatible = "fsl,imx53-nand",
1302                 .data = &imx53_nand_devtype_data,
1303         },
1304         { /* sentinel */ }
1305 };
1306
1307 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1308 {
1309         struct device_node *np = host->dev->of_node;
1310         struct mxc_nand_platform_data *pdata = &host->pdata;
1311         const struct of_device_id *of_id =
1312                 of_match_device(mxcnd_dt_ids, host->dev);
1313         int buswidth;
1314
1315         if (!np)
1316                 return 1;
1317
1318         if (of_get_nand_ecc_mode(np) >= 0)
1319                 pdata->hw_ecc = 1;
1320
1321         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1322
1323         buswidth = of_get_nand_bus_width(np);
1324         if (buswidth < 0)
1325                 return buswidth;
1326
1327         pdata->width = buswidth / 8;
1328
1329         host->devtype_data = of_id->data;
1330
1331         return 0;
1332 }
1333 #else
1334 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1335 {
1336         return 1;
1337 }
1338 #endif
1339
1340 static int __init mxcnd_probe_pdata(struct mxc_nand_host *host)
1341 {
1342         struct mxc_nand_platform_data *pdata = host->dev->platform_data;
1343
1344         if (!pdata)
1345                 return -ENODEV;
1346
1347         host->pdata = *pdata;
1348
1349         if (nfc_is_v1()) {
1350                 if (cpu_is_mx21())
1351                         host->devtype_data = &imx21_nand_devtype_data;
1352                 else
1353                         host->devtype_data = &imx27_nand_devtype_data;
1354         } else if (nfc_is_v21()) {
1355                 host->devtype_data = &imx25_nand_devtype_data;
1356         } else if (nfc_is_v3_2a()) {
1357                 host->devtype_data = &imx51_nand_devtype_data;
1358         } else if (nfc_is_v3_2b()) {
1359                 host->devtype_data = &imx53_nand_devtype_data;
1360         } else
1361                 BUG();
1362
1363         return 0;
1364 }
1365
1366 static int __devinit mxcnd_probe(struct platform_device *pdev)
1367 {
1368         struct nand_chip *this;
1369         struct mtd_info *mtd;
1370         struct mxc_nand_host *host;
1371         struct resource *res;
1372         int err = 0;
1373
1374         /* Allocate memory for MTD device structure and private data */
1375         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host) +
1376                         NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL);
1377         if (!host)
1378                 return -ENOMEM;
1379
1380         host->data_buf = (uint8_t *)(host + 1);
1381
1382         host->dev = &pdev->dev;
1383         /* structures must be linked */
1384         this = &host->nand;
1385         mtd = &host->mtd;
1386         mtd->priv = this;
1387         mtd->owner = THIS_MODULE;
1388         mtd->dev.parent = &pdev->dev;
1389         mtd->name = DRIVER_NAME;
1390
1391         /* 50 us command delay time */
1392         this->chip_delay = 5;
1393
1394         this->priv = host;
1395         this->dev_ready = mxc_nand_dev_ready;
1396         this->cmdfunc = mxc_nand_command;
1397         this->read_byte = mxc_nand_read_byte;
1398         this->read_word = mxc_nand_read_word;
1399         this->write_buf = mxc_nand_write_buf;
1400         this->read_buf = mxc_nand_read_buf;
1401
1402         host->clk = devm_clk_get(&pdev->dev, "nfc");
1403         if (IS_ERR(host->clk))
1404                 return PTR_ERR(host->clk);
1405
1406         err = mxcnd_probe_dt(host);
1407         if (err > 0)
1408                 err = mxcnd_probe_pdata(host);
1409         if (err < 0)
1410                 return err;
1411
1412         if (host->devtype_data->needs_ip) {
1413                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1414                 if (!res)
1415                         return -ENODEV;
1416                 host->regs_ip = devm_request_and_ioremap(&pdev->dev, res);
1417                 if (!host->regs_ip)
1418                         return -ENOMEM;
1419
1420                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1421         } else {
1422                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1423         }
1424
1425         if (!res)
1426                 return -ENODEV;
1427
1428         host->base = devm_request_and_ioremap(&pdev->dev, res);
1429         if (!host->base)
1430                 return -ENOMEM;
1431
1432         host->main_area0 = host->base;
1433
1434         if (host->devtype_data->regs_offset)
1435                 host->regs = host->base + host->devtype_data->regs_offset;
1436         host->spare0 = host->base + host->devtype_data->spare0_offset;
1437         if (host->devtype_data->axi_offset)
1438                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1439
1440         this->ecc.bytes = host->devtype_data->eccbytes;
1441         host->eccsize = host->devtype_data->eccsize;
1442
1443         this->select_chip = host->devtype_data->select_chip;
1444         this->ecc.size = 512;
1445         this->ecc.layout = host->devtype_data->ecclayout_512;
1446
1447         if (host->pdata.hw_ecc) {
1448                 this->ecc.calculate = mxc_nand_calculate_ecc;
1449                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1450                 this->ecc.correct = host->devtype_data->correct_data;
1451                 this->ecc.mode = NAND_ECC_HW;
1452         } else {
1453                 this->ecc.mode = NAND_ECC_SOFT;
1454         }
1455
1456         /* NAND bus width determines access functions used by upper layer */
1457         if (host->pdata.width == 2)
1458                 this->options |= NAND_BUSWIDTH_16;
1459
1460         if (host->pdata.flash_bbt) {
1461                 this->bbt_td = &bbt_main_descr;
1462                 this->bbt_md = &bbt_mirror_descr;
1463                 /* update flash based bbt */
1464                 this->bbt_options |= NAND_BBT_USE_FLASH;
1465         }
1466
1467         init_completion(&host->op_completion);
1468
1469         host->irq = platform_get_irq(pdev, 0);
1470
1471         /*
1472          * Use host->devtype_data->irq_control() here instead of irq_control()
1473          * because we must not disable_irq_nosync without having requested the
1474          * irq.
1475          */
1476         host->devtype_data->irq_control(host, 0);
1477
1478         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1479                         IRQF_DISABLED, DRIVER_NAME, host);
1480         if (err)
1481                 return err;
1482
1483         clk_prepare_enable(host->clk);
1484         host->clk_act = 1;
1485
1486         /*
1487          * Now that we "own" the interrupt make sure the interrupt mask bit is
1488          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1489          * on this machine.
1490          */
1491         if (host->devtype_data->irqpending_quirk) {
1492                 disable_irq_nosync(host->irq);
1493                 host->devtype_data->irq_control(host, 1);
1494         }
1495
1496         /* first scan to find the device and get the page size */
1497         if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1498                 err = -ENXIO;
1499                 goto escan;
1500         }
1501
1502         /* Call preset again, with correct writesize this time */
1503         host->devtype_data->preset(mtd);
1504
1505         if (mtd->writesize == 2048)
1506                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1507         else if (mtd->writesize == 4096)
1508                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1509
1510         if (this->ecc.mode == NAND_ECC_HW) {
1511                 if (nfc_is_v1())
1512                         this->ecc.strength = 1;
1513                 else
1514                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1515         }
1516
1517         /* second phase scan */
1518         if (nand_scan_tail(mtd)) {
1519                 err = -ENXIO;
1520                 goto escan;
1521         }
1522
1523         /* Register the partitions */
1524         mtd_device_parse_register(mtd, part_probes,
1525                         &(struct mtd_part_parser_data){
1526                                 .of_node = pdev->dev.of_node,
1527                         },
1528                         host->pdata.parts,
1529                         host->pdata.nr_parts);
1530
1531         platform_set_drvdata(pdev, host);
1532
1533         return 0;
1534
1535 escan:
1536         clk_disable_unprepare(host->clk);
1537
1538         return err;
1539 }
1540
1541 static int __devexit mxcnd_remove(struct platform_device *pdev)
1542 {
1543         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1544
1545         platform_set_drvdata(pdev, NULL);
1546
1547         nand_release(&host->mtd);
1548
1549         return 0;
1550 }
1551
1552 static struct platform_driver mxcnd_driver = {
1553         .driver = {
1554                    .name = DRIVER_NAME,
1555                    .owner = THIS_MODULE,
1556                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1557         },
1558         .probe = mxcnd_probe,
1559         .remove = __devexit_p(mxcnd_remove),
1560 };
1561 module_platform_driver(mxcnd_driver);
1562
1563 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1564 MODULE_DESCRIPTION("MXC NAND MTD driver");
1565 MODULE_LICENSE("GPL");