[MTD] Remove readv/readv_ecc
[pandora-kernel.git] / drivers / mtd / mtdpart.c
1 /*
2  * Simple MTD partitioning layer
3  *
4  * (C) 2000 Nicolas Pitre <nico@cam.org>
5  *
6  * This code is GPL
7  *
8  * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
9  *
10  *      02-21-2002      Thomas Gleixner <gleixner@autronix.de>
11  *                      added support for read_oob, write_oob
12  */
13
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/config.h>
20 #include <linux/kmod.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/compatmac.h>
24
25 /* Our partition linked list */
26 static LIST_HEAD(mtd_partitions);
27
28 /* Our partition node structure */
29 struct mtd_part {
30         struct mtd_info mtd;
31         struct mtd_info *master;
32         u_int32_t offset;
33         int index;
34         struct list_head list;
35         int registered;
36 };
37
38 /*
39  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
40  * the pointer to that structure with this macro.
41  */
42 #define PART(x)  ((struct mtd_part *)(x))
43
44
45 /*
46  * MTD methods which simply translate the effective address and pass through
47  * to the _real_ device.
48  */
49
50 static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
51                         size_t *retlen, u_char *buf)
52 {
53         struct mtd_part *part = PART(mtd);
54         if (from >= mtd->size)
55                 len = 0;
56         else if (from + len > mtd->size)
57                 len = mtd->size - from;
58         if (part->master->read_ecc == NULL)
59                 return part->master->read (part->master, from + part->offset,
60                                         len, retlen, buf);
61         else
62                 return part->master->read_ecc (part->master, from + part->offset,
63                                         len, retlen, buf, NULL, &mtd->oobinfo);
64 }
65
66 static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
67                         size_t *retlen, u_char **buf)
68 {
69         struct mtd_part *part = PART(mtd);
70         if (from >= mtd->size)
71                 len = 0;
72         else if (from + len > mtd->size)
73                 len = mtd->size - from;
74         return part->master->point (part->master, from + part->offset,
75                                     len, retlen, buf);
76 }
77 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
78 {
79         struct mtd_part *part = PART(mtd);
80
81         part->master->unpoint (part->master, addr, from + part->offset, len);
82 }
83
84
85 static int part_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
86                         size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel)
87 {
88         struct mtd_part *part = PART(mtd);
89         if (oobsel == NULL)
90                 oobsel = &mtd->oobinfo;
91         if (from >= mtd->size)
92                 len = 0;
93         else if (from + len > mtd->size)
94                 len = mtd->size - from;
95         return part->master->read_ecc (part->master, from + part->offset,
96                                         len, retlen, buf, eccbuf, oobsel);
97 }
98
99 static int part_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
100                         size_t *retlen, u_char *buf)
101 {
102         struct mtd_part *part = PART(mtd);
103         if (from >= mtd->size)
104                 len = 0;
105         else if (from + len > mtd->size)
106                 len = mtd->size - from;
107         return part->master->read_oob (part->master, from + part->offset,
108                                         len, retlen, buf);
109 }
110
111 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
112                         size_t *retlen, u_char *buf)
113 {
114         struct mtd_part *part = PART(mtd);
115         return part->master->read_user_prot_reg (part->master, from,
116                                         len, retlen, buf);
117 }
118
119 static int part_get_user_prot_info (struct mtd_info *mtd,
120                                     struct otp_info *buf, size_t len)
121 {
122         struct mtd_part *part = PART(mtd);
123         return part->master->get_user_prot_info (part->master, buf, len);
124 }
125
126 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
127                         size_t *retlen, u_char *buf)
128 {
129         struct mtd_part *part = PART(mtd);
130         return part->master->read_fact_prot_reg (part->master, from,
131                                         len, retlen, buf);
132 }
133
134 static int part_get_fact_prot_info (struct mtd_info *mtd,
135                                     struct otp_info *buf, size_t len)
136 {
137         struct mtd_part *part = PART(mtd);
138         return part->master->get_fact_prot_info (part->master, buf, len);
139 }
140
141 static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
142                         size_t *retlen, const u_char *buf)
143 {
144         struct mtd_part *part = PART(mtd);
145         if (!(mtd->flags & MTD_WRITEABLE))
146                 return -EROFS;
147         if (to >= mtd->size)
148                 len = 0;
149         else if (to + len > mtd->size)
150                 len = mtd->size - to;
151         if (part->master->write_ecc == NULL)
152                 return part->master->write (part->master, to + part->offset,
153                                         len, retlen, buf);
154         else
155                 return part->master->write_ecc (part->master, to + part->offset,
156                                         len, retlen, buf, NULL, &mtd->oobinfo);
157
158 }
159
160 static int part_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
161                         size_t *retlen, const u_char *buf,
162                          u_char *eccbuf, struct nand_oobinfo *oobsel)
163 {
164         struct mtd_part *part = PART(mtd);
165         if (!(mtd->flags & MTD_WRITEABLE))
166                 return -EROFS;
167         if (oobsel == NULL)
168                 oobsel = &mtd->oobinfo;
169         if (to >= mtd->size)
170                 len = 0;
171         else if (to + len > mtd->size)
172                 len = mtd->size - to;
173         return part->master->write_ecc (part->master, to + part->offset,
174                                         len, retlen, buf, eccbuf, oobsel);
175 }
176
177 static int part_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
178                         size_t *retlen, const u_char *buf)
179 {
180         struct mtd_part *part = PART(mtd);
181         if (!(mtd->flags & MTD_WRITEABLE))
182                 return -EROFS;
183         if (to >= mtd->size)
184                 len = 0;
185         else if (to + len > mtd->size)
186                 len = mtd->size - to;
187         return part->master->write_oob (part->master, to + part->offset,
188                                         len, retlen, buf);
189 }
190
191 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
192                         size_t *retlen, u_char *buf)
193 {
194         struct mtd_part *part = PART(mtd);
195         return part->master->write_user_prot_reg (part->master, from,
196                                         len, retlen, buf);
197 }
198
199 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
200 {
201         struct mtd_part *part = PART(mtd);
202         return part->master->lock_user_prot_reg (part->master, from, len);
203 }
204
205 static int part_writev (struct mtd_info *mtd,  const struct kvec *vecs,
206                          unsigned long count, loff_t to, size_t *retlen)
207 {
208         struct mtd_part *part = PART(mtd);
209         if (!(mtd->flags & MTD_WRITEABLE))
210                 return -EROFS;
211         return part->master->writev (part->master, vecs, count,
212                                         to + part->offset, retlen);
213 }
214
215 static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
216 {
217         struct mtd_part *part = PART(mtd);
218         int ret;
219         if (!(mtd->flags & MTD_WRITEABLE))
220                 return -EROFS;
221         if (instr->addr >= mtd->size)
222                 return -EINVAL;
223         instr->addr += part->offset;
224         ret = part->master->erase(part->master, instr);
225         return ret;
226 }
227
228 void mtd_erase_callback(struct erase_info *instr)
229 {
230         if (instr->mtd->erase == part_erase) {
231                 struct mtd_part *part = PART(instr->mtd);
232
233                 if (instr->fail_addr != 0xffffffff)
234                         instr->fail_addr -= part->offset;
235                 instr->addr -= part->offset;
236         }
237         if (instr->callback)
238                 instr->callback(instr);
239 }
240 EXPORT_SYMBOL_GPL(mtd_erase_callback);
241
242 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
243 {
244         struct mtd_part *part = PART(mtd);
245         if ((len + ofs) > mtd->size)
246                 return -EINVAL;
247         return part->master->lock(part->master, ofs + part->offset, len);
248 }
249
250 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
251 {
252         struct mtd_part *part = PART(mtd);
253         if ((len + ofs) > mtd->size)
254                 return -EINVAL;
255         return part->master->unlock(part->master, ofs + part->offset, len);
256 }
257
258 static void part_sync(struct mtd_info *mtd)
259 {
260         struct mtd_part *part = PART(mtd);
261         part->master->sync(part->master);
262 }
263
264 static int part_suspend(struct mtd_info *mtd)
265 {
266         struct mtd_part *part = PART(mtd);
267         return part->master->suspend(part->master);
268 }
269
270 static void part_resume(struct mtd_info *mtd)
271 {
272         struct mtd_part *part = PART(mtd);
273         part->master->resume(part->master);
274 }
275
276 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
277 {
278         struct mtd_part *part = PART(mtd);
279         if (ofs >= mtd->size)
280                 return -EINVAL;
281         ofs += part->offset;
282         return part->master->block_isbad(part->master, ofs);
283 }
284
285 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
286 {
287         struct mtd_part *part = PART(mtd);
288         if (!(mtd->flags & MTD_WRITEABLE))
289                 return -EROFS;
290         if (ofs >= mtd->size)
291                 return -EINVAL;
292         ofs += part->offset;
293         return part->master->block_markbad(part->master, ofs);
294 }
295
296 /*
297  * This function unregisters and destroy all slave MTD objects which are
298  * attached to the given master MTD object.
299  */
300
301 int del_mtd_partitions(struct mtd_info *master)
302 {
303         struct list_head *node;
304         struct mtd_part *slave;
305
306         for (node = mtd_partitions.next;
307              node != &mtd_partitions;
308              node = node->next) {
309                 slave = list_entry(node, struct mtd_part, list);
310                 if (slave->master == master) {
311                         struct list_head *prev = node->prev;
312                         __list_del(prev, node->next);
313                         if(slave->registered)
314                                 del_mtd_device(&slave->mtd);
315                         kfree(slave);
316                         node = prev;
317                 }
318         }
319
320         return 0;
321 }
322
323 /*
324  * This function, given a master MTD object and a partition table, creates
325  * and registers slave MTD objects which are bound to the master according to
326  * the partition definitions.
327  * (Q: should we register the master MTD object as well?)
328  */
329
330 int add_mtd_partitions(struct mtd_info *master,
331                        const struct mtd_partition *parts,
332                        int nbparts)
333 {
334         struct mtd_part *slave;
335         u_int32_t cur_offset = 0;
336         int i;
337
338         printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
339
340         for (i = 0; i < nbparts; i++) {
341
342                 /* allocate the partition structure */
343                 slave = kmalloc (sizeof(*slave), GFP_KERNEL);
344                 if (!slave) {
345                         printk ("memory allocation error while creating partitions for \"%s\"\n",
346                                 master->name);
347                         del_mtd_partitions(master);
348                         return -ENOMEM;
349                 }
350                 memset(slave, 0, sizeof(*slave));
351                 list_add(&slave->list, &mtd_partitions);
352
353                 /* set up the MTD object for this partition */
354                 slave->mtd.type = master->type;
355                 slave->mtd.flags = master->flags & ~parts[i].mask_flags;
356                 slave->mtd.size = parts[i].size;
357                 slave->mtd.writesize = master->writesize;
358                 slave->mtd.oobsize = master->oobsize;
359                 slave->mtd.oobavail = master->oobavail;
360                 slave->mtd.ecctype = master->ecctype;
361                 slave->mtd.eccsize = master->eccsize;
362
363                 slave->mtd.name = parts[i].name;
364                 slave->mtd.bank_size = master->bank_size;
365                 slave->mtd.owner = master->owner;
366
367                 slave->mtd.read = part_read;
368                 slave->mtd.write = part_write;
369
370                 if(master->point && master->unpoint){
371                         slave->mtd.point = part_point;
372                         slave->mtd.unpoint = part_unpoint;
373                 }
374
375                 if (master->read_ecc)
376                         slave->mtd.read_ecc = part_read_ecc;
377                 if (master->write_ecc)
378                         slave->mtd.write_ecc = part_write_ecc;
379                 if (master->read_oob)
380                         slave->mtd.read_oob = part_read_oob;
381                 if (master->write_oob)
382                         slave->mtd.write_oob = part_write_oob;
383                 if(master->read_user_prot_reg)
384                         slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
385                 if(master->read_fact_prot_reg)
386                         slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
387                 if(master->write_user_prot_reg)
388                         slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
389                 if(master->lock_user_prot_reg)
390                         slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
391                 if(master->get_user_prot_info)
392                         slave->mtd.get_user_prot_info = part_get_user_prot_info;
393                 if(master->get_fact_prot_info)
394                         slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
395                 if (master->sync)
396                         slave->mtd.sync = part_sync;
397                 if (!i && master->suspend && master->resume) {
398                                 slave->mtd.suspend = part_suspend;
399                                 slave->mtd.resume = part_resume;
400                 }
401                 if (master->writev)
402                         slave->mtd.writev = part_writev;
403                 if (master->lock)
404                         slave->mtd.lock = part_lock;
405                 if (master->unlock)
406                         slave->mtd.unlock = part_unlock;
407                 if (master->block_isbad)
408                         slave->mtd.block_isbad = part_block_isbad;
409                 if (master->block_markbad)
410                         slave->mtd.block_markbad = part_block_markbad;
411                 slave->mtd.erase = part_erase;
412                 slave->master = master;
413                 slave->offset = parts[i].offset;
414                 slave->index = i;
415
416                 if (slave->offset == MTDPART_OFS_APPEND)
417                         slave->offset = cur_offset;
418                 if (slave->offset == MTDPART_OFS_NXTBLK) {
419                         slave->offset = cur_offset;
420                         if ((cur_offset % master->erasesize) != 0) {
421                                 /* Round up to next erasesize */
422                                 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
423                                 printk(KERN_NOTICE "Moving partition %d: "
424                                        "0x%08x -> 0x%08x\n", i,
425                                        cur_offset, slave->offset);
426                         }
427                 }
428                 if (slave->mtd.size == MTDPART_SIZ_FULL)
429                         slave->mtd.size = master->size - slave->offset;
430                 cur_offset = slave->offset + slave->mtd.size;
431
432                 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
433                         slave->offset + slave->mtd.size, slave->mtd.name);
434
435                 /* let's do some sanity checks */
436                 if (slave->offset >= master->size) {
437                                 /* let's register it anyway to preserve ordering */
438                         slave->offset = 0;
439                         slave->mtd.size = 0;
440                         printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
441                                 parts[i].name);
442                 }
443                 if (slave->offset + slave->mtd.size > master->size) {
444                         slave->mtd.size = master->size - slave->offset;
445                         printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
446                                 parts[i].name, master->name, slave->mtd.size);
447                 }
448                 if (master->numeraseregions>1) {
449                         /* Deal with variable erase size stuff */
450                         int i;
451                         struct mtd_erase_region_info *regions = master->eraseregions;
452
453                         /* Find the first erase regions which is part of this partition. */
454                         for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
455                                 ;
456
457                         for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
458                                 if (slave->mtd.erasesize < regions[i].erasesize) {
459                                         slave->mtd.erasesize = regions[i].erasesize;
460                                 }
461                         }
462                 } else {
463                         /* Single erase size */
464                         slave->mtd.erasesize = master->erasesize;
465                 }
466
467                 if ((slave->mtd.flags & MTD_WRITEABLE) &&
468                     (slave->offset % slave->mtd.erasesize)) {
469                         /* Doesn't start on a boundary of major erase size */
470                         /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
471                         slave->mtd.flags &= ~MTD_WRITEABLE;
472                         printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
473                                 parts[i].name);
474                 }
475                 if ((slave->mtd.flags & MTD_WRITEABLE) &&
476                     (slave->mtd.size % slave->mtd.erasesize)) {
477                         slave->mtd.flags &= ~MTD_WRITEABLE;
478                         printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
479                                 parts[i].name);
480                 }
481
482                 /* copy oobinfo from master */
483                 memcpy(&slave->mtd.oobinfo, &master->oobinfo, sizeof(slave->mtd.oobinfo));
484
485                 if(parts[i].mtdp)
486                 {       /* store the object pointer (caller may or may not register it */
487                         *parts[i].mtdp = &slave->mtd;
488                         slave->registered = 0;
489                 }
490                 else
491                 {
492                         /* register our partition */
493                         add_mtd_device(&slave->mtd);
494                         slave->registered = 1;
495                 }
496         }
497
498         return 0;
499 }
500
501 EXPORT_SYMBOL(add_mtd_partitions);
502 EXPORT_SYMBOL(del_mtd_partitions);
503
504 static DEFINE_SPINLOCK(part_parser_lock);
505 static LIST_HEAD(part_parsers);
506
507 static struct mtd_part_parser *get_partition_parser(const char *name)
508 {
509         struct list_head *this;
510         void *ret = NULL;
511         spin_lock(&part_parser_lock);
512
513         list_for_each(this, &part_parsers) {
514                 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
515
516                 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
517                         ret = p;
518                         break;
519                 }
520         }
521         spin_unlock(&part_parser_lock);
522
523         return ret;
524 }
525
526 int register_mtd_parser(struct mtd_part_parser *p)
527 {
528         spin_lock(&part_parser_lock);
529         list_add(&p->list, &part_parsers);
530         spin_unlock(&part_parser_lock);
531
532         return 0;
533 }
534
535 int deregister_mtd_parser(struct mtd_part_parser *p)
536 {
537         spin_lock(&part_parser_lock);
538         list_del(&p->list);
539         spin_unlock(&part_parser_lock);
540         return 0;
541 }
542
543 int parse_mtd_partitions(struct mtd_info *master, const char **types,
544                          struct mtd_partition **pparts, unsigned long origin)
545 {
546         struct mtd_part_parser *parser;
547         int ret = 0;
548
549         for ( ; ret <= 0 && *types; types++) {
550                 parser = get_partition_parser(*types);
551 #ifdef CONFIG_KMOD
552                 if (!parser && !request_module("%s", *types))
553                                 parser = get_partition_parser(*types);
554 #endif
555                 if (!parser) {
556                         printk(KERN_NOTICE "%s partition parsing not available\n",
557                                *types);
558                         continue;
559                 }
560                 ret = (*parser->parse_fn)(master, pparts, origin);
561                 if (ret > 0) {
562                         printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
563                                ret, parser->name, master->name);
564                 }
565                 put_partition_parser(parser);
566         }
567         return ret;
568 }
569
570 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
571 EXPORT_SYMBOL_GPL(register_mtd_parser);
572 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
573
574 MODULE_LICENSE("GPL");
575 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
576 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");
577