md/raid5: write errors should be recorded as bad blocks if possible.
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
59
60 /*
61  * Stripe cache
62  */
63
64 #define NR_STRIPES              256
65 #define STRIPE_SIZE             PAGE_SIZE
66 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD            1
69 #define BYPASS_THRESHOLD        1
70 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK               (NR_HASH - 1)
72
73 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
76  * order without overlap.  There may be several bio's per stripe+device, and
77  * a bio could span several devices.
78  * When walking this list for a particular stripe+device, we must never proceed
79  * beyond a bio that extends past this device, as the next bio might no longer
80  * be valid.
81  * This macro is used to determine the 'next' bio in the list, given the sector
82  * of the current stripe+device
83  */
84 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 /*
86  * The following can be used to debug the driver
87  */
88 #define RAID5_PARANOIA  1
89 #if RAID5_PARANOIA && defined(CONFIG_SMP)
90 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 #else
92 # define CHECK_DEVLOCK()
93 #endif
94
95 #ifdef DEBUG
96 #define inline
97 #define __inline__
98 #endif
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106         return bio->bi_phys_segments & 0xffff;
107 }
108
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111         return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116         --bio->bi_phys_segments;
117         return raid5_bi_phys_segments(bio);
118 }
119
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122         unsigned short val = raid5_bi_hw_segments(bio);
123
124         --val;
125         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126         return val;
127 }
128
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 }
133
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137         if (sh->ddf_layout)
138                 /* ddf always start from first device */
139                 return 0;
140         /* md starts just after Q block */
141         if (sh->qd_idx == sh->disks - 1)
142                 return 0;
143         else
144                 return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148         disk++;
149         return (disk < raid_disks) ? disk : 0;
150 }
151
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153  * We need to map each disk to a 'slot', where the data disks are slot
154  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155  * is raid_disks-1.  This help does that mapping.
156  */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158                              int *count, int syndrome_disks)
159 {
160         int slot = *count;
161
162         if (sh->ddf_layout)
163                 (*count)++;
164         if (idx == sh->pd_idx)
165                 return syndrome_disks;
166         if (idx == sh->qd_idx)
167                 return syndrome_disks + 1;
168         if (!sh->ddf_layout)
169                 (*count)++;
170         return slot;
171 }
172
173 static void return_io(struct bio *return_bi)
174 {
175         struct bio *bi = return_bi;
176         while (bi) {
177
178                 return_bi = bi->bi_next;
179                 bi->bi_next = NULL;
180                 bi->bi_size = 0;
181                 bio_endio(bi, 0);
182                 bi = return_bi;
183         }
184 }
185
186 static void print_raid5_conf (raid5_conf_t *conf);
187
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190         return sh->check_state || sh->reconstruct_state ||
191                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197         if (atomic_dec_and_test(&sh->count)) {
198                 BUG_ON(!list_empty(&sh->lru));
199                 BUG_ON(atomic_read(&conf->active_stripes)==0);
200                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201                         if (test_bit(STRIPE_DELAYED, &sh->state))
202                                 list_add_tail(&sh->lru, &conf->delayed_list);
203                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204                                    sh->bm_seq - conf->seq_write > 0)
205                                 list_add_tail(&sh->lru, &conf->bitmap_list);
206                         else {
207                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208                                 list_add_tail(&sh->lru, &conf->handle_list);
209                         }
210                         md_wakeup_thread(conf->mddev->thread);
211                 } else {
212                         BUG_ON(stripe_operations_active(sh));
213                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214                                 atomic_dec(&conf->preread_active_stripes);
215                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216                                         md_wakeup_thread(conf->mddev->thread);
217                         }
218                         atomic_dec(&conf->active_stripes);
219                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220                                 list_add_tail(&sh->lru, &conf->inactive_list);
221                                 wake_up(&conf->wait_for_stripe);
222                                 if (conf->retry_read_aligned)
223                                         md_wakeup_thread(conf->mddev->thread);
224                         }
225                 }
226         }
227 }
228
229 static void release_stripe(struct stripe_head *sh)
230 {
231         raid5_conf_t *conf = sh->raid_conf;
232         unsigned long flags;
233
234         spin_lock_irqsave(&conf->device_lock, flags);
235         __release_stripe(conf, sh);
236         spin_unlock_irqrestore(&conf->device_lock, flags);
237 }
238
239 static inline void remove_hash(struct stripe_head *sh)
240 {
241         pr_debug("remove_hash(), stripe %llu\n",
242                 (unsigned long long)sh->sector);
243
244         hlist_del_init(&sh->hash);
245 }
246
247 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248 {
249         struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251         pr_debug("insert_hash(), stripe %llu\n",
252                 (unsigned long long)sh->sector);
253
254         CHECK_DEVLOCK();
255         hlist_add_head(&sh->hash, hp);
256 }
257
258
259 /* find an idle stripe, make sure it is unhashed, and return it. */
260 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261 {
262         struct stripe_head *sh = NULL;
263         struct list_head *first;
264
265         CHECK_DEVLOCK();
266         if (list_empty(&conf->inactive_list))
267                 goto out;
268         first = conf->inactive_list.next;
269         sh = list_entry(first, struct stripe_head, lru);
270         list_del_init(first);
271         remove_hash(sh);
272         atomic_inc(&conf->active_stripes);
273 out:
274         return sh;
275 }
276
277 static void shrink_buffers(struct stripe_head *sh)
278 {
279         struct page *p;
280         int i;
281         int num = sh->raid_conf->pool_size;
282
283         for (i = 0; i < num ; i++) {
284                 p = sh->dev[i].page;
285                 if (!p)
286                         continue;
287                 sh->dev[i].page = NULL;
288                 put_page(p);
289         }
290 }
291
292 static int grow_buffers(struct stripe_head *sh)
293 {
294         int i;
295         int num = sh->raid_conf->pool_size;
296
297         for (i = 0; i < num; i++) {
298                 struct page *page;
299
300                 if (!(page = alloc_page(GFP_KERNEL))) {
301                         return 1;
302                 }
303                 sh->dev[i].page = page;
304         }
305         return 0;
306 }
307
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310                             struct stripe_head *sh);
311
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314         raid5_conf_t *conf = sh->raid_conf;
315         int i;
316
317         BUG_ON(atomic_read(&sh->count) != 0);
318         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319         BUG_ON(stripe_operations_active(sh));
320
321         CHECK_DEVLOCK();
322         pr_debug("init_stripe called, stripe %llu\n",
323                 (unsigned long long)sh->sector);
324
325         remove_hash(sh);
326
327         sh->generation = conf->generation - previous;
328         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329         sh->sector = sector;
330         stripe_set_idx(sector, conf, previous, sh);
331         sh->state = 0;
332
333
334         for (i = sh->disks; i--; ) {
335                 struct r5dev *dev = &sh->dev[i];
336
337                 if (dev->toread || dev->read || dev->towrite || dev->written ||
338                     test_bit(R5_LOCKED, &dev->flags)) {
339                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340                                (unsigned long long)sh->sector, i, dev->toread,
341                                dev->read, dev->towrite, dev->written,
342                                test_bit(R5_LOCKED, &dev->flags));
343                         WARN_ON(1);
344                 }
345                 dev->flags = 0;
346                 raid5_build_block(sh, i, previous);
347         }
348         insert_hash(conf, sh);
349 }
350
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352                                          short generation)
353 {
354         struct stripe_head *sh;
355         struct hlist_node *hn;
356
357         CHECK_DEVLOCK();
358         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360                 if (sh->sector == sector && sh->generation == generation)
361                         return sh;
362         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363         return NULL;
364 }
365
366 /*
367  * Need to check if array has failed when deciding whether to:
368  *  - start an array
369  *  - remove non-faulty devices
370  *  - add a spare
371  *  - allow a reshape
372  * This determination is simple when no reshape is happening.
373  * However if there is a reshape, we need to carefully check
374  * both the before and after sections.
375  * This is because some failed devices may only affect one
376  * of the two sections, and some non-in_sync devices may
377  * be insync in the section most affected by failed devices.
378  */
379 static int has_failed(raid5_conf_t *conf)
380 {
381         int degraded;
382         int i;
383         if (conf->mddev->reshape_position == MaxSector)
384                 return conf->mddev->degraded > conf->max_degraded;
385
386         rcu_read_lock();
387         degraded = 0;
388         for (i = 0; i < conf->previous_raid_disks; i++) {
389                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390                 if (!rdev || test_bit(Faulty, &rdev->flags))
391                         degraded++;
392                 else if (test_bit(In_sync, &rdev->flags))
393                         ;
394                 else
395                         /* not in-sync or faulty.
396                          * If the reshape increases the number of devices,
397                          * this is being recovered by the reshape, so
398                          * this 'previous' section is not in_sync.
399                          * If the number of devices is being reduced however,
400                          * the device can only be part of the array if
401                          * we are reverting a reshape, so this section will
402                          * be in-sync.
403                          */
404                         if (conf->raid_disks >= conf->previous_raid_disks)
405                                 degraded++;
406         }
407         rcu_read_unlock();
408         if (degraded > conf->max_degraded)
409                 return 1;
410         rcu_read_lock();
411         degraded = 0;
412         for (i = 0; i < conf->raid_disks; i++) {
413                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414                 if (!rdev || test_bit(Faulty, &rdev->flags))
415                         degraded++;
416                 else if (test_bit(In_sync, &rdev->flags))
417                         ;
418                 else
419                         /* not in-sync or faulty.
420                          * If reshape increases the number of devices, this
421                          * section has already been recovered, else it
422                          * almost certainly hasn't.
423                          */
424                         if (conf->raid_disks <= conf->previous_raid_disks)
425                                 degraded++;
426         }
427         rcu_read_unlock();
428         if (degraded > conf->max_degraded)
429                 return 1;
430         return 0;
431 }
432
433 static struct stripe_head *
434 get_active_stripe(raid5_conf_t *conf, sector_t sector,
435                   int previous, int noblock, int noquiesce)
436 {
437         struct stripe_head *sh;
438
439         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441         spin_lock_irq(&conf->device_lock);
442
443         do {
444                 wait_event_lock_irq(conf->wait_for_stripe,
445                                     conf->quiesce == 0 || noquiesce,
446                                     conf->device_lock, /* nothing */);
447                 sh = __find_stripe(conf, sector, conf->generation - previous);
448                 if (!sh) {
449                         if (!conf->inactive_blocked)
450                                 sh = get_free_stripe(conf);
451                         if (noblock && sh == NULL)
452                                 break;
453                         if (!sh) {
454                                 conf->inactive_blocked = 1;
455                                 wait_event_lock_irq(conf->wait_for_stripe,
456                                                     !list_empty(&conf->inactive_list) &&
457                                                     (atomic_read(&conf->active_stripes)
458                                                      < (conf->max_nr_stripes *3/4)
459                                                      || !conf->inactive_blocked),
460                                                     conf->device_lock,
461                                                     );
462                                 conf->inactive_blocked = 0;
463                         } else
464                                 init_stripe(sh, sector, previous);
465                 } else {
466                         if (atomic_read(&sh->count)) {
467                                 BUG_ON(!list_empty(&sh->lru)
468                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
469                         } else {
470                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
471                                         atomic_inc(&conf->active_stripes);
472                                 if (list_empty(&sh->lru) &&
473                                     !test_bit(STRIPE_EXPANDING, &sh->state))
474                                         BUG();
475                                 list_del_init(&sh->lru);
476                         }
477                 }
478         } while (sh == NULL);
479
480         if (sh)
481                 atomic_inc(&sh->count);
482
483         spin_unlock_irq(&conf->device_lock);
484         return sh;
485 }
486
487 static void
488 raid5_end_read_request(struct bio *bi, int error);
489 static void
490 raid5_end_write_request(struct bio *bi, int error);
491
492 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493 {
494         raid5_conf_t *conf = sh->raid_conf;
495         int i, disks = sh->disks;
496
497         might_sleep();
498
499         for (i = disks; i--; ) {
500                 int rw;
501                 struct bio *bi;
502                 mdk_rdev_t *rdev;
503                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505                                 rw = WRITE_FUA;
506                         else
507                                 rw = WRITE;
508                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509                         rw = READ;
510                 else
511                         continue;
512
513                 bi = &sh->dev[i].req;
514
515                 bi->bi_rw = rw;
516                 if (rw & WRITE)
517                         bi->bi_end_io = raid5_end_write_request;
518                 else
519                         bi->bi_end_io = raid5_end_read_request;
520
521                 rcu_read_lock();
522                 rdev = rcu_dereference(conf->disks[i].rdev);
523                 if (rdev && test_bit(Faulty, &rdev->flags))
524                         rdev = NULL;
525                 if (rdev)
526                         atomic_inc(&rdev->nr_pending);
527                 rcu_read_unlock();
528
529                 if (rdev) {
530                         if (s->syncing || s->expanding || s->expanded)
531                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
532
533                         set_bit(STRIPE_IO_STARTED, &sh->state);
534
535                         bi->bi_bdev = rdev->bdev;
536                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
537                                 __func__, (unsigned long long)sh->sector,
538                                 bi->bi_rw, i);
539                         atomic_inc(&sh->count);
540                         bi->bi_sector = sh->sector + rdev->data_offset;
541                         bi->bi_flags = 1 << BIO_UPTODATE;
542                         bi->bi_vcnt = 1;
543                         bi->bi_max_vecs = 1;
544                         bi->bi_idx = 0;
545                         bi->bi_io_vec = &sh->dev[i].vec;
546                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
547                         bi->bi_io_vec[0].bv_offset = 0;
548                         bi->bi_size = STRIPE_SIZE;
549                         bi->bi_next = NULL;
550                         generic_make_request(bi);
551                 } else {
552                         if (rw & WRITE)
553                                 set_bit(STRIPE_DEGRADED, &sh->state);
554                         pr_debug("skip op %ld on disc %d for sector %llu\n",
555                                 bi->bi_rw, i, (unsigned long long)sh->sector);
556                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
557                         set_bit(STRIPE_HANDLE, &sh->state);
558                 }
559         }
560 }
561
562 static struct dma_async_tx_descriptor *
563 async_copy_data(int frombio, struct bio *bio, struct page *page,
564         sector_t sector, struct dma_async_tx_descriptor *tx)
565 {
566         struct bio_vec *bvl;
567         struct page *bio_page;
568         int i;
569         int page_offset;
570         struct async_submit_ctl submit;
571         enum async_tx_flags flags = 0;
572
573         if (bio->bi_sector >= sector)
574                 page_offset = (signed)(bio->bi_sector - sector) * 512;
575         else
576                 page_offset = (signed)(sector - bio->bi_sector) * -512;
577
578         if (frombio)
579                 flags |= ASYNC_TX_FENCE;
580         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
581
582         bio_for_each_segment(bvl, bio, i) {
583                 int len = bvl->bv_len;
584                 int clen;
585                 int b_offset = 0;
586
587                 if (page_offset < 0) {
588                         b_offset = -page_offset;
589                         page_offset += b_offset;
590                         len -= b_offset;
591                 }
592
593                 if (len > 0 && page_offset + len > STRIPE_SIZE)
594                         clen = STRIPE_SIZE - page_offset;
595                 else
596                         clen = len;
597
598                 if (clen > 0) {
599                         b_offset += bvl->bv_offset;
600                         bio_page = bvl->bv_page;
601                         if (frombio)
602                                 tx = async_memcpy(page, bio_page, page_offset,
603                                                   b_offset, clen, &submit);
604                         else
605                                 tx = async_memcpy(bio_page, page, b_offset,
606                                                   page_offset, clen, &submit);
607                 }
608                 /* chain the operations */
609                 submit.depend_tx = tx;
610
611                 if (clen < len) /* hit end of page */
612                         break;
613                 page_offset +=  len;
614         }
615
616         return tx;
617 }
618
619 static void ops_complete_biofill(void *stripe_head_ref)
620 {
621         struct stripe_head *sh = stripe_head_ref;
622         struct bio *return_bi = NULL;
623         raid5_conf_t *conf = sh->raid_conf;
624         int i;
625
626         pr_debug("%s: stripe %llu\n", __func__,
627                 (unsigned long long)sh->sector);
628
629         /* clear completed biofills */
630         spin_lock_irq(&conf->device_lock);
631         for (i = sh->disks; i--; ) {
632                 struct r5dev *dev = &sh->dev[i];
633
634                 /* acknowledge completion of a biofill operation */
635                 /* and check if we need to reply to a read request,
636                  * new R5_Wantfill requests are held off until
637                  * !STRIPE_BIOFILL_RUN
638                  */
639                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
640                         struct bio *rbi, *rbi2;
641
642                         BUG_ON(!dev->read);
643                         rbi = dev->read;
644                         dev->read = NULL;
645                         while (rbi && rbi->bi_sector <
646                                 dev->sector + STRIPE_SECTORS) {
647                                 rbi2 = r5_next_bio(rbi, dev->sector);
648                                 if (!raid5_dec_bi_phys_segments(rbi)) {
649                                         rbi->bi_next = return_bi;
650                                         return_bi = rbi;
651                                 }
652                                 rbi = rbi2;
653                         }
654                 }
655         }
656         spin_unlock_irq(&conf->device_lock);
657         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
658
659         return_io(return_bi);
660
661         set_bit(STRIPE_HANDLE, &sh->state);
662         release_stripe(sh);
663 }
664
665 static void ops_run_biofill(struct stripe_head *sh)
666 {
667         struct dma_async_tx_descriptor *tx = NULL;
668         raid5_conf_t *conf = sh->raid_conf;
669         struct async_submit_ctl submit;
670         int i;
671
672         pr_debug("%s: stripe %llu\n", __func__,
673                 (unsigned long long)sh->sector);
674
675         for (i = sh->disks; i--; ) {
676                 struct r5dev *dev = &sh->dev[i];
677                 if (test_bit(R5_Wantfill, &dev->flags)) {
678                         struct bio *rbi;
679                         spin_lock_irq(&conf->device_lock);
680                         dev->read = rbi = dev->toread;
681                         dev->toread = NULL;
682                         spin_unlock_irq(&conf->device_lock);
683                         while (rbi && rbi->bi_sector <
684                                 dev->sector + STRIPE_SECTORS) {
685                                 tx = async_copy_data(0, rbi, dev->page,
686                                         dev->sector, tx);
687                                 rbi = r5_next_bio(rbi, dev->sector);
688                         }
689                 }
690         }
691
692         atomic_inc(&sh->count);
693         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
694         async_trigger_callback(&submit);
695 }
696
697 static void mark_target_uptodate(struct stripe_head *sh, int target)
698 {
699         struct r5dev *tgt;
700
701         if (target < 0)
702                 return;
703
704         tgt = &sh->dev[target];
705         set_bit(R5_UPTODATE, &tgt->flags);
706         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
707         clear_bit(R5_Wantcompute, &tgt->flags);
708 }
709
710 static void ops_complete_compute(void *stripe_head_ref)
711 {
712         struct stripe_head *sh = stripe_head_ref;
713
714         pr_debug("%s: stripe %llu\n", __func__,
715                 (unsigned long long)sh->sector);
716
717         /* mark the computed target(s) as uptodate */
718         mark_target_uptodate(sh, sh->ops.target);
719         mark_target_uptodate(sh, sh->ops.target2);
720
721         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
722         if (sh->check_state == check_state_compute_run)
723                 sh->check_state = check_state_compute_result;
724         set_bit(STRIPE_HANDLE, &sh->state);
725         release_stripe(sh);
726 }
727
728 /* return a pointer to the address conversion region of the scribble buffer */
729 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
730                                  struct raid5_percpu *percpu)
731 {
732         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
733 }
734
735 static struct dma_async_tx_descriptor *
736 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
737 {
738         int disks = sh->disks;
739         struct page **xor_srcs = percpu->scribble;
740         int target = sh->ops.target;
741         struct r5dev *tgt = &sh->dev[target];
742         struct page *xor_dest = tgt->page;
743         int count = 0;
744         struct dma_async_tx_descriptor *tx;
745         struct async_submit_ctl submit;
746         int i;
747
748         pr_debug("%s: stripe %llu block: %d\n",
749                 __func__, (unsigned long long)sh->sector, target);
750         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
751
752         for (i = disks; i--; )
753                 if (i != target)
754                         xor_srcs[count++] = sh->dev[i].page;
755
756         atomic_inc(&sh->count);
757
758         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
759                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
760         if (unlikely(count == 1))
761                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
762         else
763                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
764
765         return tx;
766 }
767
768 /* set_syndrome_sources - populate source buffers for gen_syndrome
769  * @srcs - (struct page *) array of size sh->disks
770  * @sh - stripe_head to parse
771  *
772  * Populates srcs in proper layout order for the stripe and returns the
773  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
774  * destination buffer is recorded in srcs[count] and the Q destination
775  * is recorded in srcs[count+1]].
776  */
777 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
778 {
779         int disks = sh->disks;
780         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
781         int d0_idx = raid6_d0(sh);
782         int count;
783         int i;
784
785         for (i = 0; i < disks; i++)
786                 srcs[i] = NULL;
787
788         count = 0;
789         i = d0_idx;
790         do {
791                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
792
793                 srcs[slot] = sh->dev[i].page;
794                 i = raid6_next_disk(i, disks);
795         } while (i != d0_idx);
796
797         return syndrome_disks;
798 }
799
800 static struct dma_async_tx_descriptor *
801 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
802 {
803         int disks = sh->disks;
804         struct page **blocks = percpu->scribble;
805         int target;
806         int qd_idx = sh->qd_idx;
807         struct dma_async_tx_descriptor *tx;
808         struct async_submit_ctl submit;
809         struct r5dev *tgt;
810         struct page *dest;
811         int i;
812         int count;
813
814         if (sh->ops.target < 0)
815                 target = sh->ops.target2;
816         else if (sh->ops.target2 < 0)
817                 target = sh->ops.target;
818         else
819                 /* we should only have one valid target */
820                 BUG();
821         BUG_ON(target < 0);
822         pr_debug("%s: stripe %llu block: %d\n",
823                 __func__, (unsigned long long)sh->sector, target);
824
825         tgt = &sh->dev[target];
826         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
827         dest = tgt->page;
828
829         atomic_inc(&sh->count);
830
831         if (target == qd_idx) {
832                 count = set_syndrome_sources(blocks, sh);
833                 blocks[count] = NULL; /* regenerating p is not necessary */
834                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
835                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
836                                   ops_complete_compute, sh,
837                                   to_addr_conv(sh, percpu));
838                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
839         } else {
840                 /* Compute any data- or p-drive using XOR */
841                 count = 0;
842                 for (i = disks; i-- ; ) {
843                         if (i == target || i == qd_idx)
844                                 continue;
845                         blocks[count++] = sh->dev[i].page;
846                 }
847
848                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
849                                   NULL, ops_complete_compute, sh,
850                                   to_addr_conv(sh, percpu));
851                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
852         }
853
854         return tx;
855 }
856
857 static struct dma_async_tx_descriptor *
858 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
859 {
860         int i, count, disks = sh->disks;
861         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
862         int d0_idx = raid6_d0(sh);
863         int faila = -1, failb = -1;
864         int target = sh->ops.target;
865         int target2 = sh->ops.target2;
866         struct r5dev *tgt = &sh->dev[target];
867         struct r5dev *tgt2 = &sh->dev[target2];
868         struct dma_async_tx_descriptor *tx;
869         struct page **blocks = percpu->scribble;
870         struct async_submit_ctl submit;
871
872         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
873                  __func__, (unsigned long long)sh->sector, target, target2);
874         BUG_ON(target < 0 || target2 < 0);
875         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
876         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
877
878         /* we need to open-code set_syndrome_sources to handle the
879          * slot number conversion for 'faila' and 'failb'
880          */
881         for (i = 0; i < disks ; i++)
882                 blocks[i] = NULL;
883         count = 0;
884         i = d0_idx;
885         do {
886                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
887
888                 blocks[slot] = sh->dev[i].page;
889
890                 if (i == target)
891                         faila = slot;
892                 if (i == target2)
893                         failb = slot;
894                 i = raid6_next_disk(i, disks);
895         } while (i != d0_idx);
896
897         BUG_ON(faila == failb);
898         if (failb < faila)
899                 swap(faila, failb);
900         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
901                  __func__, (unsigned long long)sh->sector, faila, failb);
902
903         atomic_inc(&sh->count);
904
905         if (failb == syndrome_disks+1) {
906                 /* Q disk is one of the missing disks */
907                 if (faila == syndrome_disks) {
908                         /* Missing P+Q, just recompute */
909                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
910                                           ops_complete_compute, sh,
911                                           to_addr_conv(sh, percpu));
912                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
913                                                   STRIPE_SIZE, &submit);
914                 } else {
915                         struct page *dest;
916                         int data_target;
917                         int qd_idx = sh->qd_idx;
918
919                         /* Missing D+Q: recompute D from P, then recompute Q */
920                         if (target == qd_idx)
921                                 data_target = target2;
922                         else
923                                 data_target = target;
924
925                         count = 0;
926                         for (i = disks; i-- ; ) {
927                                 if (i == data_target || i == qd_idx)
928                                         continue;
929                                 blocks[count++] = sh->dev[i].page;
930                         }
931                         dest = sh->dev[data_target].page;
932                         init_async_submit(&submit,
933                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
934                                           NULL, NULL, NULL,
935                                           to_addr_conv(sh, percpu));
936                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
937                                        &submit);
938
939                         count = set_syndrome_sources(blocks, sh);
940                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
941                                           ops_complete_compute, sh,
942                                           to_addr_conv(sh, percpu));
943                         return async_gen_syndrome(blocks, 0, count+2,
944                                                   STRIPE_SIZE, &submit);
945                 }
946         } else {
947                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
948                                   ops_complete_compute, sh,
949                                   to_addr_conv(sh, percpu));
950                 if (failb == syndrome_disks) {
951                         /* We're missing D+P. */
952                         return async_raid6_datap_recov(syndrome_disks+2,
953                                                        STRIPE_SIZE, faila,
954                                                        blocks, &submit);
955                 } else {
956                         /* We're missing D+D. */
957                         return async_raid6_2data_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila, failb,
959                                                        blocks, &submit);
960                 }
961         }
962 }
963
964
965 static void ops_complete_prexor(void *stripe_head_ref)
966 {
967         struct stripe_head *sh = stripe_head_ref;
968
969         pr_debug("%s: stripe %llu\n", __func__,
970                 (unsigned long long)sh->sector);
971 }
972
973 static struct dma_async_tx_descriptor *
974 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
975                struct dma_async_tx_descriptor *tx)
976 {
977         int disks = sh->disks;
978         struct page **xor_srcs = percpu->scribble;
979         int count = 0, pd_idx = sh->pd_idx, i;
980         struct async_submit_ctl submit;
981
982         /* existing parity data subtracted */
983         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
984
985         pr_debug("%s: stripe %llu\n", __func__,
986                 (unsigned long long)sh->sector);
987
988         for (i = disks; i--; ) {
989                 struct r5dev *dev = &sh->dev[i];
990                 /* Only process blocks that are known to be uptodate */
991                 if (test_bit(R5_Wantdrain, &dev->flags))
992                         xor_srcs[count++] = dev->page;
993         }
994
995         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
996                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
997         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
998
999         return tx;
1000 }
1001
1002 static struct dma_async_tx_descriptor *
1003 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1004 {
1005         int disks = sh->disks;
1006         int i;
1007
1008         pr_debug("%s: stripe %llu\n", __func__,
1009                 (unsigned long long)sh->sector);
1010
1011         for (i = disks; i--; ) {
1012                 struct r5dev *dev = &sh->dev[i];
1013                 struct bio *chosen;
1014
1015                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1016                         struct bio *wbi;
1017
1018                         spin_lock_irq(&sh->raid_conf->device_lock);
1019                         chosen = dev->towrite;
1020                         dev->towrite = NULL;
1021                         BUG_ON(dev->written);
1022                         wbi = dev->written = chosen;
1023                         spin_unlock_irq(&sh->raid_conf->device_lock);
1024
1025                         while (wbi && wbi->bi_sector <
1026                                 dev->sector + STRIPE_SECTORS) {
1027                                 if (wbi->bi_rw & REQ_FUA)
1028                                         set_bit(R5_WantFUA, &dev->flags);
1029                                 tx = async_copy_data(1, wbi, dev->page,
1030                                         dev->sector, tx);
1031                                 wbi = r5_next_bio(wbi, dev->sector);
1032                         }
1033                 }
1034         }
1035
1036         return tx;
1037 }
1038
1039 static void ops_complete_reconstruct(void *stripe_head_ref)
1040 {
1041         struct stripe_head *sh = stripe_head_ref;
1042         int disks = sh->disks;
1043         int pd_idx = sh->pd_idx;
1044         int qd_idx = sh->qd_idx;
1045         int i;
1046         bool fua = false;
1047
1048         pr_debug("%s: stripe %llu\n", __func__,
1049                 (unsigned long long)sh->sector);
1050
1051         for (i = disks; i--; )
1052                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1053
1054         for (i = disks; i--; ) {
1055                 struct r5dev *dev = &sh->dev[i];
1056
1057                 if (dev->written || i == pd_idx || i == qd_idx) {
1058                         set_bit(R5_UPTODATE, &dev->flags);
1059                         if (fua)
1060                                 set_bit(R5_WantFUA, &dev->flags);
1061                 }
1062         }
1063
1064         if (sh->reconstruct_state == reconstruct_state_drain_run)
1065                 sh->reconstruct_state = reconstruct_state_drain_result;
1066         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1067                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1068         else {
1069                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1070                 sh->reconstruct_state = reconstruct_state_result;
1071         }
1072
1073         set_bit(STRIPE_HANDLE, &sh->state);
1074         release_stripe(sh);
1075 }
1076
1077 static void
1078 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1079                      struct dma_async_tx_descriptor *tx)
1080 {
1081         int disks = sh->disks;
1082         struct page **xor_srcs = percpu->scribble;
1083         struct async_submit_ctl submit;
1084         int count = 0, pd_idx = sh->pd_idx, i;
1085         struct page *xor_dest;
1086         int prexor = 0;
1087         unsigned long flags;
1088
1089         pr_debug("%s: stripe %llu\n", __func__,
1090                 (unsigned long long)sh->sector);
1091
1092         /* check if prexor is active which means only process blocks
1093          * that are part of a read-modify-write (written)
1094          */
1095         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1096                 prexor = 1;
1097                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1098                 for (i = disks; i--; ) {
1099                         struct r5dev *dev = &sh->dev[i];
1100                         if (dev->written)
1101                                 xor_srcs[count++] = dev->page;
1102                 }
1103         } else {
1104                 xor_dest = sh->dev[pd_idx].page;
1105                 for (i = disks; i--; ) {
1106                         struct r5dev *dev = &sh->dev[i];
1107                         if (i != pd_idx)
1108                                 xor_srcs[count++] = dev->page;
1109                 }
1110         }
1111
1112         /* 1/ if we prexor'd then the dest is reused as a source
1113          * 2/ if we did not prexor then we are redoing the parity
1114          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1115          * for the synchronous xor case
1116          */
1117         flags = ASYNC_TX_ACK |
1118                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1119
1120         atomic_inc(&sh->count);
1121
1122         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1123                           to_addr_conv(sh, percpu));
1124         if (unlikely(count == 1))
1125                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1126         else
1127                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1128 }
1129
1130 static void
1131 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1132                      struct dma_async_tx_descriptor *tx)
1133 {
1134         struct async_submit_ctl submit;
1135         struct page **blocks = percpu->scribble;
1136         int count;
1137
1138         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1139
1140         count = set_syndrome_sources(blocks, sh);
1141
1142         atomic_inc(&sh->count);
1143
1144         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1145                           sh, to_addr_conv(sh, percpu));
1146         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1147 }
1148
1149 static void ops_complete_check(void *stripe_head_ref)
1150 {
1151         struct stripe_head *sh = stripe_head_ref;
1152
1153         pr_debug("%s: stripe %llu\n", __func__,
1154                 (unsigned long long)sh->sector);
1155
1156         sh->check_state = check_state_check_result;
1157         set_bit(STRIPE_HANDLE, &sh->state);
1158         release_stripe(sh);
1159 }
1160
1161 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1162 {
1163         int disks = sh->disks;
1164         int pd_idx = sh->pd_idx;
1165         int qd_idx = sh->qd_idx;
1166         struct page *xor_dest;
1167         struct page **xor_srcs = percpu->scribble;
1168         struct dma_async_tx_descriptor *tx;
1169         struct async_submit_ctl submit;
1170         int count;
1171         int i;
1172
1173         pr_debug("%s: stripe %llu\n", __func__,
1174                 (unsigned long long)sh->sector);
1175
1176         count = 0;
1177         xor_dest = sh->dev[pd_idx].page;
1178         xor_srcs[count++] = xor_dest;
1179         for (i = disks; i--; ) {
1180                 if (i == pd_idx || i == qd_idx)
1181                         continue;
1182                 xor_srcs[count++] = sh->dev[i].page;
1183         }
1184
1185         init_async_submit(&submit, 0, NULL, NULL, NULL,
1186                           to_addr_conv(sh, percpu));
1187         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1188                            &sh->ops.zero_sum_result, &submit);
1189
1190         atomic_inc(&sh->count);
1191         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1192         tx = async_trigger_callback(&submit);
1193 }
1194
1195 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1196 {
1197         struct page **srcs = percpu->scribble;
1198         struct async_submit_ctl submit;
1199         int count;
1200
1201         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1202                 (unsigned long long)sh->sector, checkp);
1203
1204         count = set_syndrome_sources(srcs, sh);
1205         if (!checkp)
1206                 srcs[count] = NULL;
1207
1208         atomic_inc(&sh->count);
1209         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1210                           sh, to_addr_conv(sh, percpu));
1211         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1212                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1213 }
1214
1215 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1216 {
1217         int overlap_clear = 0, i, disks = sh->disks;
1218         struct dma_async_tx_descriptor *tx = NULL;
1219         raid5_conf_t *conf = sh->raid_conf;
1220         int level = conf->level;
1221         struct raid5_percpu *percpu;
1222         unsigned long cpu;
1223
1224         cpu = get_cpu();
1225         percpu = per_cpu_ptr(conf->percpu, cpu);
1226         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1227                 ops_run_biofill(sh);
1228                 overlap_clear++;
1229         }
1230
1231         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1232                 if (level < 6)
1233                         tx = ops_run_compute5(sh, percpu);
1234                 else {
1235                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1236                                 tx = ops_run_compute6_1(sh, percpu);
1237                         else
1238                                 tx = ops_run_compute6_2(sh, percpu);
1239                 }
1240                 /* terminate the chain if reconstruct is not set to be run */
1241                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1242                         async_tx_ack(tx);
1243         }
1244
1245         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1246                 tx = ops_run_prexor(sh, percpu, tx);
1247
1248         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1249                 tx = ops_run_biodrain(sh, tx);
1250                 overlap_clear++;
1251         }
1252
1253         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1254                 if (level < 6)
1255                         ops_run_reconstruct5(sh, percpu, tx);
1256                 else
1257                         ops_run_reconstruct6(sh, percpu, tx);
1258         }
1259
1260         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1261                 if (sh->check_state == check_state_run)
1262                         ops_run_check_p(sh, percpu);
1263                 else if (sh->check_state == check_state_run_q)
1264                         ops_run_check_pq(sh, percpu, 0);
1265                 else if (sh->check_state == check_state_run_pq)
1266                         ops_run_check_pq(sh, percpu, 1);
1267                 else
1268                         BUG();
1269         }
1270
1271         if (overlap_clear)
1272                 for (i = disks; i--; ) {
1273                         struct r5dev *dev = &sh->dev[i];
1274                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1275                                 wake_up(&sh->raid_conf->wait_for_overlap);
1276                 }
1277         put_cpu();
1278 }
1279
1280 #ifdef CONFIG_MULTICORE_RAID456
1281 static void async_run_ops(void *param, async_cookie_t cookie)
1282 {
1283         struct stripe_head *sh = param;
1284         unsigned long ops_request = sh->ops.request;
1285
1286         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1287         wake_up(&sh->ops.wait_for_ops);
1288
1289         __raid_run_ops(sh, ops_request);
1290         release_stripe(sh);
1291 }
1292
1293 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1294 {
1295         /* since handle_stripe can be called outside of raid5d context
1296          * we need to ensure sh->ops.request is de-staged before another
1297          * request arrives
1298          */
1299         wait_event(sh->ops.wait_for_ops,
1300                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1301         sh->ops.request = ops_request;
1302
1303         atomic_inc(&sh->count);
1304         async_schedule(async_run_ops, sh);
1305 }
1306 #else
1307 #define raid_run_ops __raid_run_ops
1308 #endif
1309
1310 static int grow_one_stripe(raid5_conf_t *conf)
1311 {
1312         struct stripe_head *sh;
1313         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1314         if (!sh)
1315                 return 0;
1316
1317         sh->raid_conf = conf;
1318         #ifdef CONFIG_MULTICORE_RAID456
1319         init_waitqueue_head(&sh->ops.wait_for_ops);
1320         #endif
1321
1322         if (grow_buffers(sh)) {
1323                 shrink_buffers(sh);
1324                 kmem_cache_free(conf->slab_cache, sh);
1325                 return 0;
1326         }
1327         /* we just created an active stripe so... */
1328         atomic_set(&sh->count, 1);
1329         atomic_inc(&conf->active_stripes);
1330         INIT_LIST_HEAD(&sh->lru);
1331         release_stripe(sh);
1332         return 1;
1333 }
1334
1335 static int grow_stripes(raid5_conf_t *conf, int num)
1336 {
1337         struct kmem_cache *sc;
1338         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1339
1340         if (conf->mddev->gendisk)
1341                 sprintf(conf->cache_name[0],
1342                         "raid%d-%s", conf->level, mdname(conf->mddev));
1343         else
1344                 sprintf(conf->cache_name[0],
1345                         "raid%d-%p", conf->level, conf->mddev);
1346         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1347
1348         conf->active_name = 0;
1349         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1350                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1351                                0, 0, NULL);
1352         if (!sc)
1353                 return 1;
1354         conf->slab_cache = sc;
1355         conf->pool_size = devs;
1356         while (num--)
1357                 if (!grow_one_stripe(conf))
1358                         return 1;
1359         return 0;
1360 }
1361
1362 /**
1363  * scribble_len - return the required size of the scribble region
1364  * @num - total number of disks in the array
1365  *
1366  * The size must be enough to contain:
1367  * 1/ a struct page pointer for each device in the array +2
1368  * 2/ room to convert each entry in (1) to its corresponding dma
1369  *    (dma_map_page()) or page (page_address()) address.
1370  *
1371  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1372  * calculate over all devices (not just the data blocks), using zeros in place
1373  * of the P and Q blocks.
1374  */
1375 static size_t scribble_len(int num)
1376 {
1377         size_t len;
1378
1379         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1380
1381         return len;
1382 }
1383
1384 static int resize_stripes(raid5_conf_t *conf, int newsize)
1385 {
1386         /* Make all the stripes able to hold 'newsize' devices.
1387          * New slots in each stripe get 'page' set to a new page.
1388          *
1389          * This happens in stages:
1390          * 1/ create a new kmem_cache and allocate the required number of
1391          *    stripe_heads.
1392          * 2/ gather all the old stripe_heads and tranfer the pages across
1393          *    to the new stripe_heads.  This will have the side effect of
1394          *    freezing the array as once all stripe_heads have been collected,
1395          *    no IO will be possible.  Old stripe heads are freed once their
1396          *    pages have been transferred over, and the old kmem_cache is
1397          *    freed when all stripes are done.
1398          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1399          *    we simple return a failre status - no need to clean anything up.
1400          * 4/ allocate new pages for the new slots in the new stripe_heads.
1401          *    If this fails, we don't bother trying the shrink the
1402          *    stripe_heads down again, we just leave them as they are.
1403          *    As each stripe_head is processed the new one is released into
1404          *    active service.
1405          *
1406          * Once step2 is started, we cannot afford to wait for a write,
1407          * so we use GFP_NOIO allocations.
1408          */
1409         struct stripe_head *osh, *nsh;
1410         LIST_HEAD(newstripes);
1411         struct disk_info *ndisks;
1412         unsigned long cpu;
1413         int err;
1414         struct kmem_cache *sc;
1415         int i;
1416
1417         if (newsize <= conf->pool_size)
1418                 return 0; /* never bother to shrink */
1419
1420         err = md_allow_write(conf->mddev);
1421         if (err)
1422                 return err;
1423
1424         /* Step 1 */
1425         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1426                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427                                0, 0, NULL);
1428         if (!sc)
1429                 return -ENOMEM;
1430
1431         for (i = conf->max_nr_stripes; i; i--) {
1432                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1433                 if (!nsh)
1434                         break;
1435
1436                 nsh->raid_conf = conf;
1437                 #ifdef CONFIG_MULTICORE_RAID456
1438                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1439                 #endif
1440
1441                 list_add(&nsh->lru, &newstripes);
1442         }
1443         if (i) {
1444                 /* didn't get enough, give up */
1445                 while (!list_empty(&newstripes)) {
1446                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1447                         list_del(&nsh->lru);
1448                         kmem_cache_free(sc, nsh);
1449                 }
1450                 kmem_cache_destroy(sc);
1451                 return -ENOMEM;
1452         }
1453         /* Step 2 - Must use GFP_NOIO now.
1454          * OK, we have enough stripes, start collecting inactive
1455          * stripes and copying them over
1456          */
1457         list_for_each_entry(nsh, &newstripes, lru) {
1458                 spin_lock_irq(&conf->device_lock);
1459                 wait_event_lock_irq(conf->wait_for_stripe,
1460                                     !list_empty(&conf->inactive_list),
1461                                     conf->device_lock,
1462                                     );
1463                 osh = get_free_stripe(conf);
1464                 spin_unlock_irq(&conf->device_lock);
1465                 atomic_set(&nsh->count, 1);
1466                 for(i=0; i<conf->pool_size; i++)
1467                         nsh->dev[i].page = osh->dev[i].page;
1468                 for( ; i<newsize; i++)
1469                         nsh->dev[i].page = NULL;
1470                 kmem_cache_free(conf->slab_cache, osh);
1471         }
1472         kmem_cache_destroy(conf->slab_cache);
1473
1474         /* Step 3.
1475          * At this point, we are holding all the stripes so the array
1476          * is completely stalled, so now is a good time to resize
1477          * conf->disks and the scribble region
1478          */
1479         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1480         if (ndisks) {
1481                 for (i=0; i<conf->raid_disks; i++)
1482                         ndisks[i] = conf->disks[i];
1483                 kfree(conf->disks);
1484                 conf->disks = ndisks;
1485         } else
1486                 err = -ENOMEM;
1487
1488         get_online_cpus();
1489         conf->scribble_len = scribble_len(newsize);
1490         for_each_present_cpu(cpu) {
1491                 struct raid5_percpu *percpu;
1492                 void *scribble;
1493
1494                 percpu = per_cpu_ptr(conf->percpu, cpu);
1495                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1496
1497                 if (scribble) {
1498                         kfree(percpu->scribble);
1499                         percpu->scribble = scribble;
1500                 } else {
1501                         err = -ENOMEM;
1502                         break;
1503                 }
1504         }
1505         put_online_cpus();
1506
1507         /* Step 4, return new stripes to service */
1508         while(!list_empty(&newstripes)) {
1509                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510                 list_del_init(&nsh->lru);
1511
1512                 for (i=conf->raid_disks; i < newsize; i++)
1513                         if (nsh->dev[i].page == NULL) {
1514                                 struct page *p = alloc_page(GFP_NOIO);
1515                                 nsh->dev[i].page = p;
1516                                 if (!p)
1517                                         err = -ENOMEM;
1518                         }
1519                 release_stripe(nsh);
1520         }
1521         /* critical section pass, GFP_NOIO no longer needed */
1522
1523         conf->slab_cache = sc;
1524         conf->active_name = 1-conf->active_name;
1525         conf->pool_size = newsize;
1526         return err;
1527 }
1528
1529 static int drop_one_stripe(raid5_conf_t *conf)
1530 {
1531         struct stripe_head *sh;
1532
1533         spin_lock_irq(&conf->device_lock);
1534         sh = get_free_stripe(conf);
1535         spin_unlock_irq(&conf->device_lock);
1536         if (!sh)
1537                 return 0;
1538         BUG_ON(atomic_read(&sh->count));
1539         shrink_buffers(sh);
1540         kmem_cache_free(conf->slab_cache, sh);
1541         atomic_dec(&conf->active_stripes);
1542         return 1;
1543 }
1544
1545 static void shrink_stripes(raid5_conf_t *conf)
1546 {
1547         while (drop_one_stripe(conf))
1548                 ;
1549
1550         if (conf->slab_cache)
1551                 kmem_cache_destroy(conf->slab_cache);
1552         conf->slab_cache = NULL;
1553 }
1554
1555 static void raid5_end_read_request(struct bio * bi, int error)
1556 {
1557         struct stripe_head *sh = bi->bi_private;
1558         raid5_conf_t *conf = sh->raid_conf;
1559         int disks = sh->disks, i;
1560         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561         char b[BDEVNAME_SIZE];
1562         mdk_rdev_t *rdev;
1563
1564
1565         for (i=0 ; i<disks; i++)
1566                 if (bi == &sh->dev[i].req)
1567                         break;
1568
1569         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1571                 uptodate);
1572         if (i == disks) {
1573                 BUG();
1574                 return;
1575         }
1576
1577         if (uptodate) {
1578                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580                         rdev = conf->disks[i].rdev;
1581                         printk_ratelimited(
1582                                 KERN_INFO
1583                                 "md/raid:%s: read error corrected"
1584                                 " (%lu sectors at %llu on %s)\n",
1585                                 mdname(conf->mddev), STRIPE_SECTORS,
1586                                 (unsigned long long)(sh->sector
1587                                                      + rdev->data_offset),
1588                                 bdevname(rdev->bdev, b));
1589                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1590                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1591                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1592                 }
1593                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1594                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1595         } else {
1596                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597                 int retry = 0;
1598                 rdev = conf->disks[i].rdev;
1599
1600                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601                 atomic_inc(&rdev->read_errors);
1602                 if (conf->mddev->degraded >= conf->max_degraded)
1603                         printk_ratelimited(
1604                                 KERN_WARNING
1605                                 "md/raid:%s: read error not correctable "
1606                                 "(sector %llu on %s).\n",
1607                                 mdname(conf->mddev),
1608                                 (unsigned long long)(sh->sector
1609                                                      + rdev->data_offset),
1610                                 bdn);
1611                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1612                         /* Oh, no!!! */
1613                         printk_ratelimited(
1614                                 KERN_WARNING
1615                                 "md/raid:%s: read error NOT corrected!! "
1616                                 "(sector %llu on %s).\n",
1617                                 mdname(conf->mddev),
1618                                 (unsigned long long)(sh->sector
1619                                                      + rdev->data_offset),
1620                                 bdn);
1621                 else if (atomic_read(&rdev->read_errors)
1622                          > conf->max_nr_stripes)
1623                         printk(KERN_WARNING
1624                                "md/raid:%s: Too many read errors, failing device %s.\n",
1625                                mdname(conf->mddev), bdn);
1626                 else
1627                         retry = 1;
1628                 if (retry)
1629                         set_bit(R5_ReadError, &sh->dev[i].flags);
1630                 else {
1631                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1632                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633                         md_error(conf->mddev, rdev);
1634                 }
1635         }
1636         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638         set_bit(STRIPE_HANDLE, &sh->state);
1639         release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644         struct stripe_head *sh = bi->bi_private;
1645         raid5_conf_t *conf = sh->raid_conf;
1646         int disks = sh->disks, i;
1647         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649         for (i=0 ; i<disks; i++)
1650                 if (bi == &sh->dev[i].req)
1651                         break;
1652
1653         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655                 uptodate);
1656         if (i == disks) {
1657                 BUG();
1658                 return;
1659         }
1660
1661         if (!uptodate) {
1662                 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1663                 set_bit(R5_WriteError, &sh->dev[i].flags);
1664         }
1665
1666         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1667         
1668         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1669         set_bit(STRIPE_HANDLE, &sh->state);
1670         release_stripe(sh);
1671 }
1672
1673
1674 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1675         
1676 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1677 {
1678         struct r5dev *dev = &sh->dev[i];
1679
1680         bio_init(&dev->req);
1681         dev->req.bi_io_vec = &dev->vec;
1682         dev->req.bi_vcnt++;
1683         dev->req.bi_max_vecs++;
1684         dev->vec.bv_page = dev->page;
1685         dev->vec.bv_len = STRIPE_SIZE;
1686         dev->vec.bv_offset = 0;
1687
1688         dev->req.bi_sector = sh->sector;
1689         dev->req.bi_private = sh;
1690
1691         dev->flags = 0;
1692         dev->sector = compute_blocknr(sh, i, previous);
1693 }
1694
1695 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1696 {
1697         char b[BDEVNAME_SIZE];
1698         raid5_conf_t *conf = mddev->private;
1699         pr_debug("raid456: error called\n");
1700
1701         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1702                 unsigned long flags;
1703                 spin_lock_irqsave(&conf->device_lock, flags);
1704                 mddev->degraded++;
1705                 spin_unlock_irqrestore(&conf->device_lock, flags);
1706                 /*
1707                  * if recovery was running, make sure it aborts.
1708                  */
1709                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1710         }
1711         set_bit(Blocked, &rdev->flags);
1712         set_bit(Faulty, &rdev->flags);
1713         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1714         printk(KERN_ALERT
1715                "md/raid:%s: Disk failure on %s, disabling device.\n"
1716                "md/raid:%s: Operation continuing on %d devices.\n",
1717                mdname(mddev),
1718                bdevname(rdev->bdev, b),
1719                mdname(mddev),
1720                conf->raid_disks - mddev->degraded);
1721 }
1722
1723 /*
1724  * Input: a 'big' sector number,
1725  * Output: index of the data and parity disk, and the sector # in them.
1726  */
1727 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1728                                      int previous, int *dd_idx,
1729                                      struct stripe_head *sh)
1730 {
1731         sector_t stripe, stripe2;
1732         sector_t chunk_number;
1733         unsigned int chunk_offset;
1734         int pd_idx, qd_idx;
1735         int ddf_layout = 0;
1736         sector_t new_sector;
1737         int algorithm = previous ? conf->prev_algo
1738                                  : conf->algorithm;
1739         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1740                                          : conf->chunk_sectors;
1741         int raid_disks = previous ? conf->previous_raid_disks
1742                                   : conf->raid_disks;
1743         int data_disks = raid_disks - conf->max_degraded;
1744
1745         /* First compute the information on this sector */
1746
1747         /*
1748          * Compute the chunk number and the sector offset inside the chunk
1749          */
1750         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1751         chunk_number = r_sector;
1752
1753         /*
1754          * Compute the stripe number
1755          */
1756         stripe = chunk_number;
1757         *dd_idx = sector_div(stripe, data_disks);
1758         stripe2 = stripe;
1759         /*
1760          * Select the parity disk based on the user selected algorithm.
1761          */
1762         pd_idx = qd_idx = -1;
1763         switch(conf->level) {
1764         case 4:
1765                 pd_idx = data_disks;
1766                 break;
1767         case 5:
1768                 switch (algorithm) {
1769                 case ALGORITHM_LEFT_ASYMMETRIC:
1770                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1771                         if (*dd_idx >= pd_idx)
1772                                 (*dd_idx)++;
1773                         break;
1774                 case ALGORITHM_RIGHT_ASYMMETRIC:
1775                         pd_idx = sector_div(stripe2, raid_disks);
1776                         if (*dd_idx >= pd_idx)
1777                                 (*dd_idx)++;
1778                         break;
1779                 case ALGORITHM_LEFT_SYMMETRIC:
1780                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1781                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1782                         break;
1783                 case ALGORITHM_RIGHT_SYMMETRIC:
1784                         pd_idx = sector_div(stripe2, raid_disks);
1785                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1786                         break;
1787                 case ALGORITHM_PARITY_0:
1788                         pd_idx = 0;
1789                         (*dd_idx)++;
1790                         break;
1791                 case ALGORITHM_PARITY_N:
1792                         pd_idx = data_disks;
1793                         break;
1794                 default:
1795                         BUG();
1796                 }
1797                 break;
1798         case 6:
1799
1800                 switch (algorithm) {
1801                 case ALGORITHM_LEFT_ASYMMETRIC:
1802                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1803                         qd_idx = pd_idx + 1;
1804                         if (pd_idx == raid_disks-1) {
1805                                 (*dd_idx)++;    /* Q D D D P */
1806                                 qd_idx = 0;
1807                         } else if (*dd_idx >= pd_idx)
1808                                 (*dd_idx) += 2; /* D D P Q D */
1809                         break;
1810                 case ALGORITHM_RIGHT_ASYMMETRIC:
1811                         pd_idx = sector_div(stripe2, raid_disks);
1812                         qd_idx = pd_idx + 1;
1813                         if (pd_idx == raid_disks-1) {
1814                                 (*dd_idx)++;    /* Q D D D P */
1815                                 qd_idx = 0;
1816                         } else if (*dd_idx >= pd_idx)
1817                                 (*dd_idx) += 2; /* D D P Q D */
1818                         break;
1819                 case ALGORITHM_LEFT_SYMMETRIC:
1820                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1821                         qd_idx = (pd_idx + 1) % raid_disks;
1822                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1823                         break;
1824                 case ALGORITHM_RIGHT_SYMMETRIC:
1825                         pd_idx = sector_div(stripe2, raid_disks);
1826                         qd_idx = (pd_idx + 1) % raid_disks;
1827                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1828                         break;
1829
1830                 case ALGORITHM_PARITY_0:
1831                         pd_idx = 0;
1832                         qd_idx = 1;
1833                         (*dd_idx) += 2;
1834                         break;
1835                 case ALGORITHM_PARITY_N:
1836                         pd_idx = data_disks;
1837                         qd_idx = data_disks + 1;
1838                         break;
1839
1840                 case ALGORITHM_ROTATING_ZERO_RESTART:
1841                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1842                          * of blocks for computing Q is different.
1843                          */
1844                         pd_idx = sector_div(stripe2, raid_disks);
1845                         qd_idx = pd_idx + 1;
1846                         if (pd_idx == raid_disks-1) {
1847                                 (*dd_idx)++;    /* Q D D D P */
1848                                 qd_idx = 0;
1849                         } else if (*dd_idx >= pd_idx)
1850                                 (*dd_idx) += 2; /* D D P Q D */
1851                         ddf_layout = 1;
1852                         break;
1853
1854                 case ALGORITHM_ROTATING_N_RESTART:
1855                         /* Same a left_asymmetric, by first stripe is
1856                          * D D D P Q  rather than
1857                          * Q D D D P
1858                          */
1859                         stripe2 += 1;
1860                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1861                         qd_idx = pd_idx + 1;
1862                         if (pd_idx == raid_disks-1) {
1863                                 (*dd_idx)++;    /* Q D D D P */
1864                                 qd_idx = 0;
1865                         } else if (*dd_idx >= pd_idx)
1866                                 (*dd_idx) += 2; /* D D P Q D */
1867                         ddf_layout = 1;
1868                         break;
1869
1870                 case ALGORITHM_ROTATING_N_CONTINUE:
1871                         /* Same as left_symmetric but Q is before P */
1872                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1873                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1874                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1875                         ddf_layout = 1;
1876                         break;
1877
1878                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1879                         /* RAID5 left_asymmetric, with Q on last device */
1880                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1881                         if (*dd_idx >= pd_idx)
1882                                 (*dd_idx)++;
1883                         qd_idx = raid_disks - 1;
1884                         break;
1885
1886                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1887                         pd_idx = sector_div(stripe2, raid_disks-1);
1888                         if (*dd_idx >= pd_idx)
1889                                 (*dd_idx)++;
1890                         qd_idx = raid_disks - 1;
1891                         break;
1892
1893                 case ALGORITHM_LEFT_SYMMETRIC_6:
1894                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1895                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1896                         qd_idx = raid_disks - 1;
1897                         break;
1898
1899                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1900                         pd_idx = sector_div(stripe2, raid_disks-1);
1901                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1902                         qd_idx = raid_disks - 1;
1903                         break;
1904
1905                 case ALGORITHM_PARITY_0_6:
1906                         pd_idx = 0;
1907                         (*dd_idx)++;
1908                         qd_idx = raid_disks - 1;
1909                         break;
1910
1911                 default:
1912                         BUG();
1913                 }
1914                 break;
1915         }
1916
1917         if (sh) {
1918                 sh->pd_idx = pd_idx;
1919                 sh->qd_idx = qd_idx;
1920                 sh->ddf_layout = ddf_layout;
1921         }
1922         /*
1923          * Finally, compute the new sector number
1924          */
1925         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1926         return new_sector;
1927 }
1928
1929
1930 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1931 {
1932         raid5_conf_t *conf = sh->raid_conf;
1933         int raid_disks = sh->disks;
1934         int data_disks = raid_disks - conf->max_degraded;
1935         sector_t new_sector = sh->sector, check;
1936         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1937                                          : conf->chunk_sectors;
1938         int algorithm = previous ? conf->prev_algo
1939                                  : conf->algorithm;
1940         sector_t stripe;
1941         int chunk_offset;
1942         sector_t chunk_number;
1943         int dummy1, dd_idx = i;
1944         sector_t r_sector;
1945         struct stripe_head sh2;
1946
1947
1948         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1949         stripe = new_sector;
1950
1951         if (i == sh->pd_idx)
1952                 return 0;
1953         switch(conf->level) {
1954         case 4: break;
1955         case 5:
1956                 switch (algorithm) {
1957                 case ALGORITHM_LEFT_ASYMMETRIC:
1958                 case ALGORITHM_RIGHT_ASYMMETRIC:
1959                         if (i > sh->pd_idx)
1960                                 i--;
1961                         break;
1962                 case ALGORITHM_LEFT_SYMMETRIC:
1963                 case ALGORITHM_RIGHT_SYMMETRIC:
1964                         if (i < sh->pd_idx)
1965                                 i += raid_disks;
1966                         i -= (sh->pd_idx + 1);
1967                         break;
1968                 case ALGORITHM_PARITY_0:
1969                         i -= 1;
1970                         break;
1971                 case ALGORITHM_PARITY_N:
1972                         break;
1973                 default:
1974                         BUG();
1975                 }
1976                 break;
1977         case 6:
1978                 if (i == sh->qd_idx)
1979                         return 0; /* It is the Q disk */
1980                 switch (algorithm) {
1981                 case ALGORITHM_LEFT_ASYMMETRIC:
1982                 case ALGORITHM_RIGHT_ASYMMETRIC:
1983                 case ALGORITHM_ROTATING_ZERO_RESTART:
1984                 case ALGORITHM_ROTATING_N_RESTART:
1985                         if (sh->pd_idx == raid_disks-1)
1986                                 i--;    /* Q D D D P */
1987                         else if (i > sh->pd_idx)
1988                                 i -= 2; /* D D P Q D */
1989                         break;
1990                 case ALGORITHM_LEFT_SYMMETRIC:
1991                 case ALGORITHM_RIGHT_SYMMETRIC:
1992                         if (sh->pd_idx == raid_disks-1)
1993                                 i--; /* Q D D D P */
1994                         else {
1995                                 /* D D P Q D */
1996                                 if (i < sh->pd_idx)
1997                                         i += raid_disks;
1998                                 i -= (sh->pd_idx + 2);
1999                         }
2000                         break;
2001                 case ALGORITHM_PARITY_0:
2002                         i -= 2;
2003                         break;
2004                 case ALGORITHM_PARITY_N:
2005                         break;
2006                 case ALGORITHM_ROTATING_N_CONTINUE:
2007                         /* Like left_symmetric, but P is before Q */
2008                         if (sh->pd_idx == 0)
2009                                 i--;    /* P D D D Q */
2010                         else {
2011                                 /* D D Q P D */
2012                                 if (i < sh->pd_idx)
2013                                         i += raid_disks;
2014                                 i -= (sh->pd_idx + 1);
2015                         }
2016                         break;
2017                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2018                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2019                         if (i > sh->pd_idx)
2020                                 i--;
2021                         break;
2022                 case ALGORITHM_LEFT_SYMMETRIC_6:
2023                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2024                         if (i < sh->pd_idx)
2025                                 i += data_disks + 1;
2026                         i -= (sh->pd_idx + 1);
2027                         break;
2028                 case ALGORITHM_PARITY_0_6:
2029                         i -= 1;
2030                         break;
2031                 default:
2032                         BUG();
2033                 }
2034                 break;
2035         }
2036
2037         chunk_number = stripe * data_disks + i;
2038         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2039
2040         check = raid5_compute_sector(conf, r_sector,
2041                                      previous, &dummy1, &sh2);
2042         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2043                 || sh2.qd_idx != sh->qd_idx) {
2044                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2045                        mdname(conf->mddev));
2046                 return 0;
2047         }
2048         return r_sector;
2049 }
2050
2051
2052 static void
2053 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2054                          int rcw, int expand)
2055 {
2056         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2057         raid5_conf_t *conf = sh->raid_conf;
2058         int level = conf->level;
2059
2060         if (rcw) {
2061                 /* if we are not expanding this is a proper write request, and
2062                  * there will be bios with new data to be drained into the
2063                  * stripe cache
2064                  */
2065                 if (!expand) {
2066                         sh->reconstruct_state = reconstruct_state_drain_run;
2067                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2068                 } else
2069                         sh->reconstruct_state = reconstruct_state_run;
2070
2071                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2072
2073                 for (i = disks; i--; ) {
2074                         struct r5dev *dev = &sh->dev[i];
2075
2076                         if (dev->towrite) {
2077                                 set_bit(R5_LOCKED, &dev->flags);
2078                                 set_bit(R5_Wantdrain, &dev->flags);
2079                                 if (!expand)
2080                                         clear_bit(R5_UPTODATE, &dev->flags);
2081                                 s->locked++;
2082                         }
2083                 }
2084                 if (s->locked + conf->max_degraded == disks)
2085                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2086                                 atomic_inc(&conf->pending_full_writes);
2087         } else {
2088                 BUG_ON(level == 6);
2089                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2090                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2091
2092                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2093                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2094                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2095                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2096
2097                 for (i = disks; i--; ) {
2098                         struct r5dev *dev = &sh->dev[i];
2099                         if (i == pd_idx)
2100                                 continue;
2101
2102                         if (dev->towrite &&
2103                             (test_bit(R5_UPTODATE, &dev->flags) ||
2104                              test_bit(R5_Wantcompute, &dev->flags))) {
2105                                 set_bit(R5_Wantdrain, &dev->flags);
2106                                 set_bit(R5_LOCKED, &dev->flags);
2107                                 clear_bit(R5_UPTODATE, &dev->flags);
2108                                 s->locked++;
2109                         }
2110                 }
2111         }
2112
2113         /* keep the parity disk(s) locked while asynchronous operations
2114          * are in flight
2115          */
2116         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2117         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2118         s->locked++;
2119
2120         if (level == 6) {
2121                 int qd_idx = sh->qd_idx;
2122                 struct r5dev *dev = &sh->dev[qd_idx];
2123
2124                 set_bit(R5_LOCKED, &dev->flags);
2125                 clear_bit(R5_UPTODATE, &dev->flags);
2126                 s->locked++;
2127         }
2128
2129         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2130                 __func__, (unsigned long long)sh->sector,
2131                 s->locked, s->ops_request);
2132 }
2133
2134 /*
2135  * Each stripe/dev can have one or more bion attached.
2136  * toread/towrite point to the first in a chain.
2137  * The bi_next chain must be in order.
2138  */
2139 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2140 {
2141         struct bio **bip;
2142         raid5_conf_t *conf = sh->raid_conf;
2143         int firstwrite=0;
2144
2145         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2146                 (unsigned long long)bi->bi_sector,
2147                 (unsigned long long)sh->sector);
2148
2149
2150         spin_lock_irq(&conf->device_lock);
2151         if (forwrite) {
2152                 bip = &sh->dev[dd_idx].towrite;
2153                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2154                         firstwrite = 1;
2155         } else
2156                 bip = &sh->dev[dd_idx].toread;
2157         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2158                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2159                         goto overlap;
2160                 bip = & (*bip)->bi_next;
2161         }
2162         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2163                 goto overlap;
2164
2165         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2166         if (*bip)
2167                 bi->bi_next = *bip;
2168         *bip = bi;
2169         bi->bi_phys_segments++;
2170
2171         if (forwrite) {
2172                 /* check if page is covered */
2173                 sector_t sector = sh->dev[dd_idx].sector;
2174                 for (bi=sh->dev[dd_idx].towrite;
2175                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2176                              bi && bi->bi_sector <= sector;
2177                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2178                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2179                                 sector = bi->bi_sector + (bi->bi_size>>9);
2180                 }
2181                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2182                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2183         }
2184         spin_unlock_irq(&conf->device_lock);
2185
2186         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2187                 (unsigned long long)(*bip)->bi_sector,
2188                 (unsigned long long)sh->sector, dd_idx);
2189
2190         if (conf->mddev->bitmap && firstwrite) {
2191                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2192                                   STRIPE_SECTORS, 0);
2193                 sh->bm_seq = conf->seq_flush+1;
2194                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2195         }
2196         return 1;
2197
2198  overlap:
2199         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2200         spin_unlock_irq(&conf->device_lock);
2201         return 0;
2202 }
2203
2204 static void end_reshape(raid5_conf_t *conf);
2205
2206 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2207                             struct stripe_head *sh)
2208 {
2209         int sectors_per_chunk =
2210                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2211         int dd_idx;
2212         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2213         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2214
2215         raid5_compute_sector(conf,
2216                              stripe * (disks - conf->max_degraded)
2217                              *sectors_per_chunk + chunk_offset,
2218                              previous,
2219                              &dd_idx, sh);
2220 }
2221
2222 static void
2223 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2224                                 struct stripe_head_state *s, int disks,
2225                                 struct bio **return_bi)
2226 {
2227         int i;
2228         for (i = disks; i--; ) {
2229                 struct bio *bi;
2230                 int bitmap_end = 0;
2231
2232                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2233                         mdk_rdev_t *rdev;
2234                         rcu_read_lock();
2235                         rdev = rcu_dereference(conf->disks[i].rdev);
2236                         if (rdev && test_bit(In_sync, &rdev->flags))
2237                                 atomic_inc(&rdev->nr_pending);
2238                         else
2239                                 rdev = NULL;
2240                         rcu_read_unlock();
2241                         if (rdev) {
2242                                 if (!rdev_set_badblocks(
2243                                             rdev,
2244                                             sh->sector,
2245                                             STRIPE_SECTORS, 0))
2246                                         md_error(conf->mddev, rdev);
2247                                 rdev_dec_pending(rdev, conf->mddev);
2248                         }
2249                 }
2250                 spin_lock_irq(&conf->device_lock);
2251                 /* fail all writes first */
2252                 bi = sh->dev[i].towrite;
2253                 sh->dev[i].towrite = NULL;
2254                 if (bi) {
2255                         s->to_write--;
2256                         bitmap_end = 1;
2257                 }
2258
2259                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2260                         wake_up(&conf->wait_for_overlap);
2261
2262                 while (bi && bi->bi_sector <
2263                         sh->dev[i].sector + STRIPE_SECTORS) {
2264                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2265                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2266                         if (!raid5_dec_bi_phys_segments(bi)) {
2267                                 md_write_end(conf->mddev);
2268                                 bi->bi_next = *return_bi;
2269                                 *return_bi = bi;
2270                         }
2271                         bi = nextbi;
2272                 }
2273                 /* and fail all 'written' */
2274                 bi = sh->dev[i].written;
2275                 sh->dev[i].written = NULL;
2276                 if (bi) bitmap_end = 1;
2277                 while (bi && bi->bi_sector <
2278                        sh->dev[i].sector + STRIPE_SECTORS) {
2279                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2280                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2281                         if (!raid5_dec_bi_phys_segments(bi)) {
2282                                 md_write_end(conf->mddev);
2283                                 bi->bi_next = *return_bi;
2284                                 *return_bi = bi;
2285                         }
2286                         bi = bi2;
2287                 }
2288
2289                 /* fail any reads if this device is non-operational and
2290                  * the data has not reached the cache yet.
2291                  */
2292                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2293                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2294                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2295                         bi = sh->dev[i].toread;
2296                         sh->dev[i].toread = NULL;
2297                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2298                                 wake_up(&conf->wait_for_overlap);
2299                         if (bi) s->to_read--;
2300                         while (bi && bi->bi_sector <
2301                                sh->dev[i].sector + STRIPE_SECTORS) {
2302                                 struct bio *nextbi =
2303                                         r5_next_bio(bi, sh->dev[i].sector);
2304                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2305                                 if (!raid5_dec_bi_phys_segments(bi)) {
2306                                         bi->bi_next = *return_bi;
2307                                         *return_bi = bi;
2308                                 }
2309                                 bi = nextbi;
2310                         }
2311                 }
2312                 spin_unlock_irq(&conf->device_lock);
2313                 if (bitmap_end)
2314                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2315                                         STRIPE_SECTORS, 0, 0);
2316                 /* If we were in the middle of a write the parity block might
2317                  * still be locked - so just clear all R5_LOCKED flags
2318                  */
2319                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2320         }
2321
2322         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2323                 if (atomic_dec_and_test(&conf->pending_full_writes))
2324                         md_wakeup_thread(conf->mddev->thread);
2325 }
2326
2327 static void
2328 handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2329                    struct stripe_head_state *s)
2330 {
2331         int abort = 0;
2332         int i;
2333
2334         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2335         clear_bit(STRIPE_SYNCING, &sh->state);
2336         s->syncing = 0;
2337         /* There is nothing more to do for sync/check/repair.
2338          * For recover we need to record a bad block on all
2339          * non-sync devices, or abort the recovery
2340          */
2341         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2342                 return;
2343         /* During recovery devices cannot be removed, so locking and
2344          * refcounting of rdevs is not needed
2345          */
2346         for (i = 0; i < conf->raid_disks; i++) {
2347                 mdk_rdev_t *rdev = conf->disks[i].rdev;
2348                 if (!rdev
2349                     || test_bit(Faulty, &rdev->flags)
2350                     || test_bit(In_sync, &rdev->flags))
2351                         continue;
2352                 if (!rdev_set_badblocks(rdev, sh->sector,
2353                                         STRIPE_SECTORS, 0))
2354                         abort = 1;
2355         }
2356         if (abort) {
2357                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2358                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2359         }
2360 }
2361
2362 /* fetch_block - checks the given member device to see if its data needs
2363  * to be read or computed to satisfy a request.
2364  *
2365  * Returns 1 when no more member devices need to be checked, otherwise returns
2366  * 0 to tell the loop in handle_stripe_fill to continue
2367  */
2368 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2369                        int disk_idx, int disks)
2370 {
2371         struct r5dev *dev = &sh->dev[disk_idx];
2372         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2373                                   &sh->dev[s->failed_num[1]] };
2374
2375         /* is the data in this block needed, and can we get it? */
2376         if (!test_bit(R5_LOCKED, &dev->flags) &&
2377             !test_bit(R5_UPTODATE, &dev->flags) &&
2378             (dev->toread ||
2379              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2380              s->syncing || s->expanding ||
2381              (s->failed >= 1 && fdev[0]->toread) ||
2382              (s->failed >= 2 && fdev[1]->toread) ||
2383              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2384               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2385              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2386                 /* we would like to get this block, possibly by computing it,
2387                  * otherwise read it if the backing disk is insync
2388                  */
2389                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2390                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2391                 if ((s->uptodate == disks - 1) &&
2392                     (s->failed && (disk_idx == s->failed_num[0] ||
2393                                    disk_idx == s->failed_num[1]))) {
2394                         /* have disk failed, and we're requested to fetch it;
2395                          * do compute it
2396                          */
2397                         pr_debug("Computing stripe %llu block %d\n",
2398                                (unsigned long long)sh->sector, disk_idx);
2399                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2400                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2401                         set_bit(R5_Wantcompute, &dev->flags);
2402                         sh->ops.target = disk_idx;
2403                         sh->ops.target2 = -1; /* no 2nd target */
2404                         s->req_compute = 1;
2405                         /* Careful: from this point on 'uptodate' is in the eye
2406                          * of raid_run_ops which services 'compute' operations
2407                          * before writes. R5_Wantcompute flags a block that will
2408                          * be R5_UPTODATE by the time it is needed for a
2409                          * subsequent operation.
2410                          */
2411                         s->uptodate++;
2412                         return 1;
2413                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2414                         /* Computing 2-failure is *very* expensive; only
2415                          * do it if failed >= 2
2416                          */
2417                         int other;
2418                         for (other = disks; other--; ) {
2419                                 if (other == disk_idx)
2420                                         continue;
2421                                 if (!test_bit(R5_UPTODATE,
2422                                       &sh->dev[other].flags))
2423                                         break;
2424                         }
2425                         BUG_ON(other < 0);
2426                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2427                                (unsigned long long)sh->sector,
2428                                disk_idx, other);
2429                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2430                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2431                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2432                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2433                         sh->ops.target = disk_idx;
2434                         sh->ops.target2 = other;
2435                         s->uptodate += 2;
2436                         s->req_compute = 1;
2437                         return 1;
2438                 } else if (test_bit(R5_Insync, &dev->flags)) {
2439                         set_bit(R5_LOCKED, &dev->flags);
2440                         set_bit(R5_Wantread, &dev->flags);
2441                         s->locked++;
2442                         pr_debug("Reading block %d (sync=%d)\n",
2443                                 disk_idx, s->syncing);
2444                 }
2445         }
2446
2447         return 0;
2448 }
2449
2450 /**
2451  * handle_stripe_fill - read or compute data to satisfy pending requests.
2452  */
2453 static void handle_stripe_fill(struct stripe_head *sh,
2454                                struct stripe_head_state *s,
2455                                int disks)
2456 {
2457         int i;
2458
2459         /* look for blocks to read/compute, skip this if a compute
2460          * is already in flight, or if the stripe contents are in the
2461          * midst of changing due to a write
2462          */
2463         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2464             !sh->reconstruct_state)
2465                 for (i = disks; i--; )
2466                         if (fetch_block(sh, s, i, disks))
2467                                 break;
2468         set_bit(STRIPE_HANDLE, &sh->state);
2469 }
2470
2471
2472 /* handle_stripe_clean_event
2473  * any written block on an uptodate or failed drive can be returned.
2474  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2475  * never LOCKED, so we don't need to test 'failed' directly.
2476  */
2477 static void handle_stripe_clean_event(raid5_conf_t *conf,
2478         struct stripe_head *sh, int disks, struct bio **return_bi)
2479 {
2480         int i;
2481         struct r5dev *dev;
2482
2483         for (i = disks; i--; )
2484                 if (sh->dev[i].written) {
2485                         dev = &sh->dev[i];
2486                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2487                                 test_bit(R5_UPTODATE, &dev->flags)) {
2488                                 /* We can return any write requests */
2489                                 struct bio *wbi, *wbi2;
2490                                 int bitmap_end = 0;
2491                                 pr_debug("Return write for disc %d\n", i);
2492                                 spin_lock_irq(&conf->device_lock);
2493                                 wbi = dev->written;
2494                                 dev->written = NULL;
2495                                 while (wbi && wbi->bi_sector <
2496                                         dev->sector + STRIPE_SECTORS) {
2497                                         wbi2 = r5_next_bio(wbi, dev->sector);
2498                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2499                                                 md_write_end(conf->mddev);
2500                                                 wbi->bi_next = *return_bi;
2501                                                 *return_bi = wbi;
2502                                         }
2503                                         wbi = wbi2;
2504                                 }
2505                                 if (dev->towrite == NULL)
2506                                         bitmap_end = 1;
2507                                 spin_unlock_irq(&conf->device_lock);
2508                                 if (bitmap_end)
2509                                         bitmap_endwrite(conf->mddev->bitmap,
2510                                                         sh->sector,
2511                                                         STRIPE_SECTORS,
2512                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2513                                                         0);
2514                         }
2515                 }
2516
2517         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2518                 if (atomic_dec_and_test(&conf->pending_full_writes))
2519                         md_wakeup_thread(conf->mddev->thread);
2520 }
2521
2522 static void handle_stripe_dirtying(raid5_conf_t *conf,
2523                                    struct stripe_head *sh,
2524                                    struct stripe_head_state *s,
2525                                    int disks)
2526 {
2527         int rmw = 0, rcw = 0, i;
2528         if (conf->max_degraded == 2) {
2529                 /* RAID6 requires 'rcw' in current implementation
2530                  * Calculate the real rcw later - for now fake it
2531                  * look like rcw is cheaper
2532                  */
2533                 rcw = 1; rmw = 2;
2534         } else for (i = disks; i--; ) {
2535                 /* would I have to read this buffer for read_modify_write */
2536                 struct r5dev *dev = &sh->dev[i];
2537                 if ((dev->towrite || i == sh->pd_idx) &&
2538                     !test_bit(R5_LOCKED, &dev->flags) &&
2539                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2540                       test_bit(R5_Wantcompute, &dev->flags))) {
2541                         if (test_bit(R5_Insync, &dev->flags))
2542                                 rmw++;
2543                         else
2544                                 rmw += 2*disks;  /* cannot read it */
2545                 }
2546                 /* Would I have to read this buffer for reconstruct_write */
2547                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2548                     !test_bit(R5_LOCKED, &dev->flags) &&
2549                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2550                     test_bit(R5_Wantcompute, &dev->flags))) {
2551                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2552                         else
2553                                 rcw += 2*disks;
2554                 }
2555         }
2556         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2557                 (unsigned long long)sh->sector, rmw, rcw);
2558         set_bit(STRIPE_HANDLE, &sh->state);
2559         if (rmw < rcw && rmw > 0)
2560                 /* prefer read-modify-write, but need to get some data */
2561                 for (i = disks; i--; ) {
2562                         struct r5dev *dev = &sh->dev[i];
2563                         if ((dev->towrite || i == sh->pd_idx) &&
2564                             !test_bit(R5_LOCKED, &dev->flags) &&
2565                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2566                             test_bit(R5_Wantcompute, &dev->flags)) &&
2567                             test_bit(R5_Insync, &dev->flags)) {
2568                                 if (
2569                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2570                                         pr_debug("Read_old block "
2571                                                 "%d for r-m-w\n", i);
2572                                         set_bit(R5_LOCKED, &dev->flags);
2573                                         set_bit(R5_Wantread, &dev->flags);
2574                                         s->locked++;
2575                                 } else {
2576                                         set_bit(STRIPE_DELAYED, &sh->state);
2577                                         set_bit(STRIPE_HANDLE, &sh->state);
2578                                 }
2579                         }
2580                 }
2581         if (rcw <= rmw && rcw > 0) {
2582                 /* want reconstruct write, but need to get some data */
2583                 rcw = 0;
2584                 for (i = disks; i--; ) {
2585                         struct r5dev *dev = &sh->dev[i];
2586                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2587                             i != sh->pd_idx && i != sh->qd_idx &&
2588                             !test_bit(R5_LOCKED, &dev->flags) &&
2589                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2590                               test_bit(R5_Wantcompute, &dev->flags))) {
2591                                 rcw++;
2592                                 if (!test_bit(R5_Insync, &dev->flags))
2593                                         continue; /* it's a failed drive */
2594                                 if (
2595                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2596                                         pr_debug("Read_old block "
2597                                                 "%d for Reconstruct\n", i);
2598                                         set_bit(R5_LOCKED, &dev->flags);
2599                                         set_bit(R5_Wantread, &dev->flags);
2600                                         s->locked++;
2601                                 } else {
2602                                         set_bit(STRIPE_DELAYED, &sh->state);
2603                                         set_bit(STRIPE_HANDLE, &sh->state);
2604                                 }
2605                         }
2606                 }
2607         }
2608         /* now if nothing is locked, and if we have enough data,
2609          * we can start a write request
2610          */
2611         /* since handle_stripe can be called at any time we need to handle the
2612          * case where a compute block operation has been submitted and then a
2613          * subsequent call wants to start a write request.  raid_run_ops only
2614          * handles the case where compute block and reconstruct are requested
2615          * simultaneously.  If this is not the case then new writes need to be
2616          * held off until the compute completes.
2617          */
2618         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2619             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2620             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2621                 schedule_reconstruction(sh, s, rcw == 0, 0);
2622 }
2623
2624 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2625                                 struct stripe_head_state *s, int disks)
2626 {
2627         struct r5dev *dev = NULL;
2628
2629         set_bit(STRIPE_HANDLE, &sh->state);
2630
2631         switch (sh->check_state) {
2632         case check_state_idle:
2633                 /* start a new check operation if there are no failures */
2634                 if (s->failed == 0) {
2635                         BUG_ON(s->uptodate != disks);
2636                         sh->check_state = check_state_run;
2637                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2638                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2639                         s->uptodate--;
2640                         break;
2641                 }
2642                 dev = &sh->dev[s->failed_num[0]];
2643                 /* fall through */
2644         case check_state_compute_result:
2645                 sh->check_state = check_state_idle;
2646                 if (!dev)
2647                         dev = &sh->dev[sh->pd_idx];
2648
2649                 /* check that a write has not made the stripe insync */
2650                 if (test_bit(STRIPE_INSYNC, &sh->state))
2651                         break;
2652
2653                 /* either failed parity check, or recovery is happening */
2654                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2655                 BUG_ON(s->uptodate != disks);
2656
2657                 set_bit(R5_LOCKED, &dev->flags);
2658                 s->locked++;
2659                 set_bit(R5_Wantwrite, &dev->flags);
2660
2661                 clear_bit(STRIPE_DEGRADED, &sh->state);
2662                 set_bit(STRIPE_INSYNC, &sh->state);
2663                 break;
2664         case check_state_run:
2665                 break; /* we will be called again upon completion */
2666         case check_state_check_result:
2667                 sh->check_state = check_state_idle;
2668
2669                 /* if a failure occurred during the check operation, leave
2670                  * STRIPE_INSYNC not set and let the stripe be handled again
2671                  */
2672                 if (s->failed)
2673                         break;
2674
2675                 /* handle a successful check operation, if parity is correct
2676                  * we are done.  Otherwise update the mismatch count and repair
2677                  * parity if !MD_RECOVERY_CHECK
2678                  */
2679                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2680                         /* parity is correct (on disc,
2681                          * not in buffer any more)
2682                          */
2683                         set_bit(STRIPE_INSYNC, &sh->state);
2684                 else {
2685                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2686                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2687                                 /* don't try to repair!! */
2688                                 set_bit(STRIPE_INSYNC, &sh->state);
2689                         else {
2690                                 sh->check_state = check_state_compute_run;
2691                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2692                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2693                                 set_bit(R5_Wantcompute,
2694                                         &sh->dev[sh->pd_idx].flags);
2695                                 sh->ops.target = sh->pd_idx;
2696                                 sh->ops.target2 = -1;
2697                                 s->uptodate++;
2698                         }
2699                 }
2700                 break;
2701         case check_state_compute_run:
2702                 break;
2703         default:
2704                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2705                        __func__, sh->check_state,
2706                        (unsigned long long) sh->sector);
2707                 BUG();
2708         }
2709 }
2710
2711
2712 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2713                                   struct stripe_head_state *s,
2714                                   int disks)
2715 {
2716         int pd_idx = sh->pd_idx;
2717         int qd_idx = sh->qd_idx;
2718         struct r5dev *dev;
2719
2720         set_bit(STRIPE_HANDLE, &sh->state);
2721
2722         BUG_ON(s->failed > 2);
2723
2724         /* Want to check and possibly repair P and Q.
2725          * However there could be one 'failed' device, in which
2726          * case we can only check one of them, possibly using the
2727          * other to generate missing data
2728          */
2729
2730         switch (sh->check_state) {
2731         case check_state_idle:
2732                 /* start a new check operation if there are < 2 failures */
2733                 if (s->failed == s->q_failed) {
2734                         /* The only possible failed device holds Q, so it
2735                          * makes sense to check P (If anything else were failed,
2736                          * we would have used P to recreate it).
2737                          */
2738                         sh->check_state = check_state_run;
2739                 }
2740                 if (!s->q_failed && s->failed < 2) {
2741                         /* Q is not failed, and we didn't use it to generate
2742                          * anything, so it makes sense to check it
2743                          */
2744                         if (sh->check_state == check_state_run)
2745                                 sh->check_state = check_state_run_pq;
2746                         else
2747                                 sh->check_state = check_state_run_q;
2748                 }
2749
2750                 /* discard potentially stale zero_sum_result */
2751                 sh->ops.zero_sum_result = 0;
2752
2753                 if (sh->check_state == check_state_run) {
2754                         /* async_xor_zero_sum destroys the contents of P */
2755                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2756                         s->uptodate--;
2757                 }
2758                 if (sh->check_state >= check_state_run &&
2759                     sh->check_state <= check_state_run_pq) {
2760                         /* async_syndrome_zero_sum preserves P and Q, so
2761                          * no need to mark them !uptodate here
2762                          */
2763                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2764                         break;
2765                 }
2766
2767                 /* we have 2-disk failure */
2768                 BUG_ON(s->failed != 2);
2769                 /* fall through */
2770         case check_state_compute_result:
2771                 sh->check_state = check_state_idle;
2772
2773                 /* check that a write has not made the stripe insync */
2774                 if (test_bit(STRIPE_INSYNC, &sh->state))
2775                         break;
2776
2777                 /* now write out any block on a failed drive,
2778                  * or P or Q if they were recomputed
2779                  */
2780                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2781                 if (s->failed == 2) {
2782                         dev = &sh->dev[s->failed_num[1]];
2783                         s->locked++;
2784                         set_bit(R5_LOCKED, &dev->flags);
2785                         set_bit(R5_Wantwrite, &dev->flags);
2786                 }
2787                 if (s->failed >= 1) {
2788                         dev = &sh->dev[s->failed_num[0]];
2789                         s->locked++;
2790                         set_bit(R5_LOCKED, &dev->flags);
2791                         set_bit(R5_Wantwrite, &dev->flags);
2792                 }
2793                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2794                         dev = &sh->dev[pd_idx];
2795                         s->locked++;
2796                         set_bit(R5_LOCKED, &dev->flags);
2797                         set_bit(R5_Wantwrite, &dev->flags);
2798                 }
2799                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2800                         dev = &sh->dev[qd_idx];
2801                         s->locked++;
2802                         set_bit(R5_LOCKED, &dev->flags);
2803                         set_bit(R5_Wantwrite, &dev->flags);
2804                 }
2805                 clear_bit(STRIPE_DEGRADED, &sh->state);
2806
2807                 set_bit(STRIPE_INSYNC, &sh->state);
2808                 break;
2809         case check_state_run:
2810         case check_state_run_q:
2811         case check_state_run_pq:
2812                 break; /* we will be called again upon completion */
2813         case check_state_check_result:
2814                 sh->check_state = check_state_idle;
2815
2816                 /* handle a successful check operation, if parity is correct
2817                  * we are done.  Otherwise update the mismatch count and repair
2818                  * parity if !MD_RECOVERY_CHECK
2819                  */
2820                 if (sh->ops.zero_sum_result == 0) {
2821                         /* both parities are correct */
2822                         if (!s->failed)
2823                                 set_bit(STRIPE_INSYNC, &sh->state);
2824                         else {
2825                                 /* in contrast to the raid5 case we can validate
2826                                  * parity, but still have a failure to write
2827                                  * back
2828                                  */
2829                                 sh->check_state = check_state_compute_result;
2830                                 /* Returning at this point means that we may go
2831                                  * off and bring p and/or q uptodate again so
2832                                  * we make sure to check zero_sum_result again
2833                                  * to verify if p or q need writeback
2834                                  */
2835                         }
2836                 } else {
2837                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2838                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2839                                 /* don't try to repair!! */
2840                                 set_bit(STRIPE_INSYNC, &sh->state);
2841                         else {
2842                                 int *target = &sh->ops.target;
2843
2844                                 sh->ops.target = -1;
2845                                 sh->ops.target2 = -1;
2846                                 sh->check_state = check_state_compute_run;
2847                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2848                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2849                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2850                                         set_bit(R5_Wantcompute,
2851                                                 &sh->dev[pd_idx].flags);
2852                                         *target = pd_idx;
2853                                         target = &sh->ops.target2;
2854                                         s->uptodate++;
2855                                 }
2856                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2857                                         set_bit(R5_Wantcompute,
2858                                                 &sh->dev[qd_idx].flags);
2859                                         *target = qd_idx;
2860                                         s->uptodate++;
2861                                 }
2862                         }
2863                 }
2864                 break;
2865         case check_state_compute_run:
2866                 break;
2867         default:
2868                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2869                        __func__, sh->check_state,
2870                        (unsigned long long) sh->sector);
2871                 BUG();
2872         }
2873 }
2874
2875 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2876 {
2877         int i;
2878
2879         /* We have read all the blocks in this stripe and now we need to
2880          * copy some of them into a target stripe for expand.
2881          */
2882         struct dma_async_tx_descriptor *tx = NULL;
2883         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2884         for (i = 0; i < sh->disks; i++)
2885                 if (i != sh->pd_idx && i != sh->qd_idx) {
2886                         int dd_idx, j;
2887                         struct stripe_head *sh2;
2888                         struct async_submit_ctl submit;
2889
2890                         sector_t bn = compute_blocknr(sh, i, 1);
2891                         sector_t s = raid5_compute_sector(conf, bn, 0,
2892                                                           &dd_idx, NULL);
2893                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2894                         if (sh2 == NULL)
2895                                 /* so far only the early blocks of this stripe
2896                                  * have been requested.  When later blocks
2897                                  * get requested, we will try again
2898                                  */
2899                                 continue;
2900                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2901                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2902                                 /* must have already done this block */
2903                                 release_stripe(sh2);
2904                                 continue;
2905                         }
2906
2907                         /* place all the copies on one channel */
2908                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2909                         tx = async_memcpy(sh2->dev[dd_idx].page,
2910                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2911                                           &submit);
2912
2913                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2914                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2915                         for (j = 0; j < conf->raid_disks; j++)
2916                                 if (j != sh2->pd_idx &&
2917                                     j != sh2->qd_idx &&
2918                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2919                                         break;
2920                         if (j == conf->raid_disks) {
2921                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2922                                 set_bit(STRIPE_HANDLE, &sh2->state);
2923                         }
2924                         release_stripe(sh2);
2925
2926                 }
2927         /* done submitting copies, wait for them to complete */
2928         if (tx) {
2929                 async_tx_ack(tx);
2930                 dma_wait_for_async_tx(tx);
2931         }
2932 }
2933
2934
2935 /*
2936  * handle_stripe - do things to a stripe.
2937  *
2938  * We lock the stripe and then examine the state of various bits
2939  * to see what needs to be done.
2940  * Possible results:
2941  *    return some read request which now have data
2942  *    return some write requests which are safely on disc
2943  *    schedule a read on some buffers
2944  *    schedule a write of some buffers
2945  *    return confirmation of parity correctness
2946  *
2947  * buffers are taken off read_list or write_list, and bh_cache buffers
2948  * get BH_Lock set before the stripe lock is released.
2949  *
2950  */
2951
2952 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2953 {
2954         raid5_conf_t *conf = sh->raid_conf;
2955         int disks = sh->disks;
2956         struct r5dev *dev;
2957         int i;
2958
2959         memset(s, 0, sizeof(*s));
2960
2961         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2962         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2963         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2964         s->failed_num[0] = -1;
2965         s->failed_num[1] = -1;
2966
2967         /* Now to look around and see what can be done */
2968         rcu_read_lock();
2969         spin_lock_irq(&conf->device_lock);
2970         for (i=disks; i--; ) {
2971                 mdk_rdev_t *rdev;
2972                 sector_t first_bad;
2973                 int bad_sectors;
2974                 int is_bad = 0;
2975
2976                 dev = &sh->dev[i];
2977
2978                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2979                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2980                 /* maybe we can reply to a read
2981                  *
2982                  * new wantfill requests are only permitted while
2983                  * ops_complete_biofill is guaranteed to be inactive
2984                  */
2985                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2986                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2987                         set_bit(R5_Wantfill, &dev->flags);
2988
2989                 /* now count some things */
2990                 if (test_bit(R5_LOCKED, &dev->flags))
2991                         s->locked++;
2992                 if (test_bit(R5_UPTODATE, &dev->flags))
2993                         s->uptodate++;
2994                 if (test_bit(R5_Wantcompute, &dev->flags)) {
2995                         s->compute++;
2996                         BUG_ON(s->compute > 2);
2997                 }
2998
2999                 if (test_bit(R5_Wantfill, &dev->flags))
3000                         s->to_fill++;
3001                 else if (dev->toread)
3002                         s->to_read++;
3003                 if (dev->towrite) {
3004                         s->to_write++;
3005                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3006                                 s->non_overwrite++;
3007                 }
3008                 if (dev->written)
3009                         s->written++;
3010                 rdev = rcu_dereference(conf->disks[i].rdev);
3011                 if (rdev) {
3012                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3013                                              &first_bad, &bad_sectors);
3014                         if (s->blocked_rdev == NULL
3015                             && (test_bit(Blocked, &rdev->flags)
3016                                 || is_bad < 0)) {
3017                                 if (is_bad < 0)
3018                                         set_bit(BlockedBadBlocks,
3019                                                 &rdev->flags);
3020                                 s->blocked_rdev = rdev;
3021                                 atomic_inc(&rdev->nr_pending);
3022                         }
3023                 }
3024                 clear_bit(R5_Insync, &dev->flags);
3025                 if (!rdev)
3026                         /* Not in-sync */;
3027                 else if (is_bad) {
3028                         /* also not in-sync */
3029                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3030                                 /* treat as in-sync, but with a read error
3031                                  * which we can now try to correct
3032                                  */
3033                                 set_bit(R5_Insync, &dev->flags);
3034                                 set_bit(R5_ReadError, &dev->flags);
3035                         }
3036                 } else if (test_bit(In_sync, &rdev->flags))
3037                         set_bit(R5_Insync, &dev->flags);
3038                 else {
3039                         /* in sync if before recovery_offset */
3040                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3041                                 set_bit(R5_Insync, &dev->flags);
3042                 }
3043                 if (test_bit(R5_WriteError, &dev->flags)) {
3044                         clear_bit(R5_Insync, &dev->flags);
3045                         if (!test_bit(Faulty, &rdev->flags)) {
3046                                 s->handle_bad_blocks = 1;
3047                                 atomic_inc(&rdev->nr_pending);
3048                         } else
3049                                 clear_bit(R5_WriteError, &dev->flags);
3050                 }
3051                 if (!test_bit(R5_Insync, &dev->flags)) {
3052                         /* The ReadError flag will just be confusing now */
3053                         clear_bit(R5_ReadError, &dev->flags);
3054                         clear_bit(R5_ReWrite, &dev->flags);
3055                 }
3056                 if (test_bit(R5_ReadError, &dev->flags))
3057                         clear_bit(R5_Insync, &dev->flags);
3058                 if (!test_bit(R5_Insync, &dev->flags)) {
3059                         if (s->failed < 2)
3060                                 s->failed_num[s->failed] = i;
3061                         s->failed++;
3062                 }
3063         }
3064         spin_unlock_irq(&conf->device_lock);
3065         rcu_read_unlock();
3066 }
3067
3068 static void handle_stripe(struct stripe_head *sh)
3069 {
3070         struct stripe_head_state s;
3071         raid5_conf_t *conf = sh->raid_conf;
3072         int i;
3073         int prexor;
3074         int disks = sh->disks;
3075         struct r5dev *pdev, *qdev;
3076
3077         clear_bit(STRIPE_HANDLE, &sh->state);
3078         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3079                 /* already being handled, ensure it gets handled
3080                  * again when current action finishes */
3081                 set_bit(STRIPE_HANDLE, &sh->state);
3082                 return;
3083         }
3084
3085         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3086                 set_bit(STRIPE_SYNCING, &sh->state);
3087                 clear_bit(STRIPE_INSYNC, &sh->state);
3088         }
3089         clear_bit(STRIPE_DELAYED, &sh->state);
3090
3091         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3092                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3093                (unsigned long long)sh->sector, sh->state,
3094                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3095                sh->check_state, sh->reconstruct_state);
3096
3097         analyse_stripe(sh, &s);
3098
3099         if (s.handle_bad_blocks) {
3100                 set_bit(STRIPE_HANDLE, &sh->state);
3101                 goto finish;
3102         }
3103
3104         if (unlikely(s.blocked_rdev)) {
3105                 if (s.syncing || s.expanding || s.expanded ||
3106                     s.to_write || s.written) {
3107                         set_bit(STRIPE_HANDLE, &sh->state);
3108                         goto finish;
3109                 }
3110                 /* There is nothing for the blocked_rdev to block */
3111                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3112                 s.blocked_rdev = NULL;
3113         }
3114
3115         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3116                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3117                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3118         }
3119
3120         pr_debug("locked=%d uptodate=%d to_read=%d"
3121                " to_write=%d failed=%d failed_num=%d,%d\n",
3122                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3123                s.failed_num[0], s.failed_num[1]);
3124         /* check if the array has lost more than max_degraded devices and,
3125          * if so, some requests might need to be failed.
3126          */
3127         if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3128                 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3129         if (s.failed > conf->max_degraded && s.syncing)
3130                 handle_failed_sync(conf, sh, &s);
3131
3132         /*
3133          * might be able to return some write requests if the parity blocks
3134          * are safe, or on a failed drive
3135          */
3136         pdev = &sh->dev[sh->pd_idx];
3137         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3138                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3139         qdev = &sh->dev[sh->qd_idx];
3140         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3141                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3142                 || conf->level < 6;
3143
3144         if (s.written &&
3145             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3146                              && !test_bit(R5_LOCKED, &pdev->flags)
3147                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3148             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3149                              && !test_bit(R5_LOCKED, &qdev->flags)
3150                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3151                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3152
3153         /* Now we might consider reading some blocks, either to check/generate
3154          * parity, or to satisfy requests
3155          * or to load a block that is being partially written.
3156          */
3157         if (s.to_read || s.non_overwrite
3158             || (conf->level == 6 && s.to_write && s.failed)
3159             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3160                 handle_stripe_fill(sh, &s, disks);
3161
3162         /* Now we check to see if any write operations have recently
3163          * completed
3164          */
3165         prexor = 0;
3166         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3167                 prexor = 1;
3168         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3169             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3170                 sh->reconstruct_state = reconstruct_state_idle;
3171
3172                 /* All the 'written' buffers and the parity block are ready to
3173                  * be written back to disk
3174                  */
3175                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3176                 BUG_ON(sh->qd_idx >= 0 &&
3177                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3178                 for (i = disks; i--; ) {
3179                         struct r5dev *dev = &sh->dev[i];
3180                         if (test_bit(R5_LOCKED, &dev->flags) &&
3181                                 (i == sh->pd_idx || i == sh->qd_idx ||
3182                                  dev->written)) {
3183                                 pr_debug("Writing block %d\n", i);
3184                                 set_bit(R5_Wantwrite, &dev->flags);
3185                                 if (prexor)
3186                                         continue;
3187                                 if (!test_bit(R5_Insync, &dev->flags) ||
3188                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3189                                      s.failed == 0))
3190                                         set_bit(STRIPE_INSYNC, &sh->state);
3191                         }
3192                 }
3193                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3194                         s.dec_preread_active = 1;
3195         }
3196
3197         /* Now to consider new write requests and what else, if anything
3198          * should be read.  We do not handle new writes when:
3199          * 1/ A 'write' operation (copy+xor) is already in flight.
3200          * 2/ A 'check' operation is in flight, as it may clobber the parity
3201          *    block.
3202          */
3203         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3204                 handle_stripe_dirtying(conf, sh, &s, disks);
3205
3206         /* maybe we need to check and possibly fix the parity for this stripe
3207          * Any reads will already have been scheduled, so we just see if enough
3208          * data is available.  The parity check is held off while parity
3209          * dependent operations are in flight.
3210          */
3211         if (sh->check_state ||
3212             (s.syncing && s.locked == 0 &&
3213              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3214              !test_bit(STRIPE_INSYNC, &sh->state))) {
3215                 if (conf->level == 6)
3216                         handle_parity_checks6(conf, sh, &s, disks);
3217                 else
3218                         handle_parity_checks5(conf, sh, &s, disks);
3219         }
3220
3221         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3222                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3223                 clear_bit(STRIPE_SYNCING, &sh->state);
3224         }
3225
3226         /* If the failed drives are just a ReadError, then we might need
3227          * to progress the repair/check process
3228          */
3229         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3230                 for (i = 0; i < s.failed; i++) {
3231                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3232                         if (test_bit(R5_ReadError, &dev->flags)
3233                             && !test_bit(R5_LOCKED, &dev->flags)
3234                             && test_bit(R5_UPTODATE, &dev->flags)
3235                                 ) {
3236                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3237                                         set_bit(R5_Wantwrite, &dev->flags);
3238                                         set_bit(R5_ReWrite, &dev->flags);
3239                                         set_bit(R5_LOCKED, &dev->flags);
3240                                         s.locked++;
3241                                 } else {
3242                                         /* let's read it back */
3243                                         set_bit(R5_Wantread, &dev->flags);
3244                                         set_bit(R5_LOCKED, &dev->flags);
3245                                         s.locked++;
3246                                 }
3247                         }
3248                 }
3249
3250
3251         /* Finish reconstruct operations initiated by the expansion process */
3252         if (sh->reconstruct_state == reconstruct_state_result) {
3253                 struct stripe_head *sh_src
3254                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3255                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3256                         /* sh cannot be written until sh_src has been read.
3257                          * so arrange for sh to be delayed a little
3258                          */
3259                         set_bit(STRIPE_DELAYED, &sh->state);
3260                         set_bit(STRIPE_HANDLE, &sh->state);
3261                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3262                                               &sh_src->state))
3263                                 atomic_inc(&conf->preread_active_stripes);
3264                         release_stripe(sh_src);
3265                         goto finish;
3266                 }
3267                 if (sh_src)
3268                         release_stripe(sh_src);
3269
3270                 sh->reconstruct_state = reconstruct_state_idle;
3271                 clear_bit(STRIPE_EXPANDING, &sh->state);
3272                 for (i = conf->raid_disks; i--; ) {
3273                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3274                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3275                         s.locked++;
3276                 }
3277         }
3278
3279         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3280             !sh->reconstruct_state) {
3281                 /* Need to write out all blocks after computing parity */
3282                 sh->disks = conf->raid_disks;
3283                 stripe_set_idx(sh->sector, conf, 0, sh);
3284                 schedule_reconstruction(sh, &s, 1, 1);
3285         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3286                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3287                 atomic_dec(&conf->reshape_stripes);
3288                 wake_up(&conf->wait_for_overlap);
3289                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3290         }
3291
3292         if (s.expanding && s.locked == 0 &&
3293             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3294                 handle_stripe_expansion(conf, sh);
3295
3296 finish:
3297         /* wait for this device to become unblocked */
3298         if (unlikely(s.blocked_rdev))
3299                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3300
3301         if (s.handle_bad_blocks)
3302                 for (i = disks; i--; ) {
3303                         mdk_rdev_t *rdev;
3304                         struct r5dev *dev = &sh->dev[i];
3305                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3306                                 /* We own a safe reference to the rdev */
3307                                 rdev = conf->disks[i].rdev;
3308                                 if (!rdev_set_badblocks(rdev, sh->sector,
3309                                                         STRIPE_SECTORS, 0))
3310                                         md_error(conf->mddev, rdev);
3311                                 rdev_dec_pending(rdev, conf->mddev);
3312                         }
3313                 }
3314
3315         if (s.ops_request)
3316                 raid_run_ops(sh, s.ops_request);
3317
3318         ops_run_io(sh, &s);
3319
3320
3321         if (s.dec_preread_active) {
3322                 /* We delay this until after ops_run_io so that if make_request
3323                  * is waiting on a flush, it won't continue until the writes
3324                  * have actually been submitted.
3325                  */
3326                 atomic_dec(&conf->preread_active_stripes);
3327                 if (atomic_read(&conf->preread_active_stripes) <
3328                     IO_THRESHOLD)
3329                         md_wakeup_thread(conf->mddev->thread);
3330         }
3331
3332         return_io(s.return_bi);
3333
3334         clear_bit(STRIPE_ACTIVE, &sh->state);
3335 }
3336
3337 static void raid5_activate_delayed(raid5_conf_t *conf)
3338 {
3339         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3340                 while (!list_empty(&conf->delayed_list)) {
3341                         struct list_head *l = conf->delayed_list.next;
3342                         struct stripe_head *sh;
3343                         sh = list_entry(l, struct stripe_head, lru);
3344                         list_del_init(l);
3345                         clear_bit(STRIPE_DELAYED, &sh->state);
3346                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3347                                 atomic_inc(&conf->preread_active_stripes);
3348                         list_add_tail(&sh->lru, &conf->hold_list);
3349                 }
3350         }
3351 }
3352
3353 static void activate_bit_delay(raid5_conf_t *conf)
3354 {
3355         /* device_lock is held */
3356         struct list_head head;
3357         list_add(&head, &conf->bitmap_list);
3358         list_del_init(&conf->bitmap_list);
3359         while (!list_empty(&head)) {
3360                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3361                 list_del_init(&sh->lru);
3362                 atomic_inc(&sh->count);
3363                 __release_stripe(conf, sh);
3364         }
3365 }
3366
3367 int md_raid5_congested(mddev_t *mddev, int bits)
3368 {
3369         raid5_conf_t *conf = mddev->private;
3370
3371         /* No difference between reads and writes.  Just check
3372          * how busy the stripe_cache is
3373          */
3374
3375         if (conf->inactive_blocked)
3376                 return 1;
3377         if (conf->quiesce)
3378                 return 1;
3379         if (list_empty_careful(&conf->inactive_list))
3380                 return 1;
3381
3382         return 0;
3383 }
3384 EXPORT_SYMBOL_GPL(md_raid5_congested);
3385
3386 static int raid5_congested(void *data, int bits)
3387 {
3388         mddev_t *mddev = data;
3389
3390         return mddev_congested(mddev, bits) ||
3391                 md_raid5_congested(mddev, bits);
3392 }
3393
3394 /* We want read requests to align with chunks where possible,
3395  * but write requests don't need to.
3396  */
3397 static int raid5_mergeable_bvec(struct request_queue *q,
3398                                 struct bvec_merge_data *bvm,
3399                                 struct bio_vec *biovec)
3400 {
3401         mddev_t *mddev = q->queuedata;
3402         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3403         int max;
3404         unsigned int chunk_sectors = mddev->chunk_sectors;
3405         unsigned int bio_sectors = bvm->bi_size >> 9;
3406
3407         if ((bvm->bi_rw & 1) == WRITE)
3408                 return biovec->bv_len; /* always allow writes to be mergeable */
3409
3410         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3411                 chunk_sectors = mddev->new_chunk_sectors;
3412         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3413         if (max < 0) max = 0;
3414         if (max <= biovec->bv_len && bio_sectors == 0)
3415                 return biovec->bv_len;
3416         else
3417                 return max;
3418 }
3419
3420
3421 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3422 {
3423         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3424         unsigned int chunk_sectors = mddev->chunk_sectors;
3425         unsigned int bio_sectors = bio->bi_size >> 9;
3426
3427         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3428                 chunk_sectors = mddev->new_chunk_sectors;
3429         return  chunk_sectors >=
3430                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3431 }
3432
3433 /*
3434  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3435  *  later sampled by raid5d.
3436  */
3437 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3438 {
3439         unsigned long flags;
3440
3441         spin_lock_irqsave(&conf->device_lock, flags);
3442
3443         bi->bi_next = conf->retry_read_aligned_list;
3444         conf->retry_read_aligned_list = bi;
3445
3446         spin_unlock_irqrestore(&conf->device_lock, flags);
3447         md_wakeup_thread(conf->mddev->thread);
3448 }
3449
3450
3451 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3452 {
3453         struct bio *bi;
3454
3455         bi = conf->retry_read_aligned;
3456         if (bi) {
3457                 conf->retry_read_aligned = NULL;
3458                 return bi;
3459         }
3460         bi = conf->retry_read_aligned_list;
3461         if(bi) {
3462                 conf->retry_read_aligned_list = bi->bi_next;
3463                 bi->bi_next = NULL;
3464                 /*
3465                  * this sets the active strip count to 1 and the processed
3466                  * strip count to zero (upper 8 bits)
3467                  */
3468                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3469         }
3470
3471         return bi;
3472 }
3473
3474
3475 /*
3476  *  The "raid5_align_endio" should check if the read succeeded and if it
3477  *  did, call bio_endio on the original bio (having bio_put the new bio
3478  *  first).
3479  *  If the read failed..
3480  */
3481 static void raid5_align_endio(struct bio *bi, int error)
3482 {
3483         struct bio* raid_bi  = bi->bi_private;
3484         mddev_t *mddev;
3485         raid5_conf_t *conf;
3486         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3487         mdk_rdev_t *rdev;
3488
3489         bio_put(bi);
3490
3491         rdev = (void*)raid_bi->bi_next;
3492         raid_bi->bi_next = NULL;
3493         mddev = rdev->mddev;
3494         conf = mddev->private;
3495
3496         rdev_dec_pending(rdev, conf->mddev);
3497
3498         if (!error && uptodate) {
3499                 bio_endio(raid_bi, 0);
3500                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3501                         wake_up(&conf->wait_for_stripe);
3502                 return;
3503         }
3504
3505
3506         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3507
3508         add_bio_to_retry(raid_bi, conf);
3509 }
3510
3511 static int bio_fits_rdev(struct bio *bi)
3512 {
3513         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3514
3515         if ((bi->bi_size>>9) > queue_max_sectors(q))
3516                 return 0;
3517         blk_recount_segments(q, bi);
3518         if (bi->bi_phys_segments > queue_max_segments(q))
3519                 return 0;
3520
3521         if (q->merge_bvec_fn)
3522                 /* it's too hard to apply the merge_bvec_fn at this stage,
3523                  * just just give up
3524                  */
3525                 return 0;
3526
3527         return 1;
3528 }
3529
3530
3531 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3532 {
3533         raid5_conf_t *conf = mddev->private;
3534         int dd_idx;
3535         struct bio* align_bi;
3536         mdk_rdev_t *rdev;
3537
3538         if (!in_chunk_boundary(mddev, raid_bio)) {
3539                 pr_debug("chunk_aligned_read : non aligned\n");
3540                 return 0;
3541         }
3542         /*
3543          * use bio_clone_mddev to make a copy of the bio
3544          */
3545         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3546         if (!align_bi)
3547                 return 0;
3548         /*
3549          *   set bi_end_io to a new function, and set bi_private to the
3550          *     original bio.
3551          */
3552         align_bi->bi_end_io  = raid5_align_endio;
3553         align_bi->bi_private = raid_bio;
3554         /*
3555          *      compute position
3556          */
3557         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3558                                                     0,
3559                                                     &dd_idx, NULL);
3560
3561         rcu_read_lock();
3562         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3563         if (rdev && test_bit(In_sync, &rdev->flags)) {
3564                 sector_t first_bad;
3565                 int bad_sectors;
3566
3567                 atomic_inc(&rdev->nr_pending);
3568                 rcu_read_unlock();
3569                 raid_bio->bi_next = (void*)rdev;
3570                 align_bi->bi_bdev =  rdev->bdev;
3571                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3572                 align_bi->bi_sector += rdev->data_offset;
3573
3574                 if (!bio_fits_rdev(align_bi) ||
3575                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3576                                 &first_bad, &bad_sectors)) {
3577                         /* too big in some way, or has a known bad block */
3578                         bio_put(align_bi);
3579                         rdev_dec_pending(rdev, mddev);
3580                         return 0;
3581                 }
3582
3583                 spin_lock_irq(&conf->device_lock);
3584                 wait_event_lock_irq(conf->wait_for_stripe,
3585                                     conf->quiesce == 0,
3586                                     conf->device_lock, /* nothing */);
3587                 atomic_inc(&conf->active_aligned_reads);
3588                 spin_unlock_irq(&conf->device_lock);
3589
3590                 generic_make_request(align_bi);
3591                 return 1;
3592         } else {
3593                 rcu_read_unlock();
3594                 bio_put(align_bi);
3595                 return 0;
3596         }
3597 }
3598
3599 /* __get_priority_stripe - get the next stripe to process
3600  *
3601  * Full stripe writes are allowed to pass preread active stripes up until
3602  * the bypass_threshold is exceeded.  In general the bypass_count
3603  * increments when the handle_list is handled before the hold_list; however, it
3604  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3605  * stripe with in flight i/o.  The bypass_count will be reset when the
3606  * head of the hold_list has changed, i.e. the head was promoted to the
3607  * handle_list.
3608  */
3609 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3610 {
3611         struct stripe_head *sh;
3612
3613         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3614                   __func__,
3615                   list_empty(&conf->handle_list) ? "empty" : "busy",
3616                   list_empty(&conf->hold_list) ? "empty" : "busy",
3617                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3618
3619         if (!list_empty(&conf->handle_list)) {
3620                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3621
3622                 if (list_empty(&conf->hold_list))
3623                         conf->bypass_count = 0;
3624                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3625                         if (conf->hold_list.next == conf->last_hold)
3626                                 conf->bypass_count++;
3627                         else {
3628                                 conf->last_hold = conf->hold_list.next;
3629                                 conf->bypass_count -= conf->bypass_threshold;
3630                                 if (conf->bypass_count < 0)
3631                                         conf->bypass_count = 0;
3632                         }
3633                 }
3634         } else if (!list_empty(&conf->hold_list) &&
3635                    ((conf->bypass_threshold &&
3636                      conf->bypass_count > conf->bypass_threshold) ||
3637                     atomic_read(&conf->pending_full_writes) == 0)) {
3638                 sh = list_entry(conf->hold_list.next,
3639                                 typeof(*sh), lru);
3640                 conf->bypass_count -= conf->bypass_threshold;
3641                 if (conf->bypass_count < 0)
3642                         conf->bypass_count = 0;
3643         } else
3644                 return NULL;
3645
3646         list_del_init(&sh->lru);
3647         atomic_inc(&sh->count);
3648         BUG_ON(atomic_read(&sh->count) != 1);
3649         return sh;
3650 }
3651
3652 static int make_request(mddev_t *mddev, struct bio * bi)
3653 {
3654         raid5_conf_t *conf = mddev->private;
3655         int dd_idx;
3656         sector_t new_sector;
3657         sector_t logical_sector, last_sector;
3658         struct stripe_head *sh;
3659         const int rw = bio_data_dir(bi);
3660         int remaining;
3661         int plugged;
3662
3663         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3664                 md_flush_request(mddev, bi);
3665                 return 0;
3666         }
3667
3668         md_write_start(mddev, bi);
3669
3670         if (rw == READ &&
3671              mddev->reshape_position == MaxSector &&
3672              chunk_aligned_read(mddev,bi))
3673                 return 0;
3674
3675         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3676         last_sector = bi->bi_sector + (bi->bi_size>>9);
3677         bi->bi_next = NULL;
3678         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3679
3680         plugged = mddev_check_plugged(mddev);
3681         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3682                 DEFINE_WAIT(w);
3683                 int disks, data_disks;
3684                 int previous;
3685
3686         retry:
3687                 previous = 0;
3688                 disks = conf->raid_disks;
3689                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3690                 if (unlikely(conf->reshape_progress != MaxSector)) {
3691                         /* spinlock is needed as reshape_progress may be
3692                          * 64bit on a 32bit platform, and so it might be
3693                          * possible to see a half-updated value
3694                          * Of course reshape_progress could change after
3695                          * the lock is dropped, so once we get a reference
3696                          * to the stripe that we think it is, we will have
3697                          * to check again.
3698                          */
3699                         spin_lock_irq(&conf->device_lock);
3700                         if (mddev->delta_disks < 0
3701                             ? logical_sector < conf->reshape_progress
3702                             : logical_sector >= conf->reshape_progress) {
3703                                 disks = conf->previous_raid_disks;
3704                                 previous = 1;
3705                         } else {
3706                                 if (mddev->delta_disks < 0
3707                                     ? logical_sector < conf->reshape_safe
3708                                     : logical_sector >= conf->reshape_safe) {
3709                                         spin_unlock_irq(&conf->device_lock);
3710                                         schedule();
3711                                         goto retry;
3712                                 }
3713                         }
3714                         spin_unlock_irq(&conf->device_lock);
3715                 }
3716                 data_disks = disks - conf->max_degraded;
3717
3718                 new_sector = raid5_compute_sector(conf, logical_sector,
3719                                                   previous,
3720                                                   &dd_idx, NULL);
3721                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3722                         (unsigned long long)new_sector, 
3723                         (unsigned long long)logical_sector);
3724
3725                 sh = get_active_stripe(conf, new_sector, previous,
3726                                        (bi->bi_rw&RWA_MASK), 0);
3727                 if (sh) {
3728                         if (unlikely(previous)) {
3729                                 /* expansion might have moved on while waiting for a
3730                                  * stripe, so we must do the range check again.
3731                                  * Expansion could still move past after this
3732                                  * test, but as we are holding a reference to
3733                                  * 'sh', we know that if that happens,
3734                                  *  STRIPE_EXPANDING will get set and the expansion
3735                                  * won't proceed until we finish with the stripe.
3736                                  */
3737                                 int must_retry = 0;
3738                                 spin_lock_irq(&conf->device_lock);
3739                                 if (mddev->delta_disks < 0
3740                                     ? logical_sector >= conf->reshape_progress
3741                                     : logical_sector < conf->reshape_progress)
3742                                         /* mismatch, need to try again */
3743                                         must_retry = 1;
3744                                 spin_unlock_irq(&conf->device_lock);
3745                                 if (must_retry) {
3746                                         release_stripe(sh);
3747                                         schedule();
3748                                         goto retry;
3749                                 }
3750                         }
3751
3752                         if (rw == WRITE &&
3753                             logical_sector >= mddev->suspend_lo &&
3754                             logical_sector < mddev->suspend_hi) {
3755                                 release_stripe(sh);
3756                                 /* As the suspend_* range is controlled by
3757                                  * userspace, we want an interruptible
3758                                  * wait.
3759                                  */
3760                                 flush_signals(current);
3761                                 prepare_to_wait(&conf->wait_for_overlap,
3762                                                 &w, TASK_INTERRUPTIBLE);
3763                                 if (logical_sector >= mddev->suspend_lo &&
3764                                     logical_sector < mddev->suspend_hi)
3765                                         schedule();
3766                                 goto retry;
3767                         }
3768
3769                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3770                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3771                                 /* Stripe is busy expanding or
3772                                  * add failed due to overlap.  Flush everything
3773                                  * and wait a while
3774                                  */
3775                                 md_wakeup_thread(mddev->thread);
3776                                 release_stripe(sh);
3777                                 schedule();
3778                                 goto retry;
3779                         }
3780                         finish_wait(&conf->wait_for_overlap, &w);
3781                         set_bit(STRIPE_HANDLE, &sh->state);
3782                         clear_bit(STRIPE_DELAYED, &sh->state);
3783                         if ((bi->bi_rw & REQ_SYNC) &&
3784                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3785                                 atomic_inc(&conf->preread_active_stripes);
3786                         release_stripe(sh);
3787                 } else {
3788                         /* cannot get stripe for read-ahead, just give-up */
3789                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3790                         finish_wait(&conf->wait_for_overlap, &w);
3791                         break;
3792                 }
3793                         
3794         }
3795         if (!plugged)
3796                 md_wakeup_thread(mddev->thread);
3797
3798         spin_lock_irq(&conf->device_lock);
3799         remaining = raid5_dec_bi_phys_segments(bi);
3800         spin_unlock_irq(&conf->device_lock);
3801         if (remaining == 0) {
3802
3803                 if ( rw == WRITE )
3804                         md_write_end(mddev);
3805
3806                 bio_endio(bi, 0);
3807         }
3808
3809         return 0;
3810 }
3811
3812 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3813
3814 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3815 {
3816         /* reshaping is quite different to recovery/resync so it is
3817          * handled quite separately ... here.
3818          *
3819          * On each call to sync_request, we gather one chunk worth of
3820          * destination stripes and flag them as expanding.
3821          * Then we find all the source stripes and request reads.
3822          * As the reads complete, handle_stripe will copy the data
3823          * into the destination stripe and release that stripe.
3824          */
3825         raid5_conf_t *conf = mddev->private;
3826         struct stripe_head *sh;
3827         sector_t first_sector, last_sector;
3828         int raid_disks = conf->previous_raid_disks;
3829         int data_disks = raid_disks - conf->max_degraded;
3830         int new_data_disks = conf->raid_disks - conf->max_degraded;
3831         int i;
3832         int dd_idx;
3833         sector_t writepos, readpos, safepos;
3834         sector_t stripe_addr;
3835         int reshape_sectors;
3836         struct list_head stripes;
3837
3838         if (sector_nr == 0) {
3839                 /* If restarting in the middle, skip the initial sectors */
3840                 if (mddev->delta_disks < 0 &&
3841                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3842                         sector_nr = raid5_size(mddev, 0, 0)
3843                                 - conf->reshape_progress;
3844                 } else if (mddev->delta_disks >= 0 &&
3845                            conf->reshape_progress > 0)
3846                         sector_nr = conf->reshape_progress;
3847                 sector_div(sector_nr, new_data_disks);
3848                 if (sector_nr) {
3849                         mddev->curr_resync_completed = sector_nr;
3850                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3851                         *skipped = 1;
3852                         return sector_nr;
3853                 }
3854         }
3855
3856         /* We need to process a full chunk at a time.
3857          * If old and new chunk sizes differ, we need to process the
3858          * largest of these
3859          */
3860         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3861                 reshape_sectors = mddev->new_chunk_sectors;
3862         else
3863                 reshape_sectors = mddev->chunk_sectors;
3864
3865         /* we update the metadata when there is more than 3Meg
3866          * in the block range (that is rather arbitrary, should
3867          * probably be time based) or when the data about to be
3868          * copied would over-write the source of the data at
3869          * the front of the range.
3870          * i.e. one new_stripe along from reshape_progress new_maps
3871          * to after where reshape_safe old_maps to
3872          */
3873         writepos = conf->reshape_progress;
3874         sector_div(writepos, new_data_disks);
3875         readpos = conf->reshape_progress;
3876         sector_div(readpos, data_disks);
3877         safepos = conf->reshape_safe;
3878         sector_div(safepos, data_disks);
3879         if (mddev->delta_disks < 0) {
3880                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3881                 readpos += reshape_sectors;
3882                 safepos += reshape_sectors;
3883         } else {
3884                 writepos += reshape_sectors;
3885                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3886                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3887         }
3888
3889         /* 'writepos' is the most advanced device address we might write.
3890          * 'readpos' is the least advanced device address we might read.
3891          * 'safepos' is the least address recorded in the metadata as having
3892          *     been reshaped.
3893          * If 'readpos' is behind 'writepos', then there is no way that we can
3894          * ensure safety in the face of a crash - that must be done by userspace
3895          * making a backup of the data.  So in that case there is no particular
3896          * rush to update metadata.
3897          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3898          * update the metadata to advance 'safepos' to match 'readpos' so that
3899          * we can be safe in the event of a crash.
3900          * So we insist on updating metadata if safepos is behind writepos and
3901          * readpos is beyond writepos.
3902          * In any case, update the metadata every 10 seconds.
3903          * Maybe that number should be configurable, but I'm not sure it is
3904          * worth it.... maybe it could be a multiple of safemode_delay???
3905          */
3906         if ((mddev->delta_disks < 0
3907              ? (safepos > writepos && readpos < writepos)
3908              : (safepos < writepos && readpos > writepos)) ||
3909             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3910                 /* Cannot proceed until we've updated the superblock... */
3911                 wait_event(conf->wait_for_overlap,
3912                            atomic_read(&conf->reshape_stripes)==0);
3913                 mddev->reshape_position = conf->reshape_progress;
3914                 mddev->curr_resync_completed = sector_nr;
3915                 conf->reshape_checkpoint = jiffies;
3916                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3917                 md_wakeup_thread(mddev->thread);
3918                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3919                            kthread_should_stop());
3920                 spin_lock_irq(&conf->device_lock);
3921                 conf->reshape_safe = mddev->reshape_position;
3922                 spin_unlock_irq(&conf->device_lock);
3923                 wake_up(&conf->wait_for_overlap);
3924                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3925         }
3926
3927         if (mddev->delta_disks < 0) {
3928                 BUG_ON(conf->reshape_progress == 0);
3929                 stripe_addr = writepos;
3930                 BUG_ON((mddev->dev_sectors &
3931                         ~((sector_t)reshape_sectors - 1))
3932                        - reshape_sectors - stripe_addr
3933                        != sector_nr);
3934         } else {
3935                 BUG_ON(writepos != sector_nr + reshape_sectors);
3936                 stripe_addr = sector_nr;
3937         }
3938         INIT_LIST_HEAD(&stripes);
3939         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3940                 int j;
3941                 int skipped_disk = 0;
3942                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3943                 set_bit(STRIPE_EXPANDING, &sh->state);
3944                 atomic_inc(&conf->reshape_stripes);
3945                 /* If any of this stripe is beyond the end of the old
3946                  * array, then we need to zero those blocks
3947                  */
3948                 for (j=sh->disks; j--;) {
3949                         sector_t s;
3950                         if (j == sh->pd_idx)
3951                                 continue;
3952                         if (conf->level == 6 &&
3953                             j == sh->qd_idx)
3954                                 continue;
3955                         s = compute_blocknr(sh, j, 0);
3956                         if (s < raid5_size(mddev, 0, 0)) {
3957                                 skipped_disk = 1;
3958                                 continue;
3959                         }
3960                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3961                         set_bit(R5_Expanded, &sh->dev[j].flags);
3962                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3963                 }
3964                 if (!skipped_disk) {
3965                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3966                         set_bit(STRIPE_HANDLE, &sh->state);
3967                 }
3968                 list_add(&sh->lru, &stripes);
3969         }
3970         spin_lock_irq(&conf->device_lock);
3971         if (mddev->delta_disks < 0)
3972                 conf->reshape_progress -= reshape_sectors * new_data_disks;
3973         else
3974                 conf->reshape_progress += reshape_sectors * new_data_disks;
3975         spin_unlock_irq(&conf->device_lock);
3976         /* Ok, those stripe are ready. We can start scheduling
3977          * reads on the source stripes.
3978          * The source stripes are determined by mapping the first and last
3979          * block on the destination stripes.
3980          */
3981         first_sector =
3982                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3983                                      1, &dd_idx, NULL);
3984         last_sector =
3985                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3986                                             * new_data_disks - 1),
3987                                      1, &dd_idx, NULL);
3988         if (last_sector >= mddev->dev_sectors)
3989                 last_sector = mddev->dev_sectors - 1;
3990         while (first_sector <= last_sector) {
3991                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3992                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3993                 set_bit(STRIPE_HANDLE, &sh->state);
3994                 release_stripe(sh);
3995                 first_sector += STRIPE_SECTORS;
3996         }
3997         /* Now that the sources are clearly marked, we can release
3998          * the destination stripes
3999          */
4000         while (!list_empty(&stripes)) {
4001                 sh = list_entry(stripes.next, struct stripe_head, lru);
4002                 list_del_init(&sh->lru);
4003                 release_stripe(sh);
4004         }
4005         /* If this takes us to the resync_max point where we have to pause,
4006          * then we need to write out the superblock.
4007          */
4008         sector_nr += reshape_sectors;
4009         if ((sector_nr - mddev->curr_resync_completed) * 2
4010             >= mddev->resync_max - mddev->curr_resync_completed) {
4011                 /* Cannot proceed until we've updated the superblock... */
4012                 wait_event(conf->wait_for_overlap,
4013                            atomic_read(&conf->reshape_stripes) == 0);
4014                 mddev->reshape_position = conf->reshape_progress;
4015                 mddev->curr_resync_completed = sector_nr;
4016                 conf->reshape_checkpoint = jiffies;
4017                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4018                 md_wakeup_thread(mddev->thread);
4019                 wait_event(mddev->sb_wait,
4020                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4021                            || kthread_should_stop());
4022                 spin_lock_irq(&conf->device_lock);
4023                 conf->reshape_safe = mddev->reshape_position;
4024                 spin_unlock_irq(&conf->device_lock);
4025                 wake_up(&conf->wait_for_overlap);
4026                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4027         }
4028         return reshape_sectors;
4029 }
4030
4031 /* FIXME go_faster isn't used */
4032 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4033 {
4034         raid5_conf_t *conf = mddev->private;
4035         struct stripe_head *sh;
4036         sector_t max_sector = mddev->dev_sectors;
4037         sector_t sync_blocks;
4038         int still_degraded = 0;
4039         int i;
4040
4041         if (sector_nr >= max_sector) {
4042                 /* just being told to finish up .. nothing much to do */
4043
4044                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4045                         end_reshape(conf);
4046                         return 0;
4047                 }
4048
4049                 if (mddev->curr_resync < max_sector) /* aborted */
4050                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4051                                         &sync_blocks, 1);
4052                 else /* completed sync */
4053                         conf->fullsync = 0;
4054                 bitmap_close_sync(mddev->bitmap);
4055
4056                 return 0;
4057         }
4058
4059         /* Allow raid5_quiesce to complete */
4060         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4061
4062         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4063                 return reshape_request(mddev, sector_nr, skipped);
4064
4065         /* No need to check resync_max as we never do more than one
4066          * stripe, and as resync_max will always be on a chunk boundary,
4067          * if the check in md_do_sync didn't fire, there is no chance
4068          * of overstepping resync_max here
4069          */
4070
4071         /* if there is too many failed drives and we are trying
4072          * to resync, then assert that we are finished, because there is
4073          * nothing we can do.
4074          */
4075         if (mddev->degraded >= conf->max_degraded &&
4076             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4077                 sector_t rv = mddev->dev_sectors - sector_nr;
4078                 *skipped = 1;
4079                 return rv;
4080         }
4081         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4082             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4083             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4084                 /* we can skip this block, and probably more */
4085                 sync_blocks /= STRIPE_SECTORS;
4086                 *skipped = 1;
4087                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4088         }
4089
4090
4091         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4092
4093         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4094         if (sh == NULL) {
4095                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4096                 /* make sure we don't swamp the stripe cache if someone else
4097                  * is trying to get access
4098                  */
4099                 schedule_timeout_uninterruptible(1);
4100         }
4101         /* Need to check if array will still be degraded after recovery/resync
4102          * We don't need to check the 'failed' flag as when that gets set,
4103          * recovery aborts.
4104          */
4105         for (i = 0; i < conf->raid_disks; i++)
4106                 if (conf->disks[i].rdev == NULL)
4107                         still_degraded = 1;
4108
4109         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4110
4111         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4112
4113         handle_stripe(sh);
4114         release_stripe(sh);
4115
4116         return STRIPE_SECTORS;
4117 }
4118
4119 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4120 {
4121         /* We may not be able to submit a whole bio at once as there
4122          * may not be enough stripe_heads available.
4123          * We cannot pre-allocate enough stripe_heads as we may need
4124          * more than exist in the cache (if we allow ever large chunks).
4125          * So we do one stripe head at a time and record in
4126          * ->bi_hw_segments how many have been done.
4127          *
4128          * We *know* that this entire raid_bio is in one chunk, so
4129          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4130          */
4131         struct stripe_head *sh;
4132         int dd_idx;
4133         sector_t sector, logical_sector, last_sector;
4134         int scnt = 0;
4135         int remaining;
4136         int handled = 0;
4137
4138         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4139         sector = raid5_compute_sector(conf, logical_sector,
4140                                       0, &dd_idx, NULL);
4141         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4142
4143         for (; logical_sector < last_sector;
4144              logical_sector += STRIPE_SECTORS,
4145                      sector += STRIPE_SECTORS,
4146                      scnt++) {
4147
4148                 if (scnt < raid5_bi_hw_segments(raid_bio))
4149                         /* already done this stripe */
4150                         continue;
4151
4152                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4153
4154                 if (!sh) {
4155                         /* failed to get a stripe - must wait */
4156                         raid5_set_bi_hw_segments(raid_bio, scnt);
4157                         conf->retry_read_aligned = raid_bio;
4158                         return handled;
4159                 }
4160
4161                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4162                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4163                         release_stripe(sh);
4164                         raid5_set_bi_hw_segments(raid_bio, scnt);
4165                         conf->retry_read_aligned = raid_bio;
4166                         return handled;
4167                 }
4168
4169                 handle_stripe(sh);
4170                 release_stripe(sh);
4171                 handled++;
4172         }
4173         spin_lock_irq(&conf->device_lock);
4174         remaining = raid5_dec_bi_phys_segments(raid_bio);
4175         spin_unlock_irq(&conf->device_lock);
4176         if (remaining == 0)
4177                 bio_endio(raid_bio, 0);
4178         if (atomic_dec_and_test(&conf->active_aligned_reads))
4179                 wake_up(&conf->wait_for_stripe);
4180         return handled;
4181 }
4182
4183
4184 /*
4185  * This is our raid5 kernel thread.
4186  *
4187  * We scan the hash table for stripes which can be handled now.
4188  * During the scan, completed stripes are saved for us by the interrupt
4189  * handler, so that they will not have to wait for our next wakeup.
4190  */
4191 static void raid5d(mddev_t *mddev)
4192 {
4193         struct stripe_head *sh;
4194         raid5_conf_t *conf = mddev->private;
4195         int handled;
4196         struct blk_plug plug;
4197
4198         pr_debug("+++ raid5d active\n");
4199
4200         md_check_recovery(mddev);
4201
4202         blk_start_plug(&plug);
4203         handled = 0;
4204         spin_lock_irq(&conf->device_lock);
4205         while (1) {
4206                 struct bio *bio;
4207
4208                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4209                     !list_empty(&conf->bitmap_list)) {
4210                         /* Now is a good time to flush some bitmap updates */
4211                         conf->seq_flush++;
4212                         spin_unlock_irq(&conf->device_lock);
4213                         bitmap_unplug(mddev->bitmap);
4214                         spin_lock_irq(&conf->device_lock);
4215                         conf->seq_write = conf->seq_flush;
4216                         activate_bit_delay(conf);
4217                 }
4218                 if (atomic_read(&mddev->plug_cnt) == 0)
4219                         raid5_activate_delayed(conf);
4220
4221                 while ((bio = remove_bio_from_retry(conf))) {
4222                         int ok;
4223                         spin_unlock_irq(&conf->device_lock);
4224                         ok = retry_aligned_read(conf, bio);
4225                         spin_lock_irq(&conf->device_lock);
4226                         if (!ok)
4227                                 break;
4228                         handled++;
4229                 }
4230
4231                 sh = __get_priority_stripe(conf);
4232
4233                 if (!sh)
4234                         break;
4235                 spin_unlock_irq(&conf->device_lock);
4236                 
4237                 handled++;
4238                 handle_stripe(sh);
4239                 release_stripe(sh);
4240                 cond_resched();
4241
4242                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4243                         md_check_recovery(mddev);
4244
4245                 spin_lock_irq(&conf->device_lock);
4246         }
4247         pr_debug("%d stripes handled\n", handled);
4248
4249         spin_unlock_irq(&conf->device_lock);
4250
4251         async_tx_issue_pending_all();
4252         blk_finish_plug(&plug);
4253
4254         pr_debug("--- raid5d inactive\n");
4255 }
4256
4257 static ssize_t
4258 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4259 {
4260         raid5_conf_t *conf = mddev->private;
4261         if (conf)
4262                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4263         else
4264                 return 0;
4265 }
4266
4267 int
4268 raid5_set_cache_size(mddev_t *mddev, int size)
4269 {
4270         raid5_conf_t *conf = mddev->private;
4271         int err;
4272
4273         if (size <= 16 || size > 32768)
4274                 return -EINVAL;
4275         while (size < conf->max_nr_stripes) {
4276                 if (drop_one_stripe(conf))
4277                         conf->max_nr_stripes--;
4278                 else
4279                         break;
4280         }
4281         err = md_allow_write(mddev);
4282         if (err)
4283                 return err;
4284         while (size > conf->max_nr_stripes) {
4285                 if (grow_one_stripe(conf))
4286                         conf->max_nr_stripes++;
4287                 else break;
4288         }
4289         return 0;
4290 }
4291 EXPORT_SYMBOL(raid5_set_cache_size);
4292
4293 static ssize_t
4294 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4295 {
4296         raid5_conf_t *conf = mddev->private;
4297         unsigned long new;
4298         int err;
4299
4300         if (len >= PAGE_SIZE)
4301                 return -EINVAL;
4302         if (!conf)
4303                 return -ENODEV;
4304
4305         if (strict_strtoul(page, 10, &new))
4306                 return -EINVAL;
4307         err = raid5_set_cache_size(mddev, new);
4308         if (err)
4309                 return err;
4310         return len;
4311 }
4312
4313 static struct md_sysfs_entry
4314 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4315                                 raid5_show_stripe_cache_size,
4316                                 raid5_store_stripe_cache_size);
4317
4318 static ssize_t
4319 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4320 {
4321         raid5_conf_t *conf = mddev->private;
4322         if (conf)
4323                 return sprintf(page, "%d\n", conf->bypass_threshold);
4324         else
4325                 return 0;
4326 }
4327
4328 static ssize_t
4329 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4330 {
4331         raid5_conf_t *conf = mddev->private;
4332         unsigned long new;
4333         if (len >= PAGE_SIZE)
4334                 return -EINVAL;
4335         if (!conf)
4336                 return -ENODEV;
4337
4338         if (strict_strtoul(page, 10, &new))
4339                 return -EINVAL;
4340         if (new > conf->max_nr_stripes)
4341                 return -EINVAL;
4342         conf->bypass_threshold = new;
4343         return len;
4344 }
4345
4346 static struct md_sysfs_entry
4347 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4348                                         S_IRUGO | S_IWUSR,
4349                                         raid5_show_preread_threshold,
4350                                         raid5_store_preread_threshold);
4351
4352 static ssize_t
4353 stripe_cache_active_show(mddev_t *mddev, char *page)
4354 {
4355         raid5_conf_t *conf = mddev->private;
4356         if (conf)
4357                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4358         else
4359                 return 0;
4360 }
4361
4362 static struct md_sysfs_entry
4363 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4364
4365 static struct attribute *raid5_attrs[] =  {
4366         &raid5_stripecache_size.attr,
4367         &raid5_stripecache_active.attr,
4368         &raid5_preread_bypass_threshold.attr,
4369         NULL,
4370 };
4371 static struct attribute_group raid5_attrs_group = {
4372         .name = NULL,
4373         .attrs = raid5_attrs,
4374 };
4375
4376 static sector_t
4377 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4378 {
4379         raid5_conf_t *conf = mddev->private;
4380
4381         if (!sectors)
4382                 sectors = mddev->dev_sectors;
4383         if (!raid_disks)
4384                 /* size is defined by the smallest of previous and new size */
4385                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4386
4387         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4388         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4389         return sectors * (raid_disks - conf->max_degraded);
4390 }
4391
4392 static void raid5_free_percpu(raid5_conf_t *conf)
4393 {
4394         struct raid5_percpu *percpu;
4395         unsigned long cpu;
4396
4397         if (!conf->percpu)
4398                 return;
4399
4400         get_online_cpus();
4401         for_each_possible_cpu(cpu) {
4402                 percpu = per_cpu_ptr(conf->percpu, cpu);
4403                 safe_put_page(percpu->spare_page);
4404                 kfree(percpu->scribble);
4405         }
4406 #ifdef CONFIG_HOTPLUG_CPU
4407         unregister_cpu_notifier(&conf->cpu_notify);
4408 #endif
4409         put_online_cpus();
4410
4411         free_percpu(conf->percpu);
4412 }
4413
4414 static void free_conf(raid5_conf_t *conf)
4415 {
4416         shrink_stripes(conf);
4417         raid5_free_percpu(conf);
4418         kfree(conf->disks);
4419         kfree(conf->stripe_hashtbl);
4420         kfree(conf);
4421 }
4422
4423 #ifdef CONFIG_HOTPLUG_CPU
4424 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4425                               void *hcpu)
4426 {
4427         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4428         long cpu = (long)hcpu;
4429         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4430
4431         switch (action) {
4432         case CPU_UP_PREPARE:
4433         case CPU_UP_PREPARE_FROZEN:
4434                 if (conf->level == 6 && !percpu->spare_page)
4435                         percpu->spare_page = alloc_page(GFP_KERNEL);
4436                 if (!percpu->scribble)
4437                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4438
4439                 if (!percpu->scribble ||
4440                     (conf->level == 6 && !percpu->spare_page)) {
4441                         safe_put_page(percpu->spare_page);
4442                         kfree(percpu->scribble);
4443                         pr_err("%s: failed memory allocation for cpu%ld\n",
4444                                __func__, cpu);
4445                         return notifier_from_errno(-ENOMEM);
4446                 }
4447                 break;
4448         case CPU_DEAD:
4449         case CPU_DEAD_FROZEN:
4450                 safe_put_page(percpu->spare_page);
4451                 kfree(percpu->scribble);
4452                 percpu->spare_page = NULL;
4453                 percpu->scribble = NULL;
4454                 break;
4455         default:
4456                 break;
4457         }
4458         return NOTIFY_OK;
4459 }
4460 #endif
4461
4462 static int raid5_alloc_percpu(raid5_conf_t *conf)
4463 {
4464         unsigned long cpu;
4465         struct page *spare_page;
4466         struct raid5_percpu __percpu *allcpus;
4467         void *scribble;
4468         int err;
4469
4470         allcpus = alloc_percpu(struct raid5_percpu);
4471         if (!allcpus)
4472                 return -ENOMEM;
4473         conf->percpu = allcpus;
4474
4475         get_online_cpus();
4476         err = 0;
4477         for_each_present_cpu(cpu) {
4478                 if (conf->level == 6) {
4479                         spare_page = alloc_page(GFP_KERNEL);
4480                         if (!spare_page) {
4481                                 err = -ENOMEM;
4482                                 break;
4483                         }
4484                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4485                 }
4486                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4487                 if (!scribble) {
4488                         err = -ENOMEM;
4489                         break;
4490                 }
4491                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4492         }
4493 #ifdef CONFIG_HOTPLUG_CPU
4494         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4495         conf->cpu_notify.priority = 0;
4496         if (err == 0)
4497                 err = register_cpu_notifier(&conf->cpu_notify);
4498 #endif
4499         put_online_cpus();
4500
4501         return err;
4502 }
4503
4504 static raid5_conf_t *setup_conf(mddev_t *mddev)
4505 {
4506         raid5_conf_t *conf;
4507         int raid_disk, memory, max_disks;
4508         mdk_rdev_t *rdev;
4509         struct disk_info *disk;
4510
4511         if (mddev->new_level != 5
4512             && mddev->new_level != 4
4513             && mddev->new_level != 6) {
4514                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4515                        mdname(mddev), mddev->new_level);
4516                 return ERR_PTR(-EIO);
4517         }
4518         if ((mddev->new_level == 5
4519              && !algorithm_valid_raid5(mddev->new_layout)) ||
4520             (mddev->new_level == 6
4521              && !algorithm_valid_raid6(mddev->new_layout))) {
4522                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4523                        mdname(mddev), mddev->new_layout);
4524                 return ERR_PTR(-EIO);
4525         }
4526         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4527                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4528                        mdname(mddev), mddev->raid_disks);
4529                 return ERR_PTR(-EINVAL);
4530         }
4531
4532         if (!mddev->new_chunk_sectors ||
4533             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4534             !is_power_of_2(mddev->new_chunk_sectors)) {
4535                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4536                        mdname(mddev), mddev->new_chunk_sectors << 9);
4537                 return ERR_PTR(-EINVAL);
4538         }
4539
4540         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4541         if (conf == NULL)
4542                 goto abort;
4543         spin_lock_init(&conf->device_lock);
4544         init_waitqueue_head(&conf->wait_for_stripe);
4545         init_waitqueue_head(&conf->wait_for_overlap);
4546         INIT_LIST_HEAD(&conf->handle_list);
4547         INIT_LIST_HEAD(&conf->hold_list);
4548         INIT_LIST_HEAD(&conf->delayed_list);
4549         INIT_LIST_HEAD(&conf->bitmap_list);
4550         INIT_LIST_HEAD(&conf->inactive_list);
4551         atomic_set(&conf->active_stripes, 0);
4552         atomic_set(&conf->preread_active_stripes, 0);
4553         atomic_set(&conf->active_aligned_reads, 0);
4554         conf->bypass_threshold = BYPASS_THRESHOLD;
4555
4556         conf->raid_disks = mddev->raid_disks;
4557         if (mddev->reshape_position == MaxSector)
4558                 conf->previous_raid_disks = mddev->raid_disks;
4559         else
4560                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4561         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4562         conf->scribble_len = scribble_len(max_disks);
4563
4564         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4565                               GFP_KERNEL);
4566         if (!conf->disks)
4567                 goto abort;
4568
4569         conf->mddev = mddev;
4570
4571         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4572                 goto abort;
4573
4574         conf->level = mddev->new_level;
4575         if (raid5_alloc_percpu(conf) != 0)
4576                 goto abort;
4577
4578         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4579
4580         list_for_each_entry(rdev, &mddev->disks, same_set) {
4581                 raid_disk = rdev->raid_disk;
4582                 if (raid_disk >= max_disks
4583                     || raid_disk < 0)
4584                         continue;
4585                 disk = conf->disks + raid_disk;
4586
4587                 disk->rdev = rdev;
4588
4589                 if (test_bit(In_sync, &rdev->flags)) {
4590                         char b[BDEVNAME_SIZE];
4591                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4592                                " disk %d\n",
4593                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4594                 } else if (rdev->saved_raid_disk != raid_disk)
4595                         /* Cannot rely on bitmap to complete recovery */
4596                         conf->fullsync = 1;
4597         }
4598
4599         conf->chunk_sectors = mddev->new_chunk_sectors;
4600         conf->level = mddev->new_level;
4601         if (conf->level == 6)
4602                 conf->max_degraded = 2;
4603         else
4604                 conf->max_degraded = 1;
4605         conf->algorithm = mddev->new_layout;
4606         conf->max_nr_stripes = NR_STRIPES;
4607         conf->reshape_progress = mddev->reshape_position;
4608         if (conf->reshape_progress != MaxSector) {
4609                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4610                 conf->prev_algo = mddev->layout;
4611         }
4612
4613         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4614                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4615         if (grow_stripes(conf, conf->max_nr_stripes)) {
4616                 printk(KERN_ERR
4617                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4618                        mdname(mddev), memory);
4619                 goto abort;
4620         } else
4621                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4622                        mdname(mddev), memory);
4623
4624         conf->thread = md_register_thread(raid5d, mddev, NULL);
4625         if (!conf->thread) {
4626                 printk(KERN_ERR
4627                        "md/raid:%s: couldn't allocate thread.\n",
4628                        mdname(mddev));
4629                 goto abort;
4630         }
4631
4632         return conf;
4633
4634  abort:
4635         if (conf) {
4636                 free_conf(conf);
4637                 return ERR_PTR(-EIO);
4638         } else
4639                 return ERR_PTR(-ENOMEM);
4640 }
4641
4642
4643 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4644 {
4645         switch (algo) {
4646         case ALGORITHM_PARITY_0:
4647                 if (raid_disk < max_degraded)
4648                         return 1;
4649                 break;
4650         case ALGORITHM_PARITY_N:
4651                 if (raid_disk >= raid_disks - max_degraded)
4652                         return 1;
4653                 break;
4654         case ALGORITHM_PARITY_0_6:
4655                 if (raid_disk == 0 || 
4656                     raid_disk == raid_disks - 1)
4657                         return 1;
4658                 break;
4659         case ALGORITHM_LEFT_ASYMMETRIC_6:
4660         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4661         case ALGORITHM_LEFT_SYMMETRIC_6:
4662         case ALGORITHM_RIGHT_SYMMETRIC_6:
4663                 if (raid_disk == raid_disks - 1)
4664                         return 1;
4665         }
4666         return 0;
4667 }
4668
4669 static int run(mddev_t *mddev)
4670 {
4671         raid5_conf_t *conf;
4672         int working_disks = 0;
4673         int dirty_parity_disks = 0;
4674         mdk_rdev_t *rdev;
4675         sector_t reshape_offset = 0;
4676
4677         if (mddev->recovery_cp != MaxSector)
4678                 printk(KERN_NOTICE "md/raid:%s: not clean"
4679                        " -- starting background reconstruction\n",
4680                        mdname(mddev));
4681         if (mddev->reshape_position != MaxSector) {
4682                 /* Check that we can continue the reshape.
4683                  * Currently only disks can change, it must
4684                  * increase, and we must be past the point where
4685                  * a stripe over-writes itself
4686                  */
4687                 sector_t here_new, here_old;
4688                 int old_disks;
4689                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4690
4691                 if (mddev->new_level != mddev->level) {
4692                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4693                                "required - aborting.\n",
4694                                mdname(mddev));
4695                         return -EINVAL;
4696                 }
4697                 old_disks = mddev->raid_disks - mddev->delta_disks;
4698                 /* reshape_position must be on a new-stripe boundary, and one
4699                  * further up in new geometry must map after here in old
4700                  * geometry.
4701                  */
4702                 here_new = mddev->reshape_position;
4703                 if (sector_div(here_new, mddev->new_chunk_sectors *
4704                                (mddev->raid_disks - max_degraded))) {
4705                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4706                                "on a stripe boundary\n", mdname(mddev));
4707                         return -EINVAL;
4708                 }
4709                 reshape_offset = here_new * mddev->new_chunk_sectors;
4710                 /* here_new is the stripe we will write to */
4711                 here_old = mddev->reshape_position;
4712                 sector_div(here_old, mddev->chunk_sectors *
4713                            (old_disks-max_degraded));
4714                 /* here_old is the first stripe that we might need to read
4715                  * from */
4716                 if (mddev->delta_disks == 0) {
4717                         /* We cannot be sure it is safe to start an in-place
4718                          * reshape.  It is only safe if user-space if monitoring
4719                          * and taking constant backups.
4720                          * mdadm always starts a situation like this in
4721                          * readonly mode so it can take control before
4722                          * allowing any writes.  So just check for that.
4723                          */
4724                         if ((here_new * mddev->new_chunk_sectors != 
4725                              here_old * mddev->chunk_sectors) ||
4726                             mddev->ro == 0) {
4727                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4728                                        " in read-only mode - aborting\n",
4729                                        mdname(mddev));
4730                                 return -EINVAL;
4731                         }
4732                 } else if (mddev->delta_disks < 0
4733                     ? (here_new * mddev->new_chunk_sectors <=
4734                        here_old * mddev->chunk_sectors)
4735                     : (here_new * mddev->new_chunk_sectors >=
4736                        here_old * mddev->chunk_sectors)) {
4737                         /* Reading from the same stripe as writing to - bad */
4738                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4739                                "auto-recovery - aborting.\n",
4740                                mdname(mddev));
4741                         return -EINVAL;
4742                 }
4743                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4744                        mdname(mddev));
4745                 /* OK, we should be able to continue; */
4746         } else {
4747                 BUG_ON(mddev->level != mddev->new_level);
4748                 BUG_ON(mddev->layout != mddev->new_layout);
4749                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4750                 BUG_ON(mddev->delta_disks != 0);
4751         }
4752
4753         if (mddev->private == NULL)
4754                 conf = setup_conf(mddev);
4755         else
4756                 conf = mddev->private;
4757
4758         if (IS_ERR(conf))
4759                 return PTR_ERR(conf);
4760
4761         mddev->thread = conf->thread;
4762         conf->thread = NULL;
4763         mddev->private = conf;
4764
4765         /*
4766          * 0 for a fully functional array, 1 or 2 for a degraded array.
4767          */
4768         list_for_each_entry(rdev, &mddev->disks, same_set) {
4769                 if (rdev->raid_disk < 0)
4770                         continue;
4771                 if (test_bit(In_sync, &rdev->flags)) {
4772                         working_disks++;
4773                         continue;
4774                 }
4775                 /* This disc is not fully in-sync.  However if it
4776                  * just stored parity (beyond the recovery_offset),
4777                  * when we don't need to be concerned about the
4778                  * array being dirty.
4779                  * When reshape goes 'backwards', we never have
4780                  * partially completed devices, so we only need
4781                  * to worry about reshape going forwards.
4782                  */
4783                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4784                 if (mddev->major_version == 0 &&
4785                     mddev->minor_version > 90)
4786                         rdev->recovery_offset = reshape_offset;
4787                         
4788                 if (rdev->recovery_offset < reshape_offset) {
4789                         /* We need to check old and new layout */
4790                         if (!only_parity(rdev->raid_disk,
4791                                          conf->algorithm,
4792                                          conf->raid_disks,
4793                                          conf->max_degraded))
4794                                 continue;
4795                 }
4796                 if (!only_parity(rdev->raid_disk,
4797                                  conf->prev_algo,
4798                                  conf->previous_raid_disks,
4799                                  conf->max_degraded))
4800                         continue;
4801                 dirty_parity_disks++;
4802         }
4803
4804         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4805                            - working_disks);
4806
4807         if (has_failed(conf)) {
4808                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4809                         " (%d/%d failed)\n",
4810                         mdname(mddev), mddev->degraded, conf->raid_disks);
4811                 goto abort;
4812         }
4813
4814         /* device size must be a multiple of chunk size */
4815         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4816         mddev->resync_max_sectors = mddev->dev_sectors;
4817
4818         if (mddev->degraded > dirty_parity_disks &&
4819             mddev->recovery_cp != MaxSector) {
4820                 if (mddev->ok_start_degraded)
4821                         printk(KERN_WARNING
4822                                "md/raid:%s: starting dirty degraded array"
4823                                " - data corruption possible.\n",
4824                                mdname(mddev));
4825                 else {
4826                         printk(KERN_ERR
4827                                "md/raid:%s: cannot start dirty degraded array.\n",
4828                                mdname(mddev));
4829                         goto abort;
4830                 }
4831         }
4832
4833         if (mddev->degraded == 0)
4834                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4835                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4836                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4837                        mddev->new_layout);
4838         else
4839                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4840                        " out of %d devices, algorithm %d\n",
4841                        mdname(mddev), conf->level,
4842                        mddev->raid_disks - mddev->degraded,
4843                        mddev->raid_disks, mddev->new_layout);
4844
4845         print_raid5_conf(conf);
4846
4847         if (conf->reshape_progress != MaxSector) {
4848                 conf->reshape_safe = conf->reshape_progress;
4849                 atomic_set(&conf->reshape_stripes, 0);
4850                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4851                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4852                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4853                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4854                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4855                                                         "reshape");
4856         }
4857
4858
4859         /* Ok, everything is just fine now */
4860         if (mddev->to_remove == &raid5_attrs_group)
4861                 mddev->to_remove = NULL;
4862         else if (mddev->kobj.sd &&
4863             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4864                 printk(KERN_WARNING
4865                        "raid5: failed to create sysfs attributes for %s\n",
4866                        mdname(mddev));
4867         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4868
4869         if (mddev->queue) {
4870                 int chunk_size;
4871                 /* read-ahead size must cover two whole stripes, which
4872                  * is 2 * (datadisks) * chunksize where 'n' is the
4873                  * number of raid devices
4874                  */
4875                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4876                 int stripe = data_disks *
4877                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4878                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4879                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4880
4881                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4882
4883                 mddev->queue->backing_dev_info.congested_data = mddev;
4884                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4885
4886                 chunk_size = mddev->chunk_sectors << 9;
4887                 blk_queue_io_min(mddev->queue, chunk_size);
4888                 blk_queue_io_opt(mddev->queue, chunk_size *
4889                                  (conf->raid_disks - conf->max_degraded));
4890
4891                 list_for_each_entry(rdev, &mddev->disks, same_set)
4892                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4893                                           rdev->data_offset << 9);
4894         }
4895
4896         return 0;
4897 abort:
4898         md_unregister_thread(mddev->thread);
4899         mddev->thread = NULL;
4900         if (conf) {
4901                 print_raid5_conf(conf);
4902                 free_conf(conf);
4903         }
4904         mddev->private = NULL;
4905         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4906         return -EIO;
4907 }
4908
4909 static int stop(mddev_t *mddev)
4910 {
4911         raid5_conf_t *conf = mddev->private;
4912
4913         md_unregister_thread(mddev->thread);
4914         mddev->thread = NULL;
4915         if (mddev->queue)
4916                 mddev->queue->backing_dev_info.congested_fn = NULL;
4917         free_conf(conf);
4918         mddev->private = NULL;
4919         mddev->to_remove = &raid5_attrs_group;
4920         return 0;
4921 }
4922
4923 #ifdef DEBUG
4924 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4925 {
4926         int i;
4927
4928         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4929                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4930         seq_printf(seq, "sh %llu,  count %d.\n",
4931                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4932         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4933         for (i = 0; i < sh->disks; i++) {
4934                 seq_printf(seq, "(cache%d: %p %ld) ",
4935                            i, sh->dev[i].page, sh->dev[i].flags);
4936         }
4937         seq_printf(seq, "\n");
4938 }
4939
4940 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4941 {
4942         struct stripe_head *sh;
4943         struct hlist_node *hn;
4944         int i;
4945
4946         spin_lock_irq(&conf->device_lock);
4947         for (i = 0; i < NR_HASH; i++) {
4948                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4949                         if (sh->raid_conf != conf)
4950                                 continue;
4951                         print_sh(seq, sh);
4952                 }
4953         }
4954         spin_unlock_irq(&conf->device_lock);
4955 }
4956 #endif
4957
4958 static void status(struct seq_file *seq, mddev_t *mddev)
4959 {
4960         raid5_conf_t *conf = mddev->private;
4961         int i;
4962
4963         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4964                 mddev->chunk_sectors / 2, mddev->layout);
4965         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4966         for (i = 0; i < conf->raid_disks; i++)
4967                 seq_printf (seq, "%s",
4968                                conf->disks[i].rdev &&
4969                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4970         seq_printf (seq, "]");
4971 #ifdef DEBUG
4972         seq_printf (seq, "\n");
4973         printall(seq, conf);
4974 #endif
4975 }
4976
4977 static void print_raid5_conf (raid5_conf_t *conf)
4978 {
4979         int i;
4980         struct disk_info *tmp;
4981
4982         printk(KERN_DEBUG "RAID conf printout:\n");
4983         if (!conf) {
4984                 printk("(conf==NULL)\n");
4985                 return;
4986         }
4987         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4988                conf->raid_disks,
4989                conf->raid_disks - conf->mddev->degraded);
4990
4991         for (i = 0; i < conf->raid_disks; i++) {
4992                 char b[BDEVNAME_SIZE];
4993                 tmp = conf->disks + i;
4994                 if (tmp->rdev)
4995                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4996                                i, !test_bit(Faulty, &tmp->rdev->flags),
4997                                bdevname(tmp->rdev->bdev, b));
4998         }
4999 }
5000
5001 static int raid5_spare_active(mddev_t *mddev)
5002 {
5003         int i;
5004         raid5_conf_t *conf = mddev->private;
5005         struct disk_info *tmp;
5006         int count = 0;
5007         unsigned long flags;
5008
5009         for (i = 0; i < conf->raid_disks; i++) {
5010                 tmp = conf->disks + i;
5011                 if (tmp->rdev
5012                     && tmp->rdev->recovery_offset == MaxSector
5013                     && !test_bit(Faulty, &tmp->rdev->flags)
5014                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5015                         count++;
5016                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5017                 }
5018         }
5019         spin_lock_irqsave(&conf->device_lock, flags);
5020         mddev->degraded -= count;
5021         spin_unlock_irqrestore(&conf->device_lock, flags);
5022         print_raid5_conf(conf);
5023         return count;
5024 }
5025
5026 static int raid5_remove_disk(mddev_t *mddev, int number)
5027 {
5028         raid5_conf_t *conf = mddev->private;
5029         int err = 0;
5030         mdk_rdev_t *rdev;
5031         struct disk_info *p = conf->disks + number;
5032
5033         print_raid5_conf(conf);
5034         rdev = p->rdev;
5035         if (rdev) {
5036                 if (number >= conf->raid_disks &&
5037                     conf->reshape_progress == MaxSector)
5038                         clear_bit(In_sync, &rdev->flags);
5039
5040                 if (test_bit(In_sync, &rdev->flags) ||
5041                     atomic_read(&rdev->nr_pending)) {
5042                         err = -EBUSY;
5043                         goto abort;
5044                 }
5045                 /* Only remove non-faulty devices if recovery
5046                  * isn't possible.
5047                  */
5048                 if (!test_bit(Faulty, &rdev->flags) &&
5049                     mddev->recovery_disabled != conf->recovery_disabled &&
5050                     !has_failed(conf) &&
5051                     number < conf->raid_disks) {
5052                         err = -EBUSY;
5053                         goto abort;
5054                 }
5055                 p->rdev = NULL;
5056                 synchronize_rcu();
5057                 if (atomic_read(&rdev->nr_pending)) {
5058                         /* lost the race, try later */
5059                         err = -EBUSY;
5060                         p->rdev = rdev;
5061                 }
5062         }
5063 abort:
5064
5065         print_raid5_conf(conf);
5066         return err;
5067 }
5068
5069 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5070 {
5071         raid5_conf_t *conf = mddev->private;
5072         int err = -EEXIST;
5073         int disk;
5074         struct disk_info *p;
5075         int first = 0;
5076         int last = conf->raid_disks - 1;
5077
5078         if (mddev->recovery_disabled == conf->recovery_disabled)
5079                 return -EBUSY;
5080
5081         if (has_failed(conf))
5082                 /* no point adding a device */
5083                 return -EINVAL;
5084
5085         if (rdev->raid_disk >= 0)
5086                 first = last = rdev->raid_disk;
5087
5088         /*
5089          * find the disk ... but prefer rdev->saved_raid_disk
5090          * if possible.
5091          */
5092         if (rdev->saved_raid_disk >= 0 &&
5093             rdev->saved_raid_disk >= first &&
5094             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5095                 disk = rdev->saved_raid_disk;
5096         else
5097                 disk = first;
5098         for ( ; disk <= last ; disk++)
5099                 if ((p=conf->disks + disk)->rdev == NULL) {
5100                         clear_bit(In_sync, &rdev->flags);
5101                         rdev->raid_disk = disk;
5102                         err = 0;
5103                         if (rdev->saved_raid_disk != disk)
5104                                 conf->fullsync = 1;
5105                         rcu_assign_pointer(p->rdev, rdev);
5106                         break;
5107                 }
5108         print_raid5_conf(conf);
5109         return err;
5110 }
5111
5112 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5113 {
5114         /* no resync is happening, and there is enough space
5115          * on all devices, so we can resize.
5116          * We need to make sure resync covers any new space.
5117          * If the array is shrinking we should possibly wait until
5118          * any io in the removed space completes, but it hardly seems
5119          * worth it.
5120          */
5121         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5122         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5123                                                mddev->raid_disks));
5124         if (mddev->array_sectors >
5125             raid5_size(mddev, sectors, mddev->raid_disks))
5126                 return -EINVAL;
5127         set_capacity(mddev->gendisk, mddev->array_sectors);
5128         revalidate_disk(mddev->gendisk);
5129         if (sectors > mddev->dev_sectors &&
5130             mddev->recovery_cp > mddev->dev_sectors) {
5131                 mddev->recovery_cp = mddev->dev_sectors;
5132                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5133         }
5134         mddev->dev_sectors = sectors;
5135         mddev->resync_max_sectors = sectors;
5136         return 0;
5137 }
5138
5139 static int check_stripe_cache(mddev_t *mddev)
5140 {
5141         /* Can only proceed if there are plenty of stripe_heads.
5142          * We need a minimum of one full stripe,, and for sensible progress
5143          * it is best to have about 4 times that.
5144          * If we require 4 times, then the default 256 4K stripe_heads will
5145          * allow for chunk sizes up to 256K, which is probably OK.
5146          * If the chunk size is greater, user-space should request more
5147          * stripe_heads first.
5148          */
5149         raid5_conf_t *conf = mddev->private;
5150         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5151             > conf->max_nr_stripes ||
5152             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5153             > conf->max_nr_stripes) {
5154                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5155                        mdname(mddev),
5156                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5157                         / STRIPE_SIZE)*4);
5158                 return 0;
5159         }
5160         return 1;
5161 }
5162
5163 static int check_reshape(mddev_t *mddev)
5164 {
5165         raid5_conf_t *conf = mddev->private;
5166
5167         if (mddev->delta_disks == 0 &&
5168             mddev->new_layout == mddev->layout &&
5169             mddev->new_chunk_sectors == mddev->chunk_sectors)
5170                 return 0; /* nothing to do */
5171         if (mddev->bitmap)
5172                 /* Cannot grow a bitmap yet */
5173                 return -EBUSY;
5174         if (has_failed(conf))
5175                 return -EINVAL;
5176         if (mddev->delta_disks < 0) {
5177                 /* We might be able to shrink, but the devices must
5178                  * be made bigger first.
5179                  * For raid6, 4 is the minimum size.
5180                  * Otherwise 2 is the minimum
5181                  */
5182                 int min = 2;
5183                 if (mddev->level == 6)
5184                         min = 4;
5185                 if (mddev->raid_disks + mddev->delta_disks < min)
5186                         return -EINVAL;
5187         }
5188
5189         if (!check_stripe_cache(mddev))
5190                 return -ENOSPC;
5191
5192         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5193 }
5194
5195 static int raid5_start_reshape(mddev_t *mddev)
5196 {
5197         raid5_conf_t *conf = mddev->private;
5198         mdk_rdev_t *rdev;
5199         int spares = 0;
5200         unsigned long flags;
5201
5202         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5203                 return -EBUSY;
5204
5205         if (!check_stripe_cache(mddev))
5206                 return -ENOSPC;
5207
5208         list_for_each_entry(rdev, &mddev->disks, same_set)
5209                 if (!test_bit(In_sync, &rdev->flags)
5210                     && !test_bit(Faulty, &rdev->flags))
5211                         spares++;
5212
5213         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5214                 /* Not enough devices even to make a degraded array
5215                  * of that size
5216                  */
5217                 return -EINVAL;
5218
5219         /* Refuse to reduce size of the array.  Any reductions in
5220          * array size must be through explicit setting of array_size
5221          * attribute.
5222          */
5223         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5224             < mddev->array_sectors) {
5225                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5226                        "before number of disks\n", mdname(mddev));
5227                 return -EINVAL;
5228         }
5229
5230         atomic_set(&conf->reshape_stripes, 0);
5231         spin_lock_irq(&conf->device_lock);
5232         conf->previous_raid_disks = conf->raid_disks;
5233         conf->raid_disks += mddev->delta_disks;
5234         conf->prev_chunk_sectors = conf->chunk_sectors;
5235         conf->chunk_sectors = mddev->new_chunk_sectors;
5236         conf->prev_algo = conf->algorithm;
5237         conf->algorithm = mddev->new_layout;
5238         if (mddev->delta_disks < 0)
5239                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5240         else
5241                 conf->reshape_progress = 0;
5242         conf->reshape_safe = conf->reshape_progress;
5243         conf->generation++;
5244         spin_unlock_irq(&conf->device_lock);
5245
5246         /* Add some new drives, as many as will fit.
5247          * We know there are enough to make the newly sized array work.
5248          * Don't add devices if we are reducing the number of
5249          * devices in the array.  This is because it is not possible
5250          * to correctly record the "partially reconstructed" state of
5251          * such devices during the reshape and confusion could result.
5252          */
5253         if (mddev->delta_disks >= 0) {
5254                 int added_devices = 0;
5255                 list_for_each_entry(rdev, &mddev->disks, same_set)
5256                         if (rdev->raid_disk < 0 &&
5257                             !test_bit(Faulty, &rdev->flags)) {
5258                                 if (raid5_add_disk(mddev, rdev) == 0) {
5259                                         if (rdev->raid_disk
5260                                             >= conf->previous_raid_disks) {
5261                                                 set_bit(In_sync, &rdev->flags);
5262                                                 added_devices++;
5263                                         } else
5264                                                 rdev->recovery_offset = 0;
5265
5266                                         if (sysfs_link_rdev(mddev, rdev))
5267                                                 /* Failure here is OK */;
5268                                 }
5269                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5270                                    && !test_bit(Faulty, &rdev->flags)) {
5271                                 /* This is a spare that was manually added */
5272                                 set_bit(In_sync, &rdev->flags);
5273                                 added_devices++;
5274                         }
5275
5276                 /* When a reshape changes the number of devices,
5277                  * ->degraded is measured against the larger of the
5278                  * pre and post number of devices.
5279                  */
5280                 spin_lock_irqsave(&conf->device_lock, flags);
5281                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5282                         - added_devices;
5283                 spin_unlock_irqrestore(&conf->device_lock, flags);
5284         }
5285         mddev->raid_disks = conf->raid_disks;
5286         mddev->reshape_position = conf->reshape_progress;
5287         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5288
5289         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5290         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5291         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5292         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5293         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5294                                                 "reshape");
5295         if (!mddev->sync_thread) {
5296                 mddev->recovery = 0;
5297                 spin_lock_irq(&conf->device_lock);
5298                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5299                 conf->reshape_progress = MaxSector;
5300                 spin_unlock_irq(&conf->device_lock);
5301                 return -EAGAIN;
5302         }
5303         conf->reshape_checkpoint = jiffies;
5304         md_wakeup_thread(mddev->sync_thread);
5305         md_new_event(mddev);
5306         return 0;
5307 }
5308
5309 /* This is called from the reshape thread and should make any
5310  * changes needed in 'conf'
5311  */
5312 static void end_reshape(raid5_conf_t *conf)
5313 {
5314
5315         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5316
5317                 spin_lock_irq(&conf->device_lock);
5318                 conf->previous_raid_disks = conf->raid_disks;
5319                 conf->reshape_progress = MaxSector;
5320                 spin_unlock_irq(&conf->device_lock);
5321                 wake_up(&conf->wait_for_overlap);
5322
5323                 /* read-ahead size must cover two whole stripes, which is
5324                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5325                  */
5326                 if (conf->mddev->queue) {
5327                         int data_disks = conf->raid_disks - conf->max_degraded;
5328                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5329                                                    / PAGE_SIZE);
5330                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5331                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5332                 }
5333         }
5334 }
5335
5336 /* This is called from the raid5d thread with mddev_lock held.
5337  * It makes config changes to the device.
5338  */
5339 static void raid5_finish_reshape(mddev_t *mddev)
5340 {
5341         raid5_conf_t *conf = mddev->private;
5342
5343         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5344
5345                 if (mddev->delta_disks > 0) {
5346                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5347                         set_capacity(mddev->gendisk, mddev->array_sectors);
5348                         revalidate_disk(mddev->gendisk);
5349                 } else {
5350                         int d;
5351                         mddev->degraded = conf->raid_disks;
5352                         for (d = 0; d < conf->raid_disks ; d++)
5353                                 if (conf->disks[d].rdev &&
5354                                     test_bit(In_sync,
5355                                              &conf->disks[d].rdev->flags))
5356                                         mddev->degraded--;
5357                         for (d = conf->raid_disks ;
5358                              d < conf->raid_disks - mddev->delta_disks;
5359                              d++) {
5360                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5361                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5362                                         sysfs_unlink_rdev(mddev, rdev);
5363                                         rdev->raid_disk = -1;
5364                                 }
5365                         }
5366                 }
5367                 mddev->layout = conf->algorithm;
5368                 mddev->chunk_sectors = conf->chunk_sectors;
5369                 mddev->reshape_position = MaxSector;
5370                 mddev->delta_disks = 0;
5371         }
5372 }
5373
5374 static void raid5_quiesce(mddev_t *mddev, int state)
5375 {
5376         raid5_conf_t *conf = mddev->private;
5377
5378         switch(state) {
5379         case 2: /* resume for a suspend */
5380                 wake_up(&conf->wait_for_overlap);
5381                 break;
5382
5383         case 1: /* stop all writes */
5384                 spin_lock_irq(&conf->device_lock);
5385                 /* '2' tells resync/reshape to pause so that all
5386                  * active stripes can drain
5387                  */
5388                 conf->quiesce = 2;
5389                 wait_event_lock_irq(conf->wait_for_stripe,
5390                                     atomic_read(&conf->active_stripes) == 0 &&
5391                                     atomic_read(&conf->active_aligned_reads) == 0,
5392                                     conf->device_lock, /* nothing */);
5393                 conf->quiesce = 1;
5394                 spin_unlock_irq(&conf->device_lock);
5395                 /* allow reshape to continue */
5396                 wake_up(&conf->wait_for_overlap);
5397                 break;
5398
5399         case 0: /* re-enable writes */
5400                 spin_lock_irq(&conf->device_lock);
5401                 conf->quiesce = 0;
5402                 wake_up(&conf->wait_for_stripe);
5403                 wake_up(&conf->wait_for_overlap);
5404                 spin_unlock_irq(&conf->device_lock);
5405                 break;
5406         }
5407 }
5408
5409
5410 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5411 {
5412         struct raid0_private_data *raid0_priv = mddev->private;
5413         sector_t sectors;
5414
5415         /* for raid0 takeover only one zone is supported */
5416         if (raid0_priv->nr_strip_zones > 1) {
5417                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5418                        mdname(mddev));
5419                 return ERR_PTR(-EINVAL);
5420         }
5421
5422         sectors = raid0_priv->strip_zone[0].zone_end;
5423         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5424         mddev->dev_sectors = sectors;
5425         mddev->new_level = level;
5426         mddev->new_layout = ALGORITHM_PARITY_N;
5427         mddev->new_chunk_sectors = mddev->chunk_sectors;
5428         mddev->raid_disks += 1;
5429         mddev->delta_disks = 1;
5430         /* make sure it will be not marked as dirty */
5431         mddev->recovery_cp = MaxSector;
5432
5433         return setup_conf(mddev);
5434 }
5435
5436
5437 static void *raid5_takeover_raid1(mddev_t *mddev)
5438 {
5439         int chunksect;
5440
5441         if (mddev->raid_disks != 2 ||
5442             mddev->degraded > 1)
5443                 return ERR_PTR(-EINVAL);
5444
5445         /* Should check if there are write-behind devices? */
5446
5447         chunksect = 64*2; /* 64K by default */
5448
5449         /* The array must be an exact multiple of chunksize */
5450         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5451                 chunksect >>= 1;
5452
5453         if ((chunksect<<9) < STRIPE_SIZE)
5454                 /* array size does not allow a suitable chunk size */
5455                 return ERR_PTR(-EINVAL);
5456
5457         mddev->new_level = 5;
5458         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5459         mddev->new_chunk_sectors = chunksect;
5460
5461         return setup_conf(mddev);
5462 }
5463
5464 static void *raid5_takeover_raid6(mddev_t *mddev)
5465 {
5466         int new_layout;
5467
5468         switch (mddev->layout) {
5469         case ALGORITHM_LEFT_ASYMMETRIC_6:
5470                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5471                 break;
5472         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5473                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5474                 break;
5475         case ALGORITHM_LEFT_SYMMETRIC_6:
5476                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5477                 break;
5478         case ALGORITHM_RIGHT_SYMMETRIC_6:
5479                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5480                 break;
5481         case ALGORITHM_PARITY_0_6:
5482                 new_layout = ALGORITHM_PARITY_0;
5483                 break;
5484         case ALGORITHM_PARITY_N:
5485                 new_layout = ALGORITHM_PARITY_N;
5486                 break;
5487         default:
5488                 return ERR_PTR(-EINVAL);
5489         }
5490         mddev->new_level = 5;
5491         mddev->new_layout = new_layout;
5492         mddev->delta_disks = -1;
5493         mddev->raid_disks -= 1;
5494         return setup_conf(mddev);
5495 }
5496
5497
5498 static int raid5_check_reshape(mddev_t *mddev)
5499 {
5500         /* For a 2-drive array, the layout and chunk size can be changed
5501          * immediately as not restriping is needed.
5502          * For larger arrays we record the new value - after validation
5503          * to be used by a reshape pass.
5504          */
5505         raid5_conf_t *conf = mddev->private;
5506         int new_chunk = mddev->new_chunk_sectors;
5507
5508         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5509                 return -EINVAL;
5510         if (new_chunk > 0) {
5511                 if (!is_power_of_2(new_chunk))
5512                         return -EINVAL;
5513                 if (new_chunk < (PAGE_SIZE>>9))
5514                         return -EINVAL;
5515                 if (mddev->array_sectors & (new_chunk-1))
5516                         /* not factor of array size */
5517                         return -EINVAL;
5518         }
5519
5520         /* They look valid */
5521
5522         if (mddev->raid_disks == 2) {
5523                 /* can make the change immediately */
5524                 if (mddev->new_layout >= 0) {
5525                         conf->algorithm = mddev->new_layout;
5526                         mddev->layout = mddev->new_layout;
5527                 }
5528                 if (new_chunk > 0) {
5529                         conf->chunk_sectors = new_chunk ;
5530                         mddev->chunk_sectors = new_chunk;
5531                 }
5532                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5533                 md_wakeup_thread(mddev->thread);
5534         }
5535         return check_reshape(mddev);
5536 }
5537
5538 static int raid6_check_reshape(mddev_t *mddev)
5539 {
5540         int new_chunk = mddev->new_chunk_sectors;
5541
5542         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5543                 return -EINVAL;
5544         if (new_chunk > 0) {
5545                 if (!is_power_of_2(new_chunk))
5546                         return -EINVAL;
5547                 if (new_chunk < (PAGE_SIZE >> 9))
5548                         return -EINVAL;
5549                 if (mddev->array_sectors & (new_chunk-1))
5550                         /* not factor of array size */
5551                         return -EINVAL;
5552         }
5553
5554         /* They look valid */
5555         return check_reshape(mddev);
5556 }
5557
5558 static void *raid5_takeover(mddev_t *mddev)
5559 {
5560         /* raid5 can take over:
5561          *  raid0 - if there is only one strip zone - make it a raid4 layout
5562          *  raid1 - if there are two drives.  We need to know the chunk size
5563          *  raid4 - trivial - just use a raid4 layout.
5564          *  raid6 - Providing it is a *_6 layout
5565          */
5566         if (mddev->level == 0)
5567                 return raid45_takeover_raid0(mddev, 5);
5568         if (mddev->level == 1)
5569                 return raid5_takeover_raid1(mddev);
5570         if (mddev->level == 4) {
5571                 mddev->new_layout = ALGORITHM_PARITY_N;
5572                 mddev->new_level = 5;
5573                 return setup_conf(mddev);
5574         }
5575         if (mddev->level == 6)
5576                 return raid5_takeover_raid6(mddev);
5577
5578         return ERR_PTR(-EINVAL);
5579 }
5580
5581 static void *raid4_takeover(mddev_t *mddev)
5582 {
5583         /* raid4 can take over:
5584          *  raid0 - if there is only one strip zone
5585          *  raid5 - if layout is right
5586          */
5587         if (mddev->level == 0)
5588                 return raid45_takeover_raid0(mddev, 4);
5589         if (mddev->level == 5 &&
5590             mddev->layout == ALGORITHM_PARITY_N) {
5591                 mddev->new_layout = 0;
5592                 mddev->new_level = 4;
5593                 return setup_conf(mddev);
5594         }
5595         return ERR_PTR(-EINVAL);
5596 }
5597
5598 static struct mdk_personality raid5_personality;
5599
5600 static void *raid6_takeover(mddev_t *mddev)
5601 {
5602         /* Currently can only take over a raid5.  We map the
5603          * personality to an equivalent raid6 personality
5604          * with the Q block at the end.
5605          */
5606         int new_layout;
5607
5608         if (mddev->pers != &raid5_personality)
5609                 return ERR_PTR(-EINVAL);
5610         if (mddev->degraded > 1)
5611                 return ERR_PTR(-EINVAL);
5612         if (mddev->raid_disks > 253)
5613                 return ERR_PTR(-EINVAL);
5614         if (mddev->raid_disks < 3)
5615                 return ERR_PTR(-EINVAL);
5616
5617         switch (mddev->layout) {
5618         case ALGORITHM_LEFT_ASYMMETRIC:
5619                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5620                 break;
5621         case ALGORITHM_RIGHT_ASYMMETRIC:
5622                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5623                 break;
5624         case ALGORITHM_LEFT_SYMMETRIC:
5625                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5626                 break;
5627         case ALGORITHM_RIGHT_SYMMETRIC:
5628                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5629                 break;
5630         case ALGORITHM_PARITY_0:
5631                 new_layout = ALGORITHM_PARITY_0_6;
5632                 break;
5633         case ALGORITHM_PARITY_N:
5634                 new_layout = ALGORITHM_PARITY_N;
5635                 break;
5636         default:
5637                 return ERR_PTR(-EINVAL);
5638         }
5639         mddev->new_level = 6;
5640         mddev->new_layout = new_layout;
5641         mddev->delta_disks = 1;
5642         mddev->raid_disks += 1;
5643         return setup_conf(mddev);
5644 }
5645
5646
5647 static struct mdk_personality raid6_personality =
5648 {
5649         .name           = "raid6",
5650         .level          = 6,
5651         .owner          = THIS_MODULE,
5652         .make_request   = make_request,
5653         .run            = run,
5654         .stop           = stop,
5655         .status         = status,
5656         .error_handler  = error,
5657         .hot_add_disk   = raid5_add_disk,
5658         .hot_remove_disk= raid5_remove_disk,
5659         .spare_active   = raid5_spare_active,
5660         .sync_request   = sync_request,
5661         .resize         = raid5_resize,
5662         .size           = raid5_size,
5663         .check_reshape  = raid6_check_reshape,
5664         .start_reshape  = raid5_start_reshape,
5665         .finish_reshape = raid5_finish_reshape,
5666         .quiesce        = raid5_quiesce,
5667         .takeover       = raid6_takeover,
5668 };
5669 static struct mdk_personality raid5_personality =
5670 {
5671         .name           = "raid5",
5672         .level          = 5,
5673         .owner          = THIS_MODULE,
5674         .make_request   = make_request,
5675         .run            = run,
5676         .stop           = stop,
5677         .status         = status,
5678         .error_handler  = error,
5679         .hot_add_disk   = raid5_add_disk,
5680         .hot_remove_disk= raid5_remove_disk,
5681         .spare_active   = raid5_spare_active,
5682         .sync_request   = sync_request,
5683         .resize         = raid5_resize,
5684         .size           = raid5_size,
5685         .check_reshape  = raid5_check_reshape,
5686         .start_reshape  = raid5_start_reshape,
5687         .finish_reshape = raid5_finish_reshape,
5688         .quiesce        = raid5_quiesce,
5689         .takeover       = raid5_takeover,
5690 };
5691
5692 static struct mdk_personality raid4_personality =
5693 {
5694         .name           = "raid4",
5695         .level          = 4,
5696         .owner          = THIS_MODULE,
5697         .make_request   = make_request,
5698         .run            = run,
5699         .stop           = stop,
5700         .status         = status,
5701         .error_handler  = error,
5702         .hot_add_disk   = raid5_add_disk,
5703         .hot_remove_disk= raid5_remove_disk,
5704         .spare_active   = raid5_spare_active,
5705         .sync_request   = sync_request,
5706         .resize         = raid5_resize,
5707         .size           = raid5_size,
5708         .check_reshape  = raid5_check_reshape,
5709         .start_reshape  = raid5_start_reshape,
5710         .finish_reshape = raid5_finish_reshape,
5711         .quiesce        = raid5_quiesce,
5712         .takeover       = raid4_takeover,
5713 };
5714
5715 static int __init raid5_init(void)
5716 {
5717         register_md_personality(&raid6_personality);
5718         register_md_personality(&raid5_personality);
5719         register_md_personality(&raid4_personality);
5720         return 0;
5721 }
5722
5723 static void raid5_exit(void)
5724 {
5725         unregister_md_personality(&raid6_personality);
5726         unregister_md_personality(&raid5_personality);
5727         unregister_md_personality(&raid4_personality);
5728 }
5729
5730 module_init(raid5_init);
5731 module_exit(raid5_exit);
5732 MODULE_LICENSE("GPL");
5733 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5734 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5735 MODULE_ALIAS("md-raid5");
5736 MODULE_ALIAS("md-raid4");
5737 MODULE_ALIAS("md-level-5");
5738 MODULE_ALIAS("md-level-4");
5739 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5740 MODULE_ALIAS("md-raid6");
5741 MODULE_ALIAS("md-level-6");
5742
5743 /* This used to be two separate modules, they were: */
5744 MODULE_ALIAS("raid5");
5745 MODULE_ALIAS("raid6");