mtd: remove retlen zeroing duplication
[pandora-kernel.git] / drivers / mtd / mtdconcat.c
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34
35 #include <asm/div64.h>
36
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44         struct mtd_info mtd;
45         int num_subdev;
46         struct mtd_info **subdev;
47 };
48
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)    \
54         ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69             size_t * retlen, u_char * buf)
70 {
71         struct mtd_concat *concat = CONCAT(mtd);
72         int ret = 0, err;
73         int i;
74
75         for (i = 0; i < concat->num_subdev; i++) {
76                 struct mtd_info *subdev = concat->subdev[i];
77                 size_t size, retsize;
78
79                 if (from >= subdev->size) {
80                         /* Not destined for this subdev */
81                         size = 0;
82                         from -= subdev->size;
83                         continue;
84                 }
85                 if (from + len > subdev->size)
86                         /* First part goes into this subdev */
87                         size = subdev->size - from;
88                 else
89                         /* Entire transaction goes into this subdev */
90                         size = len;
91
92                 err = mtd_read(subdev, from, size, &retsize, buf);
93
94                 /* Save information about bitflips! */
95                 if (unlikely(err)) {
96                         if (mtd_is_eccerr(err)) {
97                                 mtd->ecc_stats.failed++;
98                                 ret = err;
99                         } else if (mtd_is_bitflip(err)) {
100                                 mtd->ecc_stats.corrected++;
101                                 /* Do not overwrite -EBADMSG !! */
102                                 if (!ret)
103                                         ret = err;
104                         } else
105                                 return err;
106                 }
107
108                 *retlen += retsize;
109                 len -= size;
110                 if (len == 0)
111                         return ret;
112
113                 buf += size;
114                 from = 0;
115         }
116         return -EINVAL;
117 }
118
119 static int
120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121              size_t * retlen, const u_char * buf)
122 {
123         struct mtd_concat *concat = CONCAT(mtd);
124         int err = -EINVAL;
125         int i;
126
127         for (i = 0; i < concat->num_subdev; i++) {
128                 struct mtd_info *subdev = concat->subdev[i];
129                 size_t size, retsize;
130
131                 if (to >= subdev->size) {
132                         size = 0;
133                         to -= subdev->size;
134                         continue;
135                 }
136                 if (to + len > subdev->size)
137                         size = subdev->size - to;
138                 else
139                         size = len;
140
141                 err = mtd_write(subdev, to, size, &retsize, buf);
142                 if (err)
143                         break;
144
145                 *retlen += retsize;
146                 len -= size;
147                 if (len == 0)
148                         break;
149
150                 err = -EINVAL;
151                 buf += size;
152                 to = 0;
153         }
154         return err;
155 }
156
157 static int
158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159                 unsigned long count, loff_t to, size_t * retlen)
160 {
161         struct mtd_concat *concat = CONCAT(mtd);
162         struct kvec *vecs_copy;
163         unsigned long entry_low, entry_high;
164         size_t total_len = 0;
165         int i;
166         int err = -EINVAL;
167
168         /* Calculate total length of data */
169         for (i = 0; i < count; i++)
170                 total_len += vecs[i].iov_len;
171
172         /* Check alignment */
173         if (mtd->writesize > 1) {
174                 uint64_t __to = to;
175                 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176                         return -EINVAL;
177         }
178
179         /* make a copy of vecs */
180         vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181         if (!vecs_copy)
182                 return -ENOMEM;
183
184         entry_low = 0;
185         for (i = 0; i < concat->num_subdev; i++) {
186                 struct mtd_info *subdev = concat->subdev[i];
187                 size_t size, wsize, retsize, old_iov_len;
188
189                 if (to >= subdev->size) {
190                         to -= subdev->size;
191                         continue;
192                 }
193
194                 size = min_t(uint64_t, total_len, subdev->size - to);
195                 wsize = size; /* store for future use */
196
197                 entry_high = entry_low;
198                 while (entry_high < count) {
199                         if (size <= vecs_copy[entry_high].iov_len)
200                                 break;
201                         size -= vecs_copy[entry_high++].iov_len;
202                 }
203
204                 old_iov_len = vecs_copy[entry_high].iov_len;
205                 vecs_copy[entry_high].iov_len = size;
206
207                 err = mtd_writev(subdev, &vecs_copy[entry_low],
208                                  entry_high - entry_low + 1, to, &retsize);
209
210                 vecs_copy[entry_high].iov_len = old_iov_len - size;
211                 vecs_copy[entry_high].iov_base += size;
212
213                 entry_low = entry_high;
214
215                 if (err)
216                         break;
217
218                 *retlen += retsize;
219                 total_len -= wsize;
220
221                 if (total_len == 0)
222                         break;
223
224                 err = -EINVAL;
225                 to = 0;
226         }
227
228         kfree(vecs_copy);
229         return err;
230 }
231
232 static int
233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
234 {
235         struct mtd_concat *concat = CONCAT(mtd);
236         struct mtd_oob_ops devops = *ops;
237         int i, err, ret = 0;
238
239         ops->retlen = ops->oobretlen = 0;
240
241         for (i = 0; i < concat->num_subdev; i++) {
242                 struct mtd_info *subdev = concat->subdev[i];
243
244                 if (from >= subdev->size) {
245                         from -= subdev->size;
246                         continue;
247                 }
248
249                 /* partial read ? */
250                 if (from + devops.len > subdev->size)
251                         devops.len = subdev->size - from;
252
253                 err = mtd_read_oob(subdev, from, &devops);
254                 ops->retlen += devops.retlen;
255                 ops->oobretlen += devops.oobretlen;
256
257                 /* Save information about bitflips! */
258                 if (unlikely(err)) {
259                         if (mtd_is_eccerr(err)) {
260                                 mtd->ecc_stats.failed++;
261                                 ret = err;
262                         } else if (mtd_is_bitflip(err)) {
263                                 mtd->ecc_stats.corrected++;
264                                 /* Do not overwrite -EBADMSG !! */
265                                 if (!ret)
266                                         ret = err;
267                         } else
268                                 return err;
269                 }
270
271                 if (devops.datbuf) {
272                         devops.len = ops->len - ops->retlen;
273                         if (!devops.len)
274                                 return ret;
275                         devops.datbuf += devops.retlen;
276                 }
277                 if (devops.oobbuf) {
278                         devops.ooblen = ops->ooblen - ops->oobretlen;
279                         if (!devops.ooblen)
280                                 return ret;
281                         devops.oobbuf += ops->oobretlen;
282                 }
283
284                 from = 0;
285         }
286         return -EINVAL;
287 }
288
289 static int
290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
291 {
292         struct mtd_concat *concat = CONCAT(mtd);
293         struct mtd_oob_ops devops = *ops;
294         int i, err;
295
296         if (!(mtd->flags & MTD_WRITEABLE))
297                 return -EROFS;
298
299         ops->retlen = ops->oobretlen = 0;
300
301         for (i = 0; i < concat->num_subdev; i++) {
302                 struct mtd_info *subdev = concat->subdev[i];
303
304                 if (to >= subdev->size) {
305                         to -= subdev->size;
306                         continue;
307                 }
308
309                 /* partial write ? */
310                 if (to + devops.len > subdev->size)
311                         devops.len = subdev->size - to;
312
313                 err = mtd_write_oob(subdev, to, &devops);
314                 ops->retlen += devops.oobretlen;
315                 if (err)
316                         return err;
317
318                 if (devops.datbuf) {
319                         devops.len = ops->len - ops->retlen;
320                         if (!devops.len)
321                                 return 0;
322                         devops.datbuf += devops.retlen;
323                 }
324                 if (devops.oobbuf) {
325                         devops.ooblen = ops->ooblen - ops->oobretlen;
326                         if (!devops.ooblen)
327                                 return 0;
328                         devops.oobbuf += devops.oobretlen;
329                 }
330                 to = 0;
331         }
332         return -EINVAL;
333 }
334
335 static void concat_erase_callback(struct erase_info *instr)
336 {
337         wake_up((wait_queue_head_t *) instr->priv);
338 }
339
340 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
341 {
342         int err;
343         wait_queue_head_t waitq;
344         DECLARE_WAITQUEUE(wait, current);
345
346         /*
347          * This code was stol^H^H^H^Hinspired by mtdchar.c
348          */
349         init_waitqueue_head(&waitq);
350
351         erase->mtd = mtd;
352         erase->callback = concat_erase_callback;
353         erase->priv = (unsigned long) &waitq;
354
355         /*
356          * FIXME: Allow INTERRUPTIBLE. Which means
357          * not having the wait_queue head on the stack.
358          */
359         err = mtd_erase(mtd, erase);
360         if (!err) {
361                 set_current_state(TASK_UNINTERRUPTIBLE);
362                 add_wait_queue(&waitq, &wait);
363                 if (erase->state != MTD_ERASE_DONE
364                     && erase->state != MTD_ERASE_FAILED)
365                         schedule();
366                 remove_wait_queue(&waitq, &wait);
367                 set_current_state(TASK_RUNNING);
368
369                 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
370         }
371         return err;
372 }
373
374 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
375 {
376         struct mtd_concat *concat = CONCAT(mtd);
377         struct mtd_info *subdev;
378         int i, err;
379         uint64_t length, offset = 0;
380         struct erase_info *erase;
381
382         /*
383          * Check for proper erase block alignment of the to-be-erased area.
384          * It is easier to do this based on the super device's erase
385          * region info rather than looking at each particular sub-device
386          * in turn.
387          */
388         if (!concat->mtd.numeraseregions) {
389                 /* the easy case: device has uniform erase block size */
390                 if (instr->addr & (concat->mtd.erasesize - 1))
391                         return -EINVAL;
392                 if (instr->len & (concat->mtd.erasesize - 1))
393                         return -EINVAL;
394         } else {
395                 /* device has variable erase size */
396                 struct mtd_erase_region_info *erase_regions =
397                     concat->mtd.eraseregions;
398
399                 /*
400                  * Find the erase region where the to-be-erased area begins:
401                  */
402                 for (i = 0; i < concat->mtd.numeraseregions &&
403                      instr->addr >= erase_regions[i].offset; i++) ;
404                 --i;
405
406                 /*
407                  * Now erase_regions[i] is the region in which the
408                  * to-be-erased area begins. Verify that the starting
409                  * offset is aligned to this region's erase size:
410                  */
411                 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
412                         return -EINVAL;
413
414                 /*
415                  * now find the erase region where the to-be-erased area ends:
416                  */
417                 for (; i < concat->mtd.numeraseregions &&
418                      (instr->addr + instr->len) >= erase_regions[i].offset;
419                      ++i) ;
420                 --i;
421                 /*
422                  * check if the ending offset is aligned to this region's erase size
423                  */
424                 if (i < 0 || ((instr->addr + instr->len) &
425                                         (erase_regions[i].erasesize - 1)))
426                         return -EINVAL;
427         }
428
429         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
430
431         /* make a local copy of instr to avoid modifying the caller's struct */
432         erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
433
434         if (!erase)
435                 return -ENOMEM;
436
437         *erase = *instr;
438         length = instr->len;
439
440         /*
441          * find the subdevice where the to-be-erased area begins, adjust
442          * starting offset to be relative to the subdevice start
443          */
444         for (i = 0; i < concat->num_subdev; i++) {
445                 subdev = concat->subdev[i];
446                 if (subdev->size <= erase->addr) {
447                         erase->addr -= subdev->size;
448                         offset += subdev->size;
449                 } else {
450                         break;
451                 }
452         }
453
454         /* must never happen since size limit has been verified above */
455         BUG_ON(i >= concat->num_subdev);
456
457         /* now do the erase: */
458         err = 0;
459         for (; length > 0; i++) {
460                 /* loop for all subdevices affected by this request */
461                 subdev = concat->subdev[i];     /* get current subdevice */
462
463                 /* limit length to subdevice's size: */
464                 if (erase->addr + length > subdev->size)
465                         erase->len = subdev->size - erase->addr;
466                 else
467                         erase->len = length;
468
469                 length -= erase->len;
470                 if ((err = concat_dev_erase(subdev, erase))) {
471                         /* sanity check: should never happen since
472                          * block alignment has been checked above */
473                         BUG_ON(err == -EINVAL);
474                         if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
475                                 instr->fail_addr = erase->fail_addr + offset;
476                         break;
477                 }
478                 /*
479                  * erase->addr specifies the offset of the area to be
480                  * erased *within the current subdevice*. It can be
481                  * non-zero only the first time through this loop, i.e.
482                  * for the first subdevice where blocks need to be erased.
483                  * All the following erases must begin at the start of the
484                  * current subdevice, i.e. at offset zero.
485                  */
486                 erase->addr = 0;
487                 offset += subdev->size;
488         }
489         instr->state = erase->state;
490         kfree(erase);
491         if (err)
492                 return err;
493
494         if (instr->callback)
495                 instr->callback(instr);
496         return 0;
497 }
498
499 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
500 {
501         struct mtd_concat *concat = CONCAT(mtd);
502         int i, err = -EINVAL;
503
504         for (i = 0; i < concat->num_subdev; i++) {
505                 struct mtd_info *subdev = concat->subdev[i];
506                 uint64_t size;
507
508                 if (ofs >= subdev->size) {
509                         size = 0;
510                         ofs -= subdev->size;
511                         continue;
512                 }
513                 if (ofs + len > subdev->size)
514                         size = subdev->size - ofs;
515                 else
516                         size = len;
517
518                 err = mtd_lock(subdev, ofs, size);
519                 if (err)
520                         break;
521
522                 len -= size;
523                 if (len == 0)
524                         break;
525
526                 err = -EINVAL;
527                 ofs = 0;
528         }
529
530         return err;
531 }
532
533 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
534 {
535         struct mtd_concat *concat = CONCAT(mtd);
536         int i, err = 0;
537
538         for (i = 0; i < concat->num_subdev; i++) {
539                 struct mtd_info *subdev = concat->subdev[i];
540                 uint64_t size;
541
542                 if (ofs >= subdev->size) {
543                         size = 0;
544                         ofs -= subdev->size;
545                         continue;
546                 }
547                 if (ofs + len > subdev->size)
548                         size = subdev->size - ofs;
549                 else
550                         size = len;
551
552                 err = mtd_unlock(subdev, ofs, size);
553                 if (err)
554                         break;
555
556                 len -= size;
557                 if (len == 0)
558                         break;
559
560                 err = -EINVAL;
561                 ofs = 0;
562         }
563
564         return err;
565 }
566
567 static void concat_sync(struct mtd_info *mtd)
568 {
569         struct mtd_concat *concat = CONCAT(mtd);
570         int i;
571
572         for (i = 0; i < concat->num_subdev; i++) {
573                 struct mtd_info *subdev = concat->subdev[i];
574                 mtd_sync(subdev);
575         }
576 }
577
578 static int concat_suspend(struct mtd_info *mtd)
579 {
580         struct mtd_concat *concat = CONCAT(mtd);
581         int i, rc = 0;
582
583         for (i = 0; i < concat->num_subdev; i++) {
584                 struct mtd_info *subdev = concat->subdev[i];
585                 if ((rc = mtd_suspend(subdev)) < 0)
586                         return rc;
587         }
588         return rc;
589 }
590
591 static void concat_resume(struct mtd_info *mtd)
592 {
593         struct mtd_concat *concat = CONCAT(mtd);
594         int i;
595
596         for (i = 0; i < concat->num_subdev; i++) {
597                 struct mtd_info *subdev = concat->subdev[i];
598                 mtd_resume(subdev);
599         }
600 }
601
602 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
603 {
604         struct mtd_concat *concat = CONCAT(mtd);
605         int i, res = 0;
606
607         if (!mtd_can_have_bb(concat->subdev[0]))
608                 return res;
609
610         for (i = 0; i < concat->num_subdev; i++) {
611                 struct mtd_info *subdev = concat->subdev[i];
612
613                 if (ofs >= subdev->size) {
614                         ofs -= subdev->size;
615                         continue;
616                 }
617
618                 res = mtd_block_isbad(subdev, ofs);
619                 break;
620         }
621
622         return res;
623 }
624
625 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
626 {
627         struct mtd_concat *concat = CONCAT(mtd);
628         int i, err = -EINVAL;
629
630         for (i = 0; i < concat->num_subdev; i++) {
631                 struct mtd_info *subdev = concat->subdev[i];
632
633                 if (ofs >= subdev->size) {
634                         ofs -= subdev->size;
635                         continue;
636                 }
637
638                 err = mtd_block_markbad(subdev, ofs);
639                 if (!err)
640                         mtd->ecc_stats.badblocks++;
641                 break;
642         }
643
644         return err;
645 }
646
647 /*
648  * try to support NOMMU mmaps on concatenated devices
649  * - we don't support subdev spanning as we can't guarantee it'll work
650  */
651 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
652                                               unsigned long len,
653                                               unsigned long offset,
654                                               unsigned long flags)
655 {
656         struct mtd_concat *concat = CONCAT(mtd);
657         int i;
658
659         for (i = 0; i < concat->num_subdev; i++) {
660                 struct mtd_info *subdev = concat->subdev[i];
661
662                 if (offset >= subdev->size) {
663                         offset -= subdev->size;
664                         continue;
665                 }
666
667                 return mtd_get_unmapped_area(subdev, len, offset, flags);
668         }
669
670         return (unsigned long) -ENOSYS;
671 }
672
673 /*
674  * This function constructs a virtual MTD device by concatenating
675  * num_devs MTD devices. A pointer to the new device object is
676  * stored to *new_dev upon success. This function does _not_
677  * register any devices: this is the caller's responsibility.
678  */
679 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],   /* subdevices to concatenate */
680                                    int num_devs,        /* number of subdevices      */
681                                    const char *name)
682 {                               /* name for the new device   */
683         int i;
684         size_t size;
685         struct mtd_concat *concat;
686         uint32_t max_erasesize, curr_erasesize;
687         int num_erase_region;
688         int max_writebufsize = 0;
689
690         printk(KERN_NOTICE "Concatenating MTD devices:\n");
691         for (i = 0; i < num_devs; i++)
692                 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
693         printk(KERN_NOTICE "into device \"%s\"\n", name);
694
695         /* allocate the device structure */
696         size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
697         concat = kzalloc(size, GFP_KERNEL);
698         if (!concat) {
699                 printk
700                     ("memory allocation error while creating concatenated device \"%s\"\n",
701                      name);
702                 return NULL;
703         }
704         concat->subdev = (struct mtd_info **) (concat + 1);
705
706         /*
707          * Set up the new "super" device's MTD object structure, check for
708          * incompatibilities between the subdevices.
709          */
710         concat->mtd.type = subdev[0]->type;
711         concat->mtd.flags = subdev[0]->flags;
712         concat->mtd.size = subdev[0]->size;
713         concat->mtd.erasesize = subdev[0]->erasesize;
714         concat->mtd.writesize = subdev[0]->writesize;
715
716         for (i = 0; i < num_devs; i++)
717                 if (max_writebufsize < subdev[i]->writebufsize)
718                         max_writebufsize = subdev[i]->writebufsize;
719         concat->mtd.writebufsize = max_writebufsize;
720
721         concat->mtd.subpage_sft = subdev[0]->subpage_sft;
722         concat->mtd.oobsize = subdev[0]->oobsize;
723         concat->mtd.oobavail = subdev[0]->oobavail;
724         if (subdev[0]->_writev)
725                 concat->mtd._writev = concat_writev;
726         if (subdev[0]->_read_oob)
727                 concat->mtd._read_oob = concat_read_oob;
728         if (subdev[0]->_write_oob)
729                 concat->mtd._write_oob = concat_write_oob;
730         if (subdev[0]->_block_isbad)
731                 concat->mtd._block_isbad = concat_block_isbad;
732         if (subdev[0]->_block_markbad)
733                 concat->mtd._block_markbad = concat_block_markbad;
734
735         concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
736
737         concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
738
739         concat->subdev[0] = subdev[0];
740
741         for (i = 1; i < num_devs; i++) {
742                 if (concat->mtd.type != subdev[i]->type) {
743                         kfree(concat);
744                         printk("Incompatible device type on \"%s\"\n",
745                                subdev[i]->name);
746                         return NULL;
747                 }
748                 if (concat->mtd.flags != subdev[i]->flags) {
749                         /*
750                          * Expect all flags except MTD_WRITEABLE to be
751                          * equal on all subdevices.
752                          */
753                         if ((concat->mtd.flags ^ subdev[i]->
754                              flags) & ~MTD_WRITEABLE) {
755                                 kfree(concat);
756                                 printk("Incompatible device flags on \"%s\"\n",
757                                        subdev[i]->name);
758                                 return NULL;
759                         } else
760                                 /* if writeable attribute differs,
761                                    make super device writeable */
762                                 concat->mtd.flags |=
763                                     subdev[i]->flags & MTD_WRITEABLE;
764                 }
765
766                 /* only permit direct mapping if the BDIs are all the same
767                  * - copy-mapping is still permitted
768                  */
769                 if (concat->mtd.backing_dev_info !=
770                     subdev[i]->backing_dev_info)
771                         concat->mtd.backing_dev_info =
772                                 &default_backing_dev_info;
773
774                 concat->mtd.size += subdev[i]->size;
775                 concat->mtd.ecc_stats.badblocks +=
776                         subdev[i]->ecc_stats.badblocks;
777                 if (concat->mtd.writesize   !=  subdev[i]->writesize ||
778                     concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
779                     concat->mtd.oobsize    !=  subdev[i]->oobsize ||
780                     !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
781                     !concat->mtd._write_oob != !subdev[i]->_write_oob) {
782                         kfree(concat);
783                         printk("Incompatible OOB or ECC data on \"%s\"\n",
784                                subdev[i]->name);
785                         return NULL;
786                 }
787                 concat->subdev[i] = subdev[i];
788
789         }
790
791         concat->mtd.ecclayout = subdev[0]->ecclayout;
792
793         concat->num_subdev = num_devs;
794         concat->mtd.name = name;
795
796         concat->mtd._erase = concat_erase;
797         concat->mtd._read = concat_read;
798         concat->mtd._write = concat_write;
799         concat->mtd._sync = concat_sync;
800         concat->mtd._lock = concat_lock;
801         concat->mtd._unlock = concat_unlock;
802         concat->mtd._suspend = concat_suspend;
803         concat->mtd._resume = concat_resume;
804         concat->mtd._get_unmapped_area = concat_get_unmapped_area;
805
806         /*
807          * Combine the erase block size info of the subdevices:
808          *
809          * first, walk the map of the new device and see how
810          * many changes in erase size we have
811          */
812         max_erasesize = curr_erasesize = subdev[0]->erasesize;
813         num_erase_region = 1;
814         for (i = 0; i < num_devs; i++) {
815                 if (subdev[i]->numeraseregions == 0) {
816                         /* current subdevice has uniform erase size */
817                         if (subdev[i]->erasesize != curr_erasesize) {
818                                 /* if it differs from the last subdevice's erase size, count it */
819                                 ++num_erase_region;
820                                 curr_erasesize = subdev[i]->erasesize;
821                                 if (curr_erasesize > max_erasesize)
822                                         max_erasesize = curr_erasesize;
823                         }
824                 } else {
825                         /* current subdevice has variable erase size */
826                         int j;
827                         for (j = 0; j < subdev[i]->numeraseregions; j++) {
828
829                                 /* walk the list of erase regions, count any changes */
830                                 if (subdev[i]->eraseregions[j].erasesize !=
831                                     curr_erasesize) {
832                                         ++num_erase_region;
833                                         curr_erasesize =
834                                             subdev[i]->eraseregions[j].
835                                             erasesize;
836                                         if (curr_erasesize > max_erasesize)
837                                                 max_erasesize = curr_erasesize;
838                                 }
839                         }
840                 }
841         }
842
843         if (num_erase_region == 1) {
844                 /*
845                  * All subdevices have the same uniform erase size.
846                  * This is easy:
847                  */
848                 concat->mtd.erasesize = curr_erasesize;
849                 concat->mtd.numeraseregions = 0;
850         } else {
851                 uint64_t tmp64;
852
853                 /*
854                  * erase block size varies across the subdevices: allocate
855                  * space to store the data describing the variable erase regions
856                  */
857                 struct mtd_erase_region_info *erase_region_p;
858                 uint64_t begin, position;
859
860                 concat->mtd.erasesize = max_erasesize;
861                 concat->mtd.numeraseregions = num_erase_region;
862                 concat->mtd.eraseregions = erase_region_p =
863                     kmalloc(num_erase_region *
864                             sizeof (struct mtd_erase_region_info), GFP_KERNEL);
865                 if (!erase_region_p) {
866                         kfree(concat);
867                         printk
868                             ("memory allocation error while creating erase region list"
869                              " for device \"%s\"\n", name);
870                         return NULL;
871                 }
872
873                 /*
874                  * walk the map of the new device once more and fill in
875                  * in erase region info:
876                  */
877                 curr_erasesize = subdev[0]->erasesize;
878                 begin = position = 0;
879                 for (i = 0; i < num_devs; i++) {
880                         if (subdev[i]->numeraseregions == 0) {
881                                 /* current subdevice has uniform erase size */
882                                 if (subdev[i]->erasesize != curr_erasesize) {
883                                         /*
884                                          *  fill in an mtd_erase_region_info structure for the area
885                                          *  we have walked so far:
886                                          */
887                                         erase_region_p->offset = begin;
888                                         erase_region_p->erasesize =
889                                             curr_erasesize;
890                                         tmp64 = position - begin;
891                                         do_div(tmp64, curr_erasesize);
892                                         erase_region_p->numblocks = tmp64;
893                                         begin = position;
894
895                                         curr_erasesize = subdev[i]->erasesize;
896                                         ++erase_region_p;
897                                 }
898                                 position += subdev[i]->size;
899                         } else {
900                                 /* current subdevice has variable erase size */
901                                 int j;
902                                 for (j = 0; j < subdev[i]->numeraseregions; j++) {
903                                         /* walk the list of erase regions, count any changes */
904                                         if (subdev[i]->eraseregions[j].
905                                             erasesize != curr_erasesize) {
906                                                 erase_region_p->offset = begin;
907                                                 erase_region_p->erasesize =
908                                                     curr_erasesize;
909                                                 tmp64 = position - begin;
910                                                 do_div(tmp64, curr_erasesize);
911                                                 erase_region_p->numblocks = tmp64;
912                                                 begin = position;
913
914                                                 curr_erasesize =
915                                                     subdev[i]->eraseregions[j].
916                                                     erasesize;
917                                                 ++erase_region_p;
918                                         }
919                                         position +=
920                                             subdev[i]->eraseregions[j].
921                                             numblocks * (uint64_t)curr_erasesize;
922                                 }
923                         }
924                 }
925                 /* Now write the final entry */
926                 erase_region_p->offset = begin;
927                 erase_region_p->erasesize = curr_erasesize;
928                 tmp64 = position - begin;
929                 do_div(tmp64, curr_erasesize);
930                 erase_region_p->numblocks = tmp64;
931         }
932
933         return &concat->mtd;
934 }
935
936 /*
937  * This function destroys an MTD object obtained from concat_mtd_devs()
938  */
939
940 void mtd_concat_destroy(struct mtd_info *mtd)
941 {
942         struct mtd_concat *concat = CONCAT(mtd);
943         if (concat->mtd.numeraseregions)
944                 kfree(concat->mtd.eraseregions);
945         kfree(concat);
946 }
947
948 EXPORT_SYMBOL(mtd_concat_create);
949 EXPORT_SYMBOL(mtd_concat_destroy);
950
951 MODULE_LICENSE("GPL");
952 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
953 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");