4 * Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr)
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
10 * Original copyright for the ov511 driver is:
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
19 * ov51x-jpeg original copyright is:
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 #define MODULE_NAME "ov519"
41 #include <linux/input.h>
44 /* The jpeg_hdr is used by w996Xcf only */
45 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
49 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
50 MODULE_DESCRIPTION("OV519 USB Camera Driver");
51 MODULE_LICENSE("GPL");
53 /* global parameters */
54 static int frame_rate;
56 /* Number of times to retry a failed I2C transaction. Increase this if you
57 * are getting "Failed to read sensor ID..." */
58 static int i2c_detect_tries = 10;
60 /* ov519 device descriptor */
62 struct gspca_dev gspca_dev; /* !! must be the first item */
67 #define BRIDGE_OV511 0
68 #define BRIDGE_OV511PLUS 1
69 #define BRIDGE_OV518 2
70 #define BRIDGE_OV518PLUS 3
71 #define BRIDGE_OV519 4
72 #define BRIDGE_OVFX2 5
73 #define BRIDGE_W9968CF 6
77 #define BRIDGE_INVERT_LED 8
79 char snapshot_pressed;
80 char snapshot_needs_reset;
82 /* Determined by sensor type */
93 #define QUALITY_MIN 50
94 #define QUALITY_MAX 70
95 #define QUALITY_DEF 50
97 __u8 stopped; /* Streaming is temporarily paused */
100 __u8 frame_rate; /* current Framerate */
101 __u8 clockdiv; /* clockdiv override */
103 char sensor; /* Type of image sensor chip (SEN_*) */
104 #define SEN_UNKNOWN 0
109 #define SEN_OV66308AF 5
112 #define SEN_OV7620AE 8
114 #define SEN_OV7648 10
115 #define SEN_OV7670 11
116 #define SEN_OV76BE 12
117 #define SEN_OV8610 13
122 int sensor_reg_cache[256];
124 u8 jpeg_hdr[JPEG_HDR_SZ];
127 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
128 the ov sensors which is already present here. When we have the time we
129 really should move the sensor drivers to v4l2 sub drivers. */
132 /* V4L2 controls supported by the driver */
133 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
134 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
135 static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val);
136 static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val);
137 static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val);
138 static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val);
139 static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val);
140 static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val);
141 static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val);
142 static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val);
143 static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val);
144 static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val);
145 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
146 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
147 static void setbrightness(struct gspca_dev *gspca_dev);
148 static void setcontrast(struct gspca_dev *gspca_dev);
149 static void setcolors(struct gspca_dev *gspca_dev);
150 static void setautobrightness(struct sd *sd);
151 static void setfreq(struct sd *sd);
153 static const struct ctrl sd_ctrls[] = {
154 #define BRIGHTNESS_IDX 0
157 .id = V4L2_CID_BRIGHTNESS,
158 .type = V4L2_CTRL_TYPE_INTEGER,
159 .name = "Brightness",
163 #define BRIGHTNESS_DEF 127
164 .default_value = BRIGHTNESS_DEF,
166 .set = sd_setbrightness,
167 .get = sd_getbrightness,
169 #define CONTRAST_IDX 1
172 .id = V4L2_CID_CONTRAST,
173 .type = V4L2_CTRL_TYPE_INTEGER,
178 #define CONTRAST_DEF 127
179 .default_value = CONTRAST_DEF,
181 .set = sd_setcontrast,
182 .get = sd_getcontrast,
187 .id = V4L2_CID_SATURATION,
188 .type = V4L2_CTRL_TYPE_INTEGER,
193 #define COLOR_DEF 127
194 .default_value = COLOR_DEF,
199 /* The flip controls work with ov7670 only */
203 .id = V4L2_CID_HFLIP,
204 .type = V4L2_CTRL_TYPE_BOOLEAN,
210 .default_value = HFLIP_DEF,
218 .id = V4L2_CID_VFLIP,
219 .type = V4L2_CTRL_TYPE_BOOLEAN,
225 .default_value = VFLIP_DEF,
230 #define AUTOBRIGHT_IDX 5
233 .id = V4L2_CID_AUTOBRIGHTNESS,
234 .type = V4L2_CTRL_TYPE_BOOLEAN,
235 .name = "Auto Brightness",
239 #define AUTOBRIGHT_DEF 1
240 .default_value = AUTOBRIGHT_DEF,
242 .set = sd_setautobrightness,
243 .get = sd_getautobrightness,
248 .id = V4L2_CID_POWER_LINE_FREQUENCY,
249 .type = V4L2_CTRL_TYPE_MENU,
250 .name = "Light frequency filter",
252 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
255 .default_value = FREQ_DEF,
260 #define OV7670_FREQ_IDX 7
263 .id = V4L2_CID_POWER_LINE_FREQUENCY,
264 .type = V4L2_CTRL_TYPE_MENU,
265 .name = "Light frequency filter",
267 .maximum = 3, /* 0: 0, 1: 50Hz, 2:60Hz 3: Auto Hz */
269 #define OV7670_FREQ_DEF 3
270 .default_value = OV7670_FREQ_DEF,
277 static const struct v4l2_pix_format ov519_vga_mode[] = {
278 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
280 .sizeimage = 320 * 240 * 3 / 8 + 590,
281 .colorspace = V4L2_COLORSPACE_JPEG,
283 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
285 .sizeimage = 640 * 480 * 3 / 8 + 590,
286 .colorspace = V4L2_COLORSPACE_JPEG,
289 static const struct v4l2_pix_format ov519_sif_mode[] = {
290 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
292 .sizeimage = 160 * 120 * 3 / 8 + 590,
293 .colorspace = V4L2_COLORSPACE_JPEG,
295 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
297 .sizeimage = 176 * 144 * 3 / 8 + 590,
298 .colorspace = V4L2_COLORSPACE_JPEG,
300 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
302 .sizeimage = 320 * 240 * 3 / 8 + 590,
303 .colorspace = V4L2_COLORSPACE_JPEG,
305 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
307 .sizeimage = 352 * 288 * 3 / 8 + 590,
308 .colorspace = V4L2_COLORSPACE_JPEG,
312 /* Note some of the sizeimage values for the ov511 / ov518 may seem
313 larger then necessary, however they need to be this big as the ov511 /
314 ov518 always fills the entire isoc frame, using 0 padding bytes when
315 it doesn't have any data. So with low framerates the amount of data
316 transfered can become quite large (libv4l will remove all the 0 padding
318 static const struct v4l2_pix_format ov518_vga_mode[] = {
319 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
321 .sizeimage = 320 * 240 * 3,
322 .colorspace = V4L2_COLORSPACE_JPEG,
324 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
326 .sizeimage = 640 * 480 * 2,
327 .colorspace = V4L2_COLORSPACE_JPEG,
330 static const struct v4l2_pix_format ov518_sif_mode[] = {
331 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
334 .colorspace = V4L2_COLORSPACE_JPEG,
336 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
339 .colorspace = V4L2_COLORSPACE_JPEG,
341 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
343 .sizeimage = 320 * 240 * 3,
344 .colorspace = V4L2_COLORSPACE_JPEG,
346 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
348 .sizeimage = 352 * 288 * 3,
349 .colorspace = V4L2_COLORSPACE_JPEG,
353 static const struct v4l2_pix_format ov511_vga_mode[] = {
354 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
356 .sizeimage = 320 * 240 * 3,
357 .colorspace = V4L2_COLORSPACE_JPEG,
359 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
361 .sizeimage = 640 * 480 * 2,
362 .colorspace = V4L2_COLORSPACE_JPEG,
365 static const struct v4l2_pix_format ov511_sif_mode[] = {
366 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
369 .colorspace = V4L2_COLORSPACE_JPEG,
371 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
374 .colorspace = V4L2_COLORSPACE_JPEG,
376 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
378 .sizeimage = 320 * 240 * 3,
379 .colorspace = V4L2_COLORSPACE_JPEG,
381 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
383 .sizeimage = 352 * 288 * 3,
384 .colorspace = V4L2_COLORSPACE_JPEG,
388 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
389 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
391 .sizeimage = 320 * 240,
392 .colorspace = V4L2_COLORSPACE_SRGB,
394 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
396 .sizeimage = 640 * 480,
397 .colorspace = V4L2_COLORSPACE_SRGB,
400 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
401 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
403 .sizeimage = 160 * 120,
404 .colorspace = V4L2_COLORSPACE_SRGB,
406 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
408 .sizeimage = 176 * 144,
409 .colorspace = V4L2_COLORSPACE_SRGB,
411 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
413 .sizeimage = 320 * 240,
414 .colorspace = V4L2_COLORSPACE_SRGB,
416 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
418 .sizeimage = 352 * 288,
419 .colorspace = V4L2_COLORSPACE_SRGB,
422 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
423 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
424 .bytesperline = 1600,
425 .sizeimage = 1600 * 1200,
426 .colorspace = V4L2_COLORSPACE_SRGB},
428 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
429 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
431 .sizeimage = 640 * 480,
432 .colorspace = V4L2_COLORSPACE_SRGB,
434 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
436 .sizeimage = 800 * 600,
437 .colorspace = V4L2_COLORSPACE_SRGB,
439 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
440 .bytesperline = 1024,
441 .sizeimage = 1024 * 768,
442 .colorspace = V4L2_COLORSPACE_SRGB,
444 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
445 .bytesperline = 1600,
446 .sizeimage = 1600 * 1200,
447 .colorspace = V4L2_COLORSPACE_SRGB,
449 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
450 .bytesperline = 2048,
451 .sizeimage = 2048 * 1536,
452 .colorspace = V4L2_COLORSPACE_SRGB,
457 /* Registers common to OV511 / OV518 */
458 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
459 #define R51x_SYS_RESET 0x50
460 /* Reset type flags */
461 #define OV511_RESET_OMNICE 0x08
462 #define R51x_SYS_INIT 0x53
463 #define R51x_SYS_SNAP 0x52
464 #define R51x_SYS_CUST_ID 0x5F
465 #define R51x_COMP_LUT_BEGIN 0x80
467 /* OV511 Camera interface register numbers */
468 #define R511_CAM_DELAY 0x10
469 #define R511_CAM_EDGE 0x11
470 #define R511_CAM_PXCNT 0x12
471 #define R511_CAM_LNCNT 0x13
472 #define R511_CAM_PXDIV 0x14
473 #define R511_CAM_LNDIV 0x15
474 #define R511_CAM_UV_EN 0x16
475 #define R511_CAM_LINE_MODE 0x17
476 #define R511_CAM_OPTS 0x18
478 #define R511_SNAP_FRAME 0x19
479 #define R511_SNAP_PXCNT 0x1A
480 #define R511_SNAP_LNCNT 0x1B
481 #define R511_SNAP_PXDIV 0x1C
482 #define R511_SNAP_LNDIV 0x1D
483 #define R511_SNAP_UV_EN 0x1E
484 #define R511_SNAP_UV_EN 0x1E
485 #define R511_SNAP_OPTS 0x1F
487 #define R511_DRAM_FLOW_CTL 0x20
488 #define R511_FIFO_OPTS 0x31
489 #define R511_I2C_CTL 0x40
490 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
491 #define R511_COMP_EN 0x78
492 #define R511_COMP_LUT_EN 0x79
494 /* OV518 Camera interface register numbers */
495 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
496 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
498 /* OV519 Camera interface register numbers */
499 #define OV519_R10_H_SIZE 0x10
500 #define OV519_R11_V_SIZE 0x11
501 #define OV519_R12_X_OFFSETL 0x12
502 #define OV519_R13_X_OFFSETH 0x13
503 #define OV519_R14_Y_OFFSETL 0x14
504 #define OV519_R15_Y_OFFSETH 0x15
505 #define OV519_R16_DIVIDER 0x16
506 #define OV519_R20_DFR 0x20
507 #define OV519_R25_FORMAT 0x25
509 /* OV519 System Controller register numbers */
510 #define OV519_SYS_RESET1 0x51
511 #define OV519_SYS_EN_CLK1 0x54
513 #define OV519_GPIO_DATA_OUT0 0x71
514 #define OV519_GPIO_IO_CTRL0 0x72
516 #define OV511_ENDPOINT_ADDRESS 1 /* Isoc endpoint number */
519 * The FX2 chip does not give us a zero length read at end of frame.
520 * It does, however, give a short read at the end of a frame, if
521 * necessary, rather than run two frames together.
523 * By choosing the right bulk transfer size, we are guaranteed to always
524 * get a short read for the last read of each frame. Frame sizes are
525 * always a composite number (width * height, or a multiple) so if we
526 * choose a prime number, we are guaranteed that the last read of a
527 * frame will be short.
529 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
530 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
531 * to figure out why. [PMiller]
533 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
535 * It isn't enough to know the number of bytes per frame, in case we
536 * have data dropouts or buffer overruns (even though the FX2 double
537 * buffers, there are some pretty strict real time constraints for
538 * isochronous transfer for larger frame sizes).
540 #define OVFX2_BULK_SIZE (13 * 4096)
543 #define R51x_I2C_W_SID 0x41
544 #define R51x_I2C_SADDR_3 0x42
545 #define R51x_I2C_SADDR_2 0x43
546 #define R51x_I2C_R_SID 0x44
547 #define R51x_I2C_DATA 0x45
548 #define R518_I2C_CTL 0x47 /* OV518(+) only */
549 #define OVFX2_I2C_ADDR 0x00
552 #define OV7xx0_SID 0x42
553 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
554 #define OV8xx0_SID 0xa0
555 #define OV6xx0_SID 0xc0
557 /* OV7610 registers */
558 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
559 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
560 #define OV7610_REG_RED 0x02 /* red channel balance */
561 #define OV7610_REG_SAT 0x03 /* saturation */
562 #define OV8610_REG_HUE 0x04 /* 04 reserved */
563 #define OV7610_REG_CNT 0x05 /* Y contrast */
564 #define OV7610_REG_BRT 0x06 /* Y brightness */
565 #define OV7610_REG_COM_C 0x14 /* misc common regs */
566 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
567 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
568 #define OV7610_REG_COM_I 0x29 /* misc settings */
570 /* OV7670 registers */
571 #define OV7670_REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
572 #define OV7670_REG_BLUE 0x01 /* blue gain */
573 #define OV7670_REG_RED 0x02 /* red gain */
574 #define OV7670_REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
575 #define OV7670_REG_COM1 0x04 /* Control 1 */
576 #define OV7670_REG_AECHH 0x07 /* AEC MS 5 bits */
577 #define OV7670_REG_COM3 0x0c /* Control 3 */
578 #define OV7670_REG_COM4 0x0d /* Control 4 */
579 #define OV7670_REG_COM5 0x0e /* All "reserved" */
580 #define OV7670_REG_COM6 0x0f /* Control 6 */
581 #define OV7670_REG_AECH 0x10 /* More bits of AEC value */
582 #define OV7670_REG_CLKRC 0x11 /* Clock control */
583 #define OV7670_REG_COM7 0x12 /* Control 7 */
584 #define OV7670_COM7_FMT_VGA 0x00
585 #define OV7670_COM7_YUV 0x00 /* YUV */
586 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
587 #define OV7670_COM7_FMT_MASK 0x38
588 #define OV7670_COM7_RESET 0x80 /* Register reset */
589 #define OV7670_REG_COM8 0x13 /* Control 8 */
590 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
591 #define OV7670_COM8_AWB 0x02 /* White balance enable */
592 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
593 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
594 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
595 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
596 #define OV7670_REG_COM9 0x14 /* Control 9 - gain ceiling */
597 #define OV7670_REG_COM10 0x15 /* Control 10 */
598 #define OV7670_REG_HSTART 0x17 /* Horiz start high bits */
599 #define OV7670_REG_HSTOP 0x18 /* Horiz stop high bits */
600 #define OV7670_REG_VSTART 0x19 /* Vert start high bits */
601 #define OV7670_REG_VSTOP 0x1a /* Vert stop high bits */
602 #define OV7670_REG_MVFP 0x1e /* Mirror / vflip */
603 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
604 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
605 #define OV7670_REG_AEW 0x24 /* AGC upper limit */
606 #define OV7670_REG_AEB 0x25 /* AGC lower limit */
607 #define OV7670_REG_VPT 0x26 /* AGC/AEC fast mode op region */
608 #define OV7670_REG_HREF 0x32 /* HREF pieces */
609 #define OV7670_REG_TSLB 0x3a /* lots of stuff */
610 #define OV7670_REG_COM11 0x3b /* Control 11 */
611 #define OV7670_COM11_EXP 0x02
612 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
613 #define OV7670_REG_COM12 0x3c /* Control 12 */
614 #define OV7670_REG_COM13 0x3d /* Control 13 */
615 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
616 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
617 #define OV7670_REG_COM14 0x3e /* Control 14 */
618 #define OV7670_REG_EDGE 0x3f /* Edge enhancement factor */
619 #define OV7670_REG_COM15 0x40 /* Control 15 */
620 #define OV7670_COM15_R00FF 0xc0 /* 00 to FF */
621 #define OV7670_REG_COM16 0x41 /* Control 16 */
622 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
623 #define OV7670_REG_BRIGHT 0x55 /* Brightness */
624 #define OV7670_REG_CONTRAS 0x56 /* Contrast control */
625 #define OV7670_REG_GFIX 0x69 /* Fix gain control */
626 #define OV7670_REG_RGB444 0x8c /* RGB 444 control */
627 #define OV7670_REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
628 #define OV7670_REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
629 #define OV7670_REG_BD50MAX 0xa5 /* 50hz banding step limit */
630 #define OV7670_REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
631 #define OV7670_REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
632 #define OV7670_REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
633 #define OV7670_REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
634 #define OV7670_REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
635 #define OV7670_REG_BD60MAX 0xab /* 60hz banding step limit */
641 struct ov_i2c_regvals {
646 /* Settings for OV2610 camera chip */
647 static const struct ov_i2c_regvals norm_2610[] =
649 { 0x12, 0x80 }, /* reset */
652 static const struct ov_i2c_regvals norm_3620b[] =
655 * From the datasheet: "Note that after writing to register COMH
656 * (0x12) to change the sensor mode, registers related to the
657 * sensor’s cropping window will be reset back to their default
660 * "wait 4096 external clock ... to make sure the sensor is
661 * stable and ready to access registers" i.e. 160us at 24MHz
664 { 0x12, 0x80 }, /* COMH reset */
665 { 0x12, 0x00 }, /* QXGA, master */
668 * 11 CLKRC "Clock Rate Control"
669 * [7] internal frequency doublers: on
670 * [6] video port mode: master
671 * [5:0] clock divider: 1
676 * 13 COMI "Common Control I"
677 * = 192 (0xC0) 11000000
678 * COMI[7] "AEC speed selection"
679 * = 1 (0x01) 1....... "Faster AEC correction"
680 * COMI[6] "AEC speed step selection"
681 * = 1 (0x01) .1...... "Big steps, fast"
682 * COMI[5] "Banding filter on off"
683 * = 0 (0x00) ..0..... "Off"
684 * COMI[4] "Banding filter option"
685 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
688 * = 0 (0x00) ....0...
689 * COMI[2] "AGC auto manual control selection"
690 * = 0 (0x00) .....0.. "Manual"
691 * COMI[1] "AWB auto manual control selection"
692 * = 0 (0x00) ......0. "Manual"
693 * COMI[0] "Exposure control"
694 * = 0 (0x00) .......0 "Manual"
699 * 09 COMC "Common Control C"
700 * = 8 (0x08) 00001000
701 * COMC[7:5] "Reserved"
702 * = 0 (0x00) 000.....
703 * COMC[4] "Sleep Mode Enable"
704 * = 0 (0x00) ...0.... "Normal mode"
705 * COMC[3:2] "Sensor sampling reset timing selection"
706 * = 2 (0x02) ....10.. "Longer reset time"
707 * COMC[1:0] "Output drive current select"
708 * = 0 (0x00) ......00 "Weakest"
713 * 0C COMD "Common Control D"
714 * = 8 (0x08) 00001000
716 * = 0 (0x00) 0.......
717 * COMD[6] "Swap MSB and LSB at the output port"
718 * = 0 (0x00) .0...... "False"
719 * COMD[5:3] "Reserved"
720 * = 1 (0x01) ..001...
721 * COMD[2] "Output Average On Off"
722 * = 0 (0x00) .....0.. "Output Normal"
723 * COMD[1] "Sensor precharge voltage selection"
724 * = 0 (0x00) ......0. "Selects internal
725 * reference precharge
727 * COMD[0] "Snapshot option"
728 * = 0 (0x00) .......0 "Enable live video output
729 * after snapshot sequence"
734 * 0D COME "Common Control E"
735 * = 161 (0xA1) 10100001
736 * COME[7] "Output average option"
737 * = 1 (0x01) 1....... "Output average of 4 pixels"
738 * COME[6] "Anti-blooming control"
739 * = 0 (0x00) .0...... "Off"
740 * COME[5:3] "Reserved"
741 * = 4 (0x04) ..100...
742 * COME[2] "Clock output power down pin status"
743 * = 0 (0x00) .....0.. "Tri-state data output pin
745 * COME[1] "Data output pin status selection at power down"
746 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
747 * HREF, and CHSYNC pins on
749 * COME[0] "Auto zero circuit select"
750 * = 1 (0x01) .......1 "On"
755 * 0E COMF "Common Control F"
756 * = 112 (0x70) 01110000
757 * COMF[7] "System clock selection"
758 * = 0 (0x00) 0....... "Use 24 MHz system clock"
759 * COMF[6:4] "Reserved"
760 * = 7 (0x07) .111....
761 * COMF[3] "Manual auto negative offset canceling selection"
762 * = 0 (0x00) ....0... "Auto detect negative
763 * offset and cancel it"
764 * COMF[2:0] "Reserved"
765 * = 0 (0x00) .....000
770 * 0F COMG "Common Control G"
771 * = 66 (0x42) 01000010
772 * COMG[7] "Optical black output selection"
773 * = 0 (0x00) 0....... "Disable"
774 * COMG[6] "Black level calibrate selection"
775 * = 1 (0x01) .1...... "Use optical black pixels
777 * COMG[5:4] "Reserved"
778 * = 0 (0x00) ..00....
779 * COMG[3] "Channel offset adjustment"
780 * = 0 (0x00) ....0... "Disable offset adjustment"
781 * COMG[2] "ADC black level calibration option"
782 * = 0 (0x00) .....0.. "Use B/G line and G/R
783 * line to calibrate each
784 * channel's black level"
786 * = 1 (0x01) ......1.
787 * COMG[0] "ADC black level calibration enable"
788 * = 0 (0x00) .......0 "Disable"
793 * 14 COMJ "Common Control J"
794 * = 198 (0xC6) 11000110
795 * COMJ[7:6] "AGC gain ceiling"
796 * = 3 (0x03) 11...... "8x"
797 * COMJ[5:4] "Reserved"
798 * = 0 (0x00) ..00....
799 * COMJ[3] "Auto banding filter"
800 * = 0 (0x00) ....0... "Banding filter is always
801 * on off depending on
803 * COMJ[2] "VSYNC drop option"
804 * = 1 (0x01) .....1.. "SYNC is dropped if frame
806 * COMJ[1] "Frame data drop"
807 * = 1 (0x01) ......1. "Drop frame data if
808 * exposure is not within
809 * tolerance. In AEC mode,
810 * data is normally dropped
811 * when data is out of
814 * = 0 (0x00) .......0
819 * 15 COMK "Common Control K"
820 * = 2 (0x02) 00000010
821 * COMK[7] "CHSYNC pin output swap"
822 * = 0 (0x00) 0....... "CHSYNC"
823 * COMK[6] "HREF pin output swap"
824 * = 0 (0x00) .0...... "HREF"
825 * COMK[5] "PCLK output selection"
826 * = 0 (0x00) ..0..... "PCLK always output"
827 * COMK[4] "PCLK edge selection"
828 * = 0 (0x00) ...0.... "Data valid on falling edge"
829 * COMK[3] "HREF output polarity"
830 * = 0 (0x00) ....0... "positive"
832 * = 0 (0x00) .....0..
833 * COMK[1] "VSYNC polarity"
834 * = 1 (0x01) ......1. "negative"
835 * COMK[0] "HSYNC polarity"
836 * = 0 (0x00) .......0 "positive"
841 * 33 CHLF "Current Control"
842 * = 9 (0x09) 00001001
843 * CHLF[7:6] "Sensor current control"
844 * = 0 (0x00) 00......
845 * CHLF[5] "Sensor current range control"
846 * = 0 (0x00) ..0..... "normal range"
847 * CHLF[4] "Sensor current"
848 * = 0 (0x00) ...0.... "normal current"
849 * CHLF[3] "Sensor buffer current control"
850 * = 1 (0x01) ....1... "half current"
851 * CHLF[2] "Column buffer current control"
852 * = 0 (0x00) .....0.. "normal current"
853 * CHLF[1] "Analog DSP current control"
854 * = 0 (0x00) ......0. "normal current"
855 * CHLF[1] "ADC current control"
856 * = 0 (0x00) ......0. "normal current"
861 * 34 VBLM "Blooming Control"
862 * = 80 (0x50) 01010000
863 * VBLM[7] "Hard soft reset switch"
864 * = 0 (0x00) 0....... "Hard reset"
865 * VBLM[6:4] "Blooming voltage selection"
866 * = 5 (0x05) .101....
867 * VBLM[3:0] "Sensor current control"
868 * = 0 (0x00) ....0000
873 * 36 VCHG "Sensor Precharge Voltage Control"
874 * = 0 (0x00) 00000000
876 * = 0 (0x00) 0.......
877 * VCHG[6:4] "Sensor precharge voltage control"
878 * = 0 (0x00) .000....
879 * VCHG[3:0] "Sensor array common reference"
880 * = 0 (0x00) ....0000
885 * 37 ADC "ADC Reference Control"
886 * = 4 (0x04) 00000100
887 * ADC[7:4] "Reserved"
888 * = 0 (0x00) 0000....
889 * ADC[3] "ADC input signal range"
890 * = 0 (0x00) ....0... "Input signal 1.0x"
891 * ADC[2:0] "ADC range control"
892 * = 4 (0x04) .....100
897 * 38 ACOM "Analog Common Ground"
898 * = 82 (0x52) 01010010
899 * ACOM[7] "Analog gain control"
900 * = 0 (0x00) 0....... "Gain 1x"
901 * ACOM[6] "Analog black level calibration"
902 * = 1 (0x01) .1...... "On"
903 * ACOM[5:0] "Reserved"
904 * = 18 (0x12) ..010010
909 * 3A FREFA "Internal Reference Adjustment"
910 * = 0 (0x00) 00000000
912 * = 0 (0x00) 00000000
917 * 3C FVOPT "Internal Reference Adjustment"
918 * = 31 (0x1F) 00011111
920 * = 31 (0x1F) 00011111
925 * 44 Undocumented = 0 (0x00) 00000000
926 * 44[7:0] "It's a secret"
927 * = 0 (0x00) 00000000
932 * 40 Undocumented = 0 (0x00) 00000000
933 * 40[7:0] "It's a secret"
934 * = 0 (0x00) 00000000
939 * 41 Undocumented = 0 (0x00) 00000000
940 * 41[7:0] "It's a secret"
941 * = 0 (0x00) 00000000
946 * 42 Undocumented = 0 (0x00) 00000000
947 * 42[7:0] "It's a secret"
948 * = 0 (0x00) 00000000
953 * 43 Undocumented = 0 (0x00) 00000000
954 * 43[7:0] "It's a secret"
955 * = 0 (0x00) 00000000
960 * 45 Undocumented = 128 (0x80) 10000000
961 * 45[7:0] "It's a secret"
962 * = 128 (0x80) 10000000
967 * 48 Undocumented = 192 (0xC0) 11000000
968 * 48[7:0] "It's a secret"
969 * = 192 (0xC0) 11000000
974 * 49 Undocumented = 25 (0x19) 00011001
975 * 49[7:0] "It's a secret"
976 * = 25 (0x19) 00011001
981 * 4B Undocumented = 128 (0x80) 10000000
982 * 4B[7:0] "It's a secret"
983 * = 128 (0x80) 10000000
988 * 4D Undocumented = 196 (0xC4) 11000100
989 * 4D[7:0] "It's a secret"
990 * = 196 (0xC4) 11000100
995 * 35 VREF "Reference Voltage Control"
996 * = 76 (0x4C) 01001100
997 * VREF[7:5] "Column high reference control"
998 * = 2 (0x02) 010..... "higher voltage"
999 * VREF[4:2] "Column low reference control"
1000 * = 3 (0x03) ...011.. "Highest voltage"
1001 * VREF[1:0] "Reserved"
1002 * = 0 (0x00) ......00
1007 * 3D Undocumented = 0 (0x00) 00000000
1008 * 3D[7:0] "It's a secret"
1009 * = 0 (0x00) 00000000
1014 * 3E Undocumented = 0 (0x00) 00000000
1015 * 3E[7:0] "It's a secret"
1016 * = 0 (0x00) 00000000
1021 * 3B FREFB "Internal Reference Adjustment"
1022 * = 24 (0x18) 00011000
1023 * FREFB[7:0] "Range"
1024 * = 24 (0x18) 00011000
1029 * 33 CHLF "Current Control"
1030 * = 25 (0x19) 00011001
1031 * CHLF[7:6] "Sensor current control"
1032 * = 0 (0x00) 00......
1033 * CHLF[5] "Sensor current range control"
1034 * = 0 (0x00) ..0..... "normal range"
1035 * CHLF[4] "Sensor current"
1036 * = 1 (0x01) ...1.... "double current"
1037 * CHLF[3] "Sensor buffer current control"
1038 * = 1 (0x01) ....1... "half current"
1039 * CHLF[2] "Column buffer current control"
1040 * = 0 (0x00) .....0.. "normal current"
1041 * CHLF[1] "Analog DSP current control"
1042 * = 0 (0x00) ......0. "normal current"
1043 * CHLF[1] "ADC current control"
1044 * = 0 (0x00) ......0. "normal current"
1049 * 34 VBLM "Blooming Control"
1050 * = 90 (0x5A) 01011010
1051 * VBLM[7] "Hard soft reset switch"
1052 * = 0 (0x00) 0....... "Hard reset"
1053 * VBLM[6:4] "Blooming voltage selection"
1054 * = 5 (0x05) .101....
1055 * VBLM[3:0] "Sensor current control"
1056 * = 10 (0x0A) ....1010
1061 * 3B FREFB "Internal Reference Adjustment"
1062 * = 0 (0x00) 00000000
1063 * FREFB[7:0] "Range"
1064 * = 0 (0x00) 00000000
1069 * 33 CHLF "Current Control"
1070 * = 9 (0x09) 00001001
1071 * CHLF[7:6] "Sensor current control"
1072 * = 0 (0x00) 00......
1073 * CHLF[5] "Sensor current range control"
1074 * = 0 (0x00) ..0..... "normal range"
1075 * CHLF[4] "Sensor current"
1076 * = 0 (0x00) ...0.... "normal current"
1077 * CHLF[3] "Sensor buffer current control"
1078 * = 1 (0x01) ....1... "half current"
1079 * CHLF[2] "Column buffer current control"
1080 * = 0 (0x00) .....0.. "normal current"
1081 * CHLF[1] "Analog DSP current control"
1082 * = 0 (0x00) ......0. "normal current"
1083 * CHLF[1] "ADC current control"
1084 * = 0 (0x00) ......0. "normal current"
1089 * 34 VBLM "Blooming Control"
1090 * = 80 (0x50) 01010000
1091 * VBLM[7] "Hard soft reset switch"
1092 * = 0 (0x00) 0....... "Hard reset"
1093 * VBLM[6:4] "Blooming voltage selection"
1094 * = 5 (0x05) .101....
1095 * VBLM[3:0] "Sensor current control"
1096 * = 0 (0x00) ....0000
1101 * 12 COMH "Common Control H"
1102 * = 64 (0x40) 01000000
1104 * = 0 (0x00) 0....... "No-op"
1105 * COMH[6:4] "Resolution selection"
1106 * = 4 (0x04) .100.... "XGA"
1107 * COMH[3] "Master slave selection"
1108 * = 0 (0x00) ....0... "Master mode"
1109 * COMH[2] "Internal B/R channel option"
1110 * = 0 (0x00) .....0.. "B/R use same channel"
1111 * COMH[1] "Color bar test pattern"
1112 * = 0 (0x00) ......0. "Off"
1113 * COMH[0] "Reserved"
1114 * = 0 (0x00) .......0
1119 * 17 HREFST "Horizontal window start"
1120 * = 31 (0x1F) 00011111
1121 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1122 * = 31 (0x1F) 00011111
1127 * 18 HREFEND "Horizontal window end"
1128 * = 95 (0x5F) 01011111
1129 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1130 * = 95 (0x5F) 01011111
1135 * 19 VSTRT "Vertical window start"
1136 * = 0 (0x00) 00000000
1137 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1138 * = 0 (0x00) 00000000
1143 * 1A VEND "Vertical window end"
1144 * = 96 (0x60) 01100000
1145 * VEND[7:0] "Vertical Window End, 8 MSBs"
1146 * = 96 (0x60) 01100000
1151 * 32 COMM "Common Control M"
1152 * = 18 (0x12) 00010010
1153 * COMM[7:6] "Pixel clock divide option"
1154 * = 0 (0x00) 00...... "/1"
1155 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1156 * = 2 (0x02) ..010...
1157 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1158 * = 2 (0x02) .....010
1163 * 03 COMA "Common Control A"
1164 * = 74 (0x4A) 01001010
1165 * COMA[7:4] "AWB Update Threshold"
1166 * = 4 (0x04) 0100....
1167 * COMA[3:2] "Vertical window end line control 2 LSBs"
1168 * = 2 (0x02) ....10..
1169 * COMA[1:0] "Vertical window start line control 2 LSBs"
1170 * = 2 (0x02) ......10
1175 * 11 CLKRC "Clock Rate Control"
1176 * = 128 (0x80) 10000000
1177 * CLKRC[7] "Internal frequency doublers on off seclection"
1178 * = 1 (0x01) 1....... "On"
1179 * CLKRC[6] "Digital video master slave selection"
1180 * = 0 (0x00) .0...... "Master mode, sensor
1182 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1183 * = 0 (0x00) ..000000
1188 * 12 COMH "Common Control H"
1189 * = 0 (0x00) 00000000
1191 * = 0 (0x00) 0....... "No-op"
1192 * COMH[6:4] "Resolution selection"
1193 * = 0 (0x00) .000.... "QXGA"
1194 * COMH[3] "Master slave selection"
1195 * = 0 (0x00) ....0... "Master mode"
1196 * COMH[2] "Internal B/R channel option"
1197 * = 0 (0x00) .....0.. "B/R use same channel"
1198 * COMH[1] "Color bar test pattern"
1199 * = 0 (0x00) ......0. "Off"
1200 * COMH[0] "Reserved"
1201 * = 0 (0x00) .......0
1206 * 12 COMH "Common Control H"
1207 * = 64 (0x40) 01000000
1209 * = 0 (0x00) 0....... "No-op"
1210 * COMH[6:4] "Resolution selection"
1211 * = 4 (0x04) .100.... "XGA"
1212 * COMH[3] "Master slave selection"
1213 * = 0 (0x00) ....0... "Master mode"
1214 * COMH[2] "Internal B/R channel option"
1215 * = 0 (0x00) .....0.. "B/R use same channel"
1216 * COMH[1] "Color bar test pattern"
1217 * = 0 (0x00) ......0. "Off"
1218 * COMH[0] "Reserved"
1219 * = 0 (0x00) .......0
1224 * 17 HREFST "Horizontal window start"
1225 * = 31 (0x1F) 00011111
1226 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1227 * = 31 (0x1F) 00011111
1232 * 18 HREFEND "Horizontal window end"
1233 * = 95 (0x5F) 01011111
1234 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1235 * = 95 (0x5F) 01011111
1240 * 19 VSTRT "Vertical window start"
1241 * = 0 (0x00) 00000000
1242 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1243 * = 0 (0x00) 00000000
1248 * 1A VEND "Vertical window end"
1249 * = 96 (0x60) 01100000
1250 * VEND[7:0] "Vertical Window End, 8 MSBs"
1251 * = 96 (0x60) 01100000
1256 * 32 COMM "Common Control M"
1257 * = 18 (0x12) 00010010
1258 * COMM[7:6] "Pixel clock divide option"
1259 * = 0 (0x00) 00...... "/1"
1260 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1261 * = 2 (0x02) ..010...
1262 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1263 * = 2 (0x02) .....010
1268 * 03 COMA "Common Control A"
1269 * = 74 (0x4A) 01001010
1270 * COMA[7:4] "AWB Update Threshold"
1271 * = 4 (0x04) 0100....
1272 * COMA[3:2] "Vertical window end line control 2 LSBs"
1273 * = 2 (0x02) ....10..
1274 * COMA[1:0] "Vertical window start line control 2 LSBs"
1275 * = 2 (0x02) ......10
1280 * 02 RED "Red Gain Control"
1281 * = 175 (0xAF) 10101111
1283 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1285 * = 47 (0x2F) .0101111
1290 * 2D ADDVSL "VSYNC Pulse Width"
1291 * = 210 (0xD2) 11010010
1292 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1293 * = 210 (0xD2) 11010010
1298 * 00 GAIN = 24 (0x18) 00011000
1299 * GAIN[7:6] "Reserved"
1300 * = 0 (0x00) 00......
1302 * = 0 (0x00) ..0..... "False"
1304 * = 1 (0x01) ...1.... "True"
1306 * = 8 (0x08) ....1000
1311 * 01 BLUE "Blue Gain Control"
1312 * = 240 (0xF0) 11110000
1314 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1316 * = 112 (0x70) .1110000
1321 * 10 AEC "Automatic Exposure Control"
1322 * = 10 (0x0A) 00001010
1323 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1324 * = 10 (0x0A) 00001010
1336 static const struct ov_i2c_regvals norm_6x20[] = {
1337 { 0x12, 0x80 }, /* reset */
1340 { 0x05, 0x7f }, /* For when autoadjust is off */
1342 /* The ratio of 0x0c and 0x0d controls the white point */
1345 { 0x0f, 0x15 }, /* COMS */
1346 { 0x10, 0x75 }, /* AEC Exposure time */
1347 { 0x12, 0x24 }, /* Enable AGC */
1349 /* 0x16: 0x06 helps frame stability with moving objects */
1351 /* { 0x20, 0x30 }, * Aperture correction enable */
1352 { 0x26, 0xb2 }, /* BLC enable */
1353 /* 0x28: 0x05 Selects RGB format if RGB on */
1355 { 0x2a, 0x04 }, /* Disable framerate adjust */
1356 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1358 { 0x33, 0xa0 }, /* Color Processing Parameter */
1359 { 0x34, 0xd2 }, /* Max A/D range */
1363 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1364 { 0x3c, 0x3c }, /* Change AEC mode */
1365 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1368 /* These next two registers (0x4a, 0x4b) are undocumented.
1369 * They control the color balance */
1372 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1375 /* Do 50-53 have any effect? */
1376 /* Toggle 0x12[2] off and on here? */
1379 static const struct ov_i2c_regvals norm_6x30[] = {
1380 { 0x12, 0x80 }, /* Reset */
1381 { 0x00, 0x1f }, /* Gain */
1382 { 0x01, 0x99 }, /* Blue gain */
1383 { 0x02, 0x7c }, /* Red gain */
1384 { 0x03, 0xc0 }, /* Saturation */
1385 { 0x05, 0x0a }, /* Contrast */
1386 { 0x06, 0x95 }, /* Brightness */
1387 { 0x07, 0x2d }, /* Sharpness */
1390 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1393 { 0x11, 0x00 }, /* Pixel clock = fastest */
1394 { 0x12, 0x24 }, /* Enable AGC and AWB */
1409 { 0x23, 0xc0 }, /* Crystal circuit power level */
1410 { 0x25, 0x9a }, /* Increase AEC black ratio */
1411 { 0x26, 0xb2 }, /* BLC enable */
1415 { 0x2a, 0x84 }, /* 60 Hz power */
1416 { 0x2b, 0xa8 }, /* 60 Hz power */
1418 { 0x2d, 0x95 }, /* Enable auto-brightness */
1432 { 0x40, 0x00 }, /* White bal */
1433 { 0x41, 0x00 }, /* White bal */
1435 { 0x43, 0x3f }, /* White bal */
1445 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1447 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1449 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1454 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1456 { 0x5b, 0x0f }, /* AWB chrominance levels */
1460 { 0x12, 0x20 }, /* Toggle AWB */
1464 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1466 * Register 0x0f in the 7610 has the following effects:
1468 * 0x85 (AEC method 1): Best overall, good contrast range
1469 * 0x45 (AEC method 2): Very overexposed
1470 * 0xa5 (spec sheet default): Ok, but the black level is
1471 * shifted resulting in loss of contrast
1472 * 0x05 (old driver setting): very overexposed, too much
1475 static const struct ov_i2c_regvals norm_7610[] = {
1482 { 0x28, 0x24 }, /* 0c */
1483 { 0x0f, 0x85 }, /* lg's setting */
1505 static const struct ov_i2c_regvals norm_7620[] = {
1506 { 0x12, 0x80 }, /* reset */
1507 { 0x00, 0x00 }, /* gain */
1508 { 0x01, 0x80 }, /* blue gain */
1509 { 0x02, 0x80 }, /* red gain */
1510 { 0x03, 0xc0 }, /* OV7670_REG_VREF */
1533 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1572 /* 7640 and 7648. The defaults should be OK for most registers. */
1573 static const struct ov_i2c_regvals norm_7640[] = {
1578 /* 7670. Defaults taken from OmniVision provided data,
1579 * as provided by Jonathan Corbet of OLPC */
1580 static const struct ov_i2c_regvals norm_7670[] = {
1581 { OV7670_REG_COM7, OV7670_COM7_RESET },
1582 { OV7670_REG_TSLB, 0x04 }, /* OV */
1583 { OV7670_REG_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1584 { OV7670_REG_CLKRC, 0x01 },
1586 * Set the hardware window. These values from OV don't entirely
1587 * make sense - hstop is less than hstart. But they work...
1589 { OV7670_REG_HSTART, 0x13 },
1590 { OV7670_REG_HSTOP, 0x01 },
1591 { OV7670_REG_HREF, 0xb6 },
1592 { OV7670_REG_VSTART, 0x02 },
1593 { OV7670_REG_VSTOP, 0x7a },
1594 { OV7670_REG_VREF, 0x0a },
1596 { OV7670_REG_COM3, 0x00 },
1597 { OV7670_REG_COM14, 0x00 },
1598 /* Mystery scaling numbers */
1604 /* { OV7670_REG_COM10, 0x0 }, */
1606 /* Gamma curve values */
1624 /* AGC and AEC parameters. Note we start by disabling those features,
1625 then turn them only after tweaking the values. */
1626 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1627 | OV7670_COM8_AECSTEP
1628 | OV7670_COM8_BFILT },
1629 { OV7670_REG_GAIN, 0x00 },
1630 { OV7670_REG_AECH, 0x00 },
1631 { OV7670_REG_COM4, 0x40 }, /* magic reserved bit */
1632 { OV7670_REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1633 { OV7670_REG_BD50MAX, 0x05 },
1634 { OV7670_REG_BD60MAX, 0x07 },
1635 { OV7670_REG_AEW, 0x95 },
1636 { OV7670_REG_AEB, 0x33 },
1637 { OV7670_REG_VPT, 0xe3 },
1638 { OV7670_REG_HAECC1, 0x78 },
1639 { OV7670_REG_HAECC2, 0x68 },
1640 { 0xa1, 0x03 }, /* magic */
1641 { OV7670_REG_HAECC3, 0xd8 },
1642 { OV7670_REG_HAECC4, 0xd8 },
1643 { OV7670_REG_HAECC5, 0xf0 },
1644 { OV7670_REG_HAECC6, 0x90 },
1645 { OV7670_REG_HAECC7, 0x94 },
1646 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1647 | OV7670_COM8_AECSTEP
1650 | OV7670_COM8_AEC },
1652 /* Almost all of these are magic "reserved" values. */
1653 { OV7670_REG_COM5, 0x61 },
1654 { OV7670_REG_COM6, 0x4b },
1656 { OV7670_REG_MVFP, 0x07 },
1665 { OV7670_REG_COM12, 0x78 },
1668 { OV7670_REG_GFIX, 0x00 },
1684 /* More reserved magic, some of which tweaks white balance */
1701 /* "9e for advance AWB" */
1703 { OV7670_REG_BLUE, 0x40 },
1704 { OV7670_REG_RED, 0x60 },
1705 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1706 | OV7670_COM8_AECSTEP
1710 | OV7670_COM8_AWB },
1712 /* Matrix coefficients */
1721 { OV7670_REG_COM16, OV7670_COM16_AWBGAIN },
1722 { OV7670_REG_EDGE, 0x00 },
1727 { OV7670_REG_COM13, OV7670_COM13_GAMMA
1728 | OV7670_COM13_UVSAT
1732 { OV7670_REG_COM16, 0x38 },
1736 { OV7670_REG_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1749 /* Extra-weird stuff. Some sort of multiplexor register */
1775 static const struct ov_i2c_regvals norm_8610[] = {
1782 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1783 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1792 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
1794 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1795 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1796 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1799 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1800 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1801 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1802 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1808 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1810 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1812 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1814 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1815 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1816 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1817 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1819 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1820 * maybe thats wrong */
1824 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1828 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1829 * deleting bit7 colors the first images red */
1830 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1831 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1837 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1839 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1844 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1846 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1847 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1854 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1860 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1863 static unsigned char ov7670_abs_to_sm(unsigned char v)
1867 return (128 - v) | 0x80;
1870 /* Write a OV519 register */
1871 static int reg_w(struct sd *sd, __u16 index, __u16 value)
1875 switch (sd->bridge) {
1877 case BRIDGE_OV511PLUS:
1883 case BRIDGE_W9968CF:
1884 ret = usb_control_msg(sd->gspca_dev.dev,
1885 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1887 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1888 value, index, NULL, 0, 500);
1894 sd->gspca_dev.usb_buf[0] = value;
1895 ret = usb_control_msg(sd->gspca_dev.dev,
1896 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1898 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1900 sd->gspca_dev.usb_buf, 1, 500);
1903 PDEBUG(D_ERR, "Write reg 0x%04x -> [0x%02x] failed",
1908 PDEBUG(D_USBO, "Write reg 0x%04x -> [0x%02x]", value, index);
1912 /* Read from a OV519 register, note not valid for the w9968cf!! */
1913 /* returns: negative is error, pos or zero is data */
1914 static int reg_r(struct sd *sd, __u16 index)
1919 switch (sd->bridge) {
1921 case BRIDGE_OV511PLUS:
1931 ret = usb_control_msg(sd->gspca_dev.dev,
1932 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1934 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1935 0, index, sd->gspca_dev.usb_buf, 1, 500);
1938 ret = sd->gspca_dev.usb_buf[0];
1939 PDEBUG(D_USBI, "Read reg [0x%02X] -> 0x%04X", index, ret);
1941 PDEBUG(D_ERR, "Read reg [0x%02x] failed", index);
1946 /* Read 8 values from a OV519 register */
1947 static int reg_r8(struct sd *sd,
1952 ret = usb_control_msg(sd->gspca_dev.dev,
1953 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1955 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1956 0, index, sd->gspca_dev.usb_buf, 8, 500);
1959 ret = sd->gspca_dev.usb_buf[0];
1961 PDEBUG(D_ERR, "Read reg 8 [0x%02x] failed", index);
1967 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
1968 * the same position as 1's in "mask" are cleared and set to "value". Bits
1969 * that are in the same position as 0's in "mask" are preserved, regardless
1970 * of their respective state in "value".
1972 static int reg_w_mask(struct sd *sd,
1981 value &= mask; /* Enforce mask on value */
1982 ret = reg_r(sd, index);
1986 oldval = ret & ~mask; /* Clear the masked bits */
1987 value |= oldval; /* Set the desired bits */
1989 return reg_w(sd, index, value);
1993 * Writes multiple (n) byte value to a single register. Only valid with certain
1994 * registers (0x30 and 0xc4 - 0xce).
1996 static int ov518_reg_w32(struct sd *sd, __u16 index, u32 value, int n)
2000 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2002 ret = usb_control_msg(sd->gspca_dev.dev,
2003 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2005 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2007 sd->gspca_dev.usb_buf, n, 500);
2009 PDEBUG(D_ERR, "Write reg32 [%02x] %08x failed", index, value);
2016 static int ov511_i2c_w(struct sd *sd, __u8 reg, __u8 value)
2020 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2022 /* Three byte write cycle */
2023 for (retries = 6; ; ) {
2024 /* Select camera register */
2025 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
2029 /* Write "value" to I2C data port of OV511 */
2030 rc = reg_w(sd, R51x_I2C_DATA, value);
2034 /* Initiate 3-byte write cycle */
2035 rc = reg_w(sd, R511_I2C_CTL, 0x01);
2040 rc = reg_r(sd, R511_I2C_CTL);
2041 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2046 if ((rc & 2) == 0) /* Ack? */
2048 if (--retries < 0) {
2049 PDEBUG(D_USBO, "i2c write retries exhausted");
2057 static int ov511_i2c_r(struct sd *sd, __u8 reg)
2059 int rc, value, retries;
2061 /* Two byte write cycle */
2062 for (retries = 6; ; ) {
2063 /* Select camera register */
2064 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
2068 /* Initiate 2-byte write cycle */
2069 rc = reg_w(sd, R511_I2C_CTL, 0x03);
2074 rc = reg_r(sd, R511_I2C_CTL);
2075 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2080 if ((rc & 2) == 0) /* Ack? */
2084 reg_w(sd, R511_I2C_CTL, 0x10);
2086 if (--retries < 0) {
2087 PDEBUG(D_USBI, "i2c write retries exhausted");
2092 /* Two byte read cycle */
2093 for (retries = 6; ; ) {
2094 /* Initiate 2-byte read cycle */
2095 rc = reg_w(sd, R511_I2C_CTL, 0x05);
2100 rc = reg_r(sd, R511_I2C_CTL);
2101 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2106 if ((rc & 2) == 0) /* Ack? */
2110 rc = reg_w(sd, R511_I2C_CTL, 0x10);
2114 if (--retries < 0) {
2115 PDEBUG(D_USBI, "i2c read retries exhausted");
2120 value = reg_r(sd, R51x_I2C_DATA);
2122 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
2124 /* This is needed to make i2c_w() work */
2125 rc = reg_w(sd, R511_I2C_CTL, 0x05);
2133 * The OV518 I2C I/O procedure is different, hence, this function.
2134 * This is normally only called from i2c_w(). Note that this function
2135 * always succeeds regardless of whether the sensor is present and working.
2137 static int ov518_i2c_w(struct sd *sd,
2143 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2145 /* Select camera register */
2146 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
2150 /* Write "value" to I2C data port of OV511 */
2151 rc = reg_w(sd, R51x_I2C_DATA, value);
2155 /* Initiate 3-byte write cycle */
2156 rc = reg_w(sd, R518_I2C_CTL, 0x01);
2160 /* wait for write complete */
2162 return reg_r8(sd, R518_I2C_CTL);
2166 * returns: negative is error, pos or zero is data
2168 * The OV518 I2C I/O procedure is different, hence, this function.
2169 * This is normally only called from i2c_r(). Note that this function
2170 * always succeeds regardless of whether the sensor is present and working.
2172 static int ov518_i2c_r(struct sd *sd, __u8 reg)
2176 /* Select camera register */
2177 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
2181 /* Initiate 2-byte write cycle */
2182 rc = reg_w(sd, R518_I2C_CTL, 0x03);
2186 /* Initiate 2-byte read cycle */
2187 rc = reg_w(sd, R518_I2C_CTL, 0x05);
2190 value = reg_r(sd, R51x_I2C_DATA);
2191 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
2195 static int ovfx2_i2c_w(struct sd *sd, __u8 reg, __u8 value)
2199 ret = usb_control_msg(sd->gspca_dev.dev,
2200 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2202 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2203 (__u16)value, (__u16)reg, NULL, 0, 500);
2206 PDEBUG(D_ERR, "i2c 0x%02x -> [0x%02x] failed", value, reg);
2210 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2214 static int ovfx2_i2c_r(struct sd *sd, __u8 reg)
2218 ret = usb_control_msg(sd->gspca_dev.dev,
2219 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2221 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2222 0, (__u16)reg, sd->gspca_dev.usb_buf, 1, 500);
2225 ret = sd->gspca_dev.usb_buf[0];
2226 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, ret);
2228 PDEBUG(D_ERR, "i2c read [0x%02x] failed", reg);
2233 static int i2c_w(struct sd *sd, __u8 reg, __u8 value)
2237 if (sd->sensor_reg_cache[reg] == value)
2240 switch (sd->bridge) {
2242 case BRIDGE_OV511PLUS:
2243 ret = ov511_i2c_w(sd, reg, value);
2246 case BRIDGE_OV518PLUS:
2248 ret = ov518_i2c_w(sd, reg, value);
2251 ret = ovfx2_i2c_w(sd, reg, value);
2253 case BRIDGE_W9968CF:
2254 ret = w9968cf_i2c_w(sd, reg, value);
2259 /* Up on sensor reset empty the register cache */
2260 if (reg == 0x12 && (value & 0x80))
2261 memset(sd->sensor_reg_cache, -1,
2262 sizeof(sd->sensor_reg_cache));
2264 sd->sensor_reg_cache[reg] = value;
2270 static int i2c_r(struct sd *sd, __u8 reg)
2274 if (sd->sensor_reg_cache[reg] != -1)
2275 return sd->sensor_reg_cache[reg];
2277 switch (sd->bridge) {
2279 case BRIDGE_OV511PLUS:
2280 ret = ov511_i2c_r(sd, reg);
2283 case BRIDGE_OV518PLUS:
2285 ret = ov518_i2c_r(sd, reg);
2288 ret = ovfx2_i2c_r(sd, reg);
2290 case BRIDGE_W9968CF:
2291 ret = w9968cf_i2c_r(sd, reg);
2296 sd->sensor_reg_cache[reg] = ret;
2301 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2302 * the same position as 1's in "mask" are cleared and set to "value". Bits
2303 * that are in the same position as 0's in "mask" are preserved, regardless
2304 * of their respective state in "value".
2306 static int i2c_w_mask(struct sd *sd,
2314 value &= mask; /* Enforce mask on value */
2315 rc = i2c_r(sd, reg);
2318 oldval = rc & ~mask; /* Clear the masked bits */
2319 value |= oldval; /* Set the desired bits */
2320 return i2c_w(sd, reg, value);
2323 /* Temporarily stops OV511 from functioning. Must do this before changing
2324 * registers while the camera is streaming */
2325 static inline int ov51x_stop(struct sd *sd)
2327 PDEBUG(D_STREAM, "stopping");
2329 switch (sd->bridge) {
2331 case BRIDGE_OV511PLUS:
2332 return reg_w(sd, R51x_SYS_RESET, 0x3d);
2334 case BRIDGE_OV518PLUS:
2335 return reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2337 return reg_w(sd, OV519_SYS_RESET1, 0x0f);
2339 return reg_w_mask(sd, 0x0f, 0x00, 0x02);
2340 case BRIDGE_W9968CF:
2341 return reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2347 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2348 * actually stopped (for performance). */
2349 static inline int ov51x_restart(struct sd *sd)
2353 PDEBUG(D_STREAM, "restarting");
2358 /* Reinitialize the stream */
2359 switch (sd->bridge) {
2361 case BRIDGE_OV511PLUS:
2362 return reg_w(sd, R51x_SYS_RESET, 0x00);
2364 case BRIDGE_OV518PLUS:
2365 rc = reg_w(sd, 0x2f, 0x80);
2368 return reg_w(sd, R51x_SYS_RESET, 0x00);
2370 return reg_w(sd, OV519_SYS_RESET1, 0x00);
2372 return reg_w_mask(sd, 0x0f, 0x02, 0x02);
2373 case BRIDGE_W9968CF:
2374 return reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2380 static int ov51x_set_slave_ids(struct sd *sd, __u8 slave);
2382 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2383 * is synchronized. Returns <0 on failure.
2385 static int init_ov_sensor(struct sd *sd, __u8 slave)
2389 if (ov51x_set_slave_ids(sd, slave) < 0)
2392 /* Reset the sensor */
2393 if (i2c_w(sd, 0x12, 0x80) < 0)
2396 /* Wait for it to initialize */
2399 for (i = 0; i < i2c_detect_tries; i++) {
2400 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2401 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2402 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2406 /* Reset the sensor */
2407 if (i2c_w(sd, 0x12, 0x80) < 0)
2409 /* Wait for it to initialize */
2411 /* Dummy read to sync I2C */
2412 if (i2c_r(sd, 0x00) < 0)
2418 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2419 * and the read slave will be set to (slave + 1).
2420 * This should not be called from outside the i2c I/O functions.
2421 * Sets I2C read and write slave IDs. Returns <0 for error
2423 static int ov51x_set_slave_ids(struct sd *sd,
2428 switch (sd->bridge) {
2430 return reg_w(sd, OVFX2_I2C_ADDR, slave);
2431 case BRIDGE_W9968CF:
2432 sd->sensor_addr = slave;
2436 rc = reg_w(sd, R51x_I2C_W_SID, slave);
2439 return reg_w(sd, R51x_I2C_R_SID, slave + 1);
2442 static int write_regvals(struct sd *sd,
2443 const struct ov_regvals *regvals,
2449 rc = reg_w(sd, regvals->reg, regvals->val);
2457 static int write_i2c_regvals(struct sd *sd,
2458 const struct ov_i2c_regvals *regvals,
2464 rc = i2c_w(sd, regvals->reg, regvals->val);
2472 /****************************************************************************
2474 * OV511 and sensor configuration
2476 ***************************************************************************/
2478 /* This initializes the OV2x10 / OV3610 / OV3620 */
2479 static int ov_hires_configure(struct sd *sd)
2483 if (sd->bridge != BRIDGE_OVFX2) {
2484 PDEBUG(D_ERR, "error hires sensors only supported with ovfx2");
2488 PDEBUG(D_PROBE, "starting ov hires configuration");
2490 /* Detect sensor (sub)type */
2491 high = i2c_r(sd, 0x0a);
2492 low = i2c_r(sd, 0x0b);
2493 /* info("%x, %x", high, low); */
2494 if (high == 0x96 && low == 0x40) {
2495 PDEBUG(D_PROBE, "Sensor is an OV2610");
2496 sd->sensor = SEN_OV2610;
2497 } else if (high == 0x36 && (low & 0x0f) == 0x00) {
2498 PDEBUG(D_PROBE, "Sensor is an OV3610");
2499 sd->sensor = SEN_OV3610;
2501 PDEBUG(D_ERR, "Error unknown sensor type: 0x%02x%02x",
2506 /* Set sensor-specific vars */
2511 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2512 * the same register settings as the OV8610, since they are very similar.
2514 static int ov8xx0_configure(struct sd *sd)
2518 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2520 /* Detect sensor (sub)type */
2521 rc = i2c_r(sd, OV7610_REG_COM_I);
2523 PDEBUG(D_ERR, "Error detecting sensor type");
2526 if ((rc & 3) == 1) {
2527 sd->sensor = SEN_OV8610;
2529 PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
2533 /* Set sensor-specific vars */
2537 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2538 * the same register settings as the OV7610, since they are very similar.
2540 static int ov7xx0_configure(struct sd *sd)
2545 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2547 /* Detect sensor (sub)type */
2548 rc = i2c_r(sd, OV7610_REG_COM_I);
2551 * it appears to be wrongly detected as a 7610 by default */
2553 PDEBUG(D_ERR, "Error detecting sensor type");
2556 if ((rc & 3) == 3) {
2557 /* quick hack to make OV7670s work */
2558 high = i2c_r(sd, 0x0a);
2559 low = i2c_r(sd, 0x0b);
2560 /* info("%x, %x", high, low); */
2561 if (high == 0x76 && low == 0x73) {
2562 PDEBUG(D_PROBE, "Sensor is an OV7670");
2563 sd->sensor = SEN_OV7670;
2565 PDEBUG(D_PROBE, "Sensor is an OV7610");
2566 sd->sensor = SEN_OV7610;
2568 } else if ((rc & 3) == 1) {
2569 /* I don't know what's different about the 76BE yet. */
2570 if (i2c_r(sd, 0x15) & 1) {
2571 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2572 sd->sensor = SEN_OV7620AE;
2574 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2575 sd->sensor = SEN_OV76BE;
2577 } else if ((rc & 3) == 0) {
2578 /* try to read product id registers */
2579 high = i2c_r(sd, 0x0a);
2581 PDEBUG(D_ERR, "Error detecting camera chip PID");
2584 low = i2c_r(sd, 0x0b);
2586 PDEBUG(D_ERR, "Error detecting camera chip VER");
2592 PDEBUG(D_PROBE, "Sensor is an OV7630/OV7635");
2594 "7630 is not supported by this driver");
2597 PDEBUG(D_PROBE, "Sensor is an OV7645");
2598 sd->sensor = SEN_OV7640; /* FIXME */
2601 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2602 sd->sensor = SEN_OV7640; /* FIXME */
2605 PDEBUG(D_PROBE, "Sensor is an OV7648");
2606 sd->sensor = SEN_OV7648;
2609 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2613 PDEBUG(D_PROBE, "Sensor is an OV7620");
2614 sd->sensor = SEN_OV7620;
2617 PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
2621 /* Set sensor-specific vars */
2625 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2626 static int ov6xx0_configure(struct sd *sd)
2629 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2631 /* Detect sensor (sub)type */
2632 rc = i2c_r(sd, OV7610_REG_COM_I);
2634 PDEBUG(D_ERR, "Error detecting sensor type");
2638 /* Ugh. The first two bits are the version bits, but
2639 * the entire register value must be used. I guess OVT
2640 * underestimated how many variants they would make. */
2643 sd->sensor = SEN_OV6630;
2645 "WARNING: Sensor is an OV66308. Your camera may have");
2646 PDEBUG(D_ERR, "been misdetected in previous driver versions.");
2649 sd->sensor = SEN_OV6620;
2650 PDEBUG(D_PROBE, "Sensor is an OV6620");
2653 sd->sensor = SEN_OV6630;
2654 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2657 sd->sensor = SEN_OV66308AF;
2658 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2661 sd->sensor = SEN_OV6630;
2663 "WARNING: Sensor is an OV66307. Your camera may have");
2664 PDEBUG(D_ERR, "been misdetected in previous driver versions.");
2667 PDEBUG(D_ERR, "FATAL: Unknown sensor version: 0x%02x", rc);
2671 /* Set sensor-specific vars */
2677 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2678 static void ov51x_led_control(struct sd *sd, int on)
2683 switch (sd->bridge) {
2684 /* OV511 has no LED control */
2685 case BRIDGE_OV511PLUS:
2686 reg_w(sd, R511_SYS_LED_CTL, on ? 1 : 0);
2689 case BRIDGE_OV518PLUS:
2690 reg_w_mask(sd, R518_GPIO_OUT, on ? 0x02 : 0x00, 0x02);
2693 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, !on, 1); /* 0 / 1 */
2698 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2700 struct sd *sd = (struct sd *) gspca_dev;
2702 if (!sd->snapshot_needs_reset)
2705 /* Note it is important that we clear sd->snapshot_needs_reset,
2706 before actually clearing the snapshot state in the bridge
2707 otherwise we might race with the pkt_scan interrupt handler */
2708 sd->snapshot_needs_reset = 0;
2710 switch (sd->bridge) {
2712 case BRIDGE_OV511PLUS:
2713 reg_w(sd, R51x_SYS_SNAP, 0x02);
2714 reg_w(sd, R51x_SYS_SNAP, 0x00);
2717 case BRIDGE_OV518PLUS:
2718 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2719 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2722 reg_w(sd, R51x_SYS_RESET, 0x40);
2723 reg_w(sd, R51x_SYS_RESET, 0x00);
2728 static int ov51x_upload_quan_tables(struct sd *sd)
2730 const unsigned char yQuanTable511[] = {
2731 0, 1, 1, 2, 2, 3, 3, 4,
2732 1, 1, 1, 2, 2, 3, 4, 4,
2733 1, 1, 2, 2, 3, 4, 4, 4,
2734 2, 2, 2, 3, 4, 4, 4, 4,
2735 2, 2, 3, 4, 4, 5, 5, 5,
2736 3, 3, 4, 4, 5, 5, 5, 5,
2737 3, 4, 4, 4, 5, 5, 5, 5,
2738 4, 4, 4, 4, 5, 5, 5, 5
2741 const unsigned char uvQuanTable511[] = {
2742 0, 2, 2, 3, 4, 4, 4, 4,
2743 2, 2, 2, 4, 4, 4, 4, 4,
2744 2, 2, 3, 4, 4, 4, 4, 4,
2745 3, 4, 4, 4, 4, 4, 4, 4,
2746 4, 4, 4, 4, 4, 4, 4, 4,
2747 4, 4, 4, 4, 4, 4, 4, 4,
2748 4, 4, 4, 4, 4, 4, 4, 4,
2749 4, 4, 4, 4, 4, 4, 4, 4
2752 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2753 const unsigned char yQuanTable518[] = {
2754 5, 4, 5, 6, 6, 7, 7, 7,
2755 5, 5, 5, 5, 6, 7, 7, 7,
2756 6, 6, 6, 6, 7, 7, 7, 8,
2757 7, 7, 6, 7, 7, 7, 8, 8
2760 const unsigned char uvQuanTable518[] = {
2761 6, 6, 6, 7, 7, 7, 7, 7,
2762 6, 6, 6, 7, 7, 7, 7, 7,
2763 6, 6, 6, 7, 7, 7, 7, 8,
2764 7, 7, 7, 7, 7, 7, 8, 8
2767 const unsigned char *pYTable, *pUVTable;
2768 unsigned char val0, val1;
2769 int i, size, rc, reg = R51x_COMP_LUT_BEGIN;
2771 PDEBUG(D_PROBE, "Uploading quantization tables");
2773 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2774 pYTable = yQuanTable511;
2775 pUVTable = uvQuanTable511;
2778 pYTable = yQuanTable518;
2779 pUVTable = uvQuanTable518;
2783 for (i = 0; i < size; i++) {
2789 rc = reg_w(sd, reg, val0);
2798 rc = reg_w(sd, reg + size, val0);
2808 /* This initializes the OV511/OV511+ and the sensor */
2809 static int ov511_configure(struct gspca_dev *gspca_dev)
2811 struct sd *sd = (struct sd *) gspca_dev;
2814 /* For 511 and 511+ */
2815 const struct ov_regvals init_511[] = {
2816 { R51x_SYS_RESET, 0x7f },
2817 { R51x_SYS_INIT, 0x01 },
2818 { R51x_SYS_RESET, 0x7f },
2819 { R51x_SYS_INIT, 0x01 },
2820 { R51x_SYS_RESET, 0x3f },
2821 { R51x_SYS_INIT, 0x01 },
2822 { R51x_SYS_RESET, 0x3d },
2825 const struct ov_regvals norm_511[] = {
2826 { R511_DRAM_FLOW_CTL, 0x01 },
2827 { R51x_SYS_SNAP, 0x00 },
2828 { R51x_SYS_SNAP, 0x02 },
2829 { R51x_SYS_SNAP, 0x00 },
2830 { R511_FIFO_OPTS, 0x1f },
2831 { R511_COMP_EN, 0x00 },
2832 { R511_COMP_LUT_EN, 0x03 },
2835 const struct ov_regvals norm_511_p[] = {
2836 { R511_DRAM_FLOW_CTL, 0xff },
2837 { R51x_SYS_SNAP, 0x00 },
2838 { R51x_SYS_SNAP, 0x02 },
2839 { R51x_SYS_SNAP, 0x00 },
2840 { R511_FIFO_OPTS, 0xff },
2841 { R511_COMP_EN, 0x00 },
2842 { R511_COMP_LUT_EN, 0x03 },
2845 const struct ov_regvals compress_511[] = {
2856 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
2858 rc = write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2862 switch (sd->bridge) {
2864 rc = write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2868 case BRIDGE_OV511PLUS:
2869 rc = write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
2875 /* Init compression */
2876 rc = write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
2880 rc = ov51x_upload_quan_tables(sd);
2882 PDEBUG(D_ERR, "Error uploading quantization tables");
2889 /* This initializes the OV518/OV518+ and the sensor */
2890 static int ov518_configure(struct gspca_dev *gspca_dev)
2892 struct sd *sd = (struct sd *) gspca_dev;
2895 /* For 518 and 518+ */
2896 const struct ov_regvals init_518[] = {
2897 { R51x_SYS_RESET, 0x40 },
2898 { R51x_SYS_INIT, 0xe1 },
2899 { R51x_SYS_RESET, 0x3e },
2900 { R51x_SYS_INIT, 0xe1 },
2901 { R51x_SYS_RESET, 0x00 },
2902 { R51x_SYS_INIT, 0xe1 },
2907 const struct ov_regvals norm_518[] = {
2908 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2909 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2920 const struct ov_regvals norm_518_p[] = {
2921 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2922 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2939 /* First 5 bits of custom ID reg are a revision ID on OV518 */
2940 PDEBUG(D_PROBE, "Device revision %d",
2941 0x1F & reg_r(sd, R51x_SYS_CUST_ID));
2943 rc = write_regvals(sd, init_518, ARRAY_SIZE(init_518));
2947 /* Set LED GPIO pin to output mode */
2948 rc = reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
2952 switch (sd->bridge) {
2954 rc = write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
2958 case BRIDGE_OV518PLUS:
2959 rc = write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
2965 rc = ov51x_upload_quan_tables(sd);
2967 PDEBUG(D_ERR, "Error uploading quantization tables");
2971 rc = reg_w(sd, 0x2f, 0x80);
2978 static int ov519_configure(struct sd *sd)
2980 static const struct ov_regvals init_519[] = {
2981 { 0x5a, 0x6d }, /* EnableSystem */
2983 { 0x54, 0xff }, /* set bit2 to enable jpeg */
2987 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
2988 * detection will fail. This deserves further investigation. */
2989 { OV519_GPIO_IO_CTRL0, 0xee },
2990 { 0x51, 0x0f }, /* SetUsbInit */
2993 /* windows reads 0x55 at this point*/
2996 return write_regvals(sd, init_519, ARRAY_SIZE(init_519));
2999 static int ovfx2_configure(struct sd *sd)
3001 static const struct ov_regvals init_fx2[] = {
3013 return write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3016 /* this function is called at probe time */
3017 static int sd_config(struct gspca_dev *gspca_dev,
3018 const struct usb_device_id *id)
3020 struct sd *sd = (struct sd *) gspca_dev;
3021 struct cam *cam = &gspca_dev->cam;
3024 sd->bridge = id->driver_info & BRIDGE_MASK;
3025 sd->invert_led = id->driver_info & BRIDGE_INVERT_LED;
3027 switch (sd->bridge) {
3029 case BRIDGE_OV511PLUS:
3030 ret = ov511_configure(gspca_dev);
3033 case BRIDGE_OV518PLUS:
3034 ret = ov518_configure(gspca_dev);
3037 ret = ov519_configure(sd);
3040 ret = ovfx2_configure(sd);
3041 cam->bulk_size = OVFX2_BULK_SIZE;
3042 cam->bulk_nurbs = MAX_NURBS;
3045 case BRIDGE_W9968CF:
3046 ret = w9968cf_configure(sd);
3047 cam->reverse_alts = 1;
3054 ov51x_led_control(sd, 0); /* turn LED off */
3056 /* The OV519 must be more aggressive about sensor detection since
3057 * I2C write will never fail if the sensor is not present. We have
3058 * to try to initialize the sensor to detect its presence */
3061 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3062 if (ov7xx0_configure(sd) < 0) {
3063 PDEBUG(D_ERR, "Failed to configure OV7xx0");
3067 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3068 if (ov6xx0_configure(sd) < 0) {
3069 PDEBUG(D_ERR, "Failed to configure OV6xx0");
3073 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3074 if (ov8xx0_configure(sd) < 0) {
3075 PDEBUG(D_ERR, "Failed to configure OV8xx0");
3078 /* Test for 3xxx / 2xxx */
3079 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3080 if (ov_hires_configure(sd) < 0) {
3081 PDEBUG(D_ERR, "Failed to configure high res OV");
3085 PDEBUG(D_ERR, "Can't determine sensor slave IDs");
3089 switch (sd->bridge) {
3091 case BRIDGE_OV511PLUS:
3093 cam->cam_mode = ov511_vga_mode;
3094 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3096 cam->cam_mode = ov511_sif_mode;
3097 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3101 case BRIDGE_OV518PLUS:
3103 cam->cam_mode = ov518_vga_mode;
3104 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3106 cam->cam_mode = ov518_sif_mode;
3107 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3112 cam->cam_mode = ov519_vga_mode;
3113 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3115 cam->cam_mode = ov519_sif_mode;
3116 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3120 if (sd->sensor == SEN_OV2610) {
3121 cam->cam_mode = ovfx2_ov2610_mode;
3122 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3123 } else if (sd->sensor == SEN_OV3610) {
3124 cam->cam_mode = ovfx2_ov3610_mode;
3125 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3126 } else if (!sd->sif) {
3127 cam->cam_mode = ov519_vga_mode;
3128 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3130 cam->cam_mode = ov519_sif_mode;
3131 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3134 case BRIDGE_W9968CF:
3135 cam->cam_mode = w9968cf_vga_mode;
3136 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3140 /* w9968cf needs initialisation once the sensor is known */
3141 if (w9968cf_init(sd) < 0)
3145 sd->brightness = BRIGHTNESS_DEF;
3146 if (sd->sensor == SEN_OV6630 || sd->sensor == SEN_OV66308AF)
3147 sd->contrast = 200; /* The default is too low for the ov6630 */
3149 sd->contrast = CONTRAST_DEF;
3150 sd->colors = COLOR_DEF;
3151 sd->hflip = HFLIP_DEF;
3152 sd->vflip = VFLIP_DEF;
3153 sd->autobrightness = AUTOBRIGHT_DEF;
3154 if (sd->sensor == SEN_OV7670) {
3155 sd->freq = OV7670_FREQ_DEF;
3156 gspca_dev->ctrl_dis = (1 << FREQ_IDX) | (1 << COLOR_IDX);
3158 sd->freq = FREQ_DEF;
3159 gspca_dev->ctrl_dis = (1 << HFLIP_IDX) | (1 << VFLIP_IDX) |
3160 (1 << OV7670_FREQ_IDX);
3162 sd->quality = QUALITY_DEF;
3163 if (sd->sensor == SEN_OV7640 ||
3164 sd->sensor == SEN_OV7648)
3165 gspca_dev->ctrl_dis |= (1 << AUTOBRIGHT_IDX) |
3166 (1 << CONTRAST_IDX);
3167 if (sd->sensor == SEN_OV7670)
3168 gspca_dev->ctrl_dis |= 1 << AUTOBRIGHT_IDX;
3169 /* OV8610 Frequency filter control should work but needs testing */
3170 if (sd->sensor == SEN_OV8610)
3171 gspca_dev->ctrl_dis |= 1 << FREQ_IDX;
3172 /* No controls for the OV2610/OV3610 */
3173 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
3174 gspca_dev->ctrl_dis |= 0xFF;
3178 PDEBUG(D_ERR, "OV519 Config failed");
3182 /* this function is called at probe and resume time */
3183 static int sd_init(struct gspca_dev *gspca_dev)
3185 struct sd *sd = (struct sd *) gspca_dev;
3187 /* initialize the sensor */
3188 switch (sd->sensor) {
3190 if (write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610)))
3192 /* Enable autogain, autoexpo, awb, bandfilter */
3193 if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
3197 if (write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b)))
3199 /* Enable autogain, autoexpo, awb, bandfilter */
3200 if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
3204 if (write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20)))
3209 if (write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30)))
3213 /* case SEN_OV7610: */
3214 /* case SEN_OV76BE: */
3215 if (write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610)))
3217 if (i2c_w_mask(sd, 0x0e, 0x00, 0x40))
3222 if (write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620)))
3227 if (write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640)))
3231 if (write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670)))
3235 if (write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610)))
3242 /* Set up the OV511/OV511+ with the given image parameters.
3244 * Do not put any sensor-specific code in here (including I2C I/O functions)
3246 static int ov511_mode_init_regs(struct sd *sd)
3248 int hsegs, vsegs, packet_size, fps, needed;
3250 struct usb_host_interface *alt;
3251 struct usb_interface *intf;
3253 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3254 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3256 PDEBUG(D_ERR, "Couldn't get altsetting");
3260 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3261 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3263 reg_w(sd, R511_CAM_UV_EN, 0x01);
3264 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3265 reg_w(sd, R511_SNAP_OPTS, 0x03);
3267 /* Here I'm assuming that snapshot size == image size.
3268 * I hope that's always true. --claudio
3270 hsegs = (sd->gspca_dev.width >> 3) - 1;
3271 vsegs = (sd->gspca_dev.height >> 3) - 1;
3273 reg_w(sd, R511_CAM_PXCNT, hsegs);
3274 reg_w(sd, R511_CAM_LNCNT, vsegs);
3275 reg_w(sd, R511_CAM_PXDIV, 0x00);
3276 reg_w(sd, R511_CAM_LNDIV, 0x00);
3278 /* YUV420, low pass filter on */
3279 reg_w(sd, R511_CAM_OPTS, 0x03);
3281 /* Snapshot additions */
3282 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3283 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3284 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3285 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3287 /******** Set the framerate ********/
3289 sd->frame_rate = frame_rate;
3291 switch (sd->sensor) {
3293 /* No framerate control, doesn't like higher rates yet */
3297 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3298 for more sensors we need to do this for them too */
3304 if (sd->gspca_dev.width == 320)
3310 switch (sd->frame_rate) {
3313 /* Not enough bandwidth to do 640x480 @ 30 fps */
3314 if (sd->gspca_dev.width != 640) {
3318 /* Fall through for 640x480 case */
3332 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3333 /* Higher then 10 does not work */
3334 if (sd->clockdiv > 10)
3340 /* No framerate control ?? */
3345 /* Check if we have enough bandwidth to disable compression */
3346 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3347 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3348 /* 1400 is a conservative estimate of the max nr of isoc packets/sec */
3349 if (needed > 1400 * packet_size) {
3350 /* Enable Y and UV quantization and compression */
3351 reg_w(sd, R511_COMP_EN, 0x07);
3352 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3354 reg_w(sd, R511_COMP_EN, 0x06);
3355 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3358 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3359 reg_w(sd, R51x_SYS_RESET, 0);
3364 /* Sets up the OV518/OV518+ with the given image parameters
3366 * OV518 needs a completely different approach, until we can figure out what
3367 * the individual registers do. Also, only 15 FPS is supported now.
3369 * Do not put any sensor-specific code in here (including I2C I/O functions)
3371 static int ov518_mode_init_regs(struct sd *sd)
3373 int hsegs, vsegs, packet_size;
3374 struct usb_host_interface *alt;
3375 struct usb_interface *intf;
3377 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3378 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3380 PDEBUG(D_ERR, "Couldn't get altsetting");
3384 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3385 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3387 /******** Set the mode ********/
3398 if (sd->bridge == BRIDGE_OV518) {
3399 /* Set 8-bit (YVYU) input format */
3400 reg_w_mask(sd, 0x20, 0x08, 0x08);
3402 /* Set 12-bit (4:2:0) output format */
3403 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3404 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3406 reg_w(sd, 0x28, 0x80);
3407 reg_w(sd, 0x38, 0x80);
3410 hsegs = sd->gspca_dev.width / 16;
3411 vsegs = sd->gspca_dev.height / 4;
3413 reg_w(sd, 0x29, hsegs);
3414 reg_w(sd, 0x2a, vsegs);
3416 reg_w(sd, 0x39, hsegs);
3417 reg_w(sd, 0x3a, vsegs);
3419 /* Windows driver does this here; who knows why */
3420 reg_w(sd, 0x2f, 0x80);
3422 /******** Set the framerate ********/
3425 /* Mode independent, but framerate dependent, regs */
3426 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3427 reg_w(sd, 0x51, 0x04);
3428 reg_w(sd, 0x22, 0x18);
3429 reg_w(sd, 0x23, 0xff);
3431 if (sd->bridge == BRIDGE_OV518PLUS) {
3432 switch (sd->sensor) {
3434 if (sd->gspca_dev.width == 320) {
3435 reg_w(sd, 0x20, 0x00);
3436 reg_w(sd, 0x21, 0x19);
3438 reg_w(sd, 0x20, 0x60);
3439 reg_w(sd, 0x21, 0x1f);
3443 reg_w(sd, 0x20, 0x00);
3444 reg_w(sd, 0x21, 0x19);
3447 reg_w(sd, 0x21, 0x19);
3450 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3452 /* FIXME: Sensor-specific */
3453 /* Bit 5 is what matters here. Of course, it is "reserved" */
3454 i2c_w(sd, 0x54, 0x23);
3456 reg_w(sd, 0x2f, 0x80);
3458 if (sd->bridge == BRIDGE_OV518PLUS) {
3459 reg_w(sd, 0x24, 0x94);
3460 reg_w(sd, 0x25, 0x90);
3461 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3462 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3463 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3464 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3465 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3466 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3467 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3468 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3469 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3471 reg_w(sd, 0x24, 0x9f);
3472 reg_w(sd, 0x25, 0x90);
3473 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3474 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3475 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3476 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3477 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3478 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3479 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3480 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3481 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3484 reg_w(sd, 0x2f, 0x80);
3490 /* Sets up the OV519 with the given image parameters
3492 * OV519 needs a completely different approach, until we can figure out what
3493 * the individual registers do.
3495 * Do not put any sensor-specific code in here (including I2C I/O functions)
3497 static int ov519_mode_init_regs(struct sd *sd)
3499 static const struct ov_regvals mode_init_519_ov7670[] = {
3500 { 0x5d, 0x03 }, /* Turn off suspend mode */
3501 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3502 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
3503 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3507 { 0x37, 0x00 }, /* SetUsbInit */
3508 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3509 /* Enable both fields, YUV Input, disable defect comp (why?) */
3513 { 0x17, 0x50 }, /* undocumented */
3514 { 0x37, 0x00 }, /* undocumented */
3515 { 0x40, 0xff }, /* I2C timeout counter */
3516 { 0x46, 0x00 }, /* I2C clock prescaler */
3517 { 0x59, 0x04 }, /* new from windrv 090403 */
3518 { 0xff, 0x00 }, /* undocumented */
3519 /* windows reads 0x55 at this point, why? */
3522 static const struct ov_regvals mode_init_519[] = {
3523 { 0x5d, 0x03 }, /* Turn off suspend mode */
3524 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3525 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
3526 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3530 { 0x37, 0x00 }, /* SetUsbInit */
3531 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3532 /* Enable both fields, YUV Input, disable defect comp (why?) */
3534 { 0x17, 0x50 }, /* undocumented */
3535 { 0x37, 0x00 }, /* undocumented */
3536 { 0x40, 0xff }, /* I2C timeout counter */
3537 { 0x46, 0x00 }, /* I2C clock prescaler */
3538 { 0x59, 0x04 }, /* new from windrv 090403 */
3539 { 0xff, 0x00 }, /* undocumented */
3540 /* windows reads 0x55 at this point, why? */
3543 /******** Set the mode ********/
3544 if (sd->sensor != SEN_OV7670) {
3545 if (write_regvals(sd, mode_init_519,
3546 ARRAY_SIZE(mode_init_519)))
3548 if (sd->sensor == SEN_OV7640 ||
3549 sd->sensor == SEN_OV7648) {
3550 /* Select 8-bit input mode */
3551 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3554 if (write_regvals(sd, mode_init_519_ov7670,
3555 ARRAY_SIZE(mode_init_519_ov7670)))
3559 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3560 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3561 if (sd->sensor == SEN_OV7670 &&
3562 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3563 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3564 else if (sd->sensor == SEN_OV7648 &&
3565 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3566 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3568 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3569 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3570 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3571 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3572 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3573 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3574 reg_w(sd, 0x26, 0x00); /* Undocumented */
3576 /******** Set the framerate ********/
3578 sd->frame_rate = frame_rate;
3580 /* FIXME: These are only valid at the max resolution. */
3582 switch (sd->sensor) {
3585 switch (sd->frame_rate) {
3588 reg_w(sd, 0xa4, 0x0c);
3589 reg_w(sd, 0x23, 0xff);
3592 reg_w(sd, 0xa4, 0x0c);
3593 reg_w(sd, 0x23, 0x1f);
3596 reg_w(sd, 0xa4, 0x0c);
3597 reg_w(sd, 0x23, 0x1b);
3600 reg_w(sd, 0xa4, 0x04);
3601 reg_w(sd, 0x23, 0xff);
3605 reg_w(sd, 0xa4, 0x04);
3606 reg_w(sd, 0x23, 0x1f);
3610 reg_w(sd, 0xa4, 0x04);
3611 reg_w(sd, 0x23, 0x1b);
3617 switch (sd->frame_rate) {
3618 default: /* 15 fps */
3620 reg_w(sd, 0xa4, 0x06);
3621 reg_w(sd, 0x23, 0xff);
3624 reg_w(sd, 0xa4, 0x06);
3625 reg_w(sd, 0x23, 0x1f);
3628 reg_w(sd, 0xa4, 0x06);
3629 reg_w(sd, 0x23, 0x1b);
3633 case SEN_OV7670: /* guesses, based on 7640 */
3634 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3635 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3636 reg_w(sd, 0xa4, 0x10);
3637 switch (sd->frame_rate) {
3639 reg_w(sd, 0x23, 0xff);
3642 reg_w(sd, 0x23, 0x1b);
3646 reg_w(sd, 0x23, 0xff);
3655 static int mode_init_ov_sensor_regs(struct sd *sd)
3657 struct gspca_dev *gspca_dev;
3658 int qvga, xstart, xend, ystart, yend;
3661 gspca_dev = &sd->gspca_dev;
3662 qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3664 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3665 switch (sd->sensor) {
3667 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3668 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3669 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3670 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3671 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3672 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3673 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3677 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
3678 ystart = (776 - gspca_dev->height) / 2;
3680 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
3681 ystart = (1544 - gspca_dev->height) / 2;
3683 xend = xstart + gspca_dev->width;
3684 yend = ystart + gspca_dev->height;
3685 /* Writing to the COMH register resets the other windowing regs
3686 to their default values, so we must do this first. */
3687 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3688 i2c_w_mask(sd, 0x32,
3689 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3691 i2c_w_mask(sd, 0x03,
3692 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3694 i2c_w(sd, 0x17, xstart >> 4);
3695 i2c_w(sd, 0x18, xend >> 4);
3696 i2c_w(sd, 0x19, ystart >> 3);
3697 i2c_w(sd, 0x1a, yend >> 3);
3700 /* For OV8610 qvga means qsvga */
3701 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3702 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3703 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3704 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3705 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3708 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3709 i2c_w(sd, 0x35, qvga?0x1e:0x9e);
3710 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3711 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3716 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3717 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3718 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3719 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3720 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3721 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3722 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3723 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3724 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3725 if (sd->sensor == SEN_OV76BE)
3726 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3730 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3731 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3732 /* Setting this undocumented bit in qvga mode removes a very
3733 annoying vertical shaking of the image */
3734 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3736 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3737 /* Allow higher automatic gain (to allow higher framerates) */
3738 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3739 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3742 /* set COM7_FMT_VGA or COM7_FMT_QVGA
3743 * do we need to set anything else?
3744 * HSTART etc are set in set_ov_sensor_window itself */
3745 i2c_w_mask(sd, OV7670_REG_COM7,
3746 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3747 OV7670_COM7_FMT_MASK);
3748 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3749 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_AWB,
3751 if (qvga) { /* QVGA from ov7670.c by
3752 * Jonathan Corbet */
3763 /* OV7670 hardware window registers are split across
3764 * multiple locations */
3765 i2c_w(sd, OV7670_REG_HSTART, xstart >> 3);
3766 i2c_w(sd, OV7670_REG_HSTOP, xend >> 3);
3767 v = i2c_r(sd, OV7670_REG_HREF);
3768 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
3769 msleep(10); /* need to sleep between read and write to
3771 i2c_w(sd, OV7670_REG_HREF, v);
3773 i2c_w(sd, OV7670_REG_VSTART, ystart >> 2);
3774 i2c_w(sd, OV7670_REG_VSTOP, yend >> 2);
3775 v = i2c_r(sd, OV7670_REG_VREF);
3776 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
3777 msleep(10); /* need to sleep between read and write to
3779 i2c_w(sd, OV7670_REG_VREF, v);
3782 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3783 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3784 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3788 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3789 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3795 /******** Clock programming ********/
3796 i2c_w(sd, 0x11, sd->clockdiv);
3801 static void sethvflip(struct sd *sd)
3803 if (sd->sensor != SEN_OV7670)
3805 if (sd->gspca_dev.streaming)
3807 i2c_w_mask(sd, OV7670_REG_MVFP,
3808 OV7670_MVFP_MIRROR * sd->hflip
3809 | OV7670_MVFP_VFLIP * sd->vflip,
3810 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
3811 if (sd->gspca_dev.streaming)
3815 static int set_ov_sensor_window(struct sd *sd)
3817 struct gspca_dev *gspca_dev;
3819 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
3822 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
3823 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610 ||
3824 sd->sensor == SEN_OV7670)
3825 return mode_init_ov_sensor_regs(sd);
3827 gspca_dev = &sd->gspca_dev;
3828 qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3829 crop = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 2;
3831 /* The different sensor ICs handle setting up of window differently.
3832 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
3833 switch (sd->sensor) {
3844 vwsbase = vwebase = 0x05;
3853 if (sd->sensor == SEN_OV66308AF && qvga)
3854 /* HDG: this fixes U and V getting swapped */
3865 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
3867 vwsbase = vwebase = 0x05;
3873 vwsbase = vwebase = 0x03;
3879 switch (sd->sensor) {
3883 if (qvga) { /* QCIF */
3888 vwscale = 1; /* The datasheet says 0;
3893 if (qvga) { /* QSVGA */
3901 default: /* SEN_OV7xx0 */
3902 if (qvga) { /* QVGA */
3911 ret = mode_init_ov_sensor_regs(sd);
3915 i2c_w(sd, 0x17, hwsbase);
3916 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
3917 i2c_w(sd, 0x19, vwsbase);
3918 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
3923 /* -- start the camera -- */
3924 static int sd_start(struct gspca_dev *gspca_dev)
3926 struct sd *sd = (struct sd *) gspca_dev;
3929 /* Default for most bridges, allow bridge_mode_init_regs to override */
3930 sd->sensor_width = sd->gspca_dev.width;
3931 sd->sensor_height = sd->gspca_dev.height;
3933 switch (sd->bridge) {
3935 case BRIDGE_OV511PLUS:
3936 ret = ov511_mode_init_regs(sd);
3939 case BRIDGE_OV518PLUS:
3940 ret = ov518_mode_init_regs(sd);
3943 ret = ov519_mode_init_regs(sd);
3945 /* case BRIDGE_OVFX2: nothing to do */
3946 case BRIDGE_W9968CF:
3947 ret = w9968cf_mode_init_regs(sd);
3953 ret = set_ov_sensor_window(sd);
3957 setcontrast(gspca_dev);
3958 setbrightness(gspca_dev);
3959 setcolors(gspca_dev);
3961 setautobrightness(sd);
3964 /* Force clear snapshot state in case the snapshot button was
3965 pressed while we weren't streaming */
3966 sd->snapshot_needs_reset = 1;
3967 sd_reset_snapshot(gspca_dev);
3968 sd->snapshot_pressed = 0;
3970 sd->first_frame = 3;
3972 ret = ov51x_restart(sd);
3975 ov51x_led_control(sd, 1);
3978 PDEBUG(D_ERR, "camera start error:%d", ret);
3982 static void sd_stopN(struct gspca_dev *gspca_dev)
3984 struct sd *sd = (struct sd *) gspca_dev;
3987 ov51x_led_control(sd, 0);
3990 static void sd_stop0(struct gspca_dev *gspca_dev)
3992 struct sd *sd = (struct sd *) gspca_dev;
3994 if (sd->bridge == BRIDGE_W9968CF)
3998 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4000 struct sd *sd = (struct sd *) gspca_dev;
4002 if (sd->snapshot_pressed != state) {
4004 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4005 input_sync(gspca_dev->input_dev);
4008 sd->snapshot_needs_reset = 1;
4010 sd->snapshot_pressed = state;
4012 /* On the ov511 / ov519 we need to reset the button state
4013 multiple times, as resetting does not work as long as the
4014 button stays pressed */
4015 switch (sd->bridge) {
4017 case BRIDGE_OV511PLUS:
4020 sd->snapshot_needs_reset = 1;
4026 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4027 u8 *in, /* isoc packet */
4028 int len) /* iso packet length */
4030 struct sd *sd = (struct sd *) gspca_dev;
4032 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4033 * byte non-zero. The EOF packet has image width/height in the
4034 * 10th and 11th bytes. The 9th byte is given as follows:
4037 * 6: compression enabled
4038 * 5: 422/420/400 modes
4039 * 4: 422/420/400 modes
4041 * 2: snapshot button on
4045 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4047 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4050 if ((in[9] + 1) * 8 != gspca_dev->width ||
4051 (in[10] + 1) * 8 != gspca_dev->height) {
4052 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
4053 " requested: %dx%d\n",
4054 (in[9] + 1) * 8, (in[10] + 1) * 8,
4055 gspca_dev->width, gspca_dev->height);
4056 gspca_dev->last_packet_type = DISCARD_PACKET;
4059 /* Add 11 byte footer to frame, might be usefull */
4060 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4064 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4069 /* Ignore the packet number */
4072 /* intermediate packet */
4073 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4076 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4077 u8 *data, /* isoc packet */
4078 int len) /* iso packet length */
4080 struct sd *sd = (struct sd *) gspca_dev;
4082 /* A false positive here is likely, until OVT gives me
4083 * the definitive SOF/EOF format */
4084 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4085 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4086 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4087 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4091 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4094 /* Does this device use packet numbers ? */
4097 if (sd->packet_nr == data[len])
4099 /* The last few packets of the frame (which are all 0's
4100 except that they may contain part of the footer), are
4102 else if (sd->packet_nr == 0 || data[len]) {
4103 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
4104 (int)data[len], (int)sd->packet_nr);
4105 gspca_dev->last_packet_type = DISCARD_PACKET;
4110 /* intermediate packet */
4111 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4114 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4115 u8 *data, /* isoc packet */
4116 int len) /* iso packet length */
4118 /* Header of ov519 is 16 bytes:
4119 * Byte Value Description
4123 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4124 * 9 0xXX 0x01 initial frame without data,
4125 * 0x00 standard frame with image
4126 * 14 Lo in EOF: length of image data / 8
4130 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4132 case 0x50: /* start of frame */
4133 /* Don't check the button state here, as the state
4134 usually (always ?) changes at EOF and checking it
4135 here leads to unnecessary snapshot state resets. */
4140 if (data[0] == 0xff || data[1] == 0xd8)
4141 gspca_frame_add(gspca_dev, FIRST_PACKET,
4144 gspca_dev->last_packet_type = DISCARD_PACKET;
4146 case 0x51: /* end of frame */
4147 ov51x_handle_button(gspca_dev, data[11] & 1);
4149 gspca_dev->last_packet_type = DISCARD_PACKET;
4150 gspca_frame_add(gspca_dev, LAST_PACKET,
4156 /* intermediate packet */
4157 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4160 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4161 u8 *data, /* isoc packet */
4162 int len) /* iso packet length */
4164 struct sd *sd = (struct sd *) gspca_dev;
4166 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4168 /* A short read signals EOF */
4169 if (len < OVFX2_BULK_SIZE) {
4170 /* If the frame is short, and it is one of the first ones
4171 the sensor and bridge are still syncing, so drop it. */
4172 if (sd->first_frame) {
4174 if (gspca_dev->image_len <
4175 sd->gspca_dev.width * sd->gspca_dev.height)
4176 gspca_dev->last_packet_type = DISCARD_PACKET;
4178 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4179 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4183 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4184 u8 *data, /* isoc packet */
4185 int len) /* iso packet length */
4187 struct sd *sd = (struct sd *) gspca_dev;
4189 switch (sd->bridge) {
4191 case BRIDGE_OV511PLUS:
4192 ov511_pkt_scan(gspca_dev, data, len);
4195 case BRIDGE_OV518PLUS:
4196 ov518_pkt_scan(gspca_dev, data, len);
4199 ov519_pkt_scan(gspca_dev, data, len);
4202 ovfx2_pkt_scan(gspca_dev, data, len);
4204 case BRIDGE_W9968CF:
4205 w9968cf_pkt_scan(gspca_dev, data, len);
4210 /* -- management routines -- */
4212 static void setbrightness(struct gspca_dev *gspca_dev)
4214 struct sd *sd = (struct sd *) gspca_dev;
4217 val = sd->brightness;
4218 switch (sd->sensor) {
4227 i2c_w(sd, OV7610_REG_BRT, val);
4231 /* 7620 doesn't like manual changes when in auto mode */
4232 if (!sd->autobrightness)
4233 i2c_w(sd, OV7610_REG_BRT, val);
4237 * i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_AEC); */
4238 i2c_w(sd, OV7670_REG_BRIGHT, ov7670_abs_to_sm(val));
4243 static void setcontrast(struct gspca_dev *gspca_dev)
4245 struct sd *sd = (struct sd *) gspca_dev;
4249 switch (sd->sensor) {
4252 i2c_w(sd, OV7610_REG_CNT, val);
4256 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4259 static const __u8 ctab[] = {
4260 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4263 /* Use Y gamma control instead. Bit 0 enables it. */
4264 i2c_w(sd, 0x64, ctab[val >> 5]);
4268 case SEN_OV7620AE: {
4269 static const __u8 ctab[] = {
4270 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4271 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4274 /* Use Y gamma control instead. Bit 0 enables it. */
4275 i2c_w(sd, 0x64, ctab[val >> 4]);
4279 /* check that this isn't just the same as ov7610 */
4280 i2c_w(sd, OV7670_REG_CONTRAS, val >> 1);
4285 static void setcolors(struct gspca_dev *gspca_dev)
4287 struct sd *sd = (struct sd *) gspca_dev;
4291 switch (sd->sensor) {
4298 i2c_w(sd, OV7610_REG_SAT, val);
4302 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4303 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4306 i2c_w(sd, OV7610_REG_SAT, val);
4310 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4313 /* supported later once I work out how to do it
4314 * transparently fail now! */
4315 /* set REG_COM13 values for UV sat auto mode */
4320 static void setautobrightness(struct sd *sd)
4322 if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7648 ||
4323 sd->sensor == SEN_OV7670 ||
4324 sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4327 i2c_w_mask(sd, 0x2d, sd->autobrightness ? 0x10 : 0x00, 0x10);
4330 static void setfreq(struct sd *sd)
4332 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4335 if (sd->sensor == SEN_OV7670) {
4337 case 0: /* Banding filter disabled */
4338 i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_BFILT);
4341 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4343 i2c_w_mask(sd, OV7670_REG_COM11, 0x08, 0x18);
4346 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4348 i2c_w_mask(sd, OV7670_REG_COM11, 0x00, 0x18);
4350 case 3: /* Auto hz */
4351 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4353 i2c_w_mask(sd, OV7670_REG_COM11, OV7670_COM11_HZAUTO,
4359 case 0: /* Banding filter disabled */
4360 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4361 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4363 case 1: /* 50 hz (filter on and framerate adj) */
4364 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4365 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4366 /* 20 fps -> 16.667 fps */
4367 if (sd->sensor == SEN_OV6620 ||
4368 sd->sensor == SEN_OV6630 ||
4369 sd->sensor == SEN_OV66308AF)
4370 i2c_w(sd, 0x2b, 0x5e);
4372 i2c_w(sd, 0x2b, 0xac);
4374 case 2: /* 60 hz (filter on, ...) */
4375 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4376 if (sd->sensor == SEN_OV6620 ||
4377 sd->sensor == SEN_OV6630 ||
4378 sd->sensor == SEN_OV66308AF) {
4379 /* 20 fps -> 15 fps */
4380 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4381 i2c_w(sd, 0x2b, 0xa8);
4383 /* no framerate adj. */
4384 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4391 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
4393 struct sd *sd = (struct sd *) gspca_dev;
4395 sd->brightness = val;
4396 if (gspca_dev->streaming)
4397 setbrightness(gspca_dev);
4401 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
4403 struct sd *sd = (struct sd *) gspca_dev;
4405 *val = sd->brightness;
4409 static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val)
4411 struct sd *sd = (struct sd *) gspca_dev;
4414 if (gspca_dev->streaming)
4415 setcontrast(gspca_dev);
4419 static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val)
4421 struct sd *sd = (struct sd *) gspca_dev;
4423 *val = sd->contrast;
4427 static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val)
4429 struct sd *sd = (struct sd *) gspca_dev;
4432 if (gspca_dev->streaming)
4433 setcolors(gspca_dev);
4437 static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val)
4439 struct sd *sd = (struct sd *) gspca_dev;
4445 static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val)
4447 struct sd *sd = (struct sd *) gspca_dev;
4450 if (gspca_dev->streaming)
4455 static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val)
4457 struct sd *sd = (struct sd *) gspca_dev;
4463 static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val)
4465 struct sd *sd = (struct sd *) gspca_dev;
4468 if (gspca_dev->streaming)
4473 static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val)
4475 struct sd *sd = (struct sd *) gspca_dev;
4481 static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val)
4483 struct sd *sd = (struct sd *) gspca_dev;
4485 sd->autobrightness = val;
4486 if (gspca_dev->streaming)
4487 setautobrightness(sd);
4491 static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val)
4493 struct sd *sd = (struct sd *) gspca_dev;
4495 *val = sd->autobrightness;
4499 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
4501 struct sd *sd = (struct sd *) gspca_dev;
4504 if (gspca_dev->streaming) {
4506 /* Ugly but necessary */
4507 if (sd->bridge == BRIDGE_W9968CF)
4508 w9968cf_set_crop_window(sd);
4513 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
4515 struct sd *sd = (struct sd *) gspca_dev;
4521 static int sd_querymenu(struct gspca_dev *gspca_dev,
4522 struct v4l2_querymenu *menu)
4524 struct sd *sd = (struct sd *) gspca_dev;
4527 case V4L2_CID_POWER_LINE_FREQUENCY:
4528 switch (menu->index) {
4529 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4530 strcpy((char *) menu->name, "NoFliker");
4532 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4533 strcpy((char *) menu->name, "50 Hz");
4535 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4536 strcpy((char *) menu->name, "60 Hz");
4539 if (sd->sensor != SEN_OV7670)
4542 strcpy((char *) menu->name, "Automatic");
4550 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4551 struct v4l2_jpegcompression *jcomp)
4553 struct sd *sd = (struct sd *) gspca_dev;
4555 if (sd->bridge != BRIDGE_W9968CF)
4558 memset(jcomp, 0, sizeof *jcomp);
4559 jcomp->quality = sd->quality;
4560 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4561 V4L2_JPEG_MARKER_DRI;
4565 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4566 struct v4l2_jpegcompression *jcomp)
4568 struct sd *sd = (struct sd *) gspca_dev;
4570 if (sd->bridge != BRIDGE_W9968CF)
4573 if (gspca_dev->streaming)
4576 if (jcomp->quality < QUALITY_MIN)
4577 sd->quality = QUALITY_MIN;
4578 else if (jcomp->quality > QUALITY_MAX)
4579 sd->quality = QUALITY_MAX;
4581 sd->quality = jcomp->quality;
4583 /* Return resulting jcomp params to app */
4584 sd_get_jcomp(gspca_dev, jcomp);
4589 /* sub-driver description */
4590 static const struct sd_desc sd_desc = {
4591 .name = MODULE_NAME,
4593 .nctrls = ARRAY_SIZE(sd_ctrls),
4594 .config = sd_config,
4599 .pkt_scan = sd_pkt_scan,
4600 .dq_callback = sd_reset_snapshot,
4601 .querymenu = sd_querymenu,
4602 .get_jcomp = sd_get_jcomp,
4603 .set_jcomp = sd_set_jcomp,
4609 /* -- module initialisation -- */
4610 static const __devinitdata struct usb_device_id device_table[] = {
4611 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4612 {USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
4613 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4614 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4615 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4616 {USB_DEVICE(0x041e, 0x4064),
4617 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4618 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4619 {USB_DEVICE(0x041e, 0x4068),
4620 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4621 {USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
4622 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4623 {USB_DEVICE(0x054c, 0x0155),
4624 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4625 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4626 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4627 {USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
4628 {USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
4629 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4630 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4631 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4632 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4633 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4634 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4635 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4636 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4637 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4638 {USB_DEVICE(0x8020, 0xEF04), .driver_info = BRIDGE_OVFX2 },
4642 MODULE_DEVICE_TABLE(usb, device_table);
4644 /* -- device connect -- */
4645 static int sd_probe(struct usb_interface *intf,
4646 const struct usb_device_id *id)
4648 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4652 static struct usb_driver sd_driver = {
4653 .name = MODULE_NAME,
4654 .id_table = device_table,
4656 .disconnect = gspca_disconnect,
4658 .suspend = gspca_suspend,
4659 .resume = gspca_resume,
4663 /* -- module insert / remove -- */
4664 static int __init sd_mod_init(void)
4667 ret = usb_register(&sd_driver);
4670 PDEBUG(D_PROBE, "registered");
4673 static void __exit sd_mod_exit(void)
4675 usb_deregister(&sd_driver);
4676 PDEBUG(D_PROBE, "deregistered");
4679 module_init(sd_mod_init);
4680 module_exit(sd_mod_exit);
4682 module_param(frame_rate, int, 0644);
4683 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");