md/raid5: clearly differentiate 'before' and 'after' stripes during reshape.
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include "md.h"
52 #include "raid5.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 /*
98  * We maintain a biased count of active stripes in the bottom 16 bits of
99  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100  */
101 static inline int raid5_bi_phys_segments(struct bio *bio)
102 {
103         return bio->bi_phys_segments & 0xffff;
104 }
105
106 static inline int raid5_bi_hw_segments(struct bio *bio)
107 {
108         return (bio->bi_phys_segments >> 16) & 0xffff;
109 }
110
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112 {
113         --bio->bi_phys_segments;
114         return raid5_bi_phys_segments(bio);
115 }
116
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118 {
119         unsigned short val = raid5_bi_hw_segments(bio);
120
121         --val;
122         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123         return val;
124 }
125
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127 {
128         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 }
130
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
133 {
134         if (sh->ddf_layout)
135                 /* ddf always start from first device */
136                 return 0;
137         /* md starts just after Q block */
138         if (sh->qd_idx == sh->disks - 1)
139                 return 0;
140         else
141                 return sh->qd_idx + 1;
142 }
143 static inline int raid6_next_disk(int disk, int raid_disks)
144 {
145         disk++;
146         return (disk < raid_disks) ? disk : 0;
147 }
148
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150  * We need to map each disk to a 'slot', where the data disks are slot
151  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152  * is raid_disks-1.  This help does that mapping.
153  */
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155                              int *count, int syndrome_disks)
156 {
157         int slot;
158
159         if (idx == sh->pd_idx)
160                 return syndrome_disks;
161         if (idx == sh->qd_idx)
162                 return syndrome_disks + 1;
163         slot = (*count)++;
164         return slot;
165 }
166
167 static void return_io(struct bio *return_bi)
168 {
169         struct bio *bi = return_bi;
170         while (bi) {
171
172                 return_bi = bi->bi_next;
173                 bi->bi_next = NULL;
174                 bi->bi_size = 0;
175                 bio_endio(bi, 0);
176                 bi = return_bi;
177         }
178 }
179
180 static void print_raid5_conf (raid5_conf_t *conf);
181
182 static int stripe_operations_active(struct stripe_head *sh)
183 {
184         return sh->check_state || sh->reconstruct_state ||
185                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187 }
188
189 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190 {
191         if (atomic_dec_and_test(&sh->count)) {
192                 BUG_ON(!list_empty(&sh->lru));
193                 BUG_ON(atomic_read(&conf->active_stripes)==0);
194                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
195                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
196                                 list_add_tail(&sh->lru, &conf->delayed_list);
197                                 blk_plug_device(conf->mddev->queue);
198                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199                                    sh->bm_seq - conf->seq_write > 0) {
200                                 list_add_tail(&sh->lru, &conf->bitmap_list);
201                                 blk_plug_device(conf->mddev->queue);
202                         } else {
203                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
204                                 list_add_tail(&sh->lru, &conf->handle_list);
205                         }
206                         md_wakeup_thread(conf->mddev->thread);
207                 } else {
208                         BUG_ON(stripe_operations_active(sh));
209                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210                                 atomic_dec(&conf->preread_active_stripes);
211                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212                                         md_wakeup_thread(conf->mddev->thread);
213                         }
214                         atomic_dec(&conf->active_stripes);
215                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216                                 list_add_tail(&sh->lru, &conf->inactive_list);
217                                 wake_up(&conf->wait_for_stripe);
218                                 if (conf->retry_read_aligned)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                 }
222         }
223 }
224
225 static void release_stripe(struct stripe_head *sh)
226 {
227         raid5_conf_t *conf = sh->raid_conf;
228         unsigned long flags;
229
230         spin_lock_irqsave(&conf->device_lock, flags);
231         __release_stripe(conf, sh);
232         spin_unlock_irqrestore(&conf->device_lock, flags);
233 }
234
235 static inline void remove_hash(struct stripe_head *sh)
236 {
237         pr_debug("remove_hash(), stripe %llu\n",
238                 (unsigned long long)sh->sector);
239
240         hlist_del_init(&sh->hash);
241 }
242
243 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244 {
245         struct hlist_head *hp = stripe_hash(conf, sh->sector);
246
247         pr_debug("insert_hash(), stripe %llu\n",
248                 (unsigned long long)sh->sector);
249
250         CHECK_DEVLOCK();
251         hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257 {
258         struct stripe_head *sh = NULL;
259         struct list_head *first;
260
261         CHECK_DEVLOCK();
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh, int num)
274 {
275         struct page *p;
276         int i;
277
278         for (i=0; i<num ; i++) {
279                 p = sh->dev[i].page;
280                 if (!p)
281                         continue;
282                 sh->dev[i].page = NULL;
283                 put_page(p);
284         }
285 }
286
287 static int grow_buffers(struct stripe_head *sh, int num)
288 {
289         int i;
290
291         for (i=0; i<num; i++) {
292                 struct page *page;
293
294                 if (!(page = alloc_page(GFP_KERNEL))) {
295                         return 1;
296                 }
297                 sh->dev[i].page = page;
298         }
299         return 0;
300 }
301
302 static void raid5_build_block(struct stripe_head *sh, int i);
303 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304                             struct stripe_head *sh);
305
306 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307 {
308         raid5_conf_t *conf = sh->raid_conf;
309         int i;
310
311         BUG_ON(atomic_read(&sh->count) != 0);
312         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313         BUG_ON(stripe_operations_active(sh));
314
315         CHECK_DEVLOCK();
316         pr_debug("init_stripe called, stripe %llu\n",
317                 (unsigned long long)sh->sector);
318
319         remove_hash(sh);
320
321         sh->generation = conf->generation - previous;
322         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323         sh->sector = sector;
324         stripe_set_idx(sector, conf, previous, sh);
325         sh->state = 0;
326
327
328         for (i = sh->disks; i--; ) {
329                 struct r5dev *dev = &sh->dev[i];
330
331                 if (dev->toread || dev->read || dev->towrite || dev->written ||
332                     test_bit(R5_LOCKED, &dev->flags)) {
333                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334                                (unsigned long long)sh->sector, i, dev->toread,
335                                dev->read, dev->towrite, dev->written,
336                                test_bit(R5_LOCKED, &dev->flags));
337                         BUG();
338                 }
339                 dev->flags = 0;
340                 raid5_build_block(sh, i);
341         }
342         insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346                                          short generation)
347 {
348         struct stripe_head *sh;
349         struct hlist_node *hn;
350
351         CHECK_DEVLOCK();
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 static void unplug_slaves(mddev_t *mddev);
361 static void raid5_unplug_device(struct request_queue *q);
362
363 static struct stripe_head *
364 get_active_stripe(raid5_conf_t *conf, sector_t sector,
365                   int previous, int noblock)
366 {
367         struct stripe_head *sh;
368
369         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370
371         spin_lock_irq(&conf->device_lock);
372
373         do {
374                 wait_event_lock_irq(conf->wait_for_stripe,
375                                     conf->quiesce == 0,
376                                     conf->device_lock, /* nothing */);
377                 sh = __find_stripe(conf, sector, conf->generation - previous);
378                 if (!sh) {
379                         if (!conf->inactive_blocked)
380                                 sh = get_free_stripe(conf);
381                         if (noblock && sh == NULL)
382                                 break;
383                         if (!sh) {
384                                 conf->inactive_blocked = 1;
385                                 wait_event_lock_irq(conf->wait_for_stripe,
386                                                     !list_empty(&conf->inactive_list) &&
387                                                     (atomic_read(&conf->active_stripes)
388                                                      < (conf->max_nr_stripes *3/4)
389                                                      || !conf->inactive_blocked),
390                                                     conf->device_lock,
391                                                     raid5_unplug_device(conf->mddev->queue)
392                                         );
393                                 conf->inactive_blocked = 0;
394                         } else
395                                 init_stripe(sh, sector, previous);
396                 } else {
397                         if (atomic_read(&sh->count)) {
398                           BUG_ON(!list_empty(&sh->lru));
399                         } else {
400                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
401                                         atomic_inc(&conf->active_stripes);
402                                 if (list_empty(&sh->lru) &&
403                                     !test_bit(STRIPE_EXPANDING, &sh->state))
404                                         BUG();
405                                 list_del_init(&sh->lru);
406                         }
407                 }
408         } while (sh == NULL);
409
410         if (sh)
411                 atomic_inc(&sh->count);
412
413         spin_unlock_irq(&conf->device_lock);
414         return sh;
415 }
416
417 static void
418 raid5_end_read_request(struct bio *bi, int error);
419 static void
420 raid5_end_write_request(struct bio *bi, int error);
421
422 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
423 {
424         raid5_conf_t *conf = sh->raid_conf;
425         int i, disks = sh->disks;
426
427         might_sleep();
428
429         for (i = disks; i--; ) {
430                 int rw;
431                 struct bio *bi;
432                 mdk_rdev_t *rdev;
433                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
434                         rw = WRITE;
435                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
436                         rw = READ;
437                 else
438                         continue;
439
440                 bi = &sh->dev[i].req;
441
442                 bi->bi_rw = rw;
443                 if (rw == WRITE)
444                         bi->bi_end_io = raid5_end_write_request;
445                 else
446                         bi->bi_end_io = raid5_end_read_request;
447
448                 rcu_read_lock();
449                 rdev = rcu_dereference(conf->disks[i].rdev);
450                 if (rdev && test_bit(Faulty, &rdev->flags))
451                         rdev = NULL;
452                 if (rdev)
453                         atomic_inc(&rdev->nr_pending);
454                 rcu_read_unlock();
455
456                 if (rdev) {
457                         if (s->syncing || s->expanding || s->expanded)
458                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
459
460                         set_bit(STRIPE_IO_STARTED, &sh->state);
461
462                         bi->bi_bdev = rdev->bdev;
463                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
464                                 __func__, (unsigned long long)sh->sector,
465                                 bi->bi_rw, i);
466                         atomic_inc(&sh->count);
467                         bi->bi_sector = sh->sector + rdev->data_offset;
468                         bi->bi_flags = 1 << BIO_UPTODATE;
469                         bi->bi_vcnt = 1;
470                         bi->bi_max_vecs = 1;
471                         bi->bi_idx = 0;
472                         bi->bi_io_vec = &sh->dev[i].vec;
473                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
474                         bi->bi_io_vec[0].bv_offset = 0;
475                         bi->bi_size = STRIPE_SIZE;
476                         bi->bi_next = NULL;
477                         if (rw == WRITE &&
478                             test_bit(R5_ReWrite, &sh->dev[i].flags))
479                                 atomic_add(STRIPE_SECTORS,
480                                         &rdev->corrected_errors);
481                         generic_make_request(bi);
482                 } else {
483                         if (rw == WRITE)
484                                 set_bit(STRIPE_DEGRADED, &sh->state);
485                         pr_debug("skip op %ld on disc %d for sector %llu\n",
486                                 bi->bi_rw, i, (unsigned long long)sh->sector);
487                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
488                         set_bit(STRIPE_HANDLE, &sh->state);
489                 }
490         }
491 }
492
493 static struct dma_async_tx_descriptor *
494 async_copy_data(int frombio, struct bio *bio, struct page *page,
495         sector_t sector, struct dma_async_tx_descriptor *tx)
496 {
497         struct bio_vec *bvl;
498         struct page *bio_page;
499         int i;
500         int page_offset;
501
502         if (bio->bi_sector >= sector)
503                 page_offset = (signed)(bio->bi_sector - sector) * 512;
504         else
505                 page_offset = (signed)(sector - bio->bi_sector) * -512;
506         bio_for_each_segment(bvl, bio, i) {
507                 int len = bio_iovec_idx(bio, i)->bv_len;
508                 int clen;
509                 int b_offset = 0;
510
511                 if (page_offset < 0) {
512                         b_offset = -page_offset;
513                         page_offset += b_offset;
514                         len -= b_offset;
515                 }
516
517                 if (len > 0 && page_offset + len > STRIPE_SIZE)
518                         clen = STRIPE_SIZE - page_offset;
519                 else
520                         clen = len;
521
522                 if (clen > 0) {
523                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
524                         bio_page = bio_iovec_idx(bio, i)->bv_page;
525                         if (frombio)
526                                 tx = async_memcpy(page, bio_page, page_offset,
527                                         b_offset, clen,
528                                         ASYNC_TX_DEP_ACK,
529                                         tx, NULL, NULL);
530                         else
531                                 tx = async_memcpy(bio_page, page, b_offset,
532                                         page_offset, clen,
533                                         ASYNC_TX_DEP_ACK,
534                                         tx, NULL, NULL);
535                 }
536                 if (clen < len) /* hit end of page */
537                         break;
538                 page_offset +=  len;
539         }
540
541         return tx;
542 }
543
544 static void ops_complete_biofill(void *stripe_head_ref)
545 {
546         struct stripe_head *sh = stripe_head_ref;
547         struct bio *return_bi = NULL;
548         raid5_conf_t *conf = sh->raid_conf;
549         int i;
550
551         pr_debug("%s: stripe %llu\n", __func__,
552                 (unsigned long long)sh->sector);
553
554         /* clear completed biofills */
555         spin_lock_irq(&conf->device_lock);
556         for (i = sh->disks; i--; ) {
557                 struct r5dev *dev = &sh->dev[i];
558
559                 /* acknowledge completion of a biofill operation */
560                 /* and check if we need to reply to a read request,
561                  * new R5_Wantfill requests are held off until
562                  * !STRIPE_BIOFILL_RUN
563                  */
564                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
565                         struct bio *rbi, *rbi2;
566
567                         BUG_ON(!dev->read);
568                         rbi = dev->read;
569                         dev->read = NULL;
570                         while (rbi && rbi->bi_sector <
571                                 dev->sector + STRIPE_SECTORS) {
572                                 rbi2 = r5_next_bio(rbi, dev->sector);
573                                 if (!raid5_dec_bi_phys_segments(rbi)) {
574                                         rbi->bi_next = return_bi;
575                                         return_bi = rbi;
576                                 }
577                                 rbi = rbi2;
578                         }
579                 }
580         }
581         spin_unlock_irq(&conf->device_lock);
582         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
583
584         return_io(return_bi);
585
586         set_bit(STRIPE_HANDLE, &sh->state);
587         release_stripe(sh);
588 }
589
590 static void ops_run_biofill(struct stripe_head *sh)
591 {
592         struct dma_async_tx_descriptor *tx = NULL;
593         raid5_conf_t *conf = sh->raid_conf;
594         int i;
595
596         pr_debug("%s: stripe %llu\n", __func__,
597                 (unsigned long long)sh->sector);
598
599         for (i = sh->disks; i--; ) {
600                 struct r5dev *dev = &sh->dev[i];
601                 if (test_bit(R5_Wantfill, &dev->flags)) {
602                         struct bio *rbi;
603                         spin_lock_irq(&conf->device_lock);
604                         dev->read = rbi = dev->toread;
605                         dev->toread = NULL;
606                         spin_unlock_irq(&conf->device_lock);
607                         while (rbi && rbi->bi_sector <
608                                 dev->sector + STRIPE_SECTORS) {
609                                 tx = async_copy_data(0, rbi, dev->page,
610                                         dev->sector, tx);
611                                 rbi = r5_next_bio(rbi, dev->sector);
612                         }
613                 }
614         }
615
616         atomic_inc(&sh->count);
617         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
618                 ops_complete_biofill, sh);
619 }
620
621 static void ops_complete_compute5(void *stripe_head_ref)
622 {
623         struct stripe_head *sh = stripe_head_ref;
624         int target = sh->ops.target;
625         struct r5dev *tgt = &sh->dev[target];
626
627         pr_debug("%s: stripe %llu\n", __func__,
628                 (unsigned long long)sh->sector);
629
630         set_bit(R5_UPTODATE, &tgt->flags);
631         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632         clear_bit(R5_Wantcompute, &tgt->flags);
633         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
634         if (sh->check_state == check_state_compute_run)
635                 sh->check_state = check_state_compute_result;
636         set_bit(STRIPE_HANDLE, &sh->state);
637         release_stripe(sh);
638 }
639
640 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
641 {
642         /* kernel stack size limits the total number of disks */
643         int disks = sh->disks;
644         struct page *xor_srcs[disks];
645         int target = sh->ops.target;
646         struct r5dev *tgt = &sh->dev[target];
647         struct page *xor_dest = tgt->page;
648         int count = 0;
649         struct dma_async_tx_descriptor *tx;
650         int i;
651
652         pr_debug("%s: stripe %llu block: %d\n",
653                 __func__, (unsigned long long)sh->sector, target);
654         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
655
656         for (i = disks; i--; )
657                 if (i != target)
658                         xor_srcs[count++] = sh->dev[i].page;
659
660         atomic_inc(&sh->count);
661
662         if (unlikely(count == 1))
663                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
664                         0, NULL, ops_complete_compute5, sh);
665         else
666                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
667                         ASYNC_TX_XOR_ZERO_DST, NULL,
668                         ops_complete_compute5, sh);
669
670         return tx;
671 }
672
673 static void ops_complete_prexor(void *stripe_head_ref)
674 {
675         struct stripe_head *sh = stripe_head_ref;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679 }
680
681 static struct dma_async_tx_descriptor *
682 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
683 {
684         /* kernel stack size limits the total number of disks */
685         int disks = sh->disks;
686         struct page *xor_srcs[disks];
687         int count = 0, pd_idx = sh->pd_idx, i;
688
689         /* existing parity data subtracted */
690         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
691
692         pr_debug("%s: stripe %llu\n", __func__,
693                 (unsigned long long)sh->sector);
694
695         for (i = disks; i--; ) {
696                 struct r5dev *dev = &sh->dev[i];
697                 /* Only process blocks that are known to be uptodate */
698                 if (test_bit(R5_Wantdrain, &dev->flags))
699                         xor_srcs[count++] = dev->page;
700         }
701
702         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
703                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
704                 ops_complete_prexor, sh);
705
706         return tx;
707 }
708
709 static struct dma_async_tx_descriptor *
710 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
711 {
712         int disks = sh->disks;
713         int i;
714
715         pr_debug("%s: stripe %llu\n", __func__,
716                 (unsigned long long)sh->sector);
717
718         for (i = disks; i--; ) {
719                 struct r5dev *dev = &sh->dev[i];
720                 struct bio *chosen;
721
722                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
723                         struct bio *wbi;
724
725                         spin_lock(&sh->lock);
726                         chosen = dev->towrite;
727                         dev->towrite = NULL;
728                         BUG_ON(dev->written);
729                         wbi = dev->written = chosen;
730                         spin_unlock(&sh->lock);
731
732                         while (wbi && wbi->bi_sector <
733                                 dev->sector + STRIPE_SECTORS) {
734                                 tx = async_copy_data(1, wbi, dev->page,
735                                         dev->sector, tx);
736                                 wbi = r5_next_bio(wbi, dev->sector);
737                         }
738                 }
739         }
740
741         return tx;
742 }
743
744 static void ops_complete_postxor(void *stripe_head_ref)
745 {
746         struct stripe_head *sh = stripe_head_ref;
747         int disks = sh->disks, i, pd_idx = sh->pd_idx;
748
749         pr_debug("%s: stripe %llu\n", __func__,
750                 (unsigned long long)sh->sector);
751
752         for (i = disks; i--; ) {
753                 struct r5dev *dev = &sh->dev[i];
754                 if (dev->written || i == pd_idx)
755                         set_bit(R5_UPTODATE, &dev->flags);
756         }
757
758         if (sh->reconstruct_state == reconstruct_state_drain_run)
759                 sh->reconstruct_state = reconstruct_state_drain_result;
760         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
761                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
762         else {
763                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
764                 sh->reconstruct_state = reconstruct_state_result;
765         }
766
767         set_bit(STRIPE_HANDLE, &sh->state);
768         release_stripe(sh);
769 }
770
771 static void
772 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
773 {
774         /* kernel stack size limits the total number of disks */
775         int disks = sh->disks;
776         struct page *xor_srcs[disks];
777
778         int count = 0, pd_idx = sh->pd_idx, i;
779         struct page *xor_dest;
780         int prexor = 0;
781         unsigned long flags;
782
783         pr_debug("%s: stripe %llu\n", __func__,
784                 (unsigned long long)sh->sector);
785
786         /* check if prexor is active which means only process blocks
787          * that are part of a read-modify-write (written)
788          */
789         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
790                 prexor = 1;
791                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
792                 for (i = disks; i--; ) {
793                         struct r5dev *dev = &sh->dev[i];
794                         if (dev->written)
795                                 xor_srcs[count++] = dev->page;
796                 }
797         } else {
798                 xor_dest = sh->dev[pd_idx].page;
799                 for (i = disks; i--; ) {
800                         struct r5dev *dev = &sh->dev[i];
801                         if (i != pd_idx)
802                                 xor_srcs[count++] = dev->page;
803                 }
804         }
805
806         /* 1/ if we prexor'd then the dest is reused as a source
807          * 2/ if we did not prexor then we are redoing the parity
808          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
809          * for the synchronous xor case
810          */
811         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
812                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
813
814         atomic_inc(&sh->count);
815
816         if (unlikely(count == 1)) {
817                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
818                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
819                         flags, tx, ops_complete_postxor, sh);
820         } else
821                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
822                         flags, tx, ops_complete_postxor, sh);
823 }
824
825 static void ops_complete_check(void *stripe_head_ref)
826 {
827         struct stripe_head *sh = stripe_head_ref;
828
829         pr_debug("%s: stripe %llu\n", __func__,
830                 (unsigned long long)sh->sector);
831
832         sh->check_state = check_state_check_result;
833         set_bit(STRIPE_HANDLE, &sh->state);
834         release_stripe(sh);
835 }
836
837 static void ops_run_check(struct stripe_head *sh)
838 {
839         /* kernel stack size limits the total number of disks */
840         int disks = sh->disks;
841         struct page *xor_srcs[disks];
842         struct dma_async_tx_descriptor *tx;
843
844         int count = 0, pd_idx = sh->pd_idx, i;
845         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
846
847         pr_debug("%s: stripe %llu\n", __func__,
848                 (unsigned long long)sh->sector);
849
850         for (i = disks; i--; ) {
851                 struct r5dev *dev = &sh->dev[i];
852                 if (i != pd_idx)
853                         xor_srcs[count++] = dev->page;
854         }
855
856         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
857                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
858
859         atomic_inc(&sh->count);
860         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
861                 ops_complete_check, sh);
862 }
863
864 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
865 {
866         int overlap_clear = 0, i, disks = sh->disks;
867         struct dma_async_tx_descriptor *tx = NULL;
868
869         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
870                 ops_run_biofill(sh);
871                 overlap_clear++;
872         }
873
874         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
875                 tx = ops_run_compute5(sh);
876                 /* terminate the chain if postxor is not set to be run */
877                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
878                         async_tx_ack(tx);
879         }
880
881         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
882                 tx = ops_run_prexor(sh, tx);
883
884         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
885                 tx = ops_run_biodrain(sh, tx);
886                 overlap_clear++;
887         }
888
889         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
890                 ops_run_postxor(sh, tx);
891
892         if (test_bit(STRIPE_OP_CHECK, &ops_request))
893                 ops_run_check(sh);
894
895         if (overlap_clear)
896                 for (i = disks; i--; ) {
897                         struct r5dev *dev = &sh->dev[i];
898                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
899                                 wake_up(&sh->raid_conf->wait_for_overlap);
900                 }
901 }
902
903 static int grow_one_stripe(raid5_conf_t *conf)
904 {
905         struct stripe_head *sh;
906         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
907         if (!sh)
908                 return 0;
909         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
910         sh->raid_conf = conf;
911         spin_lock_init(&sh->lock);
912
913         if (grow_buffers(sh, conf->raid_disks)) {
914                 shrink_buffers(sh, conf->raid_disks);
915                 kmem_cache_free(conf->slab_cache, sh);
916                 return 0;
917         }
918         sh->disks = conf->raid_disks;
919         /* we just created an active stripe so... */
920         atomic_set(&sh->count, 1);
921         atomic_inc(&conf->active_stripes);
922         INIT_LIST_HEAD(&sh->lru);
923         release_stripe(sh);
924         return 1;
925 }
926
927 static int grow_stripes(raid5_conf_t *conf, int num)
928 {
929         struct kmem_cache *sc;
930         int devs = conf->raid_disks;
931
932         sprintf(conf->cache_name[0],
933                 "raid%d-%s", conf->level, mdname(conf->mddev));
934         sprintf(conf->cache_name[1],
935                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
936         conf->active_name = 0;
937         sc = kmem_cache_create(conf->cache_name[conf->active_name],
938                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
939                                0, 0, NULL);
940         if (!sc)
941                 return 1;
942         conf->slab_cache = sc;
943         conf->pool_size = devs;
944         while (num--)
945                 if (!grow_one_stripe(conf))
946                         return 1;
947         return 0;
948 }
949
950 #ifdef CONFIG_MD_RAID5_RESHAPE
951 static int resize_stripes(raid5_conf_t *conf, int newsize)
952 {
953         /* Make all the stripes able to hold 'newsize' devices.
954          * New slots in each stripe get 'page' set to a new page.
955          *
956          * This happens in stages:
957          * 1/ create a new kmem_cache and allocate the required number of
958          *    stripe_heads.
959          * 2/ gather all the old stripe_heads and tranfer the pages across
960          *    to the new stripe_heads.  This will have the side effect of
961          *    freezing the array as once all stripe_heads have been collected,
962          *    no IO will be possible.  Old stripe heads are freed once their
963          *    pages have been transferred over, and the old kmem_cache is
964          *    freed when all stripes are done.
965          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
966          *    we simple return a failre status - no need to clean anything up.
967          * 4/ allocate new pages for the new slots in the new stripe_heads.
968          *    If this fails, we don't bother trying the shrink the
969          *    stripe_heads down again, we just leave them as they are.
970          *    As each stripe_head is processed the new one is released into
971          *    active service.
972          *
973          * Once step2 is started, we cannot afford to wait for a write,
974          * so we use GFP_NOIO allocations.
975          */
976         struct stripe_head *osh, *nsh;
977         LIST_HEAD(newstripes);
978         struct disk_info *ndisks;
979         int err;
980         struct kmem_cache *sc;
981         int i;
982
983         if (newsize <= conf->pool_size)
984                 return 0; /* never bother to shrink */
985
986         err = md_allow_write(conf->mddev);
987         if (err)
988                 return err;
989
990         /* Step 1 */
991         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993                                0, 0, NULL);
994         if (!sc)
995                 return -ENOMEM;
996
997         for (i = conf->max_nr_stripes; i; i--) {
998                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999                 if (!nsh)
1000                         break;
1001
1002                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004                 nsh->raid_conf = conf;
1005                 spin_lock_init(&nsh->lock);
1006
1007                 list_add(&nsh->lru, &newstripes);
1008         }
1009         if (i) {
1010                 /* didn't get enough, give up */
1011                 while (!list_empty(&newstripes)) {
1012                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013                         list_del(&nsh->lru);
1014                         kmem_cache_free(sc, nsh);
1015                 }
1016                 kmem_cache_destroy(sc);
1017                 return -ENOMEM;
1018         }
1019         /* Step 2 - Must use GFP_NOIO now.
1020          * OK, we have enough stripes, start collecting inactive
1021          * stripes and copying them over
1022          */
1023         list_for_each_entry(nsh, &newstripes, lru) {
1024                 spin_lock_irq(&conf->device_lock);
1025                 wait_event_lock_irq(conf->wait_for_stripe,
1026                                     !list_empty(&conf->inactive_list),
1027                                     conf->device_lock,
1028                                     unplug_slaves(conf->mddev)
1029                         );
1030                 osh = get_free_stripe(conf);
1031                 spin_unlock_irq(&conf->device_lock);
1032                 atomic_set(&nsh->count, 1);
1033                 for(i=0; i<conf->pool_size; i++)
1034                         nsh->dev[i].page = osh->dev[i].page;
1035                 for( ; i<newsize; i++)
1036                         nsh->dev[i].page = NULL;
1037                 kmem_cache_free(conf->slab_cache, osh);
1038         }
1039         kmem_cache_destroy(conf->slab_cache);
1040
1041         /* Step 3.
1042          * At this point, we are holding all the stripes so the array
1043          * is completely stalled, so now is a good time to resize
1044          * conf->disks.
1045          */
1046         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047         if (ndisks) {
1048                 for (i=0; i<conf->raid_disks; i++)
1049                         ndisks[i] = conf->disks[i];
1050                 kfree(conf->disks);
1051                 conf->disks = ndisks;
1052         } else
1053                 err = -ENOMEM;
1054
1055         /* Step 4, return new stripes to service */
1056         while(!list_empty(&newstripes)) {
1057                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058                 list_del_init(&nsh->lru);
1059                 for (i=conf->raid_disks; i < newsize; i++)
1060                         if (nsh->dev[i].page == NULL) {
1061                                 struct page *p = alloc_page(GFP_NOIO);
1062                                 nsh->dev[i].page = p;
1063                                 if (!p)
1064                                         err = -ENOMEM;
1065                         }
1066                 release_stripe(nsh);
1067         }
1068         /* critical section pass, GFP_NOIO no longer needed */
1069
1070         conf->slab_cache = sc;
1071         conf->active_name = 1-conf->active_name;
1072         conf->pool_size = newsize;
1073         return err;
1074 }
1075 #endif
1076
1077 static int drop_one_stripe(raid5_conf_t *conf)
1078 {
1079         struct stripe_head *sh;
1080
1081         spin_lock_irq(&conf->device_lock);
1082         sh = get_free_stripe(conf);
1083         spin_unlock_irq(&conf->device_lock);
1084         if (!sh)
1085                 return 0;
1086         BUG_ON(atomic_read(&sh->count));
1087         shrink_buffers(sh, conf->pool_size);
1088         kmem_cache_free(conf->slab_cache, sh);
1089         atomic_dec(&conf->active_stripes);
1090         return 1;
1091 }
1092
1093 static void shrink_stripes(raid5_conf_t *conf)
1094 {
1095         while (drop_one_stripe(conf))
1096                 ;
1097
1098         if (conf->slab_cache)
1099                 kmem_cache_destroy(conf->slab_cache);
1100         conf->slab_cache = NULL;
1101 }
1102
1103 static void raid5_end_read_request(struct bio * bi, int error)
1104 {
1105         struct stripe_head *sh = bi->bi_private;
1106         raid5_conf_t *conf = sh->raid_conf;
1107         int disks = sh->disks, i;
1108         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1109         char b[BDEVNAME_SIZE];
1110         mdk_rdev_t *rdev;
1111
1112
1113         for (i=0 ; i<disks; i++)
1114                 if (bi == &sh->dev[i].req)
1115                         break;
1116
1117         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1118                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1119                 uptodate);
1120         if (i == disks) {
1121                 BUG();
1122                 return;
1123         }
1124
1125         if (uptodate) {
1126                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1127                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1128                         rdev = conf->disks[i].rdev;
1129                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1130                                   " (%lu sectors at %llu on %s)\n",
1131                                   mdname(conf->mddev), STRIPE_SECTORS,
1132                                   (unsigned long long)(sh->sector
1133                                                        + rdev->data_offset),
1134                                   bdevname(rdev->bdev, b));
1135                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1136                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1137                 }
1138                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1139                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1140         } else {
1141                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1142                 int retry = 0;
1143                 rdev = conf->disks[i].rdev;
1144
1145                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1146                 atomic_inc(&rdev->read_errors);
1147                 if (conf->mddev->degraded)
1148                         printk_rl(KERN_WARNING
1149                                   "raid5:%s: read error not correctable "
1150                                   "(sector %llu on %s).\n",
1151                                   mdname(conf->mddev),
1152                                   (unsigned long long)(sh->sector
1153                                                        + rdev->data_offset),
1154                                   bdn);
1155                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1156                         /* Oh, no!!! */
1157                         printk_rl(KERN_WARNING
1158                                   "raid5:%s: read error NOT corrected!! "
1159                                   "(sector %llu on %s).\n",
1160                                   mdname(conf->mddev),
1161                                   (unsigned long long)(sh->sector
1162                                                        + rdev->data_offset),
1163                                   bdn);
1164                 else if (atomic_read(&rdev->read_errors)
1165                          > conf->max_nr_stripes)
1166                         printk(KERN_WARNING
1167                                "raid5:%s: Too many read errors, failing device %s.\n",
1168                                mdname(conf->mddev), bdn);
1169                 else
1170                         retry = 1;
1171                 if (retry)
1172                         set_bit(R5_ReadError, &sh->dev[i].flags);
1173                 else {
1174                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1175                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1176                         md_error(conf->mddev, rdev);
1177                 }
1178         }
1179         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1180         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1181         set_bit(STRIPE_HANDLE, &sh->state);
1182         release_stripe(sh);
1183 }
1184
1185 static void raid5_end_write_request(struct bio *bi, int error)
1186 {
1187         struct stripe_head *sh = bi->bi_private;
1188         raid5_conf_t *conf = sh->raid_conf;
1189         int disks = sh->disks, i;
1190         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1191
1192         for (i=0 ; i<disks; i++)
1193                 if (bi == &sh->dev[i].req)
1194                         break;
1195
1196         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1197                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1198                 uptodate);
1199         if (i == disks) {
1200                 BUG();
1201                 return;
1202         }
1203
1204         if (!uptodate)
1205                 md_error(conf->mddev, conf->disks[i].rdev);
1206
1207         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1208         
1209         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210         set_bit(STRIPE_HANDLE, &sh->state);
1211         release_stripe(sh);
1212 }
1213
1214
1215 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1216         
1217 static void raid5_build_block(struct stripe_head *sh, int i)
1218 {
1219         struct r5dev *dev = &sh->dev[i];
1220
1221         bio_init(&dev->req);
1222         dev->req.bi_io_vec = &dev->vec;
1223         dev->req.bi_vcnt++;
1224         dev->req.bi_max_vecs++;
1225         dev->vec.bv_page = dev->page;
1226         dev->vec.bv_len = STRIPE_SIZE;
1227         dev->vec.bv_offset = 0;
1228
1229         dev->req.bi_sector = sh->sector;
1230         dev->req.bi_private = sh;
1231
1232         dev->flags = 0;
1233         dev->sector = compute_blocknr(sh, i);
1234 }
1235
1236 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1237 {
1238         char b[BDEVNAME_SIZE];
1239         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1240         pr_debug("raid5: error called\n");
1241
1242         if (!test_bit(Faulty, &rdev->flags)) {
1243                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1244                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1245                         unsigned long flags;
1246                         spin_lock_irqsave(&conf->device_lock, flags);
1247                         mddev->degraded++;
1248                         spin_unlock_irqrestore(&conf->device_lock, flags);
1249                         /*
1250                          * if recovery was running, make sure it aborts.
1251                          */
1252                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1253                 }
1254                 set_bit(Faulty, &rdev->flags);
1255                 printk(KERN_ALERT
1256                        "raid5: Disk failure on %s, disabling device.\n"
1257                        "raid5: Operation continuing on %d devices.\n",
1258                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1259         }
1260 }
1261
1262 /*
1263  * Input: a 'big' sector number,
1264  * Output: index of the data and parity disk, and the sector # in them.
1265  */
1266 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1267                                      int previous, int *dd_idx,
1268                                      struct stripe_head *sh)
1269 {
1270         long stripe;
1271         unsigned long chunk_number;
1272         unsigned int chunk_offset;
1273         int pd_idx, qd_idx;
1274         int ddf_layout = 0;
1275         sector_t new_sector;
1276         int sectors_per_chunk = conf->chunk_size >> 9;
1277         int raid_disks = previous ? conf->previous_raid_disks
1278                                   : conf->raid_disks;
1279         int data_disks = raid_disks - conf->max_degraded;
1280
1281         /* First compute the information on this sector */
1282
1283         /*
1284          * Compute the chunk number and the sector offset inside the chunk
1285          */
1286         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1287         chunk_number = r_sector;
1288         BUG_ON(r_sector != chunk_number);
1289
1290         /*
1291          * Compute the stripe number
1292          */
1293         stripe = chunk_number / data_disks;
1294
1295         /*
1296          * Compute the data disk and parity disk indexes inside the stripe
1297          */
1298         *dd_idx = chunk_number % data_disks;
1299
1300         /*
1301          * Select the parity disk based on the user selected algorithm.
1302          */
1303         pd_idx = qd_idx = ~0;
1304         switch(conf->level) {
1305         case 4:
1306                 pd_idx = data_disks;
1307                 break;
1308         case 5:
1309                 switch (conf->algorithm) {
1310                 case ALGORITHM_LEFT_ASYMMETRIC:
1311                         pd_idx = data_disks - stripe % raid_disks;
1312                         if (*dd_idx >= pd_idx)
1313                                 (*dd_idx)++;
1314                         break;
1315                 case ALGORITHM_RIGHT_ASYMMETRIC:
1316                         pd_idx = stripe % raid_disks;
1317                         if (*dd_idx >= pd_idx)
1318                                 (*dd_idx)++;
1319                         break;
1320                 case ALGORITHM_LEFT_SYMMETRIC:
1321                         pd_idx = data_disks - stripe % raid_disks;
1322                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1323                         break;
1324                 case ALGORITHM_RIGHT_SYMMETRIC:
1325                         pd_idx = stripe % raid_disks;
1326                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1327                         break;
1328                 case ALGORITHM_PARITY_0:
1329                         pd_idx = 0;
1330                         (*dd_idx)++;
1331                         break;
1332                 case ALGORITHM_PARITY_N:
1333                         pd_idx = data_disks;
1334                         break;
1335                 default:
1336                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1337                                 conf->algorithm);
1338                         BUG();
1339                 }
1340                 break;
1341         case 6:
1342
1343                 switch (conf->algorithm) {
1344                 case ALGORITHM_LEFT_ASYMMETRIC:
1345                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1346                         qd_idx = pd_idx + 1;
1347                         if (pd_idx == raid_disks-1) {
1348                                 (*dd_idx)++;    /* Q D D D P */
1349                                 qd_idx = 0;
1350                         } else if (*dd_idx >= pd_idx)
1351                                 (*dd_idx) += 2; /* D D P Q D */
1352                         break;
1353                 case ALGORITHM_RIGHT_ASYMMETRIC:
1354                         pd_idx = stripe % raid_disks;
1355                         qd_idx = pd_idx + 1;
1356                         if (pd_idx == raid_disks-1) {
1357                                 (*dd_idx)++;    /* Q D D D P */
1358                                 qd_idx = 0;
1359                         } else if (*dd_idx >= pd_idx)
1360                                 (*dd_idx) += 2; /* D D P Q D */
1361                         break;
1362                 case ALGORITHM_LEFT_SYMMETRIC:
1363                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1364                         qd_idx = (pd_idx + 1) % raid_disks;
1365                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1366                         break;
1367                 case ALGORITHM_RIGHT_SYMMETRIC:
1368                         pd_idx = stripe % raid_disks;
1369                         qd_idx = (pd_idx + 1) % raid_disks;
1370                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1371                         break;
1372
1373                 case ALGORITHM_PARITY_0:
1374                         pd_idx = 0;
1375                         qd_idx = 1;
1376                         (*dd_idx) += 2;
1377                         break;
1378                 case ALGORITHM_PARITY_N:
1379                         pd_idx = data_disks;
1380                         qd_idx = data_disks + 1;
1381                         break;
1382
1383                 case ALGORITHM_ROTATING_ZERO_RESTART:
1384                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1385                          * of blocks for computing Q is different.
1386                          */
1387                         pd_idx = stripe % raid_disks;
1388                         qd_idx = pd_idx + 1;
1389                         if (pd_idx == raid_disks-1) {
1390                                 (*dd_idx)++;    /* Q D D D P */
1391                                 qd_idx = 0;
1392                         } else if (*dd_idx >= pd_idx)
1393                                 (*dd_idx) += 2; /* D D P Q D */
1394                         ddf_layout = 1;
1395                         break;
1396
1397                 case ALGORITHM_ROTATING_N_RESTART:
1398                         /* Same a left_asymmetric, by first stripe is
1399                          * D D D P Q  rather than
1400                          * Q D D D P
1401                          */
1402                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1403                         qd_idx = pd_idx + 1;
1404                         if (pd_idx == raid_disks-1) {
1405                                 (*dd_idx)++;    /* Q D D D P */
1406                                 qd_idx = 0;
1407                         } else if (*dd_idx >= pd_idx)
1408                                 (*dd_idx) += 2; /* D D P Q D */
1409                         ddf_layout = 1;
1410                         break;
1411
1412                 case ALGORITHM_ROTATING_N_CONTINUE:
1413                         /* Same as left_symmetric but Q is before P */
1414                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1415                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1416                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1417                         ddf_layout = 1;
1418                         break;
1419
1420                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1421                         /* RAID5 left_asymmetric, with Q on last device */
1422                         pd_idx = data_disks - stripe % (raid_disks-1);
1423                         if (*dd_idx >= pd_idx)
1424                                 (*dd_idx)++;
1425                         qd_idx = raid_disks - 1;
1426                         break;
1427
1428                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1429                         pd_idx = stripe % (raid_disks-1);
1430                         if (*dd_idx >= pd_idx)
1431                                 (*dd_idx)++;
1432                         qd_idx = raid_disks - 1;
1433                         break;
1434
1435                 case ALGORITHM_LEFT_SYMMETRIC_6:
1436                         pd_idx = data_disks - stripe % (raid_disks-1);
1437                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1438                         qd_idx = raid_disks - 1;
1439                         break;
1440
1441                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1442                         pd_idx = stripe % (raid_disks-1);
1443                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1444                         qd_idx = raid_disks - 1;
1445                         break;
1446
1447                 case ALGORITHM_PARITY_0_6:
1448                         pd_idx = 0;
1449                         (*dd_idx)++;
1450                         qd_idx = raid_disks - 1;
1451                         break;
1452
1453
1454                 default:
1455                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1456                                conf->algorithm);
1457                         BUG();
1458                 }
1459                 break;
1460         }
1461
1462         if (sh) {
1463                 sh->pd_idx = pd_idx;
1464                 sh->qd_idx = qd_idx;
1465                 sh->ddf_layout = ddf_layout;
1466         }
1467         /*
1468          * Finally, compute the new sector number
1469          */
1470         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1471         return new_sector;
1472 }
1473
1474
1475 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1476 {
1477         raid5_conf_t *conf = sh->raid_conf;
1478         int raid_disks = sh->disks;
1479         int data_disks = raid_disks - conf->max_degraded;
1480         sector_t new_sector = sh->sector, check;
1481         int sectors_per_chunk = conf->chunk_size >> 9;
1482         sector_t stripe;
1483         int chunk_offset;
1484         int chunk_number, dummy1, dd_idx = i;
1485         sector_t r_sector;
1486         struct stripe_head sh2;
1487
1488
1489         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1490         stripe = new_sector;
1491         BUG_ON(new_sector != stripe);
1492
1493         if (i == sh->pd_idx)
1494                 return 0;
1495         switch(conf->level) {
1496         case 4: break;
1497         case 5:
1498                 switch (conf->algorithm) {
1499                 case ALGORITHM_LEFT_ASYMMETRIC:
1500                 case ALGORITHM_RIGHT_ASYMMETRIC:
1501                         if (i > sh->pd_idx)
1502                                 i--;
1503                         break;
1504                 case ALGORITHM_LEFT_SYMMETRIC:
1505                 case ALGORITHM_RIGHT_SYMMETRIC:
1506                         if (i < sh->pd_idx)
1507                                 i += raid_disks;
1508                         i -= (sh->pd_idx + 1);
1509                         break;
1510                 case ALGORITHM_PARITY_0:
1511                         i -= 1;
1512                         break;
1513                 case ALGORITHM_PARITY_N:
1514                         break;
1515                 default:
1516                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1517                                conf->algorithm);
1518                         BUG();
1519                 }
1520                 break;
1521         case 6:
1522                 if (i == sh->qd_idx)
1523                         return 0; /* It is the Q disk */
1524                 switch (conf->algorithm) {
1525                 case ALGORITHM_LEFT_ASYMMETRIC:
1526                 case ALGORITHM_RIGHT_ASYMMETRIC:
1527                 case ALGORITHM_ROTATING_ZERO_RESTART:
1528                 case ALGORITHM_ROTATING_N_RESTART:
1529                         if (sh->pd_idx == raid_disks-1)
1530                                 i--;    /* Q D D D P */
1531                         else if (i > sh->pd_idx)
1532                                 i -= 2; /* D D P Q D */
1533                         break;
1534                 case ALGORITHM_LEFT_SYMMETRIC:
1535                 case ALGORITHM_RIGHT_SYMMETRIC:
1536                         if (sh->pd_idx == raid_disks-1)
1537                                 i--; /* Q D D D P */
1538                         else {
1539                                 /* D D P Q D */
1540                                 if (i < sh->pd_idx)
1541                                         i += raid_disks;
1542                                 i -= (sh->pd_idx + 2);
1543                         }
1544                         break;
1545                 case ALGORITHM_PARITY_0:
1546                         i -= 2;
1547                         break;
1548                 case ALGORITHM_PARITY_N:
1549                         break;
1550                 case ALGORITHM_ROTATING_N_CONTINUE:
1551                         if (sh->pd_idx == 0)
1552                                 i--;    /* P D D D Q */
1553                         else if (i > sh->pd_idx)
1554                                 i -= 2; /* D D Q P D */
1555                         break;
1556                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1557                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1558                         if (i > sh->pd_idx)
1559                                 i--;
1560                         break;
1561                 case ALGORITHM_LEFT_SYMMETRIC_6:
1562                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1563                         if (i < sh->pd_idx)
1564                                 i += data_disks + 1;
1565                         i -= (sh->pd_idx + 1);
1566                         break;
1567                 case ALGORITHM_PARITY_0_6:
1568                         i -= 1;
1569                         break;
1570                 default:
1571                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1572                                conf->algorithm);
1573                         BUG();
1574                 }
1575                 break;
1576         }
1577
1578         chunk_number = stripe * data_disks + i;
1579         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1580
1581         check = raid5_compute_sector(conf, r_sector,
1582                                      (raid_disks != conf->raid_disks),
1583                                      &dummy1, &sh2);
1584         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1585                 || sh2.qd_idx != sh->qd_idx) {
1586                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1587                 return 0;
1588         }
1589         return r_sector;
1590 }
1591
1592
1593
1594 /*
1595  * Copy data between a page in the stripe cache, and one or more bion
1596  * The page could align with the middle of the bio, or there could be
1597  * several bion, each with several bio_vecs, which cover part of the page
1598  * Multiple bion are linked together on bi_next.  There may be extras
1599  * at the end of this list.  We ignore them.
1600  */
1601 static void copy_data(int frombio, struct bio *bio,
1602                      struct page *page,
1603                      sector_t sector)
1604 {
1605         char *pa = page_address(page);
1606         struct bio_vec *bvl;
1607         int i;
1608         int page_offset;
1609
1610         if (bio->bi_sector >= sector)
1611                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1612         else
1613                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1614         bio_for_each_segment(bvl, bio, i) {
1615                 int len = bio_iovec_idx(bio,i)->bv_len;
1616                 int clen;
1617                 int b_offset = 0;
1618
1619                 if (page_offset < 0) {
1620                         b_offset = -page_offset;
1621                         page_offset += b_offset;
1622                         len -= b_offset;
1623                 }
1624
1625                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1626                         clen = STRIPE_SIZE - page_offset;
1627                 else clen = len;
1628
1629                 if (clen > 0) {
1630                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1631                         if (frombio)
1632                                 memcpy(pa+page_offset, ba+b_offset, clen);
1633                         else
1634                                 memcpy(ba+b_offset, pa+page_offset, clen);
1635                         __bio_kunmap_atomic(ba, KM_USER0);
1636                 }
1637                 if (clen < len) /* hit end of page */
1638                         break;
1639                 page_offset +=  len;
1640         }
1641 }
1642
1643 #define check_xor()     do {                                              \
1644                                 if (count == MAX_XOR_BLOCKS) {            \
1645                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1646                                 count = 0;                                \
1647                            }                                              \
1648                         } while(0)
1649
1650 static void compute_parity6(struct stripe_head *sh, int method)
1651 {
1652         raid5_conf_t *conf = sh->raid_conf;
1653         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1654         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1655         struct bio *chosen;
1656         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1657         void *ptrs[syndrome_disks+2];
1658
1659         pd_idx = sh->pd_idx;
1660         qd_idx = sh->qd_idx;
1661         d0_idx = raid6_d0(sh);
1662
1663         pr_debug("compute_parity, stripe %llu, method %d\n",
1664                 (unsigned long long)sh->sector, method);
1665
1666         switch(method) {
1667         case READ_MODIFY_WRITE:
1668                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1669         case RECONSTRUCT_WRITE:
1670                 for (i= disks; i-- ;)
1671                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1672                                 chosen = sh->dev[i].towrite;
1673                                 sh->dev[i].towrite = NULL;
1674
1675                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1676                                         wake_up(&conf->wait_for_overlap);
1677
1678                                 BUG_ON(sh->dev[i].written);
1679                                 sh->dev[i].written = chosen;
1680                         }
1681                 break;
1682         case CHECK_PARITY:
1683                 BUG();          /* Not implemented yet */
1684         }
1685
1686         for (i = disks; i--;)
1687                 if (sh->dev[i].written) {
1688                         sector_t sector = sh->dev[i].sector;
1689                         struct bio *wbi = sh->dev[i].written;
1690                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1691                                 copy_data(1, wbi, sh->dev[i].page, sector);
1692                                 wbi = r5_next_bio(wbi, sector);
1693                         }
1694
1695                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1696                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1697                 }
1698
1699         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1700
1701         for (i = 0; i < disks; i++)
1702                 ptrs[i] = (void *)raid6_empty_zero_page;
1703
1704         count = 0;
1705         i = d0_idx;
1706         do {
1707                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1708
1709                 ptrs[slot] = page_address(sh->dev[i].page);
1710                 if (slot < syndrome_disks &&
1711                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1712                         printk(KERN_ERR "block %d/%d not uptodate "
1713                                "on parity calc\n", i, count);
1714                         BUG();
1715                 }
1716
1717                 i = raid6_next_disk(i, disks);
1718         } while (i != d0_idx);
1719         BUG_ON(count != syndrome_disks);
1720
1721         raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1722
1723         switch(method) {
1724         case RECONSTRUCT_WRITE:
1725                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1726                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1727                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1728                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1729                 break;
1730         case UPDATE_PARITY:
1731                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1732                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1733                 break;
1734         }
1735 }
1736
1737
1738 /* Compute one missing block */
1739 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1740 {
1741         int i, count, disks = sh->disks;
1742         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1743         int qd_idx = sh->qd_idx;
1744
1745         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1746                 (unsigned long long)sh->sector, dd_idx);
1747
1748         if ( dd_idx == qd_idx ) {
1749                 /* We're actually computing the Q drive */
1750                 compute_parity6(sh, UPDATE_PARITY);
1751         } else {
1752                 dest = page_address(sh->dev[dd_idx].page);
1753                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1754                 count = 0;
1755                 for (i = disks ; i--; ) {
1756                         if (i == dd_idx || i == qd_idx)
1757                                 continue;
1758                         p = page_address(sh->dev[i].page);
1759                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1760                                 ptr[count++] = p;
1761                         else
1762                                 printk("compute_block() %d, stripe %llu, %d"
1763                                        " not present\n", dd_idx,
1764                                        (unsigned long long)sh->sector, i);
1765
1766                         check_xor();
1767                 }
1768                 if (count)
1769                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1770                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1771                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1772         }
1773 }
1774
1775 /* Compute two missing blocks */
1776 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1777 {
1778         int i, count, disks = sh->disks;
1779         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1780         int d0_idx = raid6_d0(sh);
1781         int faila = -1, failb = -1;
1782         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1783         void *ptrs[syndrome_disks+2];
1784
1785         for (i = 0; i < disks ; i++)
1786                 ptrs[i] = (void *)raid6_empty_zero_page;
1787         count = 0;
1788         i = d0_idx;
1789         do {
1790                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1791
1792                 ptrs[slot] = page_address(sh->dev[i].page);
1793
1794                 if (i == dd_idx1)
1795                         faila = slot;
1796                 if (i == dd_idx2)
1797                         failb = slot;
1798                 i = raid6_next_disk(i, disks);
1799         } while (i != d0_idx);
1800         BUG_ON(count != syndrome_disks);
1801
1802         BUG_ON(faila == failb);
1803         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1804
1805         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1806                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1807                  faila, failb);
1808
1809         if (failb == syndrome_disks+1) {
1810                 /* Q disk is one of the missing disks */
1811                 if (faila == syndrome_disks) {
1812                         /* Missing P+Q, just recompute */
1813                         compute_parity6(sh, UPDATE_PARITY);
1814                         return;
1815                 } else {
1816                         /* We're missing D+Q; recompute D from P */
1817                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1818                                              dd_idx2 : dd_idx1),
1819                                         0);
1820                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1821                         return;
1822                 }
1823         }
1824
1825         /* We're missing D+P or D+D; */
1826         if (failb == syndrome_disks) {
1827                 /* We're missing D+P. */
1828                 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1829         } else {
1830                 /* We're missing D+D. */
1831                 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1832                                   ptrs);
1833         }
1834
1835         /* Both the above update both missing blocks */
1836         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1837         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1838 }
1839
1840 static void
1841 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1842                          int rcw, int expand)
1843 {
1844         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1845
1846         if (rcw) {
1847                 /* if we are not expanding this is a proper write request, and
1848                  * there will be bios with new data to be drained into the
1849                  * stripe cache
1850                  */
1851                 if (!expand) {
1852                         sh->reconstruct_state = reconstruct_state_drain_run;
1853                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1854                 } else
1855                         sh->reconstruct_state = reconstruct_state_run;
1856
1857                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1858
1859                 for (i = disks; i--; ) {
1860                         struct r5dev *dev = &sh->dev[i];
1861
1862                         if (dev->towrite) {
1863                                 set_bit(R5_LOCKED, &dev->flags);
1864                                 set_bit(R5_Wantdrain, &dev->flags);
1865                                 if (!expand)
1866                                         clear_bit(R5_UPTODATE, &dev->flags);
1867                                 s->locked++;
1868                         }
1869                 }
1870                 if (s->locked + 1 == disks)
1871                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1872                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1873         } else {
1874                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1875                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1876
1877                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1878                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1879                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1880                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1881
1882                 for (i = disks; i--; ) {
1883                         struct r5dev *dev = &sh->dev[i];
1884                         if (i == pd_idx)
1885                                 continue;
1886
1887                         if (dev->towrite &&
1888                             (test_bit(R5_UPTODATE, &dev->flags) ||
1889                              test_bit(R5_Wantcompute, &dev->flags))) {
1890                                 set_bit(R5_Wantdrain, &dev->flags);
1891                                 set_bit(R5_LOCKED, &dev->flags);
1892                                 clear_bit(R5_UPTODATE, &dev->flags);
1893                                 s->locked++;
1894                         }
1895                 }
1896         }
1897
1898         /* keep the parity disk locked while asynchronous operations
1899          * are in flight
1900          */
1901         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1902         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1903         s->locked++;
1904
1905         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1906                 __func__, (unsigned long long)sh->sector,
1907                 s->locked, s->ops_request);
1908 }
1909
1910 /*
1911  * Each stripe/dev can have one or more bion attached.
1912  * toread/towrite point to the first in a chain.
1913  * The bi_next chain must be in order.
1914  */
1915 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1916 {
1917         struct bio **bip;
1918         raid5_conf_t *conf = sh->raid_conf;
1919         int firstwrite=0;
1920
1921         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1922                 (unsigned long long)bi->bi_sector,
1923                 (unsigned long long)sh->sector);
1924
1925
1926         spin_lock(&sh->lock);
1927         spin_lock_irq(&conf->device_lock);
1928         if (forwrite) {
1929                 bip = &sh->dev[dd_idx].towrite;
1930                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1931                         firstwrite = 1;
1932         } else
1933                 bip = &sh->dev[dd_idx].toread;
1934         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1935                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1936                         goto overlap;
1937                 bip = & (*bip)->bi_next;
1938         }
1939         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1940                 goto overlap;
1941
1942         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1943         if (*bip)
1944                 bi->bi_next = *bip;
1945         *bip = bi;
1946         bi->bi_phys_segments++;
1947         spin_unlock_irq(&conf->device_lock);
1948         spin_unlock(&sh->lock);
1949
1950         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1951                 (unsigned long long)bi->bi_sector,
1952                 (unsigned long long)sh->sector, dd_idx);
1953
1954         if (conf->mddev->bitmap && firstwrite) {
1955                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1956                                   STRIPE_SECTORS, 0);
1957                 sh->bm_seq = conf->seq_flush+1;
1958                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1959         }
1960
1961         if (forwrite) {
1962                 /* check if page is covered */
1963                 sector_t sector = sh->dev[dd_idx].sector;
1964                 for (bi=sh->dev[dd_idx].towrite;
1965                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1966                              bi && bi->bi_sector <= sector;
1967                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1968                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1969                                 sector = bi->bi_sector + (bi->bi_size>>9);
1970                 }
1971                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1972                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1973         }
1974         return 1;
1975
1976  overlap:
1977         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1978         spin_unlock_irq(&conf->device_lock);
1979         spin_unlock(&sh->lock);
1980         return 0;
1981 }
1982
1983 static void end_reshape(raid5_conf_t *conf);
1984
1985 static int page_is_zero(struct page *p)
1986 {
1987         char *a = page_address(p);
1988         return ((*(u32*)a) == 0 &&
1989                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1990 }
1991
1992 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1993                             struct stripe_head *sh)
1994 {
1995         int sectors_per_chunk = conf->chunk_size >> 9;
1996         int dd_idx;
1997         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1998         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1999
2000         raid5_compute_sector(conf,
2001                              stripe * (disks - conf->max_degraded)
2002                              *sectors_per_chunk + chunk_offset,
2003                              previous,
2004                              &dd_idx, sh);
2005 }
2006
2007 static void
2008 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2009                                 struct stripe_head_state *s, int disks,
2010                                 struct bio **return_bi)
2011 {
2012         int i;
2013         for (i = disks; i--; ) {
2014                 struct bio *bi;
2015                 int bitmap_end = 0;
2016
2017                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2018                         mdk_rdev_t *rdev;
2019                         rcu_read_lock();
2020                         rdev = rcu_dereference(conf->disks[i].rdev);
2021                         if (rdev && test_bit(In_sync, &rdev->flags))
2022                                 /* multiple read failures in one stripe */
2023                                 md_error(conf->mddev, rdev);
2024                         rcu_read_unlock();
2025                 }
2026                 spin_lock_irq(&conf->device_lock);
2027                 /* fail all writes first */
2028                 bi = sh->dev[i].towrite;
2029                 sh->dev[i].towrite = NULL;
2030                 if (bi) {
2031                         s->to_write--;
2032                         bitmap_end = 1;
2033                 }
2034
2035                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2036                         wake_up(&conf->wait_for_overlap);
2037
2038                 while (bi && bi->bi_sector <
2039                         sh->dev[i].sector + STRIPE_SECTORS) {
2040                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2041                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2042                         if (!raid5_dec_bi_phys_segments(bi)) {
2043                                 md_write_end(conf->mddev);
2044                                 bi->bi_next = *return_bi;
2045                                 *return_bi = bi;
2046                         }
2047                         bi = nextbi;
2048                 }
2049                 /* and fail all 'written' */
2050                 bi = sh->dev[i].written;
2051                 sh->dev[i].written = NULL;
2052                 if (bi) bitmap_end = 1;
2053                 while (bi && bi->bi_sector <
2054                        sh->dev[i].sector + STRIPE_SECTORS) {
2055                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2056                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2057                         if (!raid5_dec_bi_phys_segments(bi)) {
2058                                 md_write_end(conf->mddev);
2059                                 bi->bi_next = *return_bi;
2060                                 *return_bi = bi;
2061                         }
2062                         bi = bi2;
2063                 }
2064
2065                 /* fail any reads if this device is non-operational and
2066                  * the data has not reached the cache yet.
2067                  */
2068                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2069                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2070                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2071                         bi = sh->dev[i].toread;
2072                         sh->dev[i].toread = NULL;
2073                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2074                                 wake_up(&conf->wait_for_overlap);
2075                         if (bi) s->to_read--;
2076                         while (bi && bi->bi_sector <
2077                                sh->dev[i].sector + STRIPE_SECTORS) {
2078                                 struct bio *nextbi =
2079                                         r5_next_bio(bi, sh->dev[i].sector);
2080                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2081                                 if (!raid5_dec_bi_phys_segments(bi)) {
2082                                         bi->bi_next = *return_bi;
2083                                         *return_bi = bi;
2084                                 }
2085                                 bi = nextbi;
2086                         }
2087                 }
2088                 spin_unlock_irq(&conf->device_lock);
2089                 if (bitmap_end)
2090                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2091                                         STRIPE_SECTORS, 0, 0);
2092         }
2093
2094         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2095                 if (atomic_dec_and_test(&conf->pending_full_writes))
2096                         md_wakeup_thread(conf->mddev->thread);
2097 }
2098
2099 /* fetch_block5 - checks the given member device to see if its data needs
2100  * to be read or computed to satisfy a request.
2101  *
2102  * Returns 1 when no more member devices need to be checked, otherwise returns
2103  * 0 to tell the loop in handle_stripe_fill5 to continue
2104  */
2105 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2106                         int disk_idx, int disks)
2107 {
2108         struct r5dev *dev = &sh->dev[disk_idx];
2109         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2110
2111         /* is the data in this block needed, and can we get it? */
2112         if (!test_bit(R5_LOCKED, &dev->flags) &&
2113             !test_bit(R5_UPTODATE, &dev->flags) &&
2114             (dev->toread ||
2115              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2116              s->syncing || s->expanding ||
2117              (s->failed &&
2118               (failed_dev->toread ||
2119                (failed_dev->towrite &&
2120                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2121                 /* We would like to get this block, possibly by computing it,
2122                  * otherwise read it if the backing disk is insync
2123                  */
2124                 if ((s->uptodate == disks - 1) &&
2125                     (s->failed && disk_idx == s->failed_num)) {
2126                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2127                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2128                         set_bit(R5_Wantcompute, &dev->flags);
2129                         sh->ops.target = disk_idx;
2130                         s->req_compute = 1;
2131                         /* Careful: from this point on 'uptodate' is in the eye
2132                          * of raid5_run_ops which services 'compute' operations
2133                          * before writes. R5_Wantcompute flags a block that will
2134                          * be R5_UPTODATE by the time it is needed for a
2135                          * subsequent operation.
2136                          */
2137                         s->uptodate++;
2138                         return 1; /* uptodate + compute == disks */
2139                 } else if (test_bit(R5_Insync, &dev->flags)) {
2140                         set_bit(R5_LOCKED, &dev->flags);
2141                         set_bit(R5_Wantread, &dev->flags);
2142                         s->locked++;
2143                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2144                                 s->syncing);
2145                 }
2146         }
2147
2148         return 0;
2149 }
2150
2151 /**
2152  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2153  */
2154 static void handle_stripe_fill5(struct stripe_head *sh,
2155                         struct stripe_head_state *s, int disks)
2156 {
2157         int i;
2158
2159         /* look for blocks to read/compute, skip this if a compute
2160          * is already in flight, or if the stripe contents are in the
2161          * midst of changing due to a write
2162          */
2163         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2164             !sh->reconstruct_state)
2165                 for (i = disks; i--; )
2166                         if (fetch_block5(sh, s, i, disks))
2167                                 break;
2168         set_bit(STRIPE_HANDLE, &sh->state);
2169 }
2170
2171 static void handle_stripe_fill6(struct stripe_head *sh,
2172                         struct stripe_head_state *s, struct r6_state *r6s,
2173                         int disks)
2174 {
2175         int i;
2176         for (i = disks; i--; ) {
2177                 struct r5dev *dev = &sh->dev[i];
2178                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2179                     !test_bit(R5_UPTODATE, &dev->flags) &&
2180                     (dev->toread || (dev->towrite &&
2181                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2182                      s->syncing || s->expanding ||
2183                      (s->failed >= 1 &&
2184                       (sh->dev[r6s->failed_num[0]].toread ||
2185                        s->to_write)) ||
2186                      (s->failed >= 2 &&
2187                       (sh->dev[r6s->failed_num[1]].toread ||
2188                        s->to_write)))) {
2189                         /* we would like to get this block, possibly
2190                          * by computing it, but we might not be able to
2191                          */
2192                         if ((s->uptodate == disks - 1) &&
2193                             (s->failed && (i == r6s->failed_num[0] ||
2194                                            i == r6s->failed_num[1]))) {
2195                                 pr_debug("Computing stripe %llu block %d\n",
2196                                        (unsigned long long)sh->sector, i);
2197                                 compute_block_1(sh, i, 0);
2198                                 s->uptodate++;
2199                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2200                                 /* Computing 2-failure is *very* expensive; only
2201                                  * do it if failed >= 2
2202                                  */
2203                                 int other;
2204                                 for (other = disks; other--; ) {
2205                                         if (other == i)
2206                                                 continue;
2207                                         if (!test_bit(R5_UPTODATE,
2208                                               &sh->dev[other].flags))
2209                                                 break;
2210                                 }
2211                                 BUG_ON(other < 0);
2212                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2213                                        (unsigned long long)sh->sector,
2214                                        i, other);
2215                                 compute_block_2(sh, i, other);
2216                                 s->uptodate += 2;
2217                         } else if (test_bit(R5_Insync, &dev->flags)) {
2218                                 set_bit(R5_LOCKED, &dev->flags);
2219                                 set_bit(R5_Wantread, &dev->flags);
2220                                 s->locked++;
2221                                 pr_debug("Reading block %d (sync=%d)\n",
2222                                         i, s->syncing);
2223                         }
2224                 }
2225         }
2226         set_bit(STRIPE_HANDLE, &sh->state);
2227 }
2228
2229
2230 /* handle_stripe_clean_event
2231  * any written block on an uptodate or failed drive can be returned.
2232  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2233  * never LOCKED, so we don't need to test 'failed' directly.
2234  */
2235 static void handle_stripe_clean_event(raid5_conf_t *conf,
2236         struct stripe_head *sh, int disks, struct bio **return_bi)
2237 {
2238         int i;
2239         struct r5dev *dev;
2240
2241         for (i = disks; i--; )
2242                 if (sh->dev[i].written) {
2243                         dev = &sh->dev[i];
2244                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2245                                 test_bit(R5_UPTODATE, &dev->flags)) {
2246                                 /* We can return any write requests */
2247                                 struct bio *wbi, *wbi2;
2248                                 int bitmap_end = 0;
2249                                 pr_debug("Return write for disc %d\n", i);
2250                                 spin_lock_irq(&conf->device_lock);
2251                                 wbi = dev->written;
2252                                 dev->written = NULL;
2253                                 while (wbi && wbi->bi_sector <
2254                                         dev->sector + STRIPE_SECTORS) {
2255                                         wbi2 = r5_next_bio(wbi, dev->sector);
2256                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2257                                                 md_write_end(conf->mddev);
2258                                                 wbi->bi_next = *return_bi;
2259                                                 *return_bi = wbi;
2260                                         }
2261                                         wbi = wbi2;
2262                                 }
2263                                 if (dev->towrite == NULL)
2264                                         bitmap_end = 1;
2265                                 spin_unlock_irq(&conf->device_lock);
2266                                 if (bitmap_end)
2267                                         bitmap_endwrite(conf->mddev->bitmap,
2268                                                         sh->sector,
2269                                                         STRIPE_SECTORS,
2270                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2271                                                         0);
2272                         }
2273                 }
2274
2275         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2276                 if (atomic_dec_and_test(&conf->pending_full_writes))
2277                         md_wakeup_thread(conf->mddev->thread);
2278 }
2279
2280 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2281                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2282 {
2283         int rmw = 0, rcw = 0, i;
2284         for (i = disks; i--; ) {
2285                 /* would I have to read this buffer for read_modify_write */
2286                 struct r5dev *dev = &sh->dev[i];
2287                 if ((dev->towrite || i == sh->pd_idx) &&
2288                     !test_bit(R5_LOCKED, &dev->flags) &&
2289                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2290                       test_bit(R5_Wantcompute, &dev->flags))) {
2291                         if (test_bit(R5_Insync, &dev->flags))
2292                                 rmw++;
2293                         else
2294                                 rmw += 2*disks;  /* cannot read it */
2295                 }
2296                 /* Would I have to read this buffer for reconstruct_write */
2297                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2298                     !test_bit(R5_LOCKED, &dev->flags) &&
2299                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2300                     test_bit(R5_Wantcompute, &dev->flags))) {
2301                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2302                         else
2303                                 rcw += 2*disks;
2304                 }
2305         }
2306         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2307                 (unsigned long long)sh->sector, rmw, rcw);
2308         set_bit(STRIPE_HANDLE, &sh->state);
2309         if (rmw < rcw && rmw > 0)
2310                 /* prefer read-modify-write, but need to get some data */
2311                 for (i = disks; i--; ) {
2312                         struct r5dev *dev = &sh->dev[i];
2313                         if ((dev->towrite || i == sh->pd_idx) &&
2314                             !test_bit(R5_LOCKED, &dev->flags) &&
2315                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2316                             test_bit(R5_Wantcompute, &dev->flags)) &&
2317                             test_bit(R5_Insync, &dev->flags)) {
2318                                 if (
2319                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2320                                         pr_debug("Read_old block "
2321                                                 "%d for r-m-w\n", i);
2322                                         set_bit(R5_LOCKED, &dev->flags);
2323                                         set_bit(R5_Wantread, &dev->flags);
2324                                         s->locked++;
2325                                 } else {
2326                                         set_bit(STRIPE_DELAYED, &sh->state);
2327                                         set_bit(STRIPE_HANDLE, &sh->state);
2328                                 }
2329                         }
2330                 }
2331         if (rcw <= rmw && rcw > 0)
2332                 /* want reconstruct write, but need to get some data */
2333                 for (i = disks; i--; ) {
2334                         struct r5dev *dev = &sh->dev[i];
2335                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2336                             i != sh->pd_idx &&
2337                             !test_bit(R5_LOCKED, &dev->flags) &&
2338                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2339                             test_bit(R5_Wantcompute, &dev->flags)) &&
2340                             test_bit(R5_Insync, &dev->flags)) {
2341                                 if (
2342                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2343                                         pr_debug("Read_old block "
2344                                                 "%d for Reconstruct\n", i);
2345                                         set_bit(R5_LOCKED, &dev->flags);
2346                                         set_bit(R5_Wantread, &dev->flags);
2347                                         s->locked++;
2348                                 } else {
2349                                         set_bit(STRIPE_DELAYED, &sh->state);
2350                                         set_bit(STRIPE_HANDLE, &sh->state);
2351                                 }
2352                         }
2353                 }
2354         /* now if nothing is locked, and if we have enough data,
2355          * we can start a write request
2356          */
2357         /* since handle_stripe can be called at any time we need to handle the
2358          * case where a compute block operation has been submitted and then a
2359          * subsequent call wants to start a write request.  raid5_run_ops only
2360          * handles the case where compute block and postxor are requested
2361          * simultaneously.  If this is not the case then new writes need to be
2362          * held off until the compute completes.
2363          */
2364         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2365             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2366             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2367                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2368 }
2369
2370 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2371                 struct stripe_head *sh, struct stripe_head_state *s,
2372                 struct r6_state *r6s, int disks)
2373 {
2374         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2375         int qd_idx = sh->qd_idx;
2376         for (i = disks; i--; ) {
2377                 struct r5dev *dev = &sh->dev[i];
2378                 /* Would I have to read this buffer for reconstruct_write */
2379                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2380                     && i != pd_idx && i != qd_idx
2381                     && (!test_bit(R5_LOCKED, &dev->flags)
2382                             ) &&
2383                     !test_bit(R5_UPTODATE, &dev->flags)) {
2384                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2385                         else {
2386                                 pr_debug("raid6: must_compute: "
2387                                         "disk %d flags=%#lx\n", i, dev->flags);
2388                                 must_compute++;
2389                         }
2390                 }
2391         }
2392         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2393                (unsigned long long)sh->sector, rcw, must_compute);
2394         set_bit(STRIPE_HANDLE, &sh->state);
2395
2396         if (rcw > 0)
2397                 /* want reconstruct write, but need to get some data */
2398                 for (i = disks; i--; ) {
2399                         struct r5dev *dev = &sh->dev[i];
2400                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2401                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2402                             && !test_bit(R5_LOCKED, &dev->flags) &&
2403                             !test_bit(R5_UPTODATE, &dev->flags) &&
2404                             test_bit(R5_Insync, &dev->flags)) {
2405                                 if (
2406                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2407                                         pr_debug("Read_old stripe %llu "
2408                                                 "block %d for Reconstruct\n",
2409                                              (unsigned long long)sh->sector, i);
2410                                         set_bit(R5_LOCKED, &dev->flags);
2411                                         set_bit(R5_Wantread, &dev->flags);
2412                                         s->locked++;
2413                                 } else {
2414                                         pr_debug("Request delayed stripe %llu "
2415                                                 "block %d for Reconstruct\n",
2416                                              (unsigned long long)sh->sector, i);
2417                                         set_bit(STRIPE_DELAYED, &sh->state);
2418                                         set_bit(STRIPE_HANDLE, &sh->state);
2419                                 }
2420                         }
2421                 }
2422         /* now if nothing is locked, and if we have enough data, we can start a
2423          * write request
2424          */
2425         if (s->locked == 0 && rcw == 0 &&
2426             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2427                 if (must_compute > 0) {
2428                         /* We have failed blocks and need to compute them */
2429                         switch (s->failed) {
2430                         case 0:
2431                                 BUG();
2432                         case 1:
2433                                 compute_block_1(sh, r6s->failed_num[0], 0);
2434                                 break;
2435                         case 2:
2436                                 compute_block_2(sh, r6s->failed_num[0],
2437                                                 r6s->failed_num[1]);
2438                                 break;
2439                         default: /* This request should have been failed? */
2440                                 BUG();
2441                         }
2442                 }
2443
2444                 pr_debug("Computing parity for stripe %llu\n",
2445                         (unsigned long long)sh->sector);
2446                 compute_parity6(sh, RECONSTRUCT_WRITE);
2447                 /* now every locked buffer is ready to be written */
2448                 for (i = disks; i--; )
2449                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2450                                 pr_debug("Writing stripe %llu block %d\n",
2451                                        (unsigned long long)sh->sector, i);
2452                                 s->locked++;
2453                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2454                         }
2455                 if (s->locked == disks)
2456                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2457                                 atomic_inc(&conf->pending_full_writes);
2458                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2459                 set_bit(STRIPE_INSYNC, &sh->state);
2460
2461                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2462                         atomic_dec(&conf->preread_active_stripes);
2463                         if (atomic_read(&conf->preread_active_stripes) <
2464                             IO_THRESHOLD)
2465                                 md_wakeup_thread(conf->mddev->thread);
2466                 }
2467         }
2468 }
2469
2470 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2471                                 struct stripe_head_state *s, int disks)
2472 {
2473         struct r5dev *dev = NULL;
2474
2475         set_bit(STRIPE_HANDLE, &sh->state);
2476
2477         switch (sh->check_state) {
2478         case check_state_idle:
2479                 /* start a new check operation if there are no failures */
2480                 if (s->failed == 0) {
2481                         BUG_ON(s->uptodate != disks);
2482                         sh->check_state = check_state_run;
2483                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2484                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2485                         s->uptodate--;
2486                         break;
2487                 }
2488                 dev = &sh->dev[s->failed_num];
2489                 /* fall through */
2490         case check_state_compute_result:
2491                 sh->check_state = check_state_idle;
2492                 if (!dev)
2493                         dev = &sh->dev[sh->pd_idx];
2494
2495                 /* check that a write has not made the stripe insync */
2496                 if (test_bit(STRIPE_INSYNC, &sh->state))
2497                         break;
2498
2499                 /* either failed parity check, or recovery is happening */
2500                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2501                 BUG_ON(s->uptodate != disks);
2502
2503                 set_bit(R5_LOCKED, &dev->flags);
2504                 s->locked++;
2505                 set_bit(R5_Wantwrite, &dev->flags);
2506
2507                 clear_bit(STRIPE_DEGRADED, &sh->state);
2508                 set_bit(STRIPE_INSYNC, &sh->state);
2509                 break;
2510         case check_state_run:
2511                 break; /* we will be called again upon completion */
2512         case check_state_check_result:
2513                 sh->check_state = check_state_idle;
2514
2515                 /* if a failure occurred during the check operation, leave
2516                  * STRIPE_INSYNC not set and let the stripe be handled again
2517                  */
2518                 if (s->failed)
2519                         break;
2520
2521                 /* handle a successful check operation, if parity is correct
2522                  * we are done.  Otherwise update the mismatch count and repair
2523                  * parity if !MD_RECOVERY_CHECK
2524                  */
2525                 if (sh->ops.zero_sum_result == 0)
2526                         /* parity is correct (on disc,
2527                          * not in buffer any more)
2528                          */
2529                         set_bit(STRIPE_INSYNC, &sh->state);
2530                 else {
2531                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2532                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2533                                 /* don't try to repair!! */
2534                                 set_bit(STRIPE_INSYNC, &sh->state);
2535                         else {
2536                                 sh->check_state = check_state_compute_run;
2537                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2538                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2539                                 set_bit(R5_Wantcompute,
2540                                         &sh->dev[sh->pd_idx].flags);
2541                                 sh->ops.target = sh->pd_idx;
2542                                 s->uptodate++;
2543                         }
2544                 }
2545                 break;
2546         case check_state_compute_run:
2547                 break;
2548         default:
2549                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2550                        __func__, sh->check_state,
2551                        (unsigned long long) sh->sector);
2552                 BUG();
2553         }
2554 }
2555
2556
2557 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2558                                 struct stripe_head_state *s,
2559                                 struct r6_state *r6s, struct page *tmp_page,
2560                                 int disks)
2561 {
2562         int update_p = 0, update_q = 0;
2563         struct r5dev *dev;
2564         int pd_idx = sh->pd_idx;
2565         int qd_idx = sh->qd_idx;
2566
2567         set_bit(STRIPE_HANDLE, &sh->state);
2568
2569         BUG_ON(s->failed > 2);
2570         BUG_ON(s->uptodate < disks);
2571         /* Want to check and possibly repair P and Q.
2572          * However there could be one 'failed' device, in which
2573          * case we can only check one of them, possibly using the
2574          * other to generate missing data
2575          */
2576
2577         /* If !tmp_page, we cannot do the calculations,
2578          * but as we have set STRIPE_HANDLE, we will soon be called
2579          * by stripe_handle with a tmp_page - just wait until then.
2580          */
2581         if (tmp_page) {
2582                 if (s->failed == r6s->q_failed) {
2583                         /* The only possible failed device holds 'Q', so it
2584                          * makes sense to check P (If anything else were failed,
2585                          * we would have used P to recreate it).
2586                          */
2587                         compute_block_1(sh, pd_idx, 1);
2588                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2589                                 compute_block_1(sh, pd_idx, 0);
2590                                 update_p = 1;
2591                         }
2592                 }
2593                 if (!r6s->q_failed && s->failed < 2) {
2594                         /* q is not failed, and we didn't use it to generate
2595                          * anything, so it makes sense to check it
2596                          */
2597                         memcpy(page_address(tmp_page),
2598                                page_address(sh->dev[qd_idx].page),
2599                                STRIPE_SIZE);
2600                         compute_parity6(sh, UPDATE_PARITY);
2601                         if (memcmp(page_address(tmp_page),
2602                                    page_address(sh->dev[qd_idx].page),
2603                                    STRIPE_SIZE) != 0) {
2604                                 clear_bit(STRIPE_INSYNC, &sh->state);
2605                                 update_q = 1;
2606                         }
2607                 }
2608                 if (update_p || update_q) {
2609                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2610                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2611                                 /* don't try to repair!! */
2612                                 update_p = update_q = 0;
2613                 }
2614
2615                 /* now write out any block on a failed drive,
2616                  * or P or Q if they need it
2617                  */
2618
2619                 if (s->failed == 2) {
2620                         dev = &sh->dev[r6s->failed_num[1]];
2621                         s->locked++;
2622                         set_bit(R5_LOCKED, &dev->flags);
2623                         set_bit(R5_Wantwrite, &dev->flags);
2624                 }
2625                 if (s->failed >= 1) {
2626                         dev = &sh->dev[r6s->failed_num[0]];
2627                         s->locked++;
2628                         set_bit(R5_LOCKED, &dev->flags);
2629                         set_bit(R5_Wantwrite, &dev->flags);
2630                 }
2631
2632                 if (update_p) {
2633                         dev = &sh->dev[pd_idx];
2634                         s->locked++;
2635                         set_bit(R5_LOCKED, &dev->flags);
2636                         set_bit(R5_Wantwrite, &dev->flags);
2637                 }
2638                 if (update_q) {
2639                         dev = &sh->dev[qd_idx];
2640                         s->locked++;
2641                         set_bit(R5_LOCKED, &dev->flags);
2642                         set_bit(R5_Wantwrite, &dev->flags);
2643                 }
2644                 clear_bit(STRIPE_DEGRADED, &sh->state);
2645
2646                 set_bit(STRIPE_INSYNC, &sh->state);
2647         }
2648 }
2649
2650 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2651                                 struct r6_state *r6s)
2652 {
2653         int i;
2654
2655         /* We have read all the blocks in this stripe and now we need to
2656          * copy some of them into a target stripe for expand.
2657          */
2658         struct dma_async_tx_descriptor *tx = NULL;
2659         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2660         for (i = 0; i < sh->disks; i++)
2661                 if (i != sh->pd_idx && i != sh->qd_idx) {
2662                         int dd_idx, j;
2663                         struct stripe_head *sh2;
2664
2665                         sector_t bn = compute_blocknr(sh, i);
2666                         sector_t s = raid5_compute_sector(conf, bn, 0,
2667                                                           &dd_idx, NULL);
2668                         sh2 = get_active_stripe(conf, s, 0, 1);
2669                         if (sh2 == NULL)
2670                                 /* so far only the early blocks of this stripe
2671                                  * have been requested.  When later blocks
2672                                  * get requested, we will try again
2673                                  */
2674                                 continue;
2675                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2676                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2677                                 /* must have already done this block */
2678                                 release_stripe(sh2);
2679                                 continue;
2680                         }
2681
2682                         /* place all the copies on one channel */
2683                         tx = async_memcpy(sh2->dev[dd_idx].page,
2684                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2685                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2686
2687                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2688                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2689                         for (j = 0; j < conf->raid_disks; j++)
2690                                 if (j != sh2->pd_idx &&
2691                                     (!r6s || j != sh2->qd_idx) &&
2692                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2693                                         break;
2694                         if (j == conf->raid_disks) {
2695                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2696                                 set_bit(STRIPE_HANDLE, &sh2->state);
2697                         }
2698                         release_stripe(sh2);
2699
2700                 }
2701         /* done submitting copies, wait for them to complete */
2702         if (tx) {
2703                 async_tx_ack(tx);
2704                 dma_wait_for_async_tx(tx);
2705         }
2706 }
2707
2708
2709 /*
2710  * handle_stripe - do things to a stripe.
2711  *
2712  * We lock the stripe and then examine the state of various bits
2713  * to see what needs to be done.
2714  * Possible results:
2715  *    return some read request which now have data
2716  *    return some write requests which are safely on disc
2717  *    schedule a read on some buffers
2718  *    schedule a write of some buffers
2719  *    return confirmation of parity correctness
2720  *
2721  * buffers are taken off read_list or write_list, and bh_cache buffers
2722  * get BH_Lock set before the stripe lock is released.
2723  *
2724  */
2725
2726 static bool handle_stripe5(struct stripe_head *sh)
2727 {
2728         raid5_conf_t *conf = sh->raid_conf;
2729         int disks = sh->disks, i;
2730         struct bio *return_bi = NULL;
2731         struct stripe_head_state s;
2732         struct r5dev *dev;
2733         mdk_rdev_t *blocked_rdev = NULL;
2734         int prexor;
2735
2736         memset(&s, 0, sizeof(s));
2737         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2738                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2739                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2740                  sh->reconstruct_state);
2741
2742         spin_lock(&sh->lock);
2743         clear_bit(STRIPE_HANDLE, &sh->state);
2744         clear_bit(STRIPE_DELAYED, &sh->state);
2745
2746         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2747         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2748         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2749
2750         /* Now to look around and see what can be done */
2751         rcu_read_lock();
2752         for (i=disks; i--; ) {
2753                 mdk_rdev_t *rdev;
2754                 struct r5dev *dev = &sh->dev[i];
2755                 clear_bit(R5_Insync, &dev->flags);
2756
2757                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2758                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2759                         dev->towrite, dev->written);
2760
2761                 /* maybe we can request a biofill operation
2762                  *
2763                  * new wantfill requests are only permitted while
2764                  * ops_complete_biofill is guaranteed to be inactive
2765                  */
2766                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2767                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2768                         set_bit(R5_Wantfill, &dev->flags);
2769
2770                 /* now count some things */
2771                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2772                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2773                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2774
2775                 if (test_bit(R5_Wantfill, &dev->flags))
2776                         s.to_fill++;
2777                 else if (dev->toread)
2778                         s.to_read++;
2779                 if (dev->towrite) {
2780                         s.to_write++;
2781                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2782                                 s.non_overwrite++;
2783                 }
2784                 if (dev->written)
2785                         s.written++;
2786                 rdev = rcu_dereference(conf->disks[i].rdev);
2787                 if (blocked_rdev == NULL &&
2788                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2789                         blocked_rdev = rdev;
2790                         atomic_inc(&rdev->nr_pending);
2791                 }
2792                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2793                         /* The ReadError flag will just be confusing now */
2794                         clear_bit(R5_ReadError, &dev->flags);
2795                         clear_bit(R5_ReWrite, &dev->flags);
2796                 }
2797                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2798                     || test_bit(R5_ReadError, &dev->flags)) {
2799                         s.failed++;
2800                         s.failed_num = i;
2801                 } else
2802                         set_bit(R5_Insync, &dev->flags);
2803         }
2804         rcu_read_unlock();
2805
2806         if (unlikely(blocked_rdev)) {
2807                 if (s.syncing || s.expanding || s.expanded ||
2808                     s.to_write || s.written) {
2809                         set_bit(STRIPE_HANDLE, &sh->state);
2810                         goto unlock;
2811                 }
2812                 /* There is nothing for the blocked_rdev to block */
2813                 rdev_dec_pending(blocked_rdev, conf->mddev);
2814                 blocked_rdev = NULL;
2815         }
2816
2817         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2818                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2819                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2820         }
2821
2822         pr_debug("locked=%d uptodate=%d to_read=%d"
2823                 " to_write=%d failed=%d failed_num=%d\n",
2824                 s.locked, s.uptodate, s.to_read, s.to_write,
2825                 s.failed, s.failed_num);
2826         /* check if the array has lost two devices and, if so, some requests might
2827          * need to be failed
2828          */
2829         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2830                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2831         if (s.failed > 1 && s.syncing) {
2832                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2833                 clear_bit(STRIPE_SYNCING, &sh->state);
2834                 s.syncing = 0;
2835         }
2836
2837         /* might be able to return some write requests if the parity block
2838          * is safe, or on a failed drive
2839          */
2840         dev = &sh->dev[sh->pd_idx];
2841         if ( s.written &&
2842              ((test_bit(R5_Insync, &dev->flags) &&
2843                !test_bit(R5_LOCKED, &dev->flags) &&
2844                test_bit(R5_UPTODATE, &dev->flags)) ||
2845                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2846                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2847
2848         /* Now we might consider reading some blocks, either to check/generate
2849          * parity, or to satisfy requests
2850          * or to load a block that is being partially written.
2851          */
2852         if (s.to_read || s.non_overwrite ||
2853             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2854                 handle_stripe_fill5(sh, &s, disks);
2855
2856         /* Now we check to see if any write operations have recently
2857          * completed
2858          */
2859         prexor = 0;
2860         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2861                 prexor = 1;
2862         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2863             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2864                 sh->reconstruct_state = reconstruct_state_idle;
2865
2866                 /* All the 'written' buffers and the parity block are ready to
2867                  * be written back to disk
2868                  */
2869                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2870                 for (i = disks; i--; ) {
2871                         dev = &sh->dev[i];
2872                         if (test_bit(R5_LOCKED, &dev->flags) &&
2873                                 (i == sh->pd_idx || dev->written)) {
2874                                 pr_debug("Writing block %d\n", i);
2875                                 set_bit(R5_Wantwrite, &dev->flags);
2876                                 if (prexor)
2877                                         continue;
2878                                 if (!test_bit(R5_Insync, &dev->flags) ||
2879                                     (i == sh->pd_idx && s.failed == 0))
2880                                         set_bit(STRIPE_INSYNC, &sh->state);
2881                         }
2882                 }
2883                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2884                         atomic_dec(&conf->preread_active_stripes);
2885                         if (atomic_read(&conf->preread_active_stripes) <
2886                                 IO_THRESHOLD)
2887                                 md_wakeup_thread(conf->mddev->thread);
2888                 }
2889         }
2890
2891         /* Now to consider new write requests and what else, if anything
2892          * should be read.  We do not handle new writes when:
2893          * 1/ A 'write' operation (copy+xor) is already in flight.
2894          * 2/ A 'check' operation is in flight, as it may clobber the parity
2895          *    block.
2896          */
2897         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2898                 handle_stripe_dirtying5(conf, sh, &s, disks);
2899
2900         /* maybe we need to check and possibly fix the parity for this stripe
2901          * Any reads will already have been scheduled, so we just see if enough
2902          * data is available.  The parity check is held off while parity
2903          * dependent operations are in flight.
2904          */
2905         if (sh->check_state ||
2906             (s.syncing && s.locked == 0 &&
2907              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2908              !test_bit(STRIPE_INSYNC, &sh->state)))
2909                 handle_parity_checks5(conf, sh, &s, disks);
2910
2911         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2912                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2913                 clear_bit(STRIPE_SYNCING, &sh->state);
2914         }
2915
2916         /* If the failed drive is just a ReadError, then we might need to progress
2917          * the repair/check process
2918          */
2919         if (s.failed == 1 && !conf->mddev->ro &&
2920             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2921             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2922             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2923                 ) {
2924                 dev = &sh->dev[s.failed_num];
2925                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2926                         set_bit(R5_Wantwrite, &dev->flags);
2927                         set_bit(R5_ReWrite, &dev->flags);
2928                         set_bit(R5_LOCKED, &dev->flags);
2929                         s.locked++;
2930                 } else {
2931                         /* let's read it back */
2932                         set_bit(R5_Wantread, &dev->flags);
2933                         set_bit(R5_LOCKED, &dev->flags);
2934                         s.locked++;
2935                 }
2936         }
2937
2938         /* Finish reconstruct operations initiated by the expansion process */
2939         if (sh->reconstruct_state == reconstruct_state_result) {
2940                 sh->reconstruct_state = reconstruct_state_idle;
2941                 clear_bit(STRIPE_EXPANDING, &sh->state);
2942                 for (i = conf->raid_disks; i--; ) {
2943                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2944                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2945                         s.locked++;
2946                 }
2947         }
2948
2949         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2950             !sh->reconstruct_state) {
2951                 /* Need to write out all blocks after computing parity */
2952                 sh->disks = conf->raid_disks;
2953                 stripe_set_idx(sh->sector, conf, 0, sh);
2954                 schedule_reconstruction5(sh, &s, 1, 1);
2955         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2956                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2957                 atomic_dec(&conf->reshape_stripes);
2958                 wake_up(&conf->wait_for_overlap);
2959                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2960         }
2961
2962         if (s.expanding && s.locked == 0 &&
2963             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2964                 handle_stripe_expansion(conf, sh, NULL);
2965
2966  unlock:
2967         spin_unlock(&sh->lock);
2968
2969         /* wait for this device to become unblocked */
2970         if (unlikely(blocked_rdev))
2971                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2972
2973         if (s.ops_request)
2974                 raid5_run_ops(sh, s.ops_request);
2975
2976         ops_run_io(sh, &s);
2977
2978         return_io(return_bi);
2979
2980         return blocked_rdev == NULL;
2981 }
2982
2983 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2984 {
2985         raid5_conf_t *conf = sh->raid_conf;
2986         int disks = sh->disks;
2987         struct bio *return_bi = NULL;
2988         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
2989         struct stripe_head_state s;
2990         struct r6_state r6s;
2991         struct r5dev *dev, *pdev, *qdev;
2992         mdk_rdev_t *blocked_rdev = NULL;
2993
2994         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2995                 "pd_idx=%d, qd_idx=%d\n",
2996                (unsigned long long)sh->sector, sh->state,
2997                atomic_read(&sh->count), pd_idx, qd_idx);
2998         memset(&s, 0, sizeof(s));
2999
3000         spin_lock(&sh->lock);
3001         clear_bit(STRIPE_HANDLE, &sh->state);
3002         clear_bit(STRIPE_DELAYED, &sh->state);
3003
3004         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3005         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3006         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3007         /* Now to look around and see what can be done */
3008
3009         rcu_read_lock();
3010         for (i=disks; i--; ) {
3011                 mdk_rdev_t *rdev;
3012                 dev = &sh->dev[i];
3013                 clear_bit(R5_Insync, &dev->flags);
3014
3015                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3016                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3017                 /* maybe we can reply to a read */
3018                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3019                         struct bio *rbi, *rbi2;
3020                         pr_debug("Return read for disc %d\n", i);
3021                         spin_lock_irq(&conf->device_lock);
3022                         rbi = dev->toread;
3023                         dev->toread = NULL;
3024                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3025                                 wake_up(&conf->wait_for_overlap);
3026                         spin_unlock_irq(&conf->device_lock);
3027                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3028                                 copy_data(0, rbi, dev->page, dev->sector);
3029                                 rbi2 = r5_next_bio(rbi, dev->sector);
3030                                 spin_lock_irq(&conf->device_lock);
3031                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3032                                         rbi->bi_next = return_bi;
3033                                         return_bi = rbi;
3034                                 }
3035                                 spin_unlock_irq(&conf->device_lock);
3036                                 rbi = rbi2;
3037                         }
3038                 }
3039
3040                 /* now count some things */
3041                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3042                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3043
3044
3045                 if (dev->toread)
3046                         s.to_read++;
3047                 if (dev->towrite) {
3048                         s.to_write++;
3049                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3050                                 s.non_overwrite++;
3051                 }
3052                 if (dev->written)
3053                         s.written++;
3054                 rdev = rcu_dereference(conf->disks[i].rdev);
3055                 if (blocked_rdev == NULL &&
3056                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3057                         blocked_rdev = rdev;
3058                         atomic_inc(&rdev->nr_pending);
3059                 }
3060                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3061                         /* The ReadError flag will just be confusing now */
3062                         clear_bit(R5_ReadError, &dev->flags);
3063                         clear_bit(R5_ReWrite, &dev->flags);
3064                 }
3065                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3066                     || test_bit(R5_ReadError, &dev->flags)) {
3067                         if (s.failed < 2)
3068                                 r6s.failed_num[s.failed] = i;
3069                         s.failed++;
3070                 } else
3071                         set_bit(R5_Insync, &dev->flags);
3072         }
3073         rcu_read_unlock();
3074
3075         if (unlikely(blocked_rdev)) {
3076                 if (s.syncing || s.expanding || s.expanded ||
3077                     s.to_write || s.written) {
3078                         set_bit(STRIPE_HANDLE, &sh->state);
3079                         goto unlock;
3080                 }
3081                 /* There is nothing for the blocked_rdev to block */
3082                 rdev_dec_pending(blocked_rdev, conf->mddev);
3083                 blocked_rdev = NULL;
3084         }
3085
3086         pr_debug("locked=%d uptodate=%d to_read=%d"
3087                " to_write=%d failed=%d failed_num=%d,%d\n",
3088                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3089                r6s.failed_num[0], r6s.failed_num[1]);
3090         /* check if the array has lost >2 devices and, if so, some requests
3091          * might need to be failed
3092          */
3093         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3094                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3095         if (s.failed > 2 && s.syncing) {
3096                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3097                 clear_bit(STRIPE_SYNCING, &sh->state);
3098                 s.syncing = 0;
3099         }
3100
3101         /*
3102          * might be able to return some write requests if the parity blocks
3103          * are safe, or on a failed drive
3104          */
3105         pdev = &sh->dev[pd_idx];
3106         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3107                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3108         qdev = &sh->dev[qd_idx];
3109         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3110                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3111
3112         if ( s.written &&
3113              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3114                              && !test_bit(R5_LOCKED, &pdev->flags)
3115                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3116              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3117                              && !test_bit(R5_LOCKED, &qdev->flags)
3118                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3119                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3120
3121         /* Now we might consider reading some blocks, either to check/generate
3122          * parity, or to satisfy requests
3123          * or to load a block that is being partially written.
3124          */
3125         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3126             (s.syncing && (s.uptodate < disks)) || s.expanding)
3127                 handle_stripe_fill6(sh, &s, &r6s, disks);
3128
3129         /* now to consider writing and what else, if anything should be read */
3130         if (s.to_write)
3131                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3132
3133         /* maybe we need to check and possibly fix the parity for this stripe
3134          * Any reads will already have been scheduled, so we just see if enough
3135          * data is available
3136          */
3137         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3138                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3139
3140         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3141                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3142                 clear_bit(STRIPE_SYNCING, &sh->state);
3143         }
3144
3145         /* If the failed drives are just a ReadError, then we might need
3146          * to progress the repair/check process
3147          */
3148         if (s.failed <= 2 && !conf->mddev->ro)
3149                 for (i = 0; i < s.failed; i++) {
3150                         dev = &sh->dev[r6s.failed_num[i]];
3151                         if (test_bit(R5_ReadError, &dev->flags)
3152                             && !test_bit(R5_LOCKED, &dev->flags)
3153                             && test_bit(R5_UPTODATE, &dev->flags)
3154                                 ) {
3155                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3156                                         set_bit(R5_Wantwrite, &dev->flags);
3157                                         set_bit(R5_ReWrite, &dev->flags);
3158                                         set_bit(R5_LOCKED, &dev->flags);
3159                                 } else {
3160                                         /* let's read it back */
3161                                         set_bit(R5_Wantread, &dev->flags);
3162                                         set_bit(R5_LOCKED, &dev->flags);
3163                                 }
3164                         }
3165                 }
3166
3167         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3168                 /* Need to write out all blocks after computing P&Q */
3169                 sh->disks = conf->raid_disks;
3170                 stripe_set_idx(sh->sector, conf, 0, sh);
3171                 compute_parity6(sh, RECONSTRUCT_WRITE);
3172                 for (i = conf->raid_disks ; i-- ;  ) {
3173                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3174                         s.locked++;
3175                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3176                 }
3177                 clear_bit(STRIPE_EXPANDING, &sh->state);
3178         } else if (s.expanded) {
3179                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3180                 atomic_dec(&conf->reshape_stripes);
3181                 wake_up(&conf->wait_for_overlap);
3182                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3183         }
3184
3185         if (s.expanding && s.locked == 0 &&
3186             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3187                 handle_stripe_expansion(conf, sh, &r6s);
3188
3189  unlock:
3190         spin_unlock(&sh->lock);
3191
3192         /* wait for this device to become unblocked */
3193         if (unlikely(blocked_rdev))
3194                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3195
3196         ops_run_io(sh, &s);
3197
3198         return_io(return_bi);
3199
3200         return blocked_rdev == NULL;
3201 }
3202
3203 /* returns true if the stripe was handled */
3204 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3205 {
3206         if (sh->raid_conf->level == 6)
3207                 return handle_stripe6(sh, tmp_page);
3208         else
3209                 return handle_stripe5(sh);
3210 }
3211
3212
3213
3214 static void raid5_activate_delayed(raid5_conf_t *conf)
3215 {
3216         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3217                 while (!list_empty(&conf->delayed_list)) {
3218                         struct list_head *l = conf->delayed_list.next;
3219                         struct stripe_head *sh;
3220                         sh = list_entry(l, struct stripe_head, lru);
3221                         list_del_init(l);
3222                         clear_bit(STRIPE_DELAYED, &sh->state);
3223                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3224                                 atomic_inc(&conf->preread_active_stripes);
3225                         list_add_tail(&sh->lru, &conf->hold_list);
3226                 }
3227         } else
3228                 blk_plug_device(conf->mddev->queue);
3229 }
3230
3231 static void activate_bit_delay(raid5_conf_t *conf)
3232 {
3233         /* device_lock is held */
3234         struct list_head head;
3235         list_add(&head, &conf->bitmap_list);
3236         list_del_init(&conf->bitmap_list);
3237         while (!list_empty(&head)) {
3238                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3239                 list_del_init(&sh->lru);
3240                 atomic_inc(&sh->count);
3241                 __release_stripe(conf, sh);
3242         }
3243 }
3244
3245 static void unplug_slaves(mddev_t *mddev)
3246 {
3247         raid5_conf_t *conf = mddev_to_conf(mddev);
3248         int i;
3249
3250         rcu_read_lock();
3251         for (i=0; i<mddev->raid_disks; i++) {
3252                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3253                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3254                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3255
3256                         atomic_inc(&rdev->nr_pending);
3257                         rcu_read_unlock();
3258
3259                         blk_unplug(r_queue);
3260
3261                         rdev_dec_pending(rdev, mddev);
3262                         rcu_read_lock();
3263                 }
3264         }
3265         rcu_read_unlock();
3266 }
3267
3268 static void raid5_unplug_device(struct request_queue *q)
3269 {
3270         mddev_t *mddev = q->queuedata;
3271         raid5_conf_t *conf = mddev_to_conf(mddev);
3272         unsigned long flags;
3273
3274         spin_lock_irqsave(&conf->device_lock, flags);
3275
3276         if (blk_remove_plug(q)) {
3277                 conf->seq_flush++;
3278                 raid5_activate_delayed(conf);
3279         }
3280         md_wakeup_thread(mddev->thread);
3281
3282         spin_unlock_irqrestore(&conf->device_lock, flags);
3283
3284         unplug_slaves(mddev);
3285 }
3286
3287 static int raid5_congested(void *data, int bits)
3288 {
3289         mddev_t *mddev = data;
3290         raid5_conf_t *conf = mddev_to_conf(mddev);
3291
3292         /* No difference between reads and writes.  Just check
3293          * how busy the stripe_cache is
3294          */
3295         if (conf->inactive_blocked)
3296                 return 1;
3297         if (conf->quiesce)
3298                 return 1;
3299         if (list_empty_careful(&conf->inactive_list))
3300                 return 1;
3301
3302         return 0;
3303 }
3304
3305 /* We want read requests to align with chunks where possible,
3306  * but write requests don't need to.
3307  */
3308 static int raid5_mergeable_bvec(struct request_queue *q,
3309                                 struct bvec_merge_data *bvm,
3310                                 struct bio_vec *biovec)
3311 {
3312         mddev_t *mddev = q->queuedata;
3313         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3314         int max;
3315         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3316         unsigned int bio_sectors = bvm->bi_size >> 9;
3317
3318         if ((bvm->bi_rw & 1) == WRITE)
3319                 return biovec->bv_len; /* always allow writes to be mergeable */
3320
3321         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3322         if (max < 0) max = 0;
3323         if (max <= biovec->bv_len && bio_sectors == 0)
3324                 return biovec->bv_len;
3325         else
3326                 return max;
3327 }
3328
3329
3330 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3331 {
3332         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3333         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3334         unsigned int bio_sectors = bio->bi_size >> 9;
3335
3336         return  chunk_sectors >=
3337                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3338 }
3339
3340 /*
3341  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3342  *  later sampled by raid5d.
3343  */
3344 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3345 {
3346         unsigned long flags;
3347
3348         spin_lock_irqsave(&conf->device_lock, flags);
3349
3350         bi->bi_next = conf->retry_read_aligned_list;
3351         conf->retry_read_aligned_list = bi;
3352
3353         spin_unlock_irqrestore(&conf->device_lock, flags);
3354         md_wakeup_thread(conf->mddev->thread);
3355 }
3356
3357
3358 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3359 {
3360         struct bio *bi;
3361
3362         bi = conf->retry_read_aligned;
3363         if (bi) {
3364                 conf->retry_read_aligned = NULL;
3365                 return bi;
3366         }
3367         bi = conf->retry_read_aligned_list;
3368         if(bi) {
3369                 conf->retry_read_aligned_list = bi->bi_next;
3370                 bi->bi_next = NULL;
3371                 /*
3372                  * this sets the active strip count to 1 and the processed
3373                  * strip count to zero (upper 8 bits)
3374                  */
3375                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3376         }
3377
3378         return bi;
3379 }
3380
3381
3382 /*
3383  *  The "raid5_align_endio" should check if the read succeeded and if it
3384  *  did, call bio_endio on the original bio (having bio_put the new bio
3385  *  first).
3386  *  If the read failed..
3387  */
3388 static void raid5_align_endio(struct bio *bi, int error)
3389 {
3390         struct bio* raid_bi  = bi->bi_private;
3391         mddev_t *mddev;
3392         raid5_conf_t *conf;
3393         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3394         mdk_rdev_t *rdev;
3395
3396         bio_put(bi);
3397
3398         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3399         conf = mddev_to_conf(mddev);
3400         rdev = (void*)raid_bi->bi_next;
3401         raid_bi->bi_next = NULL;
3402
3403         rdev_dec_pending(rdev, conf->mddev);
3404
3405         if (!error && uptodate) {
3406                 bio_endio(raid_bi, 0);
3407                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3408                         wake_up(&conf->wait_for_stripe);
3409                 return;
3410         }
3411
3412
3413         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3414
3415         add_bio_to_retry(raid_bi, conf);
3416 }
3417
3418 static int bio_fits_rdev(struct bio *bi)
3419 {
3420         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3421
3422         if ((bi->bi_size>>9) > q->max_sectors)
3423                 return 0;
3424         blk_recount_segments(q, bi);
3425         if (bi->bi_phys_segments > q->max_phys_segments)
3426                 return 0;
3427
3428         if (q->merge_bvec_fn)
3429                 /* it's too hard to apply the merge_bvec_fn at this stage,
3430                  * just just give up
3431                  */
3432                 return 0;
3433
3434         return 1;
3435 }
3436
3437
3438 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3439 {
3440         mddev_t *mddev = q->queuedata;
3441         raid5_conf_t *conf = mddev_to_conf(mddev);
3442         unsigned int dd_idx;
3443         struct bio* align_bi;
3444         mdk_rdev_t *rdev;
3445
3446         if (!in_chunk_boundary(mddev, raid_bio)) {
3447                 pr_debug("chunk_aligned_read : non aligned\n");
3448                 return 0;
3449         }
3450         /*
3451          * use bio_clone to make a copy of the bio
3452          */
3453         align_bi = bio_clone(raid_bio, GFP_NOIO);
3454         if (!align_bi)
3455                 return 0;
3456         /*
3457          *   set bi_end_io to a new function, and set bi_private to the
3458          *     original bio.
3459          */
3460         align_bi->bi_end_io  = raid5_align_endio;
3461         align_bi->bi_private = raid_bio;
3462         /*
3463          *      compute position
3464          */
3465         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3466                                                     0,
3467                                                     &dd_idx, NULL);
3468
3469         rcu_read_lock();
3470         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3471         if (rdev && test_bit(In_sync, &rdev->flags)) {
3472                 atomic_inc(&rdev->nr_pending);
3473                 rcu_read_unlock();
3474                 raid_bio->bi_next = (void*)rdev;
3475                 align_bi->bi_bdev =  rdev->bdev;
3476                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3477                 align_bi->bi_sector += rdev->data_offset;
3478
3479                 if (!bio_fits_rdev(align_bi)) {
3480                         /* too big in some way */
3481                         bio_put(align_bi);
3482                         rdev_dec_pending(rdev, mddev);
3483                         return 0;
3484                 }
3485
3486                 spin_lock_irq(&conf->device_lock);
3487                 wait_event_lock_irq(conf->wait_for_stripe,
3488                                     conf->quiesce == 0,
3489                                     conf->device_lock, /* nothing */);
3490                 atomic_inc(&conf->active_aligned_reads);
3491                 spin_unlock_irq(&conf->device_lock);
3492
3493                 generic_make_request(align_bi);
3494                 return 1;
3495         } else {
3496                 rcu_read_unlock();
3497                 bio_put(align_bi);
3498                 return 0;
3499         }
3500 }
3501
3502 /* __get_priority_stripe - get the next stripe to process
3503  *
3504  * Full stripe writes are allowed to pass preread active stripes up until
3505  * the bypass_threshold is exceeded.  In general the bypass_count
3506  * increments when the handle_list is handled before the hold_list; however, it
3507  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3508  * stripe with in flight i/o.  The bypass_count will be reset when the
3509  * head of the hold_list has changed, i.e. the head was promoted to the
3510  * handle_list.
3511  */
3512 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3513 {
3514         struct stripe_head *sh;
3515
3516         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3517                   __func__,
3518                   list_empty(&conf->handle_list) ? "empty" : "busy",
3519                   list_empty(&conf->hold_list) ? "empty" : "busy",
3520                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3521
3522         if (!list_empty(&conf->handle_list)) {
3523                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3524
3525                 if (list_empty(&conf->hold_list))
3526                         conf->bypass_count = 0;
3527                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3528                         if (conf->hold_list.next == conf->last_hold)
3529                                 conf->bypass_count++;
3530                         else {
3531                                 conf->last_hold = conf->hold_list.next;
3532                                 conf->bypass_count -= conf->bypass_threshold;
3533                                 if (conf->bypass_count < 0)
3534                                         conf->bypass_count = 0;
3535                         }
3536                 }
3537         } else if (!list_empty(&conf->hold_list) &&
3538                    ((conf->bypass_threshold &&
3539                      conf->bypass_count > conf->bypass_threshold) ||
3540                     atomic_read(&conf->pending_full_writes) == 0)) {
3541                 sh = list_entry(conf->hold_list.next,
3542                                 typeof(*sh), lru);
3543                 conf->bypass_count -= conf->bypass_threshold;
3544                 if (conf->bypass_count < 0)
3545                         conf->bypass_count = 0;
3546         } else
3547                 return NULL;
3548
3549         list_del_init(&sh->lru);
3550         atomic_inc(&sh->count);
3551         BUG_ON(atomic_read(&sh->count) != 1);
3552         return sh;
3553 }
3554
3555 static int make_request(struct request_queue *q, struct bio * bi)
3556 {
3557         mddev_t *mddev = q->queuedata;
3558         raid5_conf_t *conf = mddev_to_conf(mddev);
3559         int dd_idx;
3560         sector_t new_sector;
3561         sector_t logical_sector, last_sector;
3562         struct stripe_head *sh;
3563         const int rw = bio_data_dir(bi);
3564         int cpu, remaining;
3565
3566         if (unlikely(bio_barrier(bi))) {
3567                 bio_endio(bi, -EOPNOTSUPP);
3568                 return 0;
3569         }
3570
3571         md_write_start(mddev, bi);
3572
3573         cpu = part_stat_lock();
3574         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3575         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3576                       bio_sectors(bi));
3577         part_stat_unlock();
3578
3579         if (rw == READ &&
3580              mddev->reshape_position == MaxSector &&
3581              chunk_aligned_read(q,bi))
3582                 return 0;
3583
3584         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3585         last_sector = bi->bi_sector + (bi->bi_size>>9);
3586         bi->bi_next = NULL;
3587         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3588
3589         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3590                 DEFINE_WAIT(w);
3591                 int disks, data_disks;
3592                 int previous;
3593
3594         retry:
3595                 previous = 0;
3596                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3597                 if (likely(conf->reshape_progress == MaxSector))
3598                         disks = conf->raid_disks;
3599                 else {
3600                         /* spinlock is needed as reshape_progress may be
3601                          * 64bit on a 32bit platform, and so it might be
3602                          * possible to see a half-updated value
3603                          * Ofcourse reshape_progress could change after
3604                          * the lock is dropped, so once we get a reference
3605                          * to the stripe that we think it is, we will have
3606                          * to check again.
3607                          */
3608                         spin_lock_irq(&conf->device_lock);
3609                         disks = conf->raid_disks;
3610                         if (mddev->delta_disks < 0
3611                             ? logical_sector < conf->reshape_progress
3612                             : logical_sector >= conf->reshape_progress) {
3613                                 disks = conf->previous_raid_disks;
3614                                 previous = 1;
3615                         } else {
3616                                 if (mddev->delta_disks < 0
3617                                     ? logical_sector < conf->reshape_safe
3618                                     : logical_sector >= conf->reshape_safe) {
3619                                         spin_unlock_irq(&conf->device_lock);
3620                                         schedule();
3621                                         goto retry;
3622                                 }
3623                         }
3624                         spin_unlock_irq(&conf->device_lock);
3625                 }
3626                 data_disks = disks - conf->max_degraded;
3627
3628                 new_sector = raid5_compute_sector(conf, logical_sector,
3629                                                   previous,
3630                                                   &dd_idx, NULL);
3631                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3632                         (unsigned long long)new_sector, 
3633                         (unsigned long long)logical_sector);
3634
3635                 sh = get_active_stripe(conf, new_sector, previous,
3636                                        (bi->bi_rw&RWA_MASK));
3637                 if (sh) {
3638                         if (unlikely(conf->reshape_progress != MaxSector)) {
3639                                 /* expansion might have moved on while waiting for a
3640                                  * stripe, so we must do the range check again.
3641                                  * Expansion could still move past after this
3642                                  * test, but as we are holding a reference to
3643                                  * 'sh', we know that if that happens,
3644                                  *  STRIPE_EXPANDING will get set and the expansion
3645                                  * won't proceed until we finish with the stripe.
3646                                  */
3647                                 int must_retry = 0;
3648                                 spin_lock_irq(&conf->device_lock);
3649                                 if ((mddev->delta_disks < 0
3650                                      ? logical_sector >= conf->reshape_progress
3651                                      : logical_sector < conf->reshape_progress)
3652                                     && previous)
3653                                         /* mismatch, need to try again */
3654                                         must_retry = 1;
3655                                 spin_unlock_irq(&conf->device_lock);
3656                                 if (must_retry) {
3657                                         release_stripe(sh);
3658                                         goto retry;
3659                                 }
3660                         }
3661                         /* FIXME what if we get a false positive because these
3662                          * are being updated.
3663                          */
3664                         if (logical_sector >= mddev->suspend_lo &&
3665                             logical_sector < mddev->suspend_hi) {
3666                                 release_stripe(sh);
3667                                 schedule();
3668                                 goto retry;
3669                         }
3670
3671                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3672                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3673                                 /* Stripe is busy expanding or
3674                                  * add failed due to overlap.  Flush everything
3675                                  * and wait a while
3676                                  */
3677                                 raid5_unplug_device(mddev->queue);
3678                                 release_stripe(sh);
3679                                 schedule();
3680                                 goto retry;
3681                         }
3682                         finish_wait(&conf->wait_for_overlap, &w);
3683                         set_bit(STRIPE_HANDLE, &sh->state);
3684                         clear_bit(STRIPE_DELAYED, &sh->state);
3685                         release_stripe(sh);
3686                 } else {
3687                         /* cannot get stripe for read-ahead, just give-up */
3688                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3689                         finish_wait(&conf->wait_for_overlap, &w);
3690                         break;
3691                 }
3692                         
3693         }
3694         spin_lock_irq(&conf->device_lock);
3695         remaining = raid5_dec_bi_phys_segments(bi);
3696         spin_unlock_irq(&conf->device_lock);
3697         if (remaining == 0) {
3698
3699                 if ( rw == WRITE )
3700                         md_write_end(mddev);
3701
3702                 bio_endio(bi, 0);
3703         }
3704         return 0;
3705 }
3706
3707 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3708
3709 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3710 {
3711         /* reshaping is quite different to recovery/resync so it is
3712          * handled quite separately ... here.
3713          *
3714          * On each call to sync_request, we gather one chunk worth of
3715          * destination stripes and flag them as expanding.
3716          * Then we find all the source stripes and request reads.
3717          * As the reads complete, handle_stripe will copy the data
3718          * into the destination stripe and release that stripe.
3719          */
3720         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3721         struct stripe_head *sh;
3722         sector_t first_sector, last_sector;
3723         int raid_disks = conf->previous_raid_disks;
3724         int data_disks = raid_disks - conf->max_degraded;
3725         int new_data_disks = conf->raid_disks - conf->max_degraded;
3726         int i;
3727         int dd_idx;
3728         sector_t writepos, safepos, gap;
3729         sector_t stripe_addr;
3730
3731         if (sector_nr == 0) {
3732                 /* If restarting in the middle, skip the initial sectors */
3733                 if (mddev->delta_disks < 0 &&
3734                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3735                         sector_nr = raid5_size(mddev, 0, 0)
3736                                 - conf->reshape_progress;
3737                 } else if (mddev->delta_disks > 0 &&
3738                            conf->reshape_progress > 0)
3739                         sector_nr = conf->reshape_progress;
3740                 sector_div(sector_nr, new_data_disks);
3741                 if (sector_nr) {
3742                         *skipped = 1;
3743                         return sector_nr;
3744                 }
3745         }
3746
3747         /* we update the metadata when there is more than 3Meg
3748          * in the block range (that is rather arbitrary, should
3749          * probably be time based) or when the data about to be
3750          * copied would over-write the source of the data at
3751          * the front of the range.
3752          * i.e. one new_stripe along from reshape_progress new_maps
3753          * to after where reshape_safe old_maps to
3754          */
3755         writepos = conf->reshape_progress;
3756         sector_div(writepos, new_data_disks);
3757         safepos = conf->reshape_safe;
3758         sector_div(safepos, data_disks);
3759         if (mddev->delta_disks < 0) {
3760                 writepos -= conf->chunk_size/512;
3761                 safepos += conf->chunk_size/512;
3762                 gap = conf->reshape_safe - conf->reshape_progress;
3763         } else {
3764                 writepos += conf->chunk_size/512;
3765                 safepos -= conf->chunk_size/512;
3766                 gap = conf->reshape_progress - conf->reshape_safe;
3767         }
3768
3769         if ((mddev->delta_disks < 0
3770              ? writepos < safepos
3771              : writepos > safepos) ||
3772             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3773                 /* Cannot proceed until we've updated the superblock... */
3774                 wait_event(conf->wait_for_overlap,
3775                            atomic_read(&conf->reshape_stripes)==0);
3776                 mddev->reshape_position = conf->reshape_progress;
3777                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3778                 md_wakeup_thread(mddev->thread);
3779                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3780                            kthread_should_stop());
3781                 spin_lock_irq(&conf->device_lock);
3782                 conf->reshape_safe = mddev->reshape_position;
3783                 spin_unlock_irq(&conf->device_lock);
3784                 wake_up(&conf->wait_for_overlap);
3785         }
3786
3787         if (mddev->delta_disks < 0) {
3788                 BUG_ON(conf->reshape_progress == 0);
3789                 stripe_addr = writepos;
3790                 BUG_ON((mddev->dev_sectors &
3791                         ~((sector_t)mddev->chunk_size / 512 - 1))
3792                        - (conf->chunk_size / 512) - stripe_addr
3793                        != sector_nr);
3794         } else {
3795                 BUG_ON(writepos != sector_nr + conf->chunk_size / 512);
3796                 stripe_addr = sector_nr;
3797         }
3798         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3799                 int j;
3800                 int skipped = 0;
3801                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3802                 set_bit(STRIPE_EXPANDING, &sh->state);
3803                 atomic_inc(&conf->reshape_stripes);
3804                 /* If any of this stripe is beyond the end of the old
3805                  * array, then we need to zero those blocks
3806                  */
3807                 for (j=sh->disks; j--;) {
3808                         sector_t s;
3809                         if (j == sh->pd_idx)
3810                                 continue;
3811                         if (conf->level == 6 &&
3812                             j == sh->qd_idx)
3813                                 continue;
3814                         s = compute_blocknr(sh, j);
3815                         if (s < raid5_size(mddev, 0, 0)) {
3816                                 skipped = 1;
3817                                 continue;
3818                         }
3819                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3820                         set_bit(R5_Expanded, &sh->dev[j].flags);
3821                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3822                 }
3823                 if (!skipped) {
3824                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3825                         set_bit(STRIPE_HANDLE, &sh->state);
3826                 }
3827                 release_stripe(sh);
3828         }
3829         spin_lock_irq(&conf->device_lock);
3830         if (mddev->delta_disks < 0)
3831                 conf->reshape_progress -= i * new_data_disks;
3832         else
3833                 conf->reshape_progress += i * new_data_disks;
3834         spin_unlock_irq(&conf->device_lock);
3835         /* Ok, those stripe are ready. We can start scheduling
3836          * reads on the source stripes.
3837          * The source stripes are determined by mapping the first and last
3838          * block on the destination stripes.
3839          */
3840         first_sector =
3841                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3842                                      1, &dd_idx, NULL);
3843         last_sector =
3844                 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3845                                             *(new_data_disks) - 1),
3846                                      1, &dd_idx, NULL);
3847         if (last_sector >= mddev->dev_sectors)
3848                 last_sector = mddev->dev_sectors - 1;
3849         while (first_sector <= last_sector) {
3850                 sh = get_active_stripe(conf, first_sector, 1, 0);
3851                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3852                 set_bit(STRIPE_HANDLE, &sh->state);
3853                 release_stripe(sh);
3854                 first_sector += STRIPE_SECTORS;
3855         }
3856         /* If this takes us to the resync_max point where we have to pause,
3857          * then we need to write out the superblock.
3858          */
3859         sector_nr += conf->chunk_size>>9;
3860         if (sector_nr >= mddev->resync_max) {
3861                 /* Cannot proceed until we've updated the superblock... */
3862                 wait_event(conf->wait_for_overlap,
3863                            atomic_read(&conf->reshape_stripes) == 0);
3864                 mddev->reshape_position = conf->reshape_progress;
3865                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3866                 md_wakeup_thread(mddev->thread);
3867                 wait_event(mddev->sb_wait,
3868                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3869                            || kthread_should_stop());
3870                 spin_lock_irq(&conf->device_lock);
3871                 conf->reshape_safe = mddev->reshape_position;
3872                 spin_unlock_irq(&conf->device_lock);
3873                 wake_up(&conf->wait_for_overlap);
3874         }
3875         return conf->chunk_size>>9;
3876 }
3877
3878 /* FIXME go_faster isn't used */
3879 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3880 {
3881         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3882         struct stripe_head *sh;
3883         sector_t max_sector = mddev->dev_sectors;
3884         int sync_blocks;
3885         int still_degraded = 0;
3886         int i;
3887
3888         if (sector_nr >= max_sector) {
3889                 /* just being told to finish up .. nothing much to do */
3890                 unplug_slaves(mddev);
3891
3892                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3893                         end_reshape(conf);
3894                         return 0;
3895                 }
3896
3897                 if (mddev->curr_resync < max_sector) /* aborted */
3898                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3899                                         &sync_blocks, 1);
3900                 else /* completed sync */
3901                         conf->fullsync = 0;
3902                 bitmap_close_sync(mddev->bitmap);
3903
3904                 return 0;
3905         }
3906
3907         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3908                 return reshape_request(mddev, sector_nr, skipped);
3909
3910         /* No need to check resync_max as we never do more than one
3911          * stripe, and as resync_max will always be on a chunk boundary,
3912          * if the check in md_do_sync didn't fire, there is no chance
3913          * of overstepping resync_max here
3914          */
3915
3916         /* if there is too many failed drives and we are trying
3917          * to resync, then assert that we are finished, because there is
3918          * nothing we can do.
3919          */
3920         if (mddev->degraded >= conf->max_degraded &&
3921             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3922                 sector_t rv = mddev->dev_sectors - sector_nr;
3923                 *skipped = 1;
3924                 return rv;
3925         }
3926         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3927             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3928             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3929                 /* we can skip this block, and probably more */
3930                 sync_blocks /= STRIPE_SECTORS;
3931                 *skipped = 1;
3932                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3933         }
3934
3935
3936         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3937
3938         sh = get_active_stripe(conf, sector_nr, 0, 1);
3939         if (sh == NULL) {
3940                 sh = get_active_stripe(conf, sector_nr, 0, 0);
3941                 /* make sure we don't swamp the stripe cache if someone else
3942                  * is trying to get access
3943                  */
3944                 schedule_timeout_uninterruptible(1);
3945         }
3946         /* Need to check if array will still be degraded after recovery/resync
3947          * We don't need to check the 'failed' flag as when that gets set,
3948          * recovery aborts.
3949          */
3950         for (i=0; i<mddev->raid_disks; i++)
3951                 if (conf->disks[i].rdev == NULL)
3952                         still_degraded = 1;
3953
3954         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3955
3956         spin_lock(&sh->lock);
3957         set_bit(STRIPE_SYNCING, &sh->state);
3958         clear_bit(STRIPE_INSYNC, &sh->state);
3959         spin_unlock(&sh->lock);
3960
3961         /* wait for any blocked device to be handled */
3962         while(unlikely(!handle_stripe(sh, NULL)))
3963                 ;
3964         release_stripe(sh);
3965
3966         return STRIPE_SECTORS;
3967 }
3968
3969 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3970 {
3971         /* We may not be able to submit a whole bio at once as there
3972          * may not be enough stripe_heads available.
3973          * We cannot pre-allocate enough stripe_heads as we may need
3974          * more than exist in the cache (if we allow ever large chunks).
3975          * So we do one stripe head at a time and record in
3976          * ->bi_hw_segments how many have been done.
3977          *
3978          * We *know* that this entire raid_bio is in one chunk, so
3979          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3980          */
3981         struct stripe_head *sh;
3982         int dd_idx;
3983         sector_t sector, logical_sector, last_sector;
3984         int scnt = 0;
3985         int remaining;
3986         int handled = 0;
3987
3988         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3989         sector = raid5_compute_sector(conf, logical_sector,
3990                                       0, &dd_idx, NULL);
3991         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3992
3993         for (; logical_sector < last_sector;
3994              logical_sector += STRIPE_SECTORS,
3995                      sector += STRIPE_SECTORS,
3996                      scnt++) {
3997
3998                 if (scnt < raid5_bi_hw_segments(raid_bio))
3999                         /* already done this stripe */
4000                         continue;
4001
4002                 sh = get_active_stripe(conf, sector, 0, 1);
4003
4004                 if (!sh) {
4005                         /* failed to get a stripe - must wait */
4006                         raid5_set_bi_hw_segments(raid_bio, scnt);
4007                         conf->retry_read_aligned = raid_bio;
4008                         return handled;
4009                 }
4010
4011                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4012                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4013                         release_stripe(sh);
4014                         raid5_set_bi_hw_segments(raid_bio, scnt);
4015                         conf->retry_read_aligned = raid_bio;
4016                         return handled;
4017                 }
4018
4019                 handle_stripe(sh, NULL);
4020                 release_stripe(sh);
4021                 handled++;
4022         }
4023         spin_lock_irq(&conf->device_lock);
4024         remaining = raid5_dec_bi_phys_segments(raid_bio);
4025         spin_unlock_irq(&conf->device_lock);
4026         if (remaining == 0)
4027                 bio_endio(raid_bio, 0);
4028         if (atomic_dec_and_test(&conf->active_aligned_reads))
4029                 wake_up(&conf->wait_for_stripe);
4030         return handled;
4031 }
4032
4033
4034
4035 /*
4036  * This is our raid5 kernel thread.
4037  *
4038  * We scan the hash table for stripes which can be handled now.
4039  * During the scan, completed stripes are saved for us by the interrupt
4040  * handler, so that they will not have to wait for our next wakeup.
4041  */
4042 static void raid5d(mddev_t *mddev)
4043 {
4044         struct stripe_head *sh;
4045         raid5_conf_t *conf = mddev_to_conf(mddev);
4046         int handled;
4047
4048         pr_debug("+++ raid5d active\n");
4049
4050         md_check_recovery(mddev);
4051
4052         handled = 0;
4053         spin_lock_irq(&conf->device_lock);
4054         while (1) {
4055                 struct bio *bio;
4056
4057                 if (conf->seq_flush != conf->seq_write) {
4058                         int seq = conf->seq_flush;
4059                         spin_unlock_irq(&conf->device_lock);
4060                         bitmap_unplug(mddev->bitmap);
4061                         spin_lock_irq(&conf->device_lock);
4062                         conf->seq_write = seq;
4063                         activate_bit_delay(conf);
4064                 }
4065
4066                 while ((bio = remove_bio_from_retry(conf))) {
4067                         int ok;
4068                         spin_unlock_irq(&conf->device_lock);
4069                         ok = retry_aligned_read(conf, bio);
4070                         spin_lock_irq(&conf->device_lock);
4071                         if (!ok)
4072                                 break;
4073                         handled++;
4074                 }
4075
4076                 sh = __get_priority_stripe(conf);
4077
4078                 if (!sh)
4079                         break;
4080                 spin_unlock_irq(&conf->device_lock);
4081                 
4082                 handled++;
4083                 handle_stripe(sh, conf->spare_page);
4084                 release_stripe(sh);
4085
4086                 spin_lock_irq(&conf->device_lock);
4087         }
4088         pr_debug("%d stripes handled\n", handled);
4089
4090         spin_unlock_irq(&conf->device_lock);
4091
4092         async_tx_issue_pending_all();
4093         unplug_slaves(mddev);
4094
4095         pr_debug("--- raid5d inactive\n");
4096 }
4097
4098 static ssize_t
4099 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4100 {
4101         raid5_conf_t *conf = mddev_to_conf(mddev);
4102         if (conf)
4103                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4104         else
4105                 return 0;
4106 }
4107
4108 static ssize_t
4109 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4110 {
4111         raid5_conf_t *conf = mddev_to_conf(mddev);
4112         unsigned long new;
4113         int err;
4114
4115         if (len >= PAGE_SIZE)
4116                 return -EINVAL;
4117         if (!conf)
4118                 return -ENODEV;
4119
4120         if (strict_strtoul(page, 10, &new))
4121                 return -EINVAL;
4122         if (new <= 16 || new > 32768)
4123                 return -EINVAL;
4124         while (new < conf->max_nr_stripes) {
4125                 if (drop_one_stripe(conf))
4126                         conf->max_nr_stripes--;
4127                 else
4128                         break;
4129         }
4130         err = md_allow_write(mddev);
4131         if (err)
4132                 return err;
4133         while (new > conf->max_nr_stripes) {
4134                 if (grow_one_stripe(conf))
4135                         conf->max_nr_stripes++;
4136                 else break;
4137         }
4138         return len;
4139 }
4140
4141 static struct md_sysfs_entry
4142 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4143                                 raid5_show_stripe_cache_size,
4144                                 raid5_store_stripe_cache_size);
4145
4146 static ssize_t
4147 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4148 {
4149         raid5_conf_t *conf = mddev_to_conf(mddev);
4150         if (conf)
4151                 return sprintf(page, "%d\n", conf->bypass_threshold);
4152         else
4153                 return 0;
4154 }
4155
4156 static ssize_t
4157 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4158 {
4159         raid5_conf_t *conf = mddev_to_conf(mddev);
4160         unsigned long new;
4161         if (len >= PAGE_SIZE)
4162                 return -EINVAL;
4163         if (!conf)
4164                 return -ENODEV;
4165
4166         if (strict_strtoul(page, 10, &new))
4167                 return -EINVAL;
4168         if (new > conf->max_nr_stripes)
4169                 return -EINVAL;
4170         conf->bypass_threshold = new;
4171         return len;
4172 }
4173
4174 static struct md_sysfs_entry
4175 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4176                                         S_IRUGO | S_IWUSR,
4177                                         raid5_show_preread_threshold,
4178                                         raid5_store_preread_threshold);
4179
4180 static ssize_t
4181 stripe_cache_active_show(mddev_t *mddev, char *page)
4182 {
4183         raid5_conf_t *conf = mddev_to_conf(mddev);
4184         if (conf)
4185                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4186         else
4187                 return 0;
4188 }
4189
4190 static struct md_sysfs_entry
4191 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4192
4193 static struct attribute *raid5_attrs[] =  {
4194         &raid5_stripecache_size.attr,
4195         &raid5_stripecache_active.attr,
4196         &raid5_preread_bypass_threshold.attr,
4197         NULL,
4198 };
4199 static struct attribute_group raid5_attrs_group = {
4200         .name = NULL,
4201         .attrs = raid5_attrs,
4202 };
4203
4204 static sector_t
4205 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4206 {
4207         raid5_conf_t *conf = mddev_to_conf(mddev);
4208
4209         if (!sectors)
4210                 sectors = mddev->dev_sectors;
4211         if (!raid_disks) {
4212                 /* size is defined by the smallest of previous and new size */
4213                 if (conf->raid_disks < conf->previous_raid_disks)
4214                         raid_disks = conf->raid_disks;
4215                 else
4216                         raid_disks = conf->previous_raid_disks;
4217         }
4218
4219         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4220         return sectors * (raid_disks - conf->max_degraded);
4221 }
4222
4223 static raid5_conf_t *setup_conf(mddev_t *mddev)
4224 {
4225         raid5_conf_t *conf;
4226         int raid_disk, memory;
4227         mdk_rdev_t *rdev;
4228         struct disk_info *disk;
4229
4230         if (mddev->new_level != 5
4231             && mddev->new_level != 4
4232             && mddev->new_level != 6) {
4233                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4234                        mdname(mddev), mddev->new_level);
4235                 return ERR_PTR(-EIO);
4236         }
4237         if ((mddev->new_level == 5
4238              && !algorithm_valid_raid5(mddev->new_layout)) ||
4239             (mddev->new_level == 6
4240              && !algorithm_valid_raid6(mddev->new_layout))) {
4241                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4242                        mdname(mddev), mddev->new_layout);
4243                 return ERR_PTR(-EIO);
4244         }
4245         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4246                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4247                        mdname(mddev), mddev->raid_disks);
4248                 return ERR_PTR(-EINVAL);
4249         }
4250
4251         if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4252                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4253                         mddev->new_chunk, mdname(mddev));
4254                 return ERR_PTR(-EINVAL);
4255         }
4256
4257         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4258         if (conf == NULL)
4259                 goto abort;
4260
4261         conf->raid_disks = mddev->raid_disks;
4262         if (mddev->reshape_position == MaxSector)
4263                 conf->previous_raid_disks = mddev->raid_disks;
4264         else
4265                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4266
4267         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4268                               GFP_KERNEL);
4269         if (!conf->disks)
4270                 goto abort;
4271
4272         conf->mddev = mddev;
4273
4274         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4275                 goto abort;
4276
4277         if (mddev->new_level == 6) {
4278                 conf->spare_page = alloc_page(GFP_KERNEL);
4279                 if (!conf->spare_page)
4280                         goto abort;
4281         }
4282         spin_lock_init(&conf->device_lock);
4283         init_waitqueue_head(&conf->wait_for_stripe);
4284         init_waitqueue_head(&conf->wait_for_overlap);
4285         INIT_LIST_HEAD(&conf->handle_list);
4286         INIT_LIST_HEAD(&conf->hold_list);
4287         INIT_LIST_HEAD(&conf->delayed_list);
4288         INIT_LIST_HEAD(&conf->bitmap_list);
4289         INIT_LIST_HEAD(&conf->inactive_list);
4290         atomic_set(&conf->active_stripes, 0);
4291         atomic_set(&conf->preread_active_stripes, 0);
4292         atomic_set(&conf->active_aligned_reads, 0);
4293         conf->bypass_threshold = BYPASS_THRESHOLD;
4294
4295         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4296
4297         list_for_each_entry(rdev, &mddev->disks, same_set) {
4298                 raid_disk = rdev->raid_disk;
4299                 if (raid_disk >= conf->raid_disks
4300                     || raid_disk < 0)
4301                         continue;
4302                 disk = conf->disks + raid_disk;
4303
4304                 disk->rdev = rdev;
4305
4306                 if (test_bit(In_sync, &rdev->flags)) {
4307                         char b[BDEVNAME_SIZE];
4308                         printk(KERN_INFO "raid5: device %s operational as raid"
4309                                 " disk %d\n", bdevname(rdev->bdev,b),
4310                                 raid_disk);
4311                 } else
4312                         /* Cannot rely on bitmap to complete recovery */
4313                         conf->fullsync = 1;
4314         }
4315
4316         conf->chunk_size = mddev->new_chunk;
4317         conf->level = mddev->new_level;
4318         if (conf->level == 6)
4319                 conf->max_degraded = 2;
4320         else
4321                 conf->max_degraded = 1;
4322         conf->algorithm = mddev->new_layout;
4323         conf->max_nr_stripes = NR_STRIPES;
4324         conf->reshape_progress = mddev->reshape_position;
4325
4326         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4327                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4328         if (grow_stripes(conf, conf->max_nr_stripes)) {
4329                 printk(KERN_ERR
4330                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4331                 goto abort;
4332         } else
4333                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4334                         memory, mdname(mddev));
4335
4336         conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4337         if (!conf->thread) {
4338                 printk(KERN_ERR
4339                        "raid5: couldn't allocate thread for %s\n",
4340                        mdname(mddev));
4341                 goto abort;
4342         }
4343
4344         return conf;
4345
4346  abort:
4347         if (conf) {
4348                 shrink_stripes(conf);
4349                 safe_put_page(conf->spare_page);
4350                 kfree(conf->disks);
4351                 kfree(conf->stripe_hashtbl);
4352                 kfree(conf);
4353                 return ERR_PTR(-EIO);
4354         } else
4355                 return ERR_PTR(-ENOMEM);
4356 }
4357
4358 static int run(mddev_t *mddev)
4359 {
4360         raid5_conf_t *conf;
4361         int working_disks = 0;
4362         mdk_rdev_t *rdev;
4363
4364         if (mddev->reshape_position != MaxSector) {
4365                 /* Check that we can continue the reshape.
4366                  * Currently only disks can change, it must
4367                  * increase, and we must be past the point where
4368                  * a stripe over-writes itself
4369                  */
4370                 sector_t here_new, here_old;
4371                 int old_disks;
4372                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4373
4374                 if (mddev->new_level != mddev->level ||
4375                     mddev->new_layout != mddev->layout ||
4376                     mddev->new_chunk != mddev->chunk_size) {
4377                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4378                                "required - aborting.\n",
4379                                mdname(mddev));
4380                         return -EINVAL;
4381                 }
4382                 old_disks = mddev->raid_disks - mddev->delta_disks;
4383                 /* reshape_position must be on a new-stripe boundary, and one
4384                  * further up in new geometry must map after here in old
4385                  * geometry.
4386                  */
4387                 here_new = mddev->reshape_position;
4388                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4389                                (mddev->raid_disks - max_degraded))) {
4390                         printk(KERN_ERR "raid5: reshape_position not "
4391                                "on a stripe boundary\n");
4392                         return -EINVAL;
4393                 }
4394                 /* here_new is the stripe we will write to */
4395                 here_old = mddev->reshape_position;
4396                 sector_div(here_old, (mddev->chunk_size>>9)*
4397                            (old_disks-max_degraded));
4398                 /* here_old is the first stripe that we might need to read
4399                  * from */
4400                 if (here_new >= here_old) {
4401                         /* Reading from the same stripe as writing to - bad */
4402                         printk(KERN_ERR "raid5: reshape_position too early for "
4403                                "auto-recovery - aborting.\n");
4404                         return -EINVAL;
4405                 }
4406                 printk(KERN_INFO "raid5: reshape will continue\n");
4407                 /* OK, we should be able to continue; */
4408         } else {
4409                 BUG_ON(mddev->level != mddev->new_level);
4410                 BUG_ON(mddev->layout != mddev->new_layout);
4411                 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4412                 BUG_ON(mddev->delta_disks != 0);
4413         }
4414
4415         if (mddev->private == NULL)
4416                 conf = setup_conf(mddev);
4417         else
4418                 conf = mddev->private;
4419
4420         if (IS_ERR(conf))
4421                 return PTR_ERR(conf);
4422
4423         mddev->thread = conf->thread;
4424         conf->thread = NULL;
4425         mddev->private = conf;
4426
4427         /*
4428          * 0 for a fully functional array, 1 or 2 for a degraded array.
4429          */
4430         list_for_each_entry(rdev, &mddev->disks, same_set)
4431                 if (rdev->raid_disk >= 0 &&
4432                     test_bit(In_sync, &rdev->flags))
4433                         working_disks++;
4434
4435         mddev->degraded = conf->raid_disks - working_disks;
4436
4437         if (mddev->degraded > conf->max_degraded) {
4438                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4439                         " (%d/%d failed)\n",
4440                         mdname(mddev), mddev->degraded, conf->raid_disks);
4441                 goto abort;
4442         }
4443
4444         /* device size must be a multiple of chunk size */
4445         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4446         mddev->resync_max_sectors = mddev->dev_sectors;
4447
4448         if (mddev->degraded > 0 &&
4449             mddev->recovery_cp != MaxSector) {
4450                 if (mddev->ok_start_degraded)
4451                         printk(KERN_WARNING
4452                                "raid5: starting dirty degraded array: %s"
4453                                "- data corruption possible.\n",
4454                                mdname(mddev));
4455                 else {
4456                         printk(KERN_ERR
4457                                "raid5: cannot start dirty degraded array for %s\n",
4458                                mdname(mddev));
4459                         goto abort;
4460                 }
4461         }
4462
4463         if (mddev->degraded == 0)
4464                 printk("raid5: raid level %d set %s active with %d out of %d"
4465                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4466                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4467                         conf->algorithm);
4468         else
4469                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4470                         " out of %d devices, algorithm %d\n", conf->level,
4471                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4472                         mddev->raid_disks, conf->algorithm);
4473
4474         print_raid5_conf(conf);
4475
4476         if (conf->reshape_progress != MaxSector) {
4477                 printk("...ok start reshape thread\n");
4478                 conf->reshape_safe = conf->reshape_progress;
4479                 atomic_set(&conf->reshape_stripes, 0);
4480                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4481                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4482                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4483                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4484                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4485                                                         "%s_reshape");
4486         }
4487
4488         /* read-ahead size must cover two whole stripes, which is
4489          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4490          */
4491         {
4492                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4493                 int stripe = data_disks *
4494                         (mddev->chunk_size / PAGE_SIZE);
4495                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4496                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4497         }
4498
4499         /* Ok, everything is just fine now */
4500         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4501                 printk(KERN_WARNING
4502                        "raid5: failed to create sysfs attributes for %s\n",
4503                        mdname(mddev));
4504
4505         mddev->queue->queue_lock = &conf->device_lock;
4506
4507         mddev->queue->unplug_fn = raid5_unplug_device;
4508         mddev->queue->backing_dev_info.congested_data = mddev;
4509         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4510
4511         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4512
4513         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4514
4515         return 0;
4516 abort:
4517         md_unregister_thread(mddev->thread);
4518         mddev->thread = NULL;
4519         if (conf) {
4520                 shrink_stripes(conf);
4521                 print_raid5_conf(conf);
4522                 safe_put_page(conf->spare_page);
4523                 kfree(conf->disks);
4524                 kfree(conf->stripe_hashtbl);
4525                 kfree(conf);
4526         }
4527         mddev->private = NULL;
4528         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4529         return -EIO;
4530 }
4531
4532
4533
4534 static int stop(mddev_t *mddev)
4535 {
4536         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4537
4538         md_unregister_thread(mddev->thread);
4539         mddev->thread = NULL;
4540         shrink_stripes(conf);
4541         kfree(conf->stripe_hashtbl);
4542         mddev->queue->backing_dev_info.congested_fn = NULL;
4543         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4544         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4545         kfree(conf->disks);
4546         kfree(conf);
4547         mddev->private = NULL;
4548         return 0;
4549 }
4550
4551 #ifdef DEBUG
4552 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4553 {
4554         int i;
4555
4556         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4557                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4558         seq_printf(seq, "sh %llu,  count %d.\n",
4559                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4560         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4561         for (i = 0; i < sh->disks; i++) {
4562                 seq_printf(seq, "(cache%d: %p %ld) ",
4563                            i, sh->dev[i].page, sh->dev[i].flags);
4564         }
4565         seq_printf(seq, "\n");
4566 }
4567
4568 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4569 {
4570         struct stripe_head *sh;
4571         struct hlist_node *hn;
4572         int i;
4573
4574         spin_lock_irq(&conf->device_lock);
4575         for (i = 0; i < NR_HASH; i++) {
4576                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4577                         if (sh->raid_conf != conf)
4578                                 continue;
4579                         print_sh(seq, sh);
4580                 }
4581         }
4582         spin_unlock_irq(&conf->device_lock);
4583 }
4584 #endif
4585
4586 static void status(struct seq_file *seq, mddev_t *mddev)
4587 {
4588         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4589         int i;
4590
4591         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4592         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4593         for (i = 0; i < conf->raid_disks; i++)
4594                 seq_printf (seq, "%s",
4595                                conf->disks[i].rdev &&
4596                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4597         seq_printf (seq, "]");
4598 #ifdef DEBUG
4599         seq_printf (seq, "\n");
4600         printall(seq, conf);
4601 #endif
4602 }
4603
4604 static void print_raid5_conf (raid5_conf_t *conf)
4605 {
4606         int i;
4607         struct disk_info *tmp;
4608
4609         printk("RAID5 conf printout:\n");
4610         if (!conf) {
4611                 printk("(conf==NULL)\n");
4612                 return;
4613         }
4614         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4615                  conf->raid_disks - conf->mddev->degraded);
4616
4617         for (i = 0; i < conf->raid_disks; i++) {
4618                 char b[BDEVNAME_SIZE];
4619                 tmp = conf->disks + i;
4620                 if (tmp->rdev)
4621                 printk(" disk %d, o:%d, dev:%s\n",
4622                         i, !test_bit(Faulty, &tmp->rdev->flags),
4623                         bdevname(tmp->rdev->bdev,b));
4624         }
4625 }
4626
4627 static int raid5_spare_active(mddev_t *mddev)
4628 {
4629         int i;
4630         raid5_conf_t *conf = mddev->private;
4631         struct disk_info *tmp;
4632
4633         for (i = 0; i < conf->raid_disks; i++) {
4634                 tmp = conf->disks + i;
4635                 if (tmp->rdev
4636                     && !test_bit(Faulty, &tmp->rdev->flags)
4637                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4638                         unsigned long flags;
4639                         spin_lock_irqsave(&conf->device_lock, flags);
4640                         mddev->degraded--;
4641                         spin_unlock_irqrestore(&conf->device_lock, flags);
4642                 }
4643         }
4644         print_raid5_conf(conf);
4645         return 0;
4646 }
4647
4648 static int raid5_remove_disk(mddev_t *mddev, int number)
4649 {
4650         raid5_conf_t *conf = mddev->private;
4651         int err = 0;
4652         mdk_rdev_t *rdev;
4653         struct disk_info *p = conf->disks + number;
4654
4655         print_raid5_conf(conf);
4656         rdev = p->rdev;
4657         if (rdev) {
4658                 if (number >= conf->raid_disks &&
4659                     conf->reshape_progress == MaxSector)
4660                         clear_bit(In_sync, &rdev->flags);
4661
4662                 if (test_bit(In_sync, &rdev->flags) ||
4663                     atomic_read(&rdev->nr_pending)) {
4664                         err = -EBUSY;
4665                         goto abort;
4666                 }
4667                 /* Only remove non-faulty devices if recovery
4668                  * isn't possible.
4669                  */
4670                 if (!test_bit(Faulty, &rdev->flags) &&
4671                     mddev->degraded <= conf->max_degraded &&
4672                     number < conf->raid_disks) {
4673                         err = -EBUSY;
4674                         goto abort;
4675                 }
4676                 p->rdev = NULL;
4677                 synchronize_rcu();
4678                 if (atomic_read(&rdev->nr_pending)) {
4679                         /* lost the race, try later */
4680                         err = -EBUSY;
4681                         p->rdev = rdev;
4682                 }
4683         }
4684 abort:
4685
4686         print_raid5_conf(conf);
4687         return err;
4688 }
4689
4690 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4691 {
4692         raid5_conf_t *conf = mddev->private;
4693         int err = -EEXIST;
4694         int disk;
4695         struct disk_info *p;
4696         int first = 0;
4697         int last = conf->raid_disks - 1;
4698
4699         if (mddev->degraded > conf->max_degraded)
4700                 /* no point adding a device */
4701                 return -EINVAL;
4702
4703         if (rdev->raid_disk >= 0)
4704                 first = last = rdev->raid_disk;
4705
4706         /*
4707          * find the disk ... but prefer rdev->saved_raid_disk
4708          * if possible.
4709          */
4710         if (rdev->saved_raid_disk >= 0 &&
4711             rdev->saved_raid_disk >= first &&
4712             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4713                 disk = rdev->saved_raid_disk;
4714         else
4715                 disk = first;
4716         for ( ; disk <= last ; disk++)
4717                 if ((p=conf->disks + disk)->rdev == NULL) {
4718                         clear_bit(In_sync, &rdev->flags);
4719                         rdev->raid_disk = disk;
4720                         err = 0;
4721                         if (rdev->saved_raid_disk != disk)
4722                                 conf->fullsync = 1;
4723                         rcu_assign_pointer(p->rdev, rdev);
4724                         break;
4725                 }
4726         print_raid5_conf(conf);
4727         return err;
4728 }
4729
4730 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4731 {
4732         /* no resync is happening, and there is enough space
4733          * on all devices, so we can resize.
4734          * We need to make sure resync covers any new space.
4735          * If the array is shrinking we should possibly wait until
4736          * any io in the removed space completes, but it hardly seems
4737          * worth it.
4738          */
4739         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4740         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4741                                                mddev->raid_disks));
4742         if (mddev->array_sectors >
4743             raid5_size(mddev, sectors, mddev->raid_disks))
4744                 return -EINVAL;
4745         set_capacity(mddev->gendisk, mddev->array_sectors);
4746         mddev->changed = 1;
4747         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4748                 mddev->recovery_cp = mddev->dev_sectors;
4749                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4750         }
4751         mddev->dev_sectors = sectors;
4752         mddev->resync_max_sectors = sectors;
4753         return 0;
4754 }
4755
4756 #ifdef CONFIG_MD_RAID5_RESHAPE
4757 static int raid5_check_reshape(mddev_t *mddev)
4758 {
4759         raid5_conf_t *conf = mddev_to_conf(mddev);
4760
4761         if (mddev->delta_disks == 0)
4762                 return 0; /* nothing to do */
4763         if (mddev->bitmap)
4764                 /* Cannot grow a bitmap yet */
4765                 return -EBUSY;
4766         if (mddev->degraded > conf->max_degraded)
4767                 return -EINVAL;
4768         if (mddev->delta_disks < 0) {
4769                 /* We might be able to shrink, but the devices must
4770                  * be made bigger first.
4771                  * For raid6, 4 is the minimum size.
4772                  * Otherwise 2 is the minimum
4773                  */
4774                 int min = 2;
4775                 if (mddev->level == 6)
4776                         min = 4;
4777                 if (mddev->raid_disks + mddev->delta_disks < min)
4778                         return -EINVAL;
4779         }
4780
4781         /* Can only proceed if there are plenty of stripe_heads.
4782          * We need a minimum of one full stripe,, and for sensible progress
4783          * it is best to have about 4 times that.
4784          * If we require 4 times, then the default 256 4K stripe_heads will
4785          * allow for chunk sizes up to 256K, which is probably OK.
4786          * If the chunk size is greater, user-space should request more
4787          * stripe_heads first.
4788          */
4789         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4790             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4791                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4792                        (mddev->chunk_size / STRIPE_SIZE)*4);
4793                 return -ENOSPC;
4794         }
4795
4796         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4797 }
4798
4799 static int raid5_start_reshape(mddev_t *mddev)
4800 {
4801         raid5_conf_t *conf = mddev_to_conf(mddev);
4802         mdk_rdev_t *rdev;
4803         int spares = 0;
4804         int added_devices = 0;
4805         unsigned long flags;
4806
4807         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4808                 return -EBUSY;
4809
4810         list_for_each_entry(rdev, &mddev->disks, same_set)
4811                 if (rdev->raid_disk < 0 &&
4812                     !test_bit(Faulty, &rdev->flags))
4813                         spares++;
4814
4815         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4816                 /* Not enough devices even to make a degraded array
4817                  * of that size
4818                  */
4819                 return -EINVAL;
4820
4821         /* Refuse to reduce size of the array.  Any reductions in
4822          * array size must be through explicit setting of array_size
4823          * attribute.
4824          */
4825         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4826             < mddev->array_sectors) {
4827                 printk(KERN_ERR "md: %s: array size must be reduced "
4828                        "before number of disks\n", mdname(mddev));
4829                 return -EINVAL;
4830         }
4831
4832         atomic_set(&conf->reshape_stripes, 0);
4833         spin_lock_irq(&conf->device_lock);
4834         conf->previous_raid_disks = conf->raid_disks;
4835         conf->raid_disks += mddev->delta_disks;
4836         if (mddev->delta_disks < 0)
4837                 conf->reshape_progress = raid5_size(mddev, 0, 0);
4838         else
4839                 conf->reshape_progress = 0;
4840         conf->reshape_safe = conf->reshape_progress;
4841         conf->generation++;
4842         spin_unlock_irq(&conf->device_lock);
4843
4844         /* Add some new drives, as many as will fit.
4845          * We know there are enough to make the newly sized array work.
4846          */
4847         list_for_each_entry(rdev, &mddev->disks, same_set)
4848                 if (rdev->raid_disk < 0 &&
4849                     !test_bit(Faulty, &rdev->flags)) {
4850                         if (raid5_add_disk(mddev, rdev) == 0) {
4851                                 char nm[20];
4852                                 set_bit(In_sync, &rdev->flags);
4853                                 added_devices++;
4854                                 rdev->recovery_offset = 0;
4855                                 sprintf(nm, "rd%d", rdev->raid_disk);
4856                                 if (sysfs_create_link(&mddev->kobj,
4857                                                       &rdev->kobj, nm))
4858                                         printk(KERN_WARNING
4859                                                "raid5: failed to create "
4860                                                " link %s for %s\n",
4861                                                nm, mdname(mddev));
4862                         } else
4863                                 break;
4864                 }
4865
4866         if (mddev->delta_disks > 0) {
4867                 spin_lock_irqsave(&conf->device_lock, flags);
4868                 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4869                         - added_devices;
4870                 spin_unlock_irqrestore(&conf->device_lock, flags);
4871         }
4872         mddev->raid_disks = conf->raid_disks;
4873         mddev->reshape_position = 0;
4874         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4875
4876         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4877         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4878         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4879         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4880         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4881                                                 "%s_reshape");
4882         if (!mddev->sync_thread) {
4883                 mddev->recovery = 0;
4884                 spin_lock_irq(&conf->device_lock);
4885                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4886                 conf->reshape_progress = MaxSector;
4887                 spin_unlock_irq(&conf->device_lock);
4888                 return -EAGAIN;
4889         }
4890         md_wakeup_thread(mddev->sync_thread);
4891         md_new_event(mddev);
4892         return 0;
4893 }
4894 #endif
4895
4896 /* This is called from the reshape thread and should make any
4897  * changes needed in 'conf'
4898  */
4899 static void end_reshape(raid5_conf_t *conf)
4900 {
4901
4902         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4903
4904                 spin_lock_irq(&conf->device_lock);
4905                 conf->previous_raid_disks = conf->raid_disks;
4906                 conf->reshape_progress = MaxSector;
4907                 spin_unlock_irq(&conf->device_lock);
4908
4909                 /* read-ahead size must cover two whole stripes, which is
4910                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4911                  */
4912                 {
4913                         int data_disks = conf->raid_disks - conf->max_degraded;
4914                         int stripe = data_disks * (conf->chunk_size
4915                                                    / PAGE_SIZE);
4916                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4917                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4918                 }
4919         }
4920 }
4921
4922 /* This is called from the raid5d thread with mddev_lock held.
4923  * It makes config changes to the device.
4924  */
4925 static void raid5_finish_reshape(mddev_t *mddev)
4926 {
4927         struct block_device *bdev;
4928
4929         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4930
4931                 if (mddev->delta_disks > 0) {
4932                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4933                         set_capacity(mddev->gendisk, mddev->array_sectors);
4934                         mddev->changed = 1;
4935
4936                         bdev = bdget_disk(mddev->gendisk, 0);
4937                         if (bdev) {
4938                                 mutex_lock(&bdev->bd_inode->i_mutex);
4939                                 i_size_write(bdev->bd_inode,
4940                                              (loff_t)mddev->array_sectors << 9);
4941                                 mutex_unlock(&bdev->bd_inode->i_mutex);
4942                                 bdput(bdev);
4943                         }
4944                 } else {
4945                         int d;
4946                         raid5_conf_t *conf = mddev_to_conf(mddev);
4947                         mddev->degraded = conf->raid_disks;
4948                         for (d = 0; d < conf->raid_disks ; d++)
4949                                 if (conf->disks[d].rdev &&
4950                                     test_bit(In_sync,
4951                                              &conf->disks[d].rdev->flags))
4952                                         mddev->degraded--;
4953                         for (d = conf->raid_disks ;
4954                              d < conf->raid_disks - mddev->delta_disks;
4955                              d++)
4956                                 raid5_remove_disk(mddev, d);
4957                 }
4958                 mddev->reshape_position = MaxSector;
4959                 mddev->delta_disks = 0;
4960         }
4961 }
4962
4963 static void raid5_quiesce(mddev_t *mddev, int state)
4964 {
4965         raid5_conf_t *conf = mddev_to_conf(mddev);
4966
4967         switch(state) {
4968         case 2: /* resume for a suspend */
4969                 wake_up(&conf->wait_for_overlap);
4970                 break;
4971
4972         case 1: /* stop all writes */
4973                 spin_lock_irq(&conf->device_lock);
4974                 conf->quiesce = 1;
4975                 wait_event_lock_irq(conf->wait_for_stripe,
4976                                     atomic_read(&conf->active_stripes) == 0 &&
4977                                     atomic_read(&conf->active_aligned_reads) == 0,
4978                                     conf->device_lock, /* nothing */);
4979                 spin_unlock_irq(&conf->device_lock);
4980                 break;
4981
4982         case 0: /* re-enable writes */
4983                 spin_lock_irq(&conf->device_lock);
4984                 conf->quiesce = 0;
4985                 wake_up(&conf->wait_for_stripe);
4986                 wake_up(&conf->wait_for_overlap);
4987                 spin_unlock_irq(&conf->device_lock);
4988                 break;
4989         }
4990 }
4991
4992
4993 static void *raid5_takeover_raid1(mddev_t *mddev)
4994 {
4995         int chunksect;
4996
4997         if (mddev->raid_disks != 2 ||
4998             mddev->degraded > 1)
4999                 return ERR_PTR(-EINVAL);
5000
5001         /* Should check if there are write-behind devices? */
5002
5003         chunksect = 64*2; /* 64K by default */
5004
5005         /* The array must be an exact multiple of chunksize */
5006         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5007                 chunksect >>= 1;
5008
5009         if ((chunksect<<9) < STRIPE_SIZE)
5010                 /* array size does not allow a suitable chunk size */
5011                 return ERR_PTR(-EINVAL);
5012
5013         mddev->new_level = 5;
5014         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5015         mddev->new_chunk = chunksect << 9;
5016
5017         return setup_conf(mddev);
5018 }
5019
5020 static void *raid5_takeover_raid6(mddev_t *mddev)
5021 {
5022         int new_layout;
5023
5024         switch (mddev->layout) {
5025         case ALGORITHM_LEFT_ASYMMETRIC_6:
5026                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5027                 break;
5028         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5029                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5030                 break;
5031         case ALGORITHM_LEFT_SYMMETRIC_6:
5032                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5033                 break;
5034         case ALGORITHM_RIGHT_SYMMETRIC_6:
5035                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5036                 break;
5037         case ALGORITHM_PARITY_0_6:
5038                 new_layout = ALGORITHM_PARITY_0;
5039                 break;
5040         case ALGORITHM_PARITY_N:
5041                 new_layout = ALGORITHM_PARITY_N;
5042                 break;
5043         default:
5044                 return ERR_PTR(-EINVAL);
5045         }
5046         mddev->new_level = 5;
5047         mddev->new_layout = new_layout;
5048         mddev->delta_disks = -1;
5049         mddev->raid_disks -= 1;
5050         return setup_conf(mddev);
5051 }
5052
5053
5054 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5055 {
5056         /* Currently the layout and chunk size can only be changed
5057          * for a 2-drive raid array, as in that case no data shuffling
5058          * is required.
5059          * Later we might validate these and set new_* so a reshape
5060          * can complete the change.
5061          */
5062         raid5_conf_t *conf = mddev_to_conf(mddev);
5063
5064         if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5065                 return -EINVAL;
5066         if (new_chunk > 0) {
5067                 if (new_chunk & (new_chunk-1))
5068                         /* not a power of 2 */
5069                         return -EINVAL;
5070                 if (new_chunk < PAGE_SIZE)
5071                         return -EINVAL;
5072                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5073                         /* not factor of array size */
5074                         return -EINVAL;
5075         }
5076
5077         /* They look valid */
5078
5079         if (mddev->raid_disks != 2)
5080                 return -EINVAL;
5081
5082         if (new_layout >= 0) {
5083                 conf->algorithm = new_layout;
5084                 mddev->layout = mddev->new_layout = new_layout;
5085         }
5086         if (new_chunk > 0) {
5087                 conf->chunk_size = new_chunk;
5088                 mddev->chunk_size = mddev->new_chunk = new_chunk;
5089         }
5090         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5091         md_wakeup_thread(mddev->thread);
5092         return 0;
5093 }
5094
5095 static void *raid5_takeover(mddev_t *mddev)
5096 {
5097         /* raid5 can take over:
5098          *  raid0 - if all devices are the same - make it a raid4 layout
5099          *  raid1 - if there are two drives.  We need to know the chunk size
5100          *  raid4 - trivial - just use a raid4 layout.
5101          *  raid6 - Providing it is a *_6 layout
5102          *
5103          * For now, just do raid1
5104          */
5105
5106         if (mddev->level == 1)
5107                 return raid5_takeover_raid1(mddev);
5108         if (mddev->level == 4) {
5109                 mddev->new_layout = ALGORITHM_PARITY_N;
5110                 mddev->new_level = 5;
5111                 return setup_conf(mddev);
5112         }
5113         if (mddev->level == 6)
5114                 return raid5_takeover_raid6(mddev);
5115
5116         return ERR_PTR(-EINVAL);
5117 }
5118
5119
5120 static struct mdk_personality raid5_personality;
5121
5122 static void *raid6_takeover(mddev_t *mddev)
5123 {
5124         /* Currently can only take over a raid5.  We map the
5125          * personality to an equivalent raid6 personality
5126          * with the Q block at the end.
5127          */
5128         int new_layout;
5129
5130         if (mddev->pers != &raid5_personality)
5131                 return ERR_PTR(-EINVAL);
5132         if (mddev->degraded > 1)
5133                 return ERR_PTR(-EINVAL);
5134         if (mddev->raid_disks > 253)
5135                 return ERR_PTR(-EINVAL);
5136         if (mddev->raid_disks < 3)
5137                 return ERR_PTR(-EINVAL);
5138
5139         switch (mddev->layout) {
5140         case ALGORITHM_LEFT_ASYMMETRIC:
5141                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5142                 break;
5143         case ALGORITHM_RIGHT_ASYMMETRIC:
5144                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5145                 break;
5146         case ALGORITHM_LEFT_SYMMETRIC:
5147                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5148                 break;
5149         case ALGORITHM_RIGHT_SYMMETRIC:
5150                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5151                 break;
5152         case ALGORITHM_PARITY_0:
5153                 new_layout = ALGORITHM_PARITY_0_6;
5154                 break;
5155         case ALGORITHM_PARITY_N:
5156                 new_layout = ALGORITHM_PARITY_N;
5157                 break;
5158         default:
5159                 return ERR_PTR(-EINVAL);
5160         }
5161         mddev->new_level = 6;
5162         mddev->new_layout = new_layout;
5163         mddev->delta_disks = 1;
5164         mddev->raid_disks += 1;
5165         return setup_conf(mddev);
5166 }
5167
5168
5169 static struct mdk_personality raid6_personality =
5170 {
5171         .name           = "raid6",
5172         .level          = 6,
5173         .owner          = THIS_MODULE,
5174         .make_request   = make_request,
5175         .run            = run,
5176         .stop           = stop,
5177         .status         = status,
5178         .error_handler  = error,
5179         .hot_add_disk   = raid5_add_disk,
5180         .hot_remove_disk= raid5_remove_disk,
5181         .spare_active   = raid5_spare_active,
5182         .sync_request   = sync_request,
5183         .resize         = raid5_resize,
5184         .size           = raid5_size,
5185 #ifdef CONFIG_MD_RAID5_RESHAPE
5186         .check_reshape  = raid5_check_reshape,
5187         .start_reshape  = raid5_start_reshape,
5188         .finish_reshape = raid5_finish_reshape,
5189 #endif
5190         .quiesce        = raid5_quiesce,
5191         .takeover       = raid6_takeover,
5192 };
5193 static struct mdk_personality raid5_personality =
5194 {
5195         .name           = "raid5",
5196         .level          = 5,
5197         .owner          = THIS_MODULE,
5198         .make_request   = make_request,
5199         .run            = run,
5200         .stop           = stop,
5201         .status         = status,
5202         .error_handler  = error,
5203         .hot_add_disk   = raid5_add_disk,
5204         .hot_remove_disk= raid5_remove_disk,
5205         .spare_active   = raid5_spare_active,
5206         .sync_request   = sync_request,
5207         .resize         = raid5_resize,
5208         .size           = raid5_size,
5209 #ifdef CONFIG_MD_RAID5_RESHAPE
5210         .check_reshape  = raid5_check_reshape,
5211         .start_reshape  = raid5_start_reshape,
5212         .finish_reshape = raid5_finish_reshape,
5213 #endif
5214         .quiesce        = raid5_quiesce,
5215         .takeover       = raid5_takeover,
5216         .reconfig       = raid5_reconfig,
5217 };
5218
5219 static struct mdk_personality raid4_personality =
5220 {
5221         .name           = "raid4",
5222         .level          = 4,
5223         .owner          = THIS_MODULE,
5224         .make_request   = make_request,
5225         .run            = run,
5226         .stop           = stop,
5227         .status         = status,
5228         .error_handler  = error,
5229         .hot_add_disk   = raid5_add_disk,
5230         .hot_remove_disk= raid5_remove_disk,
5231         .spare_active   = raid5_spare_active,
5232         .sync_request   = sync_request,
5233         .resize         = raid5_resize,
5234         .size           = raid5_size,
5235 #ifdef CONFIG_MD_RAID5_RESHAPE
5236         .check_reshape  = raid5_check_reshape,
5237         .start_reshape  = raid5_start_reshape,
5238         .finish_reshape = raid5_finish_reshape,
5239 #endif
5240         .quiesce        = raid5_quiesce,
5241 };
5242
5243 static int __init raid5_init(void)
5244 {
5245         register_md_personality(&raid6_personality);
5246         register_md_personality(&raid5_personality);
5247         register_md_personality(&raid4_personality);
5248         return 0;
5249 }
5250
5251 static void raid5_exit(void)
5252 {
5253         unregister_md_personality(&raid6_personality);
5254         unregister_md_personality(&raid5_personality);
5255         unregister_md_personality(&raid4_personality);
5256 }
5257
5258 module_init(raid5_init);
5259 module_exit(raid5_exit);
5260 MODULE_LICENSE("GPL");
5261 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5262 MODULE_ALIAS("md-raid5");
5263 MODULE_ALIAS("md-raid4");
5264 MODULE_ALIAS("md-level-5");
5265 MODULE_ALIAS("md-level-4");
5266 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5267 MODULE_ALIAS("md-raid6");
5268 MODULE_ALIAS("md-level-6");
5269
5270 /* This used to be two separate modules, they were: */
5271 MODULE_ALIAS("raid5");
5272 MODULE_ALIAS("raid6");