md/raid5: allow each slot to have an extra replacement device
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot = *count;
159
160         if (sh->ddf_layout)
161                 (*count)++;
162         if (idx == sh->pd_idx)
163                 return syndrome_disks;
164         if (idx == sh->qd_idx)
165                 return syndrome_disks + 1;
166         if (!sh->ddf_layout)
167                 (*count)++;
168         return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173         struct bio *bi = return_bi;
174         while (bi) {
175
176                 return_bi = bi->bi_next;
177                 bi->bi_next = NULL;
178                 bi->bi_size = 0;
179                 bio_endio(bi, 0);
180                 bi = return_bi;
181         }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188         return sh->check_state || sh->reconstruct_state ||
189                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195         if (atomic_dec_and_test(&sh->count)) {
196                 BUG_ON(!list_empty(&sh->lru));
197                 BUG_ON(atomic_read(&conf->active_stripes)==0);
198                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199                         if (test_bit(STRIPE_DELAYED, &sh->state))
200                                 list_add_tail(&sh->lru, &conf->delayed_list);
201                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202                                    sh->bm_seq - conf->seq_write > 0)
203                                 list_add_tail(&sh->lru, &conf->bitmap_list);
204                         else {
205                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206                                 list_add_tail(&sh->lru, &conf->handle_list);
207                         }
208                         md_wakeup_thread(conf->mddev->thread);
209                 } else {
210                         BUG_ON(stripe_operations_active(sh));
211                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212                                 atomic_dec(&conf->preread_active_stripes);
213                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214                                         md_wakeup_thread(conf->mddev->thread);
215                         }
216                         atomic_dec(&conf->active_stripes);
217                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218                                 list_add_tail(&sh->lru, &conf->inactive_list);
219                                 wake_up(&conf->wait_for_stripe);
220                                 if (conf->retry_read_aligned)
221                                         md_wakeup_thread(conf->mddev->thread);
222                         }
223                 }
224         }
225 }
226
227 static void release_stripe(struct stripe_head *sh)
228 {
229         struct r5conf *conf = sh->raid_conf;
230         unsigned long flags;
231
232         spin_lock_irqsave(&conf->device_lock, flags);
233         __release_stripe(conf, sh);
234         spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239         pr_debug("remove_hash(), stripe %llu\n",
240                 (unsigned long long)sh->sector);
241
242         hlist_del_init(&sh->hash);
243 }
244
245 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
246 {
247         struct hlist_head *hp = stripe_hash(conf, sh->sector);
248
249         pr_debug("insert_hash(), stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         hlist_add_head(&sh->hash, hp);
253 }
254
255
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(struct r5conf *conf)
258 {
259         struct stripe_head *sh = NULL;
260         struct list_head *first;
261
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh)
274 {
275         struct page *p;
276         int i;
277         int num = sh->raid_conf->pool_size;
278
279         for (i = 0; i < num ; i++) {
280                 p = sh->dev[i].page;
281                 if (!p)
282                         continue;
283                 sh->dev[i].page = NULL;
284                 put_page(p);
285         }
286 }
287
288 static int grow_buffers(struct stripe_head *sh)
289 {
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num; i++) {
294                 struct page *page;
295
296                 if (!(page = alloc_page(GFP_KERNEL))) {
297                         return 1;
298                 }
299                 sh->dev[i].page = page;
300         }
301         return 0;
302 }
303
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
306                             struct stripe_head *sh);
307
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310         struct r5conf *conf = sh->raid_conf;
311         int i;
312
313         BUG_ON(atomic_read(&sh->count) != 0);
314         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315         BUG_ON(stripe_operations_active(sh));
316
317         pr_debug("init_stripe called, stripe %llu\n",
318                 (unsigned long long)sh->sector);
319
320         remove_hash(sh);
321
322         sh->generation = conf->generation - previous;
323         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324         sh->sector = sector;
325         stripe_set_idx(sector, conf, previous, sh);
326         sh->state = 0;
327
328
329         for (i = sh->disks; i--; ) {
330                 struct r5dev *dev = &sh->dev[i];
331
332                 if (dev->toread || dev->read || dev->towrite || dev->written ||
333                     test_bit(R5_LOCKED, &dev->flags)) {
334                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335                                (unsigned long long)sh->sector, i, dev->toread,
336                                dev->read, dev->towrite, dev->written,
337                                test_bit(R5_LOCKED, &dev->flags));
338                         WARN_ON(1);
339                 }
340                 dev->flags = 0;
341                 raid5_build_block(sh, i, previous);
342         }
343         insert_hash(conf, sh);
344 }
345
346 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
347                                          short generation)
348 {
349         struct stripe_head *sh;
350         struct hlist_node *hn;
351
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 /*
361  * Need to check if array has failed when deciding whether to:
362  *  - start an array
363  *  - remove non-faulty devices
364  *  - add a spare
365  *  - allow a reshape
366  * This determination is simple when no reshape is happening.
367  * However if there is a reshape, we need to carefully check
368  * both the before and after sections.
369  * This is because some failed devices may only affect one
370  * of the two sections, and some non-in_sync devices may
371  * be insync in the section most affected by failed devices.
372  */
373 static int calc_degraded(struct r5conf *conf)
374 {
375         int degraded, degraded2;
376         int i;
377
378         rcu_read_lock();
379         degraded = 0;
380         for (i = 0; i < conf->previous_raid_disks; i++) {
381                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
382                 if (!rdev || test_bit(Faulty, &rdev->flags))
383                         degraded++;
384                 else if (test_bit(In_sync, &rdev->flags))
385                         ;
386                 else
387                         /* not in-sync or faulty.
388                          * If the reshape increases the number of devices,
389                          * this is being recovered by the reshape, so
390                          * this 'previous' section is not in_sync.
391                          * If the number of devices is being reduced however,
392                          * the device can only be part of the array if
393                          * we are reverting a reshape, so this section will
394                          * be in-sync.
395                          */
396                         if (conf->raid_disks >= conf->previous_raid_disks)
397                                 degraded++;
398         }
399         rcu_read_unlock();
400         if (conf->raid_disks == conf->previous_raid_disks)
401                 return degraded;
402         rcu_read_lock();
403         degraded2 = 0;
404         for (i = 0; i < conf->raid_disks; i++) {
405                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
406                 if (!rdev || test_bit(Faulty, &rdev->flags))
407                         degraded2++;
408                 else if (test_bit(In_sync, &rdev->flags))
409                         ;
410                 else
411                         /* not in-sync or faulty.
412                          * If reshape increases the number of devices, this
413                          * section has already been recovered, else it
414                          * almost certainly hasn't.
415                          */
416                         if (conf->raid_disks <= conf->previous_raid_disks)
417                                 degraded2++;
418         }
419         rcu_read_unlock();
420         if (degraded2 > degraded)
421                 return degraded2;
422         return degraded;
423 }
424
425 static int has_failed(struct r5conf *conf)
426 {
427         int degraded;
428
429         if (conf->mddev->reshape_position == MaxSector)
430                 return conf->mddev->degraded > conf->max_degraded;
431
432         degraded = calc_degraded(conf);
433         if (degraded > conf->max_degraded)
434                 return 1;
435         return 0;
436 }
437
438 static struct stripe_head *
439 get_active_stripe(struct r5conf *conf, sector_t sector,
440                   int previous, int noblock, int noquiesce)
441 {
442         struct stripe_head *sh;
443
444         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445
446         spin_lock_irq(&conf->device_lock);
447
448         do {
449                 wait_event_lock_irq(conf->wait_for_stripe,
450                                     conf->quiesce == 0 || noquiesce,
451                                     conf->device_lock, /* nothing */);
452                 sh = __find_stripe(conf, sector, conf->generation - previous);
453                 if (!sh) {
454                         if (!conf->inactive_blocked)
455                                 sh = get_free_stripe(conf);
456                         if (noblock && sh == NULL)
457                                 break;
458                         if (!sh) {
459                                 conf->inactive_blocked = 1;
460                                 wait_event_lock_irq(conf->wait_for_stripe,
461                                                     !list_empty(&conf->inactive_list) &&
462                                                     (atomic_read(&conf->active_stripes)
463                                                      < (conf->max_nr_stripes *3/4)
464                                                      || !conf->inactive_blocked),
465                                                     conf->device_lock,
466                                                     );
467                                 conf->inactive_blocked = 0;
468                         } else
469                                 init_stripe(sh, sector, previous);
470                 } else {
471                         if (atomic_read(&sh->count)) {
472                                 BUG_ON(!list_empty(&sh->lru)
473                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
474                         } else {
475                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
476                                         atomic_inc(&conf->active_stripes);
477                                 if (list_empty(&sh->lru) &&
478                                     !test_bit(STRIPE_EXPANDING, &sh->state))
479                                         BUG();
480                                 list_del_init(&sh->lru);
481                         }
482                 }
483         } while (sh == NULL);
484
485         if (sh)
486                 atomic_inc(&sh->count);
487
488         spin_unlock_irq(&conf->device_lock);
489         return sh;
490 }
491
492 static void
493 raid5_end_read_request(struct bio *bi, int error);
494 static void
495 raid5_end_write_request(struct bio *bi, int error);
496
497 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
498 {
499         struct r5conf *conf = sh->raid_conf;
500         int i, disks = sh->disks;
501
502         might_sleep();
503
504         for (i = disks; i--; ) {
505                 int rw;
506                 struct bio *bi;
507                 struct md_rdev *rdev;
508                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
509                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
510                                 rw = WRITE_FUA;
511                         else
512                                 rw = WRITE;
513                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
514                         rw = READ;
515                 else
516                         continue;
517
518                 bi = &sh->dev[i].req;
519
520                 bi->bi_rw = rw;
521                 if (rw & WRITE)
522                         bi->bi_end_io = raid5_end_write_request;
523                 else
524                         bi->bi_end_io = raid5_end_read_request;
525
526                 rcu_read_lock();
527                 rdev = rcu_dereference(conf->disks[i].rdev);
528                 if (rdev && test_bit(Faulty, &rdev->flags))
529                         rdev = NULL;
530                 if (rdev)
531                         atomic_inc(&rdev->nr_pending);
532                 rcu_read_unlock();
533
534                 /* We have already checked bad blocks for reads.  Now
535                  * need to check for writes.
536                  */
537                 while ((rw & WRITE) && rdev &&
538                        test_bit(WriteErrorSeen, &rdev->flags)) {
539                         sector_t first_bad;
540                         int bad_sectors;
541                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
542                                               &first_bad, &bad_sectors);
543                         if (!bad)
544                                 break;
545
546                         if (bad < 0) {
547                                 set_bit(BlockedBadBlocks, &rdev->flags);
548                                 if (!conf->mddev->external &&
549                                     conf->mddev->flags) {
550                                         /* It is very unlikely, but we might
551                                          * still need to write out the
552                                          * bad block log - better give it
553                                          * a chance*/
554                                         md_check_recovery(conf->mddev);
555                                 }
556                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
557                         } else {
558                                 /* Acknowledged bad block - skip the write */
559                                 rdev_dec_pending(rdev, conf->mddev);
560                                 rdev = NULL;
561                         }
562                 }
563
564                 if (rdev) {
565                         if (s->syncing || s->expanding || s->expanded)
566                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
567
568                         set_bit(STRIPE_IO_STARTED, &sh->state);
569
570                         bi->bi_bdev = rdev->bdev;
571                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
572                                 __func__, (unsigned long long)sh->sector,
573                                 bi->bi_rw, i);
574                         atomic_inc(&sh->count);
575                         bi->bi_sector = sh->sector + rdev->data_offset;
576                         bi->bi_flags = 1 << BIO_UPTODATE;
577                         bi->bi_vcnt = 1;
578                         bi->bi_max_vecs = 1;
579                         bi->bi_idx = 0;
580                         bi->bi_io_vec = &sh->dev[i].vec;
581                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
582                         bi->bi_io_vec[0].bv_offset = 0;
583                         bi->bi_size = STRIPE_SIZE;
584                         bi->bi_next = NULL;
585                         generic_make_request(bi);
586                 } else {
587                         if (rw & WRITE)
588                                 set_bit(STRIPE_DEGRADED, &sh->state);
589                         pr_debug("skip op %ld on disc %d for sector %llu\n",
590                                 bi->bi_rw, i, (unsigned long long)sh->sector);
591                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
592                         set_bit(STRIPE_HANDLE, &sh->state);
593                 }
594         }
595 }
596
597 static struct dma_async_tx_descriptor *
598 async_copy_data(int frombio, struct bio *bio, struct page *page,
599         sector_t sector, struct dma_async_tx_descriptor *tx)
600 {
601         struct bio_vec *bvl;
602         struct page *bio_page;
603         int i;
604         int page_offset;
605         struct async_submit_ctl submit;
606         enum async_tx_flags flags = 0;
607
608         if (bio->bi_sector >= sector)
609                 page_offset = (signed)(bio->bi_sector - sector) * 512;
610         else
611                 page_offset = (signed)(sector - bio->bi_sector) * -512;
612
613         if (frombio)
614                 flags |= ASYNC_TX_FENCE;
615         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
616
617         bio_for_each_segment(bvl, bio, i) {
618                 int len = bvl->bv_len;
619                 int clen;
620                 int b_offset = 0;
621
622                 if (page_offset < 0) {
623                         b_offset = -page_offset;
624                         page_offset += b_offset;
625                         len -= b_offset;
626                 }
627
628                 if (len > 0 && page_offset + len > STRIPE_SIZE)
629                         clen = STRIPE_SIZE - page_offset;
630                 else
631                         clen = len;
632
633                 if (clen > 0) {
634                         b_offset += bvl->bv_offset;
635                         bio_page = bvl->bv_page;
636                         if (frombio)
637                                 tx = async_memcpy(page, bio_page, page_offset,
638                                                   b_offset, clen, &submit);
639                         else
640                                 tx = async_memcpy(bio_page, page, b_offset,
641                                                   page_offset, clen, &submit);
642                 }
643                 /* chain the operations */
644                 submit.depend_tx = tx;
645
646                 if (clen < len) /* hit end of page */
647                         break;
648                 page_offset +=  len;
649         }
650
651         return tx;
652 }
653
654 static void ops_complete_biofill(void *stripe_head_ref)
655 {
656         struct stripe_head *sh = stripe_head_ref;
657         struct bio *return_bi = NULL;
658         struct r5conf *conf = sh->raid_conf;
659         int i;
660
661         pr_debug("%s: stripe %llu\n", __func__,
662                 (unsigned long long)sh->sector);
663
664         /* clear completed biofills */
665         spin_lock_irq(&conf->device_lock);
666         for (i = sh->disks; i--; ) {
667                 struct r5dev *dev = &sh->dev[i];
668
669                 /* acknowledge completion of a biofill operation */
670                 /* and check if we need to reply to a read request,
671                  * new R5_Wantfill requests are held off until
672                  * !STRIPE_BIOFILL_RUN
673                  */
674                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
675                         struct bio *rbi, *rbi2;
676
677                         BUG_ON(!dev->read);
678                         rbi = dev->read;
679                         dev->read = NULL;
680                         while (rbi && rbi->bi_sector <
681                                 dev->sector + STRIPE_SECTORS) {
682                                 rbi2 = r5_next_bio(rbi, dev->sector);
683                                 if (!raid5_dec_bi_phys_segments(rbi)) {
684                                         rbi->bi_next = return_bi;
685                                         return_bi = rbi;
686                                 }
687                                 rbi = rbi2;
688                         }
689                 }
690         }
691         spin_unlock_irq(&conf->device_lock);
692         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
693
694         return_io(return_bi);
695
696         set_bit(STRIPE_HANDLE, &sh->state);
697         release_stripe(sh);
698 }
699
700 static void ops_run_biofill(struct stripe_head *sh)
701 {
702         struct dma_async_tx_descriptor *tx = NULL;
703         struct r5conf *conf = sh->raid_conf;
704         struct async_submit_ctl submit;
705         int i;
706
707         pr_debug("%s: stripe %llu\n", __func__,
708                 (unsigned long long)sh->sector);
709
710         for (i = sh->disks; i--; ) {
711                 struct r5dev *dev = &sh->dev[i];
712                 if (test_bit(R5_Wantfill, &dev->flags)) {
713                         struct bio *rbi;
714                         spin_lock_irq(&conf->device_lock);
715                         dev->read = rbi = dev->toread;
716                         dev->toread = NULL;
717                         spin_unlock_irq(&conf->device_lock);
718                         while (rbi && rbi->bi_sector <
719                                 dev->sector + STRIPE_SECTORS) {
720                                 tx = async_copy_data(0, rbi, dev->page,
721                                         dev->sector, tx);
722                                 rbi = r5_next_bio(rbi, dev->sector);
723                         }
724                 }
725         }
726
727         atomic_inc(&sh->count);
728         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
729         async_trigger_callback(&submit);
730 }
731
732 static void mark_target_uptodate(struct stripe_head *sh, int target)
733 {
734         struct r5dev *tgt;
735
736         if (target < 0)
737                 return;
738
739         tgt = &sh->dev[target];
740         set_bit(R5_UPTODATE, &tgt->flags);
741         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
742         clear_bit(R5_Wantcompute, &tgt->flags);
743 }
744
745 static void ops_complete_compute(void *stripe_head_ref)
746 {
747         struct stripe_head *sh = stripe_head_ref;
748
749         pr_debug("%s: stripe %llu\n", __func__,
750                 (unsigned long long)sh->sector);
751
752         /* mark the computed target(s) as uptodate */
753         mark_target_uptodate(sh, sh->ops.target);
754         mark_target_uptodate(sh, sh->ops.target2);
755
756         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
757         if (sh->check_state == check_state_compute_run)
758                 sh->check_state = check_state_compute_result;
759         set_bit(STRIPE_HANDLE, &sh->state);
760         release_stripe(sh);
761 }
762
763 /* return a pointer to the address conversion region of the scribble buffer */
764 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
765                                  struct raid5_percpu *percpu)
766 {
767         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
768 }
769
770 static struct dma_async_tx_descriptor *
771 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
772 {
773         int disks = sh->disks;
774         struct page **xor_srcs = percpu->scribble;
775         int target = sh->ops.target;
776         struct r5dev *tgt = &sh->dev[target];
777         struct page *xor_dest = tgt->page;
778         int count = 0;
779         struct dma_async_tx_descriptor *tx;
780         struct async_submit_ctl submit;
781         int i;
782
783         pr_debug("%s: stripe %llu block: %d\n",
784                 __func__, (unsigned long long)sh->sector, target);
785         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
786
787         for (i = disks; i--; )
788                 if (i != target)
789                         xor_srcs[count++] = sh->dev[i].page;
790
791         atomic_inc(&sh->count);
792
793         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
794                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
795         if (unlikely(count == 1))
796                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
797         else
798                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
799
800         return tx;
801 }
802
803 /* set_syndrome_sources - populate source buffers for gen_syndrome
804  * @srcs - (struct page *) array of size sh->disks
805  * @sh - stripe_head to parse
806  *
807  * Populates srcs in proper layout order for the stripe and returns the
808  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
809  * destination buffer is recorded in srcs[count] and the Q destination
810  * is recorded in srcs[count+1]].
811  */
812 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
813 {
814         int disks = sh->disks;
815         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
816         int d0_idx = raid6_d0(sh);
817         int count;
818         int i;
819
820         for (i = 0; i < disks; i++)
821                 srcs[i] = NULL;
822
823         count = 0;
824         i = d0_idx;
825         do {
826                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
827
828                 srcs[slot] = sh->dev[i].page;
829                 i = raid6_next_disk(i, disks);
830         } while (i != d0_idx);
831
832         return syndrome_disks;
833 }
834
835 static struct dma_async_tx_descriptor *
836 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
837 {
838         int disks = sh->disks;
839         struct page **blocks = percpu->scribble;
840         int target;
841         int qd_idx = sh->qd_idx;
842         struct dma_async_tx_descriptor *tx;
843         struct async_submit_ctl submit;
844         struct r5dev *tgt;
845         struct page *dest;
846         int i;
847         int count;
848
849         if (sh->ops.target < 0)
850                 target = sh->ops.target2;
851         else if (sh->ops.target2 < 0)
852                 target = sh->ops.target;
853         else
854                 /* we should only have one valid target */
855                 BUG();
856         BUG_ON(target < 0);
857         pr_debug("%s: stripe %llu block: %d\n",
858                 __func__, (unsigned long long)sh->sector, target);
859
860         tgt = &sh->dev[target];
861         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
862         dest = tgt->page;
863
864         atomic_inc(&sh->count);
865
866         if (target == qd_idx) {
867                 count = set_syndrome_sources(blocks, sh);
868                 blocks[count] = NULL; /* regenerating p is not necessary */
869                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
870                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
871                                   ops_complete_compute, sh,
872                                   to_addr_conv(sh, percpu));
873                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
874         } else {
875                 /* Compute any data- or p-drive using XOR */
876                 count = 0;
877                 for (i = disks; i-- ; ) {
878                         if (i == target || i == qd_idx)
879                                 continue;
880                         blocks[count++] = sh->dev[i].page;
881                 }
882
883                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
884                                   NULL, ops_complete_compute, sh,
885                                   to_addr_conv(sh, percpu));
886                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
887         }
888
889         return tx;
890 }
891
892 static struct dma_async_tx_descriptor *
893 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
894 {
895         int i, count, disks = sh->disks;
896         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
897         int d0_idx = raid6_d0(sh);
898         int faila = -1, failb = -1;
899         int target = sh->ops.target;
900         int target2 = sh->ops.target2;
901         struct r5dev *tgt = &sh->dev[target];
902         struct r5dev *tgt2 = &sh->dev[target2];
903         struct dma_async_tx_descriptor *tx;
904         struct page **blocks = percpu->scribble;
905         struct async_submit_ctl submit;
906
907         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
908                  __func__, (unsigned long long)sh->sector, target, target2);
909         BUG_ON(target < 0 || target2 < 0);
910         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
911         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
912
913         /* we need to open-code set_syndrome_sources to handle the
914          * slot number conversion for 'faila' and 'failb'
915          */
916         for (i = 0; i < disks ; i++)
917                 blocks[i] = NULL;
918         count = 0;
919         i = d0_idx;
920         do {
921                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
922
923                 blocks[slot] = sh->dev[i].page;
924
925                 if (i == target)
926                         faila = slot;
927                 if (i == target2)
928                         failb = slot;
929                 i = raid6_next_disk(i, disks);
930         } while (i != d0_idx);
931
932         BUG_ON(faila == failb);
933         if (failb < faila)
934                 swap(faila, failb);
935         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
936                  __func__, (unsigned long long)sh->sector, faila, failb);
937
938         atomic_inc(&sh->count);
939
940         if (failb == syndrome_disks+1) {
941                 /* Q disk is one of the missing disks */
942                 if (faila == syndrome_disks) {
943                         /* Missing P+Q, just recompute */
944                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
945                                           ops_complete_compute, sh,
946                                           to_addr_conv(sh, percpu));
947                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
948                                                   STRIPE_SIZE, &submit);
949                 } else {
950                         struct page *dest;
951                         int data_target;
952                         int qd_idx = sh->qd_idx;
953
954                         /* Missing D+Q: recompute D from P, then recompute Q */
955                         if (target == qd_idx)
956                                 data_target = target2;
957                         else
958                                 data_target = target;
959
960                         count = 0;
961                         for (i = disks; i-- ; ) {
962                                 if (i == data_target || i == qd_idx)
963                                         continue;
964                                 blocks[count++] = sh->dev[i].page;
965                         }
966                         dest = sh->dev[data_target].page;
967                         init_async_submit(&submit,
968                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
969                                           NULL, NULL, NULL,
970                                           to_addr_conv(sh, percpu));
971                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
972                                        &submit);
973
974                         count = set_syndrome_sources(blocks, sh);
975                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
976                                           ops_complete_compute, sh,
977                                           to_addr_conv(sh, percpu));
978                         return async_gen_syndrome(blocks, 0, count+2,
979                                                   STRIPE_SIZE, &submit);
980                 }
981         } else {
982                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
983                                   ops_complete_compute, sh,
984                                   to_addr_conv(sh, percpu));
985                 if (failb == syndrome_disks) {
986                         /* We're missing D+P. */
987                         return async_raid6_datap_recov(syndrome_disks+2,
988                                                        STRIPE_SIZE, faila,
989                                                        blocks, &submit);
990                 } else {
991                         /* We're missing D+D. */
992                         return async_raid6_2data_recov(syndrome_disks+2,
993                                                        STRIPE_SIZE, faila, failb,
994                                                        blocks, &submit);
995                 }
996         }
997 }
998
999
1000 static void ops_complete_prexor(void *stripe_head_ref)
1001 {
1002         struct stripe_head *sh = stripe_head_ref;
1003
1004         pr_debug("%s: stripe %llu\n", __func__,
1005                 (unsigned long long)sh->sector);
1006 }
1007
1008 static struct dma_async_tx_descriptor *
1009 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1010                struct dma_async_tx_descriptor *tx)
1011 {
1012         int disks = sh->disks;
1013         struct page **xor_srcs = percpu->scribble;
1014         int count = 0, pd_idx = sh->pd_idx, i;
1015         struct async_submit_ctl submit;
1016
1017         /* existing parity data subtracted */
1018         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1019
1020         pr_debug("%s: stripe %llu\n", __func__,
1021                 (unsigned long long)sh->sector);
1022
1023         for (i = disks; i--; ) {
1024                 struct r5dev *dev = &sh->dev[i];
1025                 /* Only process blocks that are known to be uptodate */
1026                 if (test_bit(R5_Wantdrain, &dev->flags))
1027                         xor_srcs[count++] = dev->page;
1028         }
1029
1030         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1031                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1032         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1033
1034         return tx;
1035 }
1036
1037 static struct dma_async_tx_descriptor *
1038 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1039 {
1040         int disks = sh->disks;
1041         int i;
1042
1043         pr_debug("%s: stripe %llu\n", __func__,
1044                 (unsigned long long)sh->sector);
1045
1046         for (i = disks; i--; ) {
1047                 struct r5dev *dev = &sh->dev[i];
1048                 struct bio *chosen;
1049
1050                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1051                         struct bio *wbi;
1052
1053                         spin_lock_irq(&sh->raid_conf->device_lock);
1054                         chosen = dev->towrite;
1055                         dev->towrite = NULL;
1056                         BUG_ON(dev->written);
1057                         wbi = dev->written = chosen;
1058                         spin_unlock_irq(&sh->raid_conf->device_lock);
1059
1060                         while (wbi && wbi->bi_sector <
1061                                 dev->sector + STRIPE_SECTORS) {
1062                                 if (wbi->bi_rw & REQ_FUA)
1063                                         set_bit(R5_WantFUA, &dev->flags);
1064                                 tx = async_copy_data(1, wbi, dev->page,
1065                                         dev->sector, tx);
1066                                 wbi = r5_next_bio(wbi, dev->sector);
1067                         }
1068                 }
1069         }
1070
1071         return tx;
1072 }
1073
1074 static void ops_complete_reconstruct(void *stripe_head_ref)
1075 {
1076         struct stripe_head *sh = stripe_head_ref;
1077         int disks = sh->disks;
1078         int pd_idx = sh->pd_idx;
1079         int qd_idx = sh->qd_idx;
1080         int i;
1081         bool fua = false;
1082
1083         pr_debug("%s: stripe %llu\n", __func__,
1084                 (unsigned long long)sh->sector);
1085
1086         for (i = disks; i--; )
1087                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1088
1089         for (i = disks; i--; ) {
1090                 struct r5dev *dev = &sh->dev[i];
1091
1092                 if (dev->written || i == pd_idx || i == qd_idx) {
1093                         set_bit(R5_UPTODATE, &dev->flags);
1094                         if (fua)
1095                                 set_bit(R5_WantFUA, &dev->flags);
1096                 }
1097         }
1098
1099         if (sh->reconstruct_state == reconstruct_state_drain_run)
1100                 sh->reconstruct_state = reconstruct_state_drain_result;
1101         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1102                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1103         else {
1104                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1105                 sh->reconstruct_state = reconstruct_state_result;
1106         }
1107
1108         set_bit(STRIPE_HANDLE, &sh->state);
1109         release_stripe(sh);
1110 }
1111
1112 static void
1113 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1114                      struct dma_async_tx_descriptor *tx)
1115 {
1116         int disks = sh->disks;
1117         struct page **xor_srcs = percpu->scribble;
1118         struct async_submit_ctl submit;
1119         int count = 0, pd_idx = sh->pd_idx, i;
1120         struct page *xor_dest;
1121         int prexor = 0;
1122         unsigned long flags;
1123
1124         pr_debug("%s: stripe %llu\n", __func__,
1125                 (unsigned long long)sh->sector);
1126
1127         /* check if prexor is active which means only process blocks
1128          * that are part of a read-modify-write (written)
1129          */
1130         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1131                 prexor = 1;
1132                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1133                 for (i = disks; i--; ) {
1134                         struct r5dev *dev = &sh->dev[i];
1135                         if (dev->written)
1136                                 xor_srcs[count++] = dev->page;
1137                 }
1138         } else {
1139                 xor_dest = sh->dev[pd_idx].page;
1140                 for (i = disks; i--; ) {
1141                         struct r5dev *dev = &sh->dev[i];
1142                         if (i != pd_idx)
1143                                 xor_srcs[count++] = dev->page;
1144                 }
1145         }
1146
1147         /* 1/ if we prexor'd then the dest is reused as a source
1148          * 2/ if we did not prexor then we are redoing the parity
1149          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1150          * for the synchronous xor case
1151          */
1152         flags = ASYNC_TX_ACK |
1153                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1154
1155         atomic_inc(&sh->count);
1156
1157         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1158                           to_addr_conv(sh, percpu));
1159         if (unlikely(count == 1))
1160                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1161         else
1162                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1163 }
1164
1165 static void
1166 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1167                      struct dma_async_tx_descriptor *tx)
1168 {
1169         struct async_submit_ctl submit;
1170         struct page **blocks = percpu->scribble;
1171         int count;
1172
1173         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1174
1175         count = set_syndrome_sources(blocks, sh);
1176
1177         atomic_inc(&sh->count);
1178
1179         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1180                           sh, to_addr_conv(sh, percpu));
1181         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1182 }
1183
1184 static void ops_complete_check(void *stripe_head_ref)
1185 {
1186         struct stripe_head *sh = stripe_head_ref;
1187
1188         pr_debug("%s: stripe %llu\n", __func__,
1189                 (unsigned long long)sh->sector);
1190
1191         sh->check_state = check_state_check_result;
1192         set_bit(STRIPE_HANDLE, &sh->state);
1193         release_stripe(sh);
1194 }
1195
1196 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1197 {
1198         int disks = sh->disks;
1199         int pd_idx = sh->pd_idx;
1200         int qd_idx = sh->qd_idx;
1201         struct page *xor_dest;
1202         struct page **xor_srcs = percpu->scribble;
1203         struct dma_async_tx_descriptor *tx;
1204         struct async_submit_ctl submit;
1205         int count;
1206         int i;
1207
1208         pr_debug("%s: stripe %llu\n", __func__,
1209                 (unsigned long long)sh->sector);
1210
1211         count = 0;
1212         xor_dest = sh->dev[pd_idx].page;
1213         xor_srcs[count++] = xor_dest;
1214         for (i = disks; i--; ) {
1215                 if (i == pd_idx || i == qd_idx)
1216                         continue;
1217                 xor_srcs[count++] = sh->dev[i].page;
1218         }
1219
1220         init_async_submit(&submit, 0, NULL, NULL, NULL,
1221                           to_addr_conv(sh, percpu));
1222         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1223                            &sh->ops.zero_sum_result, &submit);
1224
1225         atomic_inc(&sh->count);
1226         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1227         tx = async_trigger_callback(&submit);
1228 }
1229
1230 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1231 {
1232         struct page **srcs = percpu->scribble;
1233         struct async_submit_ctl submit;
1234         int count;
1235
1236         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1237                 (unsigned long long)sh->sector, checkp);
1238
1239         count = set_syndrome_sources(srcs, sh);
1240         if (!checkp)
1241                 srcs[count] = NULL;
1242
1243         atomic_inc(&sh->count);
1244         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1245                           sh, to_addr_conv(sh, percpu));
1246         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1247                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1248 }
1249
1250 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1251 {
1252         int overlap_clear = 0, i, disks = sh->disks;
1253         struct dma_async_tx_descriptor *tx = NULL;
1254         struct r5conf *conf = sh->raid_conf;
1255         int level = conf->level;
1256         struct raid5_percpu *percpu;
1257         unsigned long cpu;
1258
1259         cpu = get_cpu();
1260         percpu = per_cpu_ptr(conf->percpu, cpu);
1261         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1262                 ops_run_biofill(sh);
1263                 overlap_clear++;
1264         }
1265
1266         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1267                 if (level < 6)
1268                         tx = ops_run_compute5(sh, percpu);
1269                 else {
1270                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1271                                 tx = ops_run_compute6_1(sh, percpu);
1272                         else
1273                                 tx = ops_run_compute6_2(sh, percpu);
1274                 }
1275                 /* terminate the chain if reconstruct is not set to be run */
1276                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1277                         async_tx_ack(tx);
1278         }
1279
1280         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1281                 tx = ops_run_prexor(sh, percpu, tx);
1282
1283         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1284                 tx = ops_run_biodrain(sh, tx);
1285                 overlap_clear++;
1286         }
1287
1288         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1289                 if (level < 6)
1290                         ops_run_reconstruct5(sh, percpu, tx);
1291                 else
1292                         ops_run_reconstruct6(sh, percpu, tx);
1293         }
1294
1295         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1296                 if (sh->check_state == check_state_run)
1297                         ops_run_check_p(sh, percpu);
1298                 else if (sh->check_state == check_state_run_q)
1299                         ops_run_check_pq(sh, percpu, 0);
1300                 else if (sh->check_state == check_state_run_pq)
1301                         ops_run_check_pq(sh, percpu, 1);
1302                 else
1303                         BUG();
1304         }
1305
1306         if (overlap_clear)
1307                 for (i = disks; i--; ) {
1308                         struct r5dev *dev = &sh->dev[i];
1309                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1310                                 wake_up(&sh->raid_conf->wait_for_overlap);
1311                 }
1312         put_cpu();
1313 }
1314
1315 #ifdef CONFIG_MULTICORE_RAID456
1316 static void async_run_ops(void *param, async_cookie_t cookie)
1317 {
1318         struct stripe_head *sh = param;
1319         unsigned long ops_request = sh->ops.request;
1320
1321         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1322         wake_up(&sh->ops.wait_for_ops);
1323
1324         __raid_run_ops(sh, ops_request);
1325         release_stripe(sh);
1326 }
1327
1328 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1329 {
1330         /* since handle_stripe can be called outside of raid5d context
1331          * we need to ensure sh->ops.request is de-staged before another
1332          * request arrives
1333          */
1334         wait_event(sh->ops.wait_for_ops,
1335                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1336         sh->ops.request = ops_request;
1337
1338         atomic_inc(&sh->count);
1339         async_schedule(async_run_ops, sh);
1340 }
1341 #else
1342 #define raid_run_ops __raid_run_ops
1343 #endif
1344
1345 static int grow_one_stripe(struct r5conf *conf)
1346 {
1347         struct stripe_head *sh;
1348         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1349         if (!sh)
1350                 return 0;
1351
1352         sh->raid_conf = conf;
1353         #ifdef CONFIG_MULTICORE_RAID456
1354         init_waitqueue_head(&sh->ops.wait_for_ops);
1355         #endif
1356
1357         if (grow_buffers(sh)) {
1358                 shrink_buffers(sh);
1359                 kmem_cache_free(conf->slab_cache, sh);
1360                 return 0;
1361         }
1362         /* we just created an active stripe so... */
1363         atomic_set(&sh->count, 1);
1364         atomic_inc(&conf->active_stripes);
1365         INIT_LIST_HEAD(&sh->lru);
1366         release_stripe(sh);
1367         return 1;
1368 }
1369
1370 static int grow_stripes(struct r5conf *conf, int num)
1371 {
1372         struct kmem_cache *sc;
1373         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1374
1375         if (conf->mddev->gendisk)
1376                 sprintf(conf->cache_name[0],
1377                         "raid%d-%s", conf->level, mdname(conf->mddev));
1378         else
1379                 sprintf(conf->cache_name[0],
1380                         "raid%d-%p", conf->level, conf->mddev);
1381         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1382
1383         conf->active_name = 0;
1384         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1385                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1386                                0, 0, NULL);
1387         if (!sc)
1388                 return 1;
1389         conf->slab_cache = sc;
1390         conf->pool_size = devs;
1391         while (num--)
1392                 if (!grow_one_stripe(conf))
1393                         return 1;
1394         return 0;
1395 }
1396
1397 /**
1398  * scribble_len - return the required size of the scribble region
1399  * @num - total number of disks in the array
1400  *
1401  * The size must be enough to contain:
1402  * 1/ a struct page pointer for each device in the array +2
1403  * 2/ room to convert each entry in (1) to its corresponding dma
1404  *    (dma_map_page()) or page (page_address()) address.
1405  *
1406  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1407  * calculate over all devices (not just the data blocks), using zeros in place
1408  * of the P and Q blocks.
1409  */
1410 static size_t scribble_len(int num)
1411 {
1412         size_t len;
1413
1414         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1415
1416         return len;
1417 }
1418
1419 static int resize_stripes(struct r5conf *conf, int newsize)
1420 {
1421         /* Make all the stripes able to hold 'newsize' devices.
1422          * New slots in each stripe get 'page' set to a new page.
1423          *
1424          * This happens in stages:
1425          * 1/ create a new kmem_cache and allocate the required number of
1426          *    stripe_heads.
1427          * 2/ gather all the old stripe_heads and tranfer the pages across
1428          *    to the new stripe_heads.  This will have the side effect of
1429          *    freezing the array as once all stripe_heads have been collected,
1430          *    no IO will be possible.  Old stripe heads are freed once their
1431          *    pages have been transferred over, and the old kmem_cache is
1432          *    freed when all stripes are done.
1433          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1434          *    we simple return a failre status - no need to clean anything up.
1435          * 4/ allocate new pages for the new slots in the new stripe_heads.
1436          *    If this fails, we don't bother trying the shrink the
1437          *    stripe_heads down again, we just leave them as they are.
1438          *    As each stripe_head is processed the new one is released into
1439          *    active service.
1440          *
1441          * Once step2 is started, we cannot afford to wait for a write,
1442          * so we use GFP_NOIO allocations.
1443          */
1444         struct stripe_head *osh, *nsh;
1445         LIST_HEAD(newstripes);
1446         struct disk_info *ndisks;
1447         unsigned long cpu;
1448         int err;
1449         struct kmem_cache *sc;
1450         int i;
1451
1452         if (newsize <= conf->pool_size)
1453                 return 0; /* never bother to shrink */
1454
1455         err = md_allow_write(conf->mddev);
1456         if (err)
1457                 return err;
1458
1459         /* Step 1 */
1460         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1461                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1462                                0, 0, NULL);
1463         if (!sc)
1464                 return -ENOMEM;
1465
1466         for (i = conf->max_nr_stripes; i; i--) {
1467                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1468                 if (!nsh)
1469                         break;
1470
1471                 nsh->raid_conf = conf;
1472                 #ifdef CONFIG_MULTICORE_RAID456
1473                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1474                 #endif
1475
1476                 list_add(&nsh->lru, &newstripes);
1477         }
1478         if (i) {
1479                 /* didn't get enough, give up */
1480                 while (!list_empty(&newstripes)) {
1481                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1482                         list_del(&nsh->lru);
1483                         kmem_cache_free(sc, nsh);
1484                 }
1485                 kmem_cache_destroy(sc);
1486                 return -ENOMEM;
1487         }
1488         /* Step 2 - Must use GFP_NOIO now.
1489          * OK, we have enough stripes, start collecting inactive
1490          * stripes and copying them over
1491          */
1492         list_for_each_entry(nsh, &newstripes, lru) {
1493                 spin_lock_irq(&conf->device_lock);
1494                 wait_event_lock_irq(conf->wait_for_stripe,
1495                                     !list_empty(&conf->inactive_list),
1496                                     conf->device_lock,
1497                                     );
1498                 osh = get_free_stripe(conf);
1499                 spin_unlock_irq(&conf->device_lock);
1500                 atomic_set(&nsh->count, 1);
1501                 for(i=0; i<conf->pool_size; i++)
1502                         nsh->dev[i].page = osh->dev[i].page;
1503                 for( ; i<newsize; i++)
1504                         nsh->dev[i].page = NULL;
1505                 kmem_cache_free(conf->slab_cache, osh);
1506         }
1507         kmem_cache_destroy(conf->slab_cache);
1508
1509         /* Step 3.
1510          * At this point, we are holding all the stripes so the array
1511          * is completely stalled, so now is a good time to resize
1512          * conf->disks and the scribble region
1513          */
1514         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1515         if (ndisks) {
1516                 for (i=0; i<conf->raid_disks; i++)
1517                         ndisks[i] = conf->disks[i];
1518                 kfree(conf->disks);
1519                 conf->disks = ndisks;
1520         } else
1521                 err = -ENOMEM;
1522
1523         get_online_cpus();
1524         conf->scribble_len = scribble_len(newsize);
1525         for_each_present_cpu(cpu) {
1526                 struct raid5_percpu *percpu;
1527                 void *scribble;
1528
1529                 percpu = per_cpu_ptr(conf->percpu, cpu);
1530                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1531
1532                 if (scribble) {
1533                         kfree(percpu->scribble);
1534                         percpu->scribble = scribble;
1535                 } else {
1536                         err = -ENOMEM;
1537                         break;
1538                 }
1539         }
1540         put_online_cpus();
1541
1542         /* Step 4, return new stripes to service */
1543         while(!list_empty(&newstripes)) {
1544                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1545                 list_del_init(&nsh->lru);
1546
1547                 for (i=conf->raid_disks; i < newsize; i++)
1548                         if (nsh->dev[i].page == NULL) {
1549                                 struct page *p = alloc_page(GFP_NOIO);
1550                                 nsh->dev[i].page = p;
1551                                 if (!p)
1552                                         err = -ENOMEM;
1553                         }
1554                 release_stripe(nsh);
1555         }
1556         /* critical section pass, GFP_NOIO no longer needed */
1557
1558         conf->slab_cache = sc;
1559         conf->active_name = 1-conf->active_name;
1560         conf->pool_size = newsize;
1561         return err;
1562 }
1563
1564 static int drop_one_stripe(struct r5conf *conf)
1565 {
1566         struct stripe_head *sh;
1567
1568         spin_lock_irq(&conf->device_lock);
1569         sh = get_free_stripe(conf);
1570         spin_unlock_irq(&conf->device_lock);
1571         if (!sh)
1572                 return 0;
1573         BUG_ON(atomic_read(&sh->count));
1574         shrink_buffers(sh);
1575         kmem_cache_free(conf->slab_cache, sh);
1576         atomic_dec(&conf->active_stripes);
1577         return 1;
1578 }
1579
1580 static void shrink_stripes(struct r5conf *conf)
1581 {
1582         while (drop_one_stripe(conf))
1583                 ;
1584
1585         if (conf->slab_cache)
1586                 kmem_cache_destroy(conf->slab_cache);
1587         conf->slab_cache = NULL;
1588 }
1589
1590 static void raid5_end_read_request(struct bio * bi, int error)
1591 {
1592         struct stripe_head *sh = bi->bi_private;
1593         struct r5conf *conf = sh->raid_conf;
1594         int disks = sh->disks, i;
1595         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1596         char b[BDEVNAME_SIZE];
1597         struct md_rdev *rdev;
1598
1599
1600         for (i=0 ; i<disks; i++)
1601                 if (bi == &sh->dev[i].req)
1602                         break;
1603
1604         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1605                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1606                 uptodate);
1607         if (i == disks) {
1608                 BUG();
1609                 return;
1610         }
1611
1612         if (uptodate) {
1613                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1614                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1615                         rdev = conf->disks[i].rdev;
1616                         printk_ratelimited(
1617                                 KERN_INFO
1618                                 "md/raid:%s: read error corrected"
1619                                 " (%lu sectors at %llu on %s)\n",
1620                                 mdname(conf->mddev), STRIPE_SECTORS,
1621                                 (unsigned long long)(sh->sector
1622                                                      + rdev->data_offset),
1623                                 bdevname(rdev->bdev, b));
1624                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1625                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1626                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1627                 }
1628                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1629                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1630         } else {
1631                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1632                 int retry = 0;
1633                 rdev = conf->disks[i].rdev;
1634
1635                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1636                 atomic_inc(&rdev->read_errors);
1637                 if (conf->mddev->degraded >= conf->max_degraded)
1638                         printk_ratelimited(
1639                                 KERN_WARNING
1640                                 "md/raid:%s: read error not correctable "
1641                                 "(sector %llu on %s).\n",
1642                                 mdname(conf->mddev),
1643                                 (unsigned long long)(sh->sector
1644                                                      + rdev->data_offset),
1645                                 bdn);
1646                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1647                         /* Oh, no!!! */
1648                         printk_ratelimited(
1649                                 KERN_WARNING
1650                                 "md/raid:%s: read error NOT corrected!! "
1651                                 "(sector %llu on %s).\n",
1652                                 mdname(conf->mddev),
1653                                 (unsigned long long)(sh->sector
1654                                                      + rdev->data_offset),
1655                                 bdn);
1656                 else if (atomic_read(&rdev->read_errors)
1657                          > conf->max_nr_stripes)
1658                         printk(KERN_WARNING
1659                                "md/raid:%s: Too many read errors, failing device %s.\n",
1660                                mdname(conf->mddev), bdn);
1661                 else
1662                         retry = 1;
1663                 if (retry)
1664                         set_bit(R5_ReadError, &sh->dev[i].flags);
1665                 else {
1666                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1667                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1668                         md_error(conf->mddev, rdev);
1669                 }
1670         }
1671         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1672         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1673         set_bit(STRIPE_HANDLE, &sh->state);
1674         release_stripe(sh);
1675 }
1676
1677 static void raid5_end_write_request(struct bio *bi, int error)
1678 {
1679         struct stripe_head *sh = bi->bi_private;
1680         struct r5conf *conf = sh->raid_conf;
1681         int disks = sh->disks, i;
1682         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1683         sector_t first_bad;
1684         int bad_sectors;
1685
1686         for (i=0 ; i<disks; i++)
1687                 if (bi == &sh->dev[i].req)
1688                         break;
1689
1690         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1691                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1692                 uptodate);
1693         if (i == disks) {
1694                 BUG();
1695                 return;
1696         }
1697
1698         if (!uptodate) {
1699                 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1700                 set_bit(R5_WriteError, &sh->dev[i].flags);
1701         } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1702                                &first_bad, &bad_sectors))
1703                 set_bit(R5_MadeGood, &sh->dev[i].flags);
1704
1705         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1706         
1707         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1708         set_bit(STRIPE_HANDLE, &sh->state);
1709         release_stripe(sh);
1710 }
1711
1712
1713 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1714         
1715 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1716 {
1717         struct r5dev *dev = &sh->dev[i];
1718
1719         bio_init(&dev->req);
1720         dev->req.bi_io_vec = &dev->vec;
1721         dev->req.bi_vcnt++;
1722         dev->req.bi_max_vecs++;
1723         dev->vec.bv_page = dev->page;
1724         dev->vec.bv_len = STRIPE_SIZE;
1725         dev->vec.bv_offset = 0;
1726
1727         dev->req.bi_sector = sh->sector;
1728         dev->req.bi_private = sh;
1729
1730         dev->flags = 0;
1731         dev->sector = compute_blocknr(sh, i, previous);
1732 }
1733
1734 static void error(struct mddev *mddev, struct md_rdev *rdev)
1735 {
1736         char b[BDEVNAME_SIZE];
1737         struct r5conf *conf = mddev->private;
1738         unsigned long flags;
1739         pr_debug("raid456: error called\n");
1740
1741         spin_lock_irqsave(&conf->device_lock, flags);
1742         clear_bit(In_sync, &rdev->flags);
1743         mddev->degraded = calc_degraded(conf);
1744         spin_unlock_irqrestore(&conf->device_lock, flags);
1745         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1746
1747         set_bit(Blocked, &rdev->flags);
1748         set_bit(Faulty, &rdev->flags);
1749         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1750         printk(KERN_ALERT
1751                "md/raid:%s: Disk failure on %s, disabling device.\n"
1752                "md/raid:%s: Operation continuing on %d devices.\n",
1753                mdname(mddev),
1754                bdevname(rdev->bdev, b),
1755                mdname(mddev),
1756                conf->raid_disks - mddev->degraded);
1757 }
1758
1759 /*
1760  * Input: a 'big' sector number,
1761  * Output: index of the data and parity disk, and the sector # in them.
1762  */
1763 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1764                                      int previous, int *dd_idx,
1765                                      struct stripe_head *sh)
1766 {
1767         sector_t stripe, stripe2;
1768         sector_t chunk_number;
1769         unsigned int chunk_offset;
1770         int pd_idx, qd_idx;
1771         int ddf_layout = 0;
1772         sector_t new_sector;
1773         int algorithm = previous ? conf->prev_algo
1774                                  : conf->algorithm;
1775         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1776                                          : conf->chunk_sectors;
1777         int raid_disks = previous ? conf->previous_raid_disks
1778                                   : conf->raid_disks;
1779         int data_disks = raid_disks - conf->max_degraded;
1780
1781         /* First compute the information on this sector */
1782
1783         /*
1784          * Compute the chunk number and the sector offset inside the chunk
1785          */
1786         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1787         chunk_number = r_sector;
1788
1789         /*
1790          * Compute the stripe number
1791          */
1792         stripe = chunk_number;
1793         *dd_idx = sector_div(stripe, data_disks);
1794         stripe2 = stripe;
1795         /*
1796          * Select the parity disk based on the user selected algorithm.
1797          */
1798         pd_idx = qd_idx = -1;
1799         switch(conf->level) {
1800         case 4:
1801                 pd_idx = data_disks;
1802                 break;
1803         case 5:
1804                 switch (algorithm) {
1805                 case ALGORITHM_LEFT_ASYMMETRIC:
1806                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1807                         if (*dd_idx >= pd_idx)
1808                                 (*dd_idx)++;
1809                         break;
1810                 case ALGORITHM_RIGHT_ASYMMETRIC:
1811                         pd_idx = sector_div(stripe2, raid_disks);
1812                         if (*dd_idx >= pd_idx)
1813                                 (*dd_idx)++;
1814                         break;
1815                 case ALGORITHM_LEFT_SYMMETRIC:
1816                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1817                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1818                         break;
1819                 case ALGORITHM_RIGHT_SYMMETRIC:
1820                         pd_idx = sector_div(stripe2, raid_disks);
1821                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1822                         break;
1823                 case ALGORITHM_PARITY_0:
1824                         pd_idx = 0;
1825                         (*dd_idx)++;
1826                         break;
1827                 case ALGORITHM_PARITY_N:
1828                         pd_idx = data_disks;
1829                         break;
1830                 default:
1831                         BUG();
1832                 }
1833                 break;
1834         case 6:
1835
1836                 switch (algorithm) {
1837                 case ALGORITHM_LEFT_ASYMMETRIC:
1838                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1839                         qd_idx = pd_idx + 1;
1840                         if (pd_idx == raid_disks-1) {
1841                                 (*dd_idx)++;    /* Q D D D P */
1842                                 qd_idx = 0;
1843                         } else if (*dd_idx >= pd_idx)
1844                                 (*dd_idx) += 2; /* D D P Q D */
1845                         break;
1846                 case ALGORITHM_RIGHT_ASYMMETRIC:
1847                         pd_idx = sector_div(stripe2, raid_disks);
1848                         qd_idx = pd_idx + 1;
1849                         if (pd_idx == raid_disks-1) {
1850                                 (*dd_idx)++;    /* Q D D D P */
1851                                 qd_idx = 0;
1852                         } else if (*dd_idx >= pd_idx)
1853                                 (*dd_idx) += 2; /* D D P Q D */
1854                         break;
1855                 case ALGORITHM_LEFT_SYMMETRIC:
1856                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1857                         qd_idx = (pd_idx + 1) % raid_disks;
1858                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1859                         break;
1860                 case ALGORITHM_RIGHT_SYMMETRIC:
1861                         pd_idx = sector_div(stripe2, raid_disks);
1862                         qd_idx = (pd_idx + 1) % raid_disks;
1863                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1864                         break;
1865
1866                 case ALGORITHM_PARITY_0:
1867                         pd_idx = 0;
1868                         qd_idx = 1;
1869                         (*dd_idx) += 2;
1870                         break;
1871                 case ALGORITHM_PARITY_N:
1872                         pd_idx = data_disks;
1873                         qd_idx = data_disks + 1;
1874                         break;
1875
1876                 case ALGORITHM_ROTATING_ZERO_RESTART:
1877                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1878                          * of blocks for computing Q is different.
1879                          */
1880                         pd_idx = sector_div(stripe2, raid_disks);
1881                         qd_idx = pd_idx + 1;
1882                         if (pd_idx == raid_disks-1) {
1883                                 (*dd_idx)++;    /* Q D D D P */
1884                                 qd_idx = 0;
1885                         } else if (*dd_idx >= pd_idx)
1886                                 (*dd_idx) += 2; /* D D P Q D */
1887                         ddf_layout = 1;
1888                         break;
1889
1890                 case ALGORITHM_ROTATING_N_RESTART:
1891                         /* Same a left_asymmetric, by first stripe is
1892                          * D D D P Q  rather than
1893                          * Q D D D P
1894                          */
1895                         stripe2 += 1;
1896                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1897                         qd_idx = pd_idx + 1;
1898                         if (pd_idx == raid_disks-1) {
1899                                 (*dd_idx)++;    /* Q D D D P */
1900                                 qd_idx = 0;
1901                         } else if (*dd_idx >= pd_idx)
1902                                 (*dd_idx) += 2; /* D D P Q D */
1903                         ddf_layout = 1;
1904                         break;
1905
1906                 case ALGORITHM_ROTATING_N_CONTINUE:
1907                         /* Same as left_symmetric but Q is before P */
1908                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1909                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1910                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1911                         ddf_layout = 1;
1912                         break;
1913
1914                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1915                         /* RAID5 left_asymmetric, with Q on last device */
1916                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1917                         if (*dd_idx >= pd_idx)
1918                                 (*dd_idx)++;
1919                         qd_idx = raid_disks - 1;
1920                         break;
1921
1922                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1923                         pd_idx = sector_div(stripe2, raid_disks-1);
1924                         if (*dd_idx >= pd_idx)
1925                                 (*dd_idx)++;
1926                         qd_idx = raid_disks - 1;
1927                         break;
1928
1929                 case ALGORITHM_LEFT_SYMMETRIC_6:
1930                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1931                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1932                         qd_idx = raid_disks - 1;
1933                         break;
1934
1935                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1936                         pd_idx = sector_div(stripe2, raid_disks-1);
1937                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1938                         qd_idx = raid_disks - 1;
1939                         break;
1940
1941                 case ALGORITHM_PARITY_0_6:
1942                         pd_idx = 0;
1943                         (*dd_idx)++;
1944                         qd_idx = raid_disks - 1;
1945                         break;
1946
1947                 default:
1948                         BUG();
1949                 }
1950                 break;
1951         }
1952
1953         if (sh) {
1954                 sh->pd_idx = pd_idx;
1955                 sh->qd_idx = qd_idx;
1956                 sh->ddf_layout = ddf_layout;
1957         }
1958         /*
1959          * Finally, compute the new sector number
1960          */
1961         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1962         return new_sector;
1963 }
1964
1965
1966 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1967 {
1968         struct r5conf *conf = sh->raid_conf;
1969         int raid_disks = sh->disks;
1970         int data_disks = raid_disks - conf->max_degraded;
1971         sector_t new_sector = sh->sector, check;
1972         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1973                                          : conf->chunk_sectors;
1974         int algorithm = previous ? conf->prev_algo
1975                                  : conf->algorithm;
1976         sector_t stripe;
1977         int chunk_offset;
1978         sector_t chunk_number;
1979         int dummy1, dd_idx = i;
1980         sector_t r_sector;
1981         struct stripe_head sh2;
1982
1983
1984         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1985         stripe = new_sector;
1986
1987         if (i == sh->pd_idx)
1988                 return 0;
1989         switch(conf->level) {
1990         case 4: break;
1991         case 5:
1992                 switch (algorithm) {
1993                 case ALGORITHM_LEFT_ASYMMETRIC:
1994                 case ALGORITHM_RIGHT_ASYMMETRIC:
1995                         if (i > sh->pd_idx)
1996                                 i--;
1997                         break;
1998                 case ALGORITHM_LEFT_SYMMETRIC:
1999                 case ALGORITHM_RIGHT_SYMMETRIC:
2000                         if (i < sh->pd_idx)
2001                                 i += raid_disks;
2002                         i -= (sh->pd_idx + 1);
2003                         break;
2004                 case ALGORITHM_PARITY_0:
2005                         i -= 1;
2006                         break;
2007                 case ALGORITHM_PARITY_N:
2008                         break;
2009                 default:
2010                         BUG();
2011                 }
2012                 break;
2013         case 6:
2014                 if (i == sh->qd_idx)
2015                         return 0; /* It is the Q disk */
2016                 switch (algorithm) {
2017                 case ALGORITHM_LEFT_ASYMMETRIC:
2018                 case ALGORITHM_RIGHT_ASYMMETRIC:
2019                 case ALGORITHM_ROTATING_ZERO_RESTART:
2020                 case ALGORITHM_ROTATING_N_RESTART:
2021                         if (sh->pd_idx == raid_disks-1)
2022                                 i--;    /* Q D D D P */
2023                         else if (i > sh->pd_idx)
2024                                 i -= 2; /* D D P Q D */
2025                         break;
2026                 case ALGORITHM_LEFT_SYMMETRIC:
2027                 case ALGORITHM_RIGHT_SYMMETRIC:
2028                         if (sh->pd_idx == raid_disks-1)
2029                                 i--; /* Q D D D P */
2030                         else {
2031                                 /* D D P Q D */
2032                                 if (i < sh->pd_idx)
2033                                         i += raid_disks;
2034                                 i -= (sh->pd_idx + 2);
2035                         }
2036                         break;
2037                 case ALGORITHM_PARITY_0:
2038                         i -= 2;
2039                         break;
2040                 case ALGORITHM_PARITY_N:
2041                         break;
2042                 case ALGORITHM_ROTATING_N_CONTINUE:
2043                         /* Like left_symmetric, but P is before Q */
2044                         if (sh->pd_idx == 0)
2045                                 i--;    /* P D D D Q */
2046                         else {
2047                                 /* D D Q P D */
2048                                 if (i < sh->pd_idx)
2049                                         i += raid_disks;
2050                                 i -= (sh->pd_idx + 1);
2051                         }
2052                         break;
2053                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2054                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2055                         if (i > sh->pd_idx)
2056                                 i--;
2057                         break;
2058                 case ALGORITHM_LEFT_SYMMETRIC_6:
2059                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2060                         if (i < sh->pd_idx)
2061                                 i += data_disks + 1;
2062                         i -= (sh->pd_idx + 1);
2063                         break;
2064                 case ALGORITHM_PARITY_0_6:
2065                         i -= 1;
2066                         break;
2067                 default:
2068                         BUG();
2069                 }
2070                 break;
2071         }
2072
2073         chunk_number = stripe * data_disks + i;
2074         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2075
2076         check = raid5_compute_sector(conf, r_sector,
2077                                      previous, &dummy1, &sh2);
2078         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2079                 || sh2.qd_idx != sh->qd_idx) {
2080                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2081                        mdname(conf->mddev));
2082                 return 0;
2083         }
2084         return r_sector;
2085 }
2086
2087
2088 static void
2089 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2090                          int rcw, int expand)
2091 {
2092         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2093         struct r5conf *conf = sh->raid_conf;
2094         int level = conf->level;
2095
2096         if (rcw) {
2097                 /* if we are not expanding this is a proper write request, and
2098                  * there will be bios with new data to be drained into the
2099                  * stripe cache
2100                  */
2101                 if (!expand) {
2102                         sh->reconstruct_state = reconstruct_state_drain_run;
2103                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2104                 } else
2105                         sh->reconstruct_state = reconstruct_state_run;
2106
2107                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2108
2109                 for (i = disks; i--; ) {
2110                         struct r5dev *dev = &sh->dev[i];
2111
2112                         if (dev->towrite) {
2113                                 set_bit(R5_LOCKED, &dev->flags);
2114                                 set_bit(R5_Wantdrain, &dev->flags);
2115                                 if (!expand)
2116                                         clear_bit(R5_UPTODATE, &dev->flags);
2117                                 s->locked++;
2118                         }
2119                 }
2120                 if (s->locked + conf->max_degraded == disks)
2121                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2122                                 atomic_inc(&conf->pending_full_writes);
2123         } else {
2124                 BUG_ON(level == 6);
2125                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2126                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2127
2128                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2129                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2130                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2131                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2132
2133                 for (i = disks; i--; ) {
2134                         struct r5dev *dev = &sh->dev[i];
2135                         if (i == pd_idx)
2136                                 continue;
2137
2138                         if (dev->towrite &&
2139                             (test_bit(R5_UPTODATE, &dev->flags) ||
2140                              test_bit(R5_Wantcompute, &dev->flags))) {
2141                                 set_bit(R5_Wantdrain, &dev->flags);
2142                                 set_bit(R5_LOCKED, &dev->flags);
2143                                 clear_bit(R5_UPTODATE, &dev->flags);
2144                                 s->locked++;
2145                         }
2146                 }
2147         }
2148
2149         /* keep the parity disk(s) locked while asynchronous operations
2150          * are in flight
2151          */
2152         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2153         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2154         s->locked++;
2155
2156         if (level == 6) {
2157                 int qd_idx = sh->qd_idx;
2158                 struct r5dev *dev = &sh->dev[qd_idx];
2159
2160                 set_bit(R5_LOCKED, &dev->flags);
2161                 clear_bit(R5_UPTODATE, &dev->flags);
2162                 s->locked++;
2163         }
2164
2165         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2166                 __func__, (unsigned long long)sh->sector,
2167                 s->locked, s->ops_request);
2168 }
2169
2170 /*
2171  * Each stripe/dev can have one or more bion attached.
2172  * toread/towrite point to the first in a chain.
2173  * The bi_next chain must be in order.
2174  */
2175 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2176 {
2177         struct bio **bip;
2178         struct r5conf *conf = sh->raid_conf;
2179         int firstwrite=0;
2180
2181         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2182                 (unsigned long long)bi->bi_sector,
2183                 (unsigned long long)sh->sector);
2184
2185
2186         spin_lock_irq(&conf->device_lock);
2187         if (forwrite) {
2188                 bip = &sh->dev[dd_idx].towrite;
2189                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2190                         firstwrite = 1;
2191         } else
2192                 bip = &sh->dev[dd_idx].toread;
2193         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2194                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2195                         goto overlap;
2196                 bip = & (*bip)->bi_next;
2197         }
2198         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2199                 goto overlap;
2200
2201         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2202         if (*bip)
2203                 bi->bi_next = *bip;
2204         *bip = bi;
2205         bi->bi_phys_segments++;
2206
2207         if (forwrite) {
2208                 /* check if page is covered */
2209                 sector_t sector = sh->dev[dd_idx].sector;
2210                 for (bi=sh->dev[dd_idx].towrite;
2211                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2212                              bi && bi->bi_sector <= sector;
2213                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2214                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2215                                 sector = bi->bi_sector + (bi->bi_size>>9);
2216                 }
2217                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2218                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2219         }
2220         spin_unlock_irq(&conf->device_lock);
2221
2222         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2223                 (unsigned long long)(*bip)->bi_sector,
2224                 (unsigned long long)sh->sector, dd_idx);
2225
2226         if (conf->mddev->bitmap && firstwrite) {
2227                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2228                                   STRIPE_SECTORS, 0);
2229                 sh->bm_seq = conf->seq_flush+1;
2230                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2231         }
2232         return 1;
2233
2234  overlap:
2235         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2236         spin_unlock_irq(&conf->device_lock);
2237         return 0;
2238 }
2239
2240 static void end_reshape(struct r5conf *conf);
2241
2242 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2243                             struct stripe_head *sh)
2244 {
2245         int sectors_per_chunk =
2246                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2247         int dd_idx;
2248         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2249         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2250
2251         raid5_compute_sector(conf,
2252                              stripe * (disks - conf->max_degraded)
2253                              *sectors_per_chunk + chunk_offset,
2254                              previous,
2255                              &dd_idx, sh);
2256 }
2257
2258 static void
2259 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2260                                 struct stripe_head_state *s, int disks,
2261                                 struct bio **return_bi)
2262 {
2263         int i;
2264         for (i = disks; i--; ) {
2265                 struct bio *bi;
2266                 int bitmap_end = 0;
2267
2268                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2269                         struct md_rdev *rdev;
2270                         rcu_read_lock();
2271                         rdev = rcu_dereference(conf->disks[i].rdev);
2272                         if (rdev && test_bit(In_sync, &rdev->flags))
2273                                 atomic_inc(&rdev->nr_pending);
2274                         else
2275                                 rdev = NULL;
2276                         rcu_read_unlock();
2277                         if (rdev) {
2278                                 if (!rdev_set_badblocks(
2279                                             rdev,
2280                                             sh->sector,
2281                                             STRIPE_SECTORS, 0))
2282                                         md_error(conf->mddev, rdev);
2283                                 rdev_dec_pending(rdev, conf->mddev);
2284                         }
2285                 }
2286                 spin_lock_irq(&conf->device_lock);
2287                 /* fail all writes first */
2288                 bi = sh->dev[i].towrite;
2289                 sh->dev[i].towrite = NULL;
2290                 if (bi) {
2291                         s->to_write--;
2292                         bitmap_end = 1;
2293                 }
2294
2295                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2296                         wake_up(&conf->wait_for_overlap);
2297
2298                 while (bi && bi->bi_sector <
2299                         sh->dev[i].sector + STRIPE_SECTORS) {
2300                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2301                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2302                         if (!raid5_dec_bi_phys_segments(bi)) {
2303                                 md_write_end(conf->mddev);
2304                                 bi->bi_next = *return_bi;
2305                                 *return_bi = bi;
2306                         }
2307                         bi = nextbi;
2308                 }
2309                 /* and fail all 'written' */
2310                 bi = sh->dev[i].written;
2311                 sh->dev[i].written = NULL;
2312                 if (bi) bitmap_end = 1;
2313                 while (bi && bi->bi_sector <
2314                        sh->dev[i].sector + STRIPE_SECTORS) {
2315                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2316                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2317                         if (!raid5_dec_bi_phys_segments(bi)) {
2318                                 md_write_end(conf->mddev);
2319                                 bi->bi_next = *return_bi;
2320                                 *return_bi = bi;
2321                         }
2322                         bi = bi2;
2323                 }
2324
2325                 /* fail any reads if this device is non-operational and
2326                  * the data has not reached the cache yet.
2327                  */
2328                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2329                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2330                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2331                         bi = sh->dev[i].toread;
2332                         sh->dev[i].toread = NULL;
2333                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2334                                 wake_up(&conf->wait_for_overlap);
2335                         if (bi) s->to_read--;
2336                         while (bi && bi->bi_sector <
2337                                sh->dev[i].sector + STRIPE_SECTORS) {
2338                                 struct bio *nextbi =
2339                                         r5_next_bio(bi, sh->dev[i].sector);
2340                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2341                                 if (!raid5_dec_bi_phys_segments(bi)) {
2342                                         bi->bi_next = *return_bi;
2343                                         *return_bi = bi;
2344                                 }
2345                                 bi = nextbi;
2346                         }
2347                 }
2348                 spin_unlock_irq(&conf->device_lock);
2349                 if (bitmap_end)
2350                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2351                                         STRIPE_SECTORS, 0, 0);
2352                 /* If we were in the middle of a write the parity block might
2353                  * still be locked - so just clear all R5_LOCKED flags
2354                  */
2355                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2356         }
2357
2358         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2359                 if (atomic_dec_and_test(&conf->pending_full_writes))
2360                         md_wakeup_thread(conf->mddev->thread);
2361 }
2362
2363 static void
2364 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2365                    struct stripe_head_state *s)
2366 {
2367         int abort = 0;
2368         int i;
2369
2370         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2371         clear_bit(STRIPE_SYNCING, &sh->state);
2372         s->syncing = 0;
2373         /* There is nothing more to do for sync/check/repair.
2374          * For recover we need to record a bad block on all
2375          * non-sync devices, or abort the recovery
2376          */
2377         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2378                 return;
2379         /* During recovery devices cannot be removed, so locking and
2380          * refcounting of rdevs is not needed
2381          */
2382         for (i = 0; i < conf->raid_disks; i++) {
2383                 struct md_rdev *rdev = conf->disks[i].rdev;
2384                 if (!rdev
2385                     || test_bit(Faulty, &rdev->flags)
2386                     || test_bit(In_sync, &rdev->flags))
2387                         continue;
2388                 if (!rdev_set_badblocks(rdev, sh->sector,
2389                                         STRIPE_SECTORS, 0))
2390                         abort = 1;
2391         }
2392         if (abort) {
2393                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2394                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2395         }
2396 }
2397
2398 /* fetch_block - checks the given member device to see if its data needs
2399  * to be read or computed to satisfy a request.
2400  *
2401  * Returns 1 when no more member devices need to be checked, otherwise returns
2402  * 0 to tell the loop in handle_stripe_fill to continue
2403  */
2404 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2405                        int disk_idx, int disks)
2406 {
2407         struct r5dev *dev = &sh->dev[disk_idx];
2408         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2409                                   &sh->dev[s->failed_num[1]] };
2410
2411         /* is the data in this block needed, and can we get it? */
2412         if (!test_bit(R5_LOCKED, &dev->flags) &&
2413             !test_bit(R5_UPTODATE, &dev->flags) &&
2414             (dev->toread ||
2415              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2416              s->syncing || s->expanding ||
2417              (s->failed >= 1 && fdev[0]->toread) ||
2418              (s->failed >= 2 && fdev[1]->toread) ||
2419              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2420               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2421              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2422                 /* we would like to get this block, possibly by computing it,
2423                  * otherwise read it if the backing disk is insync
2424                  */
2425                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2426                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2427                 if ((s->uptodate == disks - 1) &&
2428                     (s->failed && (disk_idx == s->failed_num[0] ||
2429                                    disk_idx == s->failed_num[1]))) {
2430                         /* have disk failed, and we're requested to fetch it;
2431                          * do compute it
2432                          */
2433                         pr_debug("Computing stripe %llu block %d\n",
2434                                (unsigned long long)sh->sector, disk_idx);
2435                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2436                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2437                         set_bit(R5_Wantcompute, &dev->flags);
2438                         sh->ops.target = disk_idx;
2439                         sh->ops.target2 = -1; /* no 2nd target */
2440                         s->req_compute = 1;
2441                         /* Careful: from this point on 'uptodate' is in the eye
2442                          * of raid_run_ops which services 'compute' operations
2443                          * before writes. R5_Wantcompute flags a block that will
2444                          * be R5_UPTODATE by the time it is needed for a
2445                          * subsequent operation.
2446                          */
2447                         s->uptodate++;
2448                         return 1;
2449                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2450                         /* Computing 2-failure is *very* expensive; only
2451                          * do it if failed >= 2
2452                          */
2453                         int other;
2454                         for (other = disks; other--; ) {
2455                                 if (other == disk_idx)
2456                                         continue;
2457                                 if (!test_bit(R5_UPTODATE,
2458                                       &sh->dev[other].flags))
2459                                         break;
2460                         }
2461                         BUG_ON(other < 0);
2462                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2463                                (unsigned long long)sh->sector,
2464                                disk_idx, other);
2465                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2466                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2467                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2468                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2469                         sh->ops.target = disk_idx;
2470                         sh->ops.target2 = other;
2471                         s->uptodate += 2;
2472                         s->req_compute = 1;
2473                         return 1;
2474                 } else if (test_bit(R5_Insync, &dev->flags)) {
2475                         set_bit(R5_LOCKED, &dev->flags);
2476                         set_bit(R5_Wantread, &dev->flags);
2477                         s->locked++;
2478                         pr_debug("Reading block %d (sync=%d)\n",
2479                                 disk_idx, s->syncing);
2480                 }
2481         }
2482
2483         return 0;
2484 }
2485
2486 /**
2487  * handle_stripe_fill - read or compute data to satisfy pending requests.
2488  */
2489 static void handle_stripe_fill(struct stripe_head *sh,
2490                                struct stripe_head_state *s,
2491                                int disks)
2492 {
2493         int i;
2494
2495         /* look for blocks to read/compute, skip this if a compute
2496          * is already in flight, or if the stripe contents are in the
2497          * midst of changing due to a write
2498          */
2499         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2500             !sh->reconstruct_state)
2501                 for (i = disks; i--; )
2502                         if (fetch_block(sh, s, i, disks))
2503                                 break;
2504         set_bit(STRIPE_HANDLE, &sh->state);
2505 }
2506
2507
2508 /* handle_stripe_clean_event
2509  * any written block on an uptodate or failed drive can be returned.
2510  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2511  * never LOCKED, so we don't need to test 'failed' directly.
2512  */
2513 static void handle_stripe_clean_event(struct r5conf *conf,
2514         struct stripe_head *sh, int disks, struct bio **return_bi)
2515 {
2516         int i;
2517         struct r5dev *dev;
2518
2519         for (i = disks; i--; )
2520                 if (sh->dev[i].written) {
2521                         dev = &sh->dev[i];
2522                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2523                                 test_bit(R5_UPTODATE, &dev->flags)) {
2524                                 /* We can return any write requests */
2525                                 struct bio *wbi, *wbi2;
2526                                 int bitmap_end = 0;
2527                                 pr_debug("Return write for disc %d\n", i);
2528                                 spin_lock_irq(&conf->device_lock);
2529                                 wbi = dev->written;
2530                                 dev->written = NULL;
2531                                 while (wbi && wbi->bi_sector <
2532                                         dev->sector + STRIPE_SECTORS) {
2533                                         wbi2 = r5_next_bio(wbi, dev->sector);
2534                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2535                                                 md_write_end(conf->mddev);
2536                                                 wbi->bi_next = *return_bi;
2537                                                 *return_bi = wbi;
2538                                         }
2539                                         wbi = wbi2;
2540                                 }
2541                                 if (dev->towrite == NULL)
2542                                         bitmap_end = 1;
2543                                 spin_unlock_irq(&conf->device_lock);
2544                                 if (bitmap_end)
2545                                         bitmap_endwrite(conf->mddev->bitmap,
2546                                                         sh->sector,
2547                                                         STRIPE_SECTORS,
2548                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2549                                                         0);
2550                         }
2551                 }
2552
2553         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2554                 if (atomic_dec_and_test(&conf->pending_full_writes))
2555                         md_wakeup_thread(conf->mddev->thread);
2556 }
2557
2558 static void handle_stripe_dirtying(struct r5conf *conf,
2559                                    struct stripe_head *sh,
2560                                    struct stripe_head_state *s,
2561                                    int disks)
2562 {
2563         int rmw = 0, rcw = 0, i;
2564         if (conf->max_degraded == 2) {
2565                 /* RAID6 requires 'rcw' in current implementation
2566                  * Calculate the real rcw later - for now fake it
2567                  * look like rcw is cheaper
2568                  */
2569                 rcw = 1; rmw = 2;
2570         } else for (i = disks; i--; ) {
2571                 /* would I have to read this buffer for read_modify_write */
2572                 struct r5dev *dev = &sh->dev[i];
2573                 if ((dev->towrite || i == sh->pd_idx) &&
2574                     !test_bit(R5_LOCKED, &dev->flags) &&
2575                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2576                       test_bit(R5_Wantcompute, &dev->flags))) {
2577                         if (test_bit(R5_Insync, &dev->flags))
2578                                 rmw++;
2579                         else
2580                                 rmw += 2*disks;  /* cannot read it */
2581                 }
2582                 /* Would I have to read this buffer for reconstruct_write */
2583                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2584                     !test_bit(R5_LOCKED, &dev->flags) &&
2585                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2586                     test_bit(R5_Wantcompute, &dev->flags))) {
2587                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2588                         else
2589                                 rcw += 2*disks;
2590                 }
2591         }
2592         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2593                 (unsigned long long)sh->sector, rmw, rcw);
2594         set_bit(STRIPE_HANDLE, &sh->state);
2595         if (rmw < rcw && rmw > 0)
2596                 /* prefer read-modify-write, but need to get some data */
2597                 for (i = disks; i--; ) {
2598                         struct r5dev *dev = &sh->dev[i];
2599                         if ((dev->towrite || i == sh->pd_idx) &&
2600                             !test_bit(R5_LOCKED, &dev->flags) &&
2601                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2602                             test_bit(R5_Wantcompute, &dev->flags)) &&
2603                             test_bit(R5_Insync, &dev->flags)) {
2604                                 if (
2605                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2606                                         pr_debug("Read_old block "
2607                                                 "%d for r-m-w\n", i);
2608                                         set_bit(R5_LOCKED, &dev->flags);
2609                                         set_bit(R5_Wantread, &dev->flags);
2610                                         s->locked++;
2611                                 } else {
2612                                         set_bit(STRIPE_DELAYED, &sh->state);
2613                                         set_bit(STRIPE_HANDLE, &sh->state);
2614                                 }
2615                         }
2616                 }
2617         if (rcw <= rmw && rcw > 0) {
2618                 /* want reconstruct write, but need to get some data */
2619                 rcw = 0;
2620                 for (i = disks; i--; ) {
2621                         struct r5dev *dev = &sh->dev[i];
2622                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2623                             i != sh->pd_idx && i != sh->qd_idx &&
2624                             !test_bit(R5_LOCKED, &dev->flags) &&
2625                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2626                               test_bit(R5_Wantcompute, &dev->flags))) {
2627                                 rcw++;
2628                                 if (!test_bit(R5_Insync, &dev->flags))
2629                                         continue; /* it's a failed drive */
2630                                 if (
2631                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2632                                         pr_debug("Read_old block "
2633                                                 "%d for Reconstruct\n", i);
2634                                         set_bit(R5_LOCKED, &dev->flags);
2635                                         set_bit(R5_Wantread, &dev->flags);
2636                                         s->locked++;
2637                                 } else {
2638                                         set_bit(STRIPE_DELAYED, &sh->state);
2639                                         set_bit(STRIPE_HANDLE, &sh->state);
2640                                 }
2641                         }
2642                 }
2643         }
2644         /* now if nothing is locked, and if we have enough data,
2645          * we can start a write request
2646          */
2647         /* since handle_stripe can be called at any time we need to handle the
2648          * case where a compute block operation has been submitted and then a
2649          * subsequent call wants to start a write request.  raid_run_ops only
2650          * handles the case where compute block and reconstruct are requested
2651          * simultaneously.  If this is not the case then new writes need to be
2652          * held off until the compute completes.
2653          */
2654         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2655             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2656             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2657                 schedule_reconstruction(sh, s, rcw == 0, 0);
2658 }
2659
2660 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2661                                 struct stripe_head_state *s, int disks)
2662 {
2663         struct r5dev *dev = NULL;
2664
2665         set_bit(STRIPE_HANDLE, &sh->state);
2666
2667         switch (sh->check_state) {
2668         case check_state_idle:
2669                 /* start a new check operation if there are no failures */
2670                 if (s->failed == 0) {
2671                         BUG_ON(s->uptodate != disks);
2672                         sh->check_state = check_state_run;
2673                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2674                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2675                         s->uptodate--;
2676                         break;
2677                 }
2678                 dev = &sh->dev[s->failed_num[0]];
2679                 /* fall through */
2680         case check_state_compute_result:
2681                 sh->check_state = check_state_idle;
2682                 if (!dev)
2683                         dev = &sh->dev[sh->pd_idx];
2684
2685                 /* check that a write has not made the stripe insync */
2686                 if (test_bit(STRIPE_INSYNC, &sh->state))
2687                         break;
2688
2689                 /* either failed parity check, or recovery is happening */
2690                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2691                 BUG_ON(s->uptodate != disks);
2692
2693                 set_bit(R5_LOCKED, &dev->flags);
2694                 s->locked++;
2695                 set_bit(R5_Wantwrite, &dev->flags);
2696
2697                 clear_bit(STRIPE_DEGRADED, &sh->state);
2698                 set_bit(STRIPE_INSYNC, &sh->state);
2699                 break;
2700         case check_state_run:
2701                 break; /* we will be called again upon completion */
2702         case check_state_check_result:
2703                 sh->check_state = check_state_idle;
2704
2705                 /* if a failure occurred during the check operation, leave
2706                  * STRIPE_INSYNC not set and let the stripe be handled again
2707                  */
2708                 if (s->failed)
2709                         break;
2710
2711                 /* handle a successful check operation, if parity is correct
2712                  * we are done.  Otherwise update the mismatch count and repair
2713                  * parity if !MD_RECOVERY_CHECK
2714                  */
2715                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2716                         /* parity is correct (on disc,
2717                          * not in buffer any more)
2718                          */
2719                         set_bit(STRIPE_INSYNC, &sh->state);
2720                 else {
2721                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2722                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2723                                 /* don't try to repair!! */
2724                                 set_bit(STRIPE_INSYNC, &sh->state);
2725                         else {
2726                                 sh->check_state = check_state_compute_run;
2727                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2728                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2729                                 set_bit(R5_Wantcompute,
2730                                         &sh->dev[sh->pd_idx].flags);
2731                                 sh->ops.target = sh->pd_idx;
2732                                 sh->ops.target2 = -1;
2733                                 s->uptodate++;
2734                         }
2735                 }
2736                 break;
2737         case check_state_compute_run:
2738                 break;
2739         default:
2740                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2741                        __func__, sh->check_state,
2742                        (unsigned long long) sh->sector);
2743                 BUG();
2744         }
2745 }
2746
2747
2748 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2749                                   struct stripe_head_state *s,
2750                                   int disks)
2751 {
2752         int pd_idx = sh->pd_idx;
2753         int qd_idx = sh->qd_idx;
2754         struct r5dev *dev;
2755
2756         set_bit(STRIPE_HANDLE, &sh->state);
2757
2758         BUG_ON(s->failed > 2);
2759
2760         /* Want to check and possibly repair P and Q.
2761          * However there could be one 'failed' device, in which
2762          * case we can only check one of them, possibly using the
2763          * other to generate missing data
2764          */
2765
2766         switch (sh->check_state) {
2767         case check_state_idle:
2768                 /* start a new check operation if there are < 2 failures */
2769                 if (s->failed == s->q_failed) {
2770                         /* The only possible failed device holds Q, so it
2771                          * makes sense to check P (If anything else were failed,
2772                          * we would have used P to recreate it).
2773                          */
2774                         sh->check_state = check_state_run;
2775                 }
2776                 if (!s->q_failed && s->failed < 2) {
2777                         /* Q is not failed, and we didn't use it to generate
2778                          * anything, so it makes sense to check it
2779                          */
2780                         if (sh->check_state == check_state_run)
2781                                 sh->check_state = check_state_run_pq;
2782                         else
2783                                 sh->check_state = check_state_run_q;
2784                 }
2785
2786                 /* discard potentially stale zero_sum_result */
2787                 sh->ops.zero_sum_result = 0;
2788
2789                 if (sh->check_state == check_state_run) {
2790                         /* async_xor_zero_sum destroys the contents of P */
2791                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2792                         s->uptodate--;
2793                 }
2794                 if (sh->check_state >= check_state_run &&
2795                     sh->check_state <= check_state_run_pq) {
2796                         /* async_syndrome_zero_sum preserves P and Q, so
2797                          * no need to mark them !uptodate here
2798                          */
2799                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2800                         break;
2801                 }
2802
2803                 /* we have 2-disk failure */
2804                 BUG_ON(s->failed != 2);
2805                 /* fall through */
2806         case check_state_compute_result:
2807                 sh->check_state = check_state_idle;
2808
2809                 /* check that a write has not made the stripe insync */
2810                 if (test_bit(STRIPE_INSYNC, &sh->state))
2811                         break;
2812
2813                 /* now write out any block on a failed drive,
2814                  * or P or Q if they were recomputed
2815                  */
2816                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2817                 if (s->failed == 2) {
2818                         dev = &sh->dev[s->failed_num[1]];
2819                         s->locked++;
2820                         set_bit(R5_LOCKED, &dev->flags);
2821                         set_bit(R5_Wantwrite, &dev->flags);
2822                 }
2823                 if (s->failed >= 1) {
2824                         dev = &sh->dev[s->failed_num[0]];
2825                         s->locked++;
2826                         set_bit(R5_LOCKED, &dev->flags);
2827                         set_bit(R5_Wantwrite, &dev->flags);
2828                 }
2829                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2830                         dev = &sh->dev[pd_idx];
2831                         s->locked++;
2832                         set_bit(R5_LOCKED, &dev->flags);
2833                         set_bit(R5_Wantwrite, &dev->flags);
2834                 }
2835                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2836                         dev = &sh->dev[qd_idx];
2837                         s->locked++;
2838                         set_bit(R5_LOCKED, &dev->flags);
2839                         set_bit(R5_Wantwrite, &dev->flags);
2840                 }
2841                 clear_bit(STRIPE_DEGRADED, &sh->state);
2842
2843                 set_bit(STRIPE_INSYNC, &sh->state);
2844                 break;
2845         case check_state_run:
2846         case check_state_run_q:
2847         case check_state_run_pq:
2848                 break; /* we will be called again upon completion */
2849         case check_state_check_result:
2850                 sh->check_state = check_state_idle;
2851
2852                 /* handle a successful check operation, if parity is correct
2853                  * we are done.  Otherwise update the mismatch count and repair
2854                  * parity if !MD_RECOVERY_CHECK
2855                  */
2856                 if (sh->ops.zero_sum_result == 0) {
2857                         /* both parities are correct */
2858                         if (!s->failed)
2859                                 set_bit(STRIPE_INSYNC, &sh->state);
2860                         else {
2861                                 /* in contrast to the raid5 case we can validate
2862                                  * parity, but still have a failure to write
2863                                  * back
2864                                  */
2865                                 sh->check_state = check_state_compute_result;
2866                                 /* Returning at this point means that we may go
2867                                  * off and bring p and/or q uptodate again so
2868                                  * we make sure to check zero_sum_result again
2869                                  * to verify if p or q need writeback
2870                                  */
2871                         }
2872                 } else {
2873                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2874                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2875                                 /* don't try to repair!! */
2876                                 set_bit(STRIPE_INSYNC, &sh->state);
2877                         else {
2878                                 int *target = &sh->ops.target;
2879
2880                                 sh->ops.target = -1;
2881                                 sh->ops.target2 = -1;
2882                                 sh->check_state = check_state_compute_run;
2883                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2884                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2885                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2886                                         set_bit(R5_Wantcompute,
2887                                                 &sh->dev[pd_idx].flags);
2888                                         *target = pd_idx;
2889                                         target = &sh->ops.target2;
2890                                         s->uptodate++;
2891                                 }
2892                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2893                                         set_bit(R5_Wantcompute,
2894                                                 &sh->dev[qd_idx].flags);
2895                                         *target = qd_idx;
2896                                         s->uptodate++;
2897                                 }
2898                         }
2899                 }
2900                 break;
2901         case check_state_compute_run:
2902                 break;
2903         default:
2904                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2905                        __func__, sh->check_state,
2906                        (unsigned long long) sh->sector);
2907                 BUG();
2908         }
2909 }
2910
2911 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
2912 {
2913         int i;
2914
2915         /* We have read all the blocks in this stripe and now we need to
2916          * copy some of them into a target stripe for expand.
2917          */
2918         struct dma_async_tx_descriptor *tx = NULL;
2919         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2920         for (i = 0; i < sh->disks; i++)
2921                 if (i != sh->pd_idx && i != sh->qd_idx) {
2922                         int dd_idx, j;
2923                         struct stripe_head *sh2;
2924                         struct async_submit_ctl submit;
2925
2926                         sector_t bn = compute_blocknr(sh, i, 1);
2927                         sector_t s = raid5_compute_sector(conf, bn, 0,
2928                                                           &dd_idx, NULL);
2929                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2930                         if (sh2 == NULL)
2931                                 /* so far only the early blocks of this stripe
2932                                  * have been requested.  When later blocks
2933                                  * get requested, we will try again
2934                                  */
2935                                 continue;
2936                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2937                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2938                                 /* must have already done this block */
2939                                 release_stripe(sh2);
2940                                 continue;
2941                         }
2942
2943                         /* place all the copies on one channel */
2944                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2945                         tx = async_memcpy(sh2->dev[dd_idx].page,
2946                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2947                                           &submit);
2948
2949                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2950                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2951                         for (j = 0; j < conf->raid_disks; j++)
2952                                 if (j != sh2->pd_idx &&
2953                                     j != sh2->qd_idx &&
2954                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2955                                         break;
2956                         if (j == conf->raid_disks) {
2957                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2958                                 set_bit(STRIPE_HANDLE, &sh2->state);
2959                         }
2960                         release_stripe(sh2);
2961
2962                 }
2963         /* done submitting copies, wait for them to complete */
2964         if (tx) {
2965                 async_tx_ack(tx);
2966                 dma_wait_for_async_tx(tx);
2967         }
2968 }
2969
2970
2971 /*
2972  * handle_stripe - do things to a stripe.
2973  *
2974  * We lock the stripe and then examine the state of various bits
2975  * to see what needs to be done.
2976  * Possible results:
2977  *    return some read request which now have data
2978  *    return some write requests which are safely on disc
2979  *    schedule a read on some buffers
2980  *    schedule a write of some buffers
2981  *    return confirmation of parity correctness
2982  *
2983  * buffers are taken off read_list or write_list, and bh_cache buffers
2984  * get BH_Lock set before the stripe lock is released.
2985  *
2986  */
2987
2988 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2989 {
2990         struct r5conf *conf = sh->raid_conf;
2991         int disks = sh->disks;
2992         struct r5dev *dev;
2993         int i;
2994
2995         memset(s, 0, sizeof(*s));
2996
2997         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2998         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2999         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3000         s->failed_num[0] = -1;
3001         s->failed_num[1] = -1;
3002
3003         /* Now to look around and see what can be done */
3004         rcu_read_lock();
3005         spin_lock_irq(&conf->device_lock);
3006         for (i=disks; i--; ) {
3007                 struct md_rdev *rdev;
3008                 sector_t first_bad;
3009                 int bad_sectors;
3010                 int is_bad = 0;
3011
3012                 dev = &sh->dev[i];
3013
3014                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3015                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3016                 /* maybe we can reply to a read
3017                  *
3018                  * new wantfill requests are only permitted while
3019                  * ops_complete_biofill is guaranteed to be inactive
3020                  */
3021                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3022                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3023                         set_bit(R5_Wantfill, &dev->flags);
3024
3025                 /* now count some things */
3026                 if (test_bit(R5_LOCKED, &dev->flags))
3027                         s->locked++;
3028                 if (test_bit(R5_UPTODATE, &dev->flags))
3029                         s->uptodate++;
3030                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3031                         s->compute++;
3032                         BUG_ON(s->compute > 2);
3033                 }
3034
3035                 if (test_bit(R5_Wantfill, &dev->flags))
3036                         s->to_fill++;
3037                 else if (dev->toread)
3038                         s->to_read++;
3039                 if (dev->towrite) {
3040                         s->to_write++;
3041                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3042                                 s->non_overwrite++;
3043                 }
3044                 if (dev->written)
3045                         s->written++;
3046                 rdev = rcu_dereference(conf->disks[i].rdev);
3047                 if (rdev && test_bit(Faulty, &rdev->flags))
3048                         rdev = NULL;
3049                 if (rdev) {
3050                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3051                                              &first_bad, &bad_sectors);
3052                         if (s->blocked_rdev == NULL
3053                             && (test_bit(Blocked, &rdev->flags)
3054                                 || is_bad < 0)) {
3055                                 if (is_bad < 0)
3056                                         set_bit(BlockedBadBlocks,
3057                                                 &rdev->flags);
3058                                 s->blocked_rdev = rdev;
3059                                 atomic_inc(&rdev->nr_pending);
3060                         }
3061                 }
3062                 clear_bit(R5_Insync, &dev->flags);
3063                 if (!rdev)
3064                         /* Not in-sync */;
3065                 else if (is_bad) {
3066                         /* also not in-sync */
3067                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3068                                 /* treat as in-sync, but with a read error
3069                                  * which we can now try to correct
3070                                  */
3071                                 set_bit(R5_Insync, &dev->flags);
3072                                 set_bit(R5_ReadError, &dev->flags);
3073                         }
3074                 } else if (test_bit(In_sync, &rdev->flags))
3075                         set_bit(R5_Insync, &dev->flags);
3076                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3077                         /* in sync if before recovery_offset */
3078                         set_bit(R5_Insync, &dev->flags);
3079                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3080                          test_bit(R5_Expanded, &dev->flags))
3081                         /* If we've reshaped into here, we assume it is Insync.
3082                          * We will shortly update recovery_offset to make
3083                          * it official.
3084                          */
3085                         set_bit(R5_Insync, &dev->flags);
3086
3087                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3088                         clear_bit(R5_Insync, &dev->flags);
3089                         if (!test_bit(Faulty, &rdev->flags)) {
3090                                 s->handle_bad_blocks = 1;
3091                                 atomic_inc(&rdev->nr_pending);
3092                         } else
3093                                 clear_bit(R5_WriteError, &dev->flags);
3094                 }
3095                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3096                         if (!test_bit(Faulty, &rdev->flags)) {
3097                                 s->handle_bad_blocks = 1;
3098                                 atomic_inc(&rdev->nr_pending);
3099                         } else
3100                                 clear_bit(R5_MadeGood, &dev->flags);
3101                 }
3102                 if (!test_bit(R5_Insync, &dev->flags)) {
3103                         /* The ReadError flag will just be confusing now */
3104                         clear_bit(R5_ReadError, &dev->flags);
3105                         clear_bit(R5_ReWrite, &dev->flags);
3106                 }
3107                 if (test_bit(R5_ReadError, &dev->flags))
3108                         clear_bit(R5_Insync, &dev->flags);
3109                 if (!test_bit(R5_Insync, &dev->flags)) {
3110                         if (s->failed < 2)
3111                                 s->failed_num[s->failed] = i;
3112                         s->failed++;
3113                 }
3114         }
3115         spin_unlock_irq(&conf->device_lock);
3116         rcu_read_unlock();
3117 }
3118
3119 static void handle_stripe(struct stripe_head *sh)
3120 {
3121         struct stripe_head_state s;
3122         struct r5conf *conf = sh->raid_conf;
3123         int i;
3124         int prexor;
3125         int disks = sh->disks;
3126         struct r5dev *pdev, *qdev;
3127
3128         clear_bit(STRIPE_HANDLE, &sh->state);
3129         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3130                 /* already being handled, ensure it gets handled
3131                  * again when current action finishes */
3132                 set_bit(STRIPE_HANDLE, &sh->state);
3133                 return;
3134         }
3135
3136         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3137                 set_bit(STRIPE_SYNCING, &sh->state);
3138                 clear_bit(STRIPE_INSYNC, &sh->state);
3139         }
3140         clear_bit(STRIPE_DELAYED, &sh->state);
3141
3142         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3143                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3144                (unsigned long long)sh->sector, sh->state,
3145                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3146                sh->check_state, sh->reconstruct_state);
3147
3148         analyse_stripe(sh, &s);
3149
3150         if (s.handle_bad_blocks) {
3151                 set_bit(STRIPE_HANDLE, &sh->state);
3152                 goto finish;
3153         }
3154
3155         if (unlikely(s.blocked_rdev)) {
3156                 if (s.syncing || s.expanding || s.expanded ||
3157                     s.to_write || s.written) {
3158                         set_bit(STRIPE_HANDLE, &sh->state);
3159                         goto finish;
3160                 }
3161                 /* There is nothing for the blocked_rdev to block */
3162                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3163                 s.blocked_rdev = NULL;
3164         }
3165
3166         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3167                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3168                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3169         }
3170
3171         pr_debug("locked=%d uptodate=%d to_read=%d"
3172                " to_write=%d failed=%d failed_num=%d,%d\n",
3173                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3174                s.failed_num[0], s.failed_num[1]);
3175         /* check if the array has lost more than max_degraded devices and,
3176          * if so, some requests might need to be failed.
3177          */
3178         if (s.failed > conf->max_degraded) {
3179                 sh->check_state = 0;
3180                 sh->reconstruct_state = 0;
3181                 if (s.to_read+s.to_write+s.written)
3182                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3183                 if (s.syncing)
3184                         handle_failed_sync(conf, sh, &s);
3185         }
3186
3187         /*
3188          * might be able to return some write requests if the parity blocks
3189          * are safe, or on a failed drive
3190          */
3191         pdev = &sh->dev[sh->pd_idx];
3192         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3193                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3194         qdev = &sh->dev[sh->qd_idx];
3195         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3196                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3197                 || conf->level < 6;
3198
3199         if (s.written &&
3200             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3201                              && !test_bit(R5_LOCKED, &pdev->flags)
3202                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3203             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3204                              && !test_bit(R5_LOCKED, &qdev->flags)
3205                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3206                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3207
3208         /* Now we might consider reading some blocks, either to check/generate
3209          * parity, or to satisfy requests
3210          * or to load a block that is being partially written.
3211          */
3212         if (s.to_read || s.non_overwrite
3213             || (conf->level == 6 && s.to_write && s.failed)
3214             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3215                 handle_stripe_fill(sh, &s, disks);
3216
3217         /* Now we check to see if any write operations have recently
3218          * completed
3219          */
3220         prexor = 0;
3221         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3222                 prexor = 1;
3223         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3224             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3225                 sh->reconstruct_state = reconstruct_state_idle;
3226
3227                 /* All the 'written' buffers and the parity block are ready to
3228                  * be written back to disk
3229                  */
3230                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3231                 BUG_ON(sh->qd_idx >= 0 &&
3232                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3233                 for (i = disks; i--; ) {
3234                         struct r5dev *dev = &sh->dev[i];
3235                         if (test_bit(R5_LOCKED, &dev->flags) &&
3236                                 (i == sh->pd_idx || i == sh->qd_idx ||
3237                                  dev->written)) {
3238                                 pr_debug("Writing block %d\n", i);
3239                                 set_bit(R5_Wantwrite, &dev->flags);
3240                                 if (prexor)
3241                                         continue;
3242                                 if (!test_bit(R5_Insync, &dev->flags) ||
3243                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3244                                      s.failed == 0))
3245                                         set_bit(STRIPE_INSYNC, &sh->state);
3246                         }
3247                 }
3248                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3249                         s.dec_preread_active = 1;
3250         }
3251
3252         /* Now to consider new write requests and what else, if anything
3253          * should be read.  We do not handle new writes when:
3254          * 1/ A 'write' operation (copy+xor) is already in flight.
3255          * 2/ A 'check' operation is in flight, as it may clobber the parity
3256          *    block.
3257          */
3258         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3259                 handle_stripe_dirtying(conf, sh, &s, disks);
3260
3261         /* maybe we need to check and possibly fix the parity for this stripe
3262          * Any reads will already have been scheduled, so we just see if enough
3263          * data is available.  The parity check is held off while parity
3264          * dependent operations are in flight.
3265          */
3266         if (sh->check_state ||
3267             (s.syncing && s.locked == 0 &&
3268              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3269              !test_bit(STRIPE_INSYNC, &sh->state))) {
3270                 if (conf->level == 6)
3271                         handle_parity_checks6(conf, sh, &s, disks);
3272                 else
3273                         handle_parity_checks5(conf, sh, &s, disks);
3274         }
3275
3276         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3277                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3278                 clear_bit(STRIPE_SYNCING, &sh->state);
3279         }
3280
3281         /* If the failed drives are just a ReadError, then we might need
3282          * to progress the repair/check process
3283          */
3284         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3285                 for (i = 0; i < s.failed; i++) {
3286                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3287                         if (test_bit(R5_ReadError, &dev->flags)
3288                             && !test_bit(R5_LOCKED, &dev->flags)
3289                             && test_bit(R5_UPTODATE, &dev->flags)
3290                                 ) {
3291                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3292                                         set_bit(R5_Wantwrite, &dev->flags);
3293                                         set_bit(R5_ReWrite, &dev->flags);
3294                                         set_bit(R5_LOCKED, &dev->flags);
3295                                         s.locked++;
3296                                 } else {
3297                                         /* let's read it back */
3298                                         set_bit(R5_Wantread, &dev->flags);
3299                                         set_bit(R5_LOCKED, &dev->flags);
3300                                         s.locked++;
3301                                 }
3302                         }
3303                 }
3304
3305
3306         /* Finish reconstruct operations initiated by the expansion process */
3307         if (sh->reconstruct_state == reconstruct_state_result) {
3308                 struct stripe_head *sh_src
3309                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3310                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3311                         /* sh cannot be written until sh_src has been read.
3312                          * so arrange for sh to be delayed a little
3313                          */
3314                         set_bit(STRIPE_DELAYED, &sh->state);
3315                         set_bit(STRIPE_HANDLE, &sh->state);
3316                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3317                                               &sh_src->state))
3318                                 atomic_inc(&conf->preread_active_stripes);
3319                         release_stripe(sh_src);
3320                         goto finish;
3321                 }
3322                 if (sh_src)
3323                         release_stripe(sh_src);
3324
3325                 sh->reconstruct_state = reconstruct_state_idle;
3326                 clear_bit(STRIPE_EXPANDING, &sh->state);
3327                 for (i = conf->raid_disks; i--; ) {
3328                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3329                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3330                         s.locked++;
3331                 }
3332         }
3333
3334         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3335             !sh->reconstruct_state) {
3336                 /* Need to write out all blocks after computing parity */
3337                 sh->disks = conf->raid_disks;
3338                 stripe_set_idx(sh->sector, conf, 0, sh);
3339                 schedule_reconstruction(sh, &s, 1, 1);
3340         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3341                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3342                 atomic_dec(&conf->reshape_stripes);
3343                 wake_up(&conf->wait_for_overlap);
3344                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3345         }
3346
3347         if (s.expanding && s.locked == 0 &&
3348             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3349                 handle_stripe_expansion(conf, sh);
3350
3351 finish:
3352         /* wait for this device to become unblocked */
3353         if (conf->mddev->external && unlikely(s.blocked_rdev))
3354                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3355
3356         if (s.handle_bad_blocks)
3357                 for (i = disks; i--; ) {
3358                         struct md_rdev *rdev;
3359                         struct r5dev *dev = &sh->dev[i];
3360                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3361                                 /* We own a safe reference to the rdev */
3362                                 rdev = conf->disks[i].rdev;
3363                                 if (!rdev_set_badblocks(rdev, sh->sector,
3364                                                         STRIPE_SECTORS, 0))
3365                                         md_error(conf->mddev, rdev);
3366                                 rdev_dec_pending(rdev, conf->mddev);
3367                         }
3368                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3369                                 rdev = conf->disks[i].rdev;
3370                                 rdev_clear_badblocks(rdev, sh->sector,
3371                                                      STRIPE_SECTORS);
3372                                 rdev_dec_pending(rdev, conf->mddev);
3373                         }
3374                 }
3375
3376         if (s.ops_request)
3377                 raid_run_ops(sh, s.ops_request);
3378
3379         ops_run_io(sh, &s);
3380
3381         if (s.dec_preread_active) {
3382                 /* We delay this until after ops_run_io so that if make_request
3383                  * is waiting on a flush, it won't continue until the writes
3384                  * have actually been submitted.
3385                  */
3386                 atomic_dec(&conf->preread_active_stripes);
3387                 if (atomic_read(&conf->preread_active_stripes) <
3388                     IO_THRESHOLD)
3389                         md_wakeup_thread(conf->mddev->thread);
3390         }
3391
3392         return_io(s.return_bi);
3393
3394         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3395 }
3396
3397 static void raid5_activate_delayed(struct r5conf *conf)
3398 {
3399         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3400                 while (!list_empty(&conf->delayed_list)) {
3401                         struct list_head *l = conf->delayed_list.next;
3402                         struct stripe_head *sh;
3403                         sh = list_entry(l, struct stripe_head, lru);
3404                         list_del_init(l);
3405                         clear_bit(STRIPE_DELAYED, &sh->state);
3406                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3407                                 atomic_inc(&conf->preread_active_stripes);
3408                         list_add_tail(&sh->lru, &conf->hold_list);
3409                 }
3410         }
3411 }
3412
3413 static void activate_bit_delay(struct r5conf *conf)
3414 {
3415         /* device_lock is held */
3416         struct list_head head;
3417         list_add(&head, &conf->bitmap_list);
3418         list_del_init(&conf->bitmap_list);
3419         while (!list_empty(&head)) {
3420                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3421                 list_del_init(&sh->lru);
3422                 atomic_inc(&sh->count);
3423                 __release_stripe(conf, sh);
3424         }
3425 }
3426
3427 int md_raid5_congested(struct mddev *mddev, int bits)
3428 {
3429         struct r5conf *conf = mddev->private;
3430
3431         /* No difference between reads and writes.  Just check
3432          * how busy the stripe_cache is
3433          */
3434
3435         if (conf->inactive_blocked)
3436                 return 1;
3437         if (conf->quiesce)
3438                 return 1;
3439         if (list_empty_careful(&conf->inactive_list))
3440                 return 1;
3441
3442         return 0;
3443 }
3444 EXPORT_SYMBOL_GPL(md_raid5_congested);
3445
3446 static int raid5_congested(void *data, int bits)
3447 {
3448         struct mddev *mddev = data;
3449
3450         return mddev_congested(mddev, bits) ||
3451                 md_raid5_congested(mddev, bits);
3452 }
3453
3454 /* We want read requests to align with chunks where possible,
3455  * but write requests don't need to.
3456  */
3457 static int raid5_mergeable_bvec(struct request_queue *q,
3458                                 struct bvec_merge_data *bvm,
3459                                 struct bio_vec *biovec)
3460 {
3461         struct mddev *mddev = q->queuedata;
3462         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3463         int max;
3464         unsigned int chunk_sectors = mddev->chunk_sectors;
3465         unsigned int bio_sectors = bvm->bi_size >> 9;
3466
3467         if ((bvm->bi_rw & 1) == WRITE)
3468                 return biovec->bv_len; /* always allow writes to be mergeable */
3469
3470         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3471                 chunk_sectors = mddev->new_chunk_sectors;
3472         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3473         if (max < 0) max = 0;
3474         if (max <= biovec->bv_len && bio_sectors == 0)
3475                 return biovec->bv_len;
3476         else
3477                 return max;
3478 }
3479
3480
3481 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3482 {
3483         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3484         unsigned int chunk_sectors = mddev->chunk_sectors;
3485         unsigned int bio_sectors = bio->bi_size >> 9;
3486
3487         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3488                 chunk_sectors = mddev->new_chunk_sectors;
3489         return  chunk_sectors >=
3490                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3491 }
3492
3493 /*
3494  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3495  *  later sampled by raid5d.
3496  */
3497 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3498 {
3499         unsigned long flags;
3500
3501         spin_lock_irqsave(&conf->device_lock, flags);
3502
3503         bi->bi_next = conf->retry_read_aligned_list;
3504         conf->retry_read_aligned_list = bi;
3505
3506         spin_unlock_irqrestore(&conf->device_lock, flags);
3507         md_wakeup_thread(conf->mddev->thread);
3508 }
3509
3510
3511 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3512 {
3513         struct bio *bi;
3514
3515         bi = conf->retry_read_aligned;
3516         if (bi) {
3517                 conf->retry_read_aligned = NULL;
3518                 return bi;
3519         }
3520         bi = conf->retry_read_aligned_list;
3521         if(bi) {
3522                 conf->retry_read_aligned_list = bi->bi_next;
3523                 bi->bi_next = NULL;
3524                 /*
3525                  * this sets the active strip count to 1 and the processed
3526                  * strip count to zero (upper 8 bits)
3527                  */
3528                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3529         }
3530
3531         return bi;
3532 }
3533
3534
3535 /*
3536  *  The "raid5_align_endio" should check if the read succeeded and if it
3537  *  did, call bio_endio on the original bio (having bio_put the new bio
3538  *  first).
3539  *  If the read failed..
3540  */
3541 static void raid5_align_endio(struct bio *bi, int error)
3542 {
3543         struct bio* raid_bi  = bi->bi_private;
3544         struct mddev *mddev;
3545         struct r5conf *conf;
3546         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3547         struct md_rdev *rdev;
3548
3549         bio_put(bi);
3550
3551         rdev = (void*)raid_bi->bi_next;
3552         raid_bi->bi_next = NULL;
3553         mddev = rdev->mddev;
3554         conf = mddev->private;
3555
3556         rdev_dec_pending(rdev, conf->mddev);
3557
3558         if (!error && uptodate) {
3559                 bio_endio(raid_bi, 0);
3560                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3561                         wake_up(&conf->wait_for_stripe);
3562                 return;
3563         }
3564
3565
3566         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3567
3568         add_bio_to_retry(raid_bi, conf);
3569 }
3570
3571 static int bio_fits_rdev(struct bio *bi)
3572 {
3573         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3574
3575         if ((bi->bi_size>>9) > queue_max_sectors(q))
3576                 return 0;
3577         blk_recount_segments(q, bi);
3578         if (bi->bi_phys_segments > queue_max_segments(q))
3579                 return 0;
3580
3581         if (q->merge_bvec_fn)
3582                 /* it's too hard to apply the merge_bvec_fn at this stage,
3583                  * just just give up
3584                  */
3585                 return 0;
3586
3587         return 1;
3588 }
3589
3590
3591 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3592 {
3593         struct r5conf *conf = mddev->private;
3594         int dd_idx;
3595         struct bio* align_bi;
3596         struct md_rdev *rdev;
3597         sector_t end_sector;
3598
3599         if (!in_chunk_boundary(mddev, raid_bio)) {
3600                 pr_debug("chunk_aligned_read : non aligned\n");
3601                 return 0;
3602         }
3603         /*
3604          * use bio_clone_mddev to make a copy of the bio
3605          */
3606         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3607         if (!align_bi)
3608                 return 0;
3609         /*
3610          *   set bi_end_io to a new function, and set bi_private to the
3611          *     original bio.
3612          */
3613         align_bi->bi_end_io  = raid5_align_endio;
3614         align_bi->bi_private = raid_bio;
3615         /*
3616          *      compute position
3617          */
3618         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3619                                                     0,
3620                                                     &dd_idx, NULL);
3621
3622         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3623         rcu_read_lock();
3624         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3625         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3626             rdev->recovery_offset < end_sector) {
3627                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3628                 if (rdev &&
3629                     (test_bit(Faulty, &rdev->flags) ||
3630                     !(test_bit(In_sync, &rdev->flags) ||
3631                       rdev->recovery_offset >= end_sector)))
3632                         rdev = NULL;
3633         }
3634         if (rdev) {
3635                 sector_t first_bad;
3636                 int bad_sectors;
3637
3638                 atomic_inc(&rdev->nr_pending);
3639                 rcu_read_unlock();
3640                 raid_bio->bi_next = (void*)rdev;
3641                 align_bi->bi_bdev =  rdev->bdev;
3642                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3643                 align_bi->bi_sector += rdev->data_offset;
3644
3645                 if (!bio_fits_rdev(align_bi) ||
3646                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3647                                 &first_bad, &bad_sectors)) {
3648                         /* too big in some way, or has a known bad block */
3649                         bio_put(align_bi);
3650                         rdev_dec_pending(rdev, mddev);
3651                         return 0;
3652                 }
3653
3654                 spin_lock_irq(&conf->device_lock);
3655                 wait_event_lock_irq(conf->wait_for_stripe,
3656                                     conf->quiesce == 0,
3657                                     conf->device_lock, /* nothing */);
3658                 atomic_inc(&conf->active_aligned_reads);
3659                 spin_unlock_irq(&conf->device_lock);
3660
3661                 generic_make_request(align_bi);
3662                 return 1;
3663         } else {
3664                 rcu_read_unlock();
3665                 bio_put(align_bi);
3666                 return 0;
3667         }
3668 }
3669
3670 /* __get_priority_stripe - get the next stripe to process
3671  *
3672  * Full stripe writes are allowed to pass preread active stripes up until
3673  * the bypass_threshold is exceeded.  In general the bypass_count
3674  * increments when the handle_list is handled before the hold_list; however, it
3675  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3676  * stripe with in flight i/o.  The bypass_count will be reset when the
3677  * head of the hold_list has changed, i.e. the head was promoted to the
3678  * handle_list.
3679  */
3680 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3681 {
3682         struct stripe_head *sh;
3683
3684         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3685                   __func__,
3686                   list_empty(&conf->handle_list) ? "empty" : "busy",
3687                   list_empty(&conf->hold_list) ? "empty" : "busy",
3688                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3689
3690         if (!list_empty(&conf->handle_list)) {
3691                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3692
3693                 if (list_empty(&conf->hold_list))
3694                         conf->bypass_count = 0;
3695                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3696                         if (conf->hold_list.next == conf->last_hold)
3697                                 conf->bypass_count++;
3698                         else {
3699                                 conf->last_hold = conf->hold_list.next;
3700                                 conf->bypass_count -= conf->bypass_threshold;
3701                                 if (conf->bypass_count < 0)
3702                                         conf->bypass_count = 0;
3703                         }
3704                 }
3705         } else if (!list_empty(&conf->hold_list) &&
3706                    ((conf->bypass_threshold &&
3707                      conf->bypass_count > conf->bypass_threshold) ||
3708                     atomic_read(&conf->pending_full_writes) == 0)) {
3709                 sh = list_entry(conf->hold_list.next,
3710                                 typeof(*sh), lru);
3711                 conf->bypass_count -= conf->bypass_threshold;
3712                 if (conf->bypass_count < 0)
3713                         conf->bypass_count = 0;
3714         } else
3715                 return NULL;
3716
3717         list_del_init(&sh->lru);
3718         atomic_inc(&sh->count);
3719         BUG_ON(atomic_read(&sh->count) != 1);
3720         return sh;
3721 }
3722
3723 static void make_request(struct mddev *mddev, struct bio * bi)
3724 {
3725         struct r5conf *conf = mddev->private;
3726         int dd_idx;
3727         sector_t new_sector;
3728         sector_t logical_sector, last_sector;
3729         struct stripe_head *sh;
3730         const int rw = bio_data_dir(bi);
3731         int remaining;
3732         int plugged;
3733
3734         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3735                 md_flush_request(mddev, bi);
3736                 return;
3737         }
3738
3739         md_write_start(mddev, bi);
3740
3741         if (rw == READ &&
3742              mddev->reshape_position == MaxSector &&
3743              chunk_aligned_read(mddev,bi))
3744                 return;
3745
3746         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3747         last_sector = bi->bi_sector + (bi->bi_size>>9);
3748         bi->bi_next = NULL;
3749         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3750
3751         plugged = mddev_check_plugged(mddev);
3752         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3753                 DEFINE_WAIT(w);
3754                 int disks, data_disks;
3755                 int previous;
3756
3757         retry:
3758                 previous = 0;
3759                 disks = conf->raid_disks;
3760                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3761                 if (unlikely(conf->reshape_progress != MaxSector)) {
3762                         /* spinlock is needed as reshape_progress may be
3763                          * 64bit on a 32bit platform, and so it might be
3764                          * possible to see a half-updated value
3765                          * Of course reshape_progress could change after
3766                          * the lock is dropped, so once we get a reference
3767                          * to the stripe that we think it is, we will have
3768                          * to check again.
3769                          */
3770                         spin_lock_irq(&conf->device_lock);
3771                         if (mddev->delta_disks < 0
3772                             ? logical_sector < conf->reshape_progress
3773                             : logical_sector >= conf->reshape_progress) {
3774                                 disks = conf->previous_raid_disks;
3775                                 previous = 1;
3776                         } else {
3777                                 if (mddev->delta_disks < 0
3778                                     ? logical_sector < conf->reshape_safe
3779                                     : logical_sector >= conf->reshape_safe) {
3780                                         spin_unlock_irq(&conf->device_lock);
3781                                         schedule();
3782                                         goto retry;
3783                                 }
3784                         }
3785                         spin_unlock_irq(&conf->device_lock);
3786                 }
3787                 data_disks = disks - conf->max_degraded;
3788
3789                 new_sector = raid5_compute_sector(conf, logical_sector,
3790                                                   previous,
3791                                                   &dd_idx, NULL);
3792                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3793                         (unsigned long long)new_sector, 
3794                         (unsigned long long)logical_sector);
3795
3796                 sh = get_active_stripe(conf, new_sector, previous,
3797                                        (bi->bi_rw&RWA_MASK), 0);
3798                 if (sh) {
3799                         if (unlikely(previous)) {
3800                                 /* expansion might have moved on while waiting for a
3801                                  * stripe, so we must do the range check again.
3802                                  * Expansion could still move past after this
3803                                  * test, but as we are holding a reference to
3804                                  * 'sh', we know that if that happens,
3805                                  *  STRIPE_EXPANDING will get set and the expansion
3806                                  * won't proceed until we finish with the stripe.
3807                                  */
3808                                 int must_retry = 0;
3809                                 spin_lock_irq(&conf->device_lock);
3810                                 if (mddev->delta_disks < 0
3811                                     ? logical_sector >= conf->reshape_progress
3812                                     : logical_sector < conf->reshape_progress)
3813                                         /* mismatch, need to try again */
3814                                         must_retry = 1;
3815                                 spin_unlock_irq(&conf->device_lock);
3816                                 if (must_retry) {
3817                                         release_stripe(sh);
3818                                         schedule();
3819                                         goto retry;
3820                                 }
3821                         }
3822
3823                         if (rw == WRITE &&
3824                             logical_sector >= mddev->suspend_lo &&
3825                             logical_sector < mddev->suspend_hi) {
3826                                 release_stripe(sh);
3827                                 /* As the suspend_* range is controlled by
3828                                  * userspace, we want an interruptible
3829                                  * wait.
3830                                  */
3831                                 flush_signals(current);
3832                                 prepare_to_wait(&conf->wait_for_overlap,
3833                                                 &w, TASK_INTERRUPTIBLE);
3834                                 if (logical_sector >= mddev->suspend_lo &&
3835                                     logical_sector < mddev->suspend_hi)
3836                                         schedule();
3837                                 goto retry;
3838                         }
3839
3840                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3841                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3842                                 /* Stripe is busy expanding or
3843                                  * add failed due to overlap.  Flush everything
3844                                  * and wait a while
3845                                  */
3846                                 md_wakeup_thread(mddev->thread);
3847                                 release_stripe(sh);
3848                                 schedule();
3849                                 goto retry;
3850                         }
3851                         finish_wait(&conf->wait_for_overlap, &w);
3852                         set_bit(STRIPE_HANDLE, &sh->state);
3853                         clear_bit(STRIPE_DELAYED, &sh->state);
3854                         if ((bi->bi_rw & REQ_SYNC) &&
3855                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3856                                 atomic_inc(&conf->preread_active_stripes);
3857                         release_stripe(sh);
3858                 } else {
3859                         /* cannot get stripe for read-ahead, just give-up */
3860                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3861                         finish_wait(&conf->wait_for_overlap, &w);
3862                         break;
3863                 }
3864                         
3865         }
3866         if (!plugged)
3867                 md_wakeup_thread(mddev->thread);
3868
3869         spin_lock_irq(&conf->device_lock);
3870         remaining = raid5_dec_bi_phys_segments(bi);
3871         spin_unlock_irq(&conf->device_lock);
3872         if (remaining == 0) {
3873
3874                 if ( rw == WRITE )
3875                         md_write_end(mddev);
3876
3877                 bio_endio(bi, 0);
3878         }
3879 }
3880
3881 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
3882
3883 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
3884 {
3885         /* reshaping is quite different to recovery/resync so it is
3886          * handled quite separately ... here.
3887          *
3888          * On each call to sync_request, we gather one chunk worth of
3889          * destination stripes and flag them as expanding.
3890          * Then we find all the source stripes and request reads.
3891          * As the reads complete, handle_stripe will copy the data
3892          * into the destination stripe and release that stripe.
3893          */
3894         struct r5conf *conf = mddev->private;
3895         struct stripe_head *sh;
3896         sector_t first_sector, last_sector;
3897         int raid_disks = conf->previous_raid_disks;
3898         int data_disks = raid_disks - conf->max_degraded;
3899         int new_data_disks = conf->raid_disks - conf->max_degraded;
3900         int i;
3901         int dd_idx;
3902         sector_t writepos, readpos, safepos;
3903         sector_t stripe_addr;
3904         int reshape_sectors;
3905         struct list_head stripes;
3906
3907         if (sector_nr == 0) {
3908                 /* If restarting in the middle, skip the initial sectors */
3909                 if (mddev->delta_disks < 0 &&
3910                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3911                         sector_nr = raid5_size(mddev, 0, 0)
3912                                 - conf->reshape_progress;
3913                 } else if (mddev->delta_disks >= 0 &&
3914                            conf->reshape_progress > 0)
3915                         sector_nr = conf->reshape_progress;
3916                 sector_div(sector_nr, new_data_disks);
3917                 if (sector_nr) {
3918                         mddev->curr_resync_completed = sector_nr;
3919                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3920                         *skipped = 1;
3921                         return sector_nr;
3922                 }
3923         }
3924
3925         /* We need to process a full chunk at a time.
3926          * If old and new chunk sizes differ, we need to process the
3927          * largest of these
3928          */
3929         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3930                 reshape_sectors = mddev->new_chunk_sectors;
3931         else
3932                 reshape_sectors = mddev->chunk_sectors;
3933
3934         /* we update the metadata when there is more than 3Meg
3935          * in the block range (that is rather arbitrary, should
3936          * probably be time based) or when the data about to be
3937          * copied would over-write the source of the data at
3938          * the front of the range.
3939          * i.e. one new_stripe along from reshape_progress new_maps
3940          * to after where reshape_safe old_maps to
3941          */
3942         writepos = conf->reshape_progress;
3943         sector_div(writepos, new_data_disks);
3944         readpos = conf->reshape_progress;
3945         sector_div(readpos, data_disks);
3946         safepos = conf->reshape_safe;
3947         sector_div(safepos, data_disks);
3948         if (mddev->delta_disks < 0) {
3949                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3950                 readpos += reshape_sectors;
3951                 safepos += reshape_sectors;
3952         } else {
3953                 writepos += reshape_sectors;
3954                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3955                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3956         }
3957
3958         /* 'writepos' is the most advanced device address we might write.
3959          * 'readpos' is the least advanced device address we might read.
3960          * 'safepos' is the least address recorded in the metadata as having
3961          *     been reshaped.
3962          * If 'readpos' is behind 'writepos', then there is no way that we can
3963          * ensure safety in the face of a crash - that must be done by userspace
3964          * making a backup of the data.  So in that case there is no particular
3965          * rush to update metadata.
3966          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3967          * update the metadata to advance 'safepos' to match 'readpos' so that
3968          * we can be safe in the event of a crash.
3969          * So we insist on updating metadata if safepos is behind writepos and
3970          * readpos is beyond writepos.
3971          * In any case, update the metadata every 10 seconds.
3972          * Maybe that number should be configurable, but I'm not sure it is
3973          * worth it.... maybe it could be a multiple of safemode_delay???
3974          */
3975         if ((mddev->delta_disks < 0
3976              ? (safepos > writepos && readpos < writepos)
3977              : (safepos < writepos && readpos > writepos)) ||
3978             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3979                 /* Cannot proceed until we've updated the superblock... */
3980                 wait_event(conf->wait_for_overlap,
3981                            atomic_read(&conf->reshape_stripes)==0);
3982                 mddev->reshape_position = conf->reshape_progress;
3983                 mddev->curr_resync_completed = sector_nr;
3984                 conf->reshape_checkpoint = jiffies;
3985                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3986                 md_wakeup_thread(mddev->thread);
3987                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3988                            kthread_should_stop());
3989                 spin_lock_irq(&conf->device_lock);
3990                 conf->reshape_safe = mddev->reshape_position;
3991                 spin_unlock_irq(&conf->device_lock);
3992                 wake_up(&conf->wait_for_overlap);
3993                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3994         }
3995
3996         if (mddev->delta_disks < 0) {
3997                 BUG_ON(conf->reshape_progress == 0);
3998                 stripe_addr = writepos;
3999                 BUG_ON((mddev->dev_sectors &
4000                         ~((sector_t)reshape_sectors - 1))
4001                        - reshape_sectors - stripe_addr
4002                        != sector_nr);
4003         } else {
4004                 BUG_ON(writepos != sector_nr + reshape_sectors);
4005                 stripe_addr = sector_nr;
4006         }
4007         INIT_LIST_HEAD(&stripes);
4008         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4009                 int j;
4010                 int skipped_disk = 0;
4011                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4012                 set_bit(STRIPE_EXPANDING, &sh->state);
4013                 atomic_inc(&conf->reshape_stripes);
4014                 /* If any of this stripe is beyond the end of the old
4015                  * array, then we need to zero those blocks
4016                  */
4017                 for (j=sh->disks; j--;) {
4018                         sector_t s;
4019                         if (j == sh->pd_idx)
4020                                 continue;
4021                         if (conf->level == 6 &&
4022                             j == sh->qd_idx)
4023                                 continue;
4024                         s = compute_blocknr(sh, j, 0);
4025                         if (s < raid5_size(mddev, 0, 0)) {
4026                                 skipped_disk = 1;
4027                                 continue;
4028                         }
4029                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4030                         set_bit(R5_Expanded, &sh->dev[j].flags);
4031                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4032                 }
4033                 if (!skipped_disk) {
4034                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4035                         set_bit(STRIPE_HANDLE, &sh->state);
4036                 }
4037                 list_add(&sh->lru, &stripes);
4038         }
4039         spin_lock_irq(&conf->device_lock);
4040         if (mddev->delta_disks < 0)
4041                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4042         else
4043                 conf->reshape_progress += reshape_sectors * new_data_disks;
4044         spin_unlock_irq(&conf->device_lock);
4045         /* Ok, those stripe are ready. We can start scheduling
4046          * reads on the source stripes.
4047          * The source stripes are determined by mapping the first and last
4048          * block on the destination stripes.
4049          */
4050         first_sector =
4051                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4052                                      1, &dd_idx, NULL);
4053         last_sector =
4054                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4055                                             * new_data_disks - 1),
4056                                      1, &dd_idx, NULL);
4057         if (last_sector >= mddev->dev_sectors)
4058                 last_sector = mddev->dev_sectors - 1;
4059         while (first_sector <= last_sector) {
4060                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4061                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4062                 set_bit(STRIPE_HANDLE, &sh->state);
4063                 release_stripe(sh);
4064                 first_sector += STRIPE_SECTORS;
4065         }
4066         /* Now that the sources are clearly marked, we can release
4067          * the destination stripes
4068          */
4069         while (!list_empty(&stripes)) {
4070                 sh = list_entry(stripes.next, struct stripe_head, lru);
4071                 list_del_init(&sh->lru);
4072                 release_stripe(sh);
4073         }
4074         /* If this takes us to the resync_max point where we have to pause,
4075          * then we need to write out the superblock.
4076          */
4077         sector_nr += reshape_sectors;
4078         if ((sector_nr - mddev->curr_resync_completed) * 2
4079             >= mddev->resync_max - mddev->curr_resync_completed) {
4080                 /* Cannot proceed until we've updated the superblock... */
4081                 wait_event(conf->wait_for_overlap,
4082                            atomic_read(&conf->reshape_stripes) == 0);
4083                 mddev->reshape_position = conf->reshape_progress;
4084                 mddev->curr_resync_completed = sector_nr;
4085                 conf->reshape_checkpoint = jiffies;
4086                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4087                 md_wakeup_thread(mddev->thread);
4088                 wait_event(mddev->sb_wait,
4089                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4090                            || kthread_should_stop());
4091                 spin_lock_irq(&conf->device_lock);
4092                 conf->reshape_safe = mddev->reshape_position;
4093                 spin_unlock_irq(&conf->device_lock);
4094                 wake_up(&conf->wait_for_overlap);
4095                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4096         }
4097         return reshape_sectors;
4098 }
4099
4100 /* FIXME go_faster isn't used */
4101 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4102 {
4103         struct r5conf *conf = mddev->private;
4104         struct stripe_head *sh;
4105         sector_t max_sector = mddev->dev_sectors;
4106         sector_t sync_blocks;
4107         int still_degraded = 0;
4108         int i;
4109
4110         if (sector_nr >= max_sector) {
4111                 /* just being told to finish up .. nothing much to do */
4112
4113                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4114                         end_reshape(conf);
4115                         return 0;
4116                 }
4117
4118                 if (mddev->curr_resync < max_sector) /* aborted */
4119                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4120                                         &sync_blocks, 1);
4121                 else /* completed sync */
4122                         conf->fullsync = 0;
4123                 bitmap_close_sync(mddev->bitmap);
4124
4125                 return 0;
4126         }
4127
4128         /* Allow raid5_quiesce to complete */
4129         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4130
4131         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4132                 return reshape_request(mddev, sector_nr, skipped);
4133
4134         /* No need to check resync_max as we never do more than one
4135          * stripe, and as resync_max will always be on a chunk boundary,
4136          * if the check in md_do_sync didn't fire, there is no chance
4137          * of overstepping resync_max here
4138          */
4139
4140         /* if there is too many failed drives and we are trying
4141          * to resync, then assert that we are finished, because there is
4142          * nothing we can do.
4143          */
4144         if (mddev->degraded >= conf->max_degraded &&
4145             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4146                 sector_t rv = mddev->dev_sectors - sector_nr;
4147                 *skipped = 1;
4148                 return rv;
4149         }
4150         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4151             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4152             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4153                 /* we can skip this block, and probably more */
4154                 sync_blocks /= STRIPE_SECTORS;
4155                 *skipped = 1;
4156                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4157         }
4158
4159
4160         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4161
4162         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4163         if (sh == NULL) {
4164                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4165                 /* make sure we don't swamp the stripe cache if someone else
4166                  * is trying to get access
4167                  */
4168                 schedule_timeout_uninterruptible(1);
4169         }
4170         /* Need to check if array will still be degraded after recovery/resync
4171          * We don't need to check the 'failed' flag as when that gets set,
4172          * recovery aborts.
4173          */
4174         for (i = 0; i < conf->raid_disks; i++)
4175                 if (conf->disks[i].rdev == NULL)
4176                         still_degraded = 1;
4177
4178         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4179
4180         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4181
4182         handle_stripe(sh);
4183         release_stripe(sh);
4184
4185         return STRIPE_SECTORS;
4186 }
4187
4188 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4189 {
4190         /* We may not be able to submit a whole bio at once as there
4191          * may not be enough stripe_heads available.
4192          * We cannot pre-allocate enough stripe_heads as we may need
4193          * more than exist in the cache (if we allow ever large chunks).
4194          * So we do one stripe head at a time and record in
4195          * ->bi_hw_segments how many have been done.
4196          *
4197          * We *know* that this entire raid_bio is in one chunk, so
4198          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4199          */
4200         struct stripe_head *sh;
4201         int dd_idx;
4202         sector_t sector, logical_sector, last_sector;
4203         int scnt = 0;
4204         int remaining;
4205         int handled = 0;
4206
4207         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4208         sector = raid5_compute_sector(conf, logical_sector,
4209                                       0, &dd_idx, NULL);
4210         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4211
4212         for (; logical_sector < last_sector;
4213              logical_sector += STRIPE_SECTORS,
4214                      sector += STRIPE_SECTORS,
4215                      scnt++) {
4216
4217                 if (scnt < raid5_bi_hw_segments(raid_bio))
4218                         /* already done this stripe */
4219                         continue;
4220
4221                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4222
4223                 if (!sh) {
4224                         /* failed to get a stripe - must wait */
4225                         raid5_set_bi_hw_segments(raid_bio, scnt);
4226                         conf->retry_read_aligned = raid_bio;
4227                         return handled;
4228                 }
4229
4230                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4231                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4232                         release_stripe(sh);
4233                         raid5_set_bi_hw_segments(raid_bio, scnt);
4234                         conf->retry_read_aligned = raid_bio;
4235                         return handled;
4236                 }
4237
4238                 handle_stripe(sh);
4239                 release_stripe(sh);
4240                 handled++;
4241         }
4242         spin_lock_irq(&conf->device_lock);
4243         remaining = raid5_dec_bi_phys_segments(raid_bio);
4244         spin_unlock_irq(&conf->device_lock);
4245         if (remaining == 0)
4246                 bio_endio(raid_bio, 0);
4247         if (atomic_dec_and_test(&conf->active_aligned_reads))
4248                 wake_up(&conf->wait_for_stripe);
4249         return handled;
4250 }
4251
4252
4253 /*
4254  * This is our raid5 kernel thread.
4255  *
4256  * We scan the hash table for stripes which can be handled now.
4257  * During the scan, completed stripes are saved for us by the interrupt
4258  * handler, so that they will not have to wait for our next wakeup.
4259  */
4260 static void raid5d(struct mddev *mddev)
4261 {
4262         struct stripe_head *sh;
4263         struct r5conf *conf = mddev->private;
4264         int handled;
4265         struct blk_plug plug;
4266
4267         pr_debug("+++ raid5d active\n");
4268
4269         md_check_recovery(mddev);
4270
4271         blk_start_plug(&plug);
4272         handled = 0;
4273         spin_lock_irq(&conf->device_lock);
4274         while (1) {
4275                 struct bio *bio;
4276
4277                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4278                     !list_empty(&conf->bitmap_list)) {
4279                         /* Now is a good time to flush some bitmap updates */
4280                         conf->seq_flush++;
4281                         spin_unlock_irq(&conf->device_lock);
4282                         bitmap_unplug(mddev->bitmap);
4283                         spin_lock_irq(&conf->device_lock);
4284                         conf->seq_write = conf->seq_flush;
4285                         activate_bit_delay(conf);
4286                 }
4287                 if (atomic_read(&mddev->plug_cnt) == 0)
4288                         raid5_activate_delayed(conf);
4289
4290                 while ((bio = remove_bio_from_retry(conf))) {
4291                         int ok;
4292                         spin_unlock_irq(&conf->device_lock);
4293                         ok = retry_aligned_read(conf, bio);
4294                         spin_lock_irq(&conf->device_lock);
4295                         if (!ok)
4296                                 break;
4297                         handled++;
4298                 }
4299
4300                 sh = __get_priority_stripe(conf);
4301
4302                 if (!sh)
4303                         break;
4304                 spin_unlock_irq(&conf->device_lock);
4305                 
4306                 handled++;
4307                 handle_stripe(sh);
4308                 release_stripe(sh);
4309                 cond_resched();
4310
4311                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4312                         md_check_recovery(mddev);
4313
4314                 spin_lock_irq(&conf->device_lock);
4315         }
4316         pr_debug("%d stripes handled\n", handled);
4317
4318         spin_unlock_irq(&conf->device_lock);
4319
4320         async_tx_issue_pending_all();
4321         blk_finish_plug(&plug);
4322
4323         pr_debug("--- raid5d inactive\n");
4324 }
4325
4326 static ssize_t
4327 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4328 {
4329         struct r5conf *conf = mddev->private;
4330         if (conf)
4331                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4332         else
4333                 return 0;
4334 }
4335
4336 int
4337 raid5_set_cache_size(struct mddev *mddev, int size)
4338 {
4339         struct r5conf *conf = mddev->private;
4340         int err;
4341
4342         if (size <= 16 || size > 32768)
4343                 return -EINVAL;
4344         while (size < conf->max_nr_stripes) {
4345                 if (drop_one_stripe(conf))
4346                         conf->max_nr_stripes--;
4347                 else
4348                         break;
4349         }
4350         err = md_allow_write(mddev);
4351         if (err)
4352                 return err;
4353         while (size > conf->max_nr_stripes) {
4354                 if (grow_one_stripe(conf))
4355                         conf->max_nr_stripes++;
4356                 else break;
4357         }
4358         return 0;
4359 }
4360 EXPORT_SYMBOL(raid5_set_cache_size);
4361
4362 static ssize_t
4363 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4364 {
4365         struct r5conf *conf = mddev->private;
4366         unsigned long new;
4367         int err;
4368
4369         if (len >= PAGE_SIZE)
4370                 return -EINVAL;
4371         if (!conf)
4372                 return -ENODEV;
4373
4374         if (strict_strtoul(page, 10, &new))
4375                 return -EINVAL;
4376         err = raid5_set_cache_size(mddev, new);
4377         if (err)
4378                 return err;
4379         return len;
4380 }
4381
4382 static struct md_sysfs_entry
4383 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4384                                 raid5_show_stripe_cache_size,
4385                                 raid5_store_stripe_cache_size);
4386
4387 static ssize_t
4388 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4389 {
4390         struct r5conf *conf = mddev->private;
4391         if (conf)
4392                 return sprintf(page, "%d\n", conf->bypass_threshold);
4393         else
4394                 return 0;
4395 }
4396
4397 static ssize_t
4398 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4399 {
4400         struct r5conf *conf = mddev->private;
4401         unsigned long new;
4402         if (len >= PAGE_SIZE)
4403                 return -EINVAL;
4404         if (!conf)
4405                 return -ENODEV;
4406
4407         if (strict_strtoul(page, 10, &new))
4408                 return -EINVAL;
4409         if (new > conf->max_nr_stripes)
4410                 return -EINVAL;
4411         conf->bypass_threshold = new;
4412         return len;
4413 }
4414
4415 static struct md_sysfs_entry
4416 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4417                                         S_IRUGO | S_IWUSR,
4418                                         raid5_show_preread_threshold,
4419                                         raid5_store_preread_threshold);
4420
4421 static ssize_t
4422 stripe_cache_active_show(struct mddev *mddev, char *page)
4423 {
4424         struct r5conf *conf = mddev->private;
4425         if (conf)
4426                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4427         else
4428                 return 0;
4429 }
4430
4431 static struct md_sysfs_entry
4432 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4433
4434 static struct attribute *raid5_attrs[] =  {
4435         &raid5_stripecache_size.attr,
4436         &raid5_stripecache_active.attr,
4437         &raid5_preread_bypass_threshold.attr,
4438         NULL,
4439 };
4440 static struct attribute_group raid5_attrs_group = {
4441         .name = NULL,
4442         .attrs = raid5_attrs,
4443 };
4444
4445 static sector_t
4446 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4447 {
4448         struct r5conf *conf = mddev->private;
4449
4450         if (!sectors)
4451                 sectors = mddev->dev_sectors;
4452         if (!raid_disks)
4453                 /* size is defined by the smallest of previous and new size */
4454                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4455
4456         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4457         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4458         return sectors * (raid_disks - conf->max_degraded);
4459 }
4460
4461 static void raid5_free_percpu(struct r5conf *conf)
4462 {
4463         struct raid5_percpu *percpu;
4464         unsigned long cpu;
4465
4466         if (!conf->percpu)
4467                 return;
4468
4469         get_online_cpus();
4470         for_each_possible_cpu(cpu) {
4471                 percpu = per_cpu_ptr(conf->percpu, cpu);
4472                 safe_put_page(percpu->spare_page);
4473                 kfree(percpu->scribble);
4474         }
4475 #ifdef CONFIG_HOTPLUG_CPU
4476         unregister_cpu_notifier(&conf->cpu_notify);
4477 #endif
4478         put_online_cpus();
4479
4480         free_percpu(conf->percpu);
4481 }
4482
4483 static void free_conf(struct r5conf *conf)
4484 {
4485         shrink_stripes(conf);
4486         raid5_free_percpu(conf);
4487         kfree(conf->disks);
4488         kfree(conf->stripe_hashtbl);
4489         kfree(conf);
4490 }
4491
4492 #ifdef CONFIG_HOTPLUG_CPU
4493 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4494                               void *hcpu)
4495 {
4496         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4497         long cpu = (long)hcpu;
4498         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4499
4500         switch (action) {
4501         case CPU_UP_PREPARE:
4502         case CPU_UP_PREPARE_FROZEN:
4503                 if (conf->level == 6 && !percpu->spare_page)
4504                         percpu->spare_page = alloc_page(GFP_KERNEL);
4505                 if (!percpu->scribble)
4506                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4507
4508                 if (!percpu->scribble ||
4509                     (conf->level == 6 && !percpu->spare_page)) {
4510                         safe_put_page(percpu->spare_page);
4511                         kfree(percpu->scribble);
4512                         pr_err("%s: failed memory allocation for cpu%ld\n",
4513                                __func__, cpu);
4514                         return notifier_from_errno(-ENOMEM);
4515                 }
4516                 break;
4517         case CPU_DEAD:
4518         case CPU_DEAD_FROZEN:
4519                 safe_put_page(percpu->spare_page);
4520                 kfree(percpu->scribble);
4521                 percpu->spare_page = NULL;
4522                 percpu->scribble = NULL;
4523                 break;
4524         default:
4525                 break;
4526         }
4527         return NOTIFY_OK;
4528 }
4529 #endif
4530
4531 static int raid5_alloc_percpu(struct r5conf *conf)
4532 {
4533         unsigned long cpu;
4534         struct page *spare_page;
4535         struct raid5_percpu __percpu *allcpus;
4536         void *scribble;
4537         int err;
4538
4539         allcpus = alloc_percpu(struct raid5_percpu);
4540         if (!allcpus)
4541                 return -ENOMEM;
4542         conf->percpu = allcpus;
4543
4544         get_online_cpus();
4545         err = 0;
4546         for_each_present_cpu(cpu) {
4547                 if (conf->level == 6) {
4548                         spare_page = alloc_page(GFP_KERNEL);
4549                         if (!spare_page) {
4550                                 err = -ENOMEM;
4551                                 break;
4552                         }
4553                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4554                 }
4555                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4556                 if (!scribble) {
4557                         err = -ENOMEM;
4558                         break;
4559                 }
4560                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4561         }
4562 #ifdef CONFIG_HOTPLUG_CPU
4563         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4564         conf->cpu_notify.priority = 0;
4565         if (err == 0)
4566                 err = register_cpu_notifier(&conf->cpu_notify);
4567 #endif
4568         put_online_cpus();
4569
4570         return err;
4571 }
4572
4573 static struct r5conf *setup_conf(struct mddev *mddev)
4574 {
4575         struct r5conf *conf;
4576         int raid_disk, memory, max_disks;
4577         struct md_rdev *rdev;
4578         struct disk_info *disk;
4579
4580         if (mddev->new_level != 5
4581             && mddev->new_level != 4
4582             && mddev->new_level != 6) {
4583                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4584                        mdname(mddev), mddev->new_level);
4585                 return ERR_PTR(-EIO);
4586         }
4587         if ((mddev->new_level == 5
4588              && !algorithm_valid_raid5(mddev->new_layout)) ||
4589             (mddev->new_level == 6
4590              && !algorithm_valid_raid6(mddev->new_layout))) {
4591                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4592                        mdname(mddev), mddev->new_layout);
4593                 return ERR_PTR(-EIO);
4594         }
4595         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4596                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4597                        mdname(mddev), mddev->raid_disks);
4598                 return ERR_PTR(-EINVAL);
4599         }
4600
4601         if (!mddev->new_chunk_sectors ||
4602             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4603             !is_power_of_2(mddev->new_chunk_sectors)) {
4604                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4605                        mdname(mddev), mddev->new_chunk_sectors << 9);
4606                 return ERR_PTR(-EINVAL);
4607         }
4608
4609         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4610         if (conf == NULL)
4611                 goto abort;
4612         spin_lock_init(&conf->device_lock);
4613         init_waitqueue_head(&conf->wait_for_stripe);
4614         init_waitqueue_head(&conf->wait_for_overlap);
4615         INIT_LIST_HEAD(&conf->handle_list);
4616         INIT_LIST_HEAD(&conf->hold_list);
4617         INIT_LIST_HEAD(&conf->delayed_list);
4618         INIT_LIST_HEAD(&conf->bitmap_list);
4619         INIT_LIST_HEAD(&conf->inactive_list);
4620         atomic_set(&conf->active_stripes, 0);
4621         atomic_set(&conf->preread_active_stripes, 0);
4622         atomic_set(&conf->active_aligned_reads, 0);
4623         conf->bypass_threshold = BYPASS_THRESHOLD;
4624         conf->recovery_disabled = mddev->recovery_disabled - 1;
4625
4626         conf->raid_disks = mddev->raid_disks;
4627         if (mddev->reshape_position == MaxSector)
4628                 conf->previous_raid_disks = mddev->raid_disks;
4629         else
4630                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4631         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4632         conf->scribble_len = scribble_len(max_disks);
4633
4634         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4635                               GFP_KERNEL);
4636         if (!conf->disks)
4637                 goto abort;
4638
4639         conf->mddev = mddev;
4640
4641         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4642                 goto abort;
4643
4644         conf->level = mddev->new_level;
4645         if (raid5_alloc_percpu(conf) != 0)
4646                 goto abort;
4647
4648         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4649
4650         list_for_each_entry(rdev, &mddev->disks, same_set) {
4651                 raid_disk = rdev->raid_disk;
4652                 if (raid_disk >= max_disks
4653                     || raid_disk < 0)
4654                         continue;
4655                 disk = conf->disks + raid_disk;
4656
4657                 disk->rdev = rdev;
4658
4659                 if (test_bit(In_sync, &rdev->flags)) {
4660                         char b[BDEVNAME_SIZE];
4661                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4662                                " disk %d\n",
4663                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4664                 } else if (rdev->saved_raid_disk != raid_disk)
4665                         /* Cannot rely on bitmap to complete recovery */
4666                         conf->fullsync = 1;
4667         }
4668
4669         conf->chunk_sectors = mddev->new_chunk_sectors;
4670         conf->level = mddev->new_level;
4671         if (conf->level == 6)
4672                 conf->max_degraded = 2;
4673         else
4674                 conf->max_degraded = 1;
4675         conf->algorithm = mddev->new_layout;
4676         conf->max_nr_stripes = NR_STRIPES;
4677         conf->reshape_progress = mddev->reshape_position;
4678         if (conf->reshape_progress != MaxSector) {
4679                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4680                 conf->prev_algo = mddev->layout;
4681         }
4682
4683         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4684                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4685         if (grow_stripes(conf, conf->max_nr_stripes)) {
4686                 printk(KERN_ERR
4687                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4688                        mdname(mddev), memory);
4689                 goto abort;
4690         } else
4691                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4692                        mdname(mddev), memory);
4693
4694         conf->thread = md_register_thread(raid5d, mddev, NULL);
4695         if (!conf->thread) {
4696                 printk(KERN_ERR
4697                        "md/raid:%s: couldn't allocate thread.\n",
4698                        mdname(mddev));
4699                 goto abort;
4700         }
4701
4702         return conf;
4703
4704  abort:
4705         if (conf) {
4706                 free_conf(conf);
4707                 return ERR_PTR(-EIO);
4708         } else
4709                 return ERR_PTR(-ENOMEM);
4710 }
4711
4712
4713 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4714 {
4715         switch (algo) {
4716         case ALGORITHM_PARITY_0:
4717                 if (raid_disk < max_degraded)
4718                         return 1;
4719                 break;
4720         case ALGORITHM_PARITY_N:
4721                 if (raid_disk >= raid_disks - max_degraded)
4722                         return 1;
4723                 break;
4724         case ALGORITHM_PARITY_0_6:
4725                 if (raid_disk == 0 || 
4726                     raid_disk == raid_disks - 1)
4727                         return 1;
4728                 break;
4729         case ALGORITHM_LEFT_ASYMMETRIC_6:
4730         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4731         case ALGORITHM_LEFT_SYMMETRIC_6:
4732         case ALGORITHM_RIGHT_SYMMETRIC_6:
4733                 if (raid_disk == raid_disks - 1)
4734                         return 1;
4735         }
4736         return 0;
4737 }
4738
4739 static int run(struct mddev *mddev)
4740 {
4741         struct r5conf *conf;
4742         int working_disks = 0;
4743         int dirty_parity_disks = 0;
4744         struct md_rdev *rdev;
4745         sector_t reshape_offset = 0;
4746
4747         if (mddev->recovery_cp != MaxSector)
4748                 printk(KERN_NOTICE "md/raid:%s: not clean"
4749                        " -- starting background reconstruction\n",
4750                        mdname(mddev));
4751         if (mddev->reshape_position != MaxSector) {
4752                 /* Check that we can continue the reshape.
4753                  * Currently only disks can change, it must
4754                  * increase, and we must be past the point where
4755                  * a stripe over-writes itself
4756                  */
4757                 sector_t here_new, here_old;
4758                 int old_disks;
4759                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4760
4761                 if (mddev->new_level != mddev->level) {
4762                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4763                                "required - aborting.\n",
4764                                mdname(mddev));
4765                         return -EINVAL;
4766                 }
4767                 old_disks = mddev->raid_disks - mddev->delta_disks;
4768                 /* reshape_position must be on a new-stripe boundary, and one
4769                  * further up in new geometry must map after here in old
4770                  * geometry.
4771                  */
4772                 here_new = mddev->reshape_position;
4773                 if (sector_div(here_new, mddev->new_chunk_sectors *
4774                                (mddev->raid_disks - max_degraded))) {
4775                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4776                                "on a stripe boundary\n", mdname(mddev));
4777                         return -EINVAL;
4778                 }
4779                 reshape_offset = here_new * mddev->new_chunk_sectors;
4780                 /* here_new is the stripe we will write to */
4781                 here_old = mddev->reshape_position;
4782                 sector_div(here_old, mddev->chunk_sectors *
4783                            (old_disks-max_degraded));
4784                 /* here_old is the first stripe that we might need to read
4785                  * from */
4786                 if (mddev->delta_disks == 0) {
4787                         /* We cannot be sure it is safe to start an in-place
4788                          * reshape.  It is only safe if user-space if monitoring
4789                          * and taking constant backups.
4790                          * mdadm always starts a situation like this in
4791                          * readonly mode so it can take control before
4792                          * allowing any writes.  So just check for that.
4793                          */
4794                         if ((here_new * mddev->new_chunk_sectors != 
4795                              here_old * mddev->chunk_sectors) ||
4796                             mddev->ro == 0) {
4797                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4798                                        " in read-only mode - aborting\n",
4799                                        mdname(mddev));
4800                                 return -EINVAL;
4801                         }
4802                 } else if (mddev->delta_disks < 0
4803                     ? (here_new * mddev->new_chunk_sectors <=
4804                        here_old * mddev->chunk_sectors)
4805                     : (here_new * mddev->new_chunk_sectors >=
4806                        here_old * mddev->chunk_sectors)) {
4807                         /* Reading from the same stripe as writing to - bad */
4808                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4809                                "auto-recovery - aborting.\n",
4810                                mdname(mddev));
4811                         return -EINVAL;
4812                 }
4813                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4814                        mdname(mddev));
4815                 /* OK, we should be able to continue; */
4816         } else {
4817                 BUG_ON(mddev->level != mddev->new_level);
4818                 BUG_ON(mddev->layout != mddev->new_layout);
4819                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4820                 BUG_ON(mddev->delta_disks != 0);
4821         }
4822
4823         if (mddev->private == NULL)
4824                 conf = setup_conf(mddev);
4825         else
4826                 conf = mddev->private;
4827
4828         if (IS_ERR(conf))
4829                 return PTR_ERR(conf);
4830
4831         mddev->thread = conf->thread;
4832         conf->thread = NULL;
4833         mddev->private = conf;
4834
4835         /*
4836          * 0 for a fully functional array, 1 or 2 for a degraded array.
4837          */
4838         list_for_each_entry(rdev, &mddev->disks, same_set) {
4839                 if (rdev->raid_disk < 0)
4840                         continue;
4841                 if (test_bit(In_sync, &rdev->flags)) {
4842                         working_disks++;
4843                         continue;
4844                 }
4845                 /* This disc is not fully in-sync.  However if it
4846                  * just stored parity (beyond the recovery_offset),
4847                  * when we don't need to be concerned about the
4848                  * array being dirty.
4849                  * When reshape goes 'backwards', we never have
4850                  * partially completed devices, so we only need
4851                  * to worry about reshape going forwards.
4852                  */
4853                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4854                 if (mddev->major_version == 0 &&
4855                     mddev->minor_version > 90)
4856                         rdev->recovery_offset = reshape_offset;
4857                         
4858                 if (rdev->recovery_offset < reshape_offset) {
4859                         /* We need to check old and new layout */
4860                         if (!only_parity(rdev->raid_disk,
4861                                          conf->algorithm,
4862                                          conf->raid_disks,
4863                                          conf->max_degraded))
4864                                 continue;
4865                 }
4866                 if (!only_parity(rdev->raid_disk,
4867                                  conf->prev_algo,
4868                                  conf->previous_raid_disks,
4869                                  conf->max_degraded))
4870                         continue;
4871                 dirty_parity_disks++;
4872         }
4873
4874         mddev->degraded = calc_degraded(conf);
4875
4876         if (has_failed(conf)) {
4877                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4878                         " (%d/%d failed)\n",
4879                         mdname(mddev), mddev->degraded, conf->raid_disks);
4880                 goto abort;
4881         }
4882
4883         /* device size must be a multiple of chunk size */
4884         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4885         mddev->resync_max_sectors = mddev->dev_sectors;
4886
4887         if (mddev->degraded > dirty_parity_disks &&
4888             mddev->recovery_cp != MaxSector) {
4889                 if (mddev->ok_start_degraded)
4890                         printk(KERN_WARNING
4891                                "md/raid:%s: starting dirty degraded array"
4892                                " - data corruption possible.\n",
4893                                mdname(mddev));
4894                 else {
4895                         printk(KERN_ERR
4896                                "md/raid:%s: cannot start dirty degraded array.\n",
4897                                mdname(mddev));
4898                         goto abort;
4899                 }
4900         }
4901
4902         if (mddev->degraded == 0)
4903                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4904                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4905                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4906                        mddev->new_layout);
4907         else
4908                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4909                        " out of %d devices, algorithm %d\n",
4910                        mdname(mddev), conf->level,
4911                        mddev->raid_disks - mddev->degraded,
4912                        mddev->raid_disks, mddev->new_layout);
4913
4914         print_raid5_conf(conf);
4915
4916         if (conf->reshape_progress != MaxSector) {
4917                 conf->reshape_safe = conf->reshape_progress;
4918                 atomic_set(&conf->reshape_stripes, 0);
4919                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4920                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4921                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4922                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4923                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4924                                                         "reshape");
4925         }
4926
4927
4928         /* Ok, everything is just fine now */
4929         if (mddev->to_remove == &raid5_attrs_group)
4930                 mddev->to_remove = NULL;
4931         else if (mddev->kobj.sd &&
4932             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4933                 printk(KERN_WARNING
4934                        "raid5: failed to create sysfs attributes for %s\n",
4935                        mdname(mddev));
4936         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4937
4938         if (mddev->queue) {
4939                 int chunk_size;
4940                 /* read-ahead size must cover two whole stripes, which
4941                  * is 2 * (datadisks) * chunksize where 'n' is the
4942                  * number of raid devices
4943                  */
4944                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4945                 int stripe = data_disks *
4946                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4947                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4948                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4949
4950                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4951
4952                 mddev->queue->backing_dev_info.congested_data = mddev;
4953                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4954
4955                 chunk_size = mddev->chunk_sectors << 9;
4956                 blk_queue_io_min(mddev->queue, chunk_size);
4957                 blk_queue_io_opt(mddev->queue, chunk_size *
4958                                  (conf->raid_disks - conf->max_degraded));
4959
4960                 list_for_each_entry(rdev, &mddev->disks, same_set)
4961                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4962                                           rdev->data_offset << 9);
4963         }
4964
4965         return 0;
4966 abort:
4967         md_unregister_thread(&mddev->thread);
4968         print_raid5_conf(conf);
4969         free_conf(conf);
4970         mddev->private = NULL;
4971         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4972         return -EIO;
4973 }
4974
4975 static int stop(struct mddev *mddev)
4976 {
4977         struct r5conf *conf = mddev->private;
4978
4979         md_unregister_thread(&mddev->thread);
4980         if (mddev->queue)
4981                 mddev->queue->backing_dev_info.congested_fn = NULL;
4982         free_conf(conf);
4983         mddev->private = NULL;
4984         mddev->to_remove = &raid5_attrs_group;
4985         return 0;
4986 }
4987
4988 static void status(struct seq_file *seq, struct mddev *mddev)
4989 {
4990         struct r5conf *conf = mddev->private;
4991         int i;
4992
4993         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4994                 mddev->chunk_sectors / 2, mddev->layout);
4995         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4996         for (i = 0; i < conf->raid_disks; i++)
4997                 seq_printf (seq, "%s",
4998                                conf->disks[i].rdev &&
4999                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5000         seq_printf (seq, "]");
5001 }
5002
5003 static void print_raid5_conf (struct r5conf *conf)
5004 {
5005         int i;
5006         struct disk_info *tmp;
5007
5008         printk(KERN_DEBUG "RAID conf printout:\n");
5009         if (!conf) {
5010                 printk("(conf==NULL)\n");
5011                 return;
5012         }
5013         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5014                conf->raid_disks,
5015                conf->raid_disks - conf->mddev->degraded);
5016
5017         for (i = 0; i < conf->raid_disks; i++) {
5018                 char b[BDEVNAME_SIZE];
5019                 tmp = conf->disks + i;
5020                 if (tmp->rdev)
5021                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5022                                i, !test_bit(Faulty, &tmp->rdev->flags),
5023                                bdevname(tmp->rdev->bdev, b));
5024         }
5025 }
5026
5027 static int raid5_spare_active(struct mddev *mddev)
5028 {
5029         int i;
5030         struct r5conf *conf = mddev->private;
5031         struct disk_info *tmp;
5032         int count = 0;
5033         unsigned long flags;
5034
5035         for (i = 0; i < conf->raid_disks; i++) {
5036                 tmp = conf->disks + i;
5037                 if (tmp->rdev
5038                     && tmp->rdev->recovery_offset == MaxSector
5039                     && !test_bit(Faulty, &tmp->rdev->flags)
5040                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5041                         count++;
5042                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5043                 }
5044         }
5045         spin_lock_irqsave(&conf->device_lock, flags);
5046         mddev->degraded = calc_degraded(conf);
5047         spin_unlock_irqrestore(&conf->device_lock, flags);
5048         print_raid5_conf(conf);
5049         return count;
5050 }
5051
5052 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5053 {
5054         struct r5conf *conf = mddev->private;
5055         int err = 0;
5056         int number = rdev->raid_disk;
5057         struct disk_info *p = conf->disks + number;
5058
5059         print_raid5_conf(conf);
5060         if (rdev == p->rdev) {
5061                 if (number >= conf->raid_disks &&
5062                     conf->reshape_progress == MaxSector)
5063                         clear_bit(In_sync, &rdev->flags);
5064
5065                 if (test_bit(In_sync, &rdev->flags) ||
5066                     atomic_read(&rdev->nr_pending)) {
5067                         err = -EBUSY;
5068                         goto abort;
5069                 }
5070                 /* Only remove non-faulty devices if recovery
5071                  * isn't possible.
5072                  */
5073                 if (!test_bit(Faulty, &rdev->flags) &&
5074                     mddev->recovery_disabled != conf->recovery_disabled &&
5075                     !has_failed(conf) &&
5076                     number < conf->raid_disks) {
5077                         err = -EBUSY;
5078                         goto abort;
5079                 }
5080                 p->rdev = NULL;
5081                 synchronize_rcu();
5082                 if (atomic_read(&rdev->nr_pending)) {
5083                         /* lost the race, try later */
5084                         err = -EBUSY;
5085                         p->rdev = rdev;
5086                 }
5087         }
5088 abort:
5089
5090         print_raid5_conf(conf);
5091         return err;
5092 }
5093
5094 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5095 {
5096         struct r5conf *conf = mddev->private;
5097         int err = -EEXIST;
5098         int disk;
5099         struct disk_info *p;
5100         int first = 0;
5101         int last = conf->raid_disks - 1;
5102
5103         if (mddev->recovery_disabled == conf->recovery_disabled)
5104                 return -EBUSY;
5105
5106         if (has_failed(conf))
5107                 /* no point adding a device */
5108                 return -EINVAL;
5109
5110         if (rdev->raid_disk >= 0)
5111                 first = last = rdev->raid_disk;
5112
5113         /*
5114          * find the disk ... but prefer rdev->saved_raid_disk
5115          * if possible.
5116          */
5117         if (rdev->saved_raid_disk >= 0 &&
5118             rdev->saved_raid_disk >= first &&
5119             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5120                 disk = rdev->saved_raid_disk;
5121         else
5122                 disk = first;
5123         for ( ; disk <= last ; disk++)
5124                 if ((p=conf->disks + disk)->rdev == NULL) {
5125                         clear_bit(In_sync, &rdev->flags);
5126                         rdev->raid_disk = disk;
5127                         err = 0;
5128                         if (rdev->saved_raid_disk != disk)
5129                                 conf->fullsync = 1;
5130                         rcu_assign_pointer(p->rdev, rdev);
5131                         break;
5132                 }
5133         print_raid5_conf(conf);
5134         return err;
5135 }
5136
5137 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5138 {
5139         /* no resync is happening, and there is enough space
5140          * on all devices, so we can resize.
5141          * We need to make sure resync covers any new space.
5142          * If the array is shrinking we should possibly wait until
5143          * any io in the removed space completes, but it hardly seems
5144          * worth it.
5145          */
5146         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5147         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5148                                                mddev->raid_disks));
5149         if (mddev->array_sectors >
5150             raid5_size(mddev, sectors, mddev->raid_disks))
5151                 return -EINVAL;
5152         set_capacity(mddev->gendisk, mddev->array_sectors);
5153         revalidate_disk(mddev->gendisk);
5154         if (sectors > mddev->dev_sectors &&
5155             mddev->recovery_cp > mddev->dev_sectors) {
5156                 mddev->recovery_cp = mddev->dev_sectors;
5157                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5158         }
5159         mddev->dev_sectors = sectors;
5160         mddev->resync_max_sectors = sectors;
5161         return 0;
5162 }
5163
5164 static int check_stripe_cache(struct mddev *mddev)
5165 {
5166         /* Can only proceed if there are plenty of stripe_heads.
5167          * We need a minimum of one full stripe,, and for sensible progress
5168          * it is best to have about 4 times that.
5169          * If we require 4 times, then the default 256 4K stripe_heads will
5170          * allow for chunk sizes up to 256K, which is probably OK.
5171          * If the chunk size is greater, user-space should request more
5172          * stripe_heads first.
5173          */
5174         struct r5conf *conf = mddev->private;
5175         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5176             > conf->max_nr_stripes ||
5177             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5178             > conf->max_nr_stripes) {
5179                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5180                        mdname(mddev),
5181                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5182                         / STRIPE_SIZE)*4);
5183                 return 0;
5184         }
5185         return 1;
5186 }
5187
5188 static int check_reshape(struct mddev *mddev)
5189 {
5190         struct r5conf *conf = mddev->private;
5191
5192         if (mddev->delta_disks == 0 &&
5193             mddev->new_layout == mddev->layout &&
5194             mddev->new_chunk_sectors == mddev->chunk_sectors)
5195                 return 0; /* nothing to do */
5196         if (mddev->bitmap)
5197                 /* Cannot grow a bitmap yet */
5198                 return -EBUSY;
5199         if (has_failed(conf))
5200                 return -EINVAL;
5201         if (mddev->delta_disks < 0) {
5202                 /* We might be able to shrink, but the devices must
5203                  * be made bigger first.
5204                  * For raid6, 4 is the minimum size.
5205                  * Otherwise 2 is the minimum
5206                  */
5207                 int min = 2;
5208                 if (mddev->level == 6)
5209                         min = 4;
5210                 if (mddev->raid_disks + mddev->delta_disks < min)
5211                         return -EINVAL;
5212         }
5213
5214         if (!check_stripe_cache(mddev))
5215                 return -ENOSPC;
5216
5217         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5218 }
5219
5220 static int raid5_start_reshape(struct mddev *mddev)
5221 {
5222         struct r5conf *conf = mddev->private;
5223         struct md_rdev *rdev;
5224         int spares = 0;
5225         unsigned long flags;
5226
5227         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5228                 return -EBUSY;
5229
5230         if (!check_stripe_cache(mddev))
5231                 return -ENOSPC;
5232
5233         list_for_each_entry(rdev, &mddev->disks, same_set)
5234                 if (!test_bit(In_sync, &rdev->flags)
5235                     && !test_bit(Faulty, &rdev->flags))
5236                         spares++;
5237
5238         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5239                 /* Not enough devices even to make a degraded array
5240                  * of that size
5241                  */
5242                 return -EINVAL;
5243
5244         /* Refuse to reduce size of the array.  Any reductions in
5245          * array size must be through explicit setting of array_size
5246          * attribute.
5247          */
5248         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5249             < mddev->array_sectors) {
5250                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5251                        "before number of disks\n", mdname(mddev));
5252                 return -EINVAL;
5253         }
5254
5255         atomic_set(&conf->reshape_stripes, 0);
5256         spin_lock_irq(&conf->device_lock);
5257         conf->previous_raid_disks = conf->raid_disks;
5258         conf->raid_disks += mddev->delta_disks;
5259         conf->prev_chunk_sectors = conf->chunk_sectors;
5260         conf->chunk_sectors = mddev->new_chunk_sectors;
5261         conf->prev_algo = conf->algorithm;
5262         conf->algorithm = mddev->new_layout;
5263         if (mddev->delta_disks < 0)
5264                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5265         else
5266                 conf->reshape_progress = 0;
5267         conf->reshape_safe = conf->reshape_progress;
5268         conf->generation++;
5269         spin_unlock_irq(&conf->device_lock);
5270
5271         /* Add some new drives, as many as will fit.
5272          * We know there are enough to make the newly sized array work.
5273          * Don't add devices if we are reducing the number of
5274          * devices in the array.  This is because it is not possible
5275          * to correctly record the "partially reconstructed" state of
5276          * such devices during the reshape and confusion could result.
5277          */
5278         if (mddev->delta_disks >= 0) {
5279                 int added_devices = 0;
5280                 list_for_each_entry(rdev, &mddev->disks, same_set)
5281                         if (rdev->raid_disk < 0 &&
5282                             !test_bit(Faulty, &rdev->flags)) {
5283                                 if (raid5_add_disk(mddev, rdev) == 0) {
5284                                         if (rdev->raid_disk
5285                                             >= conf->previous_raid_disks) {
5286                                                 set_bit(In_sync, &rdev->flags);
5287                                                 added_devices++;
5288                                         } else
5289                                                 rdev->recovery_offset = 0;
5290
5291                                         if (sysfs_link_rdev(mddev, rdev))
5292                                                 /* Failure here is OK */;
5293                                 }
5294                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5295                                    && !test_bit(Faulty, &rdev->flags)) {
5296                                 /* This is a spare that was manually added */
5297                                 set_bit(In_sync, &rdev->flags);
5298                                 added_devices++;
5299                         }
5300
5301                 /* When a reshape changes the number of devices,
5302                  * ->degraded is measured against the larger of the
5303                  * pre and post number of devices.
5304                  */
5305                 spin_lock_irqsave(&conf->device_lock, flags);
5306                 mddev->degraded = calc_degraded(conf);
5307                 spin_unlock_irqrestore(&conf->device_lock, flags);
5308         }
5309         mddev->raid_disks = conf->raid_disks;
5310         mddev->reshape_position = conf->reshape_progress;
5311         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5312
5313         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5314         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5315         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5316         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5317         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5318                                                 "reshape");
5319         if (!mddev->sync_thread) {
5320                 mddev->recovery = 0;
5321                 spin_lock_irq(&conf->device_lock);
5322                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5323                 conf->reshape_progress = MaxSector;
5324                 spin_unlock_irq(&conf->device_lock);
5325                 return -EAGAIN;
5326         }
5327         conf->reshape_checkpoint = jiffies;
5328         md_wakeup_thread(mddev->sync_thread);
5329         md_new_event(mddev);
5330         return 0;
5331 }
5332
5333 /* This is called from the reshape thread and should make any
5334  * changes needed in 'conf'
5335  */
5336 static void end_reshape(struct r5conf *conf)
5337 {
5338
5339         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5340
5341                 spin_lock_irq(&conf->device_lock);
5342                 conf->previous_raid_disks = conf->raid_disks;
5343                 conf->reshape_progress = MaxSector;
5344                 spin_unlock_irq(&conf->device_lock);
5345                 wake_up(&conf->wait_for_overlap);
5346
5347                 /* read-ahead size must cover two whole stripes, which is
5348                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5349                  */
5350                 if (conf->mddev->queue) {
5351                         int data_disks = conf->raid_disks - conf->max_degraded;
5352                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5353                                                    / PAGE_SIZE);
5354                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5355                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5356                 }
5357         }
5358 }
5359
5360 /* This is called from the raid5d thread with mddev_lock held.
5361  * It makes config changes to the device.
5362  */
5363 static void raid5_finish_reshape(struct mddev *mddev)
5364 {
5365         struct r5conf *conf = mddev->private;
5366
5367         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5368
5369                 if (mddev->delta_disks > 0) {
5370                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5371                         set_capacity(mddev->gendisk, mddev->array_sectors);
5372                         revalidate_disk(mddev->gendisk);
5373                 } else {
5374                         int d;
5375                         spin_lock_irq(&conf->device_lock);
5376                         mddev->degraded = calc_degraded(conf);
5377                         spin_unlock_irq(&conf->device_lock);
5378                         for (d = conf->raid_disks ;
5379                              d < conf->raid_disks - mddev->delta_disks;
5380                              d++) {
5381                                 struct md_rdev *rdev = conf->disks[d].rdev;
5382                                 if (rdev &&
5383                                     raid5_remove_disk(mddev, rdev) == 0) {
5384                                         sysfs_unlink_rdev(mddev, rdev);
5385                                         rdev->raid_disk = -1;
5386                                 }
5387                         }
5388                 }
5389                 mddev->layout = conf->algorithm;
5390                 mddev->chunk_sectors = conf->chunk_sectors;
5391                 mddev->reshape_position = MaxSector;
5392                 mddev->delta_disks = 0;
5393         }
5394 }
5395
5396 static void raid5_quiesce(struct mddev *mddev, int state)
5397 {
5398         struct r5conf *conf = mddev->private;
5399
5400         switch(state) {
5401         case 2: /* resume for a suspend */
5402                 wake_up(&conf->wait_for_overlap);
5403                 break;
5404
5405         case 1: /* stop all writes */
5406                 spin_lock_irq(&conf->device_lock);
5407                 /* '2' tells resync/reshape to pause so that all
5408                  * active stripes can drain
5409                  */
5410                 conf->quiesce = 2;
5411                 wait_event_lock_irq(conf->wait_for_stripe,
5412                                     atomic_read(&conf->active_stripes) == 0 &&
5413                                     atomic_read(&conf->active_aligned_reads) == 0,
5414                                     conf->device_lock, /* nothing */);
5415                 conf->quiesce = 1;
5416                 spin_unlock_irq(&conf->device_lock);
5417                 /* allow reshape to continue */
5418                 wake_up(&conf->wait_for_overlap);
5419                 break;
5420
5421         case 0: /* re-enable writes */
5422                 spin_lock_irq(&conf->device_lock);
5423                 conf->quiesce = 0;
5424                 wake_up(&conf->wait_for_stripe);
5425                 wake_up(&conf->wait_for_overlap);
5426                 spin_unlock_irq(&conf->device_lock);
5427                 break;
5428         }
5429 }
5430
5431
5432 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5433 {
5434         struct r0conf *raid0_conf = mddev->private;
5435         sector_t sectors;
5436
5437         /* for raid0 takeover only one zone is supported */
5438         if (raid0_conf->nr_strip_zones > 1) {
5439                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5440                        mdname(mddev));
5441                 return ERR_PTR(-EINVAL);
5442         }
5443
5444         sectors = raid0_conf->strip_zone[0].zone_end;
5445         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5446         mddev->dev_sectors = sectors;
5447         mddev->new_level = level;
5448         mddev->new_layout = ALGORITHM_PARITY_N;
5449         mddev->new_chunk_sectors = mddev->chunk_sectors;
5450         mddev->raid_disks += 1;
5451         mddev->delta_disks = 1;
5452         /* make sure it will be not marked as dirty */
5453         mddev->recovery_cp = MaxSector;
5454
5455         return setup_conf(mddev);
5456 }
5457
5458
5459 static void *raid5_takeover_raid1(struct mddev *mddev)
5460 {
5461         int chunksect;
5462
5463         if (mddev->raid_disks != 2 ||
5464             mddev->degraded > 1)
5465                 return ERR_PTR(-EINVAL);
5466
5467         /* Should check if there are write-behind devices? */
5468
5469         chunksect = 64*2; /* 64K by default */
5470
5471         /* The array must be an exact multiple of chunksize */
5472         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5473                 chunksect >>= 1;
5474
5475         if ((chunksect<<9) < STRIPE_SIZE)
5476                 /* array size does not allow a suitable chunk size */
5477                 return ERR_PTR(-EINVAL);
5478
5479         mddev->new_level = 5;
5480         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5481         mddev->new_chunk_sectors = chunksect;
5482
5483         return setup_conf(mddev);
5484 }
5485
5486 static void *raid5_takeover_raid6(struct mddev *mddev)
5487 {
5488         int new_layout;
5489
5490         switch (mddev->layout) {
5491         case ALGORITHM_LEFT_ASYMMETRIC_6:
5492                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5493                 break;
5494         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5495                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5496                 break;
5497         case ALGORITHM_LEFT_SYMMETRIC_6:
5498                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5499                 break;
5500         case ALGORITHM_RIGHT_SYMMETRIC_6:
5501                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5502                 break;
5503         case ALGORITHM_PARITY_0_6:
5504                 new_layout = ALGORITHM_PARITY_0;
5505                 break;
5506         case ALGORITHM_PARITY_N:
5507                 new_layout = ALGORITHM_PARITY_N;
5508                 break;
5509         default:
5510                 return ERR_PTR(-EINVAL);
5511         }
5512         mddev->new_level = 5;
5513         mddev->new_layout = new_layout;
5514         mddev->delta_disks = -1;
5515         mddev->raid_disks -= 1;
5516         return setup_conf(mddev);
5517 }
5518
5519
5520 static int raid5_check_reshape(struct mddev *mddev)
5521 {
5522         /* For a 2-drive array, the layout and chunk size can be changed
5523          * immediately as not restriping is needed.
5524          * For larger arrays we record the new value - after validation
5525          * to be used by a reshape pass.
5526          */
5527         struct r5conf *conf = mddev->private;
5528         int new_chunk = mddev->new_chunk_sectors;
5529
5530         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5531                 return -EINVAL;
5532         if (new_chunk > 0) {
5533                 if (!is_power_of_2(new_chunk))
5534                         return -EINVAL;
5535                 if (new_chunk < (PAGE_SIZE>>9))
5536                         return -EINVAL;
5537                 if (mddev->array_sectors & (new_chunk-1))
5538                         /* not factor of array size */
5539                         return -EINVAL;
5540         }
5541
5542         /* They look valid */
5543
5544         if (mddev->raid_disks == 2) {
5545                 /* can make the change immediately */
5546                 if (mddev->new_layout >= 0) {
5547                         conf->algorithm = mddev->new_layout;
5548                         mddev->layout = mddev->new_layout;
5549                 }
5550                 if (new_chunk > 0) {
5551                         conf->chunk_sectors = new_chunk ;
5552                         mddev->chunk_sectors = new_chunk;
5553                 }
5554                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5555                 md_wakeup_thread(mddev->thread);
5556         }
5557         return check_reshape(mddev);
5558 }
5559
5560 static int raid6_check_reshape(struct mddev *mddev)
5561 {
5562         int new_chunk = mddev->new_chunk_sectors;
5563
5564         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5565                 return -EINVAL;
5566         if (new_chunk > 0) {
5567                 if (!is_power_of_2(new_chunk))
5568                         return -EINVAL;
5569                 if (new_chunk < (PAGE_SIZE >> 9))
5570                         return -EINVAL;
5571                 if (mddev->array_sectors & (new_chunk-1))
5572                         /* not factor of array size */
5573                         return -EINVAL;
5574         }
5575
5576         /* They look valid */
5577         return check_reshape(mddev);
5578 }
5579
5580 static void *raid5_takeover(struct mddev *mddev)
5581 {
5582         /* raid5 can take over:
5583          *  raid0 - if there is only one strip zone - make it a raid4 layout
5584          *  raid1 - if there are two drives.  We need to know the chunk size
5585          *  raid4 - trivial - just use a raid4 layout.
5586          *  raid6 - Providing it is a *_6 layout
5587          */
5588         if (mddev->level == 0)
5589                 return raid45_takeover_raid0(mddev, 5);
5590         if (mddev->level == 1)
5591                 return raid5_takeover_raid1(mddev);
5592         if (mddev->level == 4) {
5593                 mddev->new_layout = ALGORITHM_PARITY_N;
5594                 mddev->new_level = 5;
5595                 return setup_conf(mddev);
5596         }
5597         if (mddev->level == 6)
5598                 return raid5_takeover_raid6(mddev);
5599
5600         return ERR_PTR(-EINVAL);
5601 }
5602
5603 static void *raid4_takeover(struct mddev *mddev)
5604 {
5605         /* raid4 can take over:
5606          *  raid0 - if there is only one strip zone
5607          *  raid5 - if layout is right
5608          */
5609         if (mddev->level == 0)
5610                 return raid45_takeover_raid0(mddev, 4);
5611         if (mddev->level == 5 &&
5612             mddev->layout == ALGORITHM_PARITY_N) {
5613                 mddev->new_layout = 0;
5614                 mddev->new_level = 4;
5615                 return setup_conf(mddev);
5616         }
5617         return ERR_PTR(-EINVAL);
5618 }
5619
5620 static struct md_personality raid5_personality;
5621
5622 static void *raid6_takeover(struct mddev *mddev)
5623 {
5624         /* Currently can only take over a raid5.  We map the
5625          * personality to an equivalent raid6 personality
5626          * with the Q block at the end.
5627          */
5628         int new_layout;
5629
5630         if (mddev->pers != &raid5_personality)
5631                 return ERR_PTR(-EINVAL);
5632         if (mddev->degraded > 1)
5633                 return ERR_PTR(-EINVAL);
5634         if (mddev->raid_disks > 253)
5635                 return ERR_PTR(-EINVAL);
5636         if (mddev->raid_disks < 3)
5637                 return ERR_PTR(-EINVAL);
5638
5639         switch (mddev->layout) {
5640         case ALGORITHM_LEFT_ASYMMETRIC:
5641                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5642                 break;
5643         case ALGORITHM_RIGHT_ASYMMETRIC:
5644                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5645                 break;
5646         case ALGORITHM_LEFT_SYMMETRIC:
5647                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5648                 break;
5649         case ALGORITHM_RIGHT_SYMMETRIC:
5650                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5651                 break;
5652         case ALGORITHM_PARITY_0:
5653                 new_layout = ALGORITHM_PARITY_0_6;
5654                 break;
5655         case ALGORITHM_PARITY_N:
5656                 new_layout = ALGORITHM_PARITY_N;
5657                 break;
5658         default:
5659                 return ERR_PTR(-EINVAL);
5660         }
5661         mddev->new_level = 6;
5662         mddev->new_layout = new_layout;
5663         mddev->delta_disks = 1;
5664         mddev->raid_disks += 1;
5665         return setup_conf(mddev);
5666 }
5667
5668
5669 static struct md_personality raid6_personality =
5670 {
5671         .name           = "raid6",
5672         .level          = 6,
5673         .owner          = THIS_MODULE,
5674         .make_request   = make_request,
5675         .run            = run,
5676         .stop           = stop,
5677         .status         = status,
5678         .error_handler  = error,
5679         .hot_add_disk   = raid5_add_disk,
5680         .hot_remove_disk= raid5_remove_disk,
5681         .spare_active   = raid5_spare_active,
5682         .sync_request   = sync_request,
5683         .resize         = raid5_resize,
5684         .size           = raid5_size,
5685         .check_reshape  = raid6_check_reshape,
5686         .start_reshape  = raid5_start_reshape,
5687         .finish_reshape = raid5_finish_reshape,
5688         .quiesce        = raid5_quiesce,
5689         .takeover       = raid6_takeover,
5690 };
5691 static struct md_personality raid5_personality =
5692 {
5693         .name           = "raid5",
5694         .level          = 5,
5695         .owner          = THIS_MODULE,
5696         .make_request   = make_request,
5697         .run            = run,
5698         .stop           = stop,
5699         .status         = status,
5700         .error_handler  = error,
5701         .hot_add_disk   = raid5_add_disk,
5702         .hot_remove_disk= raid5_remove_disk,
5703         .spare_active   = raid5_spare_active,
5704         .sync_request   = sync_request,
5705         .resize         = raid5_resize,
5706         .size           = raid5_size,
5707         .check_reshape  = raid5_check_reshape,
5708         .start_reshape  = raid5_start_reshape,
5709         .finish_reshape = raid5_finish_reshape,
5710         .quiesce        = raid5_quiesce,
5711         .takeover       = raid5_takeover,
5712 };
5713
5714 static struct md_personality raid4_personality =
5715 {
5716         .name           = "raid4",
5717         .level          = 4,
5718         .owner          = THIS_MODULE,
5719         .make_request   = make_request,
5720         .run            = run,
5721         .stop           = stop,
5722         .status         = status,
5723         .error_handler  = error,
5724         .hot_add_disk   = raid5_add_disk,
5725         .hot_remove_disk= raid5_remove_disk,
5726         .spare_active   = raid5_spare_active,
5727         .sync_request   = sync_request,
5728         .resize         = raid5_resize,
5729         .size           = raid5_size,
5730         .check_reshape  = raid5_check_reshape,
5731         .start_reshape  = raid5_start_reshape,
5732         .finish_reshape = raid5_finish_reshape,
5733         .quiesce        = raid5_quiesce,
5734         .takeover       = raid4_takeover,
5735 };
5736
5737 static int __init raid5_init(void)
5738 {
5739         register_md_personality(&raid6_personality);
5740         register_md_personality(&raid5_personality);
5741         register_md_personality(&raid4_personality);
5742         return 0;
5743 }
5744
5745 static void raid5_exit(void)
5746 {
5747         unregister_md_personality(&raid6_personality);
5748         unregister_md_personality(&raid5_personality);
5749         unregister_md_personality(&raid4_personality);
5750 }
5751
5752 module_init(raid5_init);
5753 module_exit(raid5_exit);
5754 MODULE_LICENSE("GPL");
5755 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5756 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5757 MODULE_ALIAS("md-raid5");
5758 MODULE_ALIAS("md-raid4");
5759 MODULE_ALIAS("md-level-5");
5760 MODULE_ALIAS("md-level-4");
5761 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5762 MODULE_ALIAS("md-raid6");
5763 MODULE_ALIAS("md-level-6");
5764
5765 /* This used to be two separate modules, they were: */
5766 MODULE_ALIAS("raid5");
5767 MODULE_ALIAS("raid6");