Merge branch 'topic/kbuild-fixes-for-next' of git://git.kernel.org/pub/scm/linux...
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
89  * order without overlap.  There may be several bio's per stripe+device, and
90  * a bio could span several devices.
91  * When walking this list for a particular stripe+device, we must never proceed
92  * beyond a bio that extends past this device, as the next bio might no longer
93  * be valid.
94  * This function is used to determine the 'next' bio in the list, given the sector
95  * of the current stripe+device
96  */
97 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
98 {
99         int sectors = bio_sectors(bio);
100         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
101                 return bio->bi_next;
102         else
103                 return NULL;
104 }
105
106 /*
107  * We maintain a biased count of active stripes in the bottom 16 bits of
108  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
109  */
110 static inline int raid5_bi_processed_stripes(struct bio *bio)
111 {
112         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113         return (atomic_read(segments) >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
117 {
118         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119         return atomic_sub_return(1, segments) & 0xffff;
120 }
121
122 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
123 {
124         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
125         atomic_inc(segments);
126 }
127
128 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
129         unsigned int cnt)
130 {
131         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
132         int old, new;
133
134         do {
135                 old = atomic_read(segments);
136                 new = (old & 0xffff) | (cnt << 16);
137         } while (atomic_cmpxchg(segments, old, new) != old);
138 }
139
140 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
141 {
142         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
143         atomic_set(segments, cnt);
144 }
145
146 /* Find first data disk in a raid6 stripe */
147 static inline int raid6_d0(struct stripe_head *sh)
148 {
149         if (sh->ddf_layout)
150                 /* ddf always start from first device */
151                 return 0;
152         /* md starts just after Q block */
153         if (sh->qd_idx == sh->disks - 1)
154                 return 0;
155         else
156                 return sh->qd_idx + 1;
157 }
158 static inline int raid6_next_disk(int disk, int raid_disks)
159 {
160         disk++;
161         return (disk < raid_disks) ? disk : 0;
162 }
163
164 /* When walking through the disks in a raid5, starting at raid6_d0,
165  * We need to map each disk to a 'slot', where the data disks are slot
166  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
167  * is raid_disks-1.  This help does that mapping.
168  */
169 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
170                              int *count, int syndrome_disks)
171 {
172         int slot = *count;
173
174         if (sh->ddf_layout)
175                 (*count)++;
176         if (idx == sh->pd_idx)
177                 return syndrome_disks;
178         if (idx == sh->qd_idx)
179                 return syndrome_disks + 1;
180         if (!sh->ddf_layout)
181                 (*count)++;
182         return slot;
183 }
184
185 static void return_io(struct bio *return_bi)
186 {
187         struct bio *bi = return_bi;
188         while (bi) {
189
190                 return_bi = bi->bi_next;
191                 bi->bi_next = NULL;
192                 bi->bi_size = 0;
193                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
194                                          bi, 0);
195                 bio_endio(bi, 0);
196                 bi = return_bi;
197         }
198 }
199
200 static void print_raid5_conf (struct r5conf *conf);
201
202 static int stripe_operations_active(struct stripe_head *sh)
203 {
204         return sh->check_state || sh->reconstruct_state ||
205                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
206                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
207 }
208
209 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
210 {
211         struct r5conf *conf = sh->raid_conf;
212         struct r5worker_group *group;
213         int thread_cnt;
214         int i, cpu = sh->cpu;
215
216         if (!cpu_online(cpu)) {
217                 cpu = cpumask_any(cpu_online_mask);
218                 sh->cpu = cpu;
219         }
220
221         if (list_empty(&sh->lru)) {
222                 struct r5worker_group *group;
223                 group = conf->worker_groups + cpu_to_group(cpu);
224                 list_add_tail(&sh->lru, &group->handle_list);
225                 group->stripes_cnt++;
226                 sh->group = group;
227         }
228
229         if (conf->worker_cnt_per_group == 0) {
230                 md_wakeup_thread(conf->mddev->thread);
231                 return;
232         }
233
234         group = conf->worker_groups + cpu_to_group(sh->cpu);
235
236         group->workers[0].working = true;
237         /* at least one worker should run to avoid race */
238         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
239
240         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
241         /* wakeup more workers */
242         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
243                 if (group->workers[i].working == false) {
244                         group->workers[i].working = true;
245                         queue_work_on(sh->cpu, raid5_wq,
246                                       &group->workers[i].work);
247                         thread_cnt--;
248                 }
249         }
250 }
251
252 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
253 {
254         BUG_ON(!list_empty(&sh->lru));
255         BUG_ON(atomic_read(&conf->active_stripes)==0);
256         if (test_bit(STRIPE_HANDLE, &sh->state)) {
257                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
258                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
259                         list_add_tail(&sh->lru, &conf->delayed_list);
260                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
261                            sh->bm_seq - conf->seq_write > 0)
262                         list_add_tail(&sh->lru, &conf->bitmap_list);
263                 else {
264                         clear_bit(STRIPE_DELAYED, &sh->state);
265                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
266                         if (conf->worker_cnt_per_group == 0) {
267                                 list_add_tail(&sh->lru, &conf->handle_list);
268                         } else {
269                                 raid5_wakeup_stripe_thread(sh);
270                                 return;
271                         }
272                 }
273                 md_wakeup_thread(conf->mddev->thread);
274         } else {
275                 BUG_ON(stripe_operations_active(sh));
276                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
277                         if (atomic_dec_return(&conf->preread_active_stripes)
278                             < IO_THRESHOLD)
279                                 md_wakeup_thread(conf->mddev->thread);
280                 atomic_dec(&conf->active_stripes);
281                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282                         list_add_tail(&sh->lru, &conf->inactive_list);
283                         wake_up(&conf->wait_for_stripe);
284                         if (conf->retry_read_aligned)
285                                 md_wakeup_thread(conf->mddev->thread);
286                 }
287         }
288 }
289
290 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
291 {
292         if (atomic_dec_and_test(&sh->count))
293                 do_release_stripe(conf, sh);
294 }
295
296 /* should hold conf->device_lock already */
297 static int release_stripe_list(struct r5conf *conf)
298 {
299         struct stripe_head *sh;
300         int count = 0;
301         struct llist_node *head;
302
303         head = llist_del_all(&conf->released_stripes);
304         head = llist_reverse_order(head);
305         while (head) {
306                 sh = llist_entry(head, struct stripe_head, release_list);
307                 head = llist_next(head);
308                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
309                 smp_mb();
310                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
311                 /*
312                  * Don't worry the bit is set here, because if the bit is set
313                  * again, the count is always > 1. This is true for
314                  * STRIPE_ON_UNPLUG_LIST bit too.
315                  */
316                 __release_stripe(conf, sh);
317                 count++;
318         }
319
320         return count;
321 }
322
323 static void release_stripe(struct stripe_head *sh)
324 {
325         struct r5conf *conf = sh->raid_conf;
326         unsigned long flags;
327         bool wakeup;
328
329         if (test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
330                 goto slow_path;
331         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
332         if (wakeup)
333                 md_wakeup_thread(conf->mddev->thread);
334         return;
335 slow_path:
336         local_irq_save(flags);
337         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
338         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
339                 do_release_stripe(conf, sh);
340                 spin_unlock(&conf->device_lock);
341         }
342         local_irq_restore(flags);
343 }
344
345 static inline void remove_hash(struct stripe_head *sh)
346 {
347         pr_debug("remove_hash(), stripe %llu\n",
348                 (unsigned long long)sh->sector);
349
350         hlist_del_init(&sh->hash);
351 }
352
353 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
354 {
355         struct hlist_head *hp = stripe_hash(conf, sh->sector);
356
357         pr_debug("insert_hash(), stripe %llu\n",
358                 (unsigned long long)sh->sector);
359
360         hlist_add_head(&sh->hash, hp);
361 }
362
363
364 /* find an idle stripe, make sure it is unhashed, and return it. */
365 static struct stripe_head *get_free_stripe(struct r5conf *conf)
366 {
367         struct stripe_head *sh = NULL;
368         struct list_head *first;
369
370         if (list_empty(&conf->inactive_list))
371                 goto out;
372         first = conf->inactive_list.next;
373         sh = list_entry(first, struct stripe_head, lru);
374         list_del_init(first);
375         remove_hash(sh);
376         atomic_inc(&conf->active_stripes);
377 out:
378         return sh;
379 }
380
381 static void shrink_buffers(struct stripe_head *sh)
382 {
383         struct page *p;
384         int i;
385         int num = sh->raid_conf->pool_size;
386
387         for (i = 0; i < num ; i++) {
388                 p = sh->dev[i].page;
389                 if (!p)
390                         continue;
391                 sh->dev[i].page = NULL;
392                 put_page(p);
393         }
394 }
395
396 static int grow_buffers(struct stripe_head *sh)
397 {
398         int i;
399         int num = sh->raid_conf->pool_size;
400
401         for (i = 0; i < num; i++) {
402                 struct page *page;
403
404                 if (!(page = alloc_page(GFP_KERNEL))) {
405                         return 1;
406                 }
407                 sh->dev[i].page = page;
408         }
409         return 0;
410 }
411
412 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
413 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
414                             struct stripe_head *sh);
415
416 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
417 {
418         struct r5conf *conf = sh->raid_conf;
419         int i;
420
421         BUG_ON(atomic_read(&sh->count) != 0);
422         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
423         BUG_ON(stripe_operations_active(sh));
424
425         pr_debug("init_stripe called, stripe %llu\n",
426                 (unsigned long long)sh->sector);
427
428         remove_hash(sh);
429
430         sh->generation = conf->generation - previous;
431         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
432         sh->sector = sector;
433         stripe_set_idx(sector, conf, previous, sh);
434         sh->state = 0;
435
436
437         for (i = sh->disks; i--; ) {
438                 struct r5dev *dev = &sh->dev[i];
439
440                 if (dev->toread || dev->read || dev->towrite || dev->written ||
441                     test_bit(R5_LOCKED, &dev->flags)) {
442                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
443                                (unsigned long long)sh->sector, i, dev->toread,
444                                dev->read, dev->towrite, dev->written,
445                                test_bit(R5_LOCKED, &dev->flags));
446                         WARN_ON(1);
447                 }
448                 dev->flags = 0;
449                 raid5_build_block(sh, i, previous);
450         }
451         insert_hash(conf, sh);
452         sh->cpu = smp_processor_id();
453 }
454
455 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
456                                          short generation)
457 {
458         struct stripe_head *sh;
459
460         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
461         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
462                 if (sh->sector == sector && sh->generation == generation)
463                         return sh;
464         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
465         return NULL;
466 }
467
468 /*
469  * Need to check if array has failed when deciding whether to:
470  *  - start an array
471  *  - remove non-faulty devices
472  *  - add a spare
473  *  - allow a reshape
474  * This determination is simple when no reshape is happening.
475  * However if there is a reshape, we need to carefully check
476  * both the before and after sections.
477  * This is because some failed devices may only affect one
478  * of the two sections, and some non-in_sync devices may
479  * be insync in the section most affected by failed devices.
480  */
481 static int calc_degraded(struct r5conf *conf)
482 {
483         int degraded, degraded2;
484         int i;
485
486         rcu_read_lock();
487         degraded = 0;
488         for (i = 0; i < conf->previous_raid_disks; i++) {
489                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
490                 if (rdev && test_bit(Faulty, &rdev->flags))
491                         rdev = rcu_dereference(conf->disks[i].replacement);
492                 if (!rdev || test_bit(Faulty, &rdev->flags))
493                         degraded++;
494                 else if (test_bit(In_sync, &rdev->flags))
495                         ;
496                 else
497                         /* not in-sync or faulty.
498                          * If the reshape increases the number of devices,
499                          * this is being recovered by the reshape, so
500                          * this 'previous' section is not in_sync.
501                          * If the number of devices is being reduced however,
502                          * the device can only be part of the array if
503                          * we are reverting a reshape, so this section will
504                          * be in-sync.
505                          */
506                         if (conf->raid_disks >= conf->previous_raid_disks)
507                                 degraded++;
508         }
509         rcu_read_unlock();
510         if (conf->raid_disks == conf->previous_raid_disks)
511                 return degraded;
512         rcu_read_lock();
513         degraded2 = 0;
514         for (i = 0; i < conf->raid_disks; i++) {
515                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
516                 if (rdev && test_bit(Faulty, &rdev->flags))
517                         rdev = rcu_dereference(conf->disks[i].replacement);
518                 if (!rdev || test_bit(Faulty, &rdev->flags))
519                         degraded2++;
520                 else if (test_bit(In_sync, &rdev->flags))
521                         ;
522                 else
523                         /* not in-sync or faulty.
524                          * If reshape increases the number of devices, this
525                          * section has already been recovered, else it
526                          * almost certainly hasn't.
527                          */
528                         if (conf->raid_disks <= conf->previous_raid_disks)
529                                 degraded2++;
530         }
531         rcu_read_unlock();
532         if (degraded2 > degraded)
533                 return degraded2;
534         return degraded;
535 }
536
537 static int has_failed(struct r5conf *conf)
538 {
539         int degraded;
540
541         if (conf->mddev->reshape_position == MaxSector)
542                 return conf->mddev->degraded > conf->max_degraded;
543
544         degraded = calc_degraded(conf);
545         if (degraded > conf->max_degraded)
546                 return 1;
547         return 0;
548 }
549
550 static struct stripe_head *
551 get_active_stripe(struct r5conf *conf, sector_t sector,
552                   int previous, int noblock, int noquiesce)
553 {
554         struct stripe_head *sh;
555
556         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
557
558         spin_lock_irq(&conf->device_lock);
559
560         do {
561                 wait_event_lock_irq(conf->wait_for_stripe,
562                                     conf->quiesce == 0 || noquiesce,
563                                     conf->device_lock);
564                 sh = __find_stripe(conf, sector, conf->generation - previous);
565                 if (!sh) {
566                         if (!conf->inactive_blocked)
567                                 sh = get_free_stripe(conf);
568                         if (noblock && sh == NULL)
569                                 break;
570                         if (!sh) {
571                                 conf->inactive_blocked = 1;
572                                 wait_event_lock_irq(conf->wait_for_stripe,
573                                                     !list_empty(&conf->inactive_list) &&
574                                                     (atomic_read(&conf->active_stripes)
575                                                      < (conf->max_nr_stripes *3/4)
576                                                      || !conf->inactive_blocked),
577                                                     conf->device_lock);
578                                 conf->inactive_blocked = 0;
579                         } else
580                                 init_stripe(sh, sector, previous);
581                 } else {
582                         if (atomic_read(&sh->count)) {
583                                 BUG_ON(!list_empty(&sh->lru)
584                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
585                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
586                                     && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
587                         } else {
588                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
589                                         atomic_inc(&conf->active_stripes);
590                                 if (list_empty(&sh->lru) &&
591                                     !test_bit(STRIPE_EXPANDING, &sh->state))
592                                         BUG();
593                                 list_del_init(&sh->lru);
594                                 if (sh->group) {
595                                         sh->group->stripes_cnt--;
596                                         sh->group = NULL;
597                                 }
598                         }
599                 }
600         } while (sh == NULL);
601
602         if (sh)
603                 atomic_inc(&sh->count);
604
605         spin_unlock_irq(&conf->device_lock);
606         return sh;
607 }
608
609 /* Determine if 'data_offset' or 'new_data_offset' should be used
610  * in this stripe_head.
611  */
612 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
613 {
614         sector_t progress = conf->reshape_progress;
615         /* Need a memory barrier to make sure we see the value
616          * of conf->generation, or ->data_offset that was set before
617          * reshape_progress was updated.
618          */
619         smp_rmb();
620         if (progress == MaxSector)
621                 return 0;
622         if (sh->generation == conf->generation - 1)
623                 return 0;
624         /* We are in a reshape, and this is a new-generation stripe,
625          * so use new_data_offset.
626          */
627         return 1;
628 }
629
630 static void
631 raid5_end_read_request(struct bio *bi, int error);
632 static void
633 raid5_end_write_request(struct bio *bi, int error);
634
635 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
636 {
637         struct r5conf *conf = sh->raid_conf;
638         int i, disks = sh->disks;
639
640         might_sleep();
641
642         for (i = disks; i--; ) {
643                 int rw;
644                 int replace_only = 0;
645                 struct bio *bi, *rbi;
646                 struct md_rdev *rdev, *rrdev = NULL;
647                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
648                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
649                                 rw = WRITE_FUA;
650                         else
651                                 rw = WRITE;
652                         if (test_bit(R5_Discard, &sh->dev[i].flags))
653                                 rw |= REQ_DISCARD;
654                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
655                         rw = READ;
656                 else if (test_and_clear_bit(R5_WantReplace,
657                                             &sh->dev[i].flags)) {
658                         rw = WRITE;
659                         replace_only = 1;
660                 } else
661                         continue;
662                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
663                         rw |= REQ_SYNC;
664
665                 bi = &sh->dev[i].req;
666                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
667
668                 rcu_read_lock();
669                 rrdev = rcu_dereference(conf->disks[i].replacement);
670                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
671                 rdev = rcu_dereference(conf->disks[i].rdev);
672                 if (!rdev) {
673                         rdev = rrdev;
674                         rrdev = NULL;
675                 }
676                 if (rw & WRITE) {
677                         if (replace_only)
678                                 rdev = NULL;
679                         if (rdev == rrdev)
680                                 /* We raced and saw duplicates */
681                                 rrdev = NULL;
682                 } else {
683                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
684                                 rdev = rrdev;
685                         rrdev = NULL;
686                 }
687
688                 if (rdev && test_bit(Faulty, &rdev->flags))
689                         rdev = NULL;
690                 if (rdev)
691                         atomic_inc(&rdev->nr_pending);
692                 if (rrdev && test_bit(Faulty, &rrdev->flags))
693                         rrdev = NULL;
694                 if (rrdev)
695                         atomic_inc(&rrdev->nr_pending);
696                 rcu_read_unlock();
697
698                 /* We have already checked bad blocks for reads.  Now
699                  * need to check for writes.  We never accept write errors
700                  * on the replacement, so we don't to check rrdev.
701                  */
702                 while ((rw & WRITE) && rdev &&
703                        test_bit(WriteErrorSeen, &rdev->flags)) {
704                         sector_t first_bad;
705                         int bad_sectors;
706                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
707                                               &first_bad, &bad_sectors);
708                         if (!bad)
709                                 break;
710
711                         if (bad < 0) {
712                                 set_bit(BlockedBadBlocks, &rdev->flags);
713                                 if (!conf->mddev->external &&
714                                     conf->mddev->flags) {
715                                         /* It is very unlikely, but we might
716                                          * still need to write out the
717                                          * bad block log - better give it
718                                          * a chance*/
719                                         md_check_recovery(conf->mddev);
720                                 }
721                                 /*
722                                  * Because md_wait_for_blocked_rdev
723                                  * will dec nr_pending, we must
724                                  * increment it first.
725                                  */
726                                 atomic_inc(&rdev->nr_pending);
727                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
728                         } else {
729                                 /* Acknowledged bad block - skip the write */
730                                 rdev_dec_pending(rdev, conf->mddev);
731                                 rdev = NULL;
732                         }
733                 }
734
735                 if (rdev) {
736                         if (s->syncing || s->expanding || s->expanded
737                             || s->replacing)
738                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
739
740                         set_bit(STRIPE_IO_STARTED, &sh->state);
741
742                         bio_reset(bi);
743                         bi->bi_bdev = rdev->bdev;
744                         bi->bi_rw = rw;
745                         bi->bi_end_io = (rw & WRITE)
746                                 ? raid5_end_write_request
747                                 : raid5_end_read_request;
748                         bi->bi_private = sh;
749
750                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
751                                 __func__, (unsigned long long)sh->sector,
752                                 bi->bi_rw, i);
753                         atomic_inc(&sh->count);
754                         if (use_new_offset(conf, sh))
755                                 bi->bi_sector = (sh->sector
756                                                  + rdev->new_data_offset);
757                         else
758                                 bi->bi_sector = (sh->sector
759                                                  + rdev->data_offset);
760                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
761                                 bi->bi_rw |= REQ_FLUSH;
762
763                         bi->bi_vcnt = 1;
764                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
765                         bi->bi_io_vec[0].bv_offset = 0;
766                         bi->bi_size = STRIPE_SIZE;
767                         /*
768                          * If this is discard request, set bi_vcnt 0. We don't
769                          * want to confuse SCSI because SCSI will replace payload
770                          */
771                         if (rw & REQ_DISCARD)
772                                 bi->bi_vcnt = 0;
773                         if (rrdev)
774                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
775
776                         if (conf->mddev->gendisk)
777                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
778                                                       bi, disk_devt(conf->mddev->gendisk),
779                                                       sh->dev[i].sector);
780                         generic_make_request(bi);
781                 }
782                 if (rrdev) {
783                         if (s->syncing || s->expanding || s->expanded
784                             || s->replacing)
785                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
786
787                         set_bit(STRIPE_IO_STARTED, &sh->state);
788
789                         bio_reset(rbi);
790                         rbi->bi_bdev = rrdev->bdev;
791                         rbi->bi_rw = rw;
792                         BUG_ON(!(rw & WRITE));
793                         rbi->bi_end_io = raid5_end_write_request;
794                         rbi->bi_private = sh;
795
796                         pr_debug("%s: for %llu schedule op %ld on "
797                                  "replacement disc %d\n",
798                                 __func__, (unsigned long long)sh->sector,
799                                 rbi->bi_rw, i);
800                         atomic_inc(&sh->count);
801                         if (use_new_offset(conf, sh))
802                                 rbi->bi_sector = (sh->sector
803                                                   + rrdev->new_data_offset);
804                         else
805                                 rbi->bi_sector = (sh->sector
806                                                   + rrdev->data_offset);
807                         rbi->bi_vcnt = 1;
808                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
809                         rbi->bi_io_vec[0].bv_offset = 0;
810                         rbi->bi_size = STRIPE_SIZE;
811                         /*
812                          * If this is discard request, set bi_vcnt 0. We don't
813                          * want to confuse SCSI because SCSI will replace payload
814                          */
815                         if (rw & REQ_DISCARD)
816                                 rbi->bi_vcnt = 0;
817                         if (conf->mddev->gendisk)
818                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
819                                                       rbi, disk_devt(conf->mddev->gendisk),
820                                                       sh->dev[i].sector);
821                         generic_make_request(rbi);
822                 }
823                 if (!rdev && !rrdev) {
824                         if (rw & WRITE)
825                                 set_bit(STRIPE_DEGRADED, &sh->state);
826                         pr_debug("skip op %ld on disc %d for sector %llu\n",
827                                 bi->bi_rw, i, (unsigned long long)sh->sector);
828                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
829                         set_bit(STRIPE_HANDLE, &sh->state);
830                 }
831         }
832 }
833
834 static struct dma_async_tx_descriptor *
835 async_copy_data(int frombio, struct bio *bio, struct page *page,
836         sector_t sector, struct dma_async_tx_descriptor *tx)
837 {
838         struct bio_vec *bvl;
839         struct page *bio_page;
840         int i;
841         int page_offset;
842         struct async_submit_ctl submit;
843         enum async_tx_flags flags = 0;
844
845         if (bio->bi_sector >= sector)
846                 page_offset = (signed)(bio->bi_sector - sector) * 512;
847         else
848                 page_offset = (signed)(sector - bio->bi_sector) * -512;
849
850         if (frombio)
851                 flags |= ASYNC_TX_FENCE;
852         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
853
854         bio_for_each_segment(bvl, bio, i) {
855                 int len = bvl->bv_len;
856                 int clen;
857                 int b_offset = 0;
858
859                 if (page_offset < 0) {
860                         b_offset = -page_offset;
861                         page_offset += b_offset;
862                         len -= b_offset;
863                 }
864
865                 if (len > 0 && page_offset + len > STRIPE_SIZE)
866                         clen = STRIPE_SIZE - page_offset;
867                 else
868                         clen = len;
869
870                 if (clen > 0) {
871                         b_offset += bvl->bv_offset;
872                         bio_page = bvl->bv_page;
873                         if (frombio)
874                                 tx = async_memcpy(page, bio_page, page_offset,
875                                                   b_offset, clen, &submit);
876                         else
877                                 tx = async_memcpy(bio_page, page, b_offset,
878                                                   page_offset, clen, &submit);
879                 }
880                 /* chain the operations */
881                 submit.depend_tx = tx;
882
883                 if (clen < len) /* hit end of page */
884                         break;
885                 page_offset +=  len;
886         }
887
888         return tx;
889 }
890
891 static void ops_complete_biofill(void *stripe_head_ref)
892 {
893         struct stripe_head *sh = stripe_head_ref;
894         struct bio *return_bi = NULL;
895         int i;
896
897         pr_debug("%s: stripe %llu\n", __func__,
898                 (unsigned long long)sh->sector);
899
900         /* clear completed biofills */
901         for (i = sh->disks; i--; ) {
902                 struct r5dev *dev = &sh->dev[i];
903
904                 /* acknowledge completion of a biofill operation */
905                 /* and check if we need to reply to a read request,
906                  * new R5_Wantfill requests are held off until
907                  * !STRIPE_BIOFILL_RUN
908                  */
909                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
910                         struct bio *rbi, *rbi2;
911
912                         BUG_ON(!dev->read);
913                         rbi = dev->read;
914                         dev->read = NULL;
915                         while (rbi && rbi->bi_sector <
916                                 dev->sector + STRIPE_SECTORS) {
917                                 rbi2 = r5_next_bio(rbi, dev->sector);
918                                 if (!raid5_dec_bi_active_stripes(rbi)) {
919                                         rbi->bi_next = return_bi;
920                                         return_bi = rbi;
921                                 }
922                                 rbi = rbi2;
923                         }
924                 }
925         }
926         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
927
928         return_io(return_bi);
929
930         set_bit(STRIPE_HANDLE, &sh->state);
931         release_stripe(sh);
932 }
933
934 static void ops_run_biofill(struct stripe_head *sh)
935 {
936         struct dma_async_tx_descriptor *tx = NULL;
937         struct async_submit_ctl submit;
938         int i;
939
940         pr_debug("%s: stripe %llu\n", __func__,
941                 (unsigned long long)sh->sector);
942
943         for (i = sh->disks; i--; ) {
944                 struct r5dev *dev = &sh->dev[i];
945                 if (test_bit(R5_Wantfill, &dev->flags)) {
946                         struct bio *rbi;
947                         spin_lock_irq(&sh->stripe_lock);
948                         dev->read = rbi = dev->toread;
949                         dev->toread = NULL;
950                         spin_unlock_irq(&sh->stripe_lock);
951                         while (rbi && rbi->bi_sector <
952                                 dev->sector + STRIPE_SECTORS) {
953                                 tx = async_copy_data(0, rbi, dev->page,
954                                         dev->sector, tx);
955                                 rbi = r5_next_bio(rbi, dev->sector);
956                         }
957                 }
958         }
959
960         atomic_inc(&sh->count);
961         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
962         async_trigger_callback(&submit);
963 }
964
965 static void mark_target_uptodate(struct stripe_head *sh, int target)
966 {
967         struct r5dev *tgt;
968
969         if (target < 0)
970                 return;
971
972         tgt = &sh->dev[target];
973         set_bit(R5_UPTODATE, &tgt->flags);
974         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
975         clear_bit(R5_Wantcompute, &tgt->flags);
976 }
977
978 static void ops_complete_compute(void *stripe_head_ref)
979 {
980         struct stripe_head *sh = stripe_head_ref;
981
982         pr_debug("%s: stripe %llu\n", __func__,
983                 (unsigned long long)sh->sector);
984
985         /* mark the computed target(s) as uptodate */
986         mark_target_uptodate(sh, sh->ops.target);
987         mark_target_uptodate(sh, sh->ops.target2);
988
989         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
990         if (sh->check_state == check_state_compute_run)
991                 sh->check_state = check_state_compute_result;
992         set_bit(STRIPE_HANDLE, &sh->state);
993         release_stripe(sh);
994 }
995
996 /* return a pointer to the address conversion region of the scribble buffer */
997 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
998                                  struct raid5_percpu *percpu)
999 {
1000         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1001 }
1002
1003 static struct dma_async_tx_descriptor *
1004 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1005 {
1006         int disks = sh->disks;
1007         struct page **xor_srcs = percpu->scribble;
1008         int target = sh->ops.target;
1009         struct r5dev *tgt = &sh->dev[target];
1010         struct page *xor_dest = tgt->page;
1011         int count = 0;
1012         struct dma_async_tx_descriptor *tx;
1013         struct async_submit_ctl submit;
1014         int i;
1015
1016         pr_debug("%s: stripe %llu block: %d\n",
1017                 __func__, (unsigned long long)sh->sector, target);
1018         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1019
1020         for (i = disks; i--; )
1021                 if (i != target)
1022                         xor_srcs[count++] = sh->dev[i].page;
1023
1024         atomic_inc(&sh->count);
1025
1026         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1027                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1028         if (unlikely(count == 1))
1029                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1030         else
1031                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1032
1033         return tx;
1034 }
1035
1036 /* set_syndrome_sources - populate source buffers for gen_syndrome
1037  * @srcs - (struct page *) array of size sh->disks
1038  * @sh - stripe_head to parse
1039  *
1040  * Populates srcs in proper layout order for the stripe and returns the
1041  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1042  * destination buffer is recorded in srcs[count] and the Q destination
1043  * is recorded in srcs[count+1]].
1044  */
1045 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1046 {
1047         int disks = sh->disks;
1048         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1049         int d0_idx = raid6_d0(sh);
1050         int count;
1051         int i;
1052
1053         for (i = 0; i < disks; i++)
1054                 srcs[i] = NULL;
1055
1056         count = 0;
1057         i = d0_idx;
1058         do {
1059                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1060
1061                 srcs[slot] = sh->dev[i].page;
1062                 i = raid6_next_disk(i, disks);
1063         } while (i != d0_idx);
1064
1065         return syndrome_disks;
1066 }
1067
1068 static struct dma_async_tx_descriptor *
1069 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1070 {
1071         int disks = sh->disks;
1072         struct page **blocks = percpu->scribble;
1073         int target;
1074         int qd_idx = sh->qd_idx;
1075         struct dma_async_tx_descriptor *tx;
1076         struct async_submit_ctl submit;
1077         struct r5dev *tgt;
1078         struct page *dest;
1079         int i;
1080         int count;
1081
1082         if (sh->ops.target < 0)
1083                 target = sh->ops.target2;
1084         else if (sh->ops.target2 < 0)
1085                 target = sh->ops.target;
1086         else
1087                 /* we should only have one valid target */
1088                 BUG();
1089         BUG_ON(target < 0);
1090         pr_debug("%s: stripe %llu block: %d\n",
1091                 __func__, (unsigned long long)sh->sector, target);
1092
1093         tgt = &sh->dev[target];
1094         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1095         dest = tgt->page;
1096
1097         atomic_inc(&sh->count);
1098
1099         if (target == qd_idx) {
1100                 count = set_syndrome_sources(blocks, sh);
1101                 blocks[count] = NULL; /* regenerating p is not necessary */
1102                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1103                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1104                                   ops_complete_compute, sh,
1105                                   to_addr_conv(sh, percpu));
1106                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1107         } else {
1108                 /* Compute any data- or p-drive using XOR */
1109                 count = 0;
1110                 for (i = disks; i-- ; ) {
1111                         if (i == target || i == qd_idx)
1112                                 continue;
1113                         blocks[count++] = sh->dev[i].page;
1114                 }
1115
1116                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1117                                   NULL, ops_complete_compute, sh,
1118                                   to_addr_conv(sh, percpu));
1119                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1120         }
1121
1122         return tx;
1123 }
1124
1125 static struct dma_async_tx_descriptor *
1126 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1127 {
1128         int i, count, disks = sh->disks;
1129         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1130         int d0_idx = raid6_d0(sh);
1131         int faila = -1, failb = -1;
1132         int target = sh->ops.target;
1133         int target2 = sh->ops.target2;
1134         struct r5dev *tgt = &sh->dev[target];
1135         struct r5dev *tgt2 = &sh->dev[target2];
1136         struct dma_async_tx_descriptor *tx;
1137         struct page **blocks = percpu->scribble;
1138         struct async_submit_ctl submit;
1139
1140         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1141                  __func__, (unsigned long long)sh->sector, target, target2);
1142         BUG_ON(target < 0 || target2 < 0);
1143         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1144         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1145
1146         /* we need to open-code set_syndrome_sources to handle the
1147          * slot number conversion for 'faila' and 'failb'
1148          */
1149         for (i = 0; i < disks ; i++)
1150                 blocks[i] = NULL;
1151         count = 0;
1152         i = d0_idx;
1153         do {
1154                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1155
1156                 blocks[slot] = sh->dev[i].page;
1157
1158                 if (i == target)
1159                         faila = slot;
1160                 if (i == target2)
1161                         failb = slot;
1162                 i = raid6_next_disk(i, disks);
1163         } while (i != d0_idx);
1164
1165         BUG_ON(faila == failb);
1166         if (failb < faila)
1167                 swap(faila, failb);
1168         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1169                  __func__, (unsigned long long)sh->sector, faila, failb);
1170
1171         atomic_inc(&sh->count);
1172
1173         if (failb == syndrome_disks+1) {
1174                 /* Q disk is one of the missing disks */
1175                 if (faila == syndrome_disks) {
1176                         /* Missing P+Q, just recompute */
1177                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1178                                           ops_complete_compute, sh,
1179                                           to_addr_conv(sh, percpu));
1180                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1181                                                   STRIPE_SIZE, &submit);
1182                 } else {
1183                         struct page *dest;
1184                         int data_target;
1185                         int qd_idx = sh->qd_idx;
1186
1187                         /* Missing D+Q: recompute D from P, then recompute Q */
1188                         if (target == qd_idx)
1189                                 data_target = target2;
1190                         else
1191                                 data_target = target;
1192
1193                         count = 0;
1194                         for (i = disks; i-- ; ) {
1195                                 if (i == data_target || i == qd_idx)
1196                                         continue;
1197                                 blocks[count++] = sh->dev[i].page;
1198                         }
1199                         dest = sh->dev[data_target].page;
1200                         init_async_submit(&submit,
1201                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1202                                           NULL, NULL, NULL,
1203                                           to_addr_conv(sh, percpu));
1204                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1205                                        &submit);
1206
1207                         count = set_syndrome_sources(blocks, sh);
1208                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1209                                           ops_complete_compute, sh,
1210                                           to_addr_conv(sh, percpu));
1211                         return async_gen_syndrome(blocks, 0, count+2,
1212                                                   STRIPE_SIZE, &submit);
1213                 }
1214         } else {
1215                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1216                                   ops_complete_compute, sh,
1217                                   to_addr_conv(sh, percpu));
1218                 if (failb == syndrome_disks) {
1219                         /* We're missing D+P. */
1220                         return async_raid6_datap_recov(syndrome_disks+2,
1221                                                        STRIPE_SIZE, faila,
1222                                                        blocks, &submit);
1223                 } else {
1224                         /* We're missing D+D. */
1225                         return async_raid6_2data_recov(syndrome_disks+2,
1226                                                        STRIPE_SIZE, faila, failb,
1227                                                        blocks, &submit);
1228                 }
1229         }
1230 }
1231
1232
1233 static void ops_complete_prexor(void *stripe_head_ref)
1234 {
1235         struct stripe_head *sh = stripe_head_ref;
1236
1237         pr_debug("%s: stripe %llu\n", __func__,
1238                 (unsigned long long)sh->sector);
1239 }
1240
1241 static struct dma_async_tx_descriptor *
1242 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1243                struct dma_async_tx_descriptor *tx)
1244 {
1245         int disks = sh->disks;
1246         struct page **xor_srcs = percpu->scribble;
1247         int count = 0, pd_idx = sh->pd_idx, i;
1248         struct async_submit_ctl submit;
1249
1250         /* existing parity data subtracted */
1251         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1252
1253         pr_debug("%s: stripe %llu\n", __func__,
1254                 (unsigned long long)sh->sector);
1255
1256         for (i = disks; i--; ) {
1257                 struct r5dev *dev = &sh->dev[i];
1258                 /* Only process blocks that are known to be uptodate */
1259                 if (test_bit(R5_Wantdrain, &dev->flags))
1260                         xor_srcs[count++] = dev->page;
1261         }
1262
1263         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1264                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1265         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1266
1267         return tx;
1268 }
1269
1270 static struct dma_async_tx_descriptor *
1271 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1272 {
1273         int disks = sh->disks;
1274         int i;
1275
1276         pr_debug("%s: stripe %llu\n", __func__,
1277                 (unsigned long long)sh->sector);
1278
1279         for (i = disks; i--; ) {
1280                 struct r5dev *dev = &sh->dev[i];
1281                 struct bio *chosen;
1282
1283                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1284                         struct bio *wbi;
1285
1286                         spin_lock_irq(&sh->stripe_lock);
1287                         chosen = dev->towrite;
1288                         dev->towrite = NULL;
1289                         BUG_ON(dev->written);
1290                         wbi = dev->written = chosen;
1291                         spin_unlock_irq(&sh->stripe_lock);
1292
1293                         while (wbi && wbi->bi_sector <
1294                                 dev->sector + STRIPE_SECTORS) {
1295                                 if (wbi->bi_rw & REQ_FUA)
1296                                         set_bit(R5_WantFUA, &dev->flags);
1297                                 if (wbi->bi_rw & REQ_SYNC)
1298                                         set_bit(R5_SyncIO, &dev->flags);
1299                                 if (wbi->bi_rw & REQ_DISCARD)
1300                                         set_bit(R5_Discard, &dev->flags);
1301                                 else
1302                                         tx = async_copy_data(1, wbi, dev->page,
1303                                                 dev->sector, tx);
1304                                 wbi = r5_next_bio(wbi, dev->sector);
1305                         }
1306                 }
1307         }
1308
1309         return tx;
1310 }
1311
1312 static void ops_complete_reconstruct(void *stripe_head_ref)
1313 {
1314         struct stripe_head *sh = stripe_head_ref;
1315         int disks = sh->disks;
1316         int pd_idx = sh->pd_idx;
1317         int qd_idx = sh->qd_idx;
1318         int i;
1319         bool fua = false, sync = false, discard = false;
1320
1321         pr_debug("%s: stripe %llu\n", __func__,
1322                 (unsigned long long)sh->sector);
1323
1324         for (i = disks; i--; ) {
1325                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1326                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1327                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1328         }
1329
1330         for (i = disks; i--; ) {
1331                 struct r5dev *dev = &sh->dev[i];
1332
1333                 if (dev->written || i == pd_idx || i == qd_idx) {
1334                         if (!discard)
1335                                 set_bit(R5_UPTODATE, &dev->flags);
1336                         if (fua)
1337                                 set_bit(R5_WantFUA, &dev->flags);
1338                         if (sync)
1339                                 set_bit(R5_SyncIO, &dev->flags);
1340                 }
1341         }
1342
1343         if (sh->reconstruct_state == reconstruct_state_drain_run)
1344                 sh->reconstruct_state = reconstruct_state_drain_result;
1345         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1346                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1347         else {
1348                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1349                 sh->reconstruct_state = reconstruct_state_result;
1350         }
1351
1352         set_bit(STRIPE_HANDLE, &sh->state);
1353         release_stripe(sh);
1354 }
1355
1356 static void
1357 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1358                      struct dma_async_tx_descriptor *tx)
1359 {
1360         int disks = sh->disks;
1361         struct page **xor_srcs = percpu->scribble;
1362         struct async_submit_ctl submit;
1363         int count = 0, pd_idx = sh->pd_idx, i;
1364         struct page *xor_dest;
1365         int prexor = 0;
1366         unsigned long flags;
1367
1368         pr_debug("%s: stripe %llu\n", __func__,
1369                 (unsigned long long)sh->sector);
1370
1371         for (i = 0; i < sh->disks; i++) {
1372                 if (pd_idx == i)
1373                         continue;
1374                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1375                         break;
1376         }
1377         if (i >= sh->disks) {
1378                 atomic_inc(&sh->count);
1379                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1380                 ops_complete_reconstruct(sh);
1381                 return;
1382         }
1383         /* check if prexor is active which means only process blocks
1384          * that are part of a read-modify-write (written)
1385          */
1386         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1387                 prexor = 1;
1388                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1389                 for (i = disks; i--; ) {
1390                         struct r5dev *dev = &sh->dev[i];
1391                         if (dev->written)
1392                                 xor_srcs[count++] = dev->page;
1393                 }
1394         } else {
1395                 xor_dest = sh->dev[pd_idx].page;
1396                 for (i = disks; i--; ) {
1397                         struct r5dev *dev = &sh->dev[i];
1398                         if (i != pd_idx)
1399                                 xor_srcs[count++] = dev->page;
1400                 }
1401         }
1402
1403         /* 1/ if we prexor'd then the dest is reused as a source
1404          * 2/ if we did not prexor then we are redoing the parity
1405          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1406          * for the synchronous xor case
1407          */
1408         flags = ASYNC_TX_ACK |
1409                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1410
1411         atomic_inc(&sh->count);
1412
1413         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1414                           to_addr_conv(sh, percpu));
1415         if (unlikely(count == 1))
1416                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1417         else
1418                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1419 }
1420
1421 static void
1422 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1423                      struct dma_async_tx_descriptor *tx)
1424 {
1425         struct async_submit_ctl submit;
1426         struct page **blocks = percpu->scribble;
1427         int count, i;
1428
1429         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1430
1431         for (i = 0; i < sh->disks; i++) {
1432                 if (sh->pd_idx == i || sh->qd_idx == i)
1433                         continue;
1434                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1435                         break;
1436         }
1437         if (i >= sh->disks) {
1438                 atomic_inc(&sh->count);
1439                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1440                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1441                 ops_complete_reconstruct(sh);
1442                 return;
1443         }
1444
1445         count = set_syndrome_sources(blocks, sh);
1446
1447         atomic_inc(&sh->count);
1448
1449         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1450                           sh, to_addr_conv(sh, percpu));
1451         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1452 }
1453
1454 static void ops_complete_check(void *stripe_head_ref)
1455 {
1456         struct stripe_head *sh = stripe_head_ref;
1457
1458         pr_debug("%s: stripe %llu\n", __func__,
1459                 (unsigned long long)sh->sector);
1460
1461         sh->check_state = check_state_check_result;
1462         set_bit(STRIPE_HANDLE, &sh->state);
1463         release_stripe(sh);
1464 }
1465
1466 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1467 {
1468         int disks = sh->disks;
1469         int pd_idx = sh->pd_idx;
1470         int qd_idx = sh->qd_idx;
1471         struct page *xor_dest;
1472         struct page **xor_srcs = percpu->scribble;
1473         struct dma_async_tx_descriptor *tx;
1474         struct async_submit_ctl submit;
1475         int count;
1476         int i;
1477
1478         pr_debug("%s: stripe %llu\n", __func__,
1479                 (unsigned long long)sh->sector);
1480
1481         count = 0;
1482         xor_dest = sh->dev[pd_idx].page;
1483         xor_srcs[count++] = xor_dest;
1484         for (i = disks; i--; ) {
1485                 if (i == pd_idx || i == qd_idx)
1486                         continue;
1487                 xor_srcs[count++] = sh->dev[i].page;
1488         }
1489
1490         init_async_submit(&submit, 0, NULL, NULL, NULL,
1491                           to_addr_conv(sh, percpu));
1492         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1493                            &sh->ops.zero_sum_result, &submit);
1494
1495         atomic_inc(&sh->count);
1496         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1497         tx = async_trigger_callback(&submit);
1498 }
1499
1500 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1501 {
1502         struct page **srcs = percpu->scribble;
1503         struct async_submit_ctl submit;
1504         int count;
1505
1506         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1507                 (unsigned long long)sh->sector, checkp);
1508
1509         count = set_syndrome_sources(srcs, sh);
1510         if (!checkp)
1511                 srcs[count] = NULL;
1512
1513         atomic_inc(&sh->count);
1514         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1515                           sh, to_addr_conv(sh, percpu));
1516         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1517                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1518 }
1519
1520 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1521 {
1522         int overlap_clear = 0, i, disks = sh->disks;
1523         struct dma_async_tx_descriptor *tx = NULL;
1524         struct r5conf *conf = sh->raid_conf;
1525         int level = conf->level;
1526         struct raid5_percpu *percpu;
1527         unsigned long cpu;
1528
1529         cpu = get_cpu();
1530         percpu = per_cpu_ptr(conf->percpu, cpu);
1531         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1532                 ops_run_biofill(sh);
1533                 overlap_clear++;
1534         }
1535
1536         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1537                 if (level < 6)
1538                         tx = ops_run_compute5(sh, percpu);
1539                 else {
1540                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1541                                 tx = ops_run_compute6_1(sh, percpu);
1542                         else
1543                                 tx = ops_run_compute6_2(sh, percpu);
1544                 }
1545                 /* terminate the chain if reconstruct is not set to be run */
1546                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1547                         async_tx_ack(tx);
1548         }
1549
1550         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1551                 tx = ops_run_prexor(sh, percpu, tx);
1552
1553         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1554                 tx = ops_run_biodrain(sh, tx);
1555                 overlap_clear++;
1556         }
1557
1558         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1559                 if (level < 6)
1560                         ops_run_reconstruct5(sh, percpu, tx);
1561                 else
1562                         ops_run_reconstruct6(sh, percpu, tx);
1563         }
1564
1565         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1566                 if (sh->check_state == check_state_run)
1567                         ops_run_check_p(sh, percpu);
1568                 else if (sh->check_state == check_state_run_q)
1569                         ops_run_check_pq(sh, percpu, 0);
1570                 else if (sh->check_state == check_state_run_pq)
1571                         ops_run_check_pq(sh, percpu, 1);
1572                 else
1573                         BUG();
1574         }
1575
1576         if (overlap_clear)
1577                 for (i = disks; i--; ) {
1578                         struct r5dev *dev = &sh->dev[i];
1579                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1580                                 wake_up(&sh->raid_conf->wait_for_overlap);
1581                 }
1582         put_cpu();
1583 }
1584
1585 static int grow_one_stripe(struct r5conf *conf)
1586 {
1587         struct stripe_head *sh;
1588         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1589         if (!sh)
1590                 return 0;
1591
1592         sh->raid_conf = conf;
1593
1594         spin_lock_init(&sh->stripe_lock);
1595
1596         if (grow_buffers(sh)) {
1597                 shrink_buffers(sh);
1598                 kmem_cache_free(conf->slab_cache, sh);
1599                 return 0;
1600         }
1601         /* we just created an active stripe so... */
1602         atomic_set(&sh->count, 1);
1603         atomic_inc(&conf->active_stripes);
1604         INIT_LIST_HEAD(&sh->lru);
1605         release_stripe(sh);
1606         return 1;
1607 }
1608
1609 static int grow_stripes(struct r5conf *conf, int num)
1610 {
1611         struct kmem_cache *sc;
1612         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1613
1614         if (conf->mddev->gendisk)
1615                 sprintf(conf->cache_name[0],
1616                         "raid%d-%s", conf->level, mdname(conf->mddev));
1617         else
1618                 sprintf(conf->cache_name[0],
1619                         "raid%d-%p", conf->level, conf->mddev);
1620         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1621
1622         conf->active_name = 0;
1623         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1624                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1625                                0, 0, NULL);
1626         if (!sc)
1627                 return 1;
1628         conf->slab_cache = sc;
1629         conf->pool_size = devs;
1630         while (num--)
1631                 if (!grow_one_stripe(conf))
1632                         return 1;
1633         return 0;
1634 }
1635
1636 /**
1637  * scribble_len - return the required size of the scribble region
1638  * @num - total number of disks in the array
1639  *
1640  * The size must be enough to contain:
1641  * 1/ a struct page pointer for each device in the array +2
1642  * 2/ room to convert each entry in (1) to its corresponding dma
1643  *    (dma_map_page()) or page (page_address()) address.
1644  *
1645  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1646  * calculate over all devices (not just the data blocks), using zeros in place
1647  * of the P and Q blocks.
1648  */
1649 static size_t scribble_len(int num)
1650 {
1651         size_t len;
1652
1653         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1654
1655         return len;
1656 }
1657
1658 static int resize_stripes(struct r5conf *conf, int newsize)
1659 {
1660         /* Make all the stripes able to hold 'newsize' devices.
1661          * New slots in each stripe get 'page' set to a new page.
1662          *
1663          * This happens in stages:
1664          * 1/ create a new kmem_cache and allocate the required number of
1665          *    stripe_heads.
1666          * 2/ gather all the old stripe_heads and transfer the pages across
1667          *    to the new stripe_heads.  This will have the side effect of
1668          *    freezing the array as once all stripe_heads have been collected,
1669          *    no IO will be possible.  Old stripe heads are freed once their
1670          *    pages have been transferred over, and the old kmem_cache is
1671          *    freed when all stripes are done.
1672          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1673          *    we simple return a failre status - no need to clean anything up.
1674          * 4/ allocate new pages for the new slots in the new stripe_heads.
1675          *    If this fails, we don't bother trying the shrink the
1676          *    stripe_heads down again, we just leave them as they are.
1677          *    As each stripe_head is processed the new one is released into
1678          *    active service.
1679          *
1680          * Once step2 is started, we cannot afford to wait for a write,
1681          * so we use GFP_NOIO allocations.
1682          */
1683         struct stripe_head *osh, *nsh;
1684         LIST_HEAD(newstripes);
1685         struct disk_info *ndisks;
1686         unsigned long cpu;
1687         int err;
1688         struct kmem_cache *sc;
1689         int i;
1690
1691         if (newsize <= conf->pool_size)
1692                 return 0; /* never bother to shrink */
1693
1694         err = md_allow_write(conf->mddev);
1695         if (err)
1696                 return err;
1697
1698         /* Step 1 */
1699         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1700                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1701                                0, 0, NULL);
1702         if (!sc)
1703                 return -ENOMEM;
1704
1705         for (i = conf->max_nr_stripes; i; i--) {
1706                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1707                 if (!nsh)
1708                         break;
1709
1710                 nsh->raid_conf = conf;
1711                 spin_lock_init(&nsh->stripe_lock);
1712
1713                 list_add(&nsh->lru, &newstripes);
1714         }
1715         if (i) {
1716                 /* didn't get enough, give up */
1717                 while (!list_empty(&newstripes)) {
1718                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1719                         list_del(&nsh->lru);
1720                         kmem_cache_free(sc, nsh);
1721                 }
1722                 kmem_cache_destroy(sc);
1723                 return -ENOMEM;
1724         }
1725         /* Step 2 - Must use GFP_NOIO now.
1726          * OK, we have enough stripes, start collecting inactive
1727          * stripes and copying them over
1728          */
1729         list_for_each_entry(nsh, &newstripes, lru) {
1730                 spin_lock_irq(&conf->device_lock);
1731                 wait_event_lock_irq(conf->wait_for_stripe,
1732                                     !list_empty(&conf->inactive_list),
1733                                     conf->device_lock);
1734                 osh = get_free_stripe(conf);
1735                 spin_unlock_irq(&conf->device_lock);
1736                 atomic_set(&nsh->count, 1);
1737                 for(i=0; i<conf->pool_size; i++)
1738                         nsh->dev[i].page = osh->dev[i].page;
1739                 for( ; i<newsize; i++)
1740                         nsh->dev[i].page = NULL;
1741                 kmem_cache_free(conf->slab_cache, osh);
1742         }
1743         kmem_cache_destroy(conf->slab_cache);
1744
1745         /* Step 3.
1746          * At this point, we are holding all the stripes so the array
1747          * is completely stalled, so now is a good time to resize
1748          * conf->disks and the scribble region
1749          */
1750         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1751         if (ndisks) {
1752                 for (i=0; i<conf->raid_disks; i++)
1753                         ndisks[i] = conf->disks[i];
1754                 kfree(conf->disks);
1755                 conf->disks = ndisks;
1756         } else
1757                 err = -ENOMEM;
1758
1759         get_online_cpus();
1760         conf->scribble_len = scribble_len(newsize);
1761         for_each_present_cpu(cpu) {
1762                 struct raid5_percpu *percpu;
1763                 void *scribble;
1764
1765                 percpu = per_cpu_ptr(conf->percpu, cpu);
1766                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1767
1768                 if (scribble) {
1769                         kfree(percpu->scribble);
1770                         percpu->scribble = scribble;
1771                 } else {
1772                         err = -ENOMEM;
1773                         break;
1774                 }
1775         }
1776         put_online_cpus();
1777
1778         /* Step 4, return new stripes to service */
1779         while(!list_empty(&newstripes)) {
1780                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1781                 list_del_init(&nsh->lru);
1782
1783                 for (i=conf->raid_disks; i < newsize; i++)
1784                         if (nsh->dev[i].page == NULL) {
1785                                 struct page *p = alloc_page(GFP_NOIO);
1786                                 nsh->dev[i].page = p;
1787                                 if (!p)
1788                                         err = -ENOMEM;
1789                         }
1790                 release_stripe(nsh);
1791         }
1792         /* critical section pass, GFP_NOIO no longer needed */
1793
1794         conf->slab_cache = sc;
1795         conf->active_name = 1-conf->active_name;
1796         conf->pool_size = newsize;
1797         return err;
1798 }
1799
1800 static int drop_one_stripe(struct r5conf *conf)
1801 {
1802         struct stripe_head *sh;
1803
1804         spin_lock_irq(&conf->device_lock);
1805         sh = get_free_stripe(conf);
1806         spin_unlock_irq(&conf->device_lock);
1807         if (!sh)
1808                 return 0;
1809         BUG_ON(atomic_read(&sh->count));
1810         shrink_buffers(sh);
1811         kmem_cache_free(conf->slab_cache, sh);
1812         atomic_dec(&conf->active_stripes);
1813         return 1;
1814 }
1815
1816 static void shrink_stripes(struct r5conf *conf)
1817 {
1818         while (drop_one_stripe(conf))
1819                 ;
1820
1821         if (conf->slab_cache)
1822                 kmem_cache_destroy(conf->slab_cache);
1823         conf->slab_cache = NULL;
1824 }
1825
1826 static void raid5_end_read_request(struct bio * bi, int error)
1827 {
1828         struct stripe_head *sh = bi->bi_private;
1829         struct r5conf *conf = sh->raid_conf;
1830         int disks = sh->disks, i;
1831         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1832         char b[BDEVNAME_SIZE];
1833         struct md_rdev *rdev = NULL;
1834         sector_t s;
1835
1836         for (i=0 ; i<disks; i++)
1837                 if (bi == &sh->dev[i].req)
1838                         break;
1839
1840         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1841                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1842                 uptodate);
1843         if (i == disks) {
1844                 BUG();
1845                 return;
1846         }
1847         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1848                 /* If replacement finished while this request was outstanding,
1849                  * 'replacement' might be NULL already.
1850                  * In that case it moved down to 'rdev'.
1851                  * rdev is not removed until all requests are finished.
1852                  */
1853                 rdev = conf->disks[i].replacement;
1854         if (!rdev)
1855                 rdev = conf->disks[i].rdev;
1856
1857         if (use_new_offset(conf, sh))
1858                 s = sh->sector + rdev->new_data_offset;
1859         else
1860                 s = sh->sector + rdev->data_offset;
1861         if (uptodate) {
1862                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1863                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1864                         /* Note that this cannot happen on a
1865                          * replacement device.  We just fail those on
1866                          * any error
1867                          */
1868                         printk_ratelimited(
1869                                 KERN_INFO
1870                                 "md/raid:%s: read error corrected"
1871                                 " (%lu sectors at %llu on %s)\n",
1872                                 mdname(conf->mddev), STRIPE_SECTORS,
1873                                 (unsigned long long)s,
1874                                 bdevname(rdev->bdev, b));
1875                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1876                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1877                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1878                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1879                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1880
1881                 if (atomic_read(&rdev->read_errors))
1882                         atomic_set(&rdev->read_errors, 0);
1883         } else {
1884                 const char *bdn = bdevname(rdev->bdev, b);
1885                 int retry = 0;
1886                 int set_bad = 0;
1887
1888                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1889                 atomic_inc(&rdev->read_errors);
1890                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1891                         printk_ratelimited(
1892                                 KERN_WARNING
1893                                 "md/raid:%s: read error on replacement device "
1894                                 "(sector %llu on %s).\n",
1895                                 mdname(conf->mddev),
1896                                 (unsigned long long)s,
1897                                 bdn);
1898                 else if (conf->mddev->degraded >= conf->max_degraded) {
1899                         set_bad = 1;
1900                         printk_ratelimited(
1901                                 KERN_WARNING
1902                                 "md/raid:%s: read error not correctable "
1903                                 "(sector %llu on %s).\n",
1904                                 mdname(conf->mddev),
1905                                 (unsigned long long)s,
1906                                 bdn);
1907                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1908                         /* Oh, no!!! */
1909                         set_bad = 1;
1910                         printk_ratelimited(
1911                                 KERN_WARNING
1912                                 "md/raid:%s: read error NOT corrected!! "
1913                                 "(sector %llu on %s).\n",
1914                                 mdname(conf->mddev),
1915                                 (unsigned long long)s,
1916                                 bdn);
1917                 } else if (atomic_read(&rdev->read_errors)
1918                          > conf->max_nr_stripes)
1919                         printk(KERN_WARNING
1920                                "md/raid:%s: Too many read errors, failing device %s.\n",
1921                                mdname(conf->mddev), bdn);
1922                 else
1923                         retry = 1;
1924                 if (retry)
1925                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1926                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1927                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1928                         } else
1929                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1930                 else {
1931                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1932                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1933                         if (!(set_bad
1934                               && test_bit(In_sync, &rdev->flags)
1935                               && rdev_set_badblocks(
1936                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1937                                 md_error(conf->mddev, rdev);
1938                 }
1939         }
1940         rdev_dec_pending(rdev, conf->mddev);
1941         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1942         set_bit(STRIPE_HANDLE, &sh->state);
1943         release_stripe(sh);
1944 }
1945
1946 static void raid5_end_write_request(struct bio *bi, int error)
1947 {
1948         struct stripe_head *sh = bi->bi_private;
1949         struct r5conf *conf = sh->raid_conf;
1950         int disks = sh->disks, i;
1951         struct md_rdev *uninitialized_var(rdev);
1952         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1953         sector_t first_bad;
1954         int bad_sectors;
1955         int replacement = 0;
1956
1957         for (i = 0 ; i < disks; i++) {
1958                 if (bi == &sh->dev[i].req) {
1959                         rdev = conf->disks[i].rdev;
1960                         break;
1961                 }
1962                 if (bi == &sh->dev[i].rreq) {
1963                         rdev = conf->disks[i].replacement;
1964                         if (rdev)
1965                                 replacement = 1;
1966                         else
1967                                 /* rdev was removed and 'replacement'
1968                                  * replaced it.  rdev is not removed
1969                                  * until all requests are finished.
1970                                  */
1971                                 rdev = conf->disks[i].rdev;
1972                         break;
1973                 }
1974         }
1975         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1976                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1977                 uptodate);
1978         if (i == disks) {
1979                 BUG();
1980                 return;
1981         }
1982
1983         if (replacement) {
1984                 if (!uptodate)
1985                         md_error(conf->mddev, rdev);
1986                 else if (is_badblock(rdev, sh->sector,
1987                                      STRIPE_SECTORS,
1988                                      &first_bad, &bad_sectors))
1989                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1990         } else {
1991                 if (!uptodate) {
1992                         set_bit(WriteErrorSeen, &rdev->flags);
1993                         set_bit(R5_WriteError, &sh->dev[i].flags);
1994                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1995                                 set_bit(MD_RECOVERY_NEEDED,
1996                                         &rdev->mddev->recovery);
1997                 } else if (is_badblock(rdev, sh->sector,
1998                                        STRIPE_SECTORS,
1999                                        &first_bad, &bad_sectors)) {
2000                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2001                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2002                                 /* That was a successful write so make
2003                                  * sure it looks like we already did
2004                                  * a re-write.
2005                                  */
2006                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2007                 }
2008         }
2009         rdev_dec_pending(rdev, conf->mddev);
2010
2011         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2012                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2013         set_bit(STRIPE_HANDLE, &sh->state);
2014         release_stripe(sh);
2015 }
2016
2017 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2018         
2019 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2020 {
2021         struct r5dev *dev = &sh->dev[i];
2022
2023         bio_init(&dev->req);
2024         dev->req.bi_io_vec = &dev->vec;
2025         dev->req.bi_vcnt++;
2026         dev->req.bi_max_vecs++;
2027         dev->req.bi_private = sh;
2028         dev->vec.bv_page = dev->page;
2029
2030         bio_init(&dev->rreq);
2031         dev->rreq.bi_io_vec = &dev->rvec;
2032         dev->rreq.bi_vcnt++;
2033         dev->rreq.bi_max_vecs++;
2034         dev->rreq.bi_private = sh;
2035         dev->rvec.bv_page = dev->page;
2036
2037         dev->flags = 0;
2038         dev->sector = compute_blocknr(sh, i, previous);
2039 }
2040
2041 static void error(struct mddev *mddev, struct md_rdev *rdev)
2042 {
2043         char b[BDEVNAME_SIZE];
2044         struct r5conf *conf = mddev->private;
2045         unsigned long flags;
2046         pr_debug("raid456: error called\n");
2047
2048         spin_lock_irqsave(&conf->device_lock, flags);
2049         clear_bit(In_sync, &rdev->flags);
2050         mddev->degraded = calc_degraded(conf);
2051         spin_unlock_irqrestore(&conf->device_lock, flags);
2052         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2053
2054         set_bit(Blocked, &rdev->flags);
2055         set_bit(Faulty, &rdev->flags);
2056         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2057         printk(KERN_ALERT
2058                "md/raid:%s: Disk failure on %s, disabling device.\n"
2059                "md/raid:%s: Operation continuing on %d devices.\n",
2060                mdname(mddev),
2061                bdevname(rdev->bdev, b),
2062                mdname(mddev),
2063                conf->raid_disks - mddev->degraded);
2064 }
2065
2066 /*
2067  * Input: a 'big' sector number,
2068  * Output: index of the data and parity disk, and the sector # in them.
2069  */
2070 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2071                                      int previous, int *dd_idx,
2072                                      struct stripe_head *sh)
2073 {
2074         sector_t stripe, stripe2;
2075         sector_t chunk_number;
2076         unsigned int chunk_offset;
2077         int pd_idx, qd_idx;
2078         int ddf_layout = 0;
2079         sector_t new_sector;
2080         int algorithm = previous ? conf->prev_algo
2081                                  : conf->algorithm;
2082         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2083                                          : conf->chunk_sectors;
2084         int raid_disks = previous ? conf->previous_raid_disks
2085                                   : conf->raid_disks;
2086         int data_disks = raid_disks - conf->max_degraded;
2087
2088         /* First compute the information on this sector */
2089
2090         /*
2091          * Compute the chunk number and the sector offset inside the chunk
2092          */
2093         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2094         chunk_number = r_sector;
2095
2096         /*
2097          * Compute the stripe number
2098          */
2099         stripe = chunk_number;
2100         *dd_idx = sector_div(stripe, data_disks);
2101         stripe2 = stripe;
2102         /*
2103          * Select the parity disk based on the user selected algorithm.
2104          */
2105         pd_idx = qd_idx = -1;
2106         switch(conf->level) {
2107         case 4:
2108                 pd_idx = data_disks;
2109                 break;
2110         case 5:
2111                 switch (algorithm) {
2112                 case ALGORITHM_LEFT_ASYMMETRIC:
2113                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2114                         if (*dd_idx >= pd_idx)
2115                                 (*dd_idx)++;
2116                         break;
2117                 case ALGORITHM_RIGHT_ASYMMETRIC:
2118                         pd_idx = sector_div(stripe2, raid_disks);
2119                         if (*dd_idx >= pd_idx)
2120                                 (*dd_idx)++;
2121                         break;
2122                 case ALGORITHM_LEFT_SYMMETRIC:
2123                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2124                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2125                         break;
2126                 case ALGORITHM_RIGHT_SYMMETRIC:
2127                         pd_idx = sector_div(stripe2, raid_disks);
2128                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2129                         break;
2130                 case ALGORITHM_PARITY_0:
2131                         pd_idx = 0;
2132                         (*dd_idx)++;
2133                         break;
2134                 case ALGORITHM_PARITY_N:
2135                         pd_idx = data_disks;
2136                         break;
2137                 default:
2138                         BUG();
2139                 }
2140                 break;
2141         case 6:
2142
2143                 switch (algorithm) {
2144                 case ALGORITHM_LEFT_ASYMMETRIC:
2145                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2146                         qd_idx = pd_idx + 1;
2147                         if (pd_idx == raid_disks-1) {
2148                                 (*dd_idx)++;    /* Q D D D P */
2149                                 qd_idx = 0;
2150                         } else if (*dd_idx >= pd_idx)
2151                                 (*dd_idx) += 2; /* D D P Q D */
2152                         break;
2153                 case ALGORITHM_RIGHT_ASYMMETRIC:
2154                         pd_idx = sector_div(stripe2, raid_disks);
2155                         qd_idx = pd_idx + 1;
2156                         if (pd_idx == raid_disks-1) {
2157                                 (*dd_idx)++;    /* Q D D D P */
2158                                 qd_idx = 0;
2159                         } else if (*dd_idx >= pd_idx)
2160                                 (*dd_idx) += 2; /* D D P Q D */
2161                         break;
2162                 case ALGORITHM_LEFT_SYMMETRIC:
2163                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2164                         qd_idx = (pd_idx + 1) % raid_disks;
2165                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2166                         break;
2167                 case ALGORITHM_RIGHT_SYMMETRIC:
2168                         pd_idx = sector_div(stripe2, raid_disks);
2169                         qd_idx = (pd_idx + 1) % raid_disks;
2170                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2171                         break;
2172
2173                 case ALGORITHM_PARITY_0:
2174                         pd_idx = 0;
2175                         qd_idx = 1;
2176                         (*dd_idx) += 2;
2177                         break;
2178                 case ALGORITHM_PARITY_N:
2179                         pd_idx = data_disks;
2180                         qd_idx = data_disks + 1;
2181                         break;
2182
2183                 case ALGORITHM_ROTATING_ZERO_RESTART:
2184                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2185                          * of blocks for computing Q is different.
2186                          */
2187                         pd_idx = sector_div(stripe2, raid_disks);
2188                         qd_idx = pd_idx + 1;
2189                         if (pd_idx == raid_disks-1) {
2190                                 (*dd_idx)++;    /* Q D D D P */
2191                                 qd_idx = 0;
2192                         } else if (*dd_idx >= pd_idx)
2193                                 (*dd_idx) += 2; /* D D P Q D */
2194                         ddf_layout = 1;
2195                         break;
2196
2197                 case ALGORITHM_ROTATING_N_RESTART:
2198                         /* Same a left_asymmetric, by first stripe is
2199                          * D D D P Q  rather than
2200                          * Q D D D P
2201                          */
2202                         stripe2 += 1;
2203                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2204                         qd_idx = pd_idx + 1;
2205                         if (pd_idx == raid_disks-1) {
2206                                 (*dd_idx)++;    /* Q D D D P */
2207                                 qd_idx = 0;
2208                         } else if (*dd_idx >= pd_idx)
2209                                 (*dd_idx) += 2; /* D D P Q D */
2210                         ddf_layout = 1;
2211                         break;
2212
2213                 case ALGORITHM_ROTATING_N_CONTINUE:
2214                         /* Same as left_symmetric but Q is before P */
2215                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2216                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2217                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2218                         ddf_layout = 1;
2219                         break;
2220
2221                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2222                         /* RAID5 left_asymmetric, with Q on last device */
2223                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2224                         if (*dd_idx >= pd_idx)
2225                                 (*dd_idx)++;
2226                         qd_idx = raid_disks - 1;
2227                         break;
2228
2229                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2230                         pd_idx = sector_div(stripe2, raid_disks-1);
2231                         if (*dd_idx >= pd_idx)
2232                                 (*dd_idx)++;
2233                         qd_idx = raid_disks - 1;
2234                         break;
2235
2236                 case ALGORITHM_LEFT_SYMMETRIC_6:
2237                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2238                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2239                         qd_idx = raid_disks - 1;
2240                         break;
2241
2242                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2243                         pd_idx = sector_div(stripe2, raid_disks-1);
2244                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2245                         qd_idx = raid_disks - 1;
2246                         break;
2247
2248                 case ALGORITHM_PARITY_0_6:
2249                         pd_idx = 0;
2250                         (*dd_idx)++;
2251                         qd_idx = raid_disks - 1;
2252                         break;
2253
2254                 default:
2255                         BUG();
2256                 }
2257                 break;
2258         }
2259
2260         if (sh) {
2261                 sh->pd_idx = pd_idx;
2262                 sh->qd_idx = qd_idx;
2263                 sh->ddf_layout = ddf_layout;
2264         }
2265         /*
2266          * Finally, compute the new sector number
2267          */
2268         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2269         return new_sector;
2270 }
2271
2272
2273 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2274 {
2275         struct r5conf *conf = sh->raid_conf;
2276         int raid_disks = sh->disks;
2277         int data_disks = raid_disks - conf->max_degraded;
2278         sector_t new_sector = sh->sector, check;
2279         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2280                                          : conf->chunk_sectors;
2281         int algorithm = previous ? conf->prev_algo
2282                                  : conf->algorithm;
2283         sector_t stripe;
2284         int chunk_offset;
2285         sector_t chunk_number;
2286         int dummy1, dd_idx = i;
2287         sector_t r_sector;
2288         struct stripe_head sh2;
2289
2290
2291         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2292         stripe = new_sector;
2293
2294         if (i == sh->pd_idx)
2295                 return 0;
2296         switch(conf->level) {
2297         case 4: break;
2298         case 5:
2299                 switch (algorithm) {
2300                 case ALGORITHM_LEFT_ASYMMETRIC:
2301                 case ALGORITHM_RIGHT_ASYMMETRIC:
2302                         if (i > sh->pd_idx)
2303                                 i--;
2304                         break;
2305                 case ALGORITHM_LEFT_SYMMETRIC:
2306                 case ALGORITHM_RIGHT_SYMMETRIC:
2307                         if (i < sh->pd_idx)
2308                                 i += raid_disks;
2309                         i -= (sh->pd_idx + 1);
2310                         break;
2311                 case ALGORITHM_PARITY_0:
2312                         i -= 1;
2313                         break;
2314                 case ALGORITHM_PARITY_N:
2315                         break;
2316                 default:
2317                         BUG();
2318                 }
2319                 break;
2320         case 6:
2321                 if (i == sh->qd_idx)
2322                         return 0; /* It is the Q disk */
2323                 switch (algorithm) {
2324                 case ALGORITHM_LEFT_ASYMMETRIC:
2325                 case ALGORITHM_RIGHT_ASYMMETRIC:
2326                 case ALGORITHM_ROTATING_ZERO_RESTART:
2327                 case ALGORITHM_ROTATING_N_RESTART:
2328                         if (sh->pd_idx == raid_disks-1)
2329                                 i--;    /* Q D D D P */
2330                         else if (i > sh->pd_idx)
2331                                 i -= 2; /* D D P Q D */
2332                         break;
2333                 case ALGORITHM_LEFT_SYMMETRIC:
2334                 case ALGORITHM_RIGHT_SYMMETRIC:
2335                         if (sh->pd_idx == raid_disks-1)
2336                                 i--; /* Q D D D P */
2337                         else {
2338                                 /* D D P Q D */
2339                                 if (i < sh->pd_idx)
2340                                         i += raid_disks;
2341                                 i -= (sh->pd_idx + 2);
2342                         }
2343                         break;
2344                 case ALGORITHM_PARITY_0:
2345                         i -= 2;
2346                         break;
2347                 case ALGORITHM_PARITY_N:
2348                         break;
2349                 case ALGORITHM_ROTATING_N_CONTINUE:
2350                         /* Like left_symmetric, but P is before Q */
2351                         if (sh->pd_idx == 0)
2352                                 i--;    /* P D D D Q */
2353                         else {
2354                                 /* D D Q P D */
2355                                 if (i < sh->pd_idx)
2356                                         i += raid_disks;
2357                                 i -= (sh->pd_idx + 1);
2358                         }
2359                         break;
2360                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2361                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2362                         if (i > sh->pd_idx)
2363                                 i--;
2364                         break;
2365                 case ALGORITHM_LEFT_SYMMETRIC_6:
2366                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2367                         if (i < sh->pd_idx)
2368                                 i += data_disks + 1;
2369                         i -= (sh->pd_idx + 1);
2370                         break;
2371                 case ALGORITHM_PARITY_0_6:
2372                         i -= 1;
2373                         break;
2374                 default:
2375                         BUG();
2376                 }
2377                 break;
2378         }
2379
2380         chunk_number = stripe * data_disks + i;
2381         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2382
2383         check = raid5_compute_sector(conf, r_sector,
2384                                      previous, &dummy1, &sh2);
2385         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2386                 || sh2.qd_idx != sh->qd_idx) {
2387                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2388                        mdname(conf->mddev));
2389                 return 0;
2390         }
2391         return r_sector;
2392 }
2393
2394
2395 static void
2396 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2397                          int rcw, int expand)
2398 {
2399         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2400         struct r5conf *conf = sh->raid_conf;
2401         int level = conf->level;
2402
2403         if (rcw) {
2404
2405                 for (i = disks; i--; ) {
2406                         struct r5dev *dev = &sh->dev[i];
2407
2408                         if (dev->towrite) {
2409                                 set_bit(R5_LOCKED, &dev->flags);
2410                                 set_bit(R5_Wantdrain, &dev->flags);
2411                                 if (!expand)
2412                                         clear_bit(R5_UPTODATE, &dev->flags);
2413                                 s->locked++;
2414                         }
2415                 }
2416                 /* if we are not expanding this is a proper write request, and
2417                  * there will be bios with new data to be drained into the
2418                  * stripe cache
2419                  */
2420                 if (!expand) {
2421                         if (!s->locked)
2422                                 /* False alarm, nothing to do */
2423                                 return;
2424                         sh->reconstruct_state = reconstruct_state_drain_run;
2425                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2426                 } else
2427                         sh->reconstruct_state = reconstruct_state_run;
2428
2429                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2430
2431                 if (s->locked + conf->max_degraded == disks)
2432                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2433                                 atomic_inc(&conf->pending_full_writes);
2434         } else {
2435                 BUG_ON(level == 6);
2436                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2437                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2438
2439                 for (i = disks; i--; ) {
2440                         struct r5dev *dev = &sh->dev[i];
2441                         if (i == pd_idx)
2442                                 continue;
2443
2444                         if (dev->towrite &&
2445                             (test_bit(R5_UPTODATE, &dev->flags) ||
2446                              test_bit(R5_Wantcompute, &dev->flags))) {
2447                                 set_bit(R5_Wantdrain, &dev->flags);
2448                                 set_bit(R5_LOCKED, &dev->flags);
2449                                 clear_bit(R5_UPTODATE, &dev->flags);
2450                                 s->locked++;
2451                         }
2452                 }
2453                 if (!s->locked)
2454                         /* False alarm - nothing to do */
2455                         return;
2456                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2457                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2458                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2459                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2460         }
2461
2462         /* keep the parity disk(s) locked while asynchronous operations
2463          * are in flight
2464          */
2465         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2466         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2467         s->locked++;
2468
2469         if (level == 6) {
2470                 int qd_idx = sh->qd_idx;
2471                 struct r5dev *dev = &sh->dev[qd_idx];
2472
2473                 set_bit(R5_LOCKED, &dev->flags);
2474                 clear_bit(R5_UPTODATE, &dev->flags);
2475                 s->locked++;
2476         }
2477
2478         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2479                 __func__, (unsigned long long)sh->sector,
2480                 s->locked, s->ops_request);
2481 }
2482
2483 /*
2484  * Each stripe/dev can have one or more bion attached.
2485  * toread/towrite point to the first in a chain.
2486  * The bi_next chain must be in order.
2487  */
2488 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2489 {
2490         struct bio **bip;
2491         struct r5conf *conf = sh->raid_conf;
2492         int firstwrite=0;
2493
2494         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2495                 (unsigned long long)bi->bi_sector,
2496                 (unsigned long long)sh->sector);
2497
2498         /*
2499          * If several bio share a stripe. The bio bi_phys_segments acts as a
2500          * reference count to avoid race. The reference count should already be
2501          * increased before this function is called (for example, in
2502          * make_request()), so other bio sharing this stripe will not free the
2503          * stripe. If a stripe is owned by one stripe, the stripe lock will
2504          * protect it.
2505          */
2506         spin_lock_irq(&sh->stripe_lock);
2507         if (forwrite) {
2508                 bip = &sh->dev[dd_idx].towrite;
2509                 if (*bip == NULL)
2510                         firstwrite = 1;
2511         } else
2512                 bip = &sh->dev[dd_idx].toread;
2513         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2514                 if (bio_end_sector(*bip) > bi->bi_sector)
2515                         goto overlap;
2516                 bip = & (*bip)->bi_next;
2517         }
2518         if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2519                 goto overlap;
2520
2521         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2522         if (*bip)
2523                 bi->bi_next = *bip;
2524         *bip = bi;
2525         raid5_inc_bi_active_stripes(bi);
2526
2527         if (forwrite) {
2528                 /* check if page is covered */
2529                 sector_t sector = sh->dev[dd_idx].sector;
2530                 for (bi=sh->dev[dd_idx].towrite;
2531                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2532                              bi && bi->bi_sector <= sector;
2533                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2534                         if (bio_end_sector(bi) >= sector)
2535                                 sector = bio_end_sector(bi);
2536                 }
2537                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2538                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2539         }
2540
2541         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2542                 (unsigned long long)(*bip)->bi_sector,
2543                 (unsigned long long)sh->sector, dd_idx);
2544         spin_unlock_irq(&sh->stripe_lock);
2545
2546         if (conf->mddev->bitmap && firstwrite) {
2547                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2548                                   STRIPE_SECTORS, 0);
2549                 sh->bm_seq = conf->seq_flush+1;
2550                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2551         }
2552         return 1;
2553
2554  overlap:
2555         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2556         spin_unlock_irq(&sh->stripe_lock);
2557         return 0;
2558 }
2559
2560 static void end_reshape(struct r5conf *conf);
2561
2562 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2563                             struct stripe_head *sh)
2564 {
2565         int sectors_per_chunk =
2566                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2567         int dd_idx;
2568         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2569         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2570
2571         raid5_compute_sector(conf,
2572                              stripe * (disks - conf->max_degraded)
2573                              *sectors_per_chunk + chunk_offset,
2574                              previous,
2575                              &dd_idx, sh);
2576 }
2577
2578 static void
2579 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2580                                 struct stripe_head_state *s, int disks,
2581                                 struct bio **return_bi)
2582 {
2583         int i;
2584         for (i = disks; i--; ) {
2585                 struct bio *bi;
2586                 int bitmap_end = 0;
2587
2588                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2589                         struct md_rdev *rdev;
2590                         rcu_read_lock();
2591                         rdev = rcu_dereference(conf->disks[i].rdev);
2592                         if (rdev && test_bit(In_sync, &rdev->flags))
2593                                 atomic_inc(&rdev->nr_pending);
2594                         else
2595                                 rdev = NULL;
2596                         rcu_read_unlock();
2597                         if (rdev) {
2598                                 if (!rdev_set_badblocks(
2599                                             rdev,
2600                                             sh->sector,
2601                                             STRIPE_SECTORS, 0))
2602                                         md_error(conf->mddev, rdev);
2603                                 rdev_dec_pending(rdev, conf->mddev);
2604                         }
2605                 }
2606                 spin_lock_irq(&sh->stripe_lock);
2607                 /* fail all writes first */
2608                 bi = sh->dev[i].towrite;
2609                 sh->dev[i].towrite = NULL;
2610                 spin_unlock_irq(&sh->stripe_lock);
2611                 if (bi)
2612                         bitmap_end = 1;
2613
2614                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2615                         wake_up(&conf->wait_for_overlap);
2616
2617                 while (bi && bi->bi_sector <
2618                         sh->dev[i].sector + STRIPE_SECTORS) {
2619                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2620                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2621                         if (!raid5_dec_bi_active_stripes(bi)) {
2622                                 md_write_end(conf->mddev);
2623                                 bi->bi_next = *return_bi;
2624                                 *return_bi = bi;
2625                         }
2626                         bi = nextbi;
2627                 }
2628                 if (bitmap_end)
2629                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2630                                 STRIPE_SECTORS, 0, 0);
2631                 bitmap_end = 0;
2632                 /* and fail all 'written' */
2633                 bi = sh->dev[i].written;
2634                 sh->dev[i].written = NULL;
2635                 if (bi) bitmap_end = 1;
2636                 while (bi && bi->bi_sector <
2637                        sh->dev[i].sector + STRIPE_SECTORS) {
2638                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2639                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2640                         if (!raid5_dec_bi_active_stripes(bi)) {
2641                                 md_write_end(conf->mddev);
2642                                 bi->bi_next = *return_bi;
2643                                 *return_bi = bi;
2644                         }
2645                         bi = bi2;
2646                 }
2647
2648                 /* fail any reads if this device is non-operational and
2649                  * the data has not reached the cache yet.
2650                  */
2651                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2652                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2653                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2654                         spin_lock_irq(&sh->stripe_lock);
2655                         bi = sh->dev[i].toread;
2656                         sh->dev[i].toread = NULL;
2657                         spin_unlock_irq(&sh->stripe_lock);
2658                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2659                                 wake_up(&conf->wait_for_overlap);
2660                         while (bi && bi->bi_sector <
2661                                sh->dev[i].sector + STRIPE_SECTORS) {
2662                                 struct bio *nextbi =
2663                                         r5_next_bio(bi, sh->dev[i].sector);
2664                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2665                                 if (!raid5_dec_bi_active_stripes(bi)) {
2666                                         bi->bi_next = *return_bi;
2667                                         *return_bi = bi;
2668                                 }
2669                                 bi = nextbi;
2670                         }
2671                 }
2672                 if (bitmap_end)
2673                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2674                                         STRIPE_SECTORS, 0, 0);
2675                 /* If we were in the middle of a write the parity block might
2676                  * still be locked - so just clear all R5_LOCKED flags
2677                  */
2678                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2679         }
2680
2681         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2682                 if (atomic_dec_and_test(&conf->pending_full_writes))
2683                         md_wakeup_thread(conf->mddev->thread);
2684 }
2685
2686 static void
2687 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2688                    struct stripe_head_state *s)
2689 {
2690         int abort = 0;
2691         int i;
2692
2693         clear_bit(STRIPE_SYNCING, &sh->state);
2694         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2695                 wake_up(&conf->wait_for_overlap);
2696         s->syncing = 0;
2697         s->replacing = 0;
2698         /* There is nothing more to do for sync/check/repair.
2699          * Don't even need to abort as that is handled elsewhere
2700          * if needed, and not always wanted e.g. if there is a known
2701          * bad block here.
2702          * For recover/replace we need to record a bad block on all
2703          * non-sync devices, or abort the recovery
2704          */
2705         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2706                 /* During recovery devices cannot be removed, so
2707                  * locking and refcounting of rdevs is not needed
2708                  */
2709                 for (i = 0; i < conf->raid_disks; i++) {
2710                         struct md_rdev *rdev = conf->disks[i].rdev;
2711                         if (rdev
2712                             && !test_bit(Faulty, &rdev->flags)
2713                             && !test_bit(In_sync, &rdev->flags)
2714                             && !rdev_set_badblocks(rdev, sh->sector,
2715                                                    STRIPE_SECTORS, 0))
2716                                 abort = 1;
2717                         rdev = conf->disks[i].replacement;
2718                         if (rdev
2719                             && !test_bit(Faulty, &rdev->flags)
2720                             && !test_bit(In_sync, &rdev->flags)
2721                             && !rdev_set_badblocks(rdev, sh->sector,
2722                                                    STRIPE_SECTORS, 0))
2723                                 abort = 1;
2724                 }
2725                 if (abort)
2726                         conf->recovery_disabled =
2727                                 conf->mddev->recovery_disabled;
2728         }
2729         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2730 }
2731
2732 static int want_replace(struct stripe_head *sh, int disk_idx)
2733 {
2734         struct md_rdev *rdev;
2735         int rv = 0;
2736         /* Doing recovery so rcu locking not required */
2737         rdev = sh->raid_conf->disks[disk_idx].replacement;
2738         if (rdev
2739             && !test_bit(Faulty, &rdev->flags)
2740             && !test_bit(In_sync, &rdev->flags)
2741             && (rdev->recovery_offset <= sh->sector
2742                 || rdev->mddev->recovery_cp <= sh->sector))
2743                 rv = 1;
2744
2745         return rv;
2746 }
2747
2748 /* fetch_block - checks the given member device to see if its data needs
2749  * to be read or computed to satisfy a request.
2750  *
2751  * Returns 1 when no more member devices need to be checked, otherwise returns
2752  * 0 to tell the loop in handle_stripe_fill to continue
2753  */
2754 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2755                        int disk_idx, int disks)
2756 {
2757         struct r5dev *dev = &sh->dev[disk_idx];
2758         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2759                                   &sh->dev[s->failed_num[1]] };
2760
2761         /* is the data in this block needed, and can we get it? */
2762         if (!test_bit(R5_LOCKED, &dev->flags) &&
2763             !test_bit(R5_UPTODATE, &dev->flags) &&
2764             (dev->toread ||
2765              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2766              s->syncing || s->expanding ||
2767              (s->replacing && want_replace(sh, disk_idx)) ||
2768              (s->failed >= 1 && fdev[0]->toread) ||
2769              (s->failed >= 2 && fdev[1]->toread) ||
2770              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2771               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2772              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2773                 /* we would like to get this block, possibly by computing it,
2774                  * otherwise read it if the backing disk is insync
2775                  */
2776                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2777                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2778                 if ((s->uptodate == disks - 1) &&
2779                     (s->failed && (disk_idx == s->failed_num[0] ||
2780                                    disk_idx == s->failed_num[1]))) {
2781                         /* have disk failed, and we're requested to fetch it;
2782                          * do compute it
2783                          */
2784                         pr_debug("Computing stripe %llu block %d\n",
2785                                (unsigned long long)sh->sector, disk_idx);
2786                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2787                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2788                         set_bit(R5_Wantcompute, &dev->flags);
2789                         sh->ops.target = disk_idx;
2790                         sh->ops.target2 = -1; /* no 2nd target */
2791                         s->req_compute = 1;
2792                         /* Careful: from this point on 'uptodate' is in the eye
2793                          * of raid_run_ops which services 'compute' operations
2794                          * before writes. R5_Wantcompute flags a block that will
2795                          * be R5_UPTODATE by the time it is needed for a
2796                          * subsequent operation.
2797                          */
2798                         s->uptodate++;
2799                         return 1;
2800                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2801                         /* Computing 2-failure is *very* expensive; only
2802                          * do it if failed >= 2
2803                          */
2804                         int other;
2805                         for (other = disks; other--; ) {
2806                                 if (other == disk_idx)
2807                                         continue;
2808                                 if (!test_bit(R5_UPTODATE,
2809                                       &sh->dev[other].flags))
2810                                         break;
2811                         }
2812                         BUG_ON(other < 0);
2813                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2814                                (unsigned long long)sh->sector,
2815                                disk_idx, other);
2816                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2817                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2818                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2819                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2820                         sh->ops.target = disk_idx;
2821                         sh->ops.target2 = other;
2822                         s->uptodate += 2;
2823                         s->req_compute = 1;
2824                         return 1;
2825                 } else if (test_bit(R5_Insync, &dev->flags)) {
2826                         set_bit(R5_LOCKED, &dev->flags);
2827                         set_bit(R5_Wantread, &dev->flags);
2828                         s->locked++;
2829                         pr_debug("Reading block %d (sync=%d)\n",
2830                                 disk_idx, s->syncing);
2831                 }
2832         }
2833
2834         return 0;
2835 }
2836
2837 /**
2838  * handle_stripe_fill - read or compute data to satisfy pending requests.
2839  */
2840 static void handle_stripe_fill(struct stripe_head *sh,
2841                                struct stripe_head_state *s,
2842                                int disks)
2843 {
2844         int i;
2845
2846         /* look for blocks to read/compute, skip this if a compute
2847          * is already in flight, or if the stripe contents are in the
2848          * midst of changing due to a write
2849          */
2850         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2851             !sh->reconstruct_state)
2852                 for (i = disks; i--; )
2853                         if (fetch_block(sh, s, i, disks))
2854                                 break;
2855         set_bit(STRIPE_HANDLE, &sh->state);
2856 }
2857
2858
2859 /* handle_stripe_clean_event
2860  * any written block on an uptodate or failed drive can be returned.
2861  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2862  * never LOCKED, so we don't need to test 'failed' directly.
2863  */
2864 static void handle_stripe_clean_event(struct r5conf *conf,
2865         struct stripe_head *sh, int disks, struct bio **return_bi)
2866 {
2867         int i;
2868         struct r5dev *dev;
2869         int discard_pending = 0;
2870
2871         for (i = disks; i--; )
2872                 if (sh->dev[i].written) {
2873                         dev = &sh->dev[i];
2874                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2875                             (test_bit(R5_UPTODATE, &dev->flags) ||
2876                              test_bit(R5_Discard, &dev->flags))) {
2877                                 /* We can return any write requests */
2878                                 struct bio *wbi, *wbi2;
2879                                 pr_debug("Return write for disc %d\n", i);
2880                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2881                                         clear_bit(R5_UPTODATE, &dev->flags);
2882                                 wbi = dev->written;
2883                                 dev->written = NULL;
2884                                 while (wbi && wbi->bi_sector <
2885                                         dev->sector + STRIPE_SECTORS) {
2886                                         wbi2 = r5_next_bio(wbi, dev->sector);
2887                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2888                                                 md_write_end(conf->mddev);
2889                                                 wbi->bi_next = *return_bi;
2890                                                 *return_bi = wbi;
2891                                         }
2892                                         wbi = wbi2;
2893                                 }
2894                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2895                                                 STRIPE_SECTORS,
2896                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2897                                                 0);
2898                         } else if (test_bit(R5_Discard, &dev->flags))
2899                                 discard_pending = 1;
2900                 }
2901         if (!discard_pending &&
2902             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2903                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2904                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2905                 if (sh->qd_idx >= 0) {
2906                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2907                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2908                 }
2909                 /* now that discard is done we can proceed with any sync */
2910                 clear_bit(STRIPE_DISCARD, &sh->state);
2911                 /*
2912                  * SCSI discard will change some bio fields and the stripe has
2913                  * no updated data, so remove it from hash list and the stripe
2914                  * will be reinitialized
2915                  */
2916                 spin_lock_irq(&conf->device_lock);
2917                 remove_hash(sh);
2918                 spin_unlock_irq(&conf->device_lock);
2919                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2920                         set_bit(STRIPE_HANDLE, &sh->state);
2921
2922         }
2923
2924         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2925                 if (atomic_dec_and_test(&conf->pending_full_writes))
2926                         md_wakeup_thread(conf->mddev->thread);
2927 }
2928
2929 static void handle_stripe_dirtying(struct r5conf *conf,
2930                                    struct stripe_head *sh,
2931                                    struct stripe_head_state *s,
2932                                    int disks)
2933 {
2934         int rmw = 0, rcw = 0, i;
2935         sector_t recovery_cp = conf->mddev->recovery_cp;
2936
2937         /* RAID6 requires 'rcw' in current implementation.
2938          * Otherwise, check whether resync is now happening or should start.
2939          * If yes, then the array is dirty (after unclean shutdown or
2940          * initial creation), so parity in some stripes might be inconsistent.
2941          * In this case, we need to always do reconstruct-write, to ensure
2942          * that in case of drive failure or read-error correction, we
2943          * generate correct data from the parity.
2944          */
2945         if (conf->max_degraded == 2 ||
2946             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2947                 /* Calculate the real rcw later - for now make it
2948                  * look like rcw is cheaper
2949                  */
2950                 rcw = 1; rmw = 2;
2951                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2952                          conf->max_degraded, (unsigned long long)recovery_cp,
2953                          (unsigned long long)sh->sector);
2954         } else for (i = disks; i--; ) {
2955                 /* would I have to read this buffer for read_modify_write */
2956                 struct r5dev *dev = &sh->dev[i];
2957                 if ((dev->towrite || i == sh->pd_idx) &&
2958                     !test_bit(R5_LOCKED, &dev->flags) &&
2959                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2960                       test_bit(R5_Wantcompute, &dev->flags))) {
2961                         if (test_bit(R5_Insync, &dev->flags))
2962                                 rmw++;
2963                         else
2964                                 rmw += 2*disks;  /* cannot read it */
2965                 }
2966                 /* Would I have to read this buffer for reconstruct_write */
2967                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2968                     !test_bit(R5_LOCKED, &dev->flags) &&
2969                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2970                     test_bit(R5_Wantcompute, &dev->flags))) {
2971                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2972                         else
2973                                 rcw += 2*disks;
2974                 }
2975         }
2976         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2977                 (unsigned long long)sh->sector, rmw, rcw);
2978         set_bit(STRIPE_HANDLE, &sh->state);
2979         if (rmw < rcw && rmw > 0) {
2980                 /* prefer read-modify-write, but need to get some data */
2981                 if (conf->mddev->queue)
2982                         blk_add_trace_msg(conf->mddev->queue,
2983                                           "raid5 rmw %llu %d",
2984                                           (unsigned long long)sh->sector, rmw);
2985                 for (i = disks; i--; ) {
2986                         struct r5dev *dev = &sh->dev[i];
2987                         if ((dev->towrite || i == sh->pd_idx) &&
2988                             !test_bit(R5_LOCKED, &dev->flags) &&
2989                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2990                             test_bit(R5_Wantcompute, &dev->flags)) &&
2991                             test_bit(R5_Insync, &dev->flags)) {
2992                                 if (
2993                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2994                                         pr_debug("Read_old block "
2995                                                  "%d for r-m-w\n", i);
2996                                         set_bit(R5_LOCKED, &dev->flags);
2997                                         set_bit(R5_Wantread, &dev->flags);
2998                                         s->locked++;
2999                                 } else {
3000                                         set_bit(STRIPE_DELAYED, &sh->state);
3001                                         set_bit(STRIPE_HANDLE, &sh->state);
3002                                 }
3003                         }
3004                 }
3005         }
3006         if (rcw <= rmw && rcw > 0) {
3007                 /* want reconstruct write, but need to get some data */
3008                 int qread =0;
3009                 rcw = 0;
3010                 for (i = disks; i--; ) {
3011                         struct r5dev *dev = &sh->dev[i];
3012                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3013                             i != sh->pd_idx && i != sh->qd_idx &&
3014                             !test_bit(R5_LOCKED, &dev->flags) &&
3015                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3016                               test_bit(R5_Wantcompute, &dev->flags))) {
3017                                 rcw++;
3018                                 if (!test_bit(R5_Insync, &dev->flags))
3019                                         continue; /* it's a failed drive */
3020                                 if (
3021                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3022                                         pr_debug("Read_old block "
3023                                                 "%d for Reconstruct\n", i);
3024                                         set_bit(R5_LOCKED, &dev->flags);
3025                                         set_bit(R5_Wantread, &dev->flags);
3026                                         s->locked++;
3027                                         qread++;
3028                                 } else {
3029                                         set_bit(STRIPE_DELAYED, &sh->state);
3030                                         set_bit(STRIPE_HANDLE, &sh->state);
3031                                 }
3032                         }
3033                 }
3034                 if (rcw && conf->mddev->queue)
3035                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3036                                           (unsigned long long)sh->sector,
3037                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3038         }
3039         /* now if nothing is locked, and if we have enough data,
3040          * we can start a write request
3041          */
3042         /* since handle_stripe can be called at any time we need to handle the
3043          * case where a compute block operation has been submitted and then a
3044          * subsequent call wants to start a write request.  raid_run_ops only
3045          * handles the case where compute block and reconstruct are requested
3046          * simultaneously.  If this is not the case then new writes need to be
3047          * held off until the compute completes.
3048          */
3049         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3050             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3051             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3052                 schedule_reconstruction(sh, s, rcw == 0, 0);
3053 }
3054
3055 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3056                                 struct stripe_head_state *s, int disks)
3057 {
3058         struct r5dev *dev = NULL;
3059
3060         set_bit(STRIPE_HANDLE, &sh->state);
3061
3062         switch (sh->check_state) {
3063         case check_state_idle:
3064                 /* start a new check operation if there are no failures */
3065                 if (s->failed == 0) {
3066                         BUG_ON(s->uptodate != disks);
3067                         sh->check_state = check_state_run;
3068                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3069                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3070                         s->uptodate--;
3071                         break;
3072                 }
3073                 dev = &sh->dev[s->failed_num[0]];
3074                 /* fall through */
3075         case check_state_compute_result:
3076                 sh->check_state = check_state_idle;
3077                 if (!dev)
3078                         dev = &sh->dev[sh->pd_idx];
3079
3080                 /* check that a write has not made the stripe insync */
3081                 if (test_bit(STRIPE_INSYNC, &sh->state))
3082                         break;
3083
3084                 /* either failed parity check, or recovery is happening */
3085                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3086                 BUG_ON(s->uptodate != disks);
3087
3088                 set_bit(R5_LOCKED, &dev->flags);
3089                 s->locked++;
3090                 set_bit(R5_Wantwrite, &dev->flags);
3091
3092                 clear_bit(STRIPE_DEGRADED, &sh->state);
3093                 set_bit(STRIPE_INSYNC, &sh->state);
3094                 break;
3095         case check_state_run:
3096                 break; /* we will be called again upon completion */
3097         case check_state_check_result:
3098                 sh->check_state = check_state_idle;
3099
3100                 /* if a failure occurred during the check operation, leave
3101                  * STRIPE_INSYNC not set and let the stripe be handled again
3102                  */
3103                 if (s->failed)
3104                         break;
3105
3106                 /* handle a successful check operation, if parity is correct
3107                  * we are done.  Otherwise update the mismatch count and repair
3108                  * parity if !MD_RECOVERY_CHECK
3109                  */
3110                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3111                         /* parity is correct (on disc,
3112                          * not in buffer any more)
3113                          */
3114                         set_bit(STRIPE_INSYNC, &sh->state);
3115                 else {
3116                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3117                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3118                                 /* don't try to repair!! */
3119                                 set_bit(STRIPE_INSYNC, &sh->state);
3120                         else {
3121                                 sh->check_state = check_state_compute_run;
3122                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3123                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3124                                 set_bit(R5_Wantcompute,
3125                                         &sh->dev[sh->pd_idx].flags);
3126                                 sh->ops.target = sh->pd_idx;
3127                                 sh->ops.target2 = -1;
3128                                 s->uptodate++;
3129                         }
3130                 }
3131                 break;
3132         case check_state_compute_run:
3133                 break;
3134         default:
3135                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3136                        __func__, sh->check_state,
3137                        (unsigned long long) sh->sector);
3138                 BUG();
3139         }
3140 }
3141
3142
3143 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3144                                   struct stripe_head_state *s,
3145                                   int disks)
3146 {
3147         int pd_idx = sh->pd_idx;
3148         int qd_idx = sh->qd_idx;
3149         struct r5dev *dev;
3150
3151         set_bit(STRIPE_HANDLE, &sh->state);
3152
3153         BUG_ON(s->failed > 2);
3154
3155         /* Want to check and possibly repair P and Q.
3156          * However there could be one 'failed' device, in which
3157          * case we can only check one of them, possibly using the
3158          * other to generate missing data
3159          */
3160
3161         switch (sh->check_state) {
3162         case check_state_idle:
3163                 /* start a new check operation if there are < 2 failures */
3164                 if (s->failed == s->q_failed) {
3165                         /* The only possible failed device holds Q, so it
3166                          * makes sense to check P (If anything else were failed,
3167                          * we would have used P to recreate it).
3168                          */
3169                         sh->check_state = check_state_run;
3170                 }
3171                 if (!s->q_failed && s->failed < 2) {
3172                         /* Q is not failed, and we didn't use it to generate
3173                          * anything, so it makes sense to check it
3174                          */
3175                         if (sh->check_state == check_state_run)
3176                                 sh->check_state = check_state_run_pq;
3177                         else
3178                                 sh->check_state = check_state_run_q;
3179                 }
3180
3181                 /* discard potentially stale zero_sum_result */
3182                 sh->ops.zero_sum_result = 0;
3183
3184                 if (sh->check_state == check_state_run) {
3185                         /* async_xor_zero_sum destroys the contents of P */
3186                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3187                         s->uptodate--;
3188                 }
3189                 if (sh->check_state >= check_state_run &&
3190                     sh->check_state <= check_state_run_pq) {
3191                         /* async_syndrome_zero_sum preserves P and Q, so
3192                          * no need to mark them !uptodate here
3193                          */
3194                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3195                         break;
3196                 }
3197
3198                 /* we have 2-disk failure */
3199                 BUG_ON(s->failed != 2);
3200                 /* fall through */
3201         case check_state_compute_result:
3202                 sh->check_state = check_state_idle;
3203
3204                 /* check that a write has not made the stripe insync */
3205                 if (test_bit(STRIPE_INSYNC, &sh->state))
3206                         break;
3207
3208                 /* now write out any block on a failed drive,
3209                  * or P or Q if they were recomputed
3210                  */
3211                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3212                 if (s->failed == 2) {
3213                         dev = &sh->dev[s->failed_num[1]];
3214                         s->locked++;
3215                         set_bit(R5_LOCKED, &dev->flags);
3216                         set_bit(R5_Wantwrite, &dev->flags);
3217                 }
3218                 if (s->failed >= 1) {
3219                         dev = &sh->dev[s->failed_num[0]];
3220                         s->locked++;
3221                         set_bit(R5_LOCKED, &dev->flags);
3222                         set_bit(R5_Wantwrite, &dev->flags);
3223                 }
3224                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3225                         dev = &sh->dev[pd_idx];
3226                         s->locked++;
3227                         set_bit(R5_LOCKED, &dev->flags);
3228                         set_bit(R5_Wantwrite, &dev->flags);
3229                 }
3230                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3231                         dev = &sh->dev[qd_idx];
3232                         s->locked++;
3233                         set_bit(R5_LOCKED, &dev->flags);
3234                         set_bit(R5_Wantwrite, &dev->flags);
3235                 }
3236                 clear_bit(STRIPE_DEGRADED, &sh->state);
3237
3238                 set_bit(STRIPE_INSYNC, &sh->state);
3239                 break;
3240         case check_state_run:
3241         case check_state_run_q:
3242         case check_state_run_pq:
3243                 break; /* we will be called again upon completion */
3244         case check_state_check_result:
3245                 sh->check_state = check_state_idle;
3246
3247                 /* handle a successful check operation, if parity is correct
3248                  * we are done.  Otherwise update the mismatch count and repair
3249                  * parity if !MD_RECOVERY_CHECK
3250                  */
3251                 if (sh->ops.zero_sum_result == 0) {
3252                         /* both parities are correct */
3253                         if (!s->failed)
3254                                 set_bit(STRIPE_INSYNC, &sh->state);
3255                         else {
3256                                 /* in contrast to the raid5 case we can validate
3257                                  * parity, but still have a failure to write
3258                                  * back
3259                                  */
3260                                 sh->check_state = check_state_compute_result;
3261                                 /* Returning at this point means that we may go
3262                                  * off and bring p and/or q uptodate again so
3263                                  * we make sure to check zero_sum_result again
3264                                  * to verify if p or q need writeback
3265                                  */
3266                         }
3267                 } else {
3268                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3269                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3270                                 /* don't try to repair!! */
3271                                 set_bit(STRIPE_INSYNC, &sh->state);
3272                         else {
3273                                 int *target = &sh->ops.target;
3274
3275                                 sh->ops.target = -1;
3276                                 sh->ops.target2 = -1;
3277                                 sh->check_state = check_state_compute_run;
3278                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3279                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3280                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3281                                         set_bit(R5_Wantcompute,
3282                                                 &sh->dev[pd_idx].flags);
3283                                         *target = pd_idx;
3284                                         target = &sh->ops.target2;
3285                                         s->uptodate++;
3286                                 }
3287                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3288                                         set_bit(R5_Wantcompute,
3289                                                 &sh->dev[qd_idx].flags);
3290                                         *target = qd_idx;
3291                                         s->uptodate++;
3292                                 }
3293                         }
3294                 }
3295                 break;
3296         case check_state_compute_run:
3297                 break;
3298         default:
3299                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3300                        __func__, sh->check_state,
3301                        (unsigned long long) sh->sector);
3302                 BUG();
3303         }
3304 }
3305
3306 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3307 {
3308         int i;
3309
3310         /* We have read all the blocks in this stripe and now we need to
3311          * copy some of them into a target stripe for expand.
3312          */
3313         struct dma_async_tx_descriptor *tx = NULL;
3314         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3315         for (i = 0; i < sh->disks; i++)
3316                 if (i != sh->pd_idx && i != sh->qd_idx) {
3317                         int dd_idx, j;
3318                         struct stripe_head *sh2;
3319                         struct async_submit_ctl submit;
3320
3321                         sector_t bn = compute_blocknr(sh, i, 1);
3322                         sector_t s = raid5_compute_sector(conf, bn, 0,
3323                                                           &dd_idx, NULL);
3324                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3325                         if (sh2 == NULL)
3326                                 /* so far only the early blocks of this stripe
3327                                  * have been requested.  When later blocks
3328                                  * get requested, we will try again
3329                                  */
3330                                 continue;
3331                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3332                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3333                                 /* must have already done this block */
3334                                 release_stripe(sh2);
3335                                 continue;
3336                         }
3337
3338                         /* place all the copies on one channel */
3339                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3340                         tx = async_memcpy(sh2->dev[dd_idx].page,
3341                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3342                                           &submit);
3343
3344                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3345                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3346                         for (j = 0; j < conf->raid_disks; j++)
3347                                 if (j != sh2->pd_idx &&
3348                                     j != sh2->qd_idx &&
3349                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3350                                         break;
3351                         if (j == conf->raid_disks) {
3352                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3353                                 set_bit(STRIPE_HANDLE, &sh2->state);
3354                         }
3355                         release_stripe(sh2);
3356
3357                 }
3358         /* done submitting copies, wait for them to complete */
3359         async_tx_quiesce(&tx);
3360 }
3361
3362 /*
3363  * handle_stripe - do things to a stripe.
3364  *
3365  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3366  * state of various bits to see what needs to be done.
3367  * Possible results:
3368  *    return some read requests which now have data
3369  *    return some write requests which are safely on storage
3370  *    schedule a read on some buffers
3371  *    schedule a write of some buffers
3372  *    return confirmation of parity correctness
3373  *
3374  */
3375
3376 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3377 {
3378         struct r5conf *conf = sh->raid_conf;
3379         int disks = sh->disks;
3380         struct r5dev *dev;
3381         int i;
3382         int do_recovery = 0;
3383
3384         memset(s, 0, sizeof(*s));
3385
3386         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3387         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3388         s->failed_num[0] = -1;
3389         s->failed_num[1] = -1;
3390
3391         /* Now to look around and see what can be done */
3392         rcu_read_lock();
3393         for (i=disks; i--; ) {
3394                 struct md_rdev *rdev;
3395                 sector_t first_bad;
3396                 int bad_sectors;
3397                 int is_bad = 0;
3398
3399                 dev = &sh->dev[i];
3400
3401                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3402                          i, dev->flags,
3403                          dev->toread, dev->towrite, dev->written);
3404                 /* maybe we can reply to a read
3405                  *
3406                  * new wantfill requests are only permitted while
3407                  * ops_complete_biofill is guaranteed to be inactive
3408                  */
3409                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3410                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3411                         set_bit(R5_Wantfill, &dev->flags);
3412
3413                 /* now count some things */
3414                 if (test_bit(R5_LOCKED, &dev->flags))
3415                         s->locked++;
3416                 if (test_bit(R5_UPTODATE, &dev->flags))
3417                         s->uptodate++;
3418                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3419                         s->compute++;
3420                         BUG_ON(s->compute > 2);
3421                 }
3422
3423                 if (test_bit(R5_Wantfill, &dev->flags))
3424                         s->to_fill++;
3425                 else if (dev->toread)
3426                         s->to_read++;
3427                 if (dev->towrite) {
3428                         s->to_write++;
3429                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3430                                 s->non_overwrite++;
3431                 }
3432                 if (dev->written)
3433                         s->written++;
3434                 /* Prefer to use the replacement for reads, but only
3435                  * if it is recovered enough and has no bad blocks.
3436                  */
3437                 rdev = rcu_dereference(conf->disks[i].replacement);
3438                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3439                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3440                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3441                                  &first_bad, &bad_sectors))
3442                         set_bit(R5_ReadRepl, &dev->flags);
3443                 else {
3444                         if (rdev)
3445                                 set_bit(R5_NeedReplace, &dev->flags);
3446                         rdev = rcu_dereference(conf->disks[i].rdev);
3447                         clear_bit(R5_ReadRepl, &dev->flags);
3448                 }
3449                 if (rdev && test_bit(Faulty, &rdev->flags))
3450                         rdev = NULL;
3451                 if (rdev) {
3452                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3453                                              &first_bad, &bad_sectors);
3454                         if (s->blocked_rdev == NULL
3455                             && (test_bit(Blocked, &rdev->flags)
3456                                 || is_bad < 0)) {
3457                                 if (is_bad < 0)
3458                                         set_bit(BlockedBadBlocks,
3459                                                 &rdev->flags);
3460                                 s->blocked_rdev = rdev;
3461                                 atomic_inc(&rdev->nr_pending);
3462                         }
3463                 }
3464                 clear_bit(R5_Insync, &dev->flags);
3465                 if (!rdev)
3466                         /* Not in-sync */;
3467                 else if (is_bad) {
3468                         /* also not in-sync */
3469                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3470                             test_bit(R5_UPTODATE, &dev->flags)) {
3471                                 /* treat as in-sync, but with a read error
3472                                  * which we can now try to correct
3473                                  */
3474                                 set_bit(R5_Insync, &dev->flags);
3475                                 set_bit(R5_ReadError, &dev->flags);
3476                         }
3477                 } else if (test_bit(In_sync, &rdev->flags))
3478                         set_bit(R5_Insync, &dev->flags);
3479                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3480                         /* in sync if before recovery_offset */
3481                         set_bit(R5_Insync, &dev->flags);
3482                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3483                          test_bit(R5_Expanded, &dev->flags))
3484                         /* If we've reshaped into here, we assume it is Insync.
3485                          * We will shortly update recovery_offset to make
3486                          * it official.
3487                          */
3488                         set_bit(R5_Insync, &dev->flags);
3489
3490                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3491                         /* This flag does not apply to '.replacement'
3492                          * only to .rdev, so make sure to check that*/
3493                         struct md_rdev *rdev2 = rcu_dereference(
3494                                 conf->disks[i].rdev);
3495                         if (rdev2 == rdev)
3496                                 clear_bit(R5_Insync, &dev->flags);
3497                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3498                                 s->handle_bad_blocks = 1;
3499                                 atomic_inc(&rdev2->nr_pending);
3500                         } else
3501                                 clear_bit(R5_WriteError, &dev->flags);
3502                 }
3503                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3504                         /* This flag does not apply to '.replacement'
3505                          * only to .rdev, so make sure to check that*/
3506                         struct md_rdev *rdev2 = rcu_dereference(
3507                                 conf->disks[i].rdev);
3508                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3509                                 s->handle_bad_blocks = 1;
3510                                 atomic_inc(&rdev2->nr_pending);
3511                         } else
3512                                 clear_bit(R5_MadeGood, &dev->flags);
3513                 }
3514                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3515                         struct md_rdev *rdev2 = rcu_dereference(
3516                                 conf->disks[i].replacement);
3517                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3518                                 s->handle_bad_blocks = 1;
3519                                 atomic_inc(&rdev2->nr_pending);
3520                         } else
3521                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3522                 }
3523                 if (!test_bit(R5_Insync, &dev->flags)) {
3524                         /* The ReadError flag will just be confusing now */
3525                         clear_bit(R5_ReadError, &dev->flags);
3526                         clear_bit(R5_ReWrite, &dev->flags);
3527                 }
3528                 if (test_bit(R5_ReadError, &dev->flags))
3529                         clear_bit(R5_Insync, &dev->flags);
3530                 if (!test_bit(R5_Insync, &dev->flags)) {
3531                         if (s->failed < 2)
3532                                 s->failed_num[s->failed] = i;
3533                         s->failed++;
3534                         if (rdev && !test_bit(Faulty, &rdev->flags))
3535                                 do_recovery = 1;
3536                 }
3537         }
3538         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3539                 /* If there is a failed device being replaced,
3540                  *     we must be recovering.
3541                  * else if we are after recovery_cp, we must be syncing
3542                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3543                  * else we can only be replacing
3544                  * sync and recovery both need to read all devices, and so
3545                  * use the same flag.
3546                  */
3547                 if (do_recovery ||
3548                     sh->sector >= conf->mddev->recovery_cp ||
3549                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3550                         s->syncing = 1;
3551                 else
3552                         s->replacing = 1;
3553         }
3554         rcu_read_unlock();
3555 }
3556
3557 static void handle_stripe(struct stripe_head *sh)
3558 {
3559         struct stripe_head_state s;
3560         struct r5conf *conf = sh->raid_conf;
3561         int i;
3562         int prexor;
3563         int disks = sh->disks;
3564         struct r5dev *pdev, *qdev;
3565
3566         clear_bit(STRIPE_HANDLE, &sh->state);
3567         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3568                 /* already being handled, ensure it gets handled
3569                  * again when current action finishes */
3570                 set_bit(STRIPE_HANDLE, &sh->state);
3571                 return;
3572         }
3573
3574         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3575                 spin_lock(&sh->stripe_lock);
3576                 /* Cannot process 'sync' concurrently with 'discard' */
3577                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3578                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3579                         set_bit(STRIPE_SYNCING, &sh->state);
3580                         clear_bit(STRIPE_INSYNC, &sh->state);
3581                         clear_bit(STRIPE_REPLACED, &sh->state);
3582                 }
3583                 spin_unlock(&sh->stripe_lock);
3584         }
3585         clear_bit(STRIPE_DELAYED, &sh->state);
3586
3587         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3588                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3589                (unsigned long long)sh->sector, sh->state,
3590                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3591                sh->check_state, sh->reconstruct_state);
3592
3593         analyse_stripe(sh, &s);
3594
3595         if (s.handle_bad_blocks) {
3596                 set_bit(STRIPE_HANDLE, &sh->state);
3597                 goto finish;
3598         }
3599
3600         if (unlikely(s.blocked_rdev)) {
3601                 if (s.syncing || s.expanding || s.expanded ||
3602                     s.replacing || s.to_write || s.written) {
3603                         set_bit(STRIPE_HANDLE, &sh->state);
3604                         goto finish;
3605                 }
3606                 /* There is nothing for the blocked_rdev to block */
3607                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3608                 s.blocked_rdev = NULL;
3609         }
3610
3611         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3612                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3613                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3614         }
3615
3616         pr_debug("locked=%d uptodate=%d to_read=%d"
3617                " to_write=%d failed=%d failed_num=%d,%d\n",
3618                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3619                s.failed_num[0], s.failed_num[1]);
3620         /* check if the array has lost more than max_degraded devices and,
3621          * if so, some requests might need to be failed.
3622          */
3623         if (s.failed > conf->max_degraded) {
3624                 sh->check_state = 0;
3625                 sh->reconstruct_state = 0;
3626                 if (s.to_read+s.to_write+s.written)
3627                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3628                 if (s.syncing + s.replacing)
3629                         handle_failed_sync(conf, sh, &s);
3630         }
3631
3632         /* Now we check to see if any write operations have recently
3633          * completed
3634          */
3635         prexor = 0;
3636         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3637                 prexor = 1;
3638         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3639             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3640                 sh->reconstruct_state = reconstruct_state_idle;
3641
3642                 /* All the 'written' buffers and the parity block are ready to
3643                  * be written back to disk
3644                  */
3645                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3646                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3647                 BUG_ON(sh->qd_idx >= 0 &&
3648                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3649                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3650                 for (i = disks; i--; ) {
3651                         struct r5dev *dev = &sh->dev[i];
3652                         if (test_bit(R5_LOCKED, &dev->flags) &&
3653                                 (i == sh->pd_idx || i == sh->qd_idx ||
3654                                  dev->written)) {
3655                                 pr_debug("Writing block %d\n", i);
3656                                 set_bit(R5_Wantwrite, &dev->flags);
3657                                 if (prexor)
3658                                         continue;
3659                                 if (!test_bit(R5_Insync, &dev->flags) ||
3660                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3661                                      s.failed == 0))
3662                                         set_bit(STRIPE_INSYNC, &sh->state);
3663                         }
3664                 }
3665                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3666                         s.dec_preread_active = 1;
3667         }
3668
3669         /*
3670          * might be able to return some write requests if the parity blocks
3671          * are safe, or on a failed drive
3672          */
3673         pdev = &sh->dev[sh->pd_idx];
3674         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3675                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3676         qdev = &sh->dev[sh->qd_idx];
3677         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3678                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3679                 || conf->level < 6;
3680
3681         if (s.written &&
3682             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3683                              && !test_bit(R5_LOCKED, &pdev->flags)
3684                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3685                                  test_bit(R5_Discard, &pdev->flags))))) &&
3686             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3687                              && !test_bit(R5_LOCKED, &qdev->flags)
3688                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3689                                  test_bit(R5_Discard, &qdev->flags))))))
3690                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3691
3692         /* Now we might consider reading some blocks, either to check/generate
3693          * parity, or to satisfy requests
3694          * or to load a block that is being partially written.
3695          */
3696         if (s.to_read || s.non_overwrite
3697             || (conf->level == 6 && s.to_write && s.failed)
3698             || (s.syncing && (s.uptodate + s.compute < disks))
3699             || s.replacing
3700             || s.expanding)
3701                 handle_stripe_fill(sh, &s, disks);
3702
3703         /* Now to consider new write requests and what else, if anything
3704          * should be read.  We do not handle new writes when:
3705          * 1/ A 'write' operation (copy+xor) is already in flight.
3706          * 2/ A 'check' operation is in flight, as it may clobber the parity
3707          *    block.
3708          */
3709         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3710                 handle_stripe_dirtying(conf, sh, &s, disks);
3711
3712         /* maybe we need to check and possibly fix the parity for this stripe
3713          * Any reads will already have been scheduled, so we just see if enough
3714          * data is available.  The parity check is held off while parity
3715          * dependent operations are in flight.
3716          */
3717         if (sh->check_state ||
3718             (s.syncing && s.locked == 0 &&
3719              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3720              !test_bit(STRIPE_INSYNC, &sh->state))) {
3721                 if (conf->level == 6)
3722                         handle_parity_checks6(conf, sh, &s, disks);
3723                 else
3724                         handle_parity_checks5(conf, sh, &s, disks);
3725         }
3726
3727         if ((s.replacing || s.syncing) && s.locked == 0
3728             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3729             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3730                 /* Write out to replacement devices where possible */
3731                 for (i = 0; i < conf->raid_disks; i++)
3732                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3733                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3734                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3735                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3736                                 s.locked++;
3737                         }
3738                 if (s.replacing)
3739                         set_bit(STRIPE_INSYNC, &sh->state);
3740                 set_bit(STRIPE_REPLACED, &sh->state);
3741         }
3742         if ((s.syncing || s.replacing) && s.locked == 0 &&
3743             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3744             test_bit(STRIPE_INSYNC, &sh->state)) {
3745                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3746                 clear_bit(STRIPE_SYNCING, &sh->state);
3747                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3748                         wake_up(&conf->wait_for_overlap);
3749         }
3750
3751         /* If the failed drives are just a ReadError, then we might need
3752          * to progress the repair/check process
3753          */
3754         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3755                 for (i = 0; i < s.failed; i++) {
3756                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3757                         if (test_bit(R5_ReadError, &dev->flags)
3758                             && !test_bit(R5_LOCKED, &dev->flags)
3759                             && test_bit(R5_UPTODATE, &dev->flags)
3760                                 ) {
3761                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3762                                         set_bit(R5_Wantwrite, &dev->flags);
3763                                         set_bit(R5_ReWrite, &dev->flags);
3764                                         set_bit(R5_LOCKED, &dev->flags);
3765                                         s.locked++;
3766                                 } else {
3767                                         /* let's read it back */
3768                                         set_bit(R5_Wantread, &dev->flags);
3769                                         set_bit(R5_LOCKED, &dev->flags);
3770                                         s.locked++;
3771                                 }
3772                         }
3773                 }
3774
3775
3776         /* Finish reconstruct operations initiated by the expansion process */
3777         if (sh->reconstruct_state == reconstruct_state_result) {
3778                 struct stripe_head *sh_src
3779                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3780                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3781                         /* sh cannot be written until sh_src has been read.
3782                          * so arrange for sh to be delayed a little
3783                          */
3784                         set_bit(STRIPE_DELAYED, &sh->state);
3785                         set_bit(STRIPE_HANDLE, &sh->state);
3786                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3787                                               &sh_src->state))
3788                                 atomic_inc(&conf->preread_active_stripes);
3789                         release_stripe(sh_src);
3790                         goto finish;
3791                 }
3792                 if (sh_src)
3793                         release_stripe(sh_src);
3794
3795                 sh->reconstruct_state = reconstruct_state_idle;
3796                 clear_bit(STRIPE_EXPANDING, &sh->state);
3797                 for (i = conf->raid_disks; i--; ) {
3798                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3799                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3800                         s.locked++;
3801                 }
3802         }
3803
3804         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3805             !sh->reconstruct_state) {
3806                 /* Need to write out all blocks after computing parity */
3807                 sh->disks = conf->raid_disks;
3808                 stripe_set_idx(sh->sector, conf, 0, sh);
3809                 schedule_reconstruction(sh, &s, 1, 1);
3810         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3811                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3812                 atomic_dec(&conf->reshape_stripes);
3813                 wake_up(&conf->wait_for_overlap);
3814                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3815         }
3816
3817         if (s.expanding && s.locked == 0 &&
3818             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3819                 handle_stripe_expansion(conf, sh);
3820
3821 finish:
3822         /* wait for this device to become unblocked */
3823         if (unlikely(s.blocked_rdev)) {
3824                 if (conf->mddev->external)
3825                         md_wait_for_blocked_rdev(s.blocked_rdev,
3826                                                  conf->mddev);
3827                 else
3828                         /* Internal metadata will immediately
3829                          * be written by raid5d, so we don't
3830                          * need to wait here.
3831                          */
3832                         rdev_dec_pending(s.blocked_rdev,
3833                                          conf->mddev);
3834         }
3835
3836         if (s.handle_bad_blocks)
3837                 for (i = disks; i--; ) {
3838                         struct md_rdev *rdev;
3839                         struct r5dev *dev = &sh->dev[i];
3840                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3841                                 /* We own a safe reference to the rdev */
3842                                 rdev = conf->disks[i].rdev;
3843                                 if (!rdev_set_badblocks(rdev, sh->sector,
3844                                                         STRIPE_SECTORS, 0))
3845                                         md_error(conf->mddev, rdev);
3846                                 rdev_dec_pending(rdev, conf->mddev);
3847                         }
3848                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3849                                 rdev = conf->disks[i].rdev;
3850                                 rdev_clear_badblocks(rdev, sh->sector,
3851                                                      STRIPE_SECTORS, 0);
3852                                 rdev_dec_pending(rdev, conf->mddev);
3853                         }
3854                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3855                                 rdev = conf->disks[i].replacement;
3856                                 if (!rdev)
3857                                         /* rdev have been moved down */
3858                                         rdev = conf->disks[i].rdev;
3859                                 rdev_clear_badblocks(rdev, sh->sector,
3860                                                      STRIPE_SECTORS, 0);
3861                                 rdev_dec_pending(rdev, conf->mddev);
3862                         }
3863                 }
3864
3865         if (s.ops_request)
3866                 raid_run_ops(sh, s.ops_request);
3867
3868         ops_run_io(sh, &s);
3869
3870         if (s.dec_preread_active) {
3871                 /* We delay this until after ops_run_io so that if make_request
3872                  * is waiting on a flush, it won't continue until the writes
3873                  * have actually been submitted.
3874                  */
3875                 atomic_dec(&conf->preread_active_stripes);
3876                 if (atomic_read(&conf->preread_active_stripes) <
3877                     IO_THRESHOLD)
3878                         md_wakeup_thread(conf->mddev->thread);
3879         }
3880
3881         return_io(s.return_bi);
3882
3883         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3884 }
3885
3886 static void raid5_activate_delayed(struct r5conf *conf)
3887 {
3888         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3889                 while (!list_empty(&conf->delayed_list)) {
3890                         struct list_head *l = conf->delayed_list.next;
3891                         struct stripe_head *sh;
3892                         sh = list_entry(l, struct stripe_head, lru);
3893                         list_del_init(l);
3894                         clear_bit(STRIPE_DELAYED, &sh->state);
3895                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3896                                 atomic_inc(&conf->preread_active_stripes);
3897                         list_add_tail(&sh->lru, &conf->hold_list);
3898                         raid5_wakeup_stripe_thread(sh);
3899                 }
3900         }
3901 }
3902
3903 static void activate_bit_delay(struct r5conf *conf)
3904 {
3905         /* device_lock is held */
3906         struct list_head head;
3907         list_add(&head, &conf->bitmap_list);
3908         list_del_init(&conf->bitmap_list);
3909         while (!list_empty(&head)) {
3910                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3911                 list_del_init(&sh->lru);
3912                 atomic_inc(&sh->count);
3913                 __release_stripe(conf, sh);
3914         }
3915 }
3916
3917 int md_raid5_congested(struct mddev *mddev, int bits)
3918 {
3919         struct r5conf *conf = mddev->private;
3920
3921         /* No difference between reads and writes.  Just check
3922          * how busy the stripe_cache is
3923          */
3924
3925         if (conf->inactive_blocked)
3926                 return 1;
3927         if (conf->quiesce)
3928                 return 1;
3929         if (list_empty_careful(&conf->inactive_list))
3930                 return 1;
3931
3932         return 0;
3933 }
3934 EXPORT_SYMBOL_GPL(md_raid5_congested);
3935
3936 static int raid5_congested(void *data, int bits)
3937 {
3938         struct mddev *mddev = data;
3939
3940         return mddev_congested(mddev, bits) ||
3941                 md_raid5_congested(mddev, bits);
3942 }
3943
3944 /* We want read requests to align with chunks where possible,
3945  * but write requests don't need to.
3946  */
3947 static int raid5_mergeable_bvec(struct request_queue *q,
3948                                 struct bvec_merge_data *bvm,
3949                                 struct bio_vec *biovec)
3950 {
3951         struct mddev *mddev = q->queuedata;
3952         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3953         int max;
3954         unsigned int chunk_sectors = mddev->chunk_sectors;
3955         unsigned int bio_sectors = bvm->bi_size >> 9;
3956
3957         if ((bvm->bi_rw & 1) == WRITE)
3958                 return biovec->bv_len; /* always allow writes to be mergeable */
3959
3960         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3961                 chunk_sectors = mddev->new_chunk_sectors;
3962         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3963         if (max < 0) max = 0;
3964         if (max <= biovec->bv_len && bio_sectors == 0)
3965                 return biovec->bv_len;
3966         else
3967                 return max;
3968 }
3969
3970
3971 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3972 {
3973         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3974         unsigned int chunk_sectors = mddev->chunk_sectors;
3975         unsigned int bio_sectors = bio_sectors(bio);
3976
3977         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3978                 chunk_sectors = mddev->new_chunk_sectors;
3979         return  chunk_sectors >=
3980                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3981 }
3982
3983 /*
3984  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3985  *  later sampled by raid5d.
3986  */
3987 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3988 {
3989         unsigned long flags;
3990
3991         spin_lock_irqsave(&conf->device_lock, flags);
3992
3993         bi->bi_next = conf->retry_read_aligned_list;
3994         conf->retry_read_aligned_list = bi;
3995
3996         spin_unlock_irqrestore(&conf->device_lock, flags);
3997         md_wakeup_thread(conf->mddev->thread);
3998 }
3999
4000
4001 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4002 {
4003         struct bio *bi;
4004
4005         bi = conf->retry_read_aligned;
4006         if (bi) {
4007                 conf->retry_read_aligned = NULL;
4008                 return bi;
4009         }
4010         bi = conf->retry_read_aligned_list;
4011         if(bi) {
4012                 conf->retry_read_aligned_list = bi->bi_next;
4013                 bi->bi_next = NULL;
4014                 /*
4015                  * this sets the active strip count to 1 and the processed
4016                  * strip count to zero (upper 8 bits)
4017                  */
4018                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4019         }
4020
4021         return bi;
4022 }
4023
4024
4025 /*
4026  *  The "raid5_align_endio" should check if the read succeeded and if it
4027  *  did, call bio_endio on the original bio (having bio_put the new bio
4028  *  first).
4029  *  If the read failed..
4030  */
4031 static void raid5_align_endio(struct bio *bi, int error)
4032 {
4033         struct bio* raid_bi  = bi->bi_private;
4034         struct mddev *mddev;
4035         struct r5conf *conf;
4036         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4037         struct md_rdev *rdev;
4038
4039         bio_put(bi);
4040
4041         rdev = (void*)raid_bi->bi_next;
4042         raid_bi->bi_next = NULL;
4043         mddev = rdev->mddev;
4044         conf = mddev->private;
4045
4046         rdev_dec_pending(rdev, conf->mddev);
4047
4048         if (!error && uptodate) {
4049                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4050                                          raid_bi, 0);
4051                 bio_endio(raid_bi, 0);
4052                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4053                         wake_up(&conf->wait_for_stripe);
4054                 return;
4055         }
4056
4057
4058         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4059
4060         add_bio_to_retry(raid_bi, conf);
4061 }
4062
4063 static int bio_fits_rdev(struct bio *bi)
4064 {
4065         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4066
4067         if (bio_sectors(bi) > queue_max_sectors(q))
4068                 return 0;
4069         blk_recount_segments(q, bi);
4070         if (bi->bi_phys_segments > queue_max_segments(q))
4071                 return 0;
4072
4073         if (q->merge_bvec_fn)
4074                 /* it's too hard to apply the merge_bvec_fn at this stage,
4075                  * just just give up
4076                  */
4077                 return 0;
4078
4079         return 1;
4080 }
4081
4082
4083 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4084 {
4085         struct r5conf *conf = mddev->private;
4086         int dd_idx;
4087         struct bio* align_bi;
4088         struct md_rdev *rdev;
4089         sector_t end_sector;
4090
4091         if (!in_chunk_boundary(mddev, raid_bio)) {
4092                 pr_debug("chunk_aligned_read : non aligned\n");
4093                 return 0;
4094         }
4095         /*
4096          * use bio_clone_mddev to make a copy of the bio
4097          */
4098         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4099         if (!align_bi)
4100                 return 0;
4101         /*
4102          *   set bi_end_io to a new function, and set bi_private to the
4103          *     original bio.
4104          */
4105         align_bi->bi_end_io  = raid5_align_endio;
4106         align_bi->bi_private = raid_bio;
4107         /*
4108          *      compute position
4109          */
4110         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4111                                                     0,
4112                                                     &dd_idx, NULL);
4113
4114         end_sector = bio_end_sector(align_bi);
4115         rcu_read_lock();
4116         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4117         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4118             rdev->recovery_offset < end_sector) {
4119                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4120                 if (rdev &&
4121                     (test_bit(Faulty, &rdev->flags) ||
4122                     !(test_bit(In_sync, &rdev->flags) ||
4123                       rdev->recovery_offset >= end_sector)))
4124                         rdev = NULL;
4125         }
4126         if (rdev) {
4127                 sector_t first_bad;
4128                 int bad_sectors;
4129
4130                 atomic_inc(&rdev->nr_pending);
4131                 rcu_read_unlock();
4132                 raid_bio->bi_next = (void*)rdev;
4133                 align_bi->bi_bdev =  rdev->bdev;
4134                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4135
4136                 if (!bio_fits_rdev(align_bi) ||
4137                     is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4138                                 &first_bad, &bad_sectors)) {
4139                         /* too big in some way, or has a known bad block */
4140                         bio_put(align_bi);
4141                         rdev_dec_pending(rdev, mddev);
4142                         return 0;
4143                 }
4144
4145                 /* No reshape active, so we can trust rdev->data_offset */
4146                 align_bi->bi_sector += rdev->data_offset;
4147
4148                 spin_lock_irq(&conf->device_lock);
4149                 wait_event_lock_irq(conf->wait_for_stripe,
4150                                     conf->quiesce == 0,
4151                                     conf->device_lock);
4152                 atomic_inc(&conf->active_aligned_reads);
4153                 spin_unlock_irq(&conf->device_lock);
4154
4155                 if (mddev->gendisk)
4156                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4157                                               align_bi, disk_devt(mddev->gendisk),
4158                                               raid_bio->bi_sector);
4159                 generic_make_request(align_bi);
4160                 return 1;
4161         } else {
4162                 rcu_read_unlock();
4163                 bio_put(align_bi);
4164                 return 0;
4165         }
4166 }
4167
4168 /* __get_priority_stripe - get the next stripe to process
4169  *
4170  * Full stripe writes are allowed to pass preread active stripes up until
4171  * the bypass_threshold is exceeded.  In general the bypass_count
4172  * increments when the handle_list is handled before the hold_list; however, it
4173  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4174  * stripe with in flight i/o.  The bypass_count will be reset when the
4175  * head of the hold_list has changed, i.e. the head was promoted to the
4176  * handle_list.
4177  */
4178 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4179 {
4180         struct stripe_head *sh = NULL, *tmp;
4181         struct list_head *handle_list = NULL;
4182         struct r5worker_group *wg = NULL;
4183
4184         if (conf->worker_cnt_per_group == 0) {
4185                 handle_list = &conf->handle_list;
4186         } else if (group != ANY_GROUP) {
4187                 handle_list = &conf->worker_groups[group].handle_list;
4188                 wg = &conf->worker_groups[group];
4189         } else {
4190                 int i;
4191                 for (i = 0; i < conf->group_cnt; i++) {
4192                         handle_list = &conf->worker_groups[i].handle_list;
4193                         wg = &conf->worker_groups[i];
4194                         if (!list_empty(handle_list))
4195                                 break;
4196                 }
4197         }
4198
4199         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4200                   __func__,
4201                   list_empty(handle_list) ? "empty" : "busy",
4202                   list_empty(&conf->hold_list) ? "empty" : "busy",
4203                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4204
4205         if (!list_empty(handle_list)) {
4206                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4207
4208                 if (list_empty(&conf->hold_list))
4209                         conf->bypass_count = 0;
4210                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4211                         if (conf->hold_list.next == conf->last_hold)
4212                                 conf->bypass_count++;
4213                         else {
4214                                 conf->last_hold = conf->hold_list.next;
4215                                 conf->bypass_count -= conf->bypass_threshold;
4216                                 if (conf->bypass_count < 0)
4217                                         conf->bypass_count = 0;
4218                         }
4219                 }
4220         } else if (!list_empty(&conf->hold_list) &&
4221                    ((conf->bypass_threshold &&
4222                      conf->bypass_count > conf->bypass_threshold) ||
4223                     atomic_read(&conf->pending_full_writes) == 0)) {
4224
4225                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4226                         if (conf->worker_cnt_per_group == 0 ||
4227                             group == ANY_GROUP ||
4228                             !cpu_online(tmp->cpu) ||
4229                             cpu_to_group(tmp->cpu) == group) {
4230                                 sh = tmp;
4231                                 break;
4232                         }
4233                 }
4234
4235                 if (sh) {
4236                         conf->bypass_count -= conf->bypass_threshold;
4237                         if (conf->bypass_count < 0)
4238                                 conf->bypass_count = 0;
4239                 }
4240                 wg = NULL;
4241         }
4242
4243         if (!sh)
4244                 return NULL;
4245
4246         if (wg) {
4247                 wg->stripes_cnt--;
4248                 sh->group = NULL;
4249         }
4250         list_del_init(&sh->lru);
4251         atomic_inc(&sh->count);
4252         BUG_ON(atomic_read(&sh->count) != 1);
4253         return sh;
4254 }
4255
4256 struct raid5_plug_cb {
4257         struct blk_plug_cb      cb;
4258         struct list_head        list;
4259 };
4260
4261 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4262 {
4263         struct raid5_plug_cb *cb = container_of(
4264                 blk_cb, struct raid5_plug_cb, cb);
4265         struct stripe_head *sh;
4266         struct mddev *mddev = cb->cb.data;
4267         struct r5conf *conf = mddev->private;
4268         int cnt = 0;
4269
4270         if (cb->list.next && !list_empty(&cb->list)) {
4271                 spin_lock_irq(&conf->device_lock);
4272                 while (!list_empty(&cb->list)) {
4273                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4274                         list_del_init(&sh->lru);
4275                         /*
4276                          * avoid race release_stripe_plug() sees
4277                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4278                          * is still in our list
4279                          */
4280                         smp_mb__before_clear_bit();
4281                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4282                         /*
4283                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4284                          * case, the count is always > 1 here
4285                          */
4286                         __release_stripe(conf, sh);
4287                         cnt++;
4288                 }
4289                 spin_unlock_irq(&conf->device_lock);
4290         }
4291         if (mddev->queue)
4292                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4293         kfree(cb);
4294 }
4295
4296 static void release_stripe_plug(struct mddev *mddev,
4297                                 struct stripe_head *sh)
4298 {
4299         struct blk_plug_cb *blk_cb = blk_check_plugged(
4300                 raid5_unplug, mddev,
4301                 sizeof(struct raid5_plug_cb));
4302         struct raid5_plug_cb *cb;
4303
4304         if (!blk_cb) {
4305                 release_stripe(sh);
4306                 return;
4307         }
4308
4309         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4310
4311         if (cb->list.next == NULL)
4312                 INIT_LIST_HEAD(&cb->list);
4313
4314         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4315                 list_add_tail(&sh->lru, &cb->list);
4316         else
4317                 release_stripe(sh);
4318 }
4319
4320 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4321 {
4322         struct r5conf *conf = mddev->private;
4323         sector_t logical_sector, last_sector;
4324         struct stripe_head *sh;
4325         int remaining;
4326         int stripe_sectors;
4327
4328         if (mddev->reshape_position != MaxSector)
4329                 /* Skip discard while reshape is happening */
4330                 return;
4331
4332         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4333         last_sector = bi->bi_sector + (bi->bi_size>>9);
4334
4335         bi->bi_next = NULL;
4336         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4337
4338         stripe_sectors = conf->chunk_sectors *
4339                 (conf->raid_disks - conf->max_degraded);
4340         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4341                                                stripe_sectors);
4342         sector_div(last_sector, stripe_sectors);
4343
4344         logical_sector *= conf->chunk_sectors;
4345         last_sector *= conf->chunk_sectors;
4346
4347         for (; logical_sector < last_sector;
4348              logical_sector += STRIPE_SECTORS) {
4349                 DEFINE_WAIT(w);
4350                 int d;
4351         again:
4352                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4353                 prepare_to_wait(&conf->wait_for_overlap, &w,
4354                                 TASK_UNINTERRUPTIBLE);
4355                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4356                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4357                         release_stripe(sh);
4358                         schedule();
4359                         goto again;
4360                 }
4361                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4362                 spin_lock_irq(&sh->stripe_lock);
4363                 for (d = 0; d < conf->raid_disks; d++) {
4364                         if (d == sh->pd_idx || d == sh->qd_idx)
4365                                 continue;
4366                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4367                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4368                                 spin_unlock_irq(&sh->stripe_lock);
4369                                 release_stripe(sh);
4370                                 schedule();
4371                                 goto again;
4372                         }
4373                 }
4374                 set_bit(STRIPE_DISCARD, &sh->state);
4375                 finish_wait(&conf->wait_for_overlap, &w);
4376                 for (d = 0; d < conf->raid_disks; d++) {
4377                         if (d == sh->pd_idx || d == sh->qd_idx)
4378                                 continue;
4379                         sh->dev[d].towrite = bi;
4380                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4381                         raid5_inc_bi_active_stripes(bi);
4382                 }
4383                 spin_unlock_irq(&sh->stripe_lock);
4384                 if (conf->mddev->bitmap) {
4385                         for (d = 0;
4386                              d < conf->raid_disks - conf->max_degraded;
4387                              d++)
4388                                 bitmap_startwrite(mddev->bitmap,
4389                                                   sh->sector,
4390                                                   STRIPE_SECTORS,
4391                                                   0);
4392                         sh->bm_seq = conf->seq_flush + 1;
4393                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4394                 }
4395
4396                 set_bit(STRIPE_HANDLE, &sh->state);
4397                 clear_bit(STRIPE_DELAYED, &sh->state);
4398                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4399                         atomic_inc(&conf->preread_active_stripes);
4400                 release_stripe_plug(mddev, sh);
4401         }
4402
4403         remaining = raid5_dec_bi_active_stripes(bi);
4404         if (remaining == 0) {
4405                 md_write_end(mddev);
4406                 bio_endio(bi, 0);
4407         }
4408 }
4409
4410 static void make_request(struct mddev *mddev, struct bio * bi)
4411 {
4412         struct r5conf *conf = mddev->private;
4413         int dd_idx;
4414         sector_t new_sector;
4415         sector_t logical_sector, last_sector;
4416         struct stripe_head *sh;
4417         const int rw = bio_data_dir(bi);
4418         int remaining;
4419
4420         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4421                 md_flush_request(mddev, bi);
4422                 return;
4423         }
4424
4425         md_write_start(mddev, bi);
4426
4427         if (rw == READ &&
4428              mddev->reshape_position == MaxSector &&
4429              chunk_aligned_read(mddev,bi))
4430                 return;
4431
4432         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4433                 make_discard_request(mddev, bi);
4434                 return;
4435         }
4436
4437         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4438         last_sector = bio_end_sector(bi);
4439         bi->bi_next = NULL;
4440         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4441
4442         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4443                 DEFINE_WAIT(w);
4444                 int previous;
4445                 int seq;
4446
4447         retry:
4448                 seq = read_seqcount_begin(&conf->gen_lock);
4449                 previous = 0;
4450                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4451                 if (unlikely(conf->reshape_progress != MaxSector)) {
4452                         /* spinlock is needed as reshape_progress may be
4453                          * 64bit on a 32bit platform, and so it might be
4454                          * possible to see a half-updated value
4455                          * Of course reshape_progress could change after
4456                          * the lock is dropped, so once we get a reference
4457                          * to the stripe that we think it is, we will have
4458                          * to check again.
4459                          */
4460                         spin_lock_irq(&conf->device_lock);
4461                         if (mddev->reshape_backwards
4462                             ? logical_sector < conf->reshape_progress
4463                             : logical_sector >= conf->reshape_progress) {
4464                                 previous = 1;
4465                         } else {
4466                                 if (mddev->reshape_backwards
4467                                     ? logical_sector < conf->reshape_safe
4468                                     : logical_sector >= conf->reshape_safe) {
4469                                         spin_unlock_irq(&conf->device_lock);
4470                                         schedule();
4471                                         goto retry;
4472                                 }
4473                         }
4474                         spin_unlock_irq(&conf->device_lock);
4475                 }
4476
4477                 new_sector = raid5_compute_sector(conf, logical_sector,
4478                                                   previous,
4479                                                   &dd_idx, NULL);
4480                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4481                         (unsigned long long)new_sector,
4482                         (unsigned long long)logical_sector);
4483
4484                 sh = get_active_stripe(conf, new_sector, previous,
4485                                        (bi->bi_rw&RWA_MASK), 0);
4486                 if (sh) {
4487                         if (unlikely(previous)) {
4488                                 /* expansion might have moved on while waiting for a
4489                                  * stripe, so we must do the range check again.
4490                                  * Expansion could still move past after this
4491                                  * test, but as we are holding a reference to
4492                                  * 'sh', we know that if that happens,
4493                                  *  STRIPE_EXPANDING will get set and the expansion
4494                                  * won't proceed until we finish with the stripe.
4495                                  */
4496                                 int must_retry = 0;
4497                                 spin_lock_irq(&conf->device_lock);
4498                                 if (mddev->reshape_backwards
4499                                     ? logical_sector >= conf->reshape_progress
4500                                     : logical_sector < conf->reshape_progress)
4501                                         /* mismatch, need to try again */
4502                                         must_retry = 1;
4503                                 spin_unlock_irq(&conf->device_lock);
4504                                 if (must_retry) {
4505                                         release_stripe(sh);
4506                                         schedule();
4507                                         goto retry;
4508                                 }
4509                         }
4510                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4511                                 /* Might have got the wrong stripe_head
4512                                  * by accident
4513                                  */
4514                                 release_stripe(sh);
4515                                 goto retry;
4516                         }
4517
4518                         if (rw == WRITE &&
4519                             logical_sector >= mddev->suspend_lo &&
4520                             logical_sector < mddev->suspend_hi) {
4521                                 release_stripe(sh);
4522                                 /* As the suspend_* range is controlled by
4523                                  * userspace, we want an interruptible
4524                                  * wait.
4525                                  */
4526                                 flush_signals(current);
4527                                 prepare_to_wait(&conf->wait_for_overlap,
4528                                                 &w, TASK_INTERRUPTIBLE);
4529                                 if (logical_sector >= mddev->suspend_lo &&
4530                                     logical_sector < mddev->suspend_hi)
4531                                         schedule();
4532                                 goto retry;
4533                         }
4534
4535                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4536                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4537                                 /* Stripe is busy expanding or
4538                                  * add failed due to overlap.  Flush everything
4539                                  * and wait a while
4540                                  */
4541                                 md_wakeup_thread(mddev->thread);
4542                                 release_stripe(sh);
4543                                 schedule();
4544                                 goto retry;
4545                         }
4546                         finish_wait(&conf->wait_for_overlap, &w);
4547                         set_bit(STRIPE_HANDLE, &sh->state);
4548                         clear_bit(STRIPE_DELAYED, &sh->state);
4549                         if ((bi->bi_rw & REQ_SYNC) &&
4550                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4551                                 atomic_inc(&conf->preread_active_stripes);
4552                         release_stripe_plug(mddev, sh);
4553                 } else {
4554                         /* cannot get stripe for read-ahead, just give-up */
4555                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4556                         finish_wait(&conf->wait_for_overlap, &w);
4557                         break;
4558                 }
4559         }
4560
4561         remaining = raid5_dec_bi_active_stripes(bi);
4562         if (remaining == 0) {
4563
4564                 if ( rw == WRITE )
4565                         md_write_end(mddev);
4566
4567                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4568                                          bi, 0);
4569                 bio_endio(bi, 0);
4570         }
4571 }
4572
4573 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4574
4575 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4576 {
4577         /* reshaping is quite different to recovery/resync so it is
4578          * handled quite separately ... here.
4579          *
4580          * On each call to sync_request, we gather one chunk worth of
4581          * destination stripes and flag them as expanding.
4582          * Then we find all the source stripes and request reads.
4583          * As the reads complete, handle_stripe will copy the data
4584          * into the destination stripe and release that stripe.
4585          */
4586         struct r5conf *conf = mddev->private;
4587         struct stripe_head *sh;
4588         sector_t first_sector, last_sector;
4589         int raid_disks = conf->previous_raid_disks;
4590         int data_disks = raid_disks - conf->max_degraded;
4591         int new_data_disks = conf->raid_disks - conf->max_degraded;
4592         int i;
4593         int dd_idx;
4594         sector_t writepos, readpos, safepos;
4595         sector_t stripe_addr;
4596         int reshape_sectors;
4597         struct list_head stripes;
4598
4599         if (sector_nr == 0) {
4600                 /* If restarting in the middle, skip the initial sectors */
4601                 if (mddev->reshape_backwards &&
4602                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4603                         sector_nr = raid5_size(mddev, 0, 0)
4604                                 - conf->reshape_progress;
4605                 } else if (!mddev->reshape_backwards &&
4606                            conf->reshape_progress > 0)
4607                         sector_nr = conf->reshape_progress;
4608                 sector_div(sector_nr, new_data_disks);
4609                 if (sector_nr) {
4610                         mddev->curr_resync_completed = sector_nr;
4611                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4612                         *skipped = 1;
4613                         return sector_nr;
4614                 }
4615         }
4616
4617         /* We need to process a full chunk at a time.
4618          * If old and new chunk sizes differ, we need to process the
4619          * largest of these
4620          */
4621         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4622                 reshape_sectors = mddev->new_chunk_sectors;
4623         else
4624                 reshape_sectors = mddev->chunk_sectors;
4625
4626         /* We update the metadata at least every 10 seconds, or when
4627          * the data about to be copied would over-write the source of
4628          * the data at the front of the range.  i.e. one new_stripe
4629          * along from reshape_progress new_maps to after where
4630          * reshape_safe old_maps to
4631          */
4632         writepos = conf->reshape_progress;
4633         sector_div(writepos, new_data_disks);
4634         readpos = conf->reshape_progress;
4635         sector_div(readpos, data_disks);
4636         safepos = conf->reshape_safe;
4637         sector_div(safepos, data_disks);
4638         if (mddev->reshape_backwards) {
4639                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4640                 readpos += reshape_sectors;
4641                 safepos += reshape_sectors;
4642         } else {
4643                 writepos += reshape_sectors;
4644                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4645                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4646         }
4647
4648         /* Having calculated the 'writepos' possibly use it
4649          * to set 'stripe_addr' which is where we will write to.
4650          */
4651         if (mddev->reshape_backwards) {
4652                 BUG_ON(conf->reshape_progress == 0);
4653                 stripe_addr = writepos;
4654                 BUG_ON((mddev->dev_sectors &
4655                         ~((sector_t)reshape_sectors - 1))
4656                        - reshape_sectors - stripe_addr
4657                        != sector_nr);
4658         } else {
4659                 BUG_ON(writepos != sector_nr + reshape_sectors);
4660                 stripe_addr = sector_nr;
4661         }
4662
4663         /* 'writepos' is the most advanced device address we might write.
4664          * 'readpos' is the least advanced device address we might read.
4665          * 'safepos' is the least address recorded in the metadata as having
4666          *     been reshaped.
4667          * If there is a min_offset_diff, these are adjusted either by
4668          * increasing the safepos/readpos if diff is negative, or
4669          * increasing writepos if diff is positive.
4670          * If 'readpos' is then behind 'writepos', there is no way that we can
4671          * ensure safety in the face of a crash - that must be done by userspace
4672          * making a backup of the data.  So in that case there is no particular
4673          * rush to update metadata.
4674          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4675          * update the metadata to advance 'safepos' to match 'readpos' so that
4676          * we can be safe in the event of a crash.
4677          * So we insist on updating metadata if safepos is behind writepos and
4678          * readpos is beyond writepos.
4679          * In any case, update the metadata every 10 seconds.
4680          * Maybe that number should be configurable, but I'm not sure it is
4681          * worth it.... maybe it could be a multiple of safemode_delay???
4682          */
4683         if (conf->min_offset_diff < 0) {
4684                 safepos += -conf->min_offset_diff;
4685                 readpos += -conf->min_offset_diff;
4686         } else
4687                 writepos += conf->min_offset_diff;
4688
4689         if ((mddev->reshape_backwards
4690              ? (safepos > writepos && readpos < writepos)
4691              : (safepos < writepos && readpos > writepos)) ||
4692             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4693                 /* Cannot proceed until we've updated the superblock... */
4694                 wait_event(conf->wait_for_overlap,
4695                            atomic_read(&conf->reshape_stripes)==0);
4696                 mddev->reshape_position = conf->reshape_progress;
4697                 mddev->curr_resync_completed = sector_nr;
4698                 conf->reshape_checkpoint = jiffies;
4699                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4700                 md_wakeup_thread(mddev->thread);
4701                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4702                            kthread_should_stop());
4703                 spin_lock_irq(&conf->device_lock);
4704                 conf->reshape_safe = mddev->reshape_position;
4705                 spin_unlock_irq(&conf->device_lock);
4706                 wake_up(&conf->wait_for_overlap);
4707                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4708         }
4709
4710         INIT_LIST_HEAD(&stripes);
4711         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4712                 int j;
4713                 int skipped_disk = 0;
4714                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4715                 set_bit(STRIPE_EXPANDING, &sh->state);
4716                 atomic_inc(&conf->reshape_stripes);
4717                 /* If any of this stripe is beyond the end of the old
4718                  * array, then we need to zero those blocks
4719                  */
4720                 for (j=sh->disks; j--;) {
4721                         sector_t s;
4722                         if (j == sh->pd_idx)
4723                                 continue;
4724                         if (conf->level == 6 &&
4725                             j == sh->qd_idx)
4726                                 continue;
4727                         s = compute_blocknr(sh, j, 0);
4728                         if (s < raid5_size(mddev, 0, 0)) {
4729                                 skipped_disk = 1;
4730                                 continue;
4731                         }
4732                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4733                         set_bit(R5_Expanded, &sh->dev[j].flags);
4734                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4735                 }
4736                 if (!skipped_disk) {
4737                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4738                         set_bit(STRIPE_HANDLE, &sh->state);
4739                 }
4740                 list_add(&sh->lru, &stripes);
4741         }
4742         spin_lock_irq(&conf->device_lock);
4743         if (mddev->reshape_backwards)
4744                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4745         else
4746                 conf->reshape_progress += reshape_sectors * new_data_disks;
4747         spin_unlock_irq(&conf->device_lock);
4748         /* Ok, those stripe are ready. We can start scheduling
4749          * reads on the source stripes.
4750          * The source stripes are determined by mapping the first and last
4751          * block on the destination stripes.
4752          */
4753         first_sector =
4754                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4755                                      1, &dd_idx, NULL);
4756         last_sector =
4757                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4758                                             * new_data_disks - 1),
4759                                      1, &dd_idx, NULL);
4760         if (last_sector >= mddev->dev_sectors)
4761                 last_sector = mddev->dev_sectors - 1;
4762         while (first_sector <= last_sector) {
4763                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4764                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4765                 set_bit(STRIPE_HANDLE, &sh->state);
4766                 release_stripe(sh);
4767                 first_sector += STRIPE_SECTORS;
4768         }
4769         /* Now that the sources are clearly marked, we can release
4770          * the destination stripes
4771          */
4772         while (!list_empty(&stripes)) {
4773                 sh = list_entry(stripes.next, struct stripe_head, lru);
4774                 list_del_init(&sh->lru);
4775                 release_stripe(sh);
4776         }
4777         /* If this takes us to the resync_max point where we have to pause,
4778          * then we need to write out the superblock.
4779          */
4780         sector_nr += reshape_sectors;
4781         if ((sector_nr - mddev->curr_resync_completed) * 2
4782             >= mddev->resync_max - mddev->curr_resync_completed) {
4783                 /* Cannot proceed until we've updated the superblock... */
4784                 wait_event(conf->wait_for_overlap,
4785                            atomic_read(&conf->reshape_stripes) == 0);
4786                 mddev->reshape_position = conf->reshape_progress;
4787                 mddev->curr_resync_completed = sector_nr;
4788                 conf->reshape_checkpoint = jiffies;
4789                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4790                 md_wakeup_thread(mddev->thread);
4791                 wait_event(mddev->sb_wait,
4792                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4793                            || kthread_should_stop());
4794                 spin_lock_irq(&conf->device_lock);
4795                 conf->reshape_safe = mddev->reshape_position;
4796                 spin_unlock_irq(&conf->device_lock);
4797                 wake_up(&conf->wait_for_overlap);
4798                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4799         }
4800         return reshape_sectors;
4801 }
4802
4803 /* FIXME go_faster isn't used */
4804 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4805 {
4806         struct r5conf *conf = mddev->private;
4807         struct stripe_head *sh;
4808         sector_t max_sector = mddev->dev_sectors;
4809         sector_t sync_blocks;
4810         int still_degraded = 0;
4811         int i;
4812
4813         if (sector_nr >= max_sector) {
4814                 /* just being told to finish up .. nothing much to do */
4815
4816                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4817                         end_reshape(conf);
4818                         return 0;
4819                 }
4820
4821                 if (mddev->curr_resync < max_sector) /* aborted */
4822                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4823                                         &sync_blocks, 1);
4824                 else /* completed sync */
4825                         conf->fullsync = 0;
4826                 bitmap_close_sync(mddev->bitmap);
4827
4828                 return 0;
4829         }
4830
4831         /* Allow raid5_quiesce to complete */
4832         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4833
4834         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4835                 return reshape_request(mddev, sector_nr, skipped);
4836
4837         /* No need to check resync_max as we never do more than one
4838          * stripe, and as resync_max will always be on a chunk boundary,
4839          * if the check in md_do_sync didn't fire, there is no chance
4840          * of overstepping resync_max here
4841          */
4842
4843         /* if there is too many failed drives and we are trying
4844          * to resync, then assert that we are finished, because there is
4845          * nothing we can do.
4846          */
4847         if (mddev->degraded >= conf->max_degraded &&
4848             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4849                 sector_t rv = mddev->dev_sectors - sector_nr;
4850                 *skipped = 1;
4851                 return rv;
4852         }
4853         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4854             !conf->fullsync &&
4855             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4856             sync_blocks >= STRIPE_SECTORS) {
4857                 /* we can skip this block, and probably more */
4858                 sync_blocks /= STRIPE_SECTORS;
4859                 *skipped = 1;
4860                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4861         }
4862
4863         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4864
4865         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4866         if (sh == NULL) {
4867                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4868                 /* make sure we don't swamp the stripe cache if someone else
4869                  * is trying to get access
4870                  */
4871                 schedule_timeout_uninterruptible(1);
4872         }
4873         /* Need to check if array will still be degraded after recovery/resync
4874          * We don't need to check the 'failed' flag as when that gets set,
4875          * recovery aborts.
4876          */
4877         for (i = 0; i < conf->raid_disks; i++)
4878                 if (conf->disks[i].rdev == NULL)
4879                         still_degraded = 1;
4880
4881         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4882
4883         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4884
4885         handle_stripe(sh);
4886         release_stripe(sh);
4887
4888         return STRIPE_SECTORS;
4889 }
4890
4891 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4892 {
4893         /* We may not be able to submit a whole bio at once as there
4894          * may not be enough stripe_heads available.
4895          * We cannot pre-allocate enough stripe_heads as we may need
4896          * more than exist in the cache (if we allow ever large chunks).
4897          * So we do one stripe head at a time and record in
4898          * ->bi_hw_segments how many have been done.
4899          *
4900          * We *know* that this entire raid_bio is in one chunk, so
4901          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4902          */
4903         struct stripe_head *sh;
4904         int dd_idx;
4905         sector_t sector, logical_sector, last_sector;
4906         int scnt = 0;
4907         int remaining;
4908         int handled = 0;
4909
4910         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4911         sector = raid5_compute_sector(conf, logical_sector,
4912                                       0, &dd_idx, NULL);
4913         last_sector = bio_end_sector(raid_bio);
4914
4915         for (; logical_sector < last_sector;
4916              logical_sector += STRIPE_SECTORS,
4917                      sector += STRIPE_SECTORS,
4918                      scnt++) {
4919
4920                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4921                         /* already done this stripe */
4922                         continue;
4923
4924                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4925
4926                 if (!sh) {
4927                         /* failed to get a stripe - must wait */
4928                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4929                         conf->retry_read_aligned = raid_bio;
4930                         return handled;
4931                 }
4932
4933                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4934                         release_stripe(sh);
4935                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4936                         conf->retry_read_aligned = raid_bio;
4937                         return handled;
4938                 }
4939
4940                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4941                 handle_stripe(sh);
4942                 release_stripe(sh);
4943                 handled++;
4944         }
4945         remaining = raid5_dec_bi_active_stripes(raid_bio);
4946         if (remaining == 0) {
4947                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4948                                          raid_bio, 0);
4949                 bio_endio(raid_bio, 0);
4950         }
4951         if (atomic_dec_and_test(&conf->active_aligned_reads))
4952                 wake_up(&conf->wait_for_stripe);
4953         return handled;
4954 }
4955
4956 static int handle_active_stripes(struct r5conf *conf, int group,
4957                                  struct r5worker *worker)
4958 {
4959         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4960         int i, batch_size = 0;
4961
4962         while (batch_size < MAX_STRIPE_BATCH &&
4963                         (sh = __get_priority_stripe(conf, group)) != NULL)
4964                 batch[batch_size++] = sh;
4965
4966         if (batch_size == 0)
4967                 return batch_size;
4968         spin_unlock_irq(&conf->device_lock);
4969
4970         for (i = 0; i < batch_size; i++)
4971                 handle_stripe(batch[i]);
4972
4973         cond_resched();
4974
4975         spin_lock_irq(&conf->device_lock);
4976         for (i = 0; i < batch_size; i++)
4977                 __release_stripe(conf, batch[i]);
4978         return batch_size;
4979 }
4980
4981 static void raid5_do_work(struct work_struct *work)
4982 {
4983         struct r5worker *worker = container_of(work, struct r5worker, work);
4984         struct r5worker_group *group = worker->group;
4985         struct r5conf *conf = group->conf;
4986         int group_id = group - conf->worker_groups;
4987         int handled;
4988         struct blk_plug plug;
4989
4990         pr_debug("+++ raid5worker active\n");
4991
4992         blk_start_plug(&plug);
4993         handled = 0;
4994         spin_lock_irq(&conf->device_lock);
4995         while (1) {
4996                 int batch_size, released;
4997
4998                 released = release_stripe_list(conf);
4999
5000                 batch_size = handle_active_stripes(conf, group_id, worker);
5001                 worker->working = false;
5002                 if (!batch_size && !released)
5003                         break;
5004                 handled += batch_size;
5005         }
5006         pr_debug("%d stripes handled\n", handled);
5007
5008         spin_unlock_irq(&conf->device_lock);
5009         blk_finish_plug(&plug);
5010
5011         pr_debug("--- raid5worker inactive\n");
5012 }
5013
5014 /*
5015  * This is our raid5 kernel thread.
5016  *
5017  * We scan the hash table for stripes which can be handled now.
5018  * During the scan, completed stripes are saved for us by the interrupt
5019  * handler, so that they will not have to wait for our next wakeup.
5020  */
5021 static void raid5d(struct md_thread *thread)
5022 {
5023         struct mddev *mddev = thread->mddev;
5024         struct r5conf *conf = mddev->private;
5025         int handled;
5026         struct blk_plug plug;
5027
5028         pr_debug("+++ raid5d active\n");
5029
5030         md_check_recovery(mddev);
5031
5032         blk_start_plug(&plug);
5033         handled = 0;
5034         spin_lock_irq(&conf->device_lock);
5035         while (1) {
5036                 struct bio *bio;
5037                 int batch_size, released;
5038
5039                 released = release_stripe_list(conf);
5040
5041                 if (
5042                     !list_empty(&conf->bitmap_list)) {
5043                         /* Now is a good time to flush some bitmap updates */
5044                         conf->seq_flush++;
5045                         spin_unlock_irq(&conf->device_lock);
5046                         bitmap_unplug(mddev->bitmap);
5047                         spin_lock_irq(&conf->device_lock);
5048                         conf->seq_write = conf->seq_flush;
5049                         activate_bit_delay(conf);
5050                 }
5051                 raid5_activate_delayed(conf);
5052
5053                 while ((bio = remove_bio_from_retry(conf))) {
5054                         int ok;
5055                         spin_unlock_irq(&conf->device_lock);
5056                         ok = retry_aligned_read(conf, bio);
5057                         spin_lock_irq(&conf->device_lock);
5058                         if (!ok)
5059                                 break;
5060                         handled++;
5061                 }
5062
5063                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL);
5064                 if (!batch_size && !released)
5065                         break;
5066                 handled += batch_size;
5067
5068                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5069                         spin_unlock_irq(&conf->device_lock);
5070                         md_check_recovery(mddev);
5071                         spin_lock_irq(&conf->device_lock);
5072                 }
5073         }
5074         pr_debug("%d stripes handled\n", handled);
5075
5076         spin_unlock_irq(&conf->device_lock);
5077
5078         async_tx_issue_pending_all();
5079         blk_finish_plug(&plug);
5080
5081         pr_debug("--- raid5d inactive\n");
5082 }
5083
5084 static ssize_t
5085 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5086 {
5087         struct r5conf *conf = mddev->private;
5088         if (conf)
5089                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5090         else
5091                 return 0;
5092 }
5093
5094 int
5095 raid5_set_cache_size(struct mddev *mddev, int size)
5096 {
5097         struct r5conf *conf = mddev->private;
5098         int err;
5099
5100         if (size <= 16 || size > 32768)
5101                 return -EINVAL;
5102         while (size < conf->max_nr_stripes) {
5103                 if (drop_one_stripe(conf))
5104                         conf->max_nr_stripes--;
5105                 else
5106                         break;
5107         }
5108         err = md_allow_write(mddev);
5109         if (err)
5110                 return err;
5111         while (size > conf->max_nr_stripes) {
5112                 if (grow_one_stripe(conf))
5113                         conf->max_nr_stripes++;
5114                 else break;
5115         }
5116         return 0;
5117 }
5118 EXPORT_SYMBOL(raid5_set_cache_size);
5119
5120 static ssize_t
5121 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5122 {
5123         struct r5conf *conf = mddev->private;
5124         unsigned long new;
5125         int err;
5126
5127         if (len >= PAGE_SIZE)
5128                 return -EINVAL;
5129         if (!conf)
5130                 return -ENODEV;
5131
5132         if (kstrtoul(page, 10, &new))
5133                 return -EINVAL;
5134         err = raid5_set_cache_size(mddev, new);
5135         if (err)
5136                 return err;
5137         return len;
5138 }
5139
5140 static struct md_sysfs_entry
5141 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5142                                 raid5_show_stripe_cache_size,
5143                                 raid5_store_stripe_cache_size);
5144
5145 static ssize_t
5146 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5147 {
5148         struct r5conf *conf = mddev->private;
5149         if (conf)
5150                 return sprintf(page, "%d\n", conf->bypass_threshold);
5151         else
5152                 return 0;
5153 }
5154
5155 static ssize_t
5156 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5157 {
5158         struct r5conf *conf = mddev->private;
5159         unsigned long new;
5160         if (len >= PAGE_SIZE)
5161                 return -EINVAL;
5162         if (!conf)
5163                 return -ENODEV;
5164
5165         if (kstrtoul(page, 10, &new))
5166                 return -EINVAL;
5167         if (new > conf->max_nr_stripes)
5168                 return -EINVAL;
5169         conf->bypass_threshold = new;
5170         return len;
5171 }
5172
5173 static struct md_sysfs_entry
5174 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5175                                         S_IRUGO | S_IWUSR,
5176                                         raid5_show_preread_threshold,
5177                                         raid5_store_preread_threshold);
5178
5179 static ssize_t
5180 stripe_cache_active_show(struct mddev *mddev, char *page)
5181 {
5182         struct r5conf *conf = mddev->private;
5183         if (conf)
5184                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5185         else
5186                 return 0;
5187 }
5188
5189 static struct md_sysfs_entry
5190 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5191
5192 static ssize_t
5193 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5194 {
5195         struct r5conf *conf = mddev->private;
5196         if (conf)
5197                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5198         else
5199                 return 0;
5200 }
5201
5202 static int alloc_thread_groups(struct r5conf *conf, int cnt);
5203 static ssize_t
5204 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5205 {
5206         struct r5conf *conf = mddev->private;
5207         unsigned long new;
5208         int err;
5209         struct r5worker_group *old_groups;
5210         int old_group_cnt;
5211
5212         if (len >= PAGE_SIZE)
5213                 return -EINVAL;
5214         if (!conf)
5215                 return -ENODEV;
5216
5217         if (kstrtoul(page, 10, &new))
5218                 return -EINVAL;
5219
5220         if (new == conf->worker_cnt_per_group)
5221                 return len;
5222
5223         mddev_suspend(mddev);
5224
5225         old_groups = conf->worker_groups;
5226         old_group_cnt = conf->worker_cnt_per_group;
5227
5228         conf->worker_groups = NULL;
5229         err = alloc_thread_groups(conf, new);
5230         if (err) {
5231                 conf->worker_groups = old_groups;
5232                 conf->worker_cnt_per_group = old_group_cnt;
5233         } else {
5234                 if (old_groups)
5235                         kfree(old_groups[0].workers);
5236                 kfree(old_groups);
5237         }
5238
5239         mddev_resume(mddev);
5240
5241         if (err)
5242                 return err;
5243         return len;
5244 }
5245
5246 static struct md_sysfs_entry
5247 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5248                                 raid5_show_group_thread_cnt,
5249                                 raid5_store_group_thread_cnt);
5250
5251 static struct attribute *raid5_attrs[] =  {
5252         &raid5_stripecache_size.attr,
5253         &raid5_stripecache_active.attr,
5254         &raid5_preread_bypass_threshold.attr,
5255         &raid5_group_thread_cnt.attr,
5256         NULL,
5257 };
5258 static struct attribute_group raid5_attrs_group = {
5259         .name = NULL,
5260         .attrs = raid5_attrs,
5261 };
5262
5263 static int alloc_thread_groups(struct r5conf *conf, int cnt)
5264 {
5265         int i, j;
5266         ssize_t size;
5267         struct r5worker *workers;
5268
5269         conf->worker_cnt_per_group = cnt;
5270         if (cnt == 0) {
5271                 conf->worker_groups = NULL;
5272                 return 0;
5273         }
5274         conf->group_cnt = num_possible_nodes();
5275         size = sizeof(struct r5worker) * cnt;
5276         workers = kzalloc(size * conf->group_cnt, GFP_NOIO);
5277         conf->worker_groups = kzalloc(sizeof(struct r5worker_group) *
5278                                 conf->group_cnt, GFP_NOIO);
5279         if (!conf->worker_groups || !workers) {
5280                 kfree(workers);
5281                 kfree(conf->worker_groups);
5282                 conf->worker_groups = NULL;
5283                 return -ENOMEM;
5284         }
5285
5286         for (i = 0; i < conf->group_cnt; i++) {
5287                 struct r5worker_group *group;
5288
5289                 group = &conf->worker_groups[i];
5290                 INIT_LIST_HEAD(&group->handle_list);
5291                 group->conf = conf;
5292                 group->workers = workers + i * cnt;
5293
5294                 for (j = 0; j < cnt; j++) {
5295                         group->workers[j].group = group;
5296                         INIT_WORK(&group->workers[j].work, raid5_do_work);
5297                 }
5298         }
5299
5300         return 0;
5301 }
5302
5303 static void free_thread_groups(struct r5conf *conf)
5304 {
5305         if (conf->worker_groups)
5306                 kfree(conf->worker_groups[0].workers);
5307         kfree(conf->worker_groups);
5308         conf->worker_groups = NULL;
5309 }
5310
5311 static sector_t
5312 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5313 {
5314         struct r5conf *conf = mddev->private;
5315
5316         if (!sectors)
5317                 sectors = mddev->dev_sectors;
5318         if (!raid_disks)
5319                 /* size is defined by the smallest of previous and new size */
5320                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5321
5322         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5323         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5324         return sectors * (raid_disks - conf->max_degraded);
5325 }
5326
5327 static void raid5_free_percpu(struct r5conf *conf)
5328 {
5329         struct raid5_percpu *percpu;
5330         unsigned long cpu;
5331
5332         if (!conf->percpu)
5333                 return;
5334
5335         get_online_cpus();
5336         for_each_possible_cpu(cpu) {
5337                 percpu = per_cpu_ptr(conf->percpu, cpu);
5338                 safe_put_page(percpu->spare_page);
5339                 kfree(percpu->scribble);
5340         }
5341 #ifdef CONFIG_HOTPLUG_CPU
5342         unregister_cpu_notifier(&conf->cpu_notify);
5343 #endif
5344         put_online_cpus();
5345
5346         free_percpu(conf->percpu);
5347 }
5348
5349 static void free_conf(struct r5conf *conf)
5350 {
5351         free_thread_groups(conf);
5352         shrink_stripes(conf);
5353         raid5_free_percpu(conf);
5354         kfree(conf->disks);
5355         kfree(conf->stripe_hashtbl);
5356         kfree(conf);
5357 }
5358
5359 #ifdef CONFIG_HOTPLUG_CPU
5360 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5361                               void *hcpu)
5362 {
5363         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5364         long cpu = (long)hcpu;
5365         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5366
5367         switch (action) {
5368         case CPU_UP_PREPARE:
5369         case CPU_UP_PREPARE_FROZEN:
5370                 if (conf->level == 6 && !percpu->spare_page)
5371                         percpu->spare_page = alloc_page(GFP_KERNEL);
5372                 if (!percpu->scribble)
5373                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5374
5375                 if (!percpu->scribble ||
5376                     (conf->level == 6 && !percpu->spare_page)) {
5377                         safe_put_page(percpu->spare_page);
5378                         kfree(percpu->scribble);
5379                         pr_err("%s: failed memory allocation for cpu%ld\n",
5380                                __func__, cpu);
5381                         return notifier_from_errno(-ENOMEM);
5382                 }
5383                 break;
5384         case CPU_DEAD:
5385         case CPU_DEAD_FROZEN:
5386                 safe_put_page(percpu->spare_page);
5387                 kfree(percpu->scribble);
5388                 percpu->spare_page = NULL;
5389                 percpu->scribble = NULL;
5390                 break;
5391         default:
5392                 break;
5393         }
5394         return NOTIFY_OK;
5395 }
5396 #endif
5397
5398 static int raid5_alloc_percpu(struct r5conf *conf)
5399 {
5400         unsigned long cpu;
5401         struct page *spare_page;
5402         struct raid5_percpu __percpu *allcpus;
5403         void *scribble;
5404         int err;
5405
5406         allcpus = alloc_percpu(struct raid5_percpu);
5407         if (!allcpus)
5408                 return -ENOMEM;
5409         conf->percpu = allcpus;
5410
5411         get_online_cpus();
5412         err = 0;
5413         for_each_present_cpu(cpu) {
5414                 if (conf->level == 6) {
5415                         spare_page = alloc_page(GFP_KERNEL);
5416                         if (!spare_page) {
5417                                 err = -ENOMEM;
5418                                 break;
5419                         }
5420                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5421                 }
5422                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5423                 if (!scribble) {
5424                         err = -ENOMEM;
5425                         break;
5426                 }
5427                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5428         }
5429 #ifdef CONFIG_HOTPLUG_CPU
5430         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5431         conf->cpu_notify.priority = 0;
5432         if (err == 0)
5433                 err = register_cpu_notifier(&conf->cpu_notify);
5434 #endif
5435         put_online_cpus();
5436
5437         return err;
5438 }
5439
5440 static struct r5conf *setup_conf(struct mddev *mddev)
5441 {
5442         struct r5conf *conf;
5443         int raid_disk, memory, max_disks;
5444         struct md_rdev *rdev;
5445         struct disk_info *disk;
5446         char pers_name[6];
5447
5448         if (mddev->new_level != 5
5449             && mddev->new_level != 4
5450             && mddev->new_level != 6) {
5451                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5452                        mdname(mddev), mddev->new_level);
5453                 return ERR_PTR(-EIO);
5454         }
5455         if ((mddev->new_level == 5
5456              && !algorithm_valid_raid5(mddev->new_layout)) ||
5457             (mddev->new_level == 6
5458              && !algorithm_valid_raid6(mddev->new_layout))) {
5459                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5460                        mdname(mddev), mddev->new_layout);
5461                 return ERR_PTR(-EIO);
5462         }
5463         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5464                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5465                        mdname(mddev), mddev->raid_disks);
5466                 return ERR_PTR(-EINVAL);
5467         }
5468
5469         if (!mddev->new_chunk_sectors ||
5470             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5471             !is_power_of_2(mddev->new_chunk_sectors)) {
5472                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5473                        mdname(mddev), mddev->new_chunk_sectors << 9);
5474                 return ERR_PTR(-EINVAL);
5475         }
5476
5477         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5478         if (conf == NULL)
5479                 goto abort;
5480         /* Don't enable multi-threading by default*/
5481         if (alloc_thread_groups(conf, 0))
5482                 goto abort;
5483         spin_lock_init(&conf->device_lock);
5484         seqcount_init(&conf->gen_lock);
5485         init_waitqueue_head(&conf->wait_for_stripe);
5486         init_waitqueue_head(&conf->wait_for_overlap);
5487         INIT_LIST_HEAD(&conf->handle_list);
5488         INIT_LIST_HEAD(&conf->hold_list);
5489         INIT_LIST_HEAD(&conf->delayed_list);
5490         INIT_LIST_HEAD(&conf->bitmap_list);
5491         INIT_LIST_HEAD(&conf->inactive_list);
5492         init_llist_head(&conf->released_stripes);
5493         atomic_set(&conf->active_stripes, 0);
5494         atomic_set(&conf->preread_active_stripes, 0);
5495         atomic_set(&conf->active_aligned_reads, 0);
5496         conf->bypass_threshold = BYPASS_THRESHOLD;
5497         conf->recovery_disabled = mddev->recovery_disabled - 1;
5498
5499         conf->raid_disks = mddev->raid_disks;
5500         if (mddev->reshape_position == MaxSector)
5501                 conf->previous_raid_disks = mddev->raid_disks;
5502         else
5503                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5504         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5505         conf->scribble_len = scribble_len(max_disks);
5506
5507         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5508                               GFP_KERNEL);
5509         if (!conf->disks)
5510                 goto abort;
5511
5512         conf->mddev = mddev;
5513
5514         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5515                 goto abort;
5516
5517         conf->level = mddev->new_level;
5518         if (raid5_alloc_percpu(conf) != 0)
5519                 goto abort;
5520
5521         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5522
5523         rdev_for_each(rdev, mddev) {
5524                 raid_disk = rdev->raid_disk;
5525                 if (raid_disk >= max_disks
5526                     || raid_disk < 0)
5527                         continue;
5528                 disk = conf->disks + raid_disk;
5529
5530                 if (test_bit(Replacement, &rdev->flags)) {
5531                         if (disk->replacement)
5532                                 goto abort;
5533                         disk->replacement = rdev;
5534                 } else {
5535                         if (disk->rdev)
5536                                 goto abort;
5537                         disk->rdev = rdev;
5538                 }
5539
5540                 if (test_bit(In_sync, &rdev->flags)) {
5541                         char b[BDEVNAME_SIZE];
5542                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5543                                " disk %d\n",
5544                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5545                 } else if (rdev->saved_raid_disk != raid_disk)
5546                         /* Cannot rely on bitmap to complete recovery */
5547                         conf->fullsync = 1;
5548         }
5549
5550         conf->chunk_sectors = mddev->new_chunk_sectors;
5551         conf->level = mddev->new_level;
5552         if (conf->level == 6)
5553                 conf->max_degraded = 2;
5554         else
5555                 conf->max_degraded = 1;
5556         conf->algorithm = mddev->new_layout;
5557         conf->max_nr_stripes = NR_STRIPES;
5558         conf->reshape_progress = mddev->reshape_position;
5559         if (conf->reshape_progress != MaxSector) {
5560                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5561                 conf->prev_algo = mddev->layout;
5562         }
5563
5564         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5565                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5566         if (grow_stripes(conf, conf->max_nr_stripes)) {
5567                 printk(KERN_ERR
5568                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5569                        mdname(mddev), memory);
5570                 goto abort;
5571         } else
5572                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5573                        mdname(mddev), memory);
5574
5575         sprintf(pers_name, "raid%d", mddev->new_level);
5576         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5577         if (!conf->thread) {
5578                 printk(KERN_ERR
5579                        "md/raid:%s: couldn't allocate thread.\n",
5580                        mdname(mddev));
5581                 goto abort;
5582         }
5583
5584         return conf;
5585
5586  abort:
5587         if (conf) {
5588                 free_conf(conf);
5589                 return ERR_PTR(-EIO);
5590         } else
5591                 return ERR_PTR(-ENOMEM);
5592 }
5593
5594
5595 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5596 {
5597         switch (algo) {
5598         case ALGORITHM_PARITY_0:
5599                 if (raid_disk < max_degraded)
5600                         return 1;
5601                 break;
5602         case ALGORITHM_PARITY_N:
5603                 if (raid_disk >= raid_disks - max_degraded)
5604                         return 1;
5605                 break;
5606         case ALGORITHM_PARITY_0_6:
5607                 if (raid_disk == 0 || 
5608                     raid_disk == raid_disks - 1)
5609                         return 1;
5610                 break;
5611         case ALGORITHM_LEFT_ASYMMETRIC_6:
5612         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5613         case ALGORITHM_LEFT_SYMMETRIC_6:
5614         case ALGORITHM_RIGHT_SYMMETRIC_6:
5615                 if (raid_disk == raid_disks - 1)
5616                         return 1;
5617         }
5618         return 0;
5619 }
5620
5621 static int run(struct mddev *mddev)
5622 {
5623         struct r5conf *conf;
5624         int working_disks = 0;
5625         int dirty_parity_disks = 0;
5626         struct md_rdev *rdev;
5627         sector_t reshape_offset = 0;
5628         int i;
5629         long long min_offset_diff = 0;
5630         int first = 1;
5631
5632         if (mddev->recovery_cp != MaxSector)
5633                 printk(KERN_NOTICE "md/raid:%s: not clean"
5634                        " -- starting background reconstruction\n",
5635                        mdname(mddev));
5636
5637         rdev_for_each(rdev, mddev) {
5638                 long long diff;
5639                 if (rdev->raid_disk < 0)
5640                         continue;
5641                 diff = (rdev->new_data_offset - rdev->data_offset);
5642                 if (first) {
5643                         min_offset_diff = diff;
5644                         first = 0;
5645                 } else if (mddev->reshape_backwards &&
5646                          diff < min_offset_diff)
5647                         min_offset_diff = diff;
5648                 else if (!mddev->reshape_backwards &&
5649                          diff > min_offset_diff)
5650                         min_offset_diff = diff;
5651         }
5652
5653         if (mddev->reshape_position != MaxSector) {
5654                 /* Check that we can continue the reshape.
5655                  * Difficulties arise if the stripe we would write to
5656                  * next is at or after the stripe we would read from next.
5657                  * For a reshape that changes the number of devices, this
5658                  * is only possible for a very short time, and mdadm makes
5659                  * sure that time appears to have past before assembling
5660                  * the array.  So we fail if that time hasn't passed.
5661                  * For a reshape that keeps the number of devices the same
5662                  * mdadm must be monitoring the reshape can keeping the
5663                  * critical areas read-only and backed up.  It will start
5664                  * the array in read-only mode, so we check for that.
5665                  */
5666                 sector_t here_new, here_old;
5667                 int old_disks;
5668                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5669
5670                 if (mddev->new_level != mddev->level) {
5671                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5672                                "required - aborting.\n",
5673                                mdname(mddev));
5674                         return -EINVAL;
5675                 }
5676                 old_disks = mddev->raid_disks - mddev->delta_disks;
5677                 /* reshape_position must be on a new-stripe boundary, and one
5678                  * further up in new geometry must map after here in old
5679                  * geometry.
5680                  */
5681                 here_new = mddev->reshape_position;
5682                 if (sector_div(here_new, mddev->new_chunk_sectors *
5683                                (mddev->raid_disks - max_degraded))) {
5684                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5685                                "on a stripe boundary\n", mdname(mddev));
5686                         return -EINVAL;
5687                 }
5688                 reshape_offset = here_new * mddev->new_chunk_sectors;
5689                 /* here_new is the stripe we will write to */
5690                 here_old = mddev->reshape_position;
5691                 sector_div(here_old, mddev->chunk_sectors *
5692                            (old_disks-max_degraded));
5693                 /* here_old is the first stripe that we might need to read
5694                  * from */
5695                 if (mddev->delta_disks == 0) {
5696                         if ((here_new * mddev->new_chunk_sectors !=
5697                              here_old * mddev->chunk_sectors)) {
5698                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5699                                        " confused - aborting\n", mdname(mddev));
5700                                 return -EINVAL;
5701                         }
5702                         /* We cannot be sure it is safe to start an in-place
5703                          * reshape.  It is only safe if user-space is monitoring
5704                          * and taking constant backups.
5705                          * mdadm always starts a situation like this in
5706                          * readonly mode so it can take control before
5707                          * allowing any writes.  So just check for that.
5708                          */
5709                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5710                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5711                                 /* not really in-place - so OK */;
5712                         else if (mddev->ro == 0) {
5713                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5714                                        "must be started in read-only mode "
5715                                        "- aborting\n",
5716                                        mdname(mddev));
5717                                 return -EINVAL;
5718                         }
5719                 } else if (mddev->reshape_backwards
5720                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5721                        here_old * mddev->chunk_sectors)
5722                     : (here_new * mddev->new_chunk_sectors >=
5723                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5724                         /* Reading from the same stripe as writing to - bad */
5725                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5726                                "auto-recovery - aborting.\n",
5727                                mdname(mddev));
5728                         return -EINVAL;
5729                 }
5730                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5731                        mdname(mddev));
5732                 /* OK, we should be able to continue; */
5733         } else {
5734                 BUG_ON(mddev->level != mddev->new_level);
5735                 BUG_ON(mddev->layout != mddev->new_layout);
5736                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5737                 BUG_ON(mddev->delta_disks != 0);
5738         }
5739
5740         if (mddev->private == NULL)
5741                 conf = setup_conf(mddev);
5742         else
5743                 conf = mddev->private;
5744
5745         if (IS_ERR(conf))
5746                 return PTR_ERR(conf);
5747
5748         conf->min_offset_diff = min_offset_diff;
5749         mddev->thread = conf->thread;
5750         conf->thread = NULL;
5751         mddev->private = conf;
5752
5753         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5754              i++) {
5755                 rdev = conf->disks[i].rdev;
5756                 if (!rdev && conf->disks[i].replacement) {
5757                         /* The replacement is all we have yet */
5758                         rdev = conf->disks[i].replacement;
5759                         conf->disks[i].replacement = NULL;
5760                         clear_bit(Replacement, &rdev->flags);
5761                         conf->disks[i].rdev = rdev;
5762                 }
5763                 if (!rdev)
5764                         continue;
5765                 if (conf->disks[i].replacement &&
5766                     conf->reshape_progress != MaxSector) {
5767                         /* replacements and reshape simply do not mix. */
5768                         printk(KERN_ERR "md: cannot handle concurrent "
5769                                "replacement and reshape.\n");
5770                         goto abort;
5771                 }
5772                 if (test_bit(In_sync, &rdev->flags)) {
5773                         working_disks++;
5774                         continue;
5775                 }
5776                 /* This disc is not fully in-sync.  However if it
5777                  * just stored parity (beyond the recovery_offset),
5778                  * when we don't need to be concerned about the
5779                  * array being dirty.
5780                  * When reshape goes 'backwards', we never have
5781                  * partially completed devices, so we only need
5782                  * to worry about reshape going forwards.
5783                  */
5784                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5785                 if (mddev->major_version == 0 &&
5786                     mddev->minor_version > 90)
5787                         rdev->recovery_offset = reshape_offset;
5788
5789                 if (rdev->recovery_offset < reshape_offset) {
5790                         /* We need to check old and new layout */
5791                         if (!only_parity(rdev->raid_disk,
5792                                          conf->algorithm,
5793                                          conf->raid_disks,
5794                                          conf->max_degraded))
5795                                 continue;
5796                 }
5797                 if (!only_parity(rdev->raid_disk,
5798                                  conf->prev_algo,
5799                                  conf->previous_raid_disks,
5800                                  conf->max_degraded))
5801                         continue;
5802                 dirty_parity_disks++;
5803         }
5804
5805         /*
5806          * 0 for a fully functional array, 1 or 2 for a degraded array.
5807          */
5808         mddev->degraded = calc_degraded(conf);
5809
5810         if (has_failed(conf)) {
5811                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5812                         " (%d/%d failed)\n",
5813                         mdname(mddev), mddev->degraded, conf->raid_disks);
5814                 goto abort;
5815         }
5816
5817         /* device size must be a multiple of chunk size */
5818         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5819         mddev->resync_max_sectors = mddev->dev_sectors;
5820
5821         if (mddev->degraded > dirty_parity_disks &&
5822             mddev->recovery_cp != MaxSector) {
5823                 if (mddev->ok_start_degraded)
5824                         printk(KERN_WARNING
5825                                "md/raid:%s: starting dirty degraded array"
5826                                " - data corruption possible.\n",
5827                                mdname(mddev));
5828                 else {
5829                         printk(KERN_ERR
5830                                "md/raid:%s: cannot start dirty degraded array.\n",
5831                                mdname(mddev));
5832                         goto abort;
5833                 }
5834         }
5835
5836         if (mddev->degraded == 0)
5837                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5838                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5839                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5840                        mddev->new_layout);
5841         else
5842                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5843                        " out of %d devices, algorithm %d\n",
5844                        mdname(mddev), conf->level,
5845                        mddev->raid_disks - mddev->degraded,
5846                        mddev->raid_disks, mddev->new_layout);
5847
5848         print_raid5_conf(conf);
5849
5850         if (conf->reshape_progress != MaxSector) {
5851                 conf->reshape_safe = conf->reshape_progress;
5852                 atomic_set(&conf->reshape_stripes, 0);
5853                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5854                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5855                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5856                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5857                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5858                                                         "reshape");
5859         }
5860
5861
5862         /* Ok, everything is just fine now */
5863         if (mddev->to_remove == &raid5_attrs_group)
5864                 mddev->to_remove = NULL;
5865         else if (mddev->kobj.sd &&
5866             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5867                 printk(KERN_WARNING
5868                        "raid5: failed to create sysfs attributes for %s\n",
5869                        mdname(mddev));
5870         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5871
5872         if (mddev->queue) {
5873                 int chunk_size;
5874                 bool discard_supported = true;
5875                 /* read-ahead size must cover two whole stripes, which
5876                  * is 2 * (datadisks) * chunksize where 'n' is the
5877                  * number of raid devices
5878                  */
5879                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5880                 int stripe = data_disks *
5881                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5882                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5883                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5884
5885                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5886
5887                 mddev->queue->backing_dev_info.congested_data = mddev;
5888                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5889
5890                 chunk_size = mddev->chunk_sectors << 9;
5891                 blk_queue_io_min(mddev->queue, chunk_size);
5892                 blk_queue_io_opt(mddev->queue, chunk_size *
5893                                  (conf->raid_disks - conf->max_degraded));
5894                 /*
5895                  * We can only discard a whole stripe. It doesn't make sense to
5896                  * discard data disk but write parity disk
5897                  */
5898                 stripe = stripe * PAGE_SIZE;
5899                 /* Round up to power of 2, as discard handling
5900                  * currently assumes that */
5901                 while ((stripe-1) & stripe)
5902                         stripe = (stripe | (stripe-1)) + 1;
5903                 mddev->queue->limits.discard_alignment = stripe;
5904                 mddev->queue->limits.discard_granularity = stripe;
5905                 /*
5906                  * unaligned part of discard request will be ignored, so can't
5907                  * guarantee discard_zerors_data
5908                  */
5909                 mddev->queue->limits.discard_zeroes_data = 0;
5910
5911                 blk_queue_max_write_same_sectors(mddev->queue, 0);
5912
5913                 rdev_for_each(rdev, mddev) {
5914                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5915                                           rdev->data_offset << 9);
5916                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5917                                           rdev->new_data_offset << 9);
5918                         /*
5919                          * discard_zeroes_data is required, otherwise data
5920                          * could be lost. Consider a scenario: discard a stripe
5921                          * (the stripe could be inconsistent if
5922                          * discard_zeroes_data is 0); write one disk of the
5923                          * stripe (the stripe could be inconsistent again
5924                          * depending on which disks are used to calculate
5925                          * parity); the disk is broken; The stripe data of this
5926                          * disk is lost.
5927                          */
5928                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5929                             !bdev_get_queue(rdev->bdev)->
5930                                                 limits.discard_zeroes_data)
5931                                 discard_supported = false;
5932                 }
5933
5934                 if (discard_supported &&
5935                    mddev->queue->limits.max_discard_sectors >= stripe &&
5936                    mddev->queue->limits.discard_granularity >= stripe)
5937                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5938                                                 mddev->queue);
5939                 else
5940                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5941                                                 mddev->queue);
5942         }
5943
5944         return 0;
5945 abort:
5946         md_unregister_thread(&mddev->thread);
5947         print_raid5_conf(conf);
5948         free_conf(conf);
5949         mddev->private = NULL;
5950         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5951         return -EIO;
5952 }
5953
5954 static int stop(struct mddev *mddev)
5955 {
5956         struct r5conf *conf = mddev->private;
5957
5958         md_unregister_thread(&mddev->thread);
5959         if (mddev->queue)
5960                 mddev->queue->backing_dev_info.congested_fn = NULL;
5961         free_conf(conf);
5962         mddev->private = NULL;
5963         mddev->to_remove = &raid5_attrs_group;
5964         return 0;
5965 }
5966
5967 static void status(struct seq_file *seq, struct mddev *mddev)
5968 {
5969         struct r5conf *conf = mddev->private;
5970         int i;
5971
5972         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5973                 mddev->chunk_sectors / 2, mddev->layout);
5974         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5975         for (i = 0; i < conf->raid_disks; i++)
5976                 seq_printf (seq, "%s",
5977                                conf->disks[i].rdev &&
5978                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5979         seq_printf (seq, "]");
5980 }
5981
5982 static void print_raid5_conf (struct r5conf *conf)
5983 {
5984         int i;
5985         struct disk_info *tmp;
5986
5987         printk(KERN_DEBUG "RAID conf printout:\n");
5988         if (!conf) {
5989                 printk("(conf==NULL)\n");
5990                 return;
5991         }
5992         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5993                conf->raid_disks,
5994                conf->raid_disks - conf->mddev->degraded);
5995
5996         for (i = 0; i < conf->raid_disks; i++) {
5997                 char b[BDEVNAME_SIZE];
5998                 tmp = conf->disks + i;
5999                 if (tmp->rdev)
6000                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6001                                i, !test_bit(Faulty, &tmp->rdev->flags),
6002                                bdevname(tmp->rdev->bdev, b));
6003         }
6004 }
6005
6006 static int raid5_spare_active(struct mddev *mddev)
6007 {
6008         int i;
6009         struct r5conf *conf = mddev->private;
6010         struct disk_info *tmp;
6011         int count = 0;
6012         unsigned long flags;
6013
6014         for (i = 0; i < conf->raid_disks; i++) {
6015                 tmp = conf->disks + i;
6016                 if (tmp->replacement
6017                     && tmp->replacement->recovery_offset == MaxSector
6018                     && !test_bit(Faulty, &tmp->replacement->flags)
6019                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6020                         /* Replacement has just become active. */
6021                         if (!tmp->rdev
6022                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6023                                 count++;
6024                         if (tmp->rdev) {
6025                                 /* Replaced device not technically faulty,
6026                                  * but we need to be sure it gets removed
6027                                  * and never re-added.
6028                                  */
6029                                 set_bit(Faulty, &tmp->rdev->flags);
6030                                 sysfs_notify_dirent_safe(
6031                                         tmp->rdev->sysfs_state);
6032                         }
6033                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6034                 } else if (tmp->rdev
6035                     && tmp->rdev->recovery_offset == MaxSector
6036                     && !test_bit(Faulty, &tmp->rdev->flags)
6037                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6038                         count++;
6039                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6040                 }
6041         }
6042         spin_lock_irqsave(&conf->device_lock, flags);
6043         mddev->degraded = calc_degraded(conf);
6044         spin_unlock_irqrestore(&conf->device_lock, flags);
6045         print_raid5_conf(conf);
6046         return count;
6047 }
6048
6049 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6050 {
6051         struct r5conf *conf = mddev->private;
6052         int err = 0;
6053         int number = rdev->raid_disk;
6054         struct md_rdev **rdevp;
6055         struct disk_info *p = conf->disks + number;
6056
6057         print_raid5_conf(conf);
6058         if (rdev == p->rdev)
6059                 rdevp = &p->rdev;
6060         else if (rdev == p->replacement)
6061                 rdevp = &p->replacement;
6062         else
6063                 return 0;
6064
6065         if (number >= conf->raid_disks &&
6066             conf->reshape_progress == MaxSector)
6067                 clear_bit(In_sync, &rdev->flags);
6068
6069         if (test_bit(In_sync, &rdev->flags) ||
6070             atomic_read(&rdev->nr_pending)) {
6071                 err = -EBUSY;
6072                 goto abort;
6073         }
6074         /* Only remove non-faulty devices if recovery
6075          * isn't possible.
6076          */
6077         if (!test_bit(Faulty, &rdev->flags) &&
6078             mddev->recovery_disabled != conf->recovery_disabled &&
6079             !has_failed(conf) &&
6080             (!p->replacement || p->replacement == rdev) &&
6081             number < conf->raid_disks) {
6082                 err = -EBUSY;
6083                 goto abort;
6084         }
6085         *rdevp = NULL;
6086         synchronize_rcu();
6087         if (atomic_read(&rdev->nr_pending)) {
6088                 /* lost the race, try later */
6089                 err = -EBUSY;
6090                 *rdevp = rdev;
6091         } else if (p->replacement) {
6092                 /* We must have just cleared 'rdev' */
6093                 p->rdev = p->replacement;
6094                 clear_bit(Replacement, &p->replacement->flags);
6095                 smp_mb(); /* Make sure other CPUs may see both as identical
6096                            * but will never see neither - if they are careful
6097                            */
6098                 p->replacement = NULL;
6099                 clear_bit(WantReplacement, &rdev->flags);
6100         } else
6101                 /* We might have just removed the Replacement as faulty-
6102                  * clear the bit just in case
6103                  */
6104                 clear_bit(WantReplacement, &rdev->flags);
6105 abort:
6106
6107         print_raid5_conf(conf);
6108         return err;
6109 }
6110
6111 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6112 {
6113         struct r5conf *conf = mddev->private;
6114         int err = -EEXIST;
6115         int disk;
6116         struct disk_info *p;
6117         int first = 0;
6118         int last = conf->raid_disks - 1;
6119
6120         if (mddev->recovery_disabled == conf->recovery_disabled)
6121                 return -EBUSY;
6122
6123         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6124                 /* no point adding a device */
6125                 return -EINVAL;
6126
6127         if (rdev->raid_disk >= 0)
6128                 first = last = rdev->raid_disk;
6129
6130         /*
6131          * find the disk ... but prefer rdev->saved_raid_disk
6132          * if possible.
6133          */
6134         if (rdev->saved_raid_disk >= 0 &&
6135             rdev->saved_raid_disk >= first &&
6136             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6137                 first = rdev->saved_raid_disk;
6138
6139         for (disk = first; disk <= last; disk++) {
6140                 p = conf->disks + disk;
6141                 if (p->rdev == NULL) {
6142                         clear_bit(In_sync, &rdev->flags);
6143                         rdev->raid_disk = disk;
6144                         err = 0;
6145                         if (rdev->saved_raid_disk != disk)
6146                                 conf->fullsync = 1;
6147                         rcu_assign_pointer(p->rdev, rdev);
6148                         goto out;
6149                 }
6150         }
6151         for (disk = first; disk <= last; disk++) {
6152                 p = conf->disks + disk;
6153                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6154                     p->replacement == NULL) {
6155                         clear_bit(In_sync, &rdev->flags);
6156                         set_bit(Replacement, &rdev->flags);
6157                         rdev->raid_disk = disk;
6158                         err = 0;
6159                         conf->fullsync = 1;
6160                         rcu_assign_pointer(p->replacement, rdev);
6161                         break;
6162                 }
6163         }
6164 out:
6165         print_raid5_conf(conf);
6166         return err;
6167 }
6168
6169 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6170 {
6171         /* no resync is happening, and there is enough space
6172          * on all devices, so we can resize.
6173          * We need to make sure resync covers any new space.
6174          * If the array is shrinking we should possibly wait until
6175          * any io in the removed space completes, but it hardly seems
6176          * worth it.
6177          */
6178         sector_t newsize;
6179         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6180         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6181         if (mddev->external_size &&
6182             mddev->array_sectors > newsize)
6183                 return -EINVAL;
6184         if (mddev->bitmap) {
6185                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6186                 if (ret)
6187                         return ret;
6188         }
6189         md_set_array_sectors(mddev, newsize);
6190         set_capacity(mddev->gendisk, mddev->array_sectors);
6191         revalidate_disk(mddev->gendisk);
6192         if (sectors > mddev->dev_sectors &&
6193             mddev->recovery_cp > mddev->dev_sectors) {
6194                 mddev->recovery_cp = mddev->dev_sectors;
6195                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6196         }
6197         mddev->dev_sectors = sectors;
6198         mddev->resync_max_sectors = sectors;
6199         return 0;
6200 }
6201
6202 static int check_stripe_cache(struct mddev *mddev)
6203 {
6204         /* Can only proceed if there are plenty of stripe_heads.
6205          * We need a minimum of one full stripe,, and for sensible progress
6206          * it is best to have about 4 times that.
6207          * If we require 4 times, then the default 256 4K stripe_heads will
6208          * allow for chunk sizes up to 256K, which is probably OK.
6209          * If the chunk size is greater, user-space should request more
6210          * stripe_heads first.
6211          */
6212         struct r5conf *conf = mddev->private;
6213         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6214             > conf->max_nr_stripes ||
6215             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6216             > conf->max_nr_stripes) {
6217                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6218                        mdname(mddev),
6219                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6220                         / STRIPE_SIZE)*4);
6221                 return 0;
6222         }
6223         return 1;
6224 }
6225
6226 static int check_reshape(struct mddev *mddev)
6227 {
6228         struct r5conf *conf = mddev->private;
6229
6230         if (mddev->delta_disks == 0 &&
6231             mddev->new_layout == mddev->layout &&
6232             mddev->new_chunk_sectors == mddev->chunk_sectors)
6233                 return 0; /* nothing to do */
6234         if (has_failed(conf))
6235                 return -EINVAL;
6236         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6237                 /* We might be able to shrink, but the devices must
6238                  * be made bigger first.
6239                  * For raid6, 4 is the minimum size.
6240                  * Otherwise 2 is the minimum
6241                  */
6242                 int min = 2;
6243                 if (mddev->level == 6)
6244                         min = 4;
6245                 if (mddev->raid_disks + mddev->delta_disks < min)
6246                         return -EINVAL;
6247         }
6248
6249         if (!check_stripe_cache(mddev))
6250                 return -ENOSPC;
6251
6252         return resize_stripes(conf, (conf->previous_raid_disks
6253                                      + mddev->delta_disks));
6254 }
6255
6256 static int raid5_start_reshape(struct mddev *mddev)
6257 {
6258         struct r5conf *conf = mddev->private;
6259         struct md_rdev *rdev;
6260         int spares = 0;
6261         unsigned long flags;
6262
6263         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6264                 return -EBUSY;
6265
6266         if (!check_stripe_cache(mddev))
6267                 return -ENOSPC;
6268
6269         if (has_failed(conf))
6270                 return -EINVAL;
6271
6272         rdev_for_each(rdev, mddev) {
6273                 if (!test_bit(In_sync, &rdev->flags)
6274                     && !test_bit(Faulty, &rdev->flags))
6275                         spares++;
6276         }
6277
6278         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6279                 /* Not enough devices even to make a degraded array
6280                  * of that size
6281                  */
6282                 return -EINVAL;
6283
6284         /* Refuse to reduce size of the array.  Any reductions in
6285          * array size must be through explicit setting of array_size
6286          * attribute.
6287          */
6288         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6289             < mddev->array_sectors) {
6290                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6291                        "before number of disks\n", mdname(mddev));
6292                 return -EINVAL;
6293         }
6294
6295         atomic_set(&conf->reshape_stripes, 0);
6296         spin_lock_irq(&conf->device_lock);
6297         write_seqcount_begin(&conf->gen_lock);
6298         conf->previous_raid_disks = conf->raid_disks;
6299         conf->raid_disks += mddev->delta_disks;
6300         conf->prev_chunk_sectors = conf->chunk_sectors;
6301         conf->chunk_sectors = mddev->new_chunk_sectors;
6302         conf->prev_algo = conf->algorithm;
6303         conf->algorithm = mddev->new_layout;
6304         conf->generation++;
6305         /* Code that selects data_offset needs to see the generation update
6306          * if reshape_progress has been set - so a memory barrier needed.
6307          */
6308         smp_mb();
6309         if (mddev->reshape_backwards)
6310                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6311         else
6312                 conf->reshape_progress = 0;
6313         conf->reshape_safe = conf->reshape_progress;
6314         write_seqcount_end(&conf->gen_lock);
6315         spin_unlock_irq(&conf->device_lock);
6316
6317         /* Now make sure any requests that proceeded on the assumption
6318          * the reshape wasn't running - like Discard or Read - have
6319          * completed.
6320          */
6321         mddev_suspend(mddev);
6322         mddev_resume(mddev);
6323
6324         /* Add some new drives, as many as will fit.
6325          * We know there are enough to make the newly sized array work.
6326          * Don't add devices if we are reducing the number of
6327          * devices in the array.  This is because it is not possible
6328          * to correctly record the "partially reconstructed" state of
6329          * such devices during the reshape and confusion could result.
6330          */
6331         if (mddev->delta_disks >= 0) {
6332                 rdev_for_each(rdev, mddev)
6333                         if (rdev->raid_disk < 0 &&
6334                             !test_bit(Faulty, &rdev->flags)) {
6335                                 if (raid5_add_disk(mddev, rdev) == 0) {
6336                                         if (rdev->raid_disk
6337                                             >= conf->previous_raid_disks)
6338                                                 set_bit(In_sync, &rdev->flags);
6339                                         else
6340                                                 rdev->recovery_offset = 0;
6341
6342                                         if (sysfs_link_rdev(mddev, rdev))
6343                                                 /* Failure here is OK */;
6344                                 }
6345                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6346                                    && !test_bit(Faulty, &rdev->flags)) {
6347                                 /* This is a spare that was manually added */
6348                                 set_bit(In_sync, &rdev->flags);
6349                         }
6350
6351                 /* When a reshape changes the number of devices,
6352                  * ->degraded is measured against the larger of the
6353                  * pre and post number of devices.
6354                  */
6355                 spin_lock_irqsave(&conf->device_lock, flags);
6356                 mddev->degraded = calc_degraded(conf);
6357                 spin_unlock_irqrestore(&conf->device_lock, flags);
6358         }
6359         mddev->raid_disks = conf->raid_disks;
6360         mddev->reshape_position = conf->reshape_progress;
6361         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6362
6363         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6364         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6365         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6366         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6367         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6368                                                 "reshape");
6369         if (!mddev->sync_thread) {
6370                 mddev->recovery = 0;
6371                 spin_lock_irq(&conf->device_lock);
6372                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6373                 rdev_for_each(rdev, mddev)
6374                         rdev->new_data_offset = rdev->data_offset;
6375                 smp_wmb();
6376                 conf->reshape_progress = MaxSector;
6377                 mddev->reshape_position = MaxSector;
6378                 spin_unlock_irq(&conf->device_lock);
6379                 return -EAGAIN;
6380         }
6381         conf->reshape_checkpoint = jiffies;
6382         md_wakeup_thread(mddev->sync_thread);
6383         md_new_event(mddev);
6384         return 0;
6385 }
6386
6387 /* This is called from the reshape thread and should make any
6388  * changes needed in 'conf'
6389  */
6390 static void end_reshape(struct r5conf *conf)
6391 {
6392
6393         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6394                 struct md_rdev *rdev;
6395
6396                 spin_lock_irq(&conf->device_lock);
6397                 conf->previous_raid_disks = conf->raid_disks;
6398                 rdev_for_each(rdev, conf->mddev)
6399                         rdev->data_offset = rdev->new_data_offset;
6400                 smp_wmb();
6401                 conf->reshape_progress = MaxSector;
6402                 spin_unlock_irq(&conf->device_lock);
6403                 wake_up(&conf->wait_for_overlap);
6404
6405                 /* read-ahead size must cover two whole stripes, which is
6406                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6407                  */
6408                 if (conf->mddev->queue) {
6409                         int data_disks = conf->raid_disks - conf->max_degraded;
6410                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6411                                                    / PAGE_SIZE);
6412                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6413                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6414                 }
6415         }
6416 }
6417
6418 /* This is called from the raid5d thread with mddev_lock held.
6419  * It makes config changes to the device.
6420  */
6421 static void raid5_finish_reshape(struct mddev *mddev)
6422 {
6423         struct r5conf *conf = mddev->private;
6424
6425         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6426
6427                 if (mddev->delta_disks > 0) {
6428                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6429                         set_capacity(mddev->gendisk, mddev->array_sectors);
6430                         revalidate_disk(mddev->gendisk);
6431                 } else {
6432                         int d;
6433                         spin_lock_irq(&conf->device_lock);
6434                         mddev->degraded = calc_degraded(conf);
6435                         spin_unlock_irq(&conf->device_lock);
6436                         for (d = conf->raid_disks ;
6437                              d < conf->raid_disks - mddev->delta_disks;
6438                              d++) {
6439                                 struct md_rdev *rdev = conf->disks[d].rdev;
6440                                 if (rdev)
6441                                         clear_bit(In_sync, &rdev->flags);
6442                                 rdev = conf->disks[d].replacement;
6443                                 if (rdev)
6444                                         clear_bit(In_sync, &rdev->flags);
6445                         }
6446                 }
6447                 mddev->layout = conf->algorithm;
6448                 mddev->chunk_sectors = conf->chunk_sectors;
6449                 mddev->reshape_position = MaxSector;
6450                 mddev->delta_disks = 0;
6451                 mddev->reshape_backwards = 0;
6452         }
6453 }
6454
6455 static void raid5_quiesce(struct mddev *mddev, int state)
6456 {
6457         struct r5conf *conf = mddev->private;
6458
6459         switch(state) {
6460         case 2: /* resume for a suspend */
6461                 wake_up(&conf->wait_for_overlap);
6462                 break;
6463
6464         case 1: /* stop all writes */
6465                 spin_lock_irq(&conf->device_lock);
6466                 /* '2' tells resync/reshape to pause so that all
6467                  * active stripes can drain
6468                  */
6469                 conf->quiesce = 2;
6470                 wait_event_lock_irq(conf->wait_for_stripe,
6471                                     atomic_read(&conf->active_stripes) == 0 &&
6472                                     atomic_read(&conf->active_aligned_reads) == 0,
6473                                     conf->device_lock);
6474                 conf->quiesce = 1;
6475                 spin_unlock_irq(&conf->device_lock);
6476                 /* allow reshape to continue */
6477                 wake_up(&conf->wait_for_overlap);
6478                 break;
6479
6480         case 0: /* re-enable writes */
6481                 spin_lock_irq(&conf->device_lock);
6482                 conf->quiesce = 0;
6483                 wake_up(&conf->wait_for_stripe);
6484                 wake_up(&conf->wait_for_overlap);
6485                 spin_unlock_irq(&conf->device_lock);
6486                 break;
6487         }
6488 }
6489
6490
6491 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6492 {
6493         struct r0conf *raid0_conf = mddev->private;
6494         sector_t sectors;
6495
6496         /* for raid0 takeover only one zone is supported */
6497         if (raid0_conf->nr_strip_zones > 1) {
6498                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6499                        mdname(mddev));
6500                 return ERR_PTR(-EINVAL);
6501         }
6502
6503         sectors = raid0_conf->strip_zone[0].zone_end;
6504         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6505         mddev->dev_sectors = sectors;
6506         mddev->new_level = level;
6507         mddev->new_layout = ALGORITHM_PARITY_N;
6508         mddev->new_chunk_sectors = mddev->chunk_sectors;
6509         mddev->raid_disks += 1;
6510         mddev->delta_disks = 1;
6511         /* make sure it will be not marked as dirty */
6512         mddev->recovery_cp = MaxSector;
6513
6514         return setup_conf(mddev);
6515 }
6516
6517
6518 static void *raid5_takeover_raid1(struct mddev *mddev)
6519 {
6520         int chunksect;
6521
6522         if (mddev->raid_disks != 2 ||
6523             mddev->degraded > 1)
6524                 return ERR_PTR(-EINVAL);
6525
6526         /* Should check if there are write-behind devices? */
6527
6528         chunksect = 64*2; /* 64K by default */
6529
6530         /* The array must be an exact multiple of chunksize */
6531         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6532                 chunksect >>= 1;
6533
6534         if ((chunksect<<9) < STRIPE_SIZE)
6535                 /* array size does not allow a suitable chunk size */
6536                 return ERR_PTR(-EINVAL);
6537
6538         mddev->new_level = 5;
6539         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6540         mddev->new_chunk_sectors = chunksect;
6541
6542         return setup_conf(mddev);
6543 }
6544
6545 static void *raid5_takeover_raid6(struct mddev *mddev)
6546 {
6547         int new_layout;
6548
6549         switch (mddev->layout) {
6550         case ALGORITHM_LEFT_ASYMMETRIC_6:
6551                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6552                 break;
6553         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6554                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6555                 break;
6556         case ALGORITHM_LEFT_SYMMETRIC_6:
6557                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6558                 break;
6559         case ALGORITHM_RIGHT_SYMMETRIC_6:
6560                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6561                 break;
6562         case ALGORITHM_PARITY_0_6:
6563                 new_layout = ALGORITHM_PARITY_0;
6564                 break;
6565         case ALGORITHM_PARITY_N:
6566                 new_layout = ALGORITHM_PARITY_N;
6567                 break;
6568         default:
6569                 return ERR_PTR(-EINVAL);
6570         }
6571         mddev->new_level = 5;
6572         mddev->new_layout = new_layout;
6573         mddev->delta_disks = -1;
6574         mddev->raid_disks -= 1;
6575         return setup_conf(mddev);
6576 }
6577
6578
6579 static int raid5_check_reshape(struct mddev *mddev)
6580 {
6581         /* For a 2-drive array, the layout and chunk size can be changed
6582          * immediately as not restriping is needed.
6583          * For larger arrays we record the new value - after validation
6584          * to be used by a reshape pass.
6585          */
6586         struct r5conf *conf = mddev->private;
6587         int new_chunk = mddev->new_chunk_sectors;
6588
6589         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6590                 return -EINVAL;
6591         if (new_chunk > 0) {
6592                 if (!is_power_of_2(new_chunk))
6593                         return -EINVAL;
6594                 if (new_chunk < (PAGE_SIZE>>9))
6595                         return -EINVAL;
6596                 if (mddev->array_sectors & (new_chunk-1))
6597                         /* not factor of array size */
6598                         return -EINVAL;
6599         }
6600
6601         /* They look valid */
6602
6603         if (mddev->raid_disks == 2) {
6604                 /* can make the change immediately */
6605                 if (mddev->new_layout >= 0) {
6606                         conf->algorithm = mddev->new_layout;
6607                         mddev->layout = mddev->new_layout;
6608                 }
6609                 if (new_chunk > 0) {
6610                         conf->chunk_sectors = new_chunk ;
6611                         mddev->chunk_sectors = new_chunk;
6612                 }
6613                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6614                 md_wakeup_thread(mddev->thread);
6615         }
6616         return check_reshape(mddev);
6617 }
6618
6619 static int raid6_check_reshape(struct mddev *mddev)
6620 {
6621         int new_chunk = mddev->new_chunk_sectors;
6622
6623         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6624                 return -EINVAL;
6625         if (new_chunk > 0) {
6626                 if (!is_power_of_2(new_chunk))
6627                         return -EINVAL;
6628                 if (new_chunk < (PAGE_SIZE >> 9))
6629                         return -EINVAL;
6630                 if (mddev->array_sectors & (new_chunk-1))
6631                         /* not factor of array size */
6632                         return -EINVAL;
6633         }
6634
6635         /* They look valid */
6636         return check_reshape(mddev);
6637 }
6638
6639 static void *raid5_takeover(struct mddev *mddev)
6640 {
6641         /* raid5 can take over:
6642          *  raid0 - if there is only one strip zone - make it a raid4 layout
6643          *  raid1 - if there are two drives.  We need to know the chunk size
6644          *  raid4 - trivial - just use a raid4 layout.
6645          *  raid6 - Providing it is a *_6 layout
6646          */
6647         if (mddev->level == 0)
6648                 return raid45_takeover_raid0(mddev, 5);
6649         if (mddev->level == 1)
6650                 return raid5_takeover_raid1(mddev);
6651         if (mddev->level == 4) {
6652                 mddev->new_layout = ALGORITHM_PARITY_N;
6653                 mddev->new_level = 5;
6654                 return setup_conf(mddev);
6655         }
6656         if (mddev->level == 6)
6657                 return raid5_takeover_raid6(mddev);
6658
6659         return ERR_PTR(-EINVAL);
6660 }
6661
6662 static void *raid4_takeover(struct mddev *mddev)
6663 {
6664         /* raid4 can take over:
6665          *  raid0 - if there is only one strip zone
6666          *  raid5 - if layout is right
6667          */
6668         if (mddev->level == 0)
6669                 return raid45_takeover_raid0(mddev, 4);
6670         if (mddev->level == 5 &&
6671             mddev->layout == ALGORITHM_PARITY_N) {
6672                 mddev->new_layout = 0;
6673                 mddev->new_level = 4;
6674                 return setup_conf(mddev);
6675         }
6676         return ERR_PTR(-EINVAL);
6677 }
6678
6679 static struct md_personality raid5_personality;
6680
6681 static void *raid6_takeover(struct mddev *mddev)
6682 {
6683         /* Currently can only take over a raid5.  We map the
6684          * personality to an equivalent raid6 personality
6685          * with the Q block at the end.
6686          */
6687         int new_layout;
6688
6689         if (mddev->pers != &raid5_personality)
6690                 return ERR_PTR(-EINVAL);
6691         if (mddev->degraded > 1)
6692                 return ERR_PTR(-EINVAL);
6693         if (mddev->raid_disks > 253)
6694                 return ERR_PTR(-EINVAL);
6695         if (mddev->raid_disks < 3)
6696                 return ERR_PTR(-EINVAL);
6697
6698         switch (mddev->layout) {
6699         case ALGORITHM_LEFT_ASYMMETRIC:
6700                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6701                 break;
6702         case ALGORITHM_RIGHT_ASYMMETRIC:
6703                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6704                 break;
6705         case ALGORITHM_LEFT_SYMMETRIC:
6706                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6707                 break;
6708         case ALGORITHM_RIGHT_SYMMETRIC:
6709                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6710                 break;
6711         case ALGORITHM_PARITY_0:
6712                 new_layout = ALGORITHM_PARITY_0_6;
6713                 break;
6714         case ALGORITHM_PARITY_N:
6715                 new_layout = ALGORITHM_PARITY_N;
6716                 break;
6717         default:
6718                 return ERR_PTR(-EINVAL);
6719         }
6720         mddev->new_level = 6;
6721         mddev->new_layout = new_layout;
6722         mddev->delta_disks = 1;
6723         mddev->raid_disks += 1;
6724         return setup_conf(mddev);
6725 }
6726
6727
6728 static struct md_personality raid6_personality =
6729 {
6730         .name           = "raid6",
6731         .level          = 6,
6732         .owner          = THIS_MODULE,
6733         .make_request   = make_request,
6734         .run            = run,
6735         .stop           = stop,
6736         .status         = status,
6737         .error_handler  = error,
6738         .hot_add_disk   = raid5_add_disk,
6739         .hot_remove_disk= raid5_remove_disk,
6740         .spare_active   = raid5_spare_active,
6741         .sync_request   = sync_request,
6742         .resize         = raid5_resize,
6743         .size           = raid5_size,
6744         .check_reshape  = raid6_check_reshape,
6745         .start_reshape  = raid5_start_reshape,
6746         .finish_reshape = raid5_finish_reshape,
6747         .quiesce        = raid5_quiesce,
6748         .takeover       = raid6_takeover,
6749 };
6750 static struct md_personality raid5_personality =
6751 {
6752         .name           = "raid5",
6753         .level          = 5,
6754         .owner          = THIS_MODULE,
6755         .make_request   = make_request,
6756         .run            = run,
6757         .stop           = stop,
6758         .status         = status,
6759         .error_handler  = error,
6760         .hot_add_disk   = raid5_add_disk,
6761         .hot_remove_disk= raid5_remove_disk,
6762         .spare_active   = raid5_spare_active,
6763         .sync_request   = sync_request,
6764         .resize         = raid5_resize,
6765         .size           = raid5_size,
6766         .check_reshape  = raid5_check_reshape,
6767         .start_reshape  = raid5_start_reshape,
6768         .finish_reshape = raid5_finish_reshape,
6769         .quiesce        = raid5_quiesce,
6770         .takeover       = raid5_takeover,
6771 };
6772
6773 static struct md_personality raid4_personality =
6774 {
6775         .name           = "raid4",
6776         .level          = 4,
6777         .owner          = THIS_MODULE,
6778         .make_request   = make_request,
6779         .run            = run,
6780         .stop           = stop,
6781         .status         = status,
6782         .error_handler  = error,
6783         .hot_add_disk   = raid5_add_disk,
6784         .hot_remove_disk= raid5_remove_disk,
6785         .spare_active   = raid5_spare_active,
6786         .sync_request   = sync_request,
6787         .resize         = raid5_resize,
6788         .size           = raid5_size,
6789         .check_reshape  = raid5_check_reshape,
6790         .start_reshape  = raid5_start_reshape,
6791         .finish_reshape = raid5_finish_reshape,
6792         .quiesce        = raid5_quiesce,
6793         .takeover       = raid4_takeover,
6794 };
6795
6796 static int __init raid5_init(void)
6797 {
6798         raid5_wq = alloc_workqueue("raid5wq",
6799                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
6800         if (!raid5_wq)
6801                 return -ENOMEM;
6802         register_md_personality(&raid6_personality);
6803         register_md_personality(&raid5_personality);
6804         register_md_personality(&raid4_personality);
6805         return 0;
6806 }
6807
6808 static void raid5_exit(void)
6809 {
6810         unregister_md_personality(&raid6_personality);
6811         unregister_md_personality(&raid5_personality);
6812         unregister_md_personality(&raid4_personality);
6813         destroy_workqueue(raid5_wq);
6814 }
6815
6816 module_init(raid5_init);
6817 module_exit(raid5_exit);
6818 MODULE_LICENSE("GPL");
6819 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6820 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6821 MODULE_ALIAS("md-raid5");
6822 MODULE_ALIAS("md-raid4");
6823 MODULE_ALIAS("md-level-5");
6824 MODULE_ALIAS("md-level-4");
6825 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6826 MODULE_ALIAS("md-raid6");
6827 MODULE_ALIAS("md-level-6");
6828
6829 /* This used to be two separate modules, they were: */
6830 MODULE_ALIAS("raid5");
6831 MODULE_ALIAS("raid6");