Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  * This program is free software; you can redistribute it and/or modify
22  * it under the terms of the GNU General Public License version 2 as
23  * published by the Free Software Foundation.
24  *
25  */
26
27 #include <linux/dma-mapping.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/platform_device.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_mtd.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39
40 #include <linux/dmaengine.h>
41 #include <linux/gpio.h>
42 #include <linux/io.h>
43 #include <linux/platform_data/atmel.h>
44 #include <linux/pinctrl/consumer.h>
45
46 #include <mach/cpu.h>
47
48 static int use_dma = 1;
49 module_param(use_dma, int, 0);
50
51 static int on_flash_bbt = 0;
52 module_param(on_flash_bbt, int, 0);
53
54 /* Register access macros */
55 #define ecc_readl(add, reg)                             \
56         __raw_readl(add + ATMEL_ECC_##reg)
57 #define ecc_writel(add, reg, value)                     \
58         __raw_writel((value), add + ATMEL_ECC_##reg)
59
60 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
61
62 /* oob layout for large page size
63  * bad block info is on bytes 0 and 1
64  * the bytes have to be consecutives to avoid
65  * several NAND_CMD_RNDOUT during read
66  */
67 static struct nand_ecclayout atmel_oobinfo_large = {
68         .eccbytes = 4,
69         .eccpos = {60, 61, 62, 63},
70         .oobfree = {
71                 {2, 58}
72         },
73 };
74
75 /* oob layout for small page size
76  * bad block info is on bytes 4 and 5
77  * the bytes have to be consecutives to avoid
78  * several NAND_CMD_RNDOUT during read
79  */
80 static struct nand_ecclayout atmel_oobinfo_small = {
81         .eccbytes = 4,
82         .eccpos = {0, 1, 2, 3},
83         .oobfree = {
84                 {6, 10}
85         },
86 };
87
88 struct atmel_nand_host {
89         struct nand_chip        nand_chip;
90         struct mtd_info         mtd;
91         void __iomem            *io_base;
92         dma_addr_t              io_phys;
93         struct atmel_nand_data  board;
94         struct device           *dev;
95         void __iomem            *ecc;
96
97         struct completion       comp;
98         struct dma_chan         *dma_chan;
99
100         bool                    has_pmecc;
101         u8                      pmecc_corr_cap;
102         u16                     pmecc_sector_size;
103         u32                     pmecc_lookup_table_offset;
104
105         int                     pmecc_bytes_per_sector;
106         int                     pmecc_sector_number;
107         int                     pmecc_degree;   /* Degree of remainders */
108         int                     pmecc_cw_len;   /* Length of codeword */
109
110         void __iomem            *pmerrloc_base;
111         void __iomem            *pmecc_rom_base;
112
113         /* lookup table for alpha_to and index_of */
114         void __iomem            *pmecc_alpha_to;
115         void __iomem            *pmecc_index_of;
116
117         /* data for pmecc computation */
118         int16_t                 *pmecc_partial_syn;
119         int16_t                 *pmecc_si;
120         int16_t                 *pmecc_smu;     /* Sigma table */
121         int16_t                 *pmecc_lmu;     /* polynomal order */
122         int                     *pmecc_mu;
123         int                     *pmecc_dmu;
124         int                     *pmecc_delta;
125 };
126
127 static struct nand_ecclayout atmel_pmecc_oobinfo;
128
129 static int cpu_has_dma(void)
130 {
131         return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
132 }
133
134 /*
135  * Enable NAND.
136  */
137 static void atmel_nand_enable(struct atmel_nand_host *host)
138 {
139         if (gpio_is_valid(host->board.enable_pin))
140                 gpio_set_value(host->board.enable_pin, 0);
141 }
142
143 /*
144  * Disable NAND.
145  */
146 static void atmel_nand_disable(struct atmel_nand_host *host)
147 {
148         if (gpio_is_valid(host->board.enable_pin))
149                 gpio_set_value(host->board.enable_pin, 1);
150 }
151
152 /*
153  * Hardware specific access to control-lines
154  */
155 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
156 {
157         struct nand_chip *nand_chip = mtd->priv;
158         struct atmel_nand_host *host = nand_chip->priv;
159
160         if (ctrl & NAND_CTRL_CHANGE) {
161                 if (ctrl & NAND_NCE)
162                         atmel_nand_enable(host);
163                 else
164                         atmel_nand_disable(host);
165         }
166         if (cmd == NAND_CMD_NONE)
167                 return;
168
169         if (ctrl & NAND_CLE)
170                 writeb(cmd, host->io_base + (1 << host->board.cle));
171         else
172                 writeb(cmd, host->io_base + (1 << host->board.ale));
173 }
174
175 /*
176  * Read the Device Ready pin.
177  */
178 static int atmel_nand_device_ready(struct mtd_info *mtd)
179 {
180         struct nand_chip *nand_chip = mtd->priv;
181         struct atmel_nand_host *host = nand_chip->priv;
182
183         return gpio_get_value(host->board.rdy_pin) ^
184                 !!host->board.rdy_pin_active_low;
185 }
186
187 /*
188  * Minimal-overhead PIO for data access.
189  */
190 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
191 {
192         struct nand_chip        *nand_chip = mtd->priv;
193
194         __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
195 }
196
197 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
198 {
199         struct nand_chip        *nand_chip = mtd->priv;
200
201         __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
202 }
203
204 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
205 {
206         struct nand_chip        *nand_chip = mtd->priv;
207
208         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
209 }
210
211 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
212 {
213         struct nand_chip        *nand_chip = mtd->priv;
214
215         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
216 }
217
218 static void dma_complete_func(void *completion)
219 {
220         complete(completion);
221 }
222
223 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
224                                int is_read)
225 {
226         struct dma_device *dma_dev;
227         enum dma_ctrl_flags flags;
228         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
229         struct dma_async_tx_descriptor *tx = NULL;
230         dma_cookie_t cookie;
231         struct nand_chip *chip = mtd->priv;
232         struct atmel_nand_host *host = chip->priv;
233         void *p = buf;
234         int err = -EIO;
235         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
236
237         if (buf >= high_memory)
238                 goto err_buf;
239
240         dma_dev = host->dma_chan->device;
241
242         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
243                 DMA_COMPL_SKIP_DEST_UNMAP;
244
245         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
246         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
247                 dev_err(host->dev, "Failed to dma_map_single\n");
248                 goto err_buf;
249         }
250
251         if (is_read) {
252                 dma_src_addr = host->io_phys;
253                 dma_dst_addr = phys_addr;
254         } else {
255                 dma_src_addr = phys_addr;
256                 dma_dst_addr = host->io_phys;
257         }
258
259         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
260                                              dma_src_addr, len, flags);
261         if (!tx) {
262                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
263                 goto err_dma;
264         }
265
266         init_completion(&host->comp);
267         tx->callback = dma_complete_func;
268         tx->callback_param = &host->comp;
269
270         cookie = tx->tx_submit(tx);
271         if (dma_submit_error(cookie)) {
272                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
273                 goto err_dma;
274         }
275
276         dma_async_issue_pending(host->dma_chan);
277         wait_for_completion(&host->comp);
278
279         err = 0;
280
281 err_dma:
282         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
283 err_buf:
284         if (err != 0)
285                 dev_warn(host->dev, "Fall back to CPU I/O\n");
286         return err;
287 }
288
289 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
290 {
291         struct nand_chip *chip = mtd->priv;
292         struct atmel_nand_host *host = chip->priv;
293
294         if (use_dma && len > mtd->oobsize)
295                 /* only use DMA for bigger than oob size: better performances */
296                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
297                         return;
298
299         if (host->board.bus_width_16)
300                 atmel_read_buf16(mtd, buf, len);
301         else
302                 atmel_read_buf8(mtd, buf, len);
303 }
304
305 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
306 {
307         struct nand_chip *chip = mtd->priv;
308         struct atmel_nand_host *host = chip->priv;
309
310         if (use_dma && len > mtd->oobsize)
311                 /* only use DMA for bigger than oob size: better performances */
312                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
313                         return;
314
315         if (host->board.bus_width_16)
316                 atmel_write_buf16(mtd, buf, len);
317         else
318                 atmel_write_buf8(mtd, buf, len);
319 }
320
321 /*
322  * Return number of ecc bytes per sector according to sector size and
323  * correction capability
324  *
325  * Following table shows what at91 PMECC supported:
326  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
327  * =====================        ================        =================
328  *                2-bits                 4-bytes                  4-bytes
329  *                4-bits                 7-bytes                  7-bytes
330  *                8-bits                13-bytes                 14-bytes
331  *               12-bits                20-bytes                 21-bytes
332  *               24-bits                39-bytes                 42-bytes
333  */
334 static int pmecc_get_ecc_bytes(int cap, int sector_size)
335 {
336         int m = 12 + sector_size / 512;
337         return (m * cap + 7) / 8;
338 }
339
340 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
341                                     int oobsize, int ecc_len)
342 {
343         int i;
344
345         layout->eccbytes = ecc_len;
346
347         /* ECC will occupy the last ecc_len bytes continuously */
348         for (i = 0; i < ecc_len; i++)
349                 layout->eccpos[i] = oobsize - ecc_len + i;
350
351         layout->oobfree[0].offset = 2;
352         layout->oobfree[0].length =
353                 oobsize - ecc_len - layout->oobfree[0].offset;
354 }
355
356 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
357 {
358         int table_size;
359
360         table_size = host->pmecc_sector_size == 512 ?
361                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
362
363         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
364                         table_size * sizeof(int16_t);
365 }
366
367 static void pmecc_data_free(struct atmel_nand_host *host)
368 {
369         kfree(host->pmecc_partial_syn);
370         kfree(host->pmecc_si);
371         kfree(host->pmecc_lmu);
372         kfree(host->pmecc_smu);
373         kfree(host->pmecc_mu);
374         kfree(host->pmecc_dmu);
375         kfree(host->pmecc_delta);
376 }
377
378 static int pmecc_data_alloc(struct atmel_nand_host *host)
379 {
380         const int cap = host->pmecc_corr_cap;
381
382         host->pmecc_partial_syn = kzalloc((2 * cap + 1) * sizeof(int16_t),
383                                         GFP_KERNEL);
384         host->pmecc_si = kzalloc((2 * cap + 1) * sizeof(int16_t), GFP_KERNEL);
385         host->pmecc_lmu = kzalloc((cap + 1) * sizeof(int16_t), GFP_KERNEL);
386         host->pmecc_smu = kzalloc((cap + 2) * (2 * cap + 1) * sizeof(int16_t),
387                                         GFP_KERNEL);
388         host->pmecc_mu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
389         host->pmecc_dmu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
390         host->pmecc_delta = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
391
392         if (host->pmecc_partial_syn &&
393                         host->pmecc_si &&
394                         host->pmecc_lmu &&
395                         host->pmecc_smu &&
396                         host->pmecc_mu &&
397                         host->pmecc_dmu &&
398                         host->pmecc_delta)
399                 return 0;
400
401         /* error happened */
402         pmecc_data_free(host);
403         return -ENOMEM;
404 }
405
406 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
407 {
408         struct nand_chip *nand_chip = mtd->priv;
409         struct atmel_nand_host *host = nand_chip->priv;
410         int i;
411         uint32_t value;
412
413         /* Fill odd syndromes */
414         for (i = 0; i < host->pmecc_corr_cap; i++) {
415                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
416                 if (i & 1)
417                         value >>= 16;
418                 value &= 0xffff;
419                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
420         }
421 }
422
423 static void pmecc_substitute(struct mtd_info *mtd)
424 {
425         struct nand_chip *nand_chip = mtd->priv;
426         struct atmel_nand_host *host = nand_chip->priv;
427         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
428         int16_t __iomem *index_of = host->pmecc_index_of;
429         int16_t *partial_syn = host->pmecc_partial_syn;
430         const int cap = host->pmecc_corr_cap;
431         int16_t *si;
432         int i, j;
433
434         /* si[] is a table that holds the current syndrome value,
435          * an element of that table belongs to the field
436          */
437         si = host->pmecc_si;
438
439         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
440
441         /* Computation 2t syndromes based on S(x) */
442         /* Odd syndromes */
443         for (i = 1; i < 2 * cap; i += 2) {
444                 for (j = 0; j < host->pmecc_degree; j++) {
445                         if (partial_syn[i] & ((unsigned short)0x1 << j))
446                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
447                 }
448         }
449         /* Even syndrome = (Odd syndrome) ** 2 */
450         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
451                 if (si[j] == 0) {
452                         si[i] = 0;
453                 } else {
454                         int16_t tmp;
455
456                         tmp = readw_relaxed(index_of + si[j]);
457                         tmp = (tmp * 2) % host->pmecc_cw_len;
458                         si[i] = readw_relaxed(alpha_to + tmp);
459                 }
460         }
461
462         return;
463 }
464
465 static void pmecc_get_sigma(struct mtd_info *mtd)
466 {
467         struct nand_chip *nand_chip = mtd->priv;
468         struct atmel_nand_host *host = nand_chip->priv;
469
470         int16_t *lmu = host->pmecc_lmu;
471         int16_t *si = host->pmecc_si;
472         int *mu = host->pmecc_mu;
473         int *dmu = host->pmecc_dmu;     /* Discrepancy */
474         int *delta = host->pmecc_delta; /* Delta order */
475         int cw_len = host->pmecc_cw_len;
476         const int16_t cap = host->pmecc_corr_cap;
477         const int num = 2 * cap + 1;
478         int16_t __iomem *index_of = host->pmecc_index_of;
479         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
480         int i, j, k;
481         uint32_t dmu_0_count, tmp;
482         int16_t *smu = host->pmecc_smu;
483
484         /* index of largest delta */
485         int ro;
486         int largest;
487         int diff;
488
489         dmu_0_count = 0;
490
491         /* First Row */
492
493         /* Mu */
494         mu[0] = -1;
495
496         memset(smu, 0, sizeof(int16_t) * num);
497         smu[0] = 1;
498
499         /* discrepancy set to 1 */
500         dmu[0] = 1;
501         /* polynom order set to 0 */
502         lmu[0] = 0;
503         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
504
505         /* Second Row */
506
507         /* Mu */
508         mu[1] = 0;
509         /* Sigma(x) set to 1 */
510         memset(&smu[num], 0, sizeof(int16_t) * num);
511         smu[num] = 1;
512
513         /* discrepancy set to S1 */
514         dmu[1] = si[1];
515
516         /* polynom order set to 0 */
517         lmu[1] = 0;
518
519         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
520
521         /* Init the Sigma(x) last row */
522         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
523
524         for (i = 1; i <= cap; i++) {
525                 mu[i + 1] = i << 1;
526                 /* Begin Computing Sigma (Mu+1) and L(mu) */
527                 /* check if discrepancy is set to 0 */
528                 if (dmu[i] == 0) {
529                         dmu_0_count++;
530
531                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
532                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
533                                 tmp += 2;
534                         else
535                                 tmp += 1;
536
537                         if (dmu_0_count == tmp) {
538                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
539                                         smu[(cap + 1) * num + j] =
540                                                         smu[i * num + j];
541
542                                 lmu[cap + 1] = lmu[i];
543                                 return;
544                         }
545
546                         /* copy polynom */
547                         for (j = 0; j <= lmu[i] >> 1; j++)
548                                 smu[(i + 1) * num + j] = smu[i * num + j];
549
550                         /* copy previous polynom order to the next */
551                         lmu[i + 1] = lmu[i];
552                 } else {
553                         ro = 0;
554                         largest = -1;
555                         /* find largest delta with dmu != 0 */
556                         for (j = 0; j < i; j++) {
557                                 if ((dmu[j]) && (delta[j] > largest)) {
558                                         largest = delta[j];
559                                         ro = j;
560                                 }
561                         }
562
563                         /* compute difference */
564                         diff = (mu[i] - mu[ro]);
565
566                         /* Compute degree of the new smu polynomial */
567                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
568                                 lmu[i + 1] = lmu[i];
569                         else
570                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
571
572                         /* Init smu[i+1] with 0 */
573                         for (k = 0; k < num; k++)
574                                 smu[(i + 1) * num + k] = 0;
575
576                         /* Compute smu[i+1] */
577                         for (k = 0; k <= lmu[ro] >> 1; k++) {
578                                 int16_t a, b, c;
579
580                                 if (!(smu[ro * num + k] && dmu[i]))
581                                         continue;
582                                 a = readw_relaxed(index_of + dmu[i]);
583                                 b = readw_relaxed(index_of + dmu[ro]);
584                                 c = readw_relaxed(index_of + smu[ro * num + k]);
585                                 tmp = a + (cw_len - b) + c;
586                                 a = readw_relaxed(alpha_to + tmp % cw_len);
587                                 smu[(i + 1) * num + (k + diff)] = a;
588                         }
589
590                         for (k = 0; k <= lmu[i] >> 1; k++)
591                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
592                 }
593
594                 /* End Computing Sigma (Mu+1) and L(mu) */
595                 /* In either case compute delta */
596                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
597
598                 /* Do not compute discrepancy for the last iteration */
599                 if (i >= cap)
600                         continue;
601
602                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
603                         tmp = 2 * (i - 1);
604                         if (k == 0) {
605                                 dmu[i + 1] = si[tmp + 3];
606                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
607                                 int16_t a, b, c;
608                                 a = readw_relaxed(index_of +
609                                                 smu[(i + 1) * num + k]);
610                                 b = si[2 * (i - 1) + 3 - k];
611                                 c = readw_relaxed(index_of + b);
612                                 tmp = a + c;
613                                 tmp %= cw_len;
614                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
615                                         dmu[i + 1];
616                         }
617                 }
618         }
619
620         return;
621 }
622
623 static int pmecc_err_location(struct mtd_info *mtd)
624 {
625         struct nand_chip *nand_chip = mtd->priv;
626         struct atmel_nand_host *host = nand_chip->priv;
627         unsigned long end_time;
628         const int cap = host->pmecc_corr_cap;
629         const int num = 2 * cap + 1;
630         int sector_size = host->pmecc_sector_size;
631         int err_nbr = 0;        /* number of error */
632         int roots_nbr;          /* number of roots */
633         int i;
634         uint32_t val;
635         int16_t *smu = host->pmecc_smu;
636
637         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
638
639         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
640                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
641                                       smu[(cap + 1) * num + i]);
642                 err_nbr++;
643         }
644
645         val = (err_nbr - 1) << 16;
646         if (sector_size == 1024)
647                 val |= 1;
648
649         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
650         pmerrloc_writel(host->pmerrloc_base, ELEN,
651                         sector_size * 8 + host->pmecc_degree * cap);
652
653         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
654         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
655                  & PMERRLOC_CALC_DONE)) {
656                 if (unlikely(time_after(jiffies, end_time))) {
657                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
658                         return -1;
659                 }
660                 cpu_relax();
661         }
662
663         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
664                 & PMERRLOC_ERR_NUM_MASK) >> 8;
665         /* Number of roots == degree of smu hence <= cap */
666         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
667                 return err_nbr - 1;
668
669         /* Number of roots does not match the degree of smu
670          * unable to correct error */
671         return -1;
672 }
673
674 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
675                 int sector_num, int extra_bytes, int err_nbr)
676 {
677         struct nand_chip *nand_chip = mtd->priv;
678         struct atmel_nand_host *host = nand_chip->priv;
679         int i = 0;
680         int byte_pos, bit_pos, sector_size, pos;
681         uint32_t tmp;
682         uint8_t err_byte;
683
684         sector_size = host->pmecc_sector_size;
685
686         while (err_nbr) {
687                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
688                 byte_pos = tmp / 8;
689                 bit_pos  = tmp % 8;
690
691                 if (byte_pos >= (sector_size + extra_bytes))
692                         BUG();  /* should never happen */
693
694                 if (byte_pos < sector_size) {
695                         err_byte = *(buf + byte_pos);
696                         *(buf + byte_pos) ^= (1 << bit_pos);
697
698                         pos = sector_num * host->pmecc_sector_size + byte_pos;
699                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
700                                 pos, bit_pos, err_byte, *(buf + byte_pos));
701                 } else {
702                         /* Bit flip in OOB area */
703                         tmp = sector_num * host->pmecc_bytes_per_sector
704                                         + (byte_pos - sector_size);
705                         err_byte = ecc[tmp];
706                         ecc[tmp] ^= (1 << bit_pos);
707
708                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
709                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
710                                 pos, bit_pos, err_byte, ecc[tmp]);
711                 }
712
713                 i++;
714                 err_nbr--;
715         }
716
717         return;
718 }
719
720 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
721         u8 *ecc)
722 {
723         struct nand_chip *nand_chip = mtd->priv;
724         struct atmel_nand_host *host = nand_chip->priv;
725         int i, err_nbr, eccbytes;
726         uint8_t *buf_pos;
727         int total_err = 0;
728
729         eccbytes = nand_chip->ecc.bytes;
730         for (i = 0; i < eccbytes; i++)
731                 if (ecc[i] != 0xff)
732                         goto normal_check;
733         /* Erased page, return OK */
734         return 0;
735
736 normal_check:
737         for (i = 0; i < host->pmecc_sector_number; i++) {
738                 err_nbr = 0;
739                 if (pmecc_stat & 0x1) {
740                         buf_pos = buf + i * host->pmecc_sector_size;
741
742                         pmecc_gen_syndrome(mtd, i);
743                         pmecc_substitute(mtd);
744                         pmecc_get_sigma(mtd);
745
746                         err_nbr = pmecc_err_location(mtd);
747                         if (err_nbr == -1) {
748                                 dev_err(host->dev, "PMECC: Too many errors\n");
749                                 mtd->ecc_stats.failed++;
750                                 return -EIO;
751                         } else {
752                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
753                                         host->pmecc_bytes_per_sector, err_nbr);
754                                 mtd->ecc_stats.corrected += err_nbr;
755                                 total_err += err_nbr;
756                         }
757                 }
758                 pmecc_stat >>= 1;
759         }
760
761         return total_err;
762 }
763
764 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
765         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
766 {
767         struct atmel_nand_host *host = chip->priv;
768         int eccsize = chip->ecc.size;
769         uint8_t *oob = chip->oob_poi;
770         uint32_t *eccpos = chip->ecc.layout->eccpos;
771         uint32_t stat;
772         unsigned long end_time;
773         int bitflips = 0;
774
775         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
776         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
777         pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG)
778                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
779
780         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
781         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
782
783         chip->read_buf(mtd, buf, eccsize);
784         chip->read_buf(mtd, oob, mtd->oobsize);
785
786         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
787         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
788                 if (unlikely(time_after(jiffies, end_time))) {
789                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
790                         return -EIO;
791                 }
792                 cpu_relax();
793         }
794
795         stat = pmecc_readl_relaxed(host->ecc, ISR);
796         if (stat != 0) {
797                 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
798                 if (bitflips < 0)
799                         /* uncorrectable errors */
800                         return 0;
801         }
802
803         return bitflips;
804 }
805
806 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
807                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
808 {
809         struct atmel_nand_host *host = chip->priv;
810         uint32_t *eccpos = chip->ecc.layout->eccpos;
811         int i, j;
812         unsigned long end_time;
813
814         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
815         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
816
817         pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG) |
818                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
819
820         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
821         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
822
823         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
824
825         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
826         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
827                 if (unlikely(time_after(jiffies, end_time))) {
828                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
829                         return -EIO;
830                 }
831                 cpu_relax();
832         }
833
834         for (i = 0; i < host->pmecc_sector_number; i++) {
835                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
836                         int pos;
837
838                         pos = i * host->pmecc_bytes_per_sector + j;
839                         chip->oob_poi[eccpos[pos]] =
840                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
841                 }
842         }
843         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
844
845         return 0;
846 }
847
848 static void atmel_pmecc_core_init(struct mtd_info *mtd)
849 {
850         struct nand_chip *nand_chip = mtd->priv;
851         struct atmel_nand_host *host = nand_chip->priv;
852         uint32_t val = 0;
853         struct nand_ecclayout *ecc_layout;
854
855         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
856         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
857
858         switch (host->pmecc_corr_cap) {
859         case 2:
860                 val = PMECC_CFG_BCH_ERR2;
861                 break;
862         case 4:
863                 val = PMECC_CFG_BCH_ERR4;
864                 break;
865         case 8:
866                 val = PMECC_CFG_BCH_ERR8;
867                 break;
868         case 12:
869                 val = PMECC_CFG_BCH_ERR12;
870                 break;
871         case 24:
872                 val = PMECC_CFG_BCH_ERR24;
873                 break;
874         }
875
876         if (host->pmecc_sector_size == 512)
877                 val |= PMECC_CFG_SECTOR512;
878         else if (host->pmecc_sector_size == 1024)
879                 val |= PMECC_CFG_SECTOR1024;
880
881         switch (host->pmecc_sector_number) {
882         case 1:
883                 val |= PMECC_CFG_PAGE_1SECTOR;
884                 break;
885         case 2:
886                 val |= PMECC_CFG_PAGE_2SECTORS;
887                 break;
888         case 4:
889                 val |= PMECC_CFG_PAGE_4SECTORS;
890                 break;
891         case 8:
892                 val |= PMECC_CFG_PAGE_8SECTORS;
893                 break;
894         }
895
896         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
897                 | PMECC_CFG_AUTO_DISABLE);
898         pmecc_writel(host->ecc, CFG, val);
899
900         ecc_layout = nand_chip->ecc.layout;
901         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
902         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
903         pmecc_writel(host->ecc, EADDR,
904                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
905         /* See datasheet about PMECC Clock Control Register */
906         pmecc_writel(host->ecc, CLK, 2);
907         pmecc_writel(host->ecc, IDR, 0xff);
908         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
909 }
910
911 static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
912                                          struct atmel_nand_host *host)
913 {
914         struct mtd_info *mtd = &host->mtd;
915         struct nand_chip *nand_chip = &host->nand_chip;
916         struct resource *regs, *regs_pmerr, *regs_rom;
917         int cap, sector_size, err_no;
918
919         cap = host->pmecc_corr_cap;
920         sector_size = host->pmecc_sector_size;
921         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
922                  cap, sector_size);
923
924         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
925         if (!regs) {
926                 dev_warn(host->dev,
927                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
928                 nand_chip->ecc.mode = NAND_ECC_SOFT;
929                 return 0;
930         }
931
932         host->ecc = ioremap(regs->start, resource_size(regs));
933         if (host->ecc == NULL) {
934                 dev_err(host->dev, "ioremap failed\n");
935                 err_no = -EIO;
936                 goto err_pmecc_ioremap;
937         }
938
939         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
940         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
941         if (regs_pmerr && regs_rom) {
942                 host->pmerrloc_base = ioremap(regs_pmerr->start,
943                         resource_size(regs_pmerr));
944                 host->pmecc_rom_base = ioremap(regs_rom->start,
945                         resource_size(regs_rom));
946         }
947
948         if (!host->pmerrloc_base || !host->pmecc_rom_base) {
949                 dev_err(host->dev,
950                         "Can not get I/O resource for PMECC ERRLOC controller or ROM!\n");
951                 err_no = -EIO;
952                 goto err_pmloc_ioremap;
953         }
954
955         /* ECC is calculated for the whole page (1 step) */
956         nand_chip->ecc.size = mtd->writesize;
957
958         /* set ECC page size and oob layout */
959         switch (mtd->writesize) {
960         case 2048:
961                 host->pmecc_degree = PMECC_GF_DIMENSION_13;
962                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
963                 host->pmecc_sector_number = mtd->writesize / sector_size;
964                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
965                         cap, sector_size);
966                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
967                 host->pmecc_index_of = host->pmecc_rom_base +
968                         host->pmecc_lookup_table_offset;
969
970                 nand_chip->ecc.steps = 1;
971                 nand_chip->ecc.strength = cap;
972                 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
973                                        host->pmecc_sector_number;
974                 if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
975                         dev_err(host->dev, "No room for ECC bytes\n");
976                         err_no = -EINVAL;
977                         goto err_no_ecc_room;
978                 }
979                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
980                                         mtd->oobsize,
981                                         nand_chip->ecc.bytes);
982                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
983                 break;
984         case 512:
985         case 1024:
986         case 4096:
987                 /* TODO */
988                 dev_warn(host->dev,
989                         "Unsupported page size for PMECC, use Software ECC\n");
990         default:
991                 /* page size not handled by HW ECC */
992                 /* switching back to soft ECC */
993                 nand_chip->ecc.mode = NAND_ECC_SOFT;
994                 return 0;
995         }
996
997         /* Allocate data for PMECC computation */
998         err_no = pmecc_data_alloc(host);
999         if (err_no) {
1000                 dev_err(host->dev,
1001                                 "Cannot allocate memory for PMECC computation!\n");
1002                 goto err_pmecc_data_alloc;
1003         }
1004
1005         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1006         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1007
1008         atmel_pmecc_core_init(mtd);
1009
1010         return 0;
1011
1012 err_pmecc_data_alloc:
1013 err_no_ecc_room:
1014 err_pmloc_ioremap:
1015         iounmap(host->ecc);
1016         if (host->pmerrloc_base)
1017                 iounmap(host->pmerrloc_base);
1018         if (host->pmecc_rom_base)
1019                 iounmap(host->pmecc_rom_base);
1020 err_pmecc_ioremap:
1021         return err_no;
1022 }
1023
1024 /*
1025  * Calculate HW ECC
1026  *
1027  * function called after a write
1028  *
1029  * mtd:        MTD block structure
1030  * dat:        raw data (unused)
1031  * ecc_code:   buffer for ECC
1032  */
1033 static int atmel_nand_calculate(struct mtd_info *mtd,
1034                 const u_char *dat, unsigned char *ecc_code)
1035 {
1036         struct nand_chip *nand_chip = mtd->priv;
1037         struct atmel_nand_host *host = nand_chip->priv;
1038         unsigned int ecc_value;
1039
1040         /* get the first 2 ECC bytes */
1041         ecc_value = ecc_readl(host->ecc, PR);
1042
1043         ecc_code[0] = ecc_value & 0xFF;
1044         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1045
1046         /* get the last 2 ECC bytes */
1047         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1048
1049         ecc_code[2] = ecc_value & 0xFF;
1050         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1051
1052         return 0;
1053 }
1054
1055 /*
1056  * HW ECC read page function
1057  *
1058  * mtd:        mtd info structure
1059  * chip:       nand chip info structure
1060  * buf:        buffer to store read data
1061  * oob_required:    caller expects OOB data read to chip->oob_poi
1062  */
1063 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1064                                 uint8_t *buf, int oob_required, int page)
1065 {
1066         int eccsize = chip->ecc.size;
1067         int eccbytes = chip->ecc.bytes;
1068         uint32_t *eccpos = chip->ecc.layout->eccpos;
1069         uint8_t *p = buf;
1070         uint8_t *oob = chip->oob_poi;
1071         uint8_t *ecc_pos;
1072         int stat;
1073         unsigned int max_bitflips = 0;
1074
1075         /*
1076          * Errata: ALE is incorrectly wired up to the ECC controller
1077          * on the AP7000, so it will include the address cycles in the
1078          * ECC calculation.
1079          *
1080          * Workaround: Reset the parity registers before reading the
1081          * actual data.
1082          */
1083         if (cpu_is_at32ap7000()) {
1084                 struct atmel_nand_host *host = chip->priv;
1085                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1086         }
1087
1088         /* read the page */
1089         chip->read_buf(mtd, p, eccsize);
1090
1091         /* move to ECC position if needed */
1092         if (eccpos[0] != 0) {
1093                 /* This only works on large pages
1094                  * because the ECC controller waits for
1095                  * NAND_CMD_RNDOUTSTART after the
1096                  * NAND_CMD_RNDOUT.
1097                  * anyway, for small pages, the eccpos[0] == 0
1098                  */
1099                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1100                                 mtd->writesize + eccpos[0], -1);
1101         }
1102
1103         /* the ECC controller needs to read the ECC just after the data */
1104         ecc_pos = oob + eccpos[0];
1105         chip->read_buf(mtd, ecc_pos, eccbytes);
1106
1107         /* check if there's an error */
1108         stat = chip->ecc.correct(mtd, p, oob, NULL);
1109
1110         if (stat < 0) {
1111                 mtd->ecc_stats.failed++;
1112         } else {
1113                 mtd->ecc_stats.corrected += stat;
1114                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1115         }
1116
1117         /* get back to oob start (end of page) */
1118         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1119
1120         /* read the oob */
1121         chip->read_buf(mtd, oob, mtd->oobsize);
1122
1123         return max_bitflips;
1124 }
1125
1126 /*
1127  * HW ECC Correction
1128  *
1129  * function called after a read
1130  *
1131  * mtd:        MTD block structure
1132  * dat:        raw data read from the chip
1133  * read_ecc:   ECC from the chip (unused)
1134  * isnull:     unused
1135  *
1136  * Detect and correct a 1 bit error for a page
1137  */
1138 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1139                 u_char *read_ecc, u_char *isnull)
1140 {
1141         struct nand_chip *nand_chip = mtd->priv;
1142         struct atmel_nand_host *host = nand_chip->priv;
1143         unsigned int ecc_status;
1144         unsigned int ecc_word, ecc_bit;
1145
1146         /* get the status from the Status Register */
1147         ecc_status = ecc_readl(host->ecc, SR);
1148
1149         /* if there's no error */
1150         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1151                 return 0;
1152
1153         /* get error bit offset (4 bits) */
1154         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1155         /* get word address (12 bits) */
1156         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1157         ecc_word >>= 4;
1158
1159         /* if there are multiple errors */
1160         if (ecc_status & ATMEL_ECC_MULERR) {
1161                 /* check if it is a freshly erased block
1162                  * (filled with 0xff) */
1163                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1164                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1165                         /* the block has just been erased, return OK */
1166                         return 0;
1167                 }
1168                 /* it doesn't seems to be a freshly
1169                  * erased block.
1170                  * We can't correct so many errors */
1171                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1172                                 " Unable to correct.\n");
1173                 return -EIO;
1174         }
1175
1176         /* if there's a single bit error : we can correct it */
1177         if (ecc_status & ATMEL_ECC_ECCERR) {
1178                 /* there's nothing much to do here.
1179                  * the bit error is on the ECC itself.
1180                  */
1181                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1182                                 " Nothing to correct\n");
1183                 return 0;
1184         }
1185
1186         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1187                         " (word offset in the page :"
1188                         " 0x%x bit offset : 0x%x)\n",
1189                         ecc_word, ecc_bit);
1190         /* correct the error */
1191         if (nand_chip->options & NAND_BUSWIDTH_16) {
1192                 /* 16 bits words */
1193                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1194         } else {
1195                 /* 8 bits words */
1196                 dat[ecc_word] ^= (1 << ecc_bit);
1197         }
1198         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1199         return 1;
1200 }
1201
1202 /*
1203  * Enable HW ECC : unused on most chips
1204  */
1205 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1206 {
1207         if (cpu_is_at32ap7000()) {
1208                 struct nand_chip *nand_chip = mtd->priv;
1209                 struct atmel_nand_host *host = nand_chip->priv;
1210                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1211         }
1212 }
1213
1214 #if defined(CONFIG_OF)
1215 static int atmel_of_init_port(struct atmel_nand_host *host,
1216                               struct device_node *np)
1217 {
1218         u32 val, table_offset;
1219         u32 offset[2];
1220         int ecc_mode;
1221         struct atmel_nand_data *board = &host->board;
1222         enum of_gpio_flags flags;
1223
1224         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1225                 if (val >= 32) {
1226                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1227                         return -EINVAL;
1228                 }
1229                 board->ale = val;
1230         }
1231
1232         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1233                 if (val >= 32) {
1234                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1235                         return -EINVAL;
1236                 }
1237                 board->cle = val;
1238         }
1239
1240         ecc_mode = of_get_nand_ecc_mode(np);
1241
1242         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1243
1244         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1245
1246         if (of_get_nand_bus_width(np) == 16)
1247                 board->bus_width_16 = 1;
1248
1249         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1250         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1251
1252         board->enable_pin = of_get_gpio(np, 1);
1253         board->det_pin = of_get_gpio(np, 2);
1254
1255         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1256
1257         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1258                 return 0;       /* Not using PMECC */
1259
1260         /* use PMECC, get correction capability, sector size and lookup
1261          * table offset.
1262          */
1263         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) != 0) {
1264                 dev_err(host->dev, "Cannot decide PMECC Capability\n");
1265                 return -EINVAL;
1266         } else if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1267             (val != 24)) {
1268                 dev_err(host->dev,
1269                         "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1270                         val);
1271                 return -EINVAL;
1272         }
1273         host->pmecc_corr_cap = (u8)val;
1274
1275         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) != 0) {
1276                 dev_err(host->dev, "Cannot decide PMECC Sector Size\n");
1277                 return -EINVAL;
1278         } else if ((val != 512) && (val != 1024)) {
1279                 dev_err(host->dev,
1280                         "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1281                         val);
1282                 return -EINVAL;
1283         }
1284         host->pmecc_sector_size = (u16)val;
1285
1286         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1287                         offset, 2) != 0) {
1288                 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1289                 return -EINVAL;
1290         }
1291         table_offset = host->pmecc_sector_size == 512 ? offset[0] : offset[1];
1292
1293         if (!table_offset) {
1294                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1295                 return -EINVAL;
1296         }
1297         host->pmecc_lookup_table_offset = table_offset;
1298
1299         return 0;
1300 }
1301 #else
1302 static int atmel_of_init_port(struct atmel_nand_host *host,
1303                               struct device_node *np)
1304 {
1305         return -EINVAL;
1306 }
1307 #endif
1308
1309 static int __init atmel_hw_nand_init_params(struct platform_device *pdev,
1310                                          struct atmel_nand_host *host)
1311 {
1312         struct mtd_info *mtd = &host->mtd;
1313         struct nand_chip *nand_chip = &host->nand_chip;
1314         struct resource         *regs;
1315
1316         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1317         if (!regs) {
1318                 dev_err(host->dev,
1319                         "Can't get I/O resource regs, use software ECC\n");
1320                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1321                 return 0;
1322         }
1323
1324         host->ecc = ioremap(regs->start, resource_size(regs));
1325         if (host->ecc == NULL) {
1326                 dev_err(host->dev, "ioremap failed\n");
1327                 return -EIO;
1328         }
1329
1330         /* ECC is calculated for the whole page (1 step) */
1331         nand_chip->ecc.size = mtd->writesize;
1332
1333         /* set ECC page size and oob layout */
1334         switch (mtd->writesize) {
1335         case 512:
1336                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1337                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1338                 break;
1339         case 1024:
1340                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1341                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1342                 break;
1343         case 2048:
1344                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1345                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1346                 break;
1347         case 4096:
1348                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1349                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1350                 break;
1351         default:
1352                 /* page size not handled by HW ECC */
1353                 /* switching back to soft ECC */
1354                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1355                 return 0;
1356         }
1357
1358         /* set up for HW ECC */
1359         nand_chip->ecc.calculate = atmel_nand_calculate;
1360         nand_chip->ecc.correct = atmel_nand_correct;
1361         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1362         nand_chip->ecc.read_page = atmel_nand_read_page;
1363         nand_chip->ecc.bytes = 4;
1364         nand_chip->ecc.strength = 1;
1365
1366         return 0;
1367 }
1368
1369 /*
1370  * Probe for the NAND device.
1371  */
1372 static int __init atmel_nand_probe(struct platform_device *pdev)
1373 {
1374         struct atmel_nand_host *host;
1375         struct mtd_info *mtd;
1376         struct nand_chip *nand_chip;
1377         struct resource *mem;
1378         struct mtd_part_parser_data ppdata = {};
1379         int res;
1380         struct pinctrl *pinctrl;
1381
1382         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1383         if (!mem) {
1384                 printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
1385                 return -ENXIO;
1386         }
1387
1388         /* Allocate memory for the device structure (and zero it) */
1389         host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
1390         if (!host) {
1391                 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
1392                 return -ENOMEM;
1393         }
1394
1395         host->io_phys = (dma_addr_t)mem->start;
1396
1397         host->io_base = ioremap(mem->start, resource_size(mem));
1398         if (host->io_base == NULL) {
1399                 printk(KERN_ERR "atmel_nand: ioremap failed\n");
1400                 res = -EIO;
1401                 goto err_nand_ioremap;
1402         }
1403
1404         mtd = &host->mtd;
1405         nand_chip = &host->nand_chip;
1406         host->dev = &pdev->dev;
1407         if (pdev->dev.of_node) {
1408                 res = atmel_of_init_port(host, pdev->dev.of_node);
1409                 if (res)
1410                         goto err_ecc_ioremap;
1411         } else {
1412                 memcpy(&host->board, pdev->dev.platform_data,
1413                        sizeof(struct atmel_nand_data));
1414         }
1415
1416         nand_chip->priv = host;         /* link the private data structures */
1417         mtd->priv = nand_chip;
1418         mtd->owner = THIS_MODULE;
1419
1420         /* Set address of NAND IO lines */
1421         nand_chip->IO_ADDR_R = host->io_base;
1422         nand_chip->IO_ADDR_W = host->io_base;
1423         nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1424
1425         pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1426         if (IS_ERR(pinctrl)) {
1427                 dev_err(host->dev, "Failed to request pinctrl\n");
1428                 res = PTR_ERR(pinctrl);
1429                 goto err_ecc_ioremap;
1430         }
1431
1432         if (gpio_is_valid(host->board.rdy_pin)) {
1433                 res = gpio_request(host->board.rdy_pin, "nand_rdy");
1434                 if (res < 0) {
1435                         dev_err(&pdev->dev,
1436                                 "can't request rdy gpio %d\n",
1437                                 host->board.rdy_pin);
1438                         goto err_ecc_ioremap;
1439                 }
1440
1441                 res = gpio_direction_input(host->board.rdy_pin);
1442                 if (res < 0) {
1443                         dev_err(&pdev->dev,
1444                                 "can't request input direction rdy gpio %d\n",
1445                                 host->board.rdy_pin);
1446                         goto err_ecc_ioremap;
1447                 }
1448
1449                 nand_chip->dev_ready = atmel_nand_device_ready;
1450         }
1451
1452         if (gpio_is_valid(host->board.enable_pin)) {
1453                 res = gpio_request(host->board.enable_pin, "nand_enable");
1454                 if (res < 0) {
1455                         dev_err(&pdev->dev,
1456                                 "can't request enable gpio %d\n",
1457                                 host->board.enable_pin);
1458                         goto err_ecc_ioremap;
1459                 }
1460
1461                 res = gpio_direction_output(host->board.enable_pin, 1);
1462                 if (res < 0) {
1463                         dev_err(&pdev->dev,
1464                                 "can't request output direction enable gpio %d\n",
1465                                 host->board.enable_pin);
1466                         goto err_ecc_ioremap;
1467                 }
1468         }
1469
1470         nand_chip->ecc.mode = host->board.ecc_mode;
1471         nand_chip->chip_delay = 20;             /* 20us command delay time */
1472
1473         if (host->board.bus_width_16)   /* 16-bit bus width */
1474                 nand_chip->options |= NAND_BUSWIDTH_16;
1475
1476         nand_chip->read_buf = atmel_read_buf;
1477         nand_chip->write_buf = atmel_write_buf;
1478
1479         platform_set_drvdata(pdev, host);
1480         atmel_nand_enable(host);
1481
1482         if (gpio_is_valid(host->board.det_pin)) {
1483                 res = gpio_request(host->board.det_pin, "nand_det");
1484                 if (res < 0) {
1485                         dev_err(&pdev->dev,
1486                                 "can't request det gpio %d\n",
1487                                 host->board.det_pin);
1488                         goto err_no_card;
1489                 }
1490
1491                 res = gpio_direction_input(host->board.det_pin);
1492                 if (res < 0) {
1493                         dev_err(&pdev->dev,
1494                                 "can't request input direction det gpio %d\n",
1495                                 host->board.det_pin);
1496                         goto err_no_card;
1497                 }
1498
1499                 if (gpio_get_value(host->board.det_pin)) {
1500                         printk(KERN_INFO "No SmartMedia card inserted.\n");
1501                         res = -ENXIO;
1502                         goto err_no_card;
1503                 }
1504         }
1505
1506         if (host->board.on_flash_bbt || on_flash_bbt) {
1507                 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
1508                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1509         }
1510
1511         if (!cpu_has_dma())
1512                 use_dma = 0;
1513
1514         if (use_dma) {
1515                 dma_cap_mask_t mask;
1516
1517                 dma_cap_zero(mask);
1518                 dma_cap_set(DMA_MEMCPY, mask);
1519                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
1520                 if (!host->dma_chan) {
1521                         dev_err(host->dev, "Failed to request DMA channel\n");
1522                         use_dma = 0;
1523                 }
1524         }
1525         if (use_dma)
1526                 dev_info(host->dev, "Using %s for DMA transfers.\n",
1527                                         dma_chan_name(host->dma_chan));
1528         else
1529                 dev_info(host->dev, "No DMA support for NAND access.\n");
1530
1531         /* first scan to find the device and get the page size */
1532         if (nand_scan_ident(mtd, 1, NULL)) {
1533                 res = -ENXIO;
1534                 goto err_scan_ident;
1535         }
1536
1537         if (nand_chip->ecc.mode == NAND_ECC_HW) {
1538                 if (host->has_pmecc)
1539                         res = atmel_pmecc_nand_init_params(pdev, host);
1540                 else
1541                         res = atmel_hw_nand_init_params(pdev, host);
1542
1543                 if (res != 0)
1544                         goto err_hw_ecc;
1545         }
1546
1547         /* second phase scan */
1548         if (nand_scan_tail(mtd)) {
1549                 res = -ENXIO;
1550                 goto err_scan_tail;
1551         }
1552
1553         mtd->name = "atmel_nand";
1554         ppdata.of_node = pdev->dev.of_node;
1555         res = mtd_device_parse_register(mtd, NULL, &ppdata,
1556                         host->board.parts, host->board.num_parts);
1557         if (!res)
1558                 return res;
1559
1560 err_scan_tail:
1561         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1562                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1563                 pmecc_data_free(host);
1564         }
1565         if (host->ecc)
1566                 iounmap(host->ecc);
1567         if (host->pmerrloc_base)
1568                 iounmap(host->pmerrloc_base);
1569         if (host->pmecc_rom_base)
1570                 iounmap(host->pmecc_rom_base);
1571 err_hw_ecc:
1572 err_scan_ident:
1573 err_no_card:
1574         atmel_nand_disable(host);
1575         platform_set_drvdata(pdev, NULL);
1576         if (host->dma_chan)
1577                 dma_release_channel(host->dma_chan);
1578 err_ecc_ioremap:
1579         iounmap(host->io_base);
1580 err_nand_ioremap:
1581         kfree(host);
1582         return res;
1583 }
1584
1585 /*
1586  * Remove a NAND device.
1587  */
1588 static int __exit atmel_nand_remove(struct platform_device *pdev)
1589 {
1590         struct atmel_nand_host *host = platform_get_drvdata(pdev);
1591         struct mtd_info *mtd = &host->mtd;
1592
1593         nand_release(mtd);
1594
1595         atmel_nand_disable(host);
1596
1597         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1598                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1599                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
1600                                 PMERRLOC_DISABLE);
1601                 pmecc_data_free(host);
1602         }
1603
1604         if (gpio_is_valid(host->board.det_pin))
1605                 gpio_free(host->board.det_pin);
1606
1607         if (gpio_is_valid(host->board.enable_pin))
1608                 gpio_free(host->board.enable_pin);
1609
1610         if (gpio_is_valid(host->board.rdy_pin))
1611                 gpio_free(host->board.rdy_pin);
1612
1613         if (host->ecc)
1614                 iounmap(host->ecc);
1615         if (host->pmecc_rom_base)
1616                 iounmap(host->pmecc_rom_base);
1617         if (host->pmerrloc_base)
1618                 iounmap(host->pmerrloc_base);
1619
1620         if (host->dma_chan)
1621                 dma_release_channel(host->dma_chan);
1622
1623         iounmap(host->io_base);
1624         kfree(host);
1625
1626         return 0;
1627 }
1628
1629 #if defined(CONFIG_OF)
1630 static const struct of_device_id atmel_nand_dt_ids[] = {
1631         { .compatible = "atmel,at91rm9200-nand" },
1632         { /* sentinel */ }
1633 };
1634
1635 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
1636 #endif
1637
1638 static struct platform_driver atmel_nand_driver = {
1639         .remove         = __exit_p(atmel_nand_remove),
1640         .driver         = {
1641                 .name   = "atmel_nand",
1642                 .owner  = THIS_MODULE,
1643                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
1644         },
1645 };
1646
1647 static int __init atmel_nand_init(void)
1648 {
1649         return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe);
1650 }
1651
1652
1653 static void __exit atmel_nand_exit(void)
1654 {
1655         platform_driver_unregister(&atmel_nand_driver);
1656 }
1657
1658
1659 module_init(atmel_nand_init);
1660 module_exit(atmel_nand_exit);
1661
1662 MODULE_LICENSE("GPL");
1663 MODULE_AUTHOR("Rick Bronson");
1664 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
1665 MODULE_ALIAS("platform:atmel_nand");