md: use MD_RECOVERY_INTR instead of kthread_should_stop in resync thread.
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95         spin_lock_irq(conf->hash_locks + hash);
96         spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101         spin_unlock(&conf->device_lock);
102         spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107         int i;
108         local_irq_disable();
109         spin_lock(conf->hash_locks);
110         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112         spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117         int i;
118         spin_unlock(&conf->device_lock);
119         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120                 spin_unlock(conf->hash_locks + i - 1);
121         local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135         int sectors = bio_sectors(bio);
136         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
137                 return bio->bi_next;
138         else
139                 return NULL;
140 }
141
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149         return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155         return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161         atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165         unsigned int cnt)
166 {
167         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168         int old, new;
169
170         do {
171                 old = atomic_read(segments);
172                 new = (old & 0xffff) | (cnt << 16);
173         } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179         atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185         if (sh->ddf_layout)
186                 /* ddf always start from first device */
187                 return 0;
188         /* md starts just after Q block */
189         if (sh->qd_idx == sh->disks - 1)
190                 return 0;
191         else
192                 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196         disk++;
197         return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206                              int *count, int syndrome_disks)
207 {
208         int slot = *count;
209
210         if (sh->ddf_layout)
211                 (*count)++;
212         if (idx == sh->pd_idx)
213                 return syndrome_disks;
214         if (idx == sh->qd_idx)
215                 return syndrome_disks + 1;
216         if (!sh->ddf_layout)
217                 (*count)++;
218         return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223         struct bio *bi = return_bi;
224         while (bi) {
225
226                 return_bi = bi->bi_next;
227                 bi->bi_next = NULL;
228                 bi->bi_size = 0;
229                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230                                          bi, 0);
231                 bio_endio(bi, 0);
232                 bi = return_bi;
233         }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240         return sh->check_state || sh->reconstruct_state ||
241                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247         struct r5conf *conf = sh->raid_conf;
248         struct r5worker_group *group;
249         int thread_cnt;
250         int i, cpu = sh->cpu;
251
252         if (!cpu_online(cpu)) {
253                 cpu = cpumask_any(cpu_online_mask);
254                 sh->cpu = cpu;
255         }
256
257         if (list_empty(&sh->lru)) {
258                 struct r5worker_group *group;
259                 group = conf->worker_groups + cpu_to_group(cpu);
260                 list_add_tail(&sh->lru, &group->handle_list);
261                 group->stripes_cnt++;
262                 sh->group = group;
263         }
264
265         if (conf->worker_cnt_per_group == 0) {
266                 md_wakeup_thread(conf->mddev->thread);
267                 return;
268         }
269
270         group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272         group->workers[0].working = true;
273         /* at least one worker should run to avoid race */
274         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277         /* wakeup more workers */
278         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279                 if (group->workers[i].working == false) {
280                         group->workers[i].working = true;
281                         queue_work_on(sh->cpu, raid5_wq,
282                                       &group->workers[i].work);
283                         thread_cnt--;
284                 }
285         }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289                               struct list_head *temp_inactive_list)
290 {
291         BUG_ON(!list_empty(&sh->lru));
292         BUG_ON(atomic_read(&conf->active_stripes)==0);
293         if (test_bit(STRIPE_HANDLE, &sh->state)) {
294                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296                         list_add_tail(&sh->lru, &conf->delayed_list);
297                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298                            sh->bm_seq - conf->seq_write > 0)
299                         list_add_tail(&sh->lru, &conf->bitmap_list);
300                 else {
301                         clear_bit(STRIPE_DELAYED, &sh->state);
302                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
303                         if (conf->worker_cnt_per_group == 0) {
304                                 list_add_tail(&sh->lru, &conf->handle_list);
305                         } else {
306                                 raid5_wakeup_stripe_thread(sh);
307                                 return;
308                         }
309                 }
310                 md_wakeup_thread(conf->mddev->thread);
311         } else {
312                 BUG_ON(stripe_operations_active(sh));
313                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314                         if (atomic_dec_return(&conf->preread_active_stripes)
315                             < IO_THRESHOLD)
316                                 md_wakeup_thread(conf->mddev->thread);
317                 atomic_dec(&conf->active_stripes);
318                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319                         list_add_tail(&sh->lru, temp_inactive_list);
320         }
321 }
322
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324                              struct list_head *temp_inactive_list)
325 {
326         if (atomic_dec_and_test(&sh->count))
327                 do_release_stripe(conf, sh, temp_inactive_list);
328 }
329
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338                                          struct list_head *temp_inactive_list,
339                                          int hash)
340 {
341         int size;
342         bool do_wakeup = false;
343         unsigned long flags;
344
345         if (hash == NR_STRIPE_HASH_LOCKS) {
346                 size = NR_STRIPE_HASH_LOCKS;
347                 hash = NR_STRIPE_HASH_LOCKS - 1;
348         } else
349                 size = 1;
350         while (size) {
351                 struct list_head *list = &temp_inactive_list[size - 1];
352
353                 /*
354                  * We don't hold any lock here yet, get_active_stripe() might
355                  * remove stripes from the list
356                  */
357                 if (!list_empty_careful(list)) {
358                         spin_lock_irqsave(conf->hash_locks + hash, flags);
359                         if (list_empty(conf->inactive_list + hash) &&
360                             !list_empty(list))
361                                 atomic_dec(&conf->empty_inactive_list_nr);
362                         list_splice_tail_init(list, conf->inactive_list + hash);
363                         do_wakeup = true;
364                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365                 }
366                 size--;
367                 hash--;
368         }
369
370         if (do_wakeup) {
371                 wake_up(&conf->wait_for_stripe);
372                 if (conf->retry_read_aligned)
373                         md_wakeup_thread(conf->mddev->thread);
374         }
375 }
376
377 static struct llist_node *llist_reverse_order(struct llist_node *head)
378 {
379         struct llist_node *new_head = NULL;
380
381         while (head) {
382                 struct llist_node *tmp = head;
383                 head = head->next;
384                 tmp->next = new_head;
385                 new_head = tmp;
386         }
387
388         return new_head;
389 }
390
391 /* should hold conf->device_lock already */
392 static int release_stripe_list(struct r5conf *conf,
393                                struct list_head *temp_inactive_list)
394 {
395         struct stripe_head *sh;
396         int count = 0;
397         struct llist_node *head;
398
399         head = llist_del_all(&conf->released_stripes);
400         head = llist_reverse_order(head);
401         while (head) {
402                 int hash;
403
404                 sh = llist_entry(head, struct stripe_head, release_list);
405                 head = llist_next(head);
406                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
407                 smp_mb();
408                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
409                 /*
410                  * Don't worry the bit is set here, because if the bit is set
411                  * again, the count is always > 1. This is true for
412                  * STRIPE_ON_UNPLUG_LIST bit too.
413                  */
414                 hash = sh->hash_lock_index;
415                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
416                 count++;
417         }
418
419         return count;
420 }
421
422 static void release_stripe(struct stripe_head *sh)
423 {
424         struct r5conf *conf = sh->raid_conf;
425         unsigned long flags;
426         struct list_head list;
427         int hash;
428         bool wakeup;
429
430         if (unlikely(!conf->mddev->thread) ||
431                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
432                 goto slow_path;
433         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
434         if (wakeup)
435                 md_wakeup_thread(conf->mddev->thread);
436         return;
437 slow_path:
438         local_irq_save(flags);
439         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
440         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
441                 INIT_LIST_HEAD(&list);
442                 hash = sh->hash_lock_index;
443                 do_release_stripe(conf, sh, &list);
444                 spin_unlock(&conf->device_lock);
445                 release_inactive_stripe_list(conf, &list, hash);
446         }
447         local_irq_restore(flags);
448 }
449
450 static inline void remove_hash(struct stripe_head *sh)
451 {
452         pr_debug("remove_hash(), stripe %llu\n",
453                 (unsigned long long)sh->sector);
454
455         hlist_del_init(&sh->hash);
456 }
457
458 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
459 {
460         struct hlist_head *hp = stripe_hash(conf, sh->sector);
461
462         pr_debug("insert_hash(), stripe %llu\n",
463                 (unsigned long long)sh->sector);
464
465         hlist_add_head(&sh->hash, hp);
466 }
467
468
469 /* find an idle stripe, make sure it is unhashed, and return it. */
470 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
471 {
472         struct stripe_head *sh = NULL;
473         struct list_head *first;
474
475         if (list_empty(conf->inactive_list + hash))
476                 goto out;
477         first = (conf->inactive_list + hash)->next;
478         sh = list_entry(first, struct stripe_head, lru);
479         list_del_init(first);
480         remove_hash(sh);
481         atomic_inc(&conf->active_stripes);
482         BUG_ON(hash != sh->hash_lock_index);
483         if (list_empty(conf->inactive_list + hash))
484                 atomic_inc(&conf->empty_inactive_list_nr);
485 out:
486         return sh;
487 }
488
489 static void shrink_buffers(struct stripe_head *sh)
490 {
491         struct page *p;
492         int i;
493         int num = sh->raid_conf->pool_size;
494
495         for (i = 0; i < num ; i++) {
496                 p = sh->dev[i].page;
497                 if (!p)
498                         continue;
499                 sh->dev[i].page = NULL;
500                 put_page(p);
501         }
502 }
503
504 static int grow_buffers(struct stripe_head *sh)
505 {
506         int i;
507         int num = sh->raid_conf->pool_size;
508
509         for (i = 0; i < num; i++) {
510                 struct page *page;
511
512                 if (!(page = alloc_page(GFP_KERNEL))) {
513                         return 1;
514                 }
515                 sh->dev[i].page = page;
516         }
517         return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522                             struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526         struct r5conf *conf = sh->raid_conf;
527         int i, seq;
528
529         BUG_ON(atomic_read(&sh->count) != 0);
530         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531         BUG_ON(stripe_operations_active(sh));
532
533         pr_debug("init_stripe called, stripe %llu\n",
534                 (unsigned long long)sh->sector);
535
536         remove_hash(sh);
537 retry:
538         seq = read_seqcount_begin(&conf->gen_lock);
539         sh->generation = conf->generation - previous;
540         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
541         sh->sector = sector;
542         stripe_set_idx(sector, conf, previous, sh);
543         sh->state = 0;
544
545
546         for (i = sh->disks; i--; ) {
547                 struct r5dev *dev = &sh->dev[i];
548
549                 if (dev->toread || dev->read || dev->towrite || dev->written ||
550                     test_bit(R5_LOCKED, &dev->flags)) {
551                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
552                                (unsigned long long)sh->sector, i, dev->toread,
553                                dev->read, dev->towrite, dev->written,
554                                test_bit(R5_LOCKED, &dev->flags));
555                         WARN_ON(1);
556                 }
557                 dev->flags = 0;
558                 raid5_build_block(sh, i, previous);
559         }
560         if (read_seqcount_retry(&conf->gen_lock, seq))
561                 goto retry;
562         insert_hash(conf, sh);
563         sh->cpu = smp_processor_id();
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567                                          short generation)
568 {
569         struct stripe_head *sh;
570
571         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573                 if (sh->sector == sector && sh->generation == generation)
574                         return sh;
575         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576         return NULL;
577 }
578
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594         int degraded, degraded2;
595         int i;
596
597         rcu_read_lock();
598         degraded = 0;
599         for (i = 0; i < conf->previous_raid_disks; i++) {
600                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = rcu_dereference(conf->disks[i].replacement);
603                 if (!rdev || test_bit(Faulty, &rdev->flags))
604                         degraded++;
605                 else if (test_bit(In_sync, &rdev->flags))
606                         ;
607                 else
608                         /* not in-sync or faulty.
609                          * If the reshape increases the number of devices,
610                          * this is being recovered by the reshape, so
611                          * this 'previous' section is not in_sync.
612                          * If the number of devices is being reduced however,
613                          * the device can only be part of the array if
614                          * we are reverting a reshape, so this section will
615                          * be in-sync.
616                          */
617                         if (conf->raid_disks >= conf->previous_raid_disks)
618                                 degraded++;
619         }
620         rcu_read_unlock();
621         if (conf->raid_disks == conf->previous_raid_disks)
622                 return degraded;
623         rcu_read_lock();
624         degraded2 = 0;
625         for (i = 0; i < conf->raid_disks; i++) {
626                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627                 if (rdev && test_bit(Faulty, &rdev->flags))
628                         rdev = rcu_dereference(conf->disks[i].replacement);
629                 if (!rdev || test_bit(Faulty, &rdev->flags))
630                         degraded2++;
631                 else if (test_bit(In_sync, &rdev->flags))
632                         ;
633                 else
634                         /* not in-sync or faulty.
635                          * If reshape increases the number of devices, this
636                          * section has already been recovered, else it
637                          * almost certainly hasn't.
638                          */
639                         if (conf->raid_disks <= conf->previous_raid_disks)
640                                 degraded2++;
641         }
642         rcu_read_unlock();
643         if (degraded2 > degraded)
644                 return degraded2;
645         return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650         int degraded;
651
652         if (conf->mddev->reshape_position == MaxSector)
653                 return conf->mddev->degraded > conf->max_degraded;
654
655         degraded = calc_degraded(conf);
656         if (degraded > conf->max_degraded)
657                 return 1;
658         return 0;
659 }
660
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663                   int previous, int noblock, int noquiesce)
664 {
665         struct stripe_head *sh;
666         int hash = stripe_hash_locks_hash(sector);
667
668         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670         spin_lock_irq(conf->hash_locks + hash);
671
672         do {
673                 wait_event_lock_irq(conf->wait_for_stripe,
674                                     conf->quiesce == 0 || noquiesce,
675                                     *(conf->hash_locks + hash));
676                 sh = __find_stripe(conf, sector, conf->generation - previous);
677                 if (!sh) {
678                         if (!conf->inactive_blocked)
679                                 sh = get_free_stripe(conf, hash);
680                         if (noblock && sh == NULL)
681                                 break;
682                         if (!sh) {
683                                 conf->inactive_blocked = 1;
684                                 wait_event_lock_irq(
685                                         conf->wait_for_stripe,
686                                         !list_empty(conf->inactive_list + hash) &&
687                                         (atomic_read(&conf->active_stripes)
688                                          < (conf->max_nr_stripes * 3 / 4)
689                                          || !conf->inactive_blocked),
690                                         *(conf->hash_locks + hash));
691                                 conf->inactive_blocked = 0;
692                         } else
693                                 init_stripe(sh, sector, previous);
694                 } else {
695                         if (atomic_read(&sh->count)) {
696                                 BUG_ON(!list_empty(&sh->lru)
697                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
698                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
699                                     && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
700                         } else {
701                                 spin_lock(&conf->device_lock);
702                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
703                                         atomic_inc(&conf->active_stripes);
704                                 if (list_empty(&sh->lru) &&
705                                     !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state) &&
706                                     !test_bit(STRIPE_EXPANDING, &sh->state))
707                                         BUG();
708                                 list_del_init(&sh->lru);
709                                 if (sh->group) {
710                                         sh->group->stripes_cnt--;
711                                         sh->group = NULL;
712                                 }
713                                 spin_unlock(&conf->device_lock);
714                         }
715                 }
716         } while (sh == NULL);
717
718         if (sh)
719                 atomic_inc(&sh->count);
720
721         spin_unlock_irq(conf->hash_locks + hash);
722         return sh;
723 }
724
725 /* Determine if 'data_offset' or 'new_data_offset' should be used
726  * in this stripe_head.
727  */
728 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
729 {
730         sector_t progress = conf->reshape_progress;
731         /* Need a memory barrier to make sure we see the value
732          * of conf->generation, or ->data_offset that was set before
733          * reshape_progress was updated.
734          */
735         smp_rmb();
736         if (progress == MaxSector)
737                 return 0;
738         if (sh->generation == conf->generation - 1)
739                 return 0;
740         /* We are in a reshape, and this is a new-generation stripe,
741          * so use new_data_offset.
742          */
743         return 1;
744 }
745
746 static void
747 raid5_end_read_request(struct bio *bi, int error);
748 static void
749 raid5_end_write_request(struct bio *bi, int error);
750
751 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
752 {
753         struct r5conf *conf = sh->raid_conf;
754         int i, disks = sh->disks;
755
756         might_sleep();
757
758         for (i = disks; i--; ) {
759                 int rw;
760                 int replace_only = 0;
761                 struct bio *bi, *rbi;
762                 struct md_rdev *rdev, *rrdev = NULL;
763                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
764                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
765                                 rw = WRITE_FUA;
766                         else
767                                 rw = WRITE;
768                         if (test_bit(R5_Discard, &sh->dev[i].flags))
769                                 rw |= REQ_DISCARD;
770                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
771                         rw = READ;
772                 else if (test_and_clear_bit(R5_WantReplace,
773                                             &sh->dev[i].flags)) {
774                         rw = WRITE;
775                         replace_only = 1;
776                 } else
777                         continue;
778                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
779                         rw |= REQ_SYNC;
780
781                 bi = &sh->dev[i].req;
782                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
783
784                 rcu_read_lock();
785                 rrdev = rcu_dereference(conf->disks[i].replacement);
786                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
787                 rdev = rcu_dereference(conf->disks[i].rdev);
788                 if (!rdev) {
789                         rdev = rrdev;
790                         rrdev = NULL;
791                 }
792                 if (rw & WRITE) {
793                         if (replace_only)
794                                 rdev = NULL;
795                         if (rdev == rrdev)
796                                 /* We raced and saw duplicates */
797                                 rrdev = NULL;
798                 } else {
799                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
800                                 rdev = rrdev;
801                         rrdev = NULL;
802                 }
803
804                 if (rdev && test_bit(Faulty, &rdev->flags))
805                         rdev = NULL;
806                 if (rdev)
807                         atomic_inc(&rdev->nr_pending);
808                 if (rrdev && test_bit(Faulty, &rrdev->flags))
809                         rrdev = NULL;
810                 if (rrdev)
811                         atomic_inc(&rrdev->nr_pending);
812                 rcu_read_unlock();
813
814                 /* We have already checked bad blocks for reads.  Now
815                  * need to check for writes.  We never accept write errors
816                  * on the replacement, so we don't to check rrdev.
817                  */
818                 while ((rw & WRITE) && rdev &&
819                        test_bit(WriteErrorSeen, &rdev->flags)) {
820                         sector_t first_bad;
821                         int bad_sectors;
822                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
823                                               &first_bad, &bad_sectors);
824                         if (!bad)
825                                 break;
826
827                         if (bad < 0) {
828                                 set_bit(BlockedBadBlocks, &rdev->flags);
829                                 if (!conf->mddev->external &&
830                                     conf->mddev->flags) {
831                                         /* It is very unlikely, but we might
832                                          * still need to write out the
833                                          * bad block log - better give it
834                                          * a chance*/
835                                         md_check_recovery(conf->mddev);
836                                 }
837                                 /*
838                                  * Because md_wait_for_blocked_rdev
839                                  * will dec nr_pending, we must
840                                  * increment it first.
841                                  */
842                                 atomic_inc(&rdev->nr_pending);
843                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
844                         } else {
845                                 /* Acknowledged bad block - skip the write */
846                                 rdev_dec_pending(rdev, conf->mddev);
847                                 rdev = NULL;
848                         }
849                 }
850
851                 if (rdev) {
852                         if (s->syncing || s->expanding || s->expanded
853                             || s->replacing)
854                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
855
856                         set_bit(STRIPE_IO_STARTED, &sh->state);
857
858                         bio_reset(bi);
859                         bi->bi_bdev = rdev->bdev;
860                         bi->bi_rw = rw;
861                         bi->bi_end_io = (rw & WRITE)
862                                 ? raid5_end_write_request
863                                 : raid5_end_read_request;
864                         bi->bi_private = sh;
865
866                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
867                                 __func__, (unsigned long long)sh->sector,
868                                 bi->bi_rw, i);
869                         atomic_inc(&sh->count);
870                         if (use_new_offset(conf, sh))
871                                 bi->bi_sector = (sh->sector
872                                                  + rdev->new_data_offset);
873                         else
874                                 bi->bi_sector = (sh->sector
875                                                  + rdev->data_offset);
876                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
877                                 bi->bi_rw |= REQ_FLUSH;
878
879                         bi->bi_vcnt = 1;
880                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
881                         bi->bi_io_vec[0].bv_offset = 0;
882                         bi->bi_size = STRIPE_SIZE;
883                         /*
884                          * If this is discard request, set bi_vcnt 0. We don't
885                          * want to confuse SCSI because SCSI will replace payload
886                          */
887                         if (rw & REQ_DISCARD)
888                                 bi->bi_vcnt = 0;
889                         if (rrdev)
890                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
891
892                         if (conf->mddev->gendisk)
893                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
894                                                       bi, disk_devt(conf->mddev->gendisk),
895                                                       sh->dev[i].sector);
896                         generic_make_request(bi);
897                 }
898                 if (rrdev) {
899                         if (s->syncing || s->expanding || s->expanded
900                             || s->replacing)
901                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
902
903                         set_bit(STRIPE_IO_STARTED, &sh->state);
904
905                         bio_reset(rbi);
906                         rbi->bi_bdev = rrdev->bdev;
907                         rbi->bi_rw = rw;
908                         BUG_ON(!(rw & WRITE));
909                         rbi->bi_end_io = raid5_end_write_request;
910                         rbi->bi_private = sh;
911
912                         pr_debug("%s: for %llu schedule op %ld on "
913                                  "replacement disc %d\n",
914                                 __func__, (unsigned long long)sh->sector,
915                                 rbi->bi_rw, i);
916                         atomic_inc(&sh->count);
917                         if (use_new_offset(conf, sh))
918                                 rbi->bi_sector = (sh->sector
919                                                   + rrdev->new_data_offset);
920                         else
921                                 rbi->bi_sector = (sh->sector
922                                                   + rrdev->data_offset);
923                         rbi->bi_vcnt = 1;
924                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
925                         rbi->bi_io_vec[0].bv_offset = 0;
926                         rbi->bi_size = STRIPE_SIZE;
927                         /*
928                          * If this is discard request, set bi_vcnt 0. We don't
929                          * want to confuse SCSI because SCSI will replace payload
930                          */
931                         if (rw & REQ_DISCARD)
932                                 rbi->bi_vcnt = 0;
933                         if (conf->mddev->gendisk)
934                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
935                                                       rbi, disk_devt(conf->mddev->gendisk),
936                                                       sh->dev[i].sector);
937                         generic_make_request(rbi);
938                 }
939                 if (!rdev && !rrdev) {
940                         if (rw & WRITE)
941                                 set_bit(STRIPE_DEGRADED, &sh->state);
942                         pr_debug("skip op %ld on disc %d for sector %llu\n",
943                                 bi->bi_rw, i, (unsigned long long)sh->sector);
944                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
945                         set_bit(STRIPE_HANDLE, &sh->state);
946                 }
947         }
948 }
949
950 static struct dma_async_tx_descriptor *
951 async_copy_data(int frombio, struct bio *bio, struct page *page,
952         sector_t sector, struct dma_async_tx_descriptor *tx)
953 {
954         struct bio_vec *bvl;
955         struct page *bio_page;
956         int i;
957         int page_offset;
958         struct async_submit_ctl submit;
959         enum async_tx_flags flags = 0;
960
961         if (bio->bi_sector >= sector)
962                 page_offset = (signed)(bio->bi_sector - sector) * 512;
963         else
964                 page_offset = (signed)(sector - bio->bi_sector) * -512;
965
966         if (frombio)
967                 flags |= ASYNC_TX_FENCE;
968         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
969
970         bio_for_each_segment(bvl, bio, i) {
971                 int len = bvl->bv_len;
972                 int clen;
973                 int b_offset = 0;
974
975                 if (page_offset < 0) {
976                         b_offset = -page_offset;
977                         page_offset += b_offset;
978                         len -= b_offset;
979                 }
980
981                 if (len > 0 && page_offset + len > STRIPE_SIZE)
982                         clen = STRIPE_SIZE - page_offset;
983                 else
984                         clen = len;
985
986                 if (clen > 0) {
987                         b_offset += bvl->bv_offset;
988                         bio_page = bvl->bv_page;
989                         if (frombio)
990                                 tx = async_memcpy(page, bio_page, page_offset,
991                                                   b_offset, clen, &submit);
992                         else
993                                 tx = async_memcpy(bio_page, page, b_offset,
994                                                   page_offset, clen, &submit);
995                 }
996                 /* chain the operations */
997                 submit.depend_tx = tx;
998
999                 if (clen < len) /* hit end of page */
1000                         break;
1001                 page_offset +=  len;
1002         }
1003
1004         return tx;
1005 }
1006
1007 static void ops_complete_biofill(void *stripe_head_ref)
1008 {
1009         struct stripe_head *sh = stripe_head_ref;
1010         struct bio *return_bi = NULL;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         /* clear completed biofills */
1017         for (i = sh->disks; i--; ) {
1018                 struct r5dev *dev = &sh->dev[i];
1019
1020                 /* acknowledge completion of a biofill operation */
1021                 /* and check if we need to reply to a read request,
1022                  * new R5_Wantfill requests are held off until
1023                  * !STRIPE_BIOFILL_RUN
1024                  */
1025                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1026                         struct bio *rbi, *rbi2;
1027
1028                         BUG_ON(!dev->read);
1029                         rbi = dev->read;
1030                         dev->read = NULL;
1031                         while (rbi && rbi->bi_sector <
1032                                 dev->sector + STRIPE_SECTORS) {
1033                                 rbi2 = r5_next_bio(rbi, dev->sector);
1034                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1035                                         rbi->bi_next = return_bi;
1036                                         return_bi = rbi;
1037                                 }
1038                                 rbi = rbi2;
1039                         }
1040                 }
1041         }
1042         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1043
1044         return_io(return_bi);
1045
1046         set_bit(STRIPE_HANDLE, &sh->state);
1047         release_stripe(sh);
1048 }
1049
1050 static void ops_run_biofill(struct stripe_head *sh)
1051 {
1052         struct dma_async_tx_descriptor *tx = NULL;
1053         struct async_submit_ctl submit;
1054         int i;
1055
1056         pr_debug("%s: stripe %llu\n", __func__,
1057                 (unsigned long long)sh->sector);
1058
1059         for (i = sh->disks; i--; ) {
1060                 struct r5dev *dev = &sh->dev[i];
1061                 if (test_bit(R5_Wantfill, &dev->flags)) {
1062                         struct bio *rbi;
1063                         spin_lock_irq(&sh->stripe_lock);
1064                         dev->read = rbi = dev->toread;
1065                         dev->toread = NULL;
1066                         spin_unlock_irq(&sh->stripe_lock);
1067                         while (rbi && rbi->bi_sector <
1068                                 dev->sector + STRIPE_SECTORS) {
1069                                 tx = async_copy_data(0, rbi, dev->page,
1070                                         dev->sector, tx);
1071                                 rbi = r5_next_bio(rbi, dev->sector);
1072                         }
1073                 }
1074         }
1075
1076         atomic_inc(&sh->count);
1077         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1078         async_trigger_callback(&submit);
1079 }
1080
1081 static void mark_target_uptodate(struct stripe_head *sh, int target)
1082 {
1083         struct r5dev *tgt;
1084
1085         if (target < 0)
1086                 return;
1087
1088         tgt = &sh->dev[target];
1089         set_bit(R5_UPTODATE, &tgt->flags);
1090         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1091         clear_bit(R5_Wantcompute, &tgt->flags);
1092 }
1093
1094 static void ops_complete_compute(void *stripe_head_ref)
1095 {
1096         struct stripe_head *sh = stripe_head_ref;
1097
1098         pr_debug("%s: stripe %llu\n", __func__,
1099                 (unsigned long long)sh->sector);
1100
1101         /* mark the computed target(s) as uptodate */
1102         mark_target_uptodate(sh, sh->ops.target);
1103         mark_target_uptodate(sh, sh->ops.target2);
1104
1105         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1106         if (sh->check_state == check_state_compute_run)
1107                 sh->check_state = check_state_compute_result;
1108         set_bit(STRIPE_HANDLE, &sh->state);
1109         release_stripe(sh);
1110 }
1111
1112 /* return a pointer to the address conversion region of the scribble buffer */
1113 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1114                                  struct raid5_percpu *percpu)
1115 {
1116         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1117 }
1118
1119 static struct dma_async_tx_descriptor *
1120 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1121 {
1122         int disks = sh->disks;
1123         struct page **xor_srcs = percpu->scribble;
1124         int target = sh->ops.target;
1125         struct r5dev *tgt = &sh->dev[target];
1126         struct page *xor_dest = tgt->page;
1127         int count = 0;
1128         struct dma_async_tx_descriptor *tx;
1129         struct async_submit_ctl submit;
1130         int i;
1131
1132         pr_debug("%s: stripe %llu block: %d\n",
1133                 __func__, (unsigned long long)sh->sector, target);
1134         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1135
1136         for (i = disks; i--; )
1137                 if (i != target)
1138                         xor_srcs[count++] = sh->dev[i].page;
1139
1140         atomic_inc(&sh->count);
1141
1142         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1143                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1144         if (unlikely(count == 1))
1145                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1146         else
1147                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1148
1149         return tx;
1150 }
1151
1152 /* set_syndrome_sources - populate source buffers for gen_syndrome
1153  * @srcs - (struct page *) array of size sh->disks
1154  * @sh - stripe_head to parse
1155  *
1156  * Populates srcs in proper layout order for the stripe and returns the
1157  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1158  * destination buffer is recorded in srcs[count] and the Q destination
1159  * is recorded in srcs[count+1]].
1160  */
1161 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1162 {
1163         int disks = sh->disks;
1164         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1165         int d0_idx = raid6_d0(sh);
1166         int count;
1167         int i;
1168
1169         for (i = 0; i < disks; i++)
1170                 srcs[i] = NULL;
1171
1172         count = 0;
1173         i = d0_idx;
1174         do {
1175                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1176
1177                 srcs[slot] = sh->dev[i].page;
1178                 i = raid6_next_disk(i, disks);
1179         } while (i != d0_idx);
1180
1181         return syndrome_disks;
1182 }
1183
1184 static struct dma_async_tx_descriptor *
1185 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1186 {
1187         int disks = sh->disks;
1188         struct page **blocks = percpu->scribble;
1189         int target;
1190         int qd_idx = sh->qd_idx;
1191         struct dma_async_tx_descriptor *tx;
1192         struct async_submit_ctl submit;
1193         struct r5dev *tgt;
1194         struct page *dest;
1195         int i;
1196         int count;
1197
1198         if (sh->ops.target < 0)
1199                 target = sh->ops.target2;
1200         else if (sh->ops.target2 < 0)
1201                 target = sh->ops.target;
1202         else
1203                 /* we should only have one valid target */
1204                 BUG();
1205         BUG_ON(target < 0);
1206         pr_debug("%s: stripe %llu block: %d\n",
1207                 __func__, (unsigned long long)sh->sector, target);
1208
1209         tgt = &sh->dev[target];
1210         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1211         dest = tgt->page;
1212
1213         atomic_inc(&sh->count);
1214
1215         if (target == qd_idx) {
1216                 count = set_syndrome_sources(blocks, sh);
1217                 blocks[count] = NULL; /* regenerating p is not necessary */
1218                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1219                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1220                                   ops_complete_compute, sh,
1221                                   to_addr_conv(sh, percpu));
1222                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1223         } else {
1224                 /* Compute any data- or p-drive using XOR */
1225                 count = 0;
1226                 for (i = disks; i-- ; ) {
1227                         if (i == target || i == qd_idx)
1228                                 continue;
1229                         blocks[count++] = sh->dev[i].page;
1230                 }
1231
1232                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1233                                   NULL, ops_complete_compute, sh,
1234                                   to_addr_conv(sh, percpu));
1235                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1236         }
1237
1238         return tx;
1239 }
1240
1241 static struct dma_async_tx_descriptor *
1242 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1243 {
1244         int i, count, disks = sh->disks;
1245         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1246         int d0_idx = raid6_d0(sh);
1247         int faila = -1, failb = -1;
1248         int target = sh->ops.target;
1249         int target2 = sh->ops.target2;
1250         struct r5dev *tgt = &sh->dev[target];
1251         struct r5dev *tgt2 = &sh->dev[target2];
1252         struct dma_async_tx_descriptor *tx;
1253         struct page **blocks = percpu->scribble;
1254         struct async_submit_ctl submit;
1255
1256         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1257                  __func__, (unsigned long long)sh->sector, target, target2);
1258         BUG_ON(target < 0 || target2 < 0);
1259         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1260         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1261
1262         /* we need to open-code set_syndrome_sources to handle the
1263          * slot number conversion for 'faila' and 'failb'
1264          */
1265         for (i = 0; i < disks ; i++)
1266                 blocks[i] = NULL;
1267         count = 0;
1268         i = d0_idx;
1269         do {
1270                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1271
1272                 blocks[slot] = sh->dev[i].page;
1273
1274                 if (i == target)
1275                         faila = slot;
1276                 if (i == target2)
1277                         failb = slot;
1278                 i = raid6_next_disk(i, disks);
1279         } while (i != d0_idx);
1280
1281         BUG_ON(faila == failb);
1282         if (failb < faila)
1283                 swap(faila, failb);
1284         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1285                  __func__, (unsigned long long)sh->sector, faila, failb);
1286
1287         atomic_inc(&sh->count);
1288
1289         if (failb == syndrome_disks+1) {
1290                 /* Q disk is one of the missing disks */
1291                 if (faila == syndrome_disks) {
1292                         /* Missing P+Q, just recompute */
1293                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1294                                           ops_complete_compute, sh,
1295                                           to_addr_conv(sh, percpu));
1296                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1297                                                   STRIPE_SIZE, &submit);
1298                 } else {
1299                         struct page *dest;
1300                         int data_target;
1301                         int qd_idx = sh->qd_idx;
1302
1303                         /* Missing D+Q: recompute D from P, then recompute Q */
1304                         if (target == qd_idx)
1305                                 data_target = target2;
1306                         else
1307                                 data_target = target;
1308
1309                         count = 0;
1310                         for (i = disks; i-- ; ) {
1311                                 if (i == data_target || i == qd_idx)
1312                                         continue;
1313                                 blocks[count++] = sh->dev[i].page;
1314                         }
1315                         dest = sh->dev[data_target].page;
1316                         init_async_submit(&submit,
1317                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1318                                           NULL, NULL, NULL,
1319                                           to_addr_conv(sh, percpu));
1320                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1321                                        &submit);
1322
1323                         count = set_syndrome_sources(blocks, sh);
1324                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1325                                           ops_complete_compute, sh,
1326                                           to_addr_conv(sh, percpu));
1327                         return async_gen_syndrome(blocks, 0, count+2,
1328                                                   STRIPE_SIZE, &submit);
1329                 }
1330         } else {
1331                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1332                                   ops_complete_compute, sh,
1333                                   to_addr_conv(sh, percpu));
1334                 if (failb == syndrome_disks) {
1335                         /* We're missing D+P. */
1336                         return async_raid6_datap_recov(syndrome_disks+2,
1337                                                        STRIPE_SIZE, faila,
1338                                                        blocks, &submit);
1339                 } else {
1340                         /* We're missing D+D. */
1341                         return async_raid6_2data_recov(syndrome_disks+2,
1342                                                        STRIPE_SIZE, faila, failb,
1343                                                        blocks, &submit);
1344                 }
1345         }
1346 }
1347
1348
1349 static void ops_complete_prexor(void *stripe_head_ref)
1350 {
1351         struct stripe_head *sh = stripe_head_ref;
1352
1353         pr_debug("%s: stripe %llu\n", __func__,
1354                 (unsigned long long)sh->sector);
1355 }
1356
1357 static struct dma_async_tx_descriptor *
1358 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1359                struct dma_async_tx_descriptor *tx)
1360 {
1361         int disks = sh->disks;
1362         struct page **xor_srcs = percpu->scribble;
1363         int count = 0, pd_idx = sh->pd_idx, i;
1364         struct async_submit_ctl submit;
1365
1366         /* existing parity data subtracted */
1367         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1368
1369         pr_debug("%s: stripe %llu\n", __func__,
1370                 (unsigned long long)sh->sector);
1371
1372         for (i = disks; i--; ) {
1373                 struct r5dev *dev = &sh->dev[i];
1374                 /* Only process blocks that are known to be uptodate */
1375                 if (test_bit(R5_Wantdrain, &dev->flags))
1376                         xor_srcs[count++] = dev->page;
1377         }
1378
1379         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1380                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1381         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1382
1383         return tx;
1384 }
1385
1386 static struct dma_async_tx_descriptor *
1387 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1388 {
1389         int disks = sh->disks;
1390         int i;
1391
1392         pr_debug("%s: stripe %llu\n", __func__,
1393                 (unsigned long long)sh->sector);
1394
1395         for (i = disks; i--; ) {
1396                 struct r5dev *dev = &sh->dev[i];
1397                 struct bio *chosen;
1398
1399                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1400                         struct bio *wbi;
1401
1402                         spin_lock_irq(&sh->stripe_lock);
1403                         chosen = dev->towrite;
1404                         dev->towrite = NULL;
1405                         BUG_ON(dev->written);
1406                         wbi = dev->written = chosen;
1407                         spin_unlock_irq(&sh->stripe_lock);
1408
1409                         while (wbi && wbi->bi_sector <
1410                                 dev->sector + STRIPE_SECTORS) {
1411                                 if (wbi->bi_rw & REQ_FUA)
1412                                         set_bit(R5_WantFUA, &dev->flags);
1413                                 if (wbi->bi_rw & REQ_SYNC)
1414                                         set_bit(R5_SyncIO, &dev->flags);
1415                                 if (wbi->bi_rw & REQ_DISCARD)
1416                                         set_bit(R5_Discard, &dev->flags);
1417                                 else
1418                                         tx = async_copy_data(1, wbi, dev->page,
1419                                                 dev->sector, tx);
1420                                 wbi = r5_next_bio(wbi, dev->sector);
1421                         }
1422                 }
1423         }
1424
1425         return tx;
1426 }
1427
1428 static void ops_complete_reconstruct(void *stripe_head_ref)
1429 {
1430         struct stripe_head *sh = stripe_head_ref;
1431         int disks = sh->disks;
1432         int pd_idx = sh->pd_idx;
1433         int qd_idx = sh->qd_idx;
1434         int i;
1435         bool fua = false, sync = false, discard = false;
1436
1437         pr_debug("%s: stripe %llu\n", __func__,
1438                 (unsigned long long)sh->sector);
1439
1440         for (i = disks; i--; ) {
1441                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1442                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1443                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1444         }
1445
1446         for (i = disks; i--; ) {
1447                 struct r5dev *dev = &sh->dev[i];
1448
1449                 if (dev->written || i == pd_idx || i == qd_idx) {
1450                         if (!discard)
1451                                 set_bit(R5_UPTODATE, &dev->flags);
1452                         if (fua)
1453                                 set_bit(R5_WantFUA, &dev->flags);
1454                         if (sync)
1455                                 set_bit(R5_SyncIO, &dev->flags);
1456                 }
1457         }
1458
1459         if (sh->reconstruct_state == reconstruct_state_drain_run)
1460                 sh->reconstruct_state = reconstruct_state_drain_result;
1461         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1462                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1463         else {
1464                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1465                 sh->reconstruct_state = reconstruct_state_result;
1466         }
1467
1468         set_bit(STRIPE_HANDLE, &sh->state);
1469         release_stripe(sh);
1470 }
1471
1472 static void
1473 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1474                      struct dma_async_tx_descriptor *tx)
1475 {
1476         int disks = sh->disks;
1477         struct page **xor_srcs = percpu->scribble;
1478         struct async_submit_ctl submit;
1479         int count = 0, pd_idx = sh->pd_idx, i;
1480         struct page *xor_dest;
1481         int prexor = 0;
1482         unsigned long flags;
1483
1484         pr_debug("%s: stripe %llu\n", __func__,
1485                 (unsigned long long)sh->sector);
1486
1487         for (i = 0; i < sh->disks; i++) {
1488                 if (pd_idx == i)
1489                         continue;
1490                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1491                         break;
1492         }
1493         if (i >= sh->disks) {
1494                 atomic_inc(&sh->count);
1495                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1496                 ops_complete_reconstruct(sh);
1497                 return;
1498         }
1499         /* check if prexor is active which means only process blocks
1500          * that are part of a read-modify-write (written)
1501          */
1502         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1503                 prexor = 1;
1504                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1505                 for (i = disks; i--; ) {
1506                         struct r5dev *dev = &sh->dev[i];
1507                         if (dev->written)
1508                                 xor_srcs[count++] = dev->page;
1509                 }
1510         } else {
1511                 xor_dest = sh->dev[pd_idx].page;
1512                 for (i = disks; i--; ) {
1513                         struct r5dev *dev = &sh->dev[i];
1514                         if (i != pd_idx)
1515                                 xor_srcs[count++] = dev->page;
1516                 }
1517         }
1518
1519         /* 1/ if we prexor'd then the dest is reused as a source
1520          * 2/ if we did not prexor then we are redoing the parity
1521          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1522          * for the synchronous xor case
1523          */
1524         flags = ASYNC_TX_ACK |
1525                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1526
1527         atomic_inc(&sh->count);
1528
1529         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1530                           to_addr_conv(sh, percpu));
1531         if (unlikely(count == 1))
1532                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1533         else
1534                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1535 }
1536
1537 static void
1538 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1539                      struct dma_async_tx_descriptor *tx)
1540 {
1541         struct async_submit_ctl submit;
1542         struct page **blocks = percpu->scribble;
1543         int count, i;
1544
1545         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1546
1547         for (i = 0; i < sh->disks; i++) {
1548                 if (sh->pd_idx == i || sh->qd_idx == i)
1549                         continue;
1550                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1551                         break;
1552         }
1553         if (i >= sh->disks) {
1554                 atomic_inc(&sh->count);
1555                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1556                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1557                 ops_complete_reconstruct(sh);
1558                 return;
1559         }
1560
1561         count = set_syndrome_sources(blocks, sh);
1562
1563         atomic_inc(&sh->count);
1564
1565         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1566                           sh, to_addr_conv(sh, percpu));
1567         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1568 }
1569
1570 static void ops_complete_check(void *stripe_head_ref)
1571 {
1572         struct stripe_head *sh = stripe_head_ref;
1573
1574         pr_debug("%s: stripe %llu\n", __func__,
1575                 (unsigned long long)sh->sector);
1576
1577         sh->check_state = check_state_check_result;
1578         set_bit(STRIPE_HANDLE, &sh->state);
1579         release_stripe(sh);
1580 }
1581
1582 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1583 {
1584         int disks = sh->disks;
1585         int pd_idx = sh->pd_idx;
1586         int qd_idx = sh->qd_idx;
1587         struct page *xor_dest;
1588         struct page **xor_srcs = percpu->scribble;
1589         struct dma_async_tx_descriptor *tx;
1590         struct async_submit_ctl submit;
1591         int count;
1592         int i;
1593
1594         pr_debug("%s: stripe %llu\n", __func__,
1595                 (unsigned long long)sh->sector);
1596
1597         count = 0;
1598         xor_dest = sh->dev[pd_idx].page;
1599         xor_srcs[count++] = xor_dest;
1600         for (i = disks; i--; ) {
1601                 if (i == pd_idx || i == qd_idx)
1602                         continue;
1603                 xor_srcs[count++] = sh->dev[i].page;
1604         }
1605
1606         init_async_submit(&submit, 0, NULL, NULL, NULL,
1607                           to_addr_conv(sh, percpu));
1608         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1609                            &sh->ops.zero_sum_result, &submit);
1610
1611         atomic_inc(&sh->count);
1612         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1613         tx = async_trigger_callback(&submit);
1614 }
1615
1616 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1617 {
1618         struct page **srcs = percpu->scribble;
1619         struct async_submit_ctl submit;
1620         int count;
1621
1622         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1623                 (unsigned long long)sh->sector, checkp);
1624
1625         count = set_syndrome_sources(srcs, sh);
1626         if (!checkp)
1627                 srcs[count] = NULL;
1628
1629         atomic_inc(&sh->count);
1630         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1631                           sh, to_addr_conv(sh, percpu));
1632         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1633                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1634 }
1635
1636 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1637 {
1638         int overlap_clear = 0, i, disks = sh->disks;
1639         struct dma_async_tx_descriptor *tx = NULL;
1640         struct r5conf *conf = sh->raid_conf;
1641         int level = conf->level;
1642         struct raid5_percpu *percpu;
1643         unsigned long cpu;
1644
1645         cpu = get_cpu();
1646         percpu = per_cpu_ptr(conf->percpu, cpu);
1647         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1648                 ops_run_biofill(sh);
1649                 overlap_clear++;
1650         }
1651
1652         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1653                 if (level < 6)
1654                         tx = ops_run_compute5(sh, percpu);
1655                 else {
1656                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1657                                 tx = ops_run_compute6_1(sh, percpu);
1658                         else
1659                                 tx = ops_run_compute6_2(sh, percpu);
1660                 }
1661                 /* terminate the chain if reconstruct is not set to be run */
1662                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1663                         async_tx_ack(tx);
1664         }
1665
1666         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1667                 tx = ops_run_prexor(sh, percpu, tx);
1668
1669         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1670                 tx = ops_run_biodrain(sh, tx);
1671                 overlap_clear++;
1672         }
1673
1674         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1675                 if (level < 6)
1676                         ops_run_reconstruct5(sh, percpu, tx);
1677                 else
1678                         ops_run_reconstruct6(sh, percpu, tx);
1679         }
1680
1681         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1682                 if (sh->check_state == check_state_run)
1683                         ops_run_check_p(sh, percpu);
1684                 else if (sh->check_state == check_state_run_q)
1685                         ops_run_check_pq(sh, percpu, 0);
1686                 else if (sh->check_state == check_state_run_pq)
1687                         ops_run_check_pq(sh, percpu, 1);
1688                 else
1689                         BUG();
1690         }
1691
1692         if (overlap_clear)
1693                 for (i = disks; i--; ) {
1694                         struct r5dev *dev = &sh->dev[i];
1695                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1696                                 wake_up(&sh->raid_conf->wait_for_overlap);
1697                 }
1698         put_cpu();
1699 }
1700
1701 static int grow_one_stripe(struct r5conf *conf, int hash)
1702 {
1703         struct stripe_head *sh;
1704         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1705         if (!sh)
1706                 return 0;
1707
1708         sh->raid_conf = conf;
1709
1710         spin_lock_init(&sh->stripe_lock);
1711
1712         if (grow_buffers(sh)) {
1713                 shrink_buffers(sh);
1714                 kmem_cache_free(conf->slab_cache, sh);
1715                 return 0;
1716         }
1717         sh->hash_lock_index = hash;
1718         /* we just created an active stripe so... */
1719         atomic_set(&sh->count, 1);
1720         atomic_inc(&conf->active_stripes);
1721         INIT_LIST_HEAD(&sh->lru);
1722         release_stripe(sh);
1723         return 1;
1724 }
1725
1726 static int grow_stripes(struct r5conf *conf, int num)
1727 {
1728         struct kmem_cache *sc;
1729         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1730         int hash;
1731
1732         if (conf->mddev->gendisk)
1733                 sprintf(conf->cache_name[0],
1734                         "raid%d-%s", conf->level, mdname(conf->mddev));
1735         else
1736                 sprintf(conf->cache_name[0],
1737                         "raid%d-%p", conf->level, conf->mddev);
1738         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1739
1740         conf->active_name = 0;
1741         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1742                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1743                                0, 0, NULL);
1744         if (!sc)
1745                 return 1;
1746         conf->slab_cache = sc;
1747         conf->pool_size = devs;
1748         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1749         while (num--) {
1750                 if (!grow_one_stripe(conf, hash))
1751                         return 1;
1752                 conf->max_nr_stripes++;
1753                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1754         }
1755         return 0;
1756 }
1757
1758 /**
1759  * scribble_len - return the required size of the scribble region
1760  * @num - total number of disks in the array
1761  *
1762  * The size must be enough to contain:
1763  * 1/ a struct page pointer for each device in the array +2
1764  * 2/ room to convert each entry in (1) to its corresponding dma
1765  *    (dma_map_page()) or page (page_address()) address.
1766  *
1767  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1768  * calculate over all devices (not just the data blocks), using zeros in place
1769  * of the P and Q blocks.
1770  */
1771 static size_t scribble_len(int num)
1772 {
1773         size_t len;
1774
1775         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1776
1777         return len;
1778 }
1779
1780 static int resize_stripes(struct r5conf *conf, int newsize)
1781 {
1782         /* Make all the stripes able to hold 'newsize' devices.
1783          * New slots in each stripe get 'page' set to a new page.
1784          *
1785          * This happens in stages:
1786          * 1/ create a new kmem_cache and allocate the required number of
1787          *    stripe_heads.
1788          * 2/ gather all the old stripe_heads and transfer the pages across
1789          *    to the new stripe_heads.  This will have the side effect of
1790          *    freezing the array as once all stripe_heads have been collected,
1791          *    no IO will be possible.  Old stripe heads are freed once their
1792          *    pages have been transferred over, and the old kmem_cache is
1793          *    freed when all stripes are done.
1794          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1795          *    we simple return a failre status - no need to clean anything up.
1796          * 4/ allocate new pages for the new slots in the new stripe_heads.
1797          *    If this fails, we don't bother trying the shrink the
1798          *    stripe_heads down again, we just leave them as they are.
1799          *    As each stripe_head is processed the new one is released into
1800          *    active service.
1801          *
1802          * Once step2 is started, we cannot afford to wait for a write,
1803          * so we use GFP_NOIO allocations.
1804          */
1805         struct stripe_head *osh, *nsh;
1806         LIST_HEAD(newstripes);
1807         struct disk_info *ndisks;
1808         unsigned long cpu;
1809         int err;
1810         struct kmem_cache *sc;
1811         int i;
1812         int hash, cnt;
1813
1814         if (newsize <= conf->pool_size)
1815                 return 0; /* never bother to shrink */
1816
1817         err = md_allow_write(conf->mddev);
1818         if (err)
1819                 return err;
1820
1821         /* Step 1 */
1822         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1823                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1824                                0, 0, NULL);
1825         if (!sc)
1826                 return -ENOMEM;
1827
1828         for (i = conf->max_nr_stripes; i; i--) {
1829                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1830                 if (!nsh)
1831                         break;
1832
1833                 nsh->raid_conf = conf;
1834                 spin_lock_init(&nsh->stripe_lock);
1835
1836                 list_add(&nsh->lru, &newstripes);
1837         }
1838         if (i) {
1839                 /* didn't get enough, give up */
1840                 while (!list_empty(&newstripes)) {
1841                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1842                         list_del(&nsh->lru);
1843                         kmem_cache_free(sc, nsh);
1844                 }
1845                 kmem_cache_destroy(sc);
1846                 return -ENOMEM;
1847         }
1848         /* Step 2 - Must use GFP_NOIO now.
1849          * OK, we have enough stripes, start collecting inactive
1850          * stripes and copying them over
1851          */
1852         hash = 0;
1853         cnt = 0;
1854         list_for_each_entry(nsh, &newstripes, lru) {
1855                 lock_device_hash_lock(conf, hash);
1856                 wait_event_cmd(conf->wait_for_stripe,
1857                                     !list_empty(conf->inactive_list + hash),
1858                                     unlock_device_hash_lock(conf, hash),
1859                                     lock_device_hash_lock(conf, hash));
1860                 osh = get_free_stripe(conf, hash);
1861                 unlock_device_hash_lock(conf, hash);
1862                 atomic_set(&nsh->count, 1);
1863                 for(i=0; i<conf->pool_size; i++)
1864                         nsh->dev[i].page = osh->dev[i].page;
1865                 for( ; i<newsize; i++)
1866                         nsh->dev[i].page = NULL;
1867                 nsh->hash_lock_index = hash;
1868                 kmem_cache_free(conf->slab_cache, osh);
1869                 cnt++;
1870                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1871                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1872                         hash++;
1873                         cnt = 0;
1874                 }
1875         }
1876         kmem_cache_destroy(conf->slab_cache);
1877
1878         /* Step 3.
1879          * At this point, we are holding all the stripes so the array
1880          * is completely stalled, so now is a good time to resize
1881          * conf->disks and the scribble region
1882          */
1883         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1884         if (ndisks) {
1885                 for (i=0; i<conf->raid_disks; i++)
1886                         ndisks[i] = conf->disks[i];
1887                 kfree(conf->disks);
1888                 conf->disks = ndisks;
1889         } else
1890                 err = -ENOMEM;
1891
1892         get_online_cpus();
1893         conf->scribble_len = scribble_len(newsize);
1894         for_each_present_cpu(cpu) {
1895                 struct raid5_percpu *percpu;
1896                 void *scribble;
1897
1898                 percpu = per_cpu_ptr(conf->percpu, cpu);
1899                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1900
1901                 if (scribble) {
1902                         kfree(percpu->scribble);
1903                         percpu->scribble = scribble;
1904                 } else {
1905                         err = -ENOMEM;
1906                         break;
1907                 }
1908         }
1909         put_online_cpus();
1910
1911         /* Step 4, return new stripes to service */
1912         while(!list_empty(&newstripes)) {
1913                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1914                 list_del_init(&nsh->lru);
1915
1916                 for (i=conf->raid_disks; i < newsize; i++)
1917                         if (nsh->dev[i].page == NULL) {
1918                                 struct page *p = alloc_page(GFP_NOIO);
1919                                 nsh->dev[i].page = p;
1920                                 if (!p)
1921                                         err = -ENOMEM;
1922                         }
1923                 release_stripe(nsh);
1924         }
1925         /* critical section pass, GFP_NOIO no longer needed */
1926
1927         conf->slab_cache = sc;
1928         conf->active_name = 1-conf->active_name;
1929         conf->pool_size = newsize;
1930         return err;
1931 }
1932
1933 static int drop_one_stripe(struct r5conf *conf, int hash)
1934 {
1935         struct stripe_head *sh;
1936
1937         spin_lock_irq(conf->hash_locks + hash);
1938         sh = get_free_stripe(conf, hash);
1939         spin_unlock_irq(conf->hash_locks + hash);
1940         if (!sh)
1941                 return 0;
1942         BUG_ON(atomic_read(&sh->count));
1943         shrink_buffers(sh);
1944         kmem_cache_free(conf->slab_cache, sh);
1945         atomic_dec(&conf->active_stripes);
1946         return 1;
1947 }
1948
1949 static void shrink_stripes(struct r5conf *conf)
1950 {
1951         int hash;
1952         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1953                 while (drop_one_stripe(conf, hash))
1954                         ;
1955
1956         if (conf->slab_cache)
1957                 kmem_cache_destroy(conf->slab_cache);
1958         conf->slab_cache = NULL;
1959 }
1960
1961 static void raid5_end_read_request(struct bio * bi, int error)
1962 {
1963         struct stripe_head *sh = bi->bi_private;
1964         struct r5conf *conf = sh->raid_conf;
1965         int disks = sh->disks, i;
1966         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1967         char b[BDEVNAME_SIZE];
1968         struct md_rdev *rdev = NULL;
1969         sector_t s;
1970
1971         for (i=0 ; i<disks; i++)
1972                 if (bi == &sh->dev[i].req)
1973                         break;
1974
1975         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1976                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1977                 uptodate);
1978         if (i == disks) {
1979                 BUG();
1980                 return;
1981         }
1982         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1983                 /* If replacement finished while this request was outstanding,
1984                  * 'replacement' might be NULL already.
1985                  * In that case it moved down to 'rdev'.
1986                  * rdev is not removed until all requests are finished.
1987                  */
1988                 rdev = conf->disks[i].replacement;
1989         if (!rdev)
1990                 rdev = conf->disks[i].rdev;
1991
1992         if (use_new_offset(conf, sh))
1993                 s = sh->sector + rdev->new_data_offset;
1994         else
1995                 s = sh->sector + rdev->data_offset;
1996         if (uptodate) {
1997                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1998                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1999                         /* Note that this cannot happen on a
2000                          * replacement device.  We just fail those on
2001                          * any error
2002                          */
2003                         printk_ratelimited(
2004                                 KERN_INFO
2005                                 "md/raid:%s: read error corrected"
2006                                 " (%lu sectors at %llu on %s)\n",
2007                                 mdname(conf->mddev), STRIPE_SECTORS,
2008                                 (unsigned long long)s,
2009                                 bdevname(rdev->bdev, b));
2010                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2011                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2012                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2013                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2014                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2015
2016                 if (atomic_read(&rdev->read_errors))
2017                         atomic_set(&rdev->read_errors, 0);
2018         } else {
2019                 const char *bdn = bdevname(rdev->bdev, b);
2020                 int retry = 0;
2021                 int set_bad = 0;
2022
2023                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2024                 atomic_inc(&rdev->read_errors);
2025                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2026                         printk_ratelimited(
2027                                 KERN_WARNING
2028                                 "md/raid:%s: read error on replacement device "
2029                                 "(sector %llu on %s).\n",
2030                                 mdname(conf->mddev),
2031                                 (unsigned long long)s,
2032                                 bdn);
2033                 else if (conf->mddev->degraded >= conf->max_degraded) {
2034                         set_bad = 1;
2035                         printk_ratelimited(
2036                                 KERN_WARNING
2037                                 "md/raid:%s: read error not correctable "
2038                                 "(sector %llu on %s).\n",
2039                                 mdname(conf->mddev),
2040                                 (unsigned long long)s,
2041                                 bdn);
2042                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2043                         /* Oh, no!!! */
2044                         set_bad = 1;
2045                         printk_ratelimited(
2046                                 KERN_WARNING
2047                                 "md/raid:%s: read error NOT corrected!! "
2048                                 "(sector %llu on %s).\n",
2049                                 mdname(conf->mddev),
2050                                 (unsigned long long)s,
2051                                 bdn);
2052                 } else if (atomic_read(&rdev->read_errors)
2053                          > conf->max_nr_stripes)
2054                         printk(KERN_WARNING
2055                                "md/raid:%s: Too many read errors, failing device %s.\n",
2056                                mdname(conf->mddev), bdn);
2057                 else
2058                         retry = 1;
2059                 if (set_bad && test_bit(In_sync, &rdev->flags)
2060                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2061                         retry = 1;
2062                 if (retry)
2063                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2064                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2065                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2066                         } else
2067                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2068                 else {
2069                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2070                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2071                         if (!(set_bad
2072                               && test_bit(In_sync, &rdev->flags)
2073                               && rdev_set_badblocks(
2074                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2075                                 md_error(conf->mddev, rdev);
2076                 }
2077         }
2078         rdev_dec_pending(rdev, conf->mddev);
2079         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2080         set_bit(STRIPE_HANDLE, &sh->state);
2081         release_stripe(sh);
2082 }
2083
2084 static void raid5_end_write_request(struct bio *bi, int error)
2085 {
2086         struct stripe_head *sh = bi->bi_private;
2087         struct r5conf *conf = sh->raid_conf;
2088         int disks = sh->disks, i;
2089         struct md_rdev *uninitialized_var(rdev);
2090         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2091         sector_t first_bad;
2092         int bad_sectors;
2093         int replacement = 0;
2094
2095         for (i = 0 ; i < disks; i++) {
2096                 if (bi == &sh->dev[i].req) {
2097                         rdev = conf->disks[i].rdev;
2098                         break;
2099                 }
2100                 if (bi == &sh->dev[i].rreq) {
2101                         rdev = conf->disks[i].replacement;
2102                         if (rdev)
2103                                 replacement = 1;
2104                         else
2105                                 /* rdev was removed and 'replacement'
2106                                  * replaced it.  rdev is not removed
2107                                  * until all requests are finished.
2108                                  */
2109                                 rdev = conf->disks[i].rdev;
2110                         break;
2111                 }
2112         }
2113         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2114                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2115                 uptodate);
2116         if (i == disks) {
2117                 BUG();
2118                 return;
2119         }
2120
2121         if (replacement) {
2122                 if (!uptodate)
2123                         md_error(conf->mddev, rdev);
2124                 else if (is_badblock(rdev, sh->sector,
2125                                      STRIPE_SECTORS,
2126                                      &first_bad, &bad_sectors))
2127                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2128         } else {
2129                 if (!uptodate) {
2130                         set_bit(WriteErrorSeen, &rdev->flags);
2131                         set_bit(R5_WriteError, &sh->dev[i].flags);
2132                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2133                                 set_bit(MD_RECOVERY_NEEDED,
2134                                         &rdev->mddev->recovery);
2135                 } else if (is_badblock(rdev, sh->sector,
2136                                        STRIPE_SECTORS,
2137                                        &first_bad, &bad_sectors)) {
2138                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2139                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2140                                 /* That was a successful write so make
2141                                  * sure it looks like we already did
2142                                  * a re-write.
2143                                  */
2144                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2145                 }
2146         }
2147         rdev_dec_pending(rdev, conf->mddev);
2148
2149         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2150                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2151         set_bit(STRIPE_HANDLE, &sh->state);
2152         release_stripe(sh);
2153 }
2154
2155 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2156         
2157 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2158 {
2159         struct r5dev *dev = &sh->dev[i];
2160
2161         bio_init(&dev->req);
2162         dev->req.bi_io_vec = &dev->vec;
2163         dev->req.bi_vcnt++;
2164         dev->req.bi_max_vecs++;
2165         dev->req.bi_private = sh;
2166         dev->vec.bv_page = dev->page;
2167
2168         bio_init(&dev->rreq);
2169         dev->rreq.bi_io_vec = &dev->rvec;
2170         dev->rreq.bi_vcnt++;
2171         dev->rreq.bi_max_vecs++;
2172         dev->rreq.bi_private = sh;
2173         dev->rvec.bv_page = dev->page;
2174
2175         dev->flags = 0;
2176         dev->sector = compute_blocknr(sh, i, previous);
2177 }
2178
2179 static void error(struct mddev *mddev, struct md_rdev *rdev)
2180 {
2181         char b[BDEVNAME_SIZE];
2182         struct r5conf *conf = mddev->private;
2183         unsigned long flags;
2184         pr_debug("raid456: error called\n");
2185
2186         spin_lock_irqsave(&conf->device_lock, flags);
2187         clear_bit(In_sync, &rdev->flags);
2188         mddev->degraded = calc_degraded(conf);
2189         spin_unlock_irqrestore(&conf->device_lock, flags);
2190         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2191
2192         set_bit(Blocked, &rdev->flags);
2193         set_bit(Faulty, &rdev->flags);
2194         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2195         printk(KERN_ALERT
2196                "md/raid:%s: Disk failure on %s, disabling device.\n"
2197                "md/raid:%s: Operation continuing on %d devices.\n",
2198                mdname(mddev),
2199                bdevname(rdev->bdev, b),
2200                mdname(mddev),
2201                conf->raid_disks - mddev->degraded);
2202 }
2203
2204 /*
2205  * Input: a 'big' sector number,
2206  * Output: index of the data and parity disk, and the sector # in them.
2207  */
2208 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2209                                      int previous, int *dd_idx,
2210                                      struct stripe_head *sh)
2211 {
2212         sector_t stripe, stripe2;
2213         sector_t chunk_number;
2214         unsigned int chunk_offset;
2215         int pd_idx, qd_idx;
2216         int ddf_layout = 0;
2217         sector_t new_sector;
2218         int algorithm = previous ? conf->prev_algo
2219                                  : conf->algorithm;
2220         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2221                                          : conf->chunk_sectors;
2222         int raid_disks = previous ? conf->previous_raid_disks
2223                                   : conf->raid_disks;
2224         int data_disks = raid_disks - conf->max_degraded;
2225
2226         /* First compute the information on this sector */
2227
2228         /*
2229          * Compute the chunk number and the sector offset inside the chunk
2230          */
2231         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2232         chunk_number = r_sector;
2233
2234         /*
2235          * Compute the stripe number
2236          */
2237         stripe = chunk_number;
2238         *dd_idx = sector_div(stripe, data_disks);
2239         stripe2 = stripe;
2240         /*
2241          * Select the parity disk based on the user selected algorithm.
2242          */
2243         pd_idx = qd_idx = -1;
2244         switch(conf->level) {
2245         case 4:
2246                 pd_idx = data_disks;
2247                 break;
2248         case 5:
2249                 switch (algorithm) {
2250                 case ALGORITHM_LEFT_ASYMMETRIC:
2251                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2252                         if (*dd_idx >= pd_idx)
2253                                 (*dd_idx)++;
2254                         break;
2255                 case ALGORITHM_RIGHT_ASYMMETRIC:
2256                         pd_idx = sector_div(stripe2, raid_disks);
2257                         if (*dd_idx >= pd_idx)
2258                                 (*dd_idx)++;
2259                         break;
2260                 case ALGORITHM_LEFT_SYMMETRIC:
2261                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2262                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2263                         break;
2264                 case ALGORITHM_RIGHT_SYMMETRIC:
2265                         pd_idx = sector_div(stripe2, raid_disks);
2266                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2267                         break;
2268                 case ALGORITHM_PARITY_0:
2269                         pd_idx = 0;
2270                         (*dd_idx)++;
2271                         break;
2272                 case ALGORITHM_PARITY_N:
2273                         pd_idx = data_disks;
2274                         break;
2275                 default:
2276                         BUG();
2277                 }
2278                 break;
2279         case 6:
2280
2281                 switch (algorithm) {
2282                 case ALGORITHM_LEFT_ASYMMETRIC:
2283                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2284                         qd_idx = pd_idx + 1;
2285                         if (pd_idx == raid_disks-1) {
2286                                 (*dd_idx)++;    /* Q D D D P */
2287                                 qd_idx = 0;
2288                         } else if (*dd_idx >= pd_idx)
2289                                 (*dd_idx) += 2; /* D D P Q D */
2290                         break;
2291                 case ALGORITHM_RIGHT_ASYMMETRIC:
2292                         pd_idx = sector_div(stripe2, raid_disks);
2293                         qd_idx = pd_idx + 1;
2294                         if (pd_idx == raid_disks-1) {
2295                                 (*dd_idx)++;    /* Q D D D P */
2296                                 qd_idx = 0;
2297                         } else if (*dd_idx >= pd_idx)
2298                                 (*dd_idx) += 2; /* D D P Q D */
2299                         break;
2300                 case ALGORITHM_LEFT_SYMMETRIC:
2301                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2302                         qd_idx = (pd_idx + 1) % raid_disks;
2303                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2304                         break;
2305                 case ALGORITHM_RIGHT_SYMMETRIC:
2306                         pd_idx = sector_div(stripe2, raid_disks);
2307                         qd_idx = (pd_idx + 1) % raid_disks;
2308                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2309                         break;
2310
2311                 case ALGORITHM_PARITY_0:
2312                         pd_idx = 0;
2313                         qd_idx = 1;
2314                         (*dd_idx) += 2;
2315                         break;
2316                 case ALGORITHM_PARITY_N:
2317                         pd_idx = data_disks;
2318                         qd_idx = data_disks + 1;
2319                         break;
2320
2321                 case ALGORITHM_ROTATING_ZERO_RESTART:
2322                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2323                          * of blocks for computing Q is different.
2324                          */
2325                         pd_idx = sector_div(stripe2, raid_disks);
2326                         qd_idx = pd_idx + 1;
2327                         if (pd_idx == raid_disks-1) {
2328                                 (*dd_idx)++;    /* Q D D D P */
2329                                 qd_idx = 0;
2330                         } else if (*dd_idx >= pd_idx)
2331                                 (*dd_idx) += 2; /* D D P Q D */
2332                         ddf_layout = 1;
2333                         break;
2334
2335                 case ALGORITHM_ROTATING_N_RESTART:
2336                         /* Same a left_asymmetric, by first stripe is
2337                          * D D D P Q  rather than
2338                          * Q D D D P
2339                          */
2340                         stripe2 += 1;
2341                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2342                         qd_idx = pd_idx + 1;
2343                         if (pd_idx == raid_disks-1) {
2344                                 (*dd_idx)++;    /* Q D D D P */
2345                                 qd_idx = 0;
2346                         } else if (*dd_idx >= pd_idx)
2347                                 (*dd_idx) += 2; /* D D P Q D */
2348                         ddf_layout = 1;
2349                         break;
2350
2351                 case ALGORITHM_ROTATING_N_CONTINUE:
2352                         /* Same as left_symmetric but Q is before P */
2353                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2354                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2355                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2356                         ddf_layout = 1;
2357                         break;
2358
2359                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2360                         /* RAID5 left_asymmetric, with Q on last device */
2361                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2362                         if (*dd_idx >= pd_idx)
2363                                 (*dd_idx)++;
2364                         qd_idx = raid_disks - 1;
2365                         break;
2366
2367                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2368                         pd_idx = sector_div(stripe2, raid_disks-1);
2369                         if (*dd_idx >= pd_idx)
2370                                 (*dd_idx)++;
2371                         qd_idx = raid_disks - 1;
2372                         break;
2373
2374                 case ALGORITHM_LEFT_SYMMETRIC_6:
2375                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2376                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2377                         qd_idx = raid_disks - 1;
2378                         break;
2379
2380                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2381                         pd_idx = sector_div(stripe2, raid_disks-1);
2382                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2383                         qd_idx = raid_disks - 1;
2384                         break;
2385
2386                 case ALGORITHM_PARITY_0_6:
2387                         pd_idx = 0;
2388                         (*dd_idx)++;
2389                         qd_idx = raid_disks - 1;
2390                         break;
2391
2392                 default:
2393                         BUG();
2394                 }
2395                 break;
2396         }
2397
2398         if (sh) {
2399                 sh->pd_idx = pd_idx;
2400                 sh->qd_idx = qd_idx;
2401                 sh->ddf_layout = ddf_layout;
2402         }
2403         /*
2404          * Finally, compute the new sector number
2405          */
2406         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2407         return new_sector;
2408 }
2409
2410
2411 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2412 {
2413         struct r5conf *conf = sh->raid_conf;
2414         int raid_disks = sh->disks;
2415         int data_disks = raid_disks - conf->max_degraded;
2416         sector_t new_sector = sh->sector, check;
2417         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2418                                          : conf->chunk_sectors;
2419         int algorithm = previous ? conf->prev_algo
2420                                  : conf->algorithm;
2421         sector_t stripe;
2422         int chunk_offset;
2423         sector_t chunk_number;
2424         int dummy1, dd_idx = i;
2425         sector_t r_sector;
2426         struct stripe_head sh2;
2427
2428
2429         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2430         stripe = new_sector;
2431
2432         if (i == sh->pd_idx)
2433                 return 0;
2434         switch(conf->level) {
2435         case 4: break;
2436         case 5:
2437                 switch (algorithm) {
2438                 case ALGORITHM_LEFT_ASYMMETRIC:
2439                 case ALGORITHM_RIGHT_ASYMMETRIC:
2440                         if (i > sh->pd_idx)
2441                                 i--;
2442                         break;
2443                 case ALGORITHM_LEFT_SYMMETRIC:
2444                 case ALGORITHM_RIGHT_SYMMETRIC:
2445                         if (i < sh->pd_idx)
2446                                 i += raid_disks;
2447                         i -= (sh->pd_idx + 1);
2448                         break;
2449                 case ALGORITHM_PARITY_0:
2450                         i -= 1;
2451                         break;
2452                 case ALGORITHM_PARITY_N:
2453                         break;
2454                 default:
2455                         BUG();
2456                 }
2457                 break;
2458         case 6:
2459                 if (i == sh->qd_idx)
2460                         return 0; /* It is the Q disk */
2461                 switch (algorithm) {
2462                 case ALGORITHM_LEFT_ASYMMETRIC:
2463                 case ALGORITHM_RIGHT_ASYMMETRIC:
2464                 case ALGORITHM_ROTATING_ZERO_RESTART:
2465                 case ALGORITHM_ROTATING_N_RESTART:
2466                         if (sh->pd_idx == raid_disks-1)
2467                                 i--;    /* Q D D D P */
2468                         else if (i > sh->pd_idx)
2469                                 i -= 2; /* D D P Q D */
2470                         break;
2471                 case ALGORITHM_LEFT_SYMMETRIC:
2472                 case ALGORITHM_RIGHT_SYMMETRIC:
2473                         if (sh->pd_idx == raid_disks-1)
2474                                 i--; /* Q D D D P */
2475                         else {
2476                                 /* D D P Q D */
2477                                 if (i < sh->pd_idx)
2478                                         i += raid_disks;
2479                                 i -= (sh->pd_idx + 2);
2480                         }
2481                         break;
2482                 case ALGORITHM_PARITY_0:
2483                         i -= 2;
2484                         break;
2485                 case ALGORITHM_PARITY_N:
2486                         break;
2487                 case ALGORITHM_ROTATING_N_CONTINUE:
2488                         /* Like left_symmetric, but P is before Q */
2489                         if (sh->pd_idx == 0)
2490                                 i--;    /* P D D D Q */
2491                         else {
2492                                 /* D D Q P D */
2493                                 if (i < sh->pd_idx)
2494                                         i += raid_disks;
2495                                 i -= (sh->pd_idx + 1);
2496                         }
2497                         break;
2498                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2499                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2500                         if (i > sh->pd_idx)
2501                                 i--;
2502                         break;
2503                 case ALGORITHM_LEFT_SYMMETRIC_6:
2504                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2505                         if (i < sh->pd_idx)
2506                                 i += data_disks + 1;
2507                         i -= (sh->pd_idx + 1);
2508                         break;
2509                 case ALGORITHM_PARITY_0_6:
2510                         i -= 1;
2511                         break;
2512                 default:
2513                         BUG();
2514                 }
2515                 break;
2516         }
2517
2518         chunk_number = stripe * data_disks + i;
2519         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2520
2521         check = raid5_compute_sector(conf, r_sector,
2522                                      previous, &dummy1, &sh2);
2523         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2524                 || sh2.qd_idx != sh->qd_idx) {
2525                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2526                        mdname(conf->mddev));
2527                 return 0;
2528         }
2529         return r_sector;
2530 }
2531
2532
2533 static void
2534 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2535                          int rcw, int expand)
2536 {
2537         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2538         struct r5conf *conf = sh->raid_conf;
2539         int level = conf->level;
2540
2541         if (rcw) {
2542
2543                 for (i = disks; i--; ) {
2544                         struct r5dev *dev = &sh->dev[i];
2545
2546                         if (dev->towrite) {
2547                                 set_bit(R5_LOCKED, &dev->flags);
2548                                 set_bit(R5_Wantdrain, &dev->flags);
2549                                 if (!expand)
2550                                         clear_bit(R5_UPTODATE, &dev->flags);
2551                                 s->locked++;
2552                         }
2553                 }
2554                 /* if we are not expanding this is a proper write request, and
2555                  * there will be bios with new data to be drained into the
2556                  * stripe cache
2557                  */
2558                 if (!expand) {
2559                         if (!s->locked)
2560                                 /* False alarm, nothing to do */
2561                                 return;
2562                         sh->reconstruct_state = reconstruct_state_drain_run;
2563                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2564                 } else
2565                         sh->reconstruct_state = reconstruct_state_run;
2566
2567                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2568
2569                 if (s->locked + conf->max_degraded == disks)
2570                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2571                                 atomic_inc(&conf->pending_full_writes);
2572         } else {
2573                 BUG_ON(level == 6);
2574                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2575                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2576
2577                 for (i = disks; i--; ) {
2578                         struct r5dev *dev = &sh->dev[i];
2579                         if (i == pd_idx)
2580                                 continue;
2581
2582                         if (dev->towrite &&
2583                             (test_bit(R5_UPTODATE, &dev->flags) ||
2584                              test_bit(R5_Wantcompute, &dev->flags))) {
2585                                 set_bit(R5_Wantdrain, &dev->flags);
2586                                 set_bit(R5_LOCKED, &dev->flags);
2587                                 clear_bit(R5_UPTODATE, &dev->flags);
2588                                 s->locked++;
2589                         }
2590                 }
2591                 if (!s->locked)
2592                         /* False alarm - nothing to do */
2593                         return;
2594                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2595                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2596                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2597                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2598         }
2599
2600         /* keep the parity disk(s) locked while asynchronous operations
2601          * are in flight
2602          */
2603         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2604         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2605         s->locked++;
2606
2607         if (level == 6) {
2608                 int qd_idx = sh->qd_idx;
2609                 struct r5dev *dev = &sh->dev[qd_idx];
2610
2611                 set_bit(R5_LOCKED, &dev->flags);
2612                 clear_bit(R5_UPTODATE, &dev->flags);
2613                 s->locked++;
2614         }
2615
2616         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2617                 __func__, (unsigned long long)sh->sector,
2618                 s->locked, s->ops_request);
2619 }
2620
2621 /*
2622  * Each stripe/dev can have one or more bion attached.
2623  * toread/towrite point to the first in a chain.
2624  * The bi_next chain must be in order.
2625  */
2626 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2627 {
2628         struct bio **bip;
2629         struct r5conf *conf = sh->raid_conf;
2630         int firstwrite=0;
2631
2632         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2633                 (unsigned long long)bi->bi_sector,
2634                 (unsigned long long)sh->sector);
2635
2636         /*
2637          * If several bio share a stripe. The bio bi_phys_segments acts as a
2638          * reference count to avoid race. The reference count should already be
2639          * increased before this function is called (for example, in
2640          * make_request()), so other bio sharing this stripe will not free the
2641          * stripe. If a stripe is owned by one stripe, the stripe lock will
2642          * protect it.
2643          */
2644         spin_lock_irq(&sh->stripe_lock);
2645         if (forwrite) {
2646                 bip = &sh->dev[dd_idx].towrite;
2647                 if (*bip == NULL)
2648                         firstwrite = 1;
2649         } else
2650                 bip = &sh->dev[dd_idx].toread;
2651         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2652                 if (bio_end_sector(*bip) > bi->bi_sector)
2653                         goto overlap;
2654                 bip = & (*bip)->bi_next;
2655         }
2656         if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2657                 goto overlap;
2658
2659         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2660         if (*bip)
2661                 bi->bi_next = *bip;
2662         *bip = bi;
2663         raid5_inc_bi_active_stripes(bi);
2664
2665         if (forwrite) {
2666                 /* check if page is covered */
2667                 sector_t sector = sh->dev[dd_idx].sector;
2668                 for (bi=sh->dev[dd_idx].towrite;
2669                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2670                              bi && bi->bi_sector <= sector;
2671                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2672                         if (bio_end_sector(bi) >= sector)
2673                                 sector = bio_end_sector(bi);
2674                 }
2675                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2676                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2677         }
2678
2679         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2680                 (unsigned long long)(*bip)->bi_sector,
2681                 (unsigned long long)sh->sector, dd_idx);
2682         spin_unlock_irq(&sh->stripe_lock);
2683
2684         if (conf->mddev->bitmap && firstwrite) {
2685                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2686                                   STRIPE_SECTORS, 0);
2687                 sh->bm_seq = conf->seq_flush+1;
2688                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2689         }
2690         return 1;
2691
2692  overlap:
2693         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2694         spin_unlock_irq(&sh->stripe_lock);
2695         return 0;
2696 }
2697
2698 static void end_reshape(struct r5conf *conf);
2699
2700 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2701                             struct stripe_head *sh)
2702 {
2703         int sectors_per_chunk =
2704                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2705         int dd_idx;
2706         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2707         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2708
2709         raid5_compute_sector(conf,
2710                              stripe * (disks - conf->max_degraded)
2711                              *sectors_per_chunk + chunk_offset,
2712                              previous,
2713                              &dd_idx, sh);
2714 }
2715
2716 static void
2717 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2718                                 struct stripe_head_state *s, int disks,
2719                                 struct bio **return_bi)
2720 {
2721         int i;
2722         for (i = disks; i--; ) {
2723                 struct bio *bi;
2724                 int bitmap_end = 0;
2725
2726                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2727                         struct md_rdev *rdev;
2728                         rcu_read_lock();
2729                         rdev = rcu_dereference(conf->disks[i].rdev);
2730                         if (rdev && test_bit(In_sync, &rdev->flags))
2731                                 atomic_inc(&rdev->nr_pending);
2732                         else
2733                                 rdev = NULL;
2734                         rcu_read_unlock();
2735                         if (rdev) {
2736                                 if (!rdev_set_badblocks(
2737                                             rdev,
2738                                             sh->sector,
2739                                             STRIPE_SECTORS, 0))
2740                                         md_error(conf->mddev, rdev);
2741                                 rdev_dec_pending(rdev, conf->mddev);
2742                         }
2743                 }
2744                 spin_lock_irq(&sh->stripe_lock);
2745                 /* fail all writes first */
2746                 bi = sh->dev[i].towrite;
2747                 sh->dev[i].towrite = NULL;
2748                 spin_unlock_irq(&sh->stripe_lock);
2749                 if (bi)
2750                         bitmap_end = 1;
2751
2752                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2753                         wake_up(&conf->wait_for_overlap);
2754
2755                 while (bi && bi->bi_sector <
2756                         sh->dev[i].sector + STRIPE_SECTORS) {
2757                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2758                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2759                         if (!raid5_dec_bi_active_stripes(bi)) {
2760                                 md_write_end(conf->mddev);
2761                                 bi->bi_next = *return_bi;
2762                                 *return_bi = bi;
2763                         }
2764                         bi = nextbi;
2765                 }
2766                 if (bitmap_end)
2767                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2768                                 STRIPE_SECTORS, 0, 0);
2769                 bitmap_end = 0;
2770                 /* and fail all 'written' */
2771                 bi = sh->dev[i].written;
2772                 sh->dev[i].written = NULL;
2773                 if (bi) bitmap_end = 1;
2774                 while (bi && bi->bi_sector <
2775                        sh->dev[i].sector + STRIPE_SECTORS) {
2776                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2777                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2778                         if (!raid5_dec_bi_active_stripes(bi)) {
2779                                 md_write_end(conf->mddev);
2780                                 bi->bi_next = *return_bi;
2781                                 *return_bi = bi;
2782                         }
2783                         bi = bi2;
2784                 }
2785
2786                 /* fail any reads if this device is non-operational and
2787                  * the data has not reached the cache yet.
2788                  */
2789                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2790                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2791                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2792                         spin_lock_irq(&sh->stripe_lock);
2793                         bi = sh->dev[i].toread;
2794                         sh->dev[i].toread = NULL;
2795                         spin_unlock_irq(&sh->stripe_lock);
2796                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2797                                 wake_up(&conf->wait_for_overlap);
2798                         while (bi && bi->bi_sector <
2799                                sh->dev[i].sector + STRIPE_SECTORS) {
2800                                 struct bio *nextbi =
2801                                         r5_next_bio(bi, sh->dev[i].sector);
2802                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2803                                 if (!raid5_dec_bi_active_stripes(bi)) {
2804                                         bi->bi_next = *return_bi;
2805                                         *return_bi = bi;
2806                                 }
2807                                 bi = nextbi;
2808                         }
2809                 }
2810                 if (bitmap_end)
2811                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2812                                         STRIPE_SECTORS, 0, 0);
2813                 /* If we were in the middle of a write the parity block might
2814                  * still be locked - so just clear all R5_LOCKED flags
2815                  */
2816                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2817         }
2818
2819         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2820                 if (atomic_dec_and_test(&conf->pending_full_writes))
2821                         md_wakeup_thread(conf->mddev->thread);
2822 }
2823
2824 static void
2825 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2826                    struct stripe_head_state *s)
2827 {
2828         int abort = 0;
2829         int i;
2830
2831         clear_bit(STRIPE_SYNCING, &sh->state);
2832         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2833                 wake_up(&conf->wait_for_overlap);
2834         s->syncing = 0;
2835         s->replacing = 0;
2836         /* There is nothing more to do for sync/check/repair.
2837          * Don't even need to abort as that is handled elsewhere
2838          * if needed, and not always wanted e.g. if there is a known
2839          * bad block here.
2840          * For recover/replace we need to record a bad block on all
2841          * non-sync devices, or abort the recovery
2842          */
2843         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2844                 /* During recovery devices cannot be removed, so
2845                  * locking and refcounting of rdevs is not needed
2846                  */
2847                 for (i = 0; i < conf->raid_disks; i++) {
2848                         struct md_rdev *rdev = conf->disks[i].rdev;
2849                         if (rdev
2850                             && !test_bit(Faulty, &rdev->flags)
2851                             && !test_bit(In_sync, &rdev->flags)
2852                             && !rdev_set_badblocks(rdev, sh->sector,
2853                                                    STRIPE_SECTORS, 0))
2854                                 abort = 1;
2855                         rdev = conf->disks[i].replacement;
2856                         if (rdev
2857                             && !test_bit(Faulty, &rdev->flags)
2858                             && !test_bit(In_sync, &rdev->flags)
2859                             && !rdev_set_badblocks(rdev, sh->sector,
2860                                                    STRIPE_SECTORS, 0))
2861                                 abort = 1;
2862                 }
2863                 if (abort)
2864                         conf->recovery_disabled =
2865                                 conf->mddev->recovery_disabled;
2866         }
2867         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2868 }
2869
2870 static int want_replace(struct stripe_head *sh, int disk_idx)
2871 {
2872         struct md_rdev *rdev;
2873         int rv = 0;
2874         /* Doing recovery so rcu locking not required */
2875         rdev = sh->raid_conf->disks[disk_idx].replacement;
2876         if (rdev
2877             && !test_bit(Faulty, &rdev->flags)
2878             && !test_bit(In_sync, &rdev->flags)
2879             && (rdev->recovery_offset <= sh->sector
2880                 || rdev->mddev->recovery_cp <= sh->sector))
2881                 rv = 1;
2882
2883         return rv;
2884 }
2885
2886 /* fetch_block - checks the given member device to see if its data needs
2887  * to be read or computed to satisfy a request.
2888  *
2889  * Returns 1 when no more member devices need to be checked, otherwise returns
2890  * 0 to tell the loop in handle_stripe_fill to continue
2891  */
2892 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2893                        int disk_idx, int disks)
2894 {
2895         struct r5dev *dev = &sh->dev[disk_idx];
2896         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2897                                   &sh->dev[s->failed_num[1]] };
2898
2899         /* is the data in this block needed, and can we get it? */
2900         if (!test_bit(R5_LOCKED, &dev->flags) &&
2901             !test_bit(R5_UPTODATE, &dev->flags) &&
2902             (dev->toread ||
2903              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2904              s->syncing || s->expanding ||
2905              (s->replacing && want_replace(sh, disk_idx)) ||
2906              (s->failed >= 1 && fdev[0]->toread) ||
2907              (s->failed >= 2 && fdev[1]->toread) ||
2908              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2909               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2910              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2911                 /* we would like to get this block, possibly by computing it,
2912                  * otherwise read it if the backing disk is insync
2913                  */
2914                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2915                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2916                 if ((s->uptodate == disks - 1) &&
2917                     (s->failed && (disk_idx == s->failed_num[0] ||
2918                                    disk_idx == s->failed_num[1]))) {
2919                         /* have disk failed, and we're requested to fetch it;
2920                          * do compute it
2921                          */
2922                         pr_debug("Computing stripe %llu block %d\n",
2923                                (unsigned long long)sh->sector, disk_idx);
2924                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2925                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2926                         set_bit(R5_Wantcompute, &dev->flags);
2927                         sh->ops.target = disk_idx;
2928                         sh->ops.target2 = -1; /* no 2nd target */
2929                         s->req_compute = 1;
2930                         /* Careful: from this point on 'uptodate' is in the eye
2931                          * of raid_run_ops which services 'compute' operations
2932                          * before writes. R5_Wantcompute flags a block that will
2933                          * be R5_UPTODATE by the time it is needed for a
2934                          * subsequent operation.
2935                          */
2936                         s->uptodate++;
2937                         return 1;
2938                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2939                         /* Computing 2-failure is *very* expensive; only
2940                          * do it if failed >= 2
2941                          */
2942                         int other;
2943                         for (other = disks; other--; ) {
2944                                 if (other == disk_idx)
2945                                         continue;
2946                                 if (!test_bit(R5_UPTODATE,
2947                                       &sh->dev[other].flags))
2948                                         break;
2949                         }
2950                         BUG_ON(other < 0);
2951                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2952                                (unsigned long long)sh->sector,
2953                                disk_idx, other);
2954                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2955                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2956                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2957                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2958                         sh->ops.target = disk_idx;
2959                         sh->ops.target2 = other;
2960                         s->uptodate += 2;
2961                         s->req_compute = 1;
2962                         return 1;
2963                 } else if (test_bit(R5_Insync, &dev->flags)) {
2964                         set_bit(R5_LOCKED, &dev->flags);
2965                         set_bit(R5_Wantread, &dev->flags);
2966                         s->locked++;
2967                         pr_debug("Reading block %d (sync=%d)\n",
2968                                 disk_idx, s->syncing);
2969                 }
2970         }
2971
2972         return 0;
2973 }
2974
2975 /**
2976  * handle_stripe_fill - read or compute data to satisfy pending requests.
2977  */
2978 static void handle_stripe_fill(struct stripe_head *sh,
2979                                struct stripe_head_state *s,
2980                                int disks)
2981 {
2982         int i;
2983
2984         /* look for blocks to read/compute, skip this if a compute
2985          * is already in flight, or if the stripe contents are in the
2986          * midst of changing due to a write
2987          */
2988         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2989             !sh->reconstruct_state)
2990                 for (i = disks; i--; )
2991                         if (fetch_block(sh, s, i, disks))
2992                                 break;
2993         set_bit(STRIPE_HANDLE, &sh->state);
2994 }
2995
2996
2997 /* handle_stripe_clean_event
2998  * any written block on an uptodate or failed drive can be returned.
2999  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3000  * never LOCKED, so we don't need to test 'failed' directly.
3001  */
3002 static void handle_stripe_clean_event(struct r5conf *conf,
3003         struct stripe_head *sh, int disks, struct bio **return_bi)
3004 {
3005         int i;
3006         struct r5dev *dev;
3007         int discard_pending = 0;
3008
3009         for (i = disks; i--; )
3010                 if (sh->dev[i].written) {
3011                         dev = &sh->dev[i];
3012                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3013                             (test_bit(R5_UPTODATE, &dev->flags) ||
3014                              test_bit(R5_Discard, &dev->flags))) {
3015                                 /* We can return any write requests */
3016                                 struct bio *wbi, *wbi2;
3017                                 pr_debug("Return write for disc %d\n", i);
3018                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3019                                         clear_bit(R5_UPTODATE, &dev->flags);
3020                                 wbi = dev->written;
3021                                 dev->written = NULL;
3022                                 while (wbi && wbi->bi_sector <
3023                                         dev->sector + STRIPE_SECTORS) {
3024                                         wbi2 = r5_next_bio(wbi, dev->sector);
3025                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3026                                                 md_write_end(conf->mddev);
3027                                                 wbi->bi_next = *return_bi;
3028                                                 *return_bi = wbi;
3029                                         }
3030                                         wbi = wbi2;
3031                                 }
3032                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3033                                                 STRIPE_SECTORS,
3034                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3035                                                 0);
3036                         } else if (test_bit(R5_Discard, &dev->flags))
3037                                 discard_pending = 1;
3038                 }
3039         if (!discard_pending &&
3040             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3041                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3042                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3043                 if (sh->qd_idx >= 0) {
3044                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3045                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3046                 }
3047                 /* now that discard is done we can proceed with any sync */
3048                 clear_bit(STRIPE_DISCARD, &sh->state);
3049                 /*
3050                  * SCSI discard will change some bio fields and the stripe has
3051                  * no updated data, so remove it from hash list and the stripe
3052                  * will be reinitialized
3053                  */
3054                 spin_lock_irq(&conf->device_lock);
3055                 remove_hash(sh);
3056                 spin_unlock_irq(&conf->device_lock);
3057                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3058                         set_bit(STRIPE_HANDLE, &sh->state);
3059
3060         }
3061
3062         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3063                 if (atomic_dec_and_test(&conf->pending_full_writes))
3064                         md_wakeup_thread(conf->mddev->thread);
3065 }
3066
3067 static void handle_stripe_dirtying(struct r5conf *conf,
3068                                    struct stripe_head *sh,
3069                                    struct stripe_head_state *s,
3070                                    int disks)
3071 {
3072         int rmw = 0, rcw = 0, i;
3073         sector_t recovery_cp = conf->mddev->recovery_cp;
3074
3075         /* RAID6 requires 'rcw' in current implementation.
3076          * Otherwise, check whether resync is now happening or should start.
3077          * If yes, then the array is dirty (after unclean shutdown or
3078          * initial creation), so parity in some stripes might be inconsistent.
3079          * In this case, we need to always do reconstruct-write, to ensure
3080          * that in case of drive failure or read-error correction, we
3081          * generate correct data from the parity.
3082          */
3083         if (conf->max_degraded == 2 ||
3084             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3085                 /* Calculate the real rcw later - for now make it
3086                  * look like rcw is cheaper
3087                  */
3088                 rcw = 1; rmw = 2;
3089                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3090                          conf->max_degraded, (unsigned long long)recovery_cp,
3091                          (unsigned long long)sh->sector);
3092         } else for (i = disks; i--; ) {
3093                 /* would I have to read this buffer for read_modify_write */
3094                 struct r5dev *dev = &sh->dev[i];
3095                 if ((dev->towrite || i == sh->pd_idx) &&
3096                     !test_bit(R5_LOCKED, &dev->flags) &&
3097                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3098                       test_bit(R5_Wantcompute, &dev->flags))) {
3099                         if (test_bit(R5_Insync, &dev->flags))
3100                                 rmw++;
3101                         else
3102                                 rmw += 2*disks;  /* cannot read it */
3103                 }
3104                 /* Would I have to read this buffer for reconstruct_write */
3105                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3106                     !test_bit(R5_LOCKED, &dev->flags) &&
3107                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3108                     test_bit(R5_Wantcompute, &dev->flags))) {
3109                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
3110                         else
3111                                 rcw += 2*disks;
3112                 }
3113         }
3114         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3115                 (unsigned long long)sh->sector, rmw, rcw);
3116         set_bit(STRIPE_HANDLE, &sh->state);
3117         if (rmw < rcw && rmw > 0) {
3118                 /* prefer read-modify-write, but need to get some data */
3119                 if (conf->mddev->queue)
3120                         blk_add_trace_msg(conf->mddev->queue,
3121                                           "raid5 rmw %llu %d",
3122                                           (unsigned long long)sh->sector, rmw);
3123                 for (i = disks; i--; ) {
3124                         struct r5dev *dev = &sh->dev[i];
3125                         if ((dev->towrite || i == sh->pd_idx) &&
3126                             !test_bit(R5_LOCKED, &dev->flags) &&
3127                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3128                             test_bit(R5_Wantcompute, &dev->flags)) &&
3129                             test_bit(R5_Insync, &dev->flags)) {
3130                                 if (
3131                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3132                                         pr_debug("Read_old block "
3133                                                  "%d for r-m-w\n", i);
3134                                         set_bit(R5_LOCKED, &dev->flags);
3135                                         set_bit(R5_Wantread, &dev->flags);
3136                                         s->locked++;
3137                                 } else {
3138                                         set_bit(STRIPE_DELAYED, &sh->state);
3139                                         set_bit(STRIPE_HANDLE, &sh->state);
3140                                 }
3141                         }
3142                 }
3143         }
3144         if (rcw <= rmw && rcw > 0) {
3145                 /* want reconstruct write, but need to get some data */
3146                 int qread =0;
3147                 rcw = 0;
3148                 for (i = disks; i--; ) {
3149                         struct r5dev *dev = &sh->dev[i];
3150                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3151                             i != sh->pd_idx && i != sh->qd_idx &&
3152                             !test_bit(R5_LOCKED, &dev->flags) &&
3153                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3154                               test_bit(R5_Wantcompute, &dev->flags))) {
3155                                 rcw++;
3156                                 if (!test_bit(R5_Insync, &dev->flags))
3157                                         continue; /* it's a failed drive */
3158                                 if (
3159                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3160                                         pr_debug("Read_old block "
3161                                                 "%d for Reconstruct\n", i);
3162                                         set_bit(R5_LOCKED, &dev->flags);
3163                                         set_bit(R5_Wantread, &dev->flags);
3164                                         s->locked++;
3165                                         qread++;
3166                                 } else {
3167                                         set_bit(STRIPE_DELAYED, &sh->state);
3168                                         set_bit(STRIPE_HANDLE, &sh->state);
3169                                 }
3170                         }
3171                 }
3172                 if (rcw && conf->mddev->queue)
3173                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3174                                           (unsigned long long)sh->sector,
3175                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3176         }
3177         /* now if nothing is locked, and if we have enough data,
3178          * we can start a write request
3179          */
3180         /* since handle_stripe can be called at any time we need to handle the
3181          * case where a compute block operation has been submitted and then a
3182          * subsequent call wants to start a write request.  raid_run_ops only
3183          * handles the case where compute block and reconstruct are requested
3184          * simultaneously.  If this is not the case then new writes need to be
3185          * held off until the compute completes.
3186          */
3187         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3188             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3189             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3190                 schedule_reconstruction(sh, s, rcw == 0, 0);
3191 }
3192
3193 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3194                                 struct stripe_head_state *s, int disks)
3195 {
3196         struct r5dev *dev = NULL;
3197
3198         set_bit(STRIPE_HANDLE, &sh->state);
3199
3200         switch (sh->check_state) {
3201         case check_state_idle:
3202                 /* start a new check operation if there are no failures */
3203                 if (s->failed == 0) {
3204                         BUG_ON(s->uptodate != disks);
3205                         sh->check_state = check_state_run;
3206                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3207                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3208                         s->uptodate--;
3209                         break;
3210                 }
3211                 dev = &sh->dev[s->failed_num[0]];
3212                 /* fall through */
3213         case check_state_compute_result:
3214                 sh->check_state = check_state_idle;
3215                 if (!dev)
3216                         dev = &sh->dev[sh->pd_idx];
3217
3218                 /* check that a write has not made the stripe insync */
3219                 if (test_bit(STRIPE_INSYNC, &sh->state))
3220                         break;
3221
3222                 /* either failed parity check, or recovery is happening */
3223                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3224                 BUG_ON(s->uptodate != disks);
3225
3226                 set_bit(R5_LOCKED, &dev->flags);
3227                 s->locked++;
3228                 set_bit(R5_Wantwrite, &dev->flags);
3229
3230                 clear_bit(STRIPE_DEGRADED, &sh->state);
3231                 set_bit(STRIPE_INSYNC, &sh->state);
3232                 break;
3233         case check_state_run:
3234                 break; /* we will be called again upon completion */
3235         case check_state_check_result:
3236                 sh->check_state = check_state_idle;
3237
3238                 /* if a failure occurred during the check operation, leave
3239                  * STRIPE_INSYNC not set and let the stripe be handled again
3240                  */
3241                 if (s->failed)
3242                         break;
3243
3244                 /* handle a successful check operation, if parity is correct
3245                  * we are done.  Otherwise update the mismatch count and repair
3246                  * parity if !MD_RECOVERY_CHECK
3247                  */
3248                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3249                         /* parity is correct (on disc,
3250                          * not in buffer any more)
3251                          */
3252                         set_bit(STRIPE_INSYNC, &sh->state);
3253                 else {
3254                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3255                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3256                                 /* don't try to repair!! */
3257                                 set_bit(STRIPE_INSYNC, &sh->state);
3258                         else {
3259                                 sh->check_state = check_state_compute_run;
3260                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3261                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3262                                 set_bit(R5_Wantcompute,
3263                                         &sh->dev[sh->pd_idx].flags);
3264                                 sh->ops.target = sh->pd_idx;
3265                                 sh->ops.target2 = -1;
3266                                 s->uptodate++;
3267                         }
3268                 }
3269                 break;
3270         case check_state_compute_run:
3271                 break;
3272         default:
3273                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3274                        __func__, sh->check_state,
3275                        (unsigned long long) sh->sector);
3276                 BUG();
3277         }
3278 }
3279
3280
3281 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3282                                   struct stripe_head_state *s,
3283                                   int disks)
3284 {
3285         int pd_idx = sh->pd_idx;
3286         int qd_idx = sh->qd_idx;
3287         struct r5dev *dev;
3288
3289         set_bit(STRIPE_HANDLE, &sh->state);
3290
3291         BUG_ON(s->failed > 2);
3292
3293         /* Want to check and possibly repair P and Q.
3294          * However there could be one 'failed' device, in which
3295          * case we can only check one of them, possibly using the
3296          * other to generate missing data
3297          */
3298
3299         switch (sh->check_state) {
3300         case check_state_idle:
3301                 /* start a new check operation if there are < 2 failures */
3302                 if (s->failed == s->q_failed) {
3303                         /* The only possible failed device holds Q, so it
3304                          * makes sense to check P (If anything else were failed,
3305                          * we would have used P to recreate it).
3306                          */
3307                         sh->check_state = check_state_run;
3308                 }
3309                 if (!s->q_failed && s->failed < 2) {
3310                         /* Q is not failed, and we didn't use it to generate
3311                          * anything, so it makes sense to check it
3312                          */
3313                         if (sh->check_state == check_state_run)
3314                                 sh->check_state = check_state_run_pq;
3315                         else
3316                                 sh->check_state = check_state_run_q;
3317                 }
3318
3319                 /* discard potentially stale zero_sum_result */
3320                 sh->ops.zero_sum_result = 0;
3321
3322                 if (sh->check_state == check_state_run) {
3323                         /* async_xor_zero_sum destroys the contents of P */
3324                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3325                         s->uptodate--;
3326                 }
3327                 if (sh->check_state >= check_state_run &&
3328                     sh->check_state <= check_state_run_pq) {
3329                         /* async_syndrome_zero_sum preserves P and Q, so
3330                          * no need to mark them !uptodate here
3331                          */
3332                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3333                         break;
3334                 }
3335
3336                 /* we have 2-disk failure */
3337                 BUG_ON(s->failed != 2);
3338                 /* fall through */
3339         case check_state_compute_result:
3340                 sh->check_state = check_state_idle;
3341
3342                 /* check that a write has not made the stripe insync */
3343                 if (test_bit(STRIPE_INSYNC, &sh->state))
3344                         break;
3345
3346                 /* now write out any block on a failed drive,
3347                  * or P or Q if they were recomputed
3348                  */
3349                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3350                 if (s->failed == 2) {
3351                         dev = &sh->dev[s->failed_num[1]];
3352                         s->locked++;
3353                         set_bit(R5_LOCKED, &dev->flags);
3354                         set_bit(R5_Wantwrite, &dev->flags);
3355                 }
3356                 if (s->failed >= 1) {
3357                         dev = &sh->dev[s->failed_num[0]];
3358                         s->locked++;
3359                         set_bit(R5_LOCKED, &dev->flags);
3360                         set_bit(R5_Wantwrite, &dev->flags);
3361                 }
3362                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3363                         dev = &sh->dev[pd_idx];
3364                         s->locked++;
3365                         set_bit(R5_LOCKED, &dev->flags);
3366                         set_bit(R5_Wantwrite, &dev->flags);
3367                 }
3368                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3369                         dev = &sh->dev[qd_idx];
3370                         s->locked++;
3371                         set_bit(R5_LOCKED, &dev->flags);
3372                         set_bit(R5_Wantwrite, &dev->flags);
3373                 }
3374                 clear_bit(STRIPE_DEGRADED, &sh->state);
3375
3376                 set_bit(STRIPE_INSYNC, &sh->state);
3377                 break;
3378         case check_state_run:
3379         case check_state_run_q:
3380         case check_state_run_pq:
3381                 break; /* we will be called again upon completion */
3382         case check_state_check_result:
3383                 sh->check_state = check_state_idle;
3384
3385                 /* handle a successful check operation, if parity is correct
3386                  * we are done.  Otherwise update the mismatch count and repair
3387                  * parity if !MD_RECOVERY_CHECK
3388                  */
3389                 if (sh->ops.zero_sum_result == 0) {
3390                         /* both parities are correct */
3391                         if (!s->failed)
3392                                 set_bit(STRIPE_INSYNC, &sh->state);
3393                         else {
3394                                 /* in contrast to the raid5 case we can validate
3395                                  * parity, but still have a failure to write
3396                                  * back
3397                                  */
3398                                 sh->check_state = check_state_compute_result;
3399                                 /* Returning at this point means that we may go
3400                                  * off and bring p and/or q uptodate again so
3401                                  * we make sure to check zero_sum_result again
3402                                  * to verify if p or q need writeback
3403                                  */
3404                         }
3405                 } else {
3406                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3407                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3408                                 /* don't try to repair!! */
3409                                 set_bit(STRIPE_INSYNC, &sh->state);
3410                         else {
3411                                 int *target = &sh->ops.target;
3412
3413                                 sh->ops.target = -1;
3414                                 sh->ops.target2 = -1;
3415                                 sh->check_state = check_state_compute_run;
3416                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3417                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3418                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3419                                         set_bit(R5_Wantcompute,
3420                                                 &sh->dev[pd_idx].flags);
3421                                         *target = pd_idx;
3422                                         target = &sh->ops.target2;
3423                                         s->uptodate++;
3424                                 }
3425                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3426                                         set_bit(R5_Wantcompute,
3427                                                 &sh->dev[qd_idx].flags);
3428                                         *target = qd_idx;
3429                                         s->uptodate++;
3430                                 }
3431                         }
3432                 }
3433                 break;
3434         case check_state_compute_run:
3435                 break;
3436         default:
3437                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3438                        __func__, sh->check_state,
3439                        (unsigned long long) sh->sector);
3440                 BUG();
3441         }
3442 }
3443
3444 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3445 {
3446         int i;
3447
3448         /* We have read all the blocks in this stripe and now we need to
3449          * copy some of them into a target stripe for expand.
3450          */
3451         struct dma_async_tx_descriptor *tx = NULL;
3452         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3453         for (i = 0; i < sh->disks; i++)
3454                 if (i != sh->pd_idx && i != sh->qd_idx) {
3455                         int dd_idx, j;
3456                         struct stripe_head *sh2;
3457                         struct async_submit_ctl submit;
3458
3459                         sector_t bn = compute_blocknr(sh, i, 1);
3460                         sector_t s = raid5_compute_sector(conf, bn, 0,
3461                                                           &dd_idx, NULL);
3462                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3463                         if (sh2 == NULL)
3464                                 /* so far only the early blocks of this stripe
3465                                  * have been requested.  When later blocks
3466                                  * get requested, we will try again
3467                                  */
3468                                 continue;
3469                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3470                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3471                                 /* must have already done this block */
3472                                 release_stripe(sh2);
3473                                 continue;
3474                         }
3475
3476                         /* place all the copies on one channel */
3477                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3478                         tx = async_memcpy(sh2->dev[dd_idx].page,
3479                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3480                                           &submit);
3481
3482                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3483                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3484                         for (j = 0; j < conf->raid_disks; j++)
3485                                 if (j != sh2->pd_idx &&
3486                                     j != sh2->qd_idx &&
3487                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3488                                         break;
3489                         if (j == conf->raid_disks) {
3490                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3491                                 set_bit(STRIPE_HANDLE, &sh2->state);
3492                         }
3493                         release_stripe(sh2);
3494
3495                 }
3496         /* done submitting copies, wait for them to complete */
3497         async_tx_quiesce(&tx);
3498 }
3499
3500 /*
3501  * handle_stripe - do things to a stripe.
3502  *
3503  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3504  * state of various bits to see what needs to be done.
3505  * Possible results:
3506  *    return some read requests which now have data
3507  *    return some write requests which are safely on storage
3508  *    schedule a read on some buffers
3509  *    schedule a write of some buffers
3510  *    return confirmation of parity correctness
3511  *
3512  */
3513
3514 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3515 {
3516         struct r5conf *conf = sh->raid_conf;
3517         int disks = sh->disks;
3518         struct r5dev *dev;
3519         int i;
3520         int do_recovery = 0;
3521
3522         memset(s, 0, sizeof(*s));
3523
3524         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3525         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3526         s->failed_num[0] = -1;
3527         s->failed_num[1] = -1;
3528
3529         /* Now to look around and see what can be done */
3530         rcu_read_lock();
3531         for (i=disks; i--; ) {
3532                 struct md_rdev *rdev;
3533                 sector_t first_bad;
3534                 int bad_sectors;
3535                 int is_bad = 0;
3536
3537                 dev = &sh->dev[i];
3538
3539                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3540                          i, dev->flags,
3541                          dev->toread, dev->towrite, dev->written);
3542                 /* maybe we can reply to a read
3543                  *
3544                  * new wantfill requests are only permitted while
3545                  * ops_complete_biofill is guaranteed to be inactive
3546                  */
3547                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3548                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3549                         set_bit(R5_Wantfill, &dev->flags);
3550
3551                 /* now count some things */
3552                 if (test_bit(R5_LOCKED, &dev->flags))
3553                         s->locked++;
3554                 if (test_bit(R5_UPTODATE, &dev->flags))
3555                         s->uptodate++;
3556                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3557                         s->compute++;
3558                         BUG_ON(s->compute > 2);
3559                 }
3560
3561                 if (test_bit(R5_Wantfill, &dev->flags))
3562                         s->to_fill++;
3563                 else if (dev->toread)
3564                         s->to_read++;
3565                 if (dev->towrite) {
3566                         s->to_write++;
3567                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3568                                 s->non_overwrite++;
3569                 }
3570                 if (dev->written)
3571                         s->written++;
3572                 /* Prefer to use the replacement for reads, but only
3573                  * if it is recovered enough and has no bad blocks.
3574                  */
3575                 rdev = rcu_dereference(conf->disks[i].replacement);
3576                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3577                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3578                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3579                                  &first_bad, &bad_sectors))
3580                         set_bit(R5_ReadRepl, &dev->flags);
3581                 else {
3582                         if (rdev)
3583                                 set_bit(R5_NeedReplace, &dev->flags);
3584                         rdev = rcu_dereference(conf->disks[i].rdev);
3585                         clear_bit(R5_ReadRepl, &dev->flags);
3586                 }
3587                 if (rdev && test_bit(Faulty, &rdev->flags))
3588                         rdev = NULL;
3589                 if (rdev) {
3590                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3591                                              &first_bad, &bad_sectors);
3592                         if (s->blocked_rdev == NULL
3593                             && (test_bit(Blocked, &rdev->flags)
3594                                 || is_bad < 0)) {
3595                                 if (is_bad < 0)
3596                                         set_bit(BlockedBadBlocks,
3597                                                 &rdev->flags);
3598                                 s->blocked_rdev = rdev;
3599                                 atomic_inc(&rdev->nr_pending);
3600                         }
3601                 }
3602                 clear_bit(R5_Insync, &dev->flags);
3603                 if (!rdev)
3604                         /* Not in-sync */;
3605                 else if (is_bad) {
3606                         /* also not in-sync */
3607                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3608                             test_bit(R5_UPTODATE, &dev->flags)) {
3609                                 /* treat as in-sync, but with a read error
3610                                  * which we can now try to correct
3611                                  */
3612                                 set_bit(R5_Insync, &dev->flags);
3613                                 set_bit(R5_ReadError, &dev->flags);
3614                         }
3615                 } else if (test_bit(In_sync, &rdev->flags))
3616                         set_bit(R5_Insync, &dev->flags);
3617                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3618                         /* in sync if before recovery_offset */
3619                         set_bit(R5_Insync, &dev->flags);
3620                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3621                          test_bit(R5_Expanded, &dev->flags))
3622                         /* If we've reshaped into here, we assume it is Insync.
3623                          * We will shortly update recovery_offset to make
3624                          * it official.
3625                          */
3626                         set_bit(R5_Insync, &dev->flags);
3627
3628                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3629                         /* This flag does not apply to '.replacement'
3630                          * only to .rdev, so make sure to check that*/
3631                         struct md_rdev *rdev2 = rcu_dereference(
3632                                 conf->disks[i].rdev);
3633                         if (rdev2 == rdev)
3634                                 clear_bit(R5_Insync, &dev->flags);
3635                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3636                                 s->handle_bad_blocks = 1;
3637                                 atomic_inc(&rdev2->nr_pending);
3638                         } else
3639                                 clear_bit(R5_WriteError, &dev->flags);
3640                 }
3641                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3642                         /* This flag does not apply to '.replacement'
3643                          * only to .rdev, so make sure to check that*/
3644                         struct md_rdev *rdev2 = rcu_dereference(
3645                                 conf->disks[i].rdev);
3646                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3647                                 s->handle_bad_blocks = 1;
3648                                 atomic_inc(&rdev2->nr_pending);
3649                         } else
3650                                 clear_bit(R5_MadeGood, &dev->flags);
3651                 }
3652                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3653                         struct md_rdev *rdev2 = rcu_dereference(
3654                                 conf->disks[i].replacement);
3655                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3656                                 s->handle_bad_blocks = 1;
3657                                 atomic_inc(&rdev2->nr_pending);
3658                         } else
3659                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3660                 }
3661                 if (!test_bit(R5_Insync, &dev->flags)) {
3662                         /* The ReadError flag will just be confusing now */
3663                         clear_bit(R5_ReadError, &dev->flags);
3664                         clear_bit(R5_ReWrite, &dev->flags);
3665                 }
3666                 if (test_bit(R5_ReadError, &dev->flags))
3667                         clear_bit(R5_Insync, &dev->flags);
3668                 if (!test_bit(R5_Insync, &dev->flags)) {
3669                         if (s->failed < 2)
3670                                 s->failed_num[s->failed] = i;
3671                         s->failed++;
3672                         if (rdev && !test_bit(Faulty, &rdev->flags))
3673                                 do_recovery = 1;
3674                 }
3675         }
3676         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3677                 /* If there is a failed device being replaced,
3678                  *     we must be recovering.
3679                  * else if we are after recovery_cp, we must be syncing
3680                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3681                  * else we can only be replacing
3682                  * sync and recovery both need to read all devices, and so
3683                  * use the same flag.
3684                  */
3685                 if (do_recovery ||
3686                     sh->sector >= conf->mddev->recovery_cp ||
3687                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3688                         s->syncing = 1;
3689                 else
3690                         s->replacing = 1;
3691         }
3692         rcu_read_unlock();
3693 }
3694
3695 static void handle_stripe(struct stripe_head *sh)
3696 {
3697         struct stripe_head_state s;
3698         struct r5conf *conf = sh->raid_conf;
3699         int i;
3700         int prexor;
3701         int disks = sh->disks;
3702         struct r5dev *pdev, *qdev;
3703
3704         clear_bit(STRIPE_HANDLE, &sh->state);
3705         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3706                 /* already being handled, ensure it gets handled
3707                  * again when current action finishes */
3708                 set_bit(STRIPE_HANDLE, &sh->state);
3709                 return;
3710         }
3711
3712         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3713                 spin_lock(&sh->stripe_lock);
3714                 /* Cannot process 'sync' concurrently with 'discard' */
3715                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3716                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3717                         set_bit(STRIPE_SYNCING, &sh->state);
3718                         clear_bit(STRIPE_INSYNC, &sh->state);
3719                         clear_bit(STRIPE_REPLACED, &sh->state);
3720                 }
3721                 spin_unlock(&sh->stripe_lock);
3722         }
3723         clear_bit(STRIPE_DELAYED, &sh->state);
3724
3725         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3726                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3727                (unsigned long long)sh->sector, sh->state,
3728                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3729                sh->check_state, sh->reconstruct_state);
3730
3731         analyse_stripe(sh, &s);
3732
3733         if (s.handle_bad_blocks) {
3734                 set_bit(STRIPE_HANDLE, &sh->state);
3735                 goto finish;
3736         }
3737
3738         if (unlikely(s.blocked_rdev)) {
3739                 if (s.syncing || s.expanding || s.expanded ||
3740                     s.replacing || s.to_write || s.written) {
3741                         set_bit(STRIPE_HANDLE, &sh->state);
3742                         goto finish;
3743                 }
3744                 /* There is nothing for the blocked_rdev to block */
3745                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3746                 s.blocked_rdev = NULL;
3747         }
3748
3749         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3750                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3751                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3752         }
3753
3754         pr_debug("locked=%d uptodate=%d to_read=%d"
3755                " to_write=%d failed=%d failed_num=%d,%d\n",
3756                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3757                s.failed_num[0], s.failed_num[1]);
3758         /* check if the array has lost more than max_degraded devices and,
3759          * if so, some requests might need to be failed.
3760          */
3761         if (s.failed > conf->max_degraded) {
3762                 sh->check_state = 0;
3763                 sh->reconstruct_state = 0;
3764                 if (s.to_read+s.to_write+s.written)
3765                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3766                 if (s.syncing + s.replacing)
3767                         handle_failed_sync(conf, sh, &s);
3768         }
3769
3770         /* Now we check to see if any write operations have recently
3771          * completed
3772          */
3773         prexor = 0;
3774         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3775                 prexor = 1;
3776         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3777             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3778                 sh->reconstruct_state = reconstruct_state_idle;
3779
3780                 /* All the 'written' buffers and the parity block are ready to
3781                  * be written back to disk
3782                  */
3783                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3784                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3785                 BUG_ON(sh->qd_idx >= 0 &&
3786                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3787                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3788                 for (i = disks; i--; ) {
3789                         struct r5dev *dev = &sh->dev[i];
3790                         if (test_bit(R5_LOCKED, &dev->flags) &&
3791                                 (i == sh->pd_idx || i == sh->qd_idx ||
3792                                  dev->written)) {
3793                                 pr_debug("Writing block %d\n", i);
3794                                 set_bit(R5_Wantwrite, &dev->flags);
3795                                 if (prexor)
3796                                         continue;
3797                                 if (!test_bit(R5_Insync, &dev->flags) ||
3798                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3799                                      s.failed == 0))
3800                                         set_bit(STRIPE_INSYNC, &sh->state);
3801                         }
3802                 }
3803                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3804                         s.dec_preread_active = 1;
3805         }
3806
3807         /*
3808          * might be able to return some write requests if the parity blocks
3809          * are safe, or on a failed drive
3810          */
3811         pdev = &sh->dev[sh->pd_idx];
3812         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3813                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3814         qdev = &sh->dev[sh->qd_idx];
3815         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3816                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3817                 || conf->level < 6;
3818
3819         if (s.written &&
3820             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3821                              && !test_bit(R5_LOCKED, &pdev->flags)
3822                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3823                                  test_bit(R5_Discard, &pdev->flags))))) &&
3824             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3825                              && !test_bit(R5_LOCKED, &qdev->flags)
3826                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3827                                  test_bit(R5_Discard, &qdev->flags))))))
3828                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3829
3830         /* Now we might consider reading some blocks, either to check/generate
3831          * parity, or to satisfy requests
3832          * or to load a block that is being partially written.
3833          */
3834         if (s.to_read || s.non_overwrite
3835             || (conf->level == 6 && s.to_write && s.failed)
3836             || (s.syncing && (s.uptodate + s.compute < disks))
3837             || s.replacing
3838             || s.expanding)
3839                 handle_stripe_fill(sh, &s, disks);
3840
3841         /* Now to consider new write requests and what else, if anything
3842          * should be read.  We do not handle new writes when:
3843          * 1/ A 'write' operation (copy+xor) is already in flight.
3844          * 2/ A 'check' operation is in flight, as it may clobber the parity
3845          *    block.
3846          */
3847         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3848                 handle_stripe_dirtying(conf, sh, &s, disks);
3849
3850         /* maybe we need to check and possibly fix the parity for this stripe
3851          * Any reads will already have been scheduled, so we just see if enough
3852          * data is available.  The parity check is held off while parity
3853          * dependent operations are in flight.
3854          */
3855         if (sh->check_state ||
3856             (s.syncing && s.locked == 0 &&
3857              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3858              !test_bit(STRIPE_INSYNC, &sh->state))) {
3859                 if (conf->level == 6)
3860                         handle_parity_checks6(conf, sh, &s, disks);
3861                 else
3862                         handle_parity_checks5(conf, sh, &s, disks);
3863         }
3864
3865         if ((s.replacing || s.syncing) && s.locked == 0
3866             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3867             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3868                 /* Write out to replacement devices where possible */
3869                 for (i = 0; i < conf->raid_disks; i++)
3870                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3871                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3872                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3873                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3874                                 s.locked++;
3875                         }
3876                 if (s.replacing)
3877                         set_bit(STRIPE_INSYNC, &sh->state);
3878                 set_bit(STRIPE_REPLACED, &sh->state);
3879         }
3880         if ((s.syncing || s.replacing) && s.locked == 0 &&
3881             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3882             test_bit(STRIPE_INSYNC, &sh->state)) {
3883                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3884                 clear_bit(STRIPE_SYNCING, &sh->state);
3885                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3886                         wake_up(&conf->wait_for_overlap);
3887         }
3888
3889         /* If the failed drives are just a ReadError, then we might need
3890          * to progress the repair/check process
3891          */
3892         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3893                 for (i = 0; i < s.failed; i++) {
3894                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3895                         if (test_bit(R5_ReadError, &dev->flags)
3896                             && !test_bit(R5_LOCKED, &dev->flags)
3897                             && test_bit(R5_UPTODATE, &dev->flags)
3898                                 ) {
3899                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3900                                         set_bit(R5_Wantwrite, &dev->flags);
3901                                         set_bit(R5_ReWrite, &dev->flags);
3902                                         set_bit(R5_LOCKED, &dev->flags);
3903                                         s.locked++;
3904                                 } else {
3905                                         /* let's read it back */
3906                                         set_bit(R5_Wantread, &dev->flags);
3907                                         set_bit(R5_LOCKED, &dev->flags);
3908                                         s.locked++;
3909                                 }
3910                         }
3911                 }
3912
3913
3914         /* Finish reconstruct operations initiated by the expansion process */
3915         if (sh->reconstruct_state == reconstruct_state_result) {
3916                 struct stripe_head *sh_src
3917                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3918                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3919                         /* sh cannot be written until sh_src has been read.
3920                          * so arrange for sh to be delayed a little
3921                          */
3922                         set_bit(STRIPE_DELAYED, &sh->state);
3923                         set_bit(STRIPE_HANDLE, &sh->state);
3924                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3925                                               &sh_src->state))
3926                                 atomic_inc(&conf->preread_active_stripes);
3927                         release_stripe(sh_src);
3928                         goto finish;
3929                 }
3930                 if (sh_src)
3931                         release_stripe(sh_src);
3932
3933                 sh->reconstruct_state = reconstruct_state_idle;
3934                 clear_bit(STRIPE_EXPANDING, &sh->state);
3935                 for (i = conf->raid_disks; i--; ) {
3936                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3937                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3938                         s.locked++;
3939                 }
3940         }
3941
3942         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3943             !sh->reconstruct_state) {
3944                 /* Need to write out all blocks after computing parity */
3945                 sh->disks = conf->raid_disks;
3946                 stripe_set_idx(sh->sector, conf, 0, sh);
3947                 schedule_reconstruction(sh, &s, 1, 1);
3948         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3949                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3950                 atomic_dec(&conf->reshape_stripes);
3951                 wake_up(&conf->wait_for_overlap);
3952                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3953         }
3954
3955         if (s.expanding && s.locked == 0 &&
3956             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3957                 handle_stripe_expansion(conf, sh);
3958
3959 finish:
3960         /* wait for this device to become unblocked */
3961         if (unlikely(s.blocked_rdev)) {
3962                 if (conf->mddev->external)
3963                         md_wait_for_blocked_rdev(s.blocked_rdev,
3964                                                  conf->mddev);
3965                 else
3966                         /* Internal metadata will immediately
3967                          * be written by raid5d, so we don't
3968                          * need to wait here.
3969                          */
3970                         rdev_dec_pending(s.blocked_rdev,
3971                                          conf->mddev);
3972         }
3973
3974         if (s.handle_bad_blocks)
3975                 for (i = disks; i--; ) {
3976                         struct md_rdev *rdev;
3977                         struct r5dev *dev = &sh->dev[i];
3978                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3979                                 /* We own a safe reference to the rdev */
3980                                 rdev = conf->disks[i].rdev;
3981                                 if (!rdev_set_badblocks(rdev, sh->sector,
3982                                                         STRIPE_SECTORS, 0))
3983                                         md_error(conf->mddev, rdev);
3984                                 rdev_dec_pending(rdev, conf->mddev);
3985                         }
3986                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3987                                 rdev = conf->disks[i].rdev;
3988                                 rdev_clear_badblocks(rdev, sh->sector,
3989                                                      STRIPE_SECTORS, 0);
3990                                 rdev_dec_pending(rdev, conf->mddev);
3991                         }
3992                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3993                                 rdev = conf->disks[i].replacement;
3994                                 if (!rdev)
3995                                         /* rdev have been moved down */
3996                                         rdev = conf->disks[i].rdev;
3997                                 rdev_clear_badblocks(rdev, sh->sector,
3998                                                      STRIPE_SECTORS, 0);
3999                                 rdev_dec_pending(rdev, conf->mddev);
4000                         }
4001                 }
4002
4003         if (s.ops_request)
4004                 raid_run_ops(sh, s.ops_request);
4005
4006         ops_run_io(sh, &s);
4007
4008         if (s.dec_preread_active) {
4009                 /* We delay this until after ops_run_io so that if make_request
4010                  * is waiting on a flush, it won't continue until the writes
4011                  * have actually been submitted.
4012                  */
4013                 atomic_dec(&conf->preread_active_stripes);
4014                 if (atomic_read(&conf->preread_active_stripes) <
4015                     IO_THRESHOLD)
4016                         md_wakeup_thread(conf->mddev->thread);
4017         }
4018
4019         return_io(s.return_bi);
4020
4021         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4022 }
4023
4024 static void raid5_activate_delayed(struct r5conf *conf)
4025 {
4026         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4027                 while (!list_empty(&conf->delayed_list)) {
4028                         struct list_head *l = conf->delayed_list.next;
4029                         struct stripe_head *sh;
4030                         sh = list_entry(l, struct stripe_head, lru);
4031                         list_del_init(l);
4032                         clear_bit(STRIPE_DELAYED, &sh->state);
4033                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4034                                 atomic_inc(&conf->preread_active_stripes);
4035                         list_add_tail(&sh->lru, &conf->hold_list);
4036                         raid5_wakeup_stripe_thread(sh);
4037                 }
4038         }
4039 }
4040
4041 static void activate_bit_delay(struct r5conf *conf,
4042         struct list_head *temp_inactive_list)
4043 {
4044         /* device_lock is held */
4045         struct list_head head;
4046         list_add(&head, &conf->bitmap_list);
4047         list_del_init(&conf->bitmap_list);
4048         while (!list_empty(&head)) {
4049                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4050                 int hash;
4051                 list_del_init(&sh->lru);
4052                 atomic_inc(&sh->count);
4053                 hash = sh->hash_lock_index;
4054                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4055         }
4056 }
4057
4058 int md_raid5_congested(struct mddev *mddev, int bits)
4059 {
4060         struct r5conf *conf = mddev->private;
4061
4062         /* No difference between reads and writes.  Just check
4063          * how busy the stripe_cache is
4064          */
4065
4066         if (conf->inactive_blocked)
4067                 return 1;
4068         if (conf->quiesce)
4069                 return 1;
4070         if (atomic_read(&conf->empty_inactive_list_nr))
4071                 return 1;
4072
4073         return 0;
4074 }
4075 EXPORT_SYMBOL_GPL(md_raid5_congested);
4076
4077 static int raid5_congested(void *data, int bits)
4078 {
4079         struct mddev *mddev = data;
4080
4081         return mddev_congested(mddev, bits) ||
4082                 md_raid5_congested(mddev, bits);
4083 }
4084
4085 /* We want read requests to align with chunks where possible,
4086  * but write requests don't need to.
4087  */
4088 static int raid5_mergeable_bvec(struct request_queue *q,
4089                                 struct bvec_merge_data *bvm,
4090                                 struct bio_vec *biovec)
4091 {
4092         struct mddev *mddev = q->queuedata;
4093         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4094         int max;
4095         unsigned int chunk_sectors = mddev->chunk_sectors;
4096         unsigned int bio_sectors = bvm->bi_size >> 9;
4097
4098         if ((bvm->bi_rw & 1) == WRITE)
4099                 return biovec->bv_len; /* always allow writes to be mergeable */
4100
4101         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4102                 chunk_sectors = mddev->new_chunk_sectors;
4103         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4104         if (max < 0) max = 0;
4105         if (max <= biovec->bv_len && bio_sectors == 0)
4106                 return biovec->bv_len;
4107         else
4108                 return max;
4109 }
4110
4111
4112 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4113 {
4114         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
4115         unsigned int chunk_sectors = mddev->chunk_sectors;
4116         unsigned int bio_sectors = bio_sectors(bio);
4117
4118         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4119                 chunk_sectors = mddev->new_chunk_sectors;
4120         return  chunk_sectors >=
4121                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4122 }
4123
4124 /*
4125  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4126  *  later sampled by raid5d.
4127  */
4128 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4129 {
4130         unsigned long flags;
4131
4132         spin_lock_irqsave(&conf->device_lock, flags);
4133
4134         bi->bi_next = conf->retry_read_aligned_list;
4135         conf->retry_read_aligned_list = bi;
4136
4137         spin_unlock_irqrestore(&conf->device_lock, flags);
4138         md_wakeup_thread(conf->mddev->thread);
4139 }
4140
4141
4142 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4143 {
4144         struct bio *bi;
4145
4146         bi = conf->retry_read_aligned;
4147         if (bi) {
4148                 conf->retry_read_aligned = NULL;
4149                 return bi;
4150         }
4151         bi = conf->retry_read_aligned_list;
4152         if(bi) {
4153                 conf->retry_read_aligned_list = bi->bi_next;
4154                 bi->bi_next = NULL;
4155                 /*
4156                  * this sets the active strip count to 1 and the processed
4157                  * strip count to zero (upper 8 bits)
4158                  */
4159                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4160         }
4161
4162         return bi;
4163 }
4164
4165
4166 /*
4167  *  The "raid5_align_endio" should check if the read succeeded and if it
4168  *  did, call bio_endio on the original bio (having bio_put the new bio
4169  *  first).
4170  *  If the read failed..
4171  */
4172 static void raid5_align_endio(struct bio *bi, int error)
4173 {
4174         struct bio* raid_bi  = bi->bi_private;
4175         struct mddev *mddev;
4176         struct r5conf *conf;
4177         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4178         struct md_rdev *rdev;
4179
4180         bio_put(bi);
4181
4182         rdev = (void*)raid_bi->bi_next;
4183         raid_bi->bi_next = NULL;
4184         mddev = rdev->mddev;
4185         conf = mddev->private;
4186
4187         rdev_dec_pending(rdev, conf->mddev);
4188
4189         if (!error && uptodate) {
4190                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4191                                          raid_bi, 0);
4192                 bio_endio(raid_bi, 0);
4193                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4194                         wake_up(&conf->wait_for_stripe);
4195                 return;
4196         }
4197
4198
4199         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4200
4201         add_bio_to_retry(raid_bi, conf);
4202 }
4203
4204 static int bio_fits_rdev(struct bio *bi)
4205 {
4206         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4207
4208         if (bio_sectors(bi) > queue_max_sectors(q))
4209                 return 0;
4210         blk_recount_segments(q, bi);
4211         if (bi->bi_phys_segments > queue_max_segments(q))
4212                 return 0;
4213
4214         if (q->merge_bvec_fn)
4215                 /* it's too hard to apply the merge_bvec_fn at this stage,
4216                  * just just give up
4217                  */
4218                 return 0;
4219
4220         return 1;
4221 }
4222
4223
4224 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4225 {
4226         struct r5conf *conf = mddev->private;
4227         int dd_idx;
4228         struct bio* align_bi;
4229         struct md_rdev *rdev;
4230         sector_t end_sector;
4231
4232         if (!in_chunk_boundary(mddev, raid_bio)) {
4233                 pr_debug("chunk_aligned_read : non aligned\n");
4234                 return 0;
4235         }
4236         /*
4237          * use bio_clone_mddev to make a copy of the bio
4238          */
4239         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4240         if (!align_bi)
4241                 return 0;
4242         /*
4243          *   set bi_end_io to a new function, and set bi_private to the
4244          *     original bio.
4245          */
4246         align_bi->bi_end_io  = raid5_align_endio;
4247         align_bi->bi_private = raid_bio;
4248         /*
4249          *      compute position
4250          */
4251         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4252                                                     0,
4253                                                     &dd_idx, NULL);
4254
4255         end_sector = bio_end_sector(align_bi);
4256         rcu_read_lock();
4257         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4258         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4259             rdev->recovery_offset < end_sector) {
4260                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4261                 if (rdev &&
4262                     (test_bit(Faulty, &rdev->flags) ||
4263                     !(test_bit(In_sync, &rdev->flags) ||
4264                       rdev->recovery_offset >= end_sector)))
4265                         rdev = NULL;
4266         }
4267         if (rdev) {
4268                 sector_t first_bad;
4269                 int bad_sectors;
4270
4271                 atomic_inc(&rdev->nr_pending);
4272                 rcu_read_unlock();
4273                 raid_bio->bi_next = (void*)rdev;
4274                 align_bi->bi_bdev =  rdev->bdev;
4275                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4276
4277                 if (!bio_fits_rdev(align_bi) ||
4278                     is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4279                                 &first_bad, &bad_sectors)) {
4280                         /* too big in some way, or has a known bad block */
4281                         bio_put(align_bi);
4282                         rdev_dec_pending(rdev, mddev);
4283                         return 0;
4284                 }
4285
4286                 /* No reshape active, so we can trust rdev->data_offset */
4287                 align_bi->bi_sector += rdev->data_offset;
4288
4289                 spin_lock_irq(&conf->device_lock);
4290                 wait_event_lock_irq(conf->wait_for_stripe,
4291                                     conf->quiesce == 0,
4292                                     conf->device_lock);
4293                 atomic_inc(&conf->active_aligned_reads);
4294                 spin_unlock_irq(&conf->device_lock);
4295
4296                 if (mddev->gendisk)
4297                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4298                                               align_bi, disk_devt(mddev->gendisk),
4299                                               raid_bio->bi_sector);
4300                 generic_make_request(align_bi);
4301                 return 1;
4302         } else {
4303                 rcu_read_unlock();
4304                 bio_put(align_bi);
4305                 return 0;
4306         }
4307 }
4308
4309 /* __get_priority_stripe - get the next stripe to process
4310  *
4311  * Full stripe writes are allowed to pass preread active stripes up until
4312  * the bypass_threshold is exceeded.  In general the bypass_count
4313  * increments when the handle_list is handled before the hold_list; however, it
4314  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4315  * stripe with in flight i/o.  The bypass_count will be reset when the
4316  * head of the hold_list has changed, i.e. the head was promoted to the
4317  * handle_list.
4318  */
4319 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4320 {
4321         struct stripe_head *sh = NULL, *tmp;
4322         struct list_head *handle_list = NULL;
4323         struct r5worker_group *wg = NULL;
4324
4325         if (conf->worker_cnt_per_group == 0) {
4326                 handle_list = &conf->handle_list;
4327         } else if (group != ANY_GROUP) {
4328                 handle_list = &conf->worker_groups[group].handle_list;
4329                 wg = &conf->worker_groups[group];
4330         } else {
4331                 int i;
4332                 for (i = 0; i < conf->group_cnt; i++) {
4333                         handle_list = &conf->worker_groups[i].handle_list;
4334                         wg = &conf->worker_groups[i];
4335                         if (!list_empty(handle_list))
4336                                 break;
4337                 }
4338         }
4339
4340         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4341                   __func__,
4342                   list_empty(handle_list) ? "empty" : "busy",
4343                   list_empty(&conf->hold_list) ? "empty" : "busy",
4344                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4345
4346         if (!list_empty(handle_list)) {
4347                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4348
4349                 if (list_empty(&conf->hold_list))
4350                         conf->bypass_count = 0;
4351                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4352                         if (conf->hold_list.next == conf->last_hold)
4353                                 conf->bypass_count++;
4354                         else {
4355                                 conf->last_hold = conf->hold_list.next;
4356                                 conf->bypass_count -= conf->bypass_threshold;
4357                                 if (conf->bypass_count < 0)
4358                                         conf->bypass_count = 0;
4359                         }
4360                 }
4361         } else if (!list_empty(&conf->hold_list) &&
4362                    ((conf->bypass_threshold &&
4363                      conf->bypass_count > conf->bypass_threshold) ||
4364                     atomic_read(&conf->pending_full_writes) == 0)) {
4365
4366                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4367                         if (conf->worker_cnt_per_group == 0 ||
4368                             group == ANY_GROUP ||
4369                             !cpu_online(tmp->cpu) ||
4370                             cpu_to_group(tmp->cpu) == group) {
4371                                 sh = tmp;
4372                                 break;
4373                         }
4374                 }
4375
4376                 if (sh) {
4377                         conf->bypass_count -= conf->bypass_threshold;
4378                         if (conf->bypass_count < 0)
4379                                 conf->bypass_count = 0;
4380                 }
4381                 wg = NULL;
4382         }
4383
4384         if (!sh)
4385                 return NULL;
4386
4387         if (wg) {
4388                 wg->stripes_cnt--;
4389                 sh->group = NULL;
4390         }
4391         list_del_init(&sh->lru);
4392         atomic_inc(&sh->count);
4393         BUG_ON(atomic_read(&sh->count) != 1);
4394         return sh;
4395 }
4396
4397 struct raid5_plug_cb {
4398         struct blk_plug_cb      cb;
4399         struct list_head        list;
4400         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4401 };
4402
4403 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4404 {
4405         struct raid5_plug_cb *cb = container_of(
4406                 blk_cb, struct raid5_plug_cb, cb);
4407         struct stripe_head *sh;
4408         struct mddev *mddev = cb->cb.data;
4409         struct r5conf *conf = mddev->private;
4410         int cnt = 0;
4411         int hash;
4412
4413         if (cb->list.next && !list_empty(&cb->list)) {
4414                 spin_lock_irq(&conf->device_lock);
4415                 while (!list_empty(&cb->list)) {
4416                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4417                         list_del_init(&sh->lru);
4418                         /*
4419                          * avoid race release_stripe_plug() sees
4420                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4421                          * is still in our list
4422                          */
4423                         smp_mb__before_clear_bit();
4424                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4425                         /*
4426                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4427                          * case, the count is always > 1 here
4428                          */
4429                         hash = sh->hash_lock_index;
4430                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4431                         cnt++;
4432                 }
4433                 spin_unlock_irq(&conf->device_lock);
4434         }
4435         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4436                                      NR_STRIPE_HASH_LOCKS);
4437         if (mddev->queue)
4438                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4439         kfree(cb);
4440 }
4441
4442 static void release_stripe_plug(struct mddev *mddev,
4443                                 struct stripe_head *sh)
4444 {
4445         struct blk_plug_cb *blk_cb = blk_check_plugged(
4446                 raid5_unplug, mddev,
4447                 sizeof(struct raid5_plug_cb));
4448         struct raid5_plug_cb *cb;
4449
4450         if (!blk_cb) {
4451                 release_stripe(sh);
4452                 return;
4453         }
4454
4455         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4456
4457         if (cb->list.next == NULL) {
4458                 int i;
4459                 INIT_LIST_HEAD(&cb->list);
4460                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4461                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4462         }
4463
4464         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4465                 list_add_tail(&sh->lru, &cb->list);
4466         else
4467                 release_stripe(sh);
4468 }
4469
4470 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4471 {
4472         struct r5conf *conf = mddev->private;
4473         sector_t logical_sector, last_sector;
4474         struct stripe_head *sh;
4475         int remaining;
4476         int stripe_sectors;
4477
4478         if (mddev->reshape_position != MaxSector)
4479                 /* Skip discard while reshape is happening */
4480                 return;
4481
4482         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4483         last_sector = bi->bi_sector + (bi->bi_size>>9);
4484
4485         bi->bi_next = NULL;
4486         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4487
4488         stripe_sectors = conf->chunk_sectors *
4489                 (conf->raid_disks - conf->max_degraded);
4490         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4491                                                stripe_sectors);
4492         sector_div(last_sector, stripe_sectors);
4493
4494         logical_sector *= conf->chunk_sectors;
4495         last_sector *= conf->chunk_sectors;
4496
4497         for (; logical_sector < last_sector;
4498              logical_sector += STRIPE_SECTORS) {
4499                 DEFINE_WAIT(w);
4500                 int d;
4501         again:
4502                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4503                 prepare_to_wait(&conf->wait_for_overlap, &w,
4504                                 TASK_UNINTERRUPTIBLE);
4505                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4506                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4507                         release_stripe(sh);
4508                         schedule();
4509                         goto again;
4510                 }
4511                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4512                 spin_lock_irq(&sh->stripe_lock);
4513                 for (d = 0; d < conf->raid_disks; d++) {
4514                         if (d == sh->pd_idx || d == sh->qd_idx)
4515                                 continue;
4516                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4517                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4518                                 spin_unlock_irq(&sh->stripe_lock);
4519                                 release_stripe(sh);
4520                                 schedule();
4521                                 goto again;
4522                         }
4523                 }
4524                 set_bit(STRIPE_DISCARD, &sh->state);
4525                 finish_wait(&conf->wait_for_overlap, &w);
4526                 for (d = 0; d < conf->raid_disks; d++) {
4527                         if (d == sh->pd_idx || d == sh->qd_idx)
4528                                 continue;
4529                         sh->dev[d].towrite = bi;
4530                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4531                         raid5_inc_bi_active_stripes(bi);
4532                 }
4533                 spin_unlock_irq(&sh->stripe_lock);
4534                 if (conf->mddev->bitmap) {
4535                         for (d = 0;
4536                              d < conf->raid_disks - conf->max_degraded;
4537                              d++)
4538                                 bitmap_startwrite(mddev->bitmap,
4539                                                   sh->sector,
4540                                                   STRIPE_SECTORS,
4541                                                   0);
4542                         sh->bm_seq = conf->seq_flush + 1;
4543                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4544                 }
4545
4546                 set_bit(STRIPE_HANDLE, &sh->state);
4547                 clear_bit(STRIPE_DELAYED, &sh->state);
4548                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4549                         atomic_inc(&conf->preread_active_stripes);
4550                 release_stripe_plug(mddev, sh);
4551         }
4552
4553         remaining = raid5_dec_bi_active_stripes(bi);
4554         if (remaining == 0) {
4555                 md_write_end(mddev);
4556                 bio_endio(bi, 0);
4557         }
4558 }
4559
4560 static void make_request(struct mddev *mddev, struct bio * bi)
4561 {
4562         struct r5conf *conf = mddev->private;
4563         int dd_idx;
4564         sector_t new_sector;
4565         sector_t logical_sector, last_sector;
4566         struct stripe_head *sh;
4567         const int rw = bio_data_dir(bi);
4568         int remaining;
4569
4570         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4571                 md_flush_request(mddev, bi);
4572                 return;
4573         }
4574
4575         md_write_start(mddev, bi);
4576
4577         if (rw == READ &&
4578              mddev->reshape_position == MaxSector &&
4579              chunk_aligned_read(mddev,bi))
4580                 return;
4581
4582         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4583                 make_discard_request(mddev, bi);
4584                 return;
4585         }
4586
4587         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4588         last_sector = bio_end_sector(bi);
4589         bi->bi_next = NULL;
4590         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4591
4592         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4593                 DEFINE_WAIT(w);
4594                 int previous;
4595                 int seq;
4596
4597         retry:
4598                 seq = read_seqcount_begin(&conf->gen_lock);
4599                 previous = 0;
4600                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4601                 if (unlikely(conf->reshape_progress != MaxSector)) {
4602                         /* spinlock is needed as reshape_progress may be
4603                          * 64bit on a 32bit platform, and so it might be
4604                          * possible to see a half-updated value
4605                          * Of course reshape_progress could change after
4606                          * the lock is dropped, so once we get a reference
4607                          * to the stripe that we think it is, we will have
4608                          * to check again.
4609                          */
4610                         spin_lock_irq(&conf->device_lock);
4611                         if (mddev->reshape_backwards
4612                             ? logical_sector < conf->reshape_progress
4613                             : logical_sector >= conf->reshape_progress) {
4614                                 previous = 1;
4615                         } else {
4616                                 if (mddev->reshape_backwards
4617                                     ? logical_sector < conf->reshape_safe
4618                                     : logical_sector >= conf->reshape_safe) {
4619                                         spin_unlock_irq(&conf->device_lock);
4620                                         schedule();
4621                                         goto retry;
4622                                 }
4623                         }
4624                         spin_unlock_irq(&conf->device_lock);
4625                 }
4626
4627                 new_sector = raid5_compute_sector(conf, logical_sector,
4628                                                   previous,
4629                                                   &dd_idx, NULL);
4630                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4631                         (unsigned long long)new_sector,
4632                         (unsigned long long)logical_sector);
4633
4634                 sh = get_active_stripe(conf, new_sector, previous,
4635                                        (bi->bi_rw&RWA_MASK), 0);
4636                 if (sh) {
4637                         if (unlikely(previous)) {
4638                                 /* expansion might have moved on while waiting for a
4639                                  * stripe, so we must do the range check again.
4640                                  * Expansion could still move past after this
4641                                  * test, but as we are holding a reference to
4642                                  * 'sh', we know that if that happens,
4643                                  *  STRIPE_EXPANDING will get set and the expansion
4644                                  * won't proceed until we finish with the stripe.
4645                                  */
4646                                 int must_retry = 0;
4647                                 spin_lock_irq(&conf->device_lock);
4648                                 if (mddev->reshape_backwards
4649                                     ? logical_sector >= conf->reshape_progress
4650                                     : logical_sector < conf->reshape_progress)
4651                                         /* mismatch, need to try again */
4652                                         must_retry = 1;
4653                                 spin_unlock_irq(&conf->device_lock);
4654                                 if (must_retry) {
4655                                         release_stripe(sh);
4656                                         schedule();
4657                                         goto retry;
4658                                 }
4659                         }
4660                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4661                                 /* Might have got the wrong stripe_head
4662                                  * by accident
4663                                  */
4664                                 release_stripe(sh);
4665                                 goto retry;
4666                         }
4667
4668                         if (rw == WRITE &&
4669                             logical_sector >= mddev->suspend_lo &&
4670                             logical_sector < mddev->suspend_hi) {
4671                                 release_stripe(sh);
4672                                 /* As the suspend_* range is controlled by
4673                                  * userspace, we want an interruptible
4674                                  * wait.
4675                                  */
4676                                 flush_signals(current);
4677                                 prepare_to_wait(&conf->wait_for_overlap,
4678                                                 &w, TASK_INTERRUPTIBLE);
4679                                 if (logical_sector >= mddev->suspend_lo &&
4680                                     logical_sector < mddev->suspend_hi)
4681                                         schedule();
4682                                 goto retry;
4683                         }
4684
4685                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4686                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4687                                 /* Stripe is busy expanding or
4688                                  * add failed due to overlap.  Flush everything
4689                                  * and wait a while
4690                                  */
4691                                 md_wakeup_thread(mddev->thread);
4692                                 release_stripe(sh);
4693                                 schedule();
4694                                 goto retry;
4695                         }
4696                         finish_wait(&conf->wait_for_overlap, &w);
4697                         set_bit(STRIPE_HANDLE, &sh->state);
4698                         clear_bit(STRIPE_DELAYED, &sh->state);
4699                         if ((bi->bi_rw & REQ_SYNC) &&
4700                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4701                                 atomic_inc(&conf->preread_active_stripes);
4702                         release_stripe_plug(mddev, sh);
4703                 } else {
4704                         /* cannot get stripe for read-ahead, just give-up */
4705                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4706                         finish_wait(&conf->wait_for_overlap, &w);
4707                         break;
4708                 }
4709         }
4710
4711         remaining = raid5_dec_bi_active_stripes(bi);
4712         if (remaining == 0) {
4713
4714                 if ( rw == WRITE )
4715                         md_write_end(mddev);
4716
4717                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4718                                          bi, 0);
4719                 bio_endio(bi, 0);
4720         }
4721 }
4722
4723 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4724
4725 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4726 {
4727         /* reshaping is quite different to recovery/resync so it is
4728          * handled quite separately ... here.
4729          *
4730          * On each call to sync_request, we gather one chunk worth of
4731          * destination stripes and flag them as expanding.
4732          * Then we find all the source stripes and request reads.
4733          * As the reads complete, handle_stripe will copy the data
4734          * into the destination stripe and release that stripe.
4735          */
4736         struct r5conf *conf = mddev->private;
4737         struct stripe_head *sh;
4738         sector_t first_sector, last_sector;
4739         int raid_disks = conf->previous_raid_disks;
4740         int data_disks = raid_disks - conf->max_degraded;
4741         int new_data_disks = conf->raid_disks - conf->max_degraded;
4742         int i;
4743         int dd_idx;
4744         sector_t writepos, readpos, safepos;
4745         sector_t stripe_addr;
4746         int reshape_sectors;
4747         struct list_head stripes;
4748
4749         if (sector_nr == 0) {
4750                 /* If restarting in the middle, skip the initial sectors */
4751                 if (mddev->reshape_backwards &&
4752                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4753                         sector_nr = raid5_size(mddev, 0, 0)
4754                                 - conf->reshape_progress;
4755                 } else if (!mddev->reshape_backwards &&
4756                            conf->reshape_progress > 0)
4757                         sector_nr = conf->reshape_progress;
4758                 sector_div(sector_nr, new_data_disks);
4759                 if (sector_nr) {
4760                         mddev->curr_resync_completed = sector_nr;
4761                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4762                         *skipped = 1;
4763                         return sector_nr;
4764                 }
4765         }
4766
4767         /* We need to process a full chunk at a time.
4768          * If old and new chunk sizes differ, we need to process the
4769          * largest of these
4770          */
4771         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4772                 reshape_sectors = mddev->new_chunk_sectors;
4773         else
4774                 reshape_sectors = mddev->chunk_sectors;
4775
4776         /* We update the metadata at least every 10 seconds, or when
4777          * the data about to be copied would over-write the source of
4778          * the data at the front of the range.  i.e. one new_stripe
4779          * along from reshape_progress new_maps to after where
4780          * reshape_safe old_maps to
4781          */
4782         writepos = conf->reshape_progress;
4783         sector_div(writepos, new_data_disks);
4784         readpos = conf->reshape_progress;
4785         sector_div(readpos, data_disks);
4786         safepos = conf->reshape_safe;
4787         sector_div(safepos, data_disks);
4788         if (mddev->reshape_backwards) {
4789                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4790                 readpos += reshape_sectors;
4791                 safepos += reshape_sectors;
4792         } else {
4793                 writepos += reshape_sectors;
4794                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4795                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4796         }
4797
4798         /* Having calculated the 'writepos' possibly use it
4799          * to set 'stripe_addr' which is where we will write to.
4800          */
4801         if (mddev->reshape_backwards) {
4802                 BUG_ON(conf->reshape_progress == 0);
4803                 stripe_addr = writepos;
4804                 BUG_ON((mddev->dev_sectors &
4805                         ~((sector_t)reshape_sectors - 1))
4806                        - reshape_sectors - stripe_addr
4807                        != sector_nr);
4808         } else {
4809                 BUG_ON(writepos != sector_nr + reshape_sectors);
4810                 stripe_addr = sector_nr;
4811         }
4812
4813         /* 'writepos' is the most advanced device address we might write.
4814          * 'readpos' is the least advanced device address we might read.
4815          * 'safepos' is the least address recorded in the metadata as having
4816          *     been reshaped.
4817          * If there is a min_offset_diff, these are adjusted either by
4818          * increasing the safepos/readpos if diff is negative, or
4819          * increasing writepos if diff is positive.
4820          * If 'readpos' is then behind 'writepos', there is no way that we can
4821          * ensure safety in the face of a crash - that must be done by userspace
4822          * making a backup of the data.  So in that case there is no particular
4823          * rush to update metadata.
4824          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4825          * update the metadata to advance 'safepos' to match 'readpos' so that
4826          * we can be safe in the event of a crash.
4827          * So we insist on updating metadata if safepos is behind writepos and
4828          * readpos is beyond writepos.
4829          * In any case, update the metadata every 10 seconds.
4830          * Maybe that number should be configurable, but I'm not sure it is
4831          * worth it.... maybe it could be a multiple of safemode_delay???
4832          */
4833         if (conf->min_offset_diff < 0) {
4834                 safepos += -conf->min_offset_diff;
4835                 readpos += -conf->min_offset_diff;
4836         } else
4837                 writepos += conf->min_offset_diff;
4838
4839         if ((mddev->reshape_backwards
4840              ? (safepos > writepos && readpos < writepos)
4841              : (safepos < writepos && readpos > writepos)) ||
4842             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4843                 /* Cannot proceed until we've updated the superblock... */
4844                 wait_event(conf->wait_for_overlap,
4845                            atomic_read(&conf->reshape_stripes)==0
4846                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4847                 if (atomic_read(&conf->reshape_stripes) != 0)
4848                         return 0;
4849                 mddev->reshape_position = conf->reshape_progress;
4850                 mddev->curr_resync_completed = sector_nr;
4851                 conf->reshape_checkpoint = jiffies;
4852                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4853                 md_wakeup_thread(mddev->thread);
4854                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4855                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4856                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4857                         return 0;
4858                 spin_lock_irq(&conf->device_lock);
4859                 conf->reshape_safe = mddev->reshape_position;
4860                 spin_unlock_irq(&conf->device_lock);
4861                 wake_up(&conf->wait_for_overlap);
4862                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4863         }
4864
4865         INIT_LIST_HEAD(&stripes);
4866         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4867                 int j;
4868                 int skipped_disk = 0;
4869                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4870                 set_bit(STRIPE_EXPANDING, &sh->state);
4871                 atomic_inc(&conf->reshape_stripes);
4872                 /* If any of this stripe is beyond the end of the old
4873                  * array, then we need to zero those blocks
4874                  */
4875                 for (j=sh->disks; j--;) {
4876                         sector_t s;
4877                         if (j == sh->pd_idx)
4878                                 continue;
4879                         if (conf->level == 6 &&
4880                             j == sh->qd_idx)
4881                                 continue;
4882                         s = compute_blocknr(sh, j, 0);
4883                         if (s < raid5_size(mddev, 0, 0)) {
4884                                 skipped_disk = 1;
4885                                 continue;
4886                         }
4887                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4888                         set_bit(R5_Expanded, &sh->dev[j].flags);
4889                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4890                 }
4891                 if (!skipped_disk) {
4892                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4893                         set_bit(STRIPE_HANDLE, &sh->state);
4894                 }
4895                 list_add(&sh->lru, &stripes);
4896         }
4897         spin_lock_irq(&conf->device_lock);
4898         if (mddev->reshape_backwards)
4899                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4900         else
4901                 conf->reshape_progress += reshape_sectors * new_data_disks;
4902         spin_unlock_irq(&conf->device_lock);
4903         /* Ok, those stripe are ready. We can start scheduling
4904          * reads on the source stripes.
4905          * The source stripes are determined by mapping the first and last
4906          * block on the destination stripes.
4907          */
4908         first_sector =
4909                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4910                                      1, &dd_idx, NULL);
4911         last_sector =
4912                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4913                                             * new_data_disks - 1),
4914                                      1, &dd_idx, NULL);
4915         if (last_sector >= mddev->dev_sectors)
4916                 last_sector = mddev->dev_sectors - 1;
4917         while (first_sector <= last_sector) {
4918                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4919                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4920                 set_bit(STRIPE_HANDLE, &sh->state);
4921                 release_stripe(sh);
4922                 first_sector += STRIPE_SECTORS;
4923         }
4924         /* Now that the sources are clearly marked, we can release
4925          * the destination stripes
4926          */
4927         while (!list_empty(&stripes)) {
4928                 sh = list_entry(stripes.next, struct stripe_head, lru);
4929                 list_del_init(&sh->lru);
4930                 release_stripe(sh);
4931         }
4932         /* If this takes us to the resync_max point where we have to pause,
4933          * then we need to write out the superblock.
4934          */
4935         sector_nr += reshape_sectors;
4936         if ((sector_nr - mddev->curr_resync_completed) * 2
4937             >= mddev->resync_max - mddev->curr_resync_completed) {
4938                 /* Cannot proceed until we've updated the superblock... */
4939                 wait_event(conf->wait_for_overlap,
4940                            atomic_read(&conf->reshape_stripes) == 0
4941                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4942                 if (atomic_read(&conf->reshape_stripes) != 0)
4943                         goto ret;
4944                 mddev->reshape_position = conf->reshape_progress;
4945                 mddev->curr_resync_completed = sector_nr;
4946                 conf->reshape_checkpoint = jiffies;
4947                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4948                 md_wakeup_thread(mddev->thread);
4949                 wait_event(mddev->sb_wait,
4950                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4951                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4952                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4953                         goto ret;
4954                 spin_lock_irq(&conf->device_lock);
4955                 conf->reshape_safe = mddev->reshape_position;
4956                 spin_unlock_irq(&conf->device_lock);
4957                 wake_up(&conf->wait_for_overlap);
4958                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4959         }
4960 ret:
4961         return reshape_sectors;
4962 }
4963
4964 /* FIXME go_faster isn't used */
4965 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4966 {
4967         struct r5conf *conf = mddev->private;
4968         struct stripe_head *sh;
4969         sector_t max_sector = mddev->dev_sectors;
4970         sector_t sync_blocks;
4971         int still_degraded = 0;
4972         int i;
4973
4974         if (sector_nr >= max_sector) {
4975                 /* just being told to finish up .. nothing much to do */
4976
4977                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4978                         end_reshape(conf);
4979                         return 0;
4980                 }
4981
4982                 if (mddev->curr_resync < max_sector) /* aborted */
4983                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4984                                         &sync_blocks, 1);
4985                 else /* completed sync */
4986                         conf->fullsync = 0;
4987                 bitmap_close_sync(mddev->bitmap);
4988
4989                 return 0;
4990         }
4991
4992         /* Allow raid5_quiesce to complete */
4993         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4994
4995         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4996                 return reshape_request(mddev, sector_nr, skipped);
4997
4998         /* No need to check resync_max as we never do more than one
4999          * stripe, and as resync_max will always be on a chunk boundary,
5000          * if the check in md_do_sync didn't fire, there is no chance
5001          * of overstepping resync_max here
5002          */
5003
5004         /* if there is too many failed drives and we are trying
5005          * to resync, then assert that we are finished, because there is
5006          * nothing we can do.
5007          */
5008         if (mddev->degraded >= conf->max_degraded &&
5009             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5010                 sector_t rv = mddev->dev_sectors - sector_nr;
5011                 *skipped = 1;
5012                 return rv;
5013         }
5014         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5015             !conf->fullsync &&
5016             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5017             sync_blocks >= STRIPE_SECTORS) {
5018                 /* we can skip this block, and probably more */
5019                 sync_blocks /= STRIPE_SECTORS;
5020                 *skipped = 1;
5021                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5022         }
5023
5024         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5025
5026         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5027         if (sh == NULL) {
5028                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5029                 /* make sure we don't swamp the stripe cache if someone else
5030                  * is trying to get access
5031                  */
5032                 schedule_timeout_uninterruptible(1);
5033         }
5034         /* Need to check if array will still be degraded after recovery/resync
5035          * We don't need to check the 'failed' flag as when that gets set,
5036          * recovery aborts.
5037          */
5038         for (i = 0; i < conf->raid_disks; i++)
5039                 if (conf->disks[i].rdev == NULL)
5040                         still_degraded = 1;
5041
5042         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5043
5044         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5045
5046         handle_stripe(sh);
5047         release_stripe(sh);
5048
5049         return STRIPE_SECTORS;
5050 }
5051
5052 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5053 {
5054         /* We may not be able to submit a whole bio at once as there
5055          * may not be enough stripe_heads available.
5056          * We cannot pre-allocate enough stripe_heads as we may need
5057          * more than exist in the cache (if we allow ever large chunks).
5058          * So we do one stripe head at a time and record in
5059          * ->bi_hw_segments how many have been done.
5060          *
5061          * We *know* that this entire raid_bio is in one chunk, so
5062          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5063          */
5064         struct stripe_head *sh;
5065         int dd_idx;
5066         sector_t sector, logical_sector, last_sector;
5067         int scnt = 0;
5068         int remaining;
5069         int handled = 0;
5070
5071         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5072         sector = raid5_compute_sector(conf, logical_sector,
5073                                       0, &dd_idx, NULL);
5074         last_sector = bio_end_sector(raid_bio);
5075
5076         for (; logical_sector < last_sector;
5077              logical_sector += STRIPE_SECTORS,
5078                      sector += STRIPE_SECTORS,
5079                      scnt++) {
5080
5081                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5082                         /* already done this stripe */
5083                         continue;
5084
5085                 sh = get_active_stripe(conf, sector, 0, 1, 0);
5086
5087                 if (!sh) {
5088                         /* failed to get a stripe - must wait */
5089                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5090                         conf->retry_read_aligned = raid_bio;
5091                         return handled;
5092                 }
5093
5094                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5095                         release_stripe(sh);
5096                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5097                         conf->retry_read_aligned = raid_bio;
5098                         return handled;
5099                 }
5100
5101                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5102                 handle_stripe(sh);
5103                 release_stripe(sh);
5104                 handled++;
5105         }
5106         remaining = raid5_dec_bi_active_stripes(raid_bio);
5107         if (remaining == 0) {
5108                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5109                                          raid_bio, 0);
5110                 bio_endio(raid_bio, 0);
5111         }
5112         if (atomic_dec_and_test(&conf->active_aligned_reads))
5113                 wake_up(&conf->wait_for_stripe);
5114         return handled;
5115 }
5116
5117 static int handle_active_stripes(struct r5conf *conf, int group,
5118                                  struct r5worker *worker,
5119                                  struct list_head *temp_inactive_list)
5120 {
5121         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5122         int i, batch_size = 0, hash;
5123         bool release_inactive = false;
5124
5125         while (batch_size < MAX_STRIPE_BATCH &&
5126                         (sh = __get_priority_stripe(conf, group)) != NULL)
5127                 batch[batch_size++] = sh;
5128
5129         if (batch_size == 0) {
5130                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5131                         if (!list_empty(temp_inactive_list + i))
5132                                 break;
5133                 if (i == NR_STRIPE_HASH_LOCKS)
5134                         return batch_size;
5135                 release_inactive = true;
5136         }
5137         spin_unlock_irq(&conf->device_lock);
5138
5139         release_inactive_stripe_list(conf, temp_inactive_list,
5140                                      NR_STRIPE_HASH_LOCKS);
5141
5142         if (release_inactive) {
5143                 spin_lock_irq(&conf->device_lock);
5144                 return 0;
5145         }
5146
5147         for (i = 0; i < batch_size; i++)
5148                 handle_stripe(batch[i]);
5149
5150         cond_resched();
5151
5152         spin_lock_irq(&conf->device_lock);
5153         for (i = 0; i < batch_size; i++) {
5154                 hash = batch[i]->hash_lock_index;
5155                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5156         }
5157         return batch_size;
5158 }
5159
5160 static void raid5_do_work(struct work_struct *work)
5161 {
5162         struct r5worker *worker = container_of(work, struct r5worker, work);
5163         struct r5worker_group *group = worker->group;
5164         struct r5conf *conf = group->conf;
5165         int group_id = group - conf->worker_groups;
5166         int handled;
5167         struct blk_plug plug;
5168
5169         pr_debug("+++ raid5worker active\n");
5170
5171         blk_start_plug(&plug);
5172         handled = 0;
5173         spin_lock_irq(&conf->device_lock);
5174         while (1) {
5175                 int batch_size, released;
5176
5177                 released = release_stripe_list(conf, worker->temp_inactive_list);
5178
5179                 batch_size = handle_active_stripes(conf, group_id, worker,
5180                                                    worker->temp_inactive_list);
5181                 worker->working = false;
5182                 if (!batch_size && !released)
5183                         break;
5184                 handled += batch_size;
5185         }
5186         pr_debug("%d stripes handled\n", handled);
5187
5188         spin_unlock_irq(&conf->device_lock);
5189         blk_finish_plug(&plug);
5190
5191         pr_debug("--- raid5worker inactive\n");
5192 }
5193
5194 /*
5195  * This is our raid5 kernel thread.
5196  *
5197  * We scan the hash table for stripes which can be handled now.
5198  * During the scan, completed stripes are saved for us by the interrupt
5199  * handler, so that they will not have to wait for our next wakeup.
5200  */
5201 static void raid5d(struct md_thread *thread)
5202 {
5203         struct mddev *mddev = thread->mddev;
5204         struct r5conf *conf = mddev->private;
5205         int handled;
5206         struct blk_plug plug;
5207
5208         pr_debug("+++ raid5d active\n");
5209
5210         md_check_recovery(mddev);
5211
5212         blk_start_plug(&plug);
5213         handled = 0;
5214         spin_lock_irq(&conf->device_lock);
5215         while (1) {
5216                 struct bio *bio;
5217                 int batch_size, released;
5218
5219                 released = release_stripe_list(conf, conf->temp_inactive_list);
5220
5221                 if (
5222                     !list_empty(&conf->bitmap_list)) {
5223                         /* Now is a good time to flush some bitmap updates */
5224                         conf->seq_flush++;
5225                         spin_unlock_irq(&conf->device_lock);
5226                         bitmap_unplug(mddev->bitmap);
5227                         spin_lock_irq(&conf->device_lock);
5228                         conf->seq_write = conf->seq_flush;
5229                         activate_bit_delay(conf, conf->temp_inactive_list);
5230                 }
5231                 raid5_activate_delayed(conf);
5232
5233                 while ((bio = remove_bio_from_retry(conf))) {
5234                         int ok;
5235                         spin_unlock_irq(&conf->device_lock);
5236                         ok = retry_aligned_read(conf, bio);
5237                         spin_lock_irq(&conf->device_lock);
5238                         if (!ok)
5239                                 break;
5240                         handled++;
5241                 }
5242
5243                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5244                                                    conf->temp_inactive_list);
5245                 if (!batch_size && !released)
5246                         break;
5247                 handled += batch_size;
5248
5249                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5250                         spin_unlock_irq(&conf->device_lock);
5251                         md_check_recovery(mddev);
5252                         spin_lock_irq(&conf->device_lock);
5253                 }
5254         }
5255         pr_debug("%d stripes handled\n", handled);
5256
5257         spin_unlock_irq(&conf->device_lock);
5258
5259         async_tx_issue_pending_all();
5260         blk_finish_plug(&plug);
5261
5262         pr_debug("--- raid5d inactive\n");
5263 }
5264
5265 static ssize_t
5266 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5267 {
5268         struct r5conf *conf = mddev->private;
5269         if (conf)
5270                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5271         else
5272                 return 0;
5273 }
5274
5275 int
5276 raid5_set_cache_size(struct mddev *mddev, int size)
5277 {
5278         struct r5conf *conf = mddev->private;
5279         int err;
5280         int hash;
5281
5282         if (size <= 16 || size > 32768)
5283                 return -EINVAL;
5284         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5285         while (size < conf->max_nr_stripes) {
5286                 if (drop_one_stripe(conf, hash))
5287                         conf->max_nr_stripes--;
5288                 else
5289                         break;
5290                 hash--;
5291                 if (hash < 0)
5292                         hash = NR_STRIPE_HASH_LOCKS - 1;
5293         }
5294         err = md_allow_write(mddev);
5295         if (err)
5296                 return err;
5297         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5298         while (size > conf->max_nr_stripes) {
5299                 if (grow_one_stripe(conf, hash))
5300                         conf->max_nr_stripes++;
5301                 else break;
5302                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5303         }
5304         return 0;
5305 }
5306 EXPORT_SYMBOL(raid5_set_cache_size);
5307
5308 static ssize_t
5309 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5310 {
5311         struct r5conf *conf = mddev->private;
5312         unsigned long new;
5313         int err;
5314
5315         if (len >= PAGE_SIZE)
5316                 return -EINVAL;
5317         if (!conf)
5318                 return -ENODEV;
5319
5320         if (kstrtoul(page, 10, &new))
5321                 return -EINVAL;
5322         err = raid5_set_cache_size(mddev, new);
5323         if (err)
5324                 return err;
5325         return len;
5326 }
5327
5328 static struct md_sysfs_entry
5329 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5330                                 raid5_show_stripe_cache_size,
5331                                 raid5_store_stripe_cache_size);
5332
5333 static ssize_t
5334 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5335 {
5336         struct r5conf *conf = mddev->private;
5337         if (conf)
5338                 return sprintf(page, "%d\n", conf->bypass_threshold);
5339         else
5340                 return 0;
5341 }
5342
5343 static ssize_t
5344 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5345 {
5346         struct r5conf *conf = mddev->private;
5347         unsigned long new;
5348         if (len >= PAGE_SIZE)
5349                 return -EINVAL;
5350         if (!conf)
5351                 return -ENODEV;
5352
5353         if (kstrtoul(page, 10, &new))
5354                 return -EINVAL;
5355         if (new > conf->max_nr_stripes)
5356                 return -EINVAL;
5357         conf->bypass_threshold = new;
5358         return len;
5359 }
5360
5361 static struct md_sysfs_entry
5362 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5363                                         S_IRUGO | S_IWUSR,
5364                                         raid5_show_preread_threshold,
5365                                         raid5_store_preread_threshold);
5366
5367 static ssize_t
5368 stripe_cache_active_show(struct mddev *mddev, char *page)
5369 {
5370         struct r5conf *conf = mddev->private;
5371         if (conf)
5372                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5373         else
5374                 return 0;
5375 }
5376
5377 static struct md_sysfs_entry
5378 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5379
5380 static ssize_t
5381 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5382 {
5383         struct r5conf *conf = mddev->private;
5384         if (conf)
5385                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5386         else
5387                 return 0;
5388 }
5389
5390 static int alloc_thread_groups(struct r5conf *conf, int cnt);
5391 static ssize_t
5392 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5393 {
5394         struct r5conf *conf = mddev->private;
5395         unsigned long new;
5396         int err;
5397         struct r5worker_group *old_groups;
5398         int old_group_cnt;
5399
5400         if (len >= PAGE_SIZE)
5401                 return -EINVAL;
5402         if (!conf)
5403                 return -ENODEV;
5404
5405         if (kstrtoul(page, 10, &new))
5406                 return -EINVAL;
5407
5408         if (new == conf->worker_cnt_per_group)
5409                 return len;
5410
5411         mddev_suspend(mddev);
5412
5413         old_groups = conf->worker_groups;
5414         old_group_cnt = conf->worker_cnt_per_group;
5415
5416         conf->worker_groups = NULL;
5417         err = alloc_thread_groups(conf, new);
5418         if (err) {
5419                 conf->worker_groups = old_groups;
5420                 conf->worker_cnt_per_group = old_group_cnt;
5421         } else {
5422                 if (old_groups)
5423                         kfree(old_groups[0].workers);
5424                 kfree(old_groups);
5425         }
5426
5427         mddev_resume(mddev);
5428
5429         if (err)
5430                 return err;
5431         return len;
5432 }
5433
5434 static struct md_sysfs_entry
5435 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5436                                 raid5_show_group_thread_cnt,
5437                                 raid5_store_group_thread_cnt);
5438
5439 static struct attribute *raid5_attrs[] =  {
5440         &raid5_stripecache_size.attr,
5441         &raid5_stripecache_active.attr,
5442         &raid5_preread_bypass_threshold.attr,
5443         &raid5_group_thread_cnt.attr,
5444         NULL,
5445 };
5446 static struct attribute_group raid5_attrs_group = {
5447         .name = NULL,
5448         .attrs = raid5_attrs,
5449 };
5450
5451 static int alloc_thread_groups(struct r5conf *conf, int cnt)
5452 {
5453         int i, j, k;
5454         ssize_t size;
5455         struct r5worker *workers;
5456
5457         conf->worker_cnt_per_group = cnt;
5458         if (cnt == 0) {
5459                 conf->worker_groups = NULL;
5460                 return 0;
5461         }
5462         conf->group_cnt = num_possible_nodes();
5463         size = sizeof(struct r5worker) * cnt;
5464         workers = kzalloc(size * conf->group_cnt, GFP_NOIO);
5465         conf->worker_groups = kzalloc(sizeof(struct r5worker_group) *
5466                                 conf->group_cnt, GFP_NOIO);
5467         if (!conf->worker_groups || !workers) {
5468                 kfree(workers);
5469                 kfree(conf->worker_groups);
5470                 conf->worker_groups = NULL;
5471                 return -ENOMEM;
5472         }
5473
5474         for (i = 0; i < conf->group_cnt; i++) {
5475                 struct r5worker_group *group;
5476
5477                 group = &conf->worker_groups[i];
5478                 INIT_LIST_HEAD(&group->handle_list);
5479                 group->conf = conf;
5480                 group->workers = workers + i * cnt;
5481
5482                 for (j = 0; j < cnt; j++) {
5483                         struct r5worker *worker = group->workers + j;
5484                         worker->group = group;
5485                         INIT_WORK(&worker->work, raid5_do_work);
5486
5487                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5488                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5489                 }
5490         }
5491
5492         return 0;
5493 }
5494
5495 static void free_thread_groups(struct r5conf *conf)
5496 {
5497         if (conf->worker_groups)
5498                 kfree(conf->worker_groups[0].workers);
5499         kfree(conf->worker_groups);
5500         conf->worker_groups = NULL;
5501 }
5502
5503 static sector_t
5504 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5505 {
5506         struct r5conf *conf = mddev->private;
5507
5508         if (!sectors)
5509                 sectors = mddev->dev_sectors;
5510         if (!raid_disks)
5511                 /* size is defined by the smallest of previous and new size */
5512                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5513
5514         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5515         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5516         return sectors * (raid_disks - conf->max_degraded);
5517 }
5518
5519 static void raid5_free_percpu(struct r5conf *conf)
5520 {
5521         struct raid5_percpu *percpu;
5522         unsigned long cpu;
5523
5524         if (!conf->percpu)
5525                 return;
5526
5527         get_online_cpus();
5528         for_each_possible_cpu(cpu) {
5529                 percpu = per_cpu_ptr(conf->percpu, cpu);
5530                 safe_put_page(percpu->spare_page);
5531                 kfree(percpu->scribble);
5532         }
5533 #ifdef CONFIG_HOTPLUG_CPU
5534         unregister_cpu_notifier(&conf->cpu_notify);
5535 #endif
5536         put_online_cpus();
5537
5538         free_percpu(conf->percpu);
5539 }
5540
5541 static void free_conf(struct r5conf *conf)
5542 {
5543         free_thread_groups(conf);
5544         shrink_stripes(conf);
5545         raid5_free_percpu(conf);
5546         kfree(conf->disks);
5547         kfree(conf->stripe_hashtbl);
5548         kfree(conf);
5549 }
5550
5551 #ifdef CONFIG_HOTPLUG_CPU
5552 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5553                               void *hcpu)
5554 {
5555         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5556         long cpu = (long)hcpu;
5557         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5558
5559         switch (action) {
5560         case CPU_UP_PREPARE:
5561         case CPU_UP_PREPARE_FROZEN:
5562                 if (conf->level == 6 && !percpu->spare_page)
5563                         percpu->spare_page = alloc_page(GFP_KERNEL);
5564                 if (!percpu->scribble)
5565                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5566
5567                 if (!percpu->scribble ||
5568                     (conf->level == 6 && !percpu->spare_page)) {
5569                         safe_put_page(percpu->spare_page);
5570                         kfree(percpu->scribble);
5571                         pr_err("%s: failed memory allocation for cpu%ld\n",
5572                                __func__, cpu);
5573                         return notifier_from_errno(-ENOMEM);
5574                 }
5575                 break;
5576         case CPU_DEAD:
5577         case CPU_DEAD_FROZEN:
5578                 safe_put_page(percpu->spare_page);
5579                 kfree(percpu->scribble);
5580                 percpu->spare_page = NULL;
5581                 percpu->scribble = NULL;
5582                 break;
5583         default:
5584                 break;
5585         }
5586         return NOTIFY_OK;
5587 }
5588 #endif
5589
5590 static int raid5_alloc_percpu(struct r5conf *conf)
5591 {
5592         unsigned long cpu;
5593         struct page *spare_page;
5594         struct raid5_percpu __percpu *allcpus;
5595         void *scribble;
5596         int err;
5597
5598         allcpus = alloc_percpu(struct raid5_percpu);
5599         if (!allcpus)
5600                 return -ENOMEM;
5601         conf->percpu = allcpus;
5602
5603         get_online_cpus();
5604         err = 0;
5605         for_each_present_cpu(cpu) {
5606                 if (conf->level == 6) {
5607                         spare_page = alloc_page(GFP_KERNEL);
5608                         if (!spare_page) {
5609                                 err = -ENOMEM;
5610                                 break;
5611                         }
5612                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5613                 }
5614                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5615                 if (!scribble) {
5616                         err = -ENOMEM;
5617                         break;
5618                 }
5619                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5620         }
5621 #ifdef CONFIG_HOTPLUG_CPU
5622         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5623         conf->cpu_notify.priority = 0;
5624         if (err == 0)
5625                 err = register_cpu_notifier(&conf->cpu_notify);
5626 #endif
5627         put_online_cpus();
5628
5629         return err;
5630 }
5631
5632 static struct r5conf *setup_conf(struct mddev *mddev)
5633 {
5634         struct r5conf *conf;
5635         int raid_disk, memory, max_disks;
5636         struct md_rdev *rdev;
5637         struct disk_info *disk;
5638         char pers_name[6];
5639         int i;
5640
5641         if (mddev->new_level != 5
5642             && mddev->new_level != 4
5643             && mddev->new_level != 6) {
5644                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5645                        mdname(mddev), mddev->new_level);
5646                 return ERR_PTR(-EIO);
5647         }
5648         if ((mddev->new_level == 5
5649              && !algorithm_valid_raid5(mddev->new_layout)) ||
5650             (mddev->new_level == 6
5651              && !algorithm_valid_raid6(mddev->new_layout))) {
5652                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5653                        mdname(mddev), mddev->new_layout);
5654                 return ERR_PTR(-EIO);
5655         }
5656         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5657                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5658                        mdname(mddev), mddev->raid_disks);
5659                 return ERR_PTR(-EINVAL);
5660         }
5661
5662         if (!mddev->new_chunk_sectors ||
5663             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5664             !is_power_of_2(mddev->new_chunk_sectors)) {
5665                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5666                        mdname(mddev), mddev->new_chunk_sectors << 9);
5667                 return ERR_PTR(-EINVAL);
5668         }
5669
5670         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5671         if (conf == NULL)
5672                 goto abort;
5673         /* Don't enable multi-threading by default*/
5674         if (alloc_thread_groups(conf, 0))
5675                 goto abort;
5676         spin_lock_init(&conf->device_lock);
5677         seqcount_init(&conf->gen_lock);
5678         init_waitqueue_head(&conf->wait_for_stripe);
5679         init_waitqueue_head(&conf->wait_for_overlap);
5680         INIT_LIST_HEAD(&conf->handle_list);
5681         INIT_LIST_HEAD(&conf->hold_list);
5682         INIT_LIST_HEAD(&conf->delayed_list);
5683         INIT_LIST_HEAD(&conf->bitmap_list);
5684         init_llist_head(&conf->released_stripes);
5685         atomic_set(&conf->active_stripes, 0);
5686         atomic_set(&conf->preread_active_stripes, 0);
5687         atomic_set(&conf->active_aligned_reads, 0);
5688         conf->bypass_threshold = BYPASS_THRESHOLD;
5689         conf->recovery_disabled = mddev->recovery_disabled - 1;
5690
5691         conf->raid_disks = mddev->raid_disks;
5692         if (mddev->reshape_position == MaxSector)
5693                 conf->previous_raid_disks = mddev->raid_disks;
5694         else
5695                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5696         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5697         conf->scribble_len = scribble_len(max_disks);
5698
5699         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5700                               GFP_KERNEL);
5701         if (!conf->disks)
5702                 goto abort;
5703
5704         conf->mddev = mddev;
5705
5706         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5707                 goto abort;
5708
5709         /* We init hash_locks[0] separately to that it can be used
5710          * as the reference lock in the spin_lock_nest_lock() call
5711          * in lock_all_device_hash_locks_irq in order to convince
5712          * lockdep that we know what we are doing.
5713          */
5714         spin_lock_init(conf->hash_locks);
5715         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5716                 spin_lock_init(conf->hash_locks + i);
5717
5718         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5719                 INIT_LIST_HEAD(conf->inactive_list + i);
5720
5721         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5722                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5723
5724         conf->level = mddev->new_level;
5725         if (raid5_alloc_percpu(conf) != 0)
5726                 goto abort;
5727
5728         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5729
5730         rdev_for_each(rdev, mddev) {
5731                 raid_disk = rdev->raid_disk;
5732                 if (raid_disk >= max_disks
5733                     || raid_disk < 0)
5734                         continue;
5735                 disk = conf->disks + raid_disk;
5736
5737                 if (test_bit(Replacement, &rdev->flags)) {
5738                         if (disk->replacement)
5739                                 goto abort;
5740                         disk->replacement = rdev;
5741                 } else {
5742                         if (disk->rdev)
5743                                 goto abort;
5744                         disk->rdev = rdev;
5745                 }
5746
5747                 if (test_bit(In_sync, &rdev->flags)) {
5748                         char b[BDEVNAME_SIZE];
5749                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5750                                " disk %d\n",
5751                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5752                 } else if (rdev->saved_raid_disk != raid_disk)
5753                         /* Cannot rely on bitmap to complete recovery */
5754                         conf->fullsync = 1;
5755         }
5756
5757         conf->chunk_sectors = mddev->new_chunk_sectors;
5758         conf->level = mddev->new_level;
5759         if (conf->level == 6)
5760                 conf->max_degraded = 2;
5761         else
5762                 conf->max_degraded = 1;
5763         conf->algorithm = mddev->new_layout;
5764         conf->reshape_progress = mddev->reshape_position;
5765         if (conf->reshape_progress != MaxSector) {
5766                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5767                 conf->prev_algo = mddev->layout;
5768         }
5769
5770         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5771                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5772         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5773         if (grow_stripes(conf, NR_STRIPES)) {
5774                 printk(KERN_ERR
5775                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5776                        mdname(mddev), memory);
5777                 goto abort;
5778         } else
5779                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5780                        mdname(mddev), memory);
5781
5782         sprintf(pers_name, "raid%d", mddev->new_level);
5783         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5784         if (!conf->thread) {
5785                 printk(KERN_ERR
5786                        "md/raid:%s: couldn't allocate thread.\n",
5787                        mdname(mddev));
5788                 goto abort;
5789         }
5790
5791         return conf;
5792
5793  abort:
5794         if (conf) {
5795                 free_conf(conf);
5796                 return ERR_PTR(-EIO);
5797         } else
5798                 return ERR_PTR(-ENOMEM);
5799 }
5800
5801
5802 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5803 {
5804         switch (algo) {
5805         case ALGORITHM_PARITY_0:
5806                 if (raid_disk < max_degraded)
5807                         return 1;
5808                 break;
5809         case ALGORITHM_PARITY_N:
5810                 if (raid_disk >= raid_disks - max_degraded)
5811                         return 1;
5812                 break;
5813         case ALGORITHM_PARITY_0_6:
5814                 if (raid_disk == 0 || 
5815                     raid_disk == raid_disks - 1)
5816                         return 1;
5817                 break;
5818         case ALGORITHM_LEFT_ASYMMETRIC_6:
5819         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5820         case ALGORITHM_LEFT_SYMMETRIC_6:
5821         case ALGORITHM_RIGHT_SYMMETRIC_6:
5822                 if (raid_disk == raid_disks - 1)
5823                         return 1;
5824         }
5825         return 0;
5826 }
5827
5828 static int run(struct mddev *mddev)
5829 {
5830         struct r5conf *conf;
5831         int working_disks = 0;
5832         int dirty_parity_disks = 0;
5833         struct md_rdev *rdev;
5834         sector_t reshape_offset = 0;
5835         int i;
5836         long long min_offset_diff = 0;
5837         int first = 1;
5838
5839         if (mddev->recovery_cp != MaxSector)
5840                 printk(KERN_NOTICE "md/raid:%s: not clean"
5841                        " -- starting background reconstruction\n",
5842                        mdname(mddev));
5843
5844         rdev_for_each(rdev, mddev) {
5845                 long long diff;
5846                 if (rdev->raid_disk < 0)
5847                         continue;
5848                 diff = (rdev->new_data_offset - rdev->data_offset);
5849                 if (first) {
5850                         min_offset_diff = diff;
5851                         first = 0;
5852                 } else if (mddev->reshape_backwards &&
5853                          diff < min_offset_diff)
5854                         min_offset_diff = diff;
5855                 else if (!mddev->reshape_backwards &&
5856                          diff > min_offset_diff)
5857                         min_offset_diff = diff;
5858         }
5859
5860         if (mddev->reshape_position != MaxSector) {
5861                 /* Check that we can continue the reshape.
5862                  * Difficulties arise if the stripe we would write to
5863                  * next is at or after the stripe we would read from next.
5864                  * For a reshape that changes the number of devices, this
5865                  * is only possible for a very short time, and mdadm makes
5866                  * sure that time appears to have past before assembling
5867                  * the array.  So we fail if that time hasn't passed.
5868                  * For a reshape that keeps the number of devices the same
5869                  * mdadm must be monitoring the reshape can keeping the
5870                  * critical areas read-only and backed up.  It will start
5871                  * the array in read-only mode, so we check for that.
5872                  */
5873                 sector_t here_new, here_old;
5874                 int old_disks;
5875                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5876
5877                 if (mddev->new_level != mddev->level) {
5878                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5879                                "required - aborting.\n",
5880                                mdname(mddev));
5881                         return -EINVAL;
5882                 }
5883                 old_disks = mddev->raid_disks - mddev->delta_disks;
5884                 /* reshape_position must be on a new-stripe boundary, and one
5885                  * further up in new geometry must map after here in old
5886                  * geometry.
5887                  */
5888                 here_new = mddev->reshape_position;
5889                 if (sector_div(here_new, mddev->new_chunk_sectors *
5890                                (mddev->raid_disks - max_degraded))) {
5891                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5892                                "on a stripe boundary\n", mdname(mddev));
5893                         return -EINVAL;
5894                 }
5895                 reshape_offset = here_new * mddev->new_chunk_sectors;
5896                 /* here_new is the stripe we will write to */
5897                 here_old = mddev->reshape_position;
5898                 sector_div(here_old, mddev->chunk_sectors *
5899                            (old_disks-max_degraded));
5900                 /* here_old is the first stripe that we might need to read
5901                  * from */
5902                 if (mddev->delta_disks == 0) {
5903                         if ((here_new * mddev->new_chunk_sectors !=
5904                              here_old * mddev->chunk_sectors)) {
5905                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5906                                        " confused - aborting\n", mdname(mddev));
5907                                 return -EINVAL;
5908                         }
5909                         /* We cannot be sure it is safe to start an in-place
5910                          * reshape.  It is only safe if user-space is monitoring
5911                          * and taking constant backups.
5912                          * mdadm always starts a situation like this in
5913                          * readonly mode so it can take control before
5914                          * allowing any writes.  So just check for that.
5915                          */
5916                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5917                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5918                                 /* not really in-place - so OK */;
5919                         else if (mddev->ro == 0) {
5920                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5921                                        "must be started in read-only mode "
5922                                        "- aborting\n",
5923                                        mdname(mddev));
5924                                 return -EINVAL;
5925                         }
5926                 } else if (mddev->reshape_backwards
5927                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5928                        here_old * mddev->chunk_sectors)
5929                     : (here_new * mddev->new_chunk_sectors >=
5930                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5931                         /* Reading from the same stripe as writing to - bad */
5932                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5933                                "auto-recovery - aborting.\n",
5934                                mdname(mddev));
5935                         return -EINVAL;
5936                 }
5937                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5938                        mdname(mddev));
5939                 /* OK, we should be able to continue; */
5940         } else {
5941                 BUG_ON(mddev->level != mddev->new_level);
5942                 BUG_ON(mddev->layout != mddev->new_layout);
5943                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5944                 BUG_ON(mddev->delta_disks != 0);
5945         }
5946
5947         if (mddev->private == NULL)
5948                 conf = setup_conf(mddev);
5949         else
5950                 conf = mddev->private;
5951
5952         if (IS_ERR(conf))
5953                 return PTR_ERR(conf);
5954
5955         conf->min_offset_diff = min_offset_diff;
5956         mddev->thread = conf->thread;
5957         conf->thread = NULL;
5958         mddev->private = conf;
5959
5960         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5961              i++) {
5962                 rdev = conf->disks[i].rdev;
5963                 if (!rdev && conf->disks[i].replacement) {
5964                         /* The replacement is all we have yet */
5965                         rdev = conf->disks[i].replacement;
5966                         conf->disks[i].replacement = NULL;
5967                         clear_bit(Replacement, &rdev->flags);
5968                         conf->disks[i].rdev = rdev;
5969                 }
5970                 if (!rdev)
5971                         continue;
5972                 if (conf->disks[i].replacement &&
5973                     conf->reshape_progress != MaxSector) {
5974                         /* replacements and reshape simply do not mix. */
5975                         printk(KERN_ERR "md: cannot handle concurrent "
5976                                "replacement and reshape.\n");
5977                         goto abort;
5978                 }
5979                 if (test_bit(In_sync, &rdev->flags)) {
5980                         working_disks++;
5981                         continue;
5982                 }
5983                 /* This disc is not fully in-sync.  However if it
5984                  * just stored parity (beyond the recovery_offset),
5985                  * when we don't need to be concerned about the
5986                  * array being dirty.
5987                  * When reshape goes 'backwards', we never have
5988                  * partially completed devices, so we only need
5989                  * to worry about reshape going forwards.
5990                  */
5991                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5992                 if (mddev->major_version == 0 &&
5993                     mddev->minor_version > 90)
5994                         rdev->recovery_offset = reshape_offset;
5995
5996                 if (rdev->recovery_offset < reshape_offset) {
5997                         /* We need to check old and new layout */
5998                         if (!only_parity(rdev->raid_disk,
5999                                          conf->algorithm,
6000                                          conf->raid_disks,
6001                                          conf->max_degraded))
6002                                 continue;
6003                 }
6004                 if (!only_parity(rdev->raid_disk,
6005                                  conf->prev_algo,
6006                                  conf->previous_raid_disks,
6007                                  conf->max_degraded))
6008                         continue;
6009                 dirty_parity_disks++;
6010         }
6011
6012         /*
6013          * 0 for a fully functional array, 1 or 2 for a degraded array.
6014          */
6015         mddev->degraded = calc_degraded(conf);
6016
6017         if (has_failed(conf)) {
6018                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6019                         " (%d/%d failed)\n",
6020                         mdname(mddev), mddev->degraded, conf->raid_disks);
6021                 goto abort;
6022         }
6023
6024         /* device size must be a multiple of chunk size */
6025         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6026         mddev->resync_max_sectors = mddev->dev_sectors;
6027
6028         if (mddev->degraded > dirty_parity_disks &&
6029             mddev->recovery_cp != MaxSector) {
6030                 if (mddev->ok_start_degraded)
6031                         printk(KERN_WARNING
6032                                "md/raid:%s: starting dirty degraded array"
6033                                " - data corruption possible.\n",
6034                                mdname(mddev));
6035                 else {
6036                         printk(KERN_ERR
6037                                "md/raid:%s: cannot start dirty degraded array.\n",
6038                                mdname(mddev));
6039                         goto abort;
6040                 }
6041         }
6042
6043         if (mddev->degraded == 0)
6044                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6045                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6046                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6047                        mddev->new_layout);
6048         else
6049                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6050                        " out of %d devices, algorithm %d\n",
6051                        mdname(mddev), conf->level,
6052                        mddev->raid_disks - mddev->degraded,
6053                        mddev->raid_disks, mddev->new_layout);
6054
6055         print_raid5_conf(conf);
6056
6057         if (conf->reshape_progress != MaxSector) {
6058                 conf->reshape_safe = conf->reshape_progress;
6059                 atomic_set(&conf->reshape_stripes, 0);
6060                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6061                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6062                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6063                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6064                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6065                                                         "reshape");
6066         }
6067
6068
6069         /* Ok, everything is just fine now */
6070         if (mddev->to_remove == &raid5_attrs_group)
6071                 mddev->to_remove = NULL;
6072         else if (mddev->kobj.sd &&
6073             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6074                 printk(KERN_WARNING
6075                        "raid5: failed to create sysfs attributes for %s\n",
6076                        mdname(mddev));
6077         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6078
6079         if (mddev->queue) {
6080                 int chunk_size;
6081                 bool discard_supported = true;
6082                 /* read-ahead size must cover two whole stripes, which
6083                  * is 2 * (datadisks) * chunksize where 'n' is the
6084                  * number of raid devices
6085                  */
6086                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6087                 int stripe = data_disks *
6088                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6089                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6090                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6091
6092                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6093
6094                 mddev->queue->backing_dev_info.congested_data = mddev;
6095                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6096
6097                 chunk_size = mddev->chunk_sectors << 9;
6098                 blk_queue_io_min(mddev->queue, chunk_size);
6099                 blk_queue_io_opt(mddev->queue, chunk_size *
6100                                  (conf->raid_disks - conf->max_degraded));
6101                 /*
6102                  * We can only discard a whole stripe. It doesn't make sense to
6103                  * discard data disk but write parity disk
6104                  */
6105                 stripe = stripe * PAGE_SIZE;
6106                 /* Round up to power of 2, as discard handling
6107                  * currently assumes that */
6108                 while ((stripe-1) & stripe)
6109                         stripe = (stripe | (stripe-1)) + 1;
6110                 mddev->queue->limits.discard_alignment = stripe;
6111                 mddev->queue->limits.discard_granularity = stripe;
6112                 /*
6113                  * unaligned part of discard request will be ignored, so can't
6114                  * guarantee discard_zerors_data
6115                  */
6116                 mddev->queue->limits.discard_zeroes_data = 0;
6117
6118                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6119
6120                 rdev_for_each(rdev, mddev) {
6121                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6122                                           rdev->data_offset << 9);
6123                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6124                                           rdev->new_data_offset << 9);
6125                         /*
6126                          * discard_zeroes_data is required, otherwise data
6127                          * could be lost. Consider a scenario: discard a stripe
6128                          * (the stripe could be inconsistent if
6129                          * discard_zeroes_data is 0); write one disk of the
6130                          * stripe (the stripe could be inconsistent again
6131                          * depending on which disks are used to calculate
6132                          * parity); the disk is broken; The stripe data of this
6133                          * disk is lost.
6134                          */
6135                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6136                             !bdev_get_queue(rdev->bdev)->
6137                                                 limits.discard_zeroes_data)
6138                                 discard_supported = false;
6139                 }
6140
6141                 if (discard_supported &&
6142                    mddev->queue->limits.max_discard_sectors >= stripe &&
6143                    mddev->queue->limits.discard_granularity >= stripe)
6144                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6145                                                 mddev->queue);
6146                 else
6147                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6148                                                 mddev->queue);
6149         }
6150
6151         return 0;
6152 abort:
6153         md_unregister_thread(&mddev->thread);
6154         print_raid5_conf(conf);
6155         free_conf(conf);
6156         mddev->private = NULL;
6157         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6158         return -EIO;
6159 }
6160
6161 static int stop(struct mddev *mddev)
6162 {
6163         struct r5conf *conf = mddev->private;
6164
6165         md_unregister_thread(&mddev->thread);
6166         if (mddev->queue)
6167                 mddev->queue->backing_dev_info.congested_fn = NULL;
6168         free_conf(conf);
6169         mddev->private = NULL;
6170         mddev->to_remove = &raid5_attrs_group;
6171         return 0;
6172 }
6173
6174 static void status(struct seq_file *seq, struct mddev *mddev)
6175 {
6176         struct r5conf *conf = mddev->private;
6177         int i;
6178
6179         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6180                 mddev->chunk_sectors / 2, mddev->layout);
6181         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6182         for (i = 0; i < conf->raid_disks; i++)
6183                 seq_printf (seq, "%s",
6184                                conf->disks[i].rdev &&
6185                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6186         seq_printf (seq, "]");
6187 }
6188
6189 static void print_raid5_conf (struct r5conf *conf)
6190 {
6191         int i;
6192         struct disk_info *tmp;
6193
6194         printk(KERN_DEBUG "RAID conf printout:\n");
6195         if (!conf) {
6196                 printk("(conf==NULL)\n");
6197                 return;
6198         }
6199         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6200                conf->raid_disks,
6201                conf->raid_disks - conf->mddev->degraded);
6202
6203         for (i = 0; i < conf->raid_disks; i++) {
6204                 char b[BDEVNAME_SIZE];
6205                 tmp = conf->disks + i;
6206                 if (tmp->rdev)
6207                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6208                                i, !test_bit(Faulty, &tmp->rdev->flags),
6209                                bdevname(tmp->rdev->bdev, b));
6210         }
6211 }
6212
6213 static int raid5_spare_active(struct mddev *mddev)
6214 {
6215         int i;
6216         struct r5conf *conf = mddev->private;
6217         struct disk_info *tmp;
6218         int count = 0;
6219         unsigned long flags;
6220
6221         for (i = 0; i < conf->raid_disks; i++) {
6222                 tmp = conf->disks + i;
6223                 if (tmp->replacement
6224                     && tmp->replacement->recovery_offset == MaxSector
6225                     && !test_bit(Faulty, &tmp->replacement->flags)
6226                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6227                         /* Replacement has just become active. */
6228                         if (!tmp->rdev
6229                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6230                                 count++;
6231                         if (tmp->rdev) {
6232                                 /* Replaced device not technically faulty,
6233                                  * but we need to be sure it gets removed
6234                                  * and never re-added.
6235                                  */
6236                                 set_bit(Faulty, &tmp->rdev->flags);
6237                                 sysfs_notify_dirent_safe(
6238                                         tmp->rdev->sysfs_state);
6239                         }
6240                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6241                 } else if (tmp->rdev
6242                     && tmp->rdev->recovery_offset == MaxSector
6243                     && !test_bit(Faulty, &tmp->rdev->flags)
6244                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6245                         count++;
6246                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6247                 }
6248         }
6249         spin_lock_irqsave(&conf->device_lock, flags);
6250         mddev->degraded = calc_degraded(conf);
6251         spin_unlock_irqrestore(&conf->device_lock, flags);
6252         print_raid5_conf(conf);
6253         return count;
6254 }
6255
6256 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6257 {
6258         struct r5conf *conf = mddev->private;
6259         int err = 0;
6260         int number = rdev->raid_disk;
6261         struct md_rdev **rdevp;
6262         struct disk_info *p = conf->disks + number;
6263
6264         print_raid5_conf(conf);
6265         if (rdev == p->rdev)
6266                 rdevp = &p->rdev;
6267         else if (rdev == p->replacement)
6268                 rdevp = &p->replacement;
6269         else
6270                 return 0;
6271
6272         if (number >= conf->raid_disks &&
6273             conf->reshape_progress == MaxSector)
6274                 clear_bit(In_sync, &rdev->flags);
6275
6276         if (test_bit(In_sync, &rdev->flags) ||
6277             atomic_read(&rdev->nr_pending)) {
6278                 err = -EBUSY;
6279                 goto abort;
6280         }
6281         /* Only remove non-faulty devices if recovery
6282          * isn't possible.
6283          */
6284         if (!test_bit(Faulty, &rdev->flags) &&
6285             mddev->recovery_disabled != conf->recovery_disabled &&
6286             !has_failed(conf) &&
6287             (!p->replacement || p->replacement == rdev) &&
6288             number < conf->raid_disks) {
6289                 err = -EBUSY;
6290                 goto abort;
6291         }
6292         *rdevp = NULL;
6293         synchronize_rcu();
6294         if (atomic_read(&rdev->nr_pending)) {
6295                 /* lost the race, try later */
6296                 err = -EBUSY;
6297                 *rdevp = rdev;
6298         } else if (p->replacement) {
6299                 /* We must have just cleared 'rdev' */
6300                 p->rdev = p->replacement;
6301                 clear_bit(Replacement, &p->replacement->flags);
6302                 smp_mb(); /* Make sure other CPUs may see both as identical
6303                            * but will never see neither - if they are careful
6304                            */
6305                 p->replacement = NULL;
6306                 clear_bit(WantReplacement, &rdev->flags);
6307         } else
6308                 /* We might have just removed the Replacement as faulty-
6309                  * clear the bit just in case
6310                  */
6311                 clear_bit(WantReplacement, &rdev->flags);
6312 abort:
6313
6314         print_raid5_conf(conf);
6315         return err;
6316 }
6317
6318 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6319 {
6320         struct r5conf *conf = mddev->private;
6321         int err = -EEXIST;
6322         int disk;
6323         struct disk_info *p;
6324         int first = 0;
6325         int last = conf->raid_disks - 1;
6326
6327         if (mddev->recovery_disabled == conf->recovery_disabled)
6328                 return -EBUSY;
6329
6330         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6331                 /* no point adding a device */
6332                 return -EINVAL;
6333
6334         if (rdev->raid_disk >= 0)
6335                 first = last = rdev->raid_disk;
6336
6337         /*
6338          * find the disk ... but prefer rdev->saved_raid_disk
6339          * if possible.
6340          */
6341         if (rdev->saved_raid_disk >= 0 &&
6342             rdev->saved_raid_disk >= first &&
6343             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6344                 first = rdev->saved_raid_disk;
6345
6346         for (disk = first; disk <= last; disk++) {
6347                 p = conf->disks + disk;
6348                 if (p->rdev == NULL) {
6349                         clear_bit(In_sync, &rdev->flags);
6350                         rdev->raid_disk = disk;
6351                         err = 0;
6352                         if (rdev->saved_raid_disk != disk)
6353                                 conf->fullsync = 1;
6354                         rcu_assign_pointer(p->rdev, rdev);
6355                         goto out;
6356                 }
6357         }
6358         for (disk = first; disk <= last; disk++) {
6359                 p = conf->disks + disk;
6360                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6361                     p->replacement == NULL) {
6362                         clear_bit(In_sync, &rdev->flags);
6363                         set_bit(Replacement, &rdev->flags);
6364                         rdev->raid_disk = disk;
6365                         err = 0;
6366                         conf->fullsync = 1;
6367                         rcu_assign_pointer(p->replacement, rdev);
6368                         break;
6369                 }
6370         }
6371 out:
6372         print_raid5_conf(conf);
6373         return err;
6374 }
6375
6376 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6377 {
6378         /* no resync is happening, and there is enough space
6379          * on all devices, so we can resize.
6380          * We need to make sure resync covers any new space.
6381          * If the array is shrinking we should possibly wait until
6382          * any io in the removed space completes, but it hardly seems
6383          * worth it.
6384          */
6385         sector_t newsize;
6386         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6387         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6388         if (mddev->external_size &&
6389             mddev->array_sectors > newsize)
6390                 return -EINVAL;
6391         if (mddev->bitmap) {
6392                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6393                 if (ret)
6394                         return ret;
6395         }
6396         md_set_array_sectors(mddev, newsize);
6397         set_capacity(mddev->gendisk, mddev->array_sectors);
6398         revalidate_disk(mddev->gendisk);
6399         if (sectors > mddev->dev_sectors &&
6400             mddev->recovery_cp > mddev->dev_sectors) {
6401                 mddev->recovery_cp = mddev->dev_sectors;
6402                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6403         }
6404         mddev->dev_sectors = sectors;
6405         mddev->resync_max_sectors = sectors;
6406         return 0;
6407 }
6408
6409 static int check_stripe_cache(struct mddev *mddev)
6410 {
6411         /* Can only proceed if there are plenty of stripe_heads.
6412          * We need a minimum of one full stripe,, and for sensible progress
6413          * it is best to have about 4 times that.
6414          * If we require 4 times, then the default 256 4K stripe_heads will
6415          * allow for chunk sizes up to 256K, which is probably OK.
6416          * If the chunk size is greater, user-space should request more
6417          * stripe_heads first.
6418          */
6419         struct r5conf *conf = mddev->private;
6420         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6421             > conf->max_nr_stripes ||
6422             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6423             > conf->max_nr_stripes) {
6424                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6425                        mdname(mddev),
6426                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6427                         / STRIPE_SIZE)*4);
6428                 return 0;
6429         }
6430         return 1;
6431 }
6432
6433 static int check_reshape(struct mddev *mddev)
6434 {
6435         struct r5conf *conf = mddev->private;
6436
6437         if (mddev->delta_disks == 0 &&
6438             mddev->new_layout == mddev->layout &&
6439             mddev->new_chunk_sectors == mddev->chunk_sectors)
6440                 return 0; /* nothing to do */
6441         if (has_failed(conf))
6442                 return -EINVAL;
6443         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6444                 /* We might be able to shrink, but the devices must
6445                  * be made bigger first.
6446                  * For raid6, 4 is the minimum size.
6447                  * Otherwise 2 is the minimum
6448                  */
6449                 int min = 2;
6450                 if (mddev->level == 6)
6451                         min = 4;
6452                 if (mddev->raid_disks + mddev->delta_disks < min)
6453                         return -EINVAL;
6454         }
6455
6456         if (!check_stripe_cache(mddev))
6457                 return -ENOSPC;
6458
6459         return resize_stripes(conf, (conf->previous_raid_disks
6460                                      + mddev->delta_disks));
6461 }
6462
6463 static int raid5_start_reshape(struct mddev *mddev)
6464 {
6465         struct r5conf *conf = mddev->private;
6466         struct md_rdev *rdev;
6467         int spares = 0;
6468         unsigned long flags;
6469
6470         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6471                 return -EBUSY;
6472
6473         if (!check_stripe_cache(mddev))
6474                 return -ENOSPC;
6475
6476         if (has_failed(conf))
6477                 return -EINVAL;
6478
6479         rdev_for_each(rdev, mddev) {
6480                 if (!test_bit(In_sync, &rdev->flags)
6481                     && !test_bit(Faulty, &rdev->flags))
6482                         spares++;
6483         }
6484
6485         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6486                 /* Not enough devices even to make a degraded array
6487                  * of that size
6488                  */
6489                 return -EINVAL;
6490
6491         /* Refuse to reduce size of the array.  Any reductions in
6492          * array size must be through explicit setting of array_size
6493          * attribute.
6494          */
6495         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6496             < mddev->array_sectors) {
6497                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6498                        "before number of disks\n", mdname(mddev));
6499                 return -EINVAL;
6500         }
6501
6502         atomic_set(&conf->reshape_stripes, 0);
6503         spin_lock_irq(&conf->device_lock);
6504         write_seqcount_begin(&conf->gen_lock);
6505         conf->previous_raid_disks = conf->raid_disks;
6506         conf->raid_disks += mddev->delta_disks;
6507         conf->prev_chunk_sectors = conf->chunk_sectors;
6508         conf->chunk_sectors = mddev->new_chunk_sectors;
6509         conf->prev_algo = conf->algorithm;
6510         conf->algorithm = mddev->new_layout;
6511         conf->generation++;
6512         /* Code that selects data_offset needs to see the generation update
6513          * if reshape_progress has been set - so a memory barrier needed.
6514          */
6515         smp_mb();
6516         if (mddev->reshape_backwards)
6517                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6518         else
6519                 conf->reshape_progress = 0;
6520         conf->reshape_safe = conf->reshape_progress;
6521         write_seqcount_end(&conf->gen_lock);
6522         spin_unlock_irq(&conf->device_lock);
6523
6524         /* Now make sure any requests that proceeded on the assumption
6525          * the reshape wasn't running - like Discard or Read - have
6526          * completed.
6527          */
6528         mddev_suspend(mddev);
6529         mddev_resume(mddev);
6530
6531         /* Add some new drives, as many as will fit.
6532          * We know there are enough to make the newly sized array work.
6533          * Don't add devices if we are reducing the number of
6534          * devices in the array.  This is because it is not possible
6535          * to correctly record the "partially reconstructed" state of
6536          * such devices during the reshape and confusion could result.
6537          */
6538         if (mddev->delta_disks >= 0) {
6539                 rdev_for_each(rdev, mddev)
6540                         if (rdev->raid_disk < 0 &&
6541                             !test_bit(Faulty, &rdev->flags)) {
6542                                 if (raid5_add_disk(mddev, rdev) == 0) {
6543                                         if (rdev->raid_disk
6544                                             >= conf->previous_raid_disks)
6545                                                 set_bit(In_sync, &rdev->flags);
6546                                         else
6547                                                 rdev->recovery_offset = 0;
6548
6549                                         if (sysfs_link_rdev(mddev, rdev))
6550                                                 /* Failure here is OK */;
6551                                 }
6552                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6553                                    && !test_bit(Faulty, &rdev->flags)) {
6554                                 /* This is a spare that was manually added */
6555                                 set_bit(In_sync, &rdev->flags);
6556                         }
6557
6558                 /* When a reshape changes the number of devices,
6559                  * ->degraded is measured against the larger of the
6560                  * pre and post number of devices.
6561                  */
6562                 spin_lock_irqsave(&conf->device_lock, flags);
6563                 mddev->degraded = calc_degraded(conf);
6564                 spin_unlock_irqrestore(&conf->device_lock, flags);
6565         }
6566         mddev->raid_disks = conf->raid_disks;
6567         mddev->reshape_position = conf->reshape_progress;
6568         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6569
6570         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6571         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6572         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6573         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6574         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6575                                                 "reshape");
6576         if (!mddev->sync_thread) {
6577                 mddev->recovery = 0;
6578                 spin_lock_irq(&conf->device_lock);
6579                 write_seqcount_begin(&conf->gen_lock);
6580                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6581                 mddev->new_chunk_sectors =
6582                         conf->chunk_sectors = conf->prev_chunk_sectors;
6583                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6584                 rdev_for_each(rdev, mddev)
6585                         rdev->new_data_offset = rdev->data_offset;
6586                 smp_wmb();
6587                 conf->generation --;
6588                 conf->reshape_progress = MaxSector;
6589                 mddev->reshape_position = MaxSector;
6590                 write_seqcount_end(&conf->gen_lock);
6591                 spin_unlock_irq(&conf->device_lock);
6592                 return -EAGAIN;
6593         }
6594         conf->reshape_checkpoint = jiffies;
6595         md_wakeup_thread(mddev->sync_thread);
6596         md_new_event(mddev);
6597         return 0;
6598 }
6599
6600 /* This is called from the reshape thread and should make any
6601  * changes needed in 'conf'
6602  */
6603 static void end_reshape(struct r5conf *conf)
6604 {
6605
6606         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6607                 struct md_rdev *rdev;
6608
6609                 spin_lock_irq(&conf->device_lock);
6610                 conf->previous_raid_disks = conf->raid_disks;
6611                 rdev_for_each(rdev, conf->mddev)
6612                         rdev->data_offset = rdev->new_data_offset;
6613                 smp_wmb();
6614                 conf->reshape_progress = MaxSector;
6615                 spin_unlock_irq(&conf->device_lock);
6616                 wake_up(&conf->wait_for_overlap);
6617
6618                 /* read-ahead size must cover two whole stripes, which is
6619                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6620                  */
6621                 if (conf->mddev->queue) {
6622                         int data_disks = conf->raid_disks - conf->max_degraded;
6623                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6624                                                    / PAGE_SIZE);
6625                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6626                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6627                 }
6628         }
6629 }
6630
6631 /* This is called from the raid5d thread with mddev_lock held.
6632  * It makes config changes to the device.
6633  */
6634 static void raid5_finish_reshape(struct mddev *mddev)
6635 {
6636         struct r5conf *conf = mddev->private;
6637
6638         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6639
6640                 if (mddev->delta_disks > 0) {
6641                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6642                         set_capacity(mddev->gendisk, mddev->array_sectors);
6643                         revalidate_disk(mddev->gendisk);
6644                 } else {
6645                         int d;
6646                         spin_lock_irq(&conf->device_lock);
6647                         mddev->degraded = calc_degraded(conf);
6648                         spin_unlock_irq(&conf->device_lock);
6649                         for (d = conf->raid_disks ;
6650                              d < conf->raid_disks - mddev->delta_disks;
6651                              d++) {
6652                                 struct md_rdev *rdev = conf->disks[d].rdev;
6653                                 if (rdev)
6654                                         clear_bit(In_sync, &rdev->flags);
6655                                 rdev = conf->disks[d].replacement;
6656                                 if (rdev)
6657                                         clear_bit(In_sync, &rdev->flags);
6658                         }
6659                 }
6660                 mddev->layout = conf->algorithm;
6661                 mddev->chunk_sectors = conf->chunk_sectors;
6662                 mddev->reshape_position = MaxSector;
6663                 mddev->delta_disks = 0;
6664                 mddev->reshape_backwards = 0;
6665         }
6666 }
6667
6668 static void raid5_quiesce(struct mddev *mddev, int state)
6669 {
6670         struct r5conf *conf = mddev->private;
6671
6672         switch(state) {
6673         case 2: /* resume for a suspend */
6674                 wake_up(&conf->wait_for_overlap);
6675                 break;
6676
6677         case 1: /* stop all writes */
6678                 lock_all_device_hash_locks_irq(conf);
6679                 /* '2' tells resync/reshape to pause so that all
6680                  * active stripes can drain
6681                  */
6682                 conf->quiesce = 2;
6683                 wait_event_cmd(conf->wait_for_stripe,
6684                                     atomic_read(&conf->active_stripes) == 0 &&
6685                                     atomic_read(&conf->active_aligned_reads) == 0,
6686                                     unlock_all_device_hash_locks_irq(conf),
6687                                     lock_all_device_hash_locks_irq(conf));
6688                 conf->quiesce = 1;
6689                 unlock_all_device_hash_locks_irq(conf);
6690                 /* allow reshape to continue */
6691                 wake_up(&conf->wait_for_overlap);
6692                 break;
6693
6694         case 0: /* re-enable writes */
6695                 lock_all_device_hash_locks_irq(conf);
6696                 conf->quiesce = 0;
6697                 wake_up(&conf->wait_for_stripe);
6698                 wake_up(&conf->wait_for_overlap);
6699                 unlock_all_device_hash_locks_irq(conf);
6700                 break;
6701         }
6702 }
6703
6704
6705 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6706 {
6707         struct r0conf *raid0_conf = mddev->private;
6708         sector_t sectors;
6709
6710         /* for raid0 takeover only one zone is supported */
6711         if (raid0_conf->nr_strip_zones > 1) {
6712                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6713                        mdname(mddev));
6714                 return ERR_PTR(-EINVAL);
6715         }
6716
6717         sectors = raid0_conf->strip_zone[0].zone_end;
6718         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6719         mddev->dev_sectors = sectors;
6720         mddev->new_level = level;
6721         mddev->new_layout = ALGORITHM_PARITY_N;
6722         mddev->new_chunk_sectors = mddev->chunk_sectors;
6723         mddev->raid_disks += 1;
6724         mddev->delta_disks = 1;
6725         /* make sure it will be not marked as dirty */
6726         mddev->recovery_cp = MaxSector;
6727
6728         return setup_conf(mddev);
6729 }
6730
6731
6732 static void *raid5_takeover_raid1(struct mddev *mddev)
6733 {
6734         int chunksect;
6735
6736         if (mddev->raid_disks != 2 ||
6737             mddev->degraded > 1)
6738                 return ERR_PTR(-EINVAL);
6739
6740         /* Should check if there are write-behind devices? */
6741
6742         chunksect = 64*2; /* 64K by default */
6743
6744         /* The array must be an exact multiple of chunksize */
6745         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6746                 chunksect >>= 1;
6747
6748         if ((chunksect<<9) < STRIPE_SIZE)
6749                 /* array size does not allow a suitable chunk size */
6750                 return ERR_PTR(-EINVAL);
6751
6752         mddev->new_level = 5;
6753         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6754         mddev->new_chunk_sectors = chunksect;
6755
6756         return setup_conf(mddev);
6757 }
6758
6759 static void *raid5_takeover_raid6(struct mddev *mddev)
6760 {
6761         int new_layout;
6762
6763         switch (mddev->layout) {
6764         case ALGORITHM_LEFT_ASYMMETRIC_6:
6765                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6766                 break;
6767         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6768                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6769                 break;
6770         case ALGORITHM_LEFT_SYMMETRIC_6:
6771                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6772                 break;
6773         case ALGORITHM_RIGHT_SYMMETRIC_6:
6774                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6775                 break;
6776         case ALGORITHM_PARITY_0_6:
6777                 new_layout = ALGORITHM_PARITY_0;
6778                 break;
6779         case ALGORITHM_PARITY_N:
6780                 new_layout = ALGORITHM_PARITY_N;
6781                 break;
6782         default:
6783                 return ERR_PTR(-EINVAL);
6784         }
6785         mddev->new_level = 5;
6786         mddev->new_layout = new_layout;
6787         mddev->delta_disks = -1;
6788         mddev->raid_disks -= 1;
6789         return setup_conf(mddev);
6790 }
6791
6792
6793 static int raid5_check_reshape(struct mddev *mddev)
6794 {
6795         /* For a 2-drive array, the layout and chunk size can be changed
6796          * immediately as not restriping is needed.
6797          * For larger arrays we record the new value - after validation
6798          * to be used by a reshape pass.
6799          */
6800         struct r5conf *conf = mddev->private;
6801         int new_chunk = mddev->new_chunk_sectors;
6802
6803         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6804                 return -EINVAL;
6805         if (new_chunk > 0) {
6806                 if (!is_power_of_2(new_chunk))
6807                         return -EINVAL;
6808                 if (new_chunk < (PAGE_SIZE>>9))
6809                         return -EINVAL;
6810                 if (mddev->array_sectors & (new_chunk-1))
6811                         /* not factor of array size */
6812                         return -EINVAL;
6813         }
6814
6815         /* They look valid */
6816
6817         if (mddev->raid_disks == 2) {
6818                 /* can make the change immediately */
6819                 if (mddev->new_layout >= 0) {
6820                         conf->algorithm = mddev->new_layout;
6821                         mddev->layout = mddev->new_layout;
6822                 }
6823                 if (new_chunk > 0) {
6824                         conf->chunk_sectors = new_chunk ;
6825                         mddev->chunk_sectors = new_chunk;
6826                 }
6827                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6828                 md_wakeup_thread(mddev->thread);
6829         }
6830         return check_reshape(mddev);
6831 }
6832
6833 static int raid6_check_reshape(struct mddev *mddev)
6834 {
6835         int new_chunk = mddev->new_chunk_sectors;
6836
6837         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6838                 return -EINVAL;
6839         if (new_chunk > 0) {
6840                 if (!is_power_of_2(new_chunk))
6841                         return -EINVAL;
6842                 if (new_chunk < (PAGE_SIZE >> 9))
6843                         return -EINVAL;
6844                 if (mddev->array_sectors & (new_chunk-1))
6845                         /* not factor of array size */
6846                         return -EINVAL;
6847         }
6848
6849         /* They look valid */
6850         return check_reshape(mddev);
6851 }
6852
6853 static void *raid5_takeover(struct mddev *mddev)
6854 {
6855         /* raid5 can take over:
6856          *  raid0 - if there is only one strip zone - make it a raid4 layout
6857          *  raid1 - if there are two drives.  We need to know the chunk size
6858          *  raid4 - trivial - just use a raid4 layout.
6859          *  raid6 - Providing it is a *_6 layout
6860          */
6861         if (mddev->level == 0)
6862                 return raid45_takeover_raid0(mddev, 5);
6863         if (mddev->level == 1)
6864                 return raid5_takeover_raid1(mddev);
6865         if (mddev->level == 4) {
6866                 mddev->new_layout = ALGORITHM_PARITY_N;
6867                 mddev->new_level = 5;
6868                 return setup_conf(mddev);
6869         }
6870         if (mddev->level == 6)
6871                 return raid5_takeover_raid6(mddev);
6872
6873         return ERR_PTR(-EINVAL);
6874 }
6875
6876 static void *raid4_takeover(struct mddev *mddev)
6877 {
6878         /* raid4 can take over:
6879          *  raid0 - if there is only one strip zone
6880          *  raid5 - if layout is right
6881          */
6882         if (mddev->level == 0)
6883                 return raid45_takeover_raid0(mddev, 4);
6884         if (mddev->level == 5 &&
6885             mddev->layout == ALGORITHM_PARITY_N) {
6886                 mddev->new_layout = 0;
6887                 mddev->new_level = 4;
6888                 return setup_conf(mddev);
6889         }
6890         return ERR_PTR(-EINVAL);
6891 }
6892
6893 static struct md_personality raid5_personality;
6894
6895 static void *raid6_takeover(struct mddev *mddev)
6896 {
6897         /* Currently can only take over a raid5.  We map the
6898          * personality to an equivalent raid6 personality
6899          * with the Q block at the end.
6900          */
6901         int new_layout;
6902
6903         if (mddev->pers != &raid5_personality)
6904                 return ERR_PTR(-EINVAL);
6905         if (mddev->degraded > 1)
6906                 return ERR_PTR(-EINVAL);
6907         if (mddev->raid_disks > 253)
6908                 return ERR_PTR(-EINVAL);
6909         if (mddev->raid_disks < 3)
6910                 return ERR_PTR(-EINVAL);
6911
6912         switch (mddev->layout) {
6913         case ALGORITHM_LEFT_ASYMMETRIC:
6914                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6915                 break;
6916         case ALGORITHM_RIGHT_ASYMMETRIC:
6917                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6918                 break;
6919         case ALGORITHM_LEFT_SYMMETRIC:
6920                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6921                 break;
6922         case ALGORITHM_RIGHT_SYMMETRIC:
6923                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6924                 break;
6925         case ALGORITHM_PARITY_0:
6926                 new_layout = ALGORITHM_PARITY_0_6;
6927                 break;
6928         case ALGORITHM_PARITY_N:
6929                 new_layout = ALGORITHM_PARITY_N;
6930                 break;
6931         default:
6932                 return ERR_PTR(-EINVAL);
6933         }
6934         mddev->new_level = 6;
6935         mddev->new_layout = new_layout;
6936         mddev->delta_disks = 1;
6937         mddev->raid_disks += 1;
6938         return setup_conf(mddev);
6939 }
6940
6941
6942 static struct md_personality raid6_personality =
6943 {
6944         .name           = "raid6",
6945         .level          = 6,
6946         .owner          = THIS_MODULE,
6947         .make_request   = make_request,
6948         .run            = run,
6949         .stop           = stop,
6950         .status         = status,
6951         .error_handler  = error,
6952         .hot_add_disk   = raid5_add_disk,
6953         .hot_remove_disk= raid5_remove_disk,
6954         .spare_active   = raid5_spare_active,
6955         .sync_request   = sync_request,
6956         .resize         = raid5_resize,
6957         .size           = raid5_size,
6958         .check_reshape  = raid6_check_reshape,
6959         .start_reshape  = raid5_start_reshape,
6960         .finish_reshape = raid5_finish_reshape,
6961         .quiesce        = raid5_quiesce,
6962         .takeover       = raid6_takeover,
6963 };
6964 static struct md_personality raid5_personality =
6965 {
6966         .name           = "raid5",
6967         .level          = 5,
6968         .owner          = THIS_MODULE,
6969         .make_request   = make_request,
6970         .run            = run,
6971         .stop           = stop,
6972         .status         = status,
6973         .error_handler  = error,
6974         .hot_add_disk   = raid5_add_disk,
6975         .hot_remove_disk= raid5_remove_disk,
6976         .spare_active   = raid5_spare_active,
6977         .sync_request   = sync_request,
6978         .resize         = raid5_resize,
6979         .size           = raid5_size,
6980         .check_reshape  = raid5_check_reshape,
6981         .start_reshape  = raid5_start_reshape,
6982         .finish_reshape = raid5_finish_reshape,
6983         .quiesce        = raid5_quiesce,
6984         .takeover       = raid5_takeover,
6985 };
6986
6987 static struct md_personality raid4_personality =
6988 {
6989         .name           = "raid4",
6990         .level          = 4,
6991         .owner          = THIS_MODULE,
6992         .make_request   = make_request,
6993         .run            = run,
6994         .stop           = stop,
6995         .status         = status,
6996         .error_handler  = error,
6997         .hot_add_disk   = raid5_add_disk,
6998         .hot_remove_disk= raid5_remove_disk,
6999         .spare_active   = raid5_spare_active,
7000         .sync_request   = sync_request,
7001         .resize         = raid5_resize,
7002         .size           = raid5_size,
7003         .check_reshape  = raid5_check_reshape,
7004         .start_reshape  = raid5_start_reshape,
7005         .finish_reshape = raid5_finish_reshape,
7006         .quiesce        = raid5_quiesce,
7007         .takeover       = raid4_takeover,
7008 };
7009
7010 static int __init raid5_init(void)
7011 {
7012         raid5_wq = alloc_workqueue("raid5wq",
7013                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7014         if (!raid5_wq)
7015                 return -ENOMEM;
7016         register_md_personality(&raid6_personality);
7017         register_md_personality(&raid5_personality);
7018         register_md_personality(&raid4_personality);
7019         return 0;
7020 }
7021
7022 static void raid5_exit(void)
7023 {
7024         unregister_md_personality(&raid6_personality);
7025         unregister_md_personality(&raid5_personality);
7026         unregister_md_personality(&raid4_personality);
7027         destroy_workqueue(raid5_wq);
7028 }
7029
7030 module_init(raid5_init);
7031 module_exit(raid5_exit);
7032 MODULE_LICENSE("GPL");
7033 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7034 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7035 MODULE_ALIAS("md-raid5");
7036 MODULE_ALIAS("md-raid4");
7037 MODULE_ALIAS("md-level-5");
7038 MODULE_ALIAS("md-level-4");
7039 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7040 MODULE_ALIAS("md-raid6");
7041 MODULE_ALIAS("md-level-6");
7042
7043 /* This used to be two separate modules, they were: */
7044 MODULE_ALIAS("raid5");
7045 MODULE_ALIAS("raid6");