md/raid5: duplicate some more handle_stripe_clean_event code in break_stripe_batch_list
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(gfp))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529         BUG_ON(sh->batch_head);
530
531         pr_debug("init_stripe called, stripe %llu\n",
532                 (unsigned long long)sector);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541         for (i = sh->disks; i--; ) {
542                 struct r5dev *dev = &sh->dev[i];
543
544                 if (dev->toread || dev->read || dev->towrite || dev->written ||
545                     test_bit(R5_LOCKED, &dev->flags)) {
546                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547                                (unsigned long long)sh->sector, i, dev->toread,
548                                dev->read, dev->towrite, dev->written,
549                                test_bit(R5_LOCKED, &dev->flags));
550                         WARN_ON(1);
551                 }
552                 dev->flags = 0;
553                 raid5_build_block(sh, i, previous);
554         }
555         if (read_seqcount_retry(&conf->gen_lock, seq))
556                 goto retry;
557         sh->overwrite_disks = 0;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560         set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564                                          short generation)
565 {
566         struct stripe_head *sh;
567
568         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570                 if (sh->sector == sector && sh->generation == generation)
571                         return sh;
572         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573         return NULL;
574 }
575
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591         int degraded, degraded2;
592         int i;
593
594         rcu_read_lock();
595         degraded = 0;
596         for (i = 0; i < conf->previous_raid_disks; i++) {
597                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = rcu_dereference(conf->disks[i].replacement);
600                 if (!rdev || test_bit(Faulty, &rdev->flags))
601                         degraded++;
602                 else if (test_bit(In_sync, &rdev->flags))
603                         ;
604                 else
605                         /* not in-sync or faulty.
606                          * If the reshape increases the number of devices,
607                          * this is being recovered by the reshape, so
608                          * this 'previous' section is not in_sync.
609                          * If the number of devices is being reduced however,
610                          * the device can only be part of the array if
611                          * we are reverting a reshape, so this section will
612                          * be in-sync.
613                          */
614                         if (conf->raid_disks >= conf->previous_raid_disks)
615                                 degraded++;
616         }
617         rcu_read_unlock();
618         if (conf->raid_disks == conf->previous_raid_disks)
619                 return degraded;
620         rcu_read_lock();
621         degraded2 = 0;
622         for (i = 0; i < conf->raid_disks; i++) {
623                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624                 if (rdev && test_bit(Faulty, &rdev->flags))
625                         rdev = rcu_dereference(conf->disks[i].replacement);
626                 if (!rdev || test_bit(Faulty, &rdev->flags))
627                         degraded2++;
628                 else if (test_bit(In_sync, &rdev->flags))
629                         ;
630                 else
631                         /* not in-sync or faulty.
632                          * If reshape increases the number of devices, this
633                          * section has already been recovered, else it
634                          * almost certainly hasn't.
635                          */
636                         if (conf->raid_disks <= conf->previous_raid_disks)
637                                 degraded2++;
638         }
639         rcu_read_unlock();
640         if (degraded2 > degraded)
641                 return degraded2;
642         return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647         int degraded;
648
649         if (conf->mddev->reshape_position == MaxSector)
650                 return conf->mddev->degraded > conf->max_degraded;
651
652         degraded = calc_degraded(conf);
653         if (degraded > conf->max_degraded)
654                 return 1;
655         return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660                   int previous, int noblock, int noquiesce)
661 {
662         struct stripe_head *sh;
663         int hash = stripe_hash_locks_hash(sector);
664
665         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667         spin_lock_irq(conf->hash_locks + hash);
668
669         do {
670                 wait_event_lock_irq(conf->wait_for_stripe,
671                                     conf->quiesce == 0 || noquiesce,
672                                     *(conf->hash_locks + hash));
673                 sh = __find_stripe(conf, sector, conf->generation - previous);
674                 if (!sh) {
675                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676                                 sh = get_free_stripe(conf, hash);
677                                 if (!sh && llist_empty(&conf->released_stripes) &&
678                                     !test_bit(R5_DID_ALLOC, &conf->cache_state))
679                                         set_bit(R5_ALLOC_MORE,
680                                                 &conf->cache_state);
681                         }
682                         if (noblock && sh == NULL)
683                                 break;
684                         if (!sh) {
685                                 set_bit(R5_INACTIVE_BLOCKED,
686                                         &conf->cache_state);
687                                 wait_event_lock_irq(
688                                         conf->wait_for_stripe,
689                                         !list_empty(conf->inactive_list + hash) &&
690                                         (atomic_read(&conf->active_stripes)
691                                          < (conf->max_nr_stripes * 3 / 4)
692                                          || !test_bit(R5_INACTIVE_BLOCKED,
693                                                       &conf->cache_state)),
694                                         *(conf->hash_locks + hash));
695                                 clear_bit(R5_INACTIVE_BLOCKED,
696                                           &conf->cache_state);
697                         } else {
698                                 init_stripe(sh, sector, previous);
699                                 atomic_inc(&sh->count);
700                         }
701                 } else if (!atomic_inc_not_zero(&sh->count)) {
702                         spin_lock(&conf->device_lock);
703                         if (!atomic_read(&sh->count)) {
704                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
705                                         atomic_inc(&conf->active_stripes);
706                                 BUG_ON(list_empty(&sh->lru) &&
707                                        !test_bit(STRIPE_EXPANDING, &sh->state));
708                                 list_del_init(&sh->lru);
709                                 if (sh->group) {
710                                         sh->group->stripes_cnt--;
711                                         sh->group = NULL;
712                                 }
713                         }
714                         atomic_inc(&sh->count);
715                         spin_unlock(&conf->device_lock);
716                 }
717         } while (sh == NULL);
718
719         spin_unlock_irq(conf->hash_locks + hash);
720         return sh;
721 }
722
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731         local_irq_disable();
732         if (sh1 > sh2) {
733                 spin_lock(&sh2->stripe_lock);
734                 spin_lock_nested(&sh1->stripe_lock, 1);
735         } else {
736                 spin_lock(&sh1->stripe_lock);
737                 spin_lock_nested(&sh2->stripe_lock, 1);
738         }
739 }
740
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743         spin_unlock(&sh1->stripe_lock);
744         spin_unlock(&sh2->stripe_lock);
745         local_irq_enable();
746 }
747
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
753                 is_full_stripe_write(sh);
754 }
755
756 /* we only do back search */
757 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
758 {
759         struct stripe_head *head;
760         sector_t head_sector, tmp_sec;
761         int hash;
762         int dd_idx;
763
764         if (!stripe_can_batch(sh))
765                 return;
766         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767         tmp_sec = sh->sector;
768         if (!sector_div(tmp_sec, conf->chunk_sectors))
769                 return;
770         head_sector = sh->sector - STRIPE_SECTORS;
771
772         hash = stripe_hash_locks_hash(head_sector);
773         spin_lock_irq(conf->hash_locks + hash);
774         head = __find_stripe(conf, head_sector, conf->generation);
775         if (head && !atomic_inc_not_zero(&head->count)) {
776                 spin_lock(&conf->device_lock);
777                 if (!atomic_read(&head->count)) {
778                         if (!test_bit(STRIPE_HANDLE, &head->state))
779                                 atomic_inc(&conf->active_stripes);
780                         BUG_ON(list_empty(&head->lru) &&
781                                !test_bit(STRIPE_EXPANDING, &head->state));
782                         list_del_init(&head->lru);
783                         if (head->group) {
784                                 head->group->stripes_cnt--;
785                                 head->group = NULL;
786                         }
787                 }
788                 atomic_inc(&head->count);
789                 spin_unlock(&conf->device_lock);
790         }
791         spin_unlock_irq(conf->hash_locks + hash);
792
793         if (!head)
794                 return;
795         if (!stripe_can_batch(head))
796                 goto out;
797
798         lock_two_stripes(head, sh);
799         /* clear_batch_ready clear the flag */
800         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801                 goto unlock_out;
802
803         if (sh->batch_head)
804                 goto unlock_out;
805
806         dd_idx = 0;
807         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808                 dd_idx++;
809         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810                 goto unlock_out;
811
812         if (head->batch_head) {
813                 spin_lock(&head->batch_head->batch_lock);
814                 /* This batch list is already running */
815                 if (!stripe_can_batch(head)) {
816                         spin_unlock(&head->batch_head->batch_lock);
817                         goto unlock_out;
818                 }
819
820                 /*
821                  * at this point, head's BATCH_READY could be cleared, but we
822                  * can still add the stripe to batch list
823                  */
824                 list_add(&sh->batch_list, &head->batch_list);
825                 spin_unlock(&head->batch_head->batch_lock);
826
827                 sh->batch_head = head->batch_head;
828         } else {
829                 head->batch_head = head;
830                 sh->batch_head = head->batch_head;
831                 spin_lock(&head->batch_lock);
832                 list_add_tail(&sh->batch_list, &head->batch_list);
833                 spin_unlock(&head->batch_lock);
834         }
835
836         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837                 if (atomic_dec_return(&conf->preread_active_stripes)
838                     < IO_THRESHOLD)
839                         md_wakeup_thread(conf->mddev->thread);
840
841         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842                 int seq = sh->bm_seq;
843                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844                     sh->batch_head->bm_seq > seq)
845                         seq = sh->batch_head->bm_seq;
846                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847                 sh->batch_head->bm_seq = seq;
848         }
849
850         atomic_inc(&sh->count);
851 unlock_out:
852         unlock_two_stripes(head, sh);
853 out:
854         release_stripe(head);
855 }
856
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858  * in this stripe_head.
859  */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862         sector_t progress = conf->reshape_progress;
863         /* Need a memory barrier to make sure we see the value
864          * of conf->generation, or ->data_offset that was set before
865          * reshape_progress was updated.
866          */
867         smp_rmb();
868         if (progress == MaxSector)
869                 return 0;
870         if (sh->generation == conf->generation - 1)
871                 return 0;
872         /* We are in a reshape, and this is a new-generation stripe,
873          * so use new_data_offset.
874          */
875         return 1;
876 }
877
878 static void
879 raid5_end_read_request(struct bio *bi, int error);
880 static void
881 raid5_end_write_request(struct bio *bi, int error);
882
883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
884 {
885         struct r5conf *conf = sh->raid_conf;
886         int i, disks = sh->disks;
887         struct stripe_head *head_sh = sh;
888
889         might_sleep();
890
891         for (i = disks; i--; ) {
892                 int rw;
893                 int replace_only = 0;
894                 struct bio *bi, *rbi;
895                 struct md_rdev *rdev, *rrdev = NULL;
896
897                 sh = head_sh;
898                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
899                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
900                                 rw = WRITE_FUA;
901                         else
902                                 rw = WRITE;
903                         if (test_bit(R5_Discard, &sh->dev[i].flags))
904                                 rw |= REQ_DISCARD;
905                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906                         rw = READ;
907                 else if (test_and_clear_bit(R5_WantReplace,
908                                             &sh->dev[i].flags)) {
909                         rw = WRITE;
910                         replace_only = 1;
911                 } else
912                         continue;
913                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914                         rw |= REQ_SYNC;
915
916 again:
917                 bi = &sh->dev[i].req;
918                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
919
920                 rcu_read_lock();
921                 rrdev = rcu_dereference(conf->disks[i].replacement);
922                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923                 rdev = rcu_dereference(conf->disks[i].rdev);
924                 if (!rdev) {
925                         rdev = rrdev;
926                         rrdev = NULL;
927                 }
928                 if (rw & WRITE) {
929                         if (replace_only)
930                                 rdev = NULL;
931                         if (rdev == rrdev)
932                                 /* We raced and saw duplicates */
933                                 rrdev = NULL;
934                 } else {
935                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936                                 rdev = rrdev;
937                         rrdev = NULL;
938                 }
939
940                 if (rdev && test_bit(Faulty, &rdev->flags))
941                         rdev = NULL;
942                 if (rdev)
943                         atomic_inc(&rdev->nr_pending);
944                 if (rrdev && test_bit(Faulty, &rrdev->flags))
945                         rrdev = NULL;
946                 if (rrdev)
947                         atomic_inc(&rrdev->nr_pending);
948                 rcu_read_unlock();
949
950                 /* We have already checked bad blocks for reads.  Now
951                  * need to check for writes.  We never accept write errors
952                  * on the replacement, so we don't to check rrdev.
953                  */
954                 while ((rw & WRITE) && rdev &&
955                        test_bit(WriteErrorSeen, &rdev->flags)) {
956                         sector_t first_bad;
957                         int bad_sectors;
958                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959                                               &first_bad, &bad_sectors);
960                         if (!bad)
961                                 break;
962
963                         if (bad < 0) {
964                                 set_bit(BlockedBadBlocks, &rdev->flags);
965                                 if (!conf->mddev->external &&
966                                     conf->mddev->flags) {
967                                         /* It is very unlikely, but we might
968                                          * still need to write out the
969                                          * bad block log - better give it
970                                          * a chance*/
971                                         md_check_recovery(conf->mddev);
972                                 }
973                                 /*
974                                  * Because md_wait_for_blocked_rdev
975                                  * will dec nr_pending, we must
976                                  * increment it first.
977                                  */
978                                 atomic_inc(&rdev->nr_pending);
979                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
980                         } else {
981                                 /* Acknowledged bad block - skip the write */
982                                 rdev_dec_pending(rdev, conf->mddev);
983                                 rdev = NULL;
984                         }
985                 }
986
987                 if (rdev) {
988                         if (s->syncing || s->expanding || s->expanded
989                             || s->replacing)
990                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991
992                         set_bit(STRIPE_IO_STARTED, &sh->state);
993
994                         bio_reset(bi);
995                         bi->bi_bdev = rdev->bdev;
996                         bi->bi_rw = rw;
997                         bi->bi_end_io = (rw & WRITE)
998                                 ? raid5_end_write_request
999                                 : raid5_end_read_request;
1000                         bi->bi_private = sh;
1001
1002                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1003                                 __func__, (unsigned long long)sh->sector,
1004                                 bi->bi_rw, i);
1005                         atomic_inc(&sh->count);
1006                         if (sh != head_sh)
1007                                 atomic_inc(&head_sh->count);
1008                         if (use_new_offset(conf, sh))
1009                                 bi->bi_iter.bi_sector = (sh->sector
1010                                                  + rdev->new_data_offset);
1011                         else
1012                                 bi->bi_iter.bi_sector = (sh->sector
1013                                                  + rdev->data_offset);
1014                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1015                                 bi->bi_rw |= REQ_NOMERGE;
1016
1017                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1018                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1019                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1020                         bi->bi_vcnt = 1;
1021                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1022                         bi->bi_io_vec[0].bv_offset = 0;
1023                         bi->bi_iter.bi_size = STRIPE_SIZE;
1024                         /*
1025                          * If this is discard request, set bi_vcnt 0. We don't
1026                          * want to confuse SCSI because SCSI will replace payload
1027                          */
1028                         if (rw & REQ_DISCARD)
1029                                 bi->bi_vcnt = 0;
1030                         if (rrdev)
1031                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1032
1033                         if (conf->mddev->gendisk)
1034                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1035                                                       bi, disk_devt(conf->mddev->gendisk),
1036                                                       sh->dev[i].sector);
1037                         generic_make_request(bi);
1038                 }
1039                 if (rrdev) {
1040                         if (s->syncing || s->expanding || s->expanded
1041                             || s->replacing)
1042                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1043
1044                         set_bit(STRIPE_IO_STARTED, &sh->state);
1045
1046                         bio_reset(rbi);
1047                         rbi->bi_bdev = rrdev->bdev;
1048                         rbi->bi_rw = rw;
1049                         BUG_ON(!(rw & WRITE));
1050                         rbi->bi_end_io = raid5_end_write_request;
1051                         rbi->bi_private = sh;
1052
1053                         pr_debug("%s: for %llu schedule op %ld on "
1054                                  "replacement disc %d\n",
1055                                 __func__, (unsigned long long)sh->sector,
1056                                 rbi->bi_rw, i);
1057                         atomic_inc(&sh->count);
1058                         if (sh != head_sh)
1059                                 atomic_inc(&head_sh->count);
1060                         if (use_new_offset(conf, sh))
1061                                 rbi->bi_iter.bi_sector = (sh->sector
1062                                                   + rrdev->new_data_offset);
1063                         else
1064                                 rbi->bi_iter.bi_sector = (sh->sector
1065                                                   + rrdev->data_offset);
1066                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1067                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1068                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1069                         rbi->bi_vcnt = 1;
1070                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1071                         rbi->bi_io_vec[0].bv_offset = 0;
1072                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1073                         /*
1074                          * If this is discard request, set bi_vcnt 0. We don't
1075                          * want to confuse SCSI because SCSI will replace payload
1076                          */
1077                         if (rw & REQ_DISCARD)
1078                                 rbi->bi_vcnt = 0;
1079                         if (conf->mddev->gendisk)
1080                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1081                                                       rbi, disk_devt(conf->mddev->gendisk),
1082                                                       sh->dev[i].sector);
1083                         generic_make_request(rbi);
1084                 }
1085                 if (!rdev && !rrdev) {
1086                         if (rw & WRITE)
1087                                 set_bit(STRIPE_DEGRADED, &sh->state);
1088                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1089                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1090                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1091                         set_bit(STRIPE_HANDLE, &sh->state);
1092                 }
1093
1094                 if (!head_sh->batch_head)
1095                         continue;
1096                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1097                                       batch_list);
1098                 if (sh != head_sh)
1099                         goto again;
1100         }
1101 }
1102
1103 static struct dma_async_tx_descriptor *
1104 async_copy_data(int frombio, struct bio *bio, struct page **page,
1105         sector_t sector, struct dma_async_tx_descriptor *tx,
1106         struct stripe_head *sh)
1107 {
1108         struct bio_vec bvl;
1109         struct bvec_iter iter;
1110         struct page *bio_page;
1111         int page_offset;
1112         struct async_submit_ctl submit;
1113         enum async_tx_flags flags = 0;
1114
1115         if (bio->bi_iter.bi_sector >= sector)
1116                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1117         else
1118                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1119
1120         if (frombio)
1121                 flags |= ASYNC_TX_FENCE;
1122         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1123
1124         bio_for_each_segment(bvl, bio, iter) {
1125                 int len = bvl.bv_len;
1126                 int clen;
1127                 int b_offset = 0;
1128
1129                 if (page_offset < 0) {
1130                         b_offset = -page_offset;
1131                         page_offset += b_offset;
1132                         len -= b_offset;
1133                 }
1134
1135                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1136                         clen = STRIPE_SIZE - page_offset;
1137                 else
1138                         clen = len;
1139
1140                 if (clen > 0) {
1141                         b_offset += bvl.bv_offset;
1142                         bio_page = bvl.bv_page;
1143                         if (frombio) {
1144                                 if (sh->raid_conf->skip_copy &&
1145                                     b_offset == 0 && page_offset == 0 &&
1146                                     clen == STRIPE_SIZE)
1147                                         *page = bio_page;
1148                                 else
1149                                         tx = async_memcpy(*page, bio_page, page_offset,
1150                                                   b_offset, clen, &submit);
1151                         } else
1152                                 tx = async_memcpy(bio_page, *page, b_offset,
1153                                                   page_offset, clen, &submit);
1154                 }
1155                 /* chain the operations */
1156                 submit.depend_tx = tx;
1157
1158                 if (clen < len) /* hit end of page */
1159                         break;
1160                 page_offset +=  len;
1161         }
1162
1163         return tx;
1164 }
1165
1166 static void ops_complete_biofill(void *stripe_head_ref)
1167 {
1168         struct stripe_head *sh = stripe_head_ref;
1169         struct bio *return_bi = NULL;
1170         int i;
1171
1172         pr_debug("%s: stripe %llu\n", __func__,
1173                 (unsigned long long)sh->sector);
1174
1175         /* clear completed biofills */
1176         for (i = sh->disks; i--; ) {
1177                 struct r5dev *dev = &sh->dev[i];
1178
1179                 /* acknowledge completion of a biofill operation */
1180                 /* and check if we need to reply to a read request,
1181                  * new R5_Wantfill requests are held off until
1182                  * !STRIPE_BIOFILL_RUN
1183                  */
1184                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1185                         struct bio *rbi, *rbi2;
1186
1187                         BUG_ON(!dev->read);
1188                         rbi = dev->read;
1189                         dev->read = NULL;
1190                         while (rbi && rbi->bi_iter.bi_sector <
1191                                 dev->sector + STRIPE_SECTORS) {
1192                                 rbi2 = r5_next_bio(rbi, dev->sector);
1193                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1194                                         rbi->bi_next = return_bi;
1195                                         return_bi = rbi;
1196                                 }
1197                                 rbi = rbi2;
1198                         }
1199                 }
1200         }
1201         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202
1203         return_io(return_bi);
1204
1205         set_bit(STRIPE_HANDLE, &sh->state);
1206         release_stripe(sh);
1207 }
1208
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211         struct dma_async_tx_descriptor *tx = NULL;
1212         struct async_submit_ctl submit;
1213         int i;
1214
1215         BUG_ON(sh->batch_head);
1216         pr_debug("%s: stripe %llu\n", __func__,
1217                 (unsigned long long)sh->sector);
1218
1219         for (i = sh->disks; i--; ) {
1220                 struct r5dev *dev = &sh->dev[i];
1221                 if (test_bit(R5_Wantfill, &dev->flags)) {
1222                         struct bio *rbi;
1223                         spin_lock_irq(&sh->stripe_lock);
1224                         dev->read = rbi = dev->toread;
1225                         dev->toread = NULL;
1226                         spin_unlock_irq(&sh->stripe_lock);
1227                         while (rbi && rbi->bi_iter.bi_sector <
1228                                 dev->sector + STRIPE_SECTORS) {
1229                                 tx = async_copy_data(0, rbi, &dev->page,
1230                                         dev->sector, tx, sh);
1231                                 rbi = r5_next_bio(rbi, dev->sector);
1232                         }
1233                 }
1234         }
1235
1236         atomic_inc(&sh->count);
1237         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238         async_trigger_callback(&submit);
1239 }
1240
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243         struct r5dev *tgt;
1244
1245         if (target < 0)
1246                 return;
1247
1248         tgt = &sh->dev[target];
1249         set_bit(R5_UPTODATE, &tgt->flags);
1250         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251         clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256         struct stripe_head *sh = stripe_head_ref;
1257
1258         pr_debug("%s: stripe %llu\n", __func__,
1259                 (unsigned long long)sh->sector);
1260
1261         /* mark the computed target(s) as uptodate */
1262         mark_target_uptodate(sh, sh->ops.target);
1263         mark_target_uptodate(sh, sh->ops.target2);
1264
1265         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266         if (sh->check_state == check_state_compute_run)
1267                 sh->check_state = check_state_compute_result;
1268         set_bit(STRIPE_HANDLE, &sh->state);
1269         release_stripe(sh);
1270 }
1271
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274                                  struct raid5_percpu *percpu, int i)
1275 {
1276         void *addr;
1277
1278         addr = flex_array_get(percpu->scribble, i);
1279         return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285         void *addr;
1286
1287         addr = flex_array_get(percpu->scribble, i);
1288         return addr;
1289 }
1290
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294         int disks = sh->disks;
1295         struct page **xor_srcs = to_addr_page(percpu, 0);
1296         int target = sh->ops.target;
1297         struct r5dev *tgt = &sh->dev[target];
1298         struct page *xor_dest = tgt->page;
1299         int count = 0;
1300         struct dma_async_tx_descriptor *tx;
1301         struct async_submit_ctl submit;
1302         int i;
1303
1304         BUG_ON(sh->batch_head);
1305
1306         pr_debug("%s: stripe %llu block: %d\n",
1307                 __func__, (unsigned long long)sh->sector, target);
1308         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310         for (i = disks; i--; )
1311                 if (i != target)
1312                         xor_srcs[count++] = sh->dev[i].page;
1313
1314         atomic_inc(&sh->count);
1315
1316         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318         if (unlikely(count == 1))
1319                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320         else
1321                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322
1323         return tx;
1324 }
1325
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327  * @srcs - (struct page *) array of size sh->disks
1328  * @sh - stripe_head to parse
1329  *
1330  * Populates srcs in proper layout order for the stripe and returns the
1331  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1332  * destination buffer is recorded in srcs[count] and the Q destination
1333  * is recorded in srcs[count+1]].
1334  */
1335 static int set_syndrome_sources(struct page **srcs,
1336                                 struct stripe_head *sh,
1337                                 int srctype)
1338 {
1339         int disks = sh->disks;
1340         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341         int d0_idx = raid6_d0(sh);
1342         int count;
1343         int i;
1344
1345         for (i = 0; i < disks; i++)
1346                 srcs[i] = NULL;
1347
1348         count = 0;
1349         i = d0_idx;
1350         do {
1351                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352                 struct r5dev *dev = &sh->dev[i];
1353
1354                 if (i == sh->qd_idx || i == sh->pd_idx ||
1355                     (srctype == SYNDROME_SRC_ALL) ||
1356                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357                      test_bit(R5_Wantdrain, &dev->flags)) ||
1358                     (srctype == SYNDROME_SRC_WRITTEN &&
1359                      dev->written))
1360                         srcs[slot] = sh->dev[i].page;
1361                 i = raid6_next_disk(i, disks);
1362         } while (i != d0_idx);
1363
1364         return syndrome_disks;
1365 }
1366
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370         int disks = sh->disks;
1371         struct page **blocks = to_addr_page(percpu, 0);
1372         int target;
1373         int qd_idx = sh->qd_idx;
1374         struct dma_async_tx_descriptor *tx;
1375         struct async_submit_ctl submit;
1376         struct r5dev *tgt;
1377         struct page *dest;
1378         int i;
1379         int count;
1380
1381         BUG_ON(sh->batch_head);
1382         if (sh->ops.target < 0)
1383                 target = sh->ops.target2;
1384         else if (sh->ops.target2 < 0)
1385                 target = sh->ops.target;
1386         else
1387                 /* we should only have one valid target */
1388                 BUG();
1389         BUG_ON(target < 0);
1390         pr_debug("%s: stripe %llu block: %d\n",
1391                 __func__, (unsigned long long)sh->sector, target);
1392
1393         tgt = &sh->dev[target];
1394         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395         dest = tgt->page;
1396
1397         atomic_inc(&sh->count);
1398
1399         if (target == qd_idx) {
1400                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401                 blocks[count] = NULL; /* regenerating p is not necessary */
1402                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404                                   ops_complete_compute, sh,
1405                                   to_addr_conv(sh, percpu, 0));
1406                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407         } else {
1408                 /* Compute any data- or p-drive using XOR */
1409                 count = 0;
1410                 for (i = disks; i-- ; ) {
1411                         if (i == target || i == qd_idx)
1412                                 continue;
1413                         blocks[count++] = sh->dev[i].page;
1414                 }
1415
1416                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417                                   NULL, ops_complete_compute, sh,
1418                                   to_addr_conv(sh, percpu, 0));
1419                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420         }
1421
1422         return tx;
1423 }
1424
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428         int i, count, disks = sh->disks;
1429         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430         int d0_idx = raid6_d0(sh);
1431         int faila = -1, failb = -1;
1432         int target = sh->ops.target;
1433         int target2 = sh->ops.target2;
1434         struct r5dev *tgt = &sh->dev[target];
1435         struct r5dev *tgt2 = &sh->dev[target2];
1436         struct dma_async_tx_descriptor *tx;
1437         struct page **blocks = to_addr_page(percpu, 0);
1438         struct async_submit_ctl submit;
1439
1440         BUG_ON(sh->batch_head);
1441         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442                  __func__, (unsigned long long)sh->sector, target, target2);
1443         BUG_ON(target < 0 || target2 < 0);
1444         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
1447         /* we need to open-code set_syndrome_sources to handle the
1448          * slot number conversion for 'faila' and 'failb'
1449          */
1450         for (i = 0; i < disks ; i++)
1451                 blocks[i] = NULL;
1452         count = 0;
1453         i = d0_idx;
1454         do {
1455                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457                 blocks[slot] = sh->dev[i].page;
1458
1459                 if (i == target)
1460                         faila = slot;
1461                 if (i == target2)
1462                         failb = slot;
1463                 i = raid6_next_disk(i, disks);
1464         } while (i != d0_idx);
1465
1466         BUG_ON(faila == failb);
1467         if (failb < faila)
1468                 swap(faila, failb);
1469         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470                  __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472         atomic_inc(&sh->count);
1473
1474         if (failb == syndrome_disks+1) {
1475                 /* Q disk is one of the missing disks */
1476                 if (faila == syndrome_disks) {
1477                         /* Missing P+Q, just recompute */
1478                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479                                           ops_complete_compute, sh,
1480                                           to_addr_conv(sh, percpu, 0));
1481                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482                                                   STRIPE_SIZE, &submit);
1483                 } else {
1484                         struct page *dest;
1485                         int data_target;
1486                         int qd_idx = sh->qd_idx;
1487
1488                         /* Missing D+Q: recompute D from P, then recompute Q */
1489                         if (target == qd_idx)
1490                                 data_target = target2;
1491                         else
1492                                 data_target = target;
1493
1494                         count = 0;
1495                         for (i = disks; i-- ; ) {
1496                                 if (i == data_target || i == qd_idx)
1497                                         continue;
1498                                 blocks[count++] = sh->dev[i].page;
1499                         }
1500                         dest = sh->dev[data_target].page;
1501                         init_async_submit(&submit,
1502                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503                                           NULL, NULL, NULL,
1504                                           to_addr_conv(sh, percpu, 0));
1505                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506                                        &submit);
1507
1508                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510                                           ops_complete_compute, sh,
1511                                           to_addr_conv(sh, percpu, 0));
1512                         return async_gen_syndrome(blocks, 0, count+2,
1513                                                   STRIPE_SIZE, &submit);
1514                 }
1515         } else {
1516                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517                                   ops_complete_compute, sh,
1518                                   to_addr_conv(sh, percpu, 0));
1519                 if (failb == syndrome_disks) {
1520                         /* We're missing D+P. */
1521                         return async_raid6_datap_recov(syndrome_disks+2,
1522                                                        STRIPE_SIZE, faila,
1523                                                        blocks, &submit);
1524                 } else {
1525                         /* We're missing D+D. */
1526                         return async_raid6_2data_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila, failb,
1528                                                        blocks, &submit);
1529                 }
1530         }
1531 }
1532
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535         struct stripe_head *sh = stripe_head_ref;
1536
1537         pr_debug("%s: stripe %llu\n", __func__,
1538                 (unsigned long long)sh->sector);
1539 }
1540
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543                 struct dma_async_tx_descriptor *tx)
1544 {
1545         int disks = sh->disks;
1546         struct page **xor_srcs = to_addr_page(percpu, 0);
1547         int count = 0, pd_idx = sh->pd_idx, i;
1548         struct async_submit_ctl submit;
1549
1550         /* existing parity data subtracted */
1551         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
1553         BUG_ON(sh->batch_head);
1554         pr_debug("%s: stripe %llu\n", __func__,
1555                 (unsigned long long)sh->sector);
1556
1557         for (i = disks; i--; ) {
1558                 struct r5dev *dev = &sh->dev[i];
1559                 /* Only process blocks that are known to be uptodate */
1560                 if (test_bit(R5_Wantdrain, &dev->flags))
1561                         xor_srcs[count++] = dev->page;
1562         }
1563
1564         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567
1568         return tx;
1569 }
1570
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573                 struct dma_async_tx_descriptor *tx)
1574 {
1575         struct page **blocks = to_addr_page(percpu, 0);
1576         int count;
1577         struct async_submit_ctl submit;
1578
1579         pr_debug("%s: stripe %llu\n", __func__,
1580                 (unsigned long long)sh->sector);
1581
1582         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1587
1588         return tx;
1589 }
1590
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594         int disks = sh->disks;
1595         int i;
1596         struct stripe_head *head_sh = sh;
1597
1598         pr_debug("%s: stripe %llu\n", __func__,
1599                 (unsigned long long)sh->sector);
1600
1601         for (i = disks; i--; ) {
1602                 struct r5dev *dev;
1603                 struct bio *chosen;
1604
1605                 sh = head_sh;
1606                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607                         struct bio *wbi;
1608
1609 again:
1610                         dev = &sh->dev[i];
1611                         spin_lock_irq(&sh->stripe_lock);
1612                         chosen = dev->towrite;
1613                         dev->towrite = NULL;
1614                         sh->overwrite_disks = 0;
1615                         BUG_ON(dev->written);
1616                         wbi = dev->written = chosen;
1617                         spin_unlock_irq(&sh->stripe_lock);
1618                         WARN_ON(dev->page != dev->orig_page);
1619
1620                         while (wbi && wbi->bi_iter.bi_sector <
1621                                 dev->sector + STRIPE_SECTORS) {
1622                                 if (wbi->bi_rw & REQ_FUA)
1623                                         set_bit(R5_WantFUA, &dev->flags);
1624                                 if (wbi->bi_rw & REQ_SYNC)
1625                                         set_bit(R5_SyncIO, &dev->flags);
1626                                 if (wbi->bi_rw & REQ_DISCARD)
1627                                         set_bit(R5_Discard, &dev->flags);
1628                                 else {
1629                                         tx = async_copy_data(1, wbi, &dev->page,
1630                                                 dev->sector, tx, sh);
1631                                         if (dev->page != dev->orig_page) {
1632                                                 set_bit(R5_SkipCopy, &dev->flags);
1633                                                 clear_bit(R5_UPTODATE, &dev->flags);
1634                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1635                                         }
1636                                 }
1637                                 wbi = r5_next_bio(wbi, dev->sector);
1638                         }
1639
1640                         if (head_sh->batch_head) {
1641                                 sh = list_first_entry(&sh->batch_list,
1642                                                       struct stripe_head,
1643                                                       batch_list);
1644                                 if (sh == head_sh)
1645                                         continue;
1646                                 goto again;
1647                         }
1648                 }
1649         }
1650
1651         return tx;
1652 }
1653
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656         struct stripe_head *sh = stripe_head_ref;
1657         int disks = sh->disks;
1658         int pd_idx = sh->pd_idx;
1659         int qd_idx = sh->qd_idx;
1660         int i;
1661         bool fua = false, sync = false, discard = false;
1662
1663         pr_debug("%s: stripe %llu\n", __func__,
1664                 (unsigned long long)sh->sector);
1665
1666         for (i = disks; i--; ) {
1667                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670         }
1671
1672         for (i = disks; i--; ) {
1673                 struct r5dev *dev = &sh->dev[i];
1674
1675                 if (dev->written || i == pd_idx || i == qd_idx) {
1676                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677                                 set_bit(R5_UPTODATE, &dev->flags);
1678                         if (fua)
1679                                 set_bit(R5_WantFUA, &dev->flags);
1680                         if (sync)
1681                                 set_bit(R5_SyncIO, &dev->flags);
1682                 }
1683         }
1684
1685         if (sh->reconstruct_state == reconstruct_state_drain_run)
1686                 sh->reconstruct_state = reconstruct_state_drain_result;
1687         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689         else {
1690                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691                 sh->reconstruct_state = reconstruct_state_result;
1692         }
1693
1694         set_bit(STRIPE_HANDLE, &sh->state);
1695         release_stripe(sh);
1696 }
1697
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700                      struct dma_async_tx_descriptor *tx)
1701 {
1702         int disks = sh->disks;
1703         struct page **xor_srcs;
1704         struct async_submit_ctl submit;
1705         int count, pd_idx = sh->pd_idx, i;
1706         struct page *xor_dest;
1707         int prexor = 0;
1708         unsigned long flags;
1709         int j = 0;
1710         struct stripe_head *head_sh = sh;
1711         int last_stripe;
1712
1713         pr_debug("%s: stripe %llu\n", __func__,
1714                 (unsigned long long)sh->sector);
1715
1716         for (i = 0; i < sh->disks; i++) {
1717                 if (pd_idx == i)
1718                         continue;
1719                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720                         break;
1721         }
1722         if (i >= sh->disks) {
1723                 atomic_inc(&sh->count);
1724                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725                 ops_complete_reconstruct(sh);
1726                 return;
1727         }
1728 again:
1729         count = 0;
1730         xor_srcs = to_addr_page(percpu, j);
1731         /* check if prexor is active which means only process blocks
1732          * that are part of a read-modify-write (written)
1733          */
1734         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735                 prexor = 1;
1736                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737                 for (i = disks; i--; ) {
1738                         struct r5dev *dev = &sh->dev[i];
1739                         if (head_sh->dev[i].written)
1740                                 xor_srcs[count++] = dev->page;
1741                 }
1742         } else {
1743                 xor_dest = sh->dev[pd_idx].page;
1744                 for (i = disks; i--; ) {
1745                         struct r5dev *dev = &sh->dev[i];
1746                         if (i != pd_idx)
1747                                 xor_srcs[count++] = dev->page;
1748                 }
1749         }
1750
1751         /* 1/ if we prexor'd then the dest is reused as a source
1752          * 2/ if we did not prexor then we are redoing the parity
1753          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754          * for the synchronous xor case
1755          */
1756         last_stripe = !head_sh->batch_head ||
1757                 list_first_entry(&sh->batch_list,
1758                                  struct stripe_head, batch_list) == head_sh;
1759         if (last_stripe) {
1760                 flags = ASYNC_TX_ACK |
1761                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763                 atomic_inc(&head_sh->count);
1764                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765                                   to_addr_conv(sh, percpu, j));
1766         } else {
1767                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768                 init_async_submit(&submit, flags, tx, NULL, NULL,
1769                                   to_addr_conv(sh, percpu, j));
1770         }
1771
1772         if (unlikely(count == 1))
1773                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774         else
1775                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776         if (!last_stripe) {
1777                 j++;
1778                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779                                       batch_list);
1780                 goto again;
1781         }
1782 }
1783
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786                      struct dma_async_tx_descriptor *tx)
1787 {
1788         struct async_submit_ctl submit;
1789         struct page **blocks;
1790         int count, i, j = 0;
1791         struct stripe_head *head_sh = sh;
1792         int last_stripe;
1793         int synflags;
1794         unsigned long txflags;
1795
1796         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
1798         for (i = 0; i < sh->disks; i++) {
1799                 if (sh->pd_idx == i || sh->qd_idx == i)
1800                         continue;
1801                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802                         break;
1803         }
1804         if (i >= sh->disks) {
1805                 atomic_inc(&sh->count);
1806                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808                 ops_complete_reconstruct(sh);
1809                 return;
1810         }
1811
1812 again:
1813         blocks = to_addr_page(percpu, j);
1814
1815         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816                 synflags = SYNDROME_SRC_WRITTEN;
1817                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818         } else {
1819                 synflags = SYNDROME_SRC_ALL;
1820                 txflags = ASYNC_TX_ACK;
1821         }
1822
1823         count = set_syndrome_sources(blocks, sh, synflags);
1824         last_stripe = !head_sh->batch_head ||
1825                 list_first_entry(&sh->batch_list,
1826                                  struct stripe_head, batch_list) == head_sh;
1827
1828         if (last_stripe) {
1829                 atomic_inc(&head_sh->count);
1830                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831                                   head_sh, to_addr_conv(sh, percpu, j));
1832         } else
1833                 init_async_submit(&submit, 0, tx, NULL, NULL,
1834                                   to_addr_conv(sh, percpu, j));
1835         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1836         if (!last_stripe) {
1837                 j++;
1838                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839                                       batch_list);
1840                 goto again;
1841         }
1842 }
1843
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846         struct stripe_head *sh = stripe_head_ref;
1847
1848         pr_debug("%s: stripe %llu\n", __func__,
1849                 (unsigned long long)sh->sector);
1850
1851         sh->check_state = check_state_check_result;
1852         set_bit(STRIPE_HANDLE, &sh->state);
1853         release_stripe(sh);
1854 }
1855
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858         int disks = sh->disks;
1859         int pd_idx = sh->pd_idx;
1860         int qd_idx = sh->qd_idx;
1861         struct page *xor_dest;
1862         struct page **xor_srcs = to_addr_page(percpu, 0);
1863         struct dma_async_tx_descriptor *tx;
1864         struct async_submit_ctl submit;
1865         int count;
1866         int i;
1867
1868         pr_debug("%s: stripe %llu\n", __func__,
1869                 (unsigned long long)sh->sector);
1870
1871         BUG_ON(sh->batch_head);
1872         count = 0;
1873         xor_dest = sh->dev[pd_idx].page;
1874         xor_srcs[count++] = xor_dest;
1875         for (i = disks; i--; ) {
1876                 if (i == pd_idx || i == qd_idx)
1877                         continue;
1878                 xor_srcs[count++] = sh->dev[i].page;
1879         }
1880
1881         init_async_submit(&submit, 0, NULL, NULL, NULL,
1882                           to_addr_conv(sh, percpu, 0));
1883         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884                            &sh->ops.zero_sum_result, &submit);
1885
1886         atomic_inc(&sh->count);
1887         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888         tx = async_trigger_callback(&submit);
1889 }
1890
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893         struct page **srcs = to_addr_page(percpu, 0);
1894         struct async_submit_ctl submit;
1895         int count;
1896
1897         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898                 (unsigned long long)sh->sector, checkp);
1899
1900         BUG_ON(sh->batch_head);
1901         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902         if (!checkp)
1903                 srcs[count] = NULL;
1904
1905         atomic_inc(&sh->count);
1906         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907                           sh, to_addr_conv(sh, percpu, 0));
1908         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914         int overlap_clear = 0, i, disks = sh->disks;
1915         struct dma_async_tx_descriptor *tx = NULL;
1916         struct r5conf *conf = sh->raid_conf;
1917         int level = conf->level;
1918         struct raid5_percpu *percpu;
1919         unsigned long cpu;
1920
1921         cpu = get_cpu();
1922         percpu = per_cpu_ptr(conf->percpu, cpu);
1923         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924                 ops_run_biofill(sh);
1925                 overlap_clear++;
1926         }
1927
1928         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929                 if (level < 6)
1930                         tx = ops_run_compute5(sh, percpu);
1931                 else {
1932                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933                                 tx = ops_run_compute6_1(sh, percpu);
1934                         else
1935                                 tx = ops_run_compute6_2(sh, percpu);
1936                 }
1937                 /* terminate the chain if reconstruct is not set to be run */
1938                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939                         async_tx_ack(tx);
1940         }
1941
1942         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943                 if (level < 6)
1944                         tx = ops_run_prexor5(sh, percpu, tx);
1945                 else
1946                         tx = ops_run_prexor6(sh, percpu, tx);
1947         }
1948
1949         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950                 tx = ops_run_biodrain(sh, tx);
1951                 overlap_clear++;
1952         }
1953
1954         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955                 if (level < 6)
1956                         ops_run_reconstruct5(sh, percpu, tx);
1957                 else
1958                         ops_run_reconstruct6(sh, percpu, tx);
1959         }
1960
1961         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962                 if (sh->check_state == check_state_run)
1963                         ops_run_check_p(sh, percpu);
1964                 else if (sh->check_state == check_state_run_q)
1965                         ops_run_check_pq(sh, percpu, 0);
1966                 else if (sh->check_state == check_state_run_pq)
1967                         ops_run_check_pq(sh, percpu, 1);
1968                 else
1969                         BUG();
1970         }
1971
1972         if (overlap_clear && !sh->batch_head)
1973                 for (i = disks; i--; ) {
1974                         struct r5dev *dev = &sh->dev[i];
1975                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976                                 wake_up(&sh->raid_conf->wait_for_overlap);
1977                 }
1978         put_cpu();
1979 }
1980
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983         struct stripe_head *sh;
1984
1985         sh = kmem_cache_zalloc(sc, gfp);
1986         if (sh) {
1987                 spin_lock_init(&sh->stripe_lock);
1988                 spin_lock_init(&sh->batch_lock);
1989                 INIT_LIST_HEAD(&sh->batch_list);
1990                 INIT_LIST_HEAD(&sh->lru);
1991                 atomic_set(&sh->count, 1);
1992         }
1993         return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997         struct stripe_head *sh;
1998
1999         sh = alloc_stripe(conf->slab_cache, gfp);
2000         if (!sh)
2001                 return 0;
2002
2003         sh->raid_conf = conf;
2004
2005         if (grow_buffers(sh, gfp)) {
2006                 shrink_buffers(sh);
2007                 kmem_cache_free(conf->slab_cache, sh);
2008                 return 0;
2009         }
2010         sh->hash_lock_index =
2011                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012         /* we just created an active stripe so... */
2013         atomic_inc(&conf->active_stripes);
2014
2015         release_stripe(sh);
2016         conf->max_nr_stripes++;
2017         return 1;
2018 }
2019
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022         struct kmem_cache *sc;
2023         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024
2025         if (conf->mddev->gendisk)
2026                 sprintf(conf->cache_name[0],
2027                         "raid%d-%s", conf->level, mdname(conf->mddev));
2028         else
2029                 sprintf(conf->cache_name[0],
2030                         "raid%d-%p", conf->level, conf->mddev);
2031         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
2033         conf->active_name = 0;
2034         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036                                0, 0, NULL);
2037         if (!sc)
2038                 return 1;
2039         conf->slab_cache = sc;
2040         conf->pool_size = devs;
2041         while (num--)
2042                 if (!grow_one_stripe(conf, GFP_KERNEL))
2043                         return 1;
2044
2045         return 0;
2046 }
2047
2048 /**
2049  * scribble_len - return the required size of the scribble region
2050  * @num - total number of disks in the array
2051  *
2052  * The size must be enough to contain:
2053  * 1/ a struct page pointer for each device in the array +2
2054  * 2/ room to convert each entry in (1) to its corresponding dma
2055  *    (dma_map_page()) or page (page_address()) address.
2056  *
2057  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058  * calculate over all devices (not just the data blocks), using zeros in place
2059  * of the P and Q blocks.
2060  */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063         struct flex_array *ret;
2064         size_t len;
2065
2066         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067         ret = flex_array_alloc(len, cnt, flags);
2068         if (!ret)
2069                 return NULL;
2070         /* always prealloc all elements, so no locking is required */
2071         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072                 flex_array_free(ret);
2073                 return NULL;
2074         }
2075         return ret;
2076 }
2077
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080         unsigned long cpu;
2081         int err = 0;
2082
2083         mddev_suspend(conf->mddev);
2084         get_online_cpus();
2085         for_each_present_cpu(cpu) {
2086                 struct raid5_percpu *percpu;
2087                 struct flex_array *scribble;
2088
2089                 percpu = per_cpu_ptr(conf->percpu, cpu);
2090                 scribble = scribble_alloc(new_disks,
2091                                           new_sectors / STRIPE_SECTORS,
2092                                           GFP_NOIO);
2093
2094                 if (scribble) {
2095                         flex_array_free(percpu->scribble);
2096                         percpu->scribble = scribble;
2097                 } else {
2098                         err = -ENOMEM;
2099                         break;
2100                 }
2101         }
2102         put_online_cpus();
2103         mddev_resume(conf->mddev);
2104         return err;
2105 }
2106
2107 static int resize_stripes(struct r5conf *conf, int newsize)
2108 {
2109         /* Make all the stripes able to hold 'newsize' devices.
2110          * New slots in each stripe get 'page' set to a new page.
2111          *
2112          * This happens in stages:
2113          * 1/ create a new kmem_cache and allocate the required number of
2114          *    stripe_heads.
2115          * 2/ gather all the old stripe_heads and transfer the pages across
2116          *    to the new stripe_heads.  This will have the side effect of
2117          *    freezing the array as once all stripe_heads have been collected,
2118          *    no IO will be possible.  Old stripe heads are freed once their
2119          *    pages have been transferred over, and the old kmem_cache is
2120          *    freed when all stripes are done.
2121          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2122          *    we simple return a failre status - no need to clean anything up.
2123          * 4/ allocate new pages for the new slots in the new stripe_heads.
2124          *    If this fails, we don't bother trying the shrink the
2125          *    stripe_heads down again, we just leave them as they are.
2126          *    As each stripe_head is processed the new one is released into
2127          *    active service.
2128          *
2129          * Once step2 is started, we cannot afford to wait for a write,
2130          * so we use GFP_NOIO allocations.
2131          */
2132         struct stripe_head *osh, *nsh;
2133         LIST_HEAD(newstripes);
2134         struct disk_info *ndisks;
2135         int err;
2136         struct kmem_cache *sc;
2137         int i;
2138         int hash, cnt;
2139
2140         if (newsize <= conf->pool_size)
2141                 return 0; /* never bother to shrink */
2142
2143         err = md_allow_write(conf->mddev);
2144         if (err)
2145                 return err;
2146
2147         /* Step 1 */
2148         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2149                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2150                                0, 0, NULL);
2151         if (!sc)
2152                 return -ENOMEM;
2153
2154         for (i = conf->max_nr_stripes; i; i--) {
2155                 nsh = alloc_stripe(sc, GFP_KERNEL);
2156                 if (!nsh)
2157                         break;
2158
2159                 nsh->raid_conf = conf;
2160                 list_add(&nsh->lru, &newstripes);
2161         }
2162         if (i) {
2163                 /* didn't get enough, give up */
2164                 while (!list_empty(&newstripes)) {
2165                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2166                         list_del(&nsh->lru);
2167                         kmem_cache_free(sc, nsh);
2168                 }
2169                 kmem_cache_destroy(sc);
2170                 return -ENOMEM;
2171         }
2172         /* Step 2 - Must use GFP_NOIO now.
2173          * OK, we have enough stripes, start collecting inactive
2174          * stripes and copying them over
2175          */
2176         hash = 0;
2177         cnt = 0;
2178         list_for_each_entry(nsh, &newstripes, lru) {
2179                 lock_device_hash_lock(conf, hash);
2180                 wait_event_cmd(conf->wait_for_stripe,
2181                                     !list_empty(conf->inactive_list + hash),
2182                                     unlock_device_hash_lock(conf, hash),
2183                                     lock_device_hash_lock(conf, hash));
2184                 osh = get_free_stripe(conf, hash);
2185                 unlock_device_hash_lock(conf, hash);
2186
2187                 for(i=0; i<conf->pool_size; i++) {
2188                         nsh->dev[i].page = osh->dev[i].page;
2189                         nsh->dev[i].orig_page = osh->dev[i].page;
2190                 }
2191                 nsh->hash_lock_index = hash;
2192                 kmem_cache_free(conf->slab_cache, osh);
2193                 cnt++;
2194                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2195                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2196                         hash++;
2197                         cnt = 0;
2198                 }
2199         }
2200         kmem_cache_destroy(conf->slab_cache);
2201
2202         /* Step 3.
2203          * At this point, we are holding all the stripes so the array
2204          * is completely stalled, so now is a good time to resize
2205          * conf->disks and the scribble region
2206          */
2207         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2208         if (ndisks) {
2209                 for (i=0; i<conf->raid_disks; i++)
2210                         ndisks[i] = conf->disks[i];
2211                 kfree(conf->disks);
2212                 conf->disks = ndisks;
2213         } else
2214                 err = -ENOMEM;
2215
2216         /* Step 4, return new stripes to service */
2217         while(!list_empty(&newstripes)) {
2218                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2219                 list_del_init(&nsh->lru);
2220
2221                 for (i=conf->raid_disks; i < newsize; i++)
2222                         if (nsh->dev[i].page == NULL) {
2223                                 struct page *p = alloc_page(GFP_NOIO);
2224                                 nsh->dev[i].page = p;
2225                                 nsh->dev[i].orig_page = p;
2226                                 if (!p)
2227                                         err = -ENOMEM;
2228                         }
2229                 release_stripe(nsh);
2230         }
2231         /* critical section pass, GFP_NOIO no longer needed */
2232
2233         conf->slab_cache = sc;
2234         conf->active_name = 1-conf->active_name;
2235         if (!err)
2236                 conf->pool_size = newsize;
2237         return err;
2238 }
2239
2240 static int drop_one_stripe(struct r5conf *conf)
2241 {
2242         struct stripe_head *sh;
2243         int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2244
2245         spin_lock_irq(conf->hash_locks + hash);
2246         sh = get_free_stripe(conf, hash);
2247         spin_unlock_irq(conf->hash_locks + hash);
2248         if (!sh)
2249                 return 0;
2250         BUG_ON(atomic_read(&sh->count));
2251         shrink_buffers(sh);
2252         kmem_cache_free(conf->slab_cache, sh);
2253         atomic_dec(&conf->active_stripes);
2254         conf->max_nr_stripes--;
2255         return 1;
2256 }
2257
2258 static void shrink_stripes(struct r5conf *conf)
2259 {
2260         while (conf->max_nr_stripes &&
2261                drop_one_stripe(conf))
2262                 ;
2263
2264         if (conf->slab_cache)
2265                 kmem_cache_destroy(conf->slab_cache);
2266         conf->slab_cache = NULL;
2267 }
2268
2269 static void raid5_end_read_request(struct bio * bi, int error)
2270 {
2271         struct stripe_head *sh = bi->bi_private;
2272         struct r5conf *conf = sh->raid_conf;
2273         int disks = sh->disks, i;
2274         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2275         char b[BDEVNAME_SIZE];
2276         struct md_rdev *rdev = NULL;
2277         sector_t s;
2278
2279         for (i=0 ; i<disks; i++)
2280                 if (bi == &sh->dev[i].req)
2281                         break;
2282
2283         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2284                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2285                 uptodate);
2286         if (i == disks) {
2287                 BUG();
2288                 return;
2289         }
2290         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2291                 /* If replacement finished while this request was outstanding,
2292                  * 'replacement' might be NULL already.
2293                  * In that case it moved down to 'rdev'.
2294                  * rdev is not removed until all requests are finished.
2295                  */
2296                 rdev = conf->disks[i].replacement;
2297         if (!rdev)
2298                 rdev = conf->disks[i].rdev;
2299
2300         if (use_new_offset(conf, sh))
2301                 s = sh->sector + rdev->new_data_offset;
2302         else
2303                 s = sh->sector + rdev->data_offset;
2304         if (uptodate) {
2305                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2306                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2307                         /* Note that this cannot happen on a
2308                          * replacement device.  We just fail those on
2309                          * any error
2310                          */
2311                         printk_ratelimited(
2312                                 KERN_INFO
2313                                 "md/raid:%s: read error corrected"
2314                                 " (%lu sectors at %llu on %s)\n",
2315                                 mdname(conf->mddev), STRIPE_SECTORS,
2316                                 (unsigned long long)s,
2317                                 bdevname(rdev->bdev, b));
2318                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2319                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2320                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2321                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2322                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2323
2324                 if (atomic_read(&rdev->read_errors))
2325                         atomic_set(&rdev->read_errors, 0);
2326         } else {
2327                 const char *bdn = bdevname(rdev->bdev, b);
2328                 int retry = 0;
2329                 int set_bad = 0;
2330
2331                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2332                 atomic_inc(&rdev->read_errors);
2333                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2334                         printk_ratelimited(
2335                                 KERN_WARNING
2336                                 "md/raid:%s: read error on replacement device "
2337                                 "(sector %llu on %s).\n",
2338                                 mdname(conf->mddev),
2339                                 (unsigned long long)s,
2340                                 bdn);
2341                 else if (conf->mddev->degraded >= conf->max_degraded) {
2342                         set_bad = 1;
2343                         printk_ratelimited(
2344                                 KERN_WARNING
2345                                 "md/raid:%s: read error not correctable "
2346                                 "(sector %llu on %s).\n",
2347                                 mdname(conf->mddev),
2348                                 (unsigned long long)s,
2349                                 bdn);
2350                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2351                         /* Oh, no!!! */
2352                         set_bad = 1;
2353                         printk_ratelimited(
2354                                 KERN_WARNING
2355                                 "md/raid:%s: read error NOT corrected!! "
2356                                 "(sector %llu on %s).\n",
2357                                 mdname(conf->mddev),
2358                                 (unsigned long long)s,
2359                                 bdn);
2360                 } else if (atomic_read(&rdev->read_errors)
2361                          > conf->max_nr_stripes)
2362                         printk(KERN_WARNING
2363                                "md/raid:%s: Too many read errors, failing device %s.\n",
2364                                mdname(conf->mddev), bdn);
2365                 else
2366                         retry = 1;
2367                 if (set_bad && test_bit(In_sync, &rdev->flags)
2368                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2369                         retry = 1;
2370                 if (retry)
2371                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2372                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2373                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2374                         } else
2375                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2376                 else {
2377                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2378                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2379                         if (!(set_bad
2380                               && test_bit(In_sync, &rdev->flags)
2381                               && rdev_set_badblocks(
2382                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2383                                 md_error(conf->mddev, rdev);
2384                 }
2385         }
2386         rdev_dec_pending(rdev, conf->mddev);
2387         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2388         set_bit(STRIPE_HANDLE, &sh->state);
2389         release_stripe(sh);
2390 }
2391
2392 static void raid5_end_write_request(struct bio *bi, int error)
2393 {
2394         struct stripe_head *sh = bi->bi_private;
2395         struct r5conf *conf = sh->raid_conf;
2396         int disks = sh->disks, i;
2397         struct md_rdev *uninitialized_var(rdev);
2398         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2399         sector_t first_bad;
2400         int bad_sectors;
2401         int replacement = 0;
2402
2403         for (i = 0 ; i < disks; i++) {
2404                 if (bi == &sh->dev[i].req) {
2405                         rdev = conf->disks[i].rdev;
2406                         break;
2407                 }
2408                 if (bi == &sh->dev[i].rreq) {
2409                         rdev = conf->disks[i].replacement;
2410                         if (rdev)
2411                                 replacement = 1;
2412                         else
2413                                 /* rdev was removed and 'replacement'
2414                                  * replaced it.  rdev is not removed
2415                                  * until all requests are finished.
2416                                  */
2417                                 rdev = conf->disks[i].rdev;
2418                         break;
2419                 }
2420         }
2421         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2422                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2423                 uptodate);
2424         if (i == disks) {
2425                 BUG();
2426                 return;
2427         }
2428
2429         if (replacement) {
2430                 if (!uptodate)
2431                         md_error(conf->mddev, rdev);
2432                 else if (is_badblock(rdev, sh->sector,
2433                                      STRIPE_SECTORS,
2434                                      &first_bad, &bad_sectors))
2435                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2436         } else {
2437                 if (!uptodate) {
2438                         set_bit(STRIPE_DEGRADED, &sh->state);
2439                         set_bit(WriteErrorSeen, &rdev->flags);
2440                         set_bit(R5_WriteError, &sh->dev[i].flags);
2441                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2442                                 set_bit(MD_RECOVERY_NEEDED,
2443                                         &rdev->mddev->recovery);
2444                 } else if (is_badblock(rdev, sh->sector,
2445                                        STRIPE_SECTORS,
2446                                        &first_bad, &bad_sectors)) {
2447                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2448                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2449                                 /* That was a successful write so make
2450                                  * sure it looks like we already did
2451                                  * a re-write.
2452                                  */
2453                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2454                 }
2455         }
2456         rdev_dec_pending(rdev, conf->mddev);
2457
2458         if (sh->batch_head && !uptodate && !replacement)
2459                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2460
2461         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2462                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2463         set_bit(STRIPE_HANDLE, &sh->state);
2464         release_stripe(sh);
2465
2466         if (sh->batch_head && sh != sh->batch_head)
2467                 release_stripe(sh->batch_head);
2468 }
2469
2470 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2471
2472 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2473 {
2474         struct r5dev *dev = &sh->dev[i];
2475
2476         bio_init(&dev->req);
2477         dev->req.bi_io_vec = &dev->vec;
2478         dev->req.bi_max_vecs = 1;
2479         dev->req.bi_private = sh;
2480
2481         bio_init(&dev->rreq);
2482         dev->rreq.bi_io_vec = &dev->rvec;
2483         dev->rreq.bi_max_vecs = 1;
2484         dev->rreq.bi_private = sh;
2485
2486         dev->flags = 0;
2487         dev->sector = compute_blocknr(sh, i, previous);
2488 }
2489
2490 static void error(struct mddev *mddev, struct md_rdev *rdev)
2491 {
2492         char b[BDEVNAME_SIZE];
2493         struct r5conf *conf = mddev->private;
2494         unsigned long flags;
2495         pr_debug("raid456: error called\n");
2496
2497         spin_lock_irqsave(&conf->device_lock, flags);
2498         clear_bit(In_sync, &rdev->flags);
2499         mddev->degraded = calc_degraded(conf);
2500         spin_unlock_irqrestore(&conf->device_lock, flags);
2501         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2502
2503         set_bit(Blocked, &rdev->flags);
2504         set_bit(Faulty, &rdev->flags);
2505         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2506         printk(KERN_ALERT
2507                "md/raid:%s: Disk failure on %s, disabling device.\n"
2508                "md/raid:%s: Operation continuing on %d devices.\n",
2509                mdname(mddev),
2510                bdevname(rdev->bdev, b),
2511                mdname(mddev),
2512                conf->raid_disks - mddev->degraded);
2513 }
2514
2515 /*
2516  * Input: a 'big' sector number,
2517  * Output: index of the data and parity disk, and the sector # in them.
2518  */
2519 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2520                                      int previous, int *dd_idx,
2521                                      struct stripe_head *sh)
2522 {
2523         sector_t stripe, stripe2;
2524         sector_t chunk_number;
2525         unsigned int chunk_offset;
2526         int pd_idx, qd_idx;
2527         int ddf_layout = 0;
2528         sector_t new_sector;
2529         int algorithm = previous ? conf->prev_algo
2530                                  : conf->algorithm;
2531         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2532                                          : conf->chunk_sectors;
2533         int raid_disks = previous ? conf->previous_raid_disks
2534                                   : conf->raid_disks;
2535         int data_disks = raid_disks - conf->max_degraded;
2536
2537         /* First compute the information on this sector */
2538
2539         /*
2540          * Compute the chunk number and the sector offset inside the chunk
2541          */
2542         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2543         chunk_number = r_sector;
2544
2545         /*
2546          * Compute the stripe number
2547          */
2548         stripe = chunk_number;
2549         *dd_idx = sector_div(stripe, data_disks);
2550         stripe2 = stripe;
2551         /*
2552          * Select the parity disk based on the user selected algorithm.
2553          */
2554         pd_idx = qd_idx = -1;
2555         switch(conf->level) {
2556         case 4:
2557                 pd_idx = data_disks;
2558                 break;
2559         case 5:
2560                 switch (algorithm) {
2561                 case ALGORITHM_LEFT_ASYMMETRIC:
2562                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2563                         if (*dd_idx >= pd_idx)
2564                                 (*dd_idx)++;
2565                         break;
2566                 case ALGORITHM_RIGHT_ASYMMETRIC:
2567                         pd_idx = sector_div(stripe2, raid_disks);
2568                         if (*dd_idx >= pd_idx)
2569                                 (*dd_idx)++;
2570                         break;
2571                 case ALGORITHM_LEFT_SYMMETRIC:
2572                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2573                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2574                         break;
2575                 case ALGORITHM_RIGHT_SYMMETRIC:
2576                         pd_idx = sector_div(stripe2, raid_disks);
2577                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2578                         break;
2579                 case ALGORITHM_PARITY_0:
2580                         pd_idx = 0;
2581                         (*dd_idx)++;
2582                         break;
2583                 case ALGORITHM_PARITY_N:
2584                         pd_idx = data_disks;
2585                         break;
2586                 default:
2587                         BUG();
2588                 }
2589                 break;
2590         case 6:
2591
2592                 switch (algorithm) {
2593                 case ALGORITHM_LEFT_ASYMMETRIC:
2594                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2595                         qd_idx = pd_idx + 1;
2596                         if (pd_idx == raid_disks-1) {
2597                                 (*dd_idx)++;    /* Q D D D P */
2598                                 qd_idx = 0;
2599                         } else if (*dd_idx >= pd_idx)
2600                                 (*dd_idx) += 2; /* D D P Q D */
2601                         break;
2602                 case ALGORITHM_RIGHT_ASYMMETRIC:
2603                         pd_idx = sector_div(stripe2, raid_disks);
2604                         qd_idx = pd_idx + 1;
2605                         if (pd_idx == raid_disks-1) {
2606                                 (*dd_idx)++;    /* Q D D D P */
2607                                 qd_idx = 0;
2608                         } else if (*dd_idx >= pd_idx)
2609                                 (*dd_idx) += 2; /* D D P Q D */
2610                         break;
2611                 case ALGORITHM_LEFT_SYMMETRIC:
2612                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2613                         qd_idx = (pd_idx + 1) % raid_disks;
2614                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2615                         break;
2616                 case ALGORITHM_RIGHT_SYMMETRIC:
2617                         pd_idx = sector_div(stripe2, raid_disks);
2618                         qd_idx = (pd_idx + 1) % raid_disks;
2619                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2620                         break;
2621
2622                 case ALGORITHM_PARITY_0:
2623                         pd_idx = 0;
2624                         qd_idx = 1;
2625                         (*dd_idx) += 2;
2626                         break;
2627                 case ALGORITHM_PARITY_N:
2628                         pd_idx = data_disks;
2629                         qd_idx = data_disks + 1;
2630                         break;
2631
2632                 case ALGORITHM_ROTATING_ZERO_RESTART:
2633                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2634                          * of blocks for computing Q is different.
2635                          */
2636                         pd_idx = sector_div(stripe2, raid_disks);
2637                         qd_idx = pd_idx + 1;
2638                         if (pd_idx == raid_disks-1) {
2639                                 (*dd_idx)++;    /* Q D D D P */
2640                                 qd_idx = 0;
2641                         } else if (*dd_idx >= pd_idx)
2642                                 (*dd_idx) += 2; /* D D P Q D */
2643                         ddf_layout = 1;
2644                         break;
2645
2646                 case ALGORITHM_ROTATING_N_RESTART:
2647                         /* Same a left_asymmetric, by first stripe is
2648                          * D D D P Q  rather than
2649                          * Q D D D P
2650                          */
2651                         stripe2 += 1;
2652                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2653                         qd_idx = pd_idx + 1;
2654                         if (pd_idx == raid_disks-1) {
2655                                 (*dd_idx)++;    /* Q D D D P */
2656                                 qd_idx = 0;
2657                         } else if (*dd_idx >= pd_idx)
2658                                 (*dd_idx) += 2; /* D D P Q D */
2659                         ddf_layout = 1;
2660                         break;
2661
2662                 case ALGORITHM_ROTATING_N_CONTINUE:
2663                         /* Same as left_symmetric but Q is before P */
2664                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2665                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2666                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2667                         ddf_layout = 1;
2668                         break;
2669
2670                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2671                         /* RAID5 left_asymmetric, with Q on last device */
2672                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2673                         if (*dd_idx >= pd_idx)
2674                                 (*dd_idx)++;
2675                         qd_idx = raid_disks - 1;
2676                         break;
2677
2678                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2679                         pd_idx = sector_div(stripe2, raid_disks-1);
2680                         if (*dd_idx >= pd_idx)
2681                                 (*dd_idx)++;
2682                         qd_idx = raid_disks - 1;
2683                         break;
2684
2685                 case ALGORITHM_LEFT_SYMMETRIC_6:
2686                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2687                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2688                         qd_idx = raid_disks - 1;
2689                         break;
2690
2691                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2692                         pd_idx = sector_div(stripe2, raid_disks-1);
2693                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2694                         qd_idx = raid_disks - 1;
2695                         break;
2696
2697                 case ALGORITHM_PARITY_0_6:
2698                         pd_idx = 0;
2699                         (*dd_idx)++;
2700                         qd_idx = raid_disks - 1;
2701                         break;
2702
2703                 default:
2704                         BUG();
2705                 }
2706                 break;
2707         }
2708
2709         if (sh) {
2710                 sh->pd_idx = pd_idx;
2711                 sh->qd_idx = qd_idx;
2712                 sh->ddf_layout = ddf_layout;
2713         }
2714         /*
2715          * Finally, compute the new sector number
2716          */
2717         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2718         return new_sector;
2719 }
2720
2721 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2722 {
2723         struct r5conf *conf = sh->raid_conf;
2724         int raid_disks = sh->disks;
2725         int data_disks = raid_disks - conf->max_degraded;
2726         sector_t new_sector = sh->sector, check;
2727         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2728                                          : conf->chunk_sectors;
2729         int algorithm = previous ? conf->prev_algo
2730                                  : conf->algorithm;
2731         sector_t stripe;
2732         int chunk_offset;
2733         sector_t chunk_number;
2734         int dummy1, dd_idx = i;
2735         sector_t r_sector;
2736         struct stripe_head sh2;
2737
2738         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2739         stripe = new_sector;
2740
2741         if (i == sh->pd_idx)
2742                 return 0;
2743         switch(conf->level) {
2744         case 4: break;
2745         case 5:
2746                 switch (algorithm) {
2747                 case ALGORITHM_LEFT_ASYMMETRIC:
2748                 case ALGORITHM_RIGHT_ASYMMETRIC:
2749                         if (i > sh->pd_idx)
2750                                 i--;
2751                         break;
2752                 case ALGORITHM_LEFT_SYMMETRIC:
2753                 case ALGORITHM_RIGHT_SYMMETRIC:
2754                         if (i < sh->pd_idx)
2755                                 i += raid_disks;
2756                         i -= (sh->pd_idx + 1);
2757                         break;
2758                 case ALGORITHM_PARITY_0:
2759                         i -= 1;
2760                         break;
2761                 case ALGORITHM_PARITY_N:
2762                         break;
2763                 default:
2764                         BUG();
2765                 }
2766                 break;
2767         case 6:
2768                 if (i == sh->qd_idx)
2769                         return 0; /* It is the Q disk */
2770                 switch (algorithm) {
2771                 case ALGORITHM_LEFT_ASYMMETRIC:
2772                 case ALGORITHM_RIGHT_ASYMMETRIC:
2773                 case ALGORITHM_ROTATING_ZERO_RESTART:
2774                 case ALGORITHM_ROTATING_N_RESTART:
2775                         if (sh->pd_idx == raid_disks-1)
2776                                 i--;    /* Q D D D P */
2777                         else if (i > sh->pd_idx)
2778                                 i -= 2; /* D D P Q D */
2779                         break;
2780                 case ALGORITHM_LEFT_SYMMETRIC:
2781                 case ALGORITHM_RIGHT_SYMMETRIC:
2782                         if (sh->pd_idx == raid_disks-1)
2783                                 i--; /* Q D D D P */
2784                         else {
2785                                 /* D D P Q D */
2786                                 if (i < sh->pd_idx)
2787                                         i += raid_disks;
2788                                 i -= (sh->pd_idx + 2);
2789                         }
2790                         break;
2791                 case ALGORITHM_PARITY_0:
2792                         i -= 2;
2793                         break;
2794                 case ALGORITHM_PARITY_N:
2795                         break;
2796                 case ALGORITHM_ROTATING_N_CONTINUE:
2797                         /* Like left_symmetric, but P is before Q */
2798                         if (sh->pd_idx == 0)
2799                                 i--;    /* P D D D Q */
2800                         else {
2801                                 /* D D Q P D */
2802                                 if (i < sh->pd_idx)
2803                                         i += raid_disks;
2804                                 i -= (sh->pd_idx + 1);
2805                         }
2806                         break;
2807                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2808                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2809                         if (i > sh->pd_idx)
2810                                 i--;
2811                         break;
2812                 case ALGORITHM_LEFT_SYMMETRIC_6:
2813                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2814                         if (i < sh->pd_idx)
2815                                 i += data_disks + 1;
2816                         i -= (sh->pd_idx + 1);
2817                         break;
2818                 case ALGORITHM_PARITY_0_6:
2819                         i -= 1;
2820                         break;
2821                 default:
2822                         BUG();
2823                 }
2824                 break;
2825         }
2826
2827         chunk_number = stripe * data_disks + i;
2828         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2829
2830         check = raid5_compute_sector(conf, r_sector,
2831                                      previous, &dummy1, &sh2);
2832         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2833                 || sh2.qd_idx != sh->qd_idx) {
2834                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2835                        mdname(conf->mddev));
2836                 return 0;
2837         }
2838         return r_sector;
2839 }
2840
2841 static void
2842 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2843                          int rcw, int expand)
2844 {
2845         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2846         struct r5conf *conf = sh->raid_conf;
2847         int level = conf->level;
2848
2849         if (rcw) {
2850
2851                 for (i = disks; i--; ) {
2852                         struct r5dev *dev = &sh->dev[i];
2853
2854                         if (dev->towrite) {
2855                                 set_bit(R5_LOCKED, &dev->flags);
2856                                 set_bit(R5_Wantdrain, &dev->flags);
2857                                 if (!expand)
2858                                         clear_bit(R5_UPTODATE, &dev->flags);
2859                                 s->locked++;
2860                         }
2861                 }
2862                 /* if we are not expanding this is a proper write request, and
2863                  * there will be bios with new data to be drained into the
2864                  * stripe cache
2865                  */
2866                 if (!expand) {
2867                         if (!s->locked)
2868                                 /* False alarm, nothing to do */
2869                                 return;
2870                         sh->reconstruct_state = reconstruct_state_drain_run;
2871                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2872                 } else
2873                         sh->reconstruct_state = reconstruct_state_run;
2874
2875                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2876
2877                 if (s->locked + conf->max_degraded == disks)
2878                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2879                                 atomic_inc(&conf->pending_full_writes);
2880         } else {
2881                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2882                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2883                 BUG_ON(level == 6 &&
2884                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2885                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2886
2887                 for (i = disks; i--; ) {
2888                         struct r5dev *dev = &sh->dev[i];
2889                         if (i == pd_idx || i == qd_idx)
2890                                 continue;
2891
2892                         if (dev->towrite &&
2893                             (test_bit(R5_UPTODATE, &dev->flags) ||
2894                              test_bit(R5_Wantcompute, &dev->flags))) {
2895                                 set_bit(R5_Wantdrain, &dev->flags);
2896                                 set_bit(R5_LOCKED, &dev->flags);
2897                                 clear_bit(R5_UPTODATE, &dev->flags);
2898                                 s->locked++;
2899                         }
2900                 }
2901                 if (!s->locked)
2902                         /* False alarm - nothing to do */
2903                         return;
2904                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2905                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2906                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2907                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2908         }
2909
2910         /* keep the parity disk(s) locked while asynchronous operations
2911          * are in flight
2912          */
2913         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2914         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2915         s->locked++;
2916
2917         if (level == 6) {
2918                 int qd_idx = sh->qd_idx;
2919                 struct r5dev *dev = &sh->dev[qd_idx];
2920
2921                 set_bit(R5_LOCKED, &dev->flags);
2922                 clear_bit(R5_UPTODATE, &dev->flags);
2923                 s->locked++;
2924         }
2925
2926         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2927                 __func__, (unsigned long long)sh->sector,
2928                 s->locked, s->ops_request);
2929 }
2930
2931 /*
2932  * Each stripe/dev can have one or more bion attached.
2933  * toread/towrite point to the first in a chain.
2934  * The bi_next chain must be in order.
2935  */
2936 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2937                           int forwrite, int previous)
2938 {
2939         struct bio **bip;
2940         struct r5conf *conf = sh->raid_conf;
2941         int firstwrite=0;
2942
2943         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2944                 (unsigned long long)bi->bi_iter.bi_sector,
2945                 (unsigned long long)sh->sector);
2946
2947         /*
2948          * If several bio share a stripe. The bio bi_phys_segments acts as a
2949          * reference count to avoid race. The reference count should already be
2950          * increased before this function is called (for example, in
2951          * make_request()), so other bio sharing this stripe will not free the
2952          * stripe. If a stripe is owned by one stripe, the stripe lock will
2953          * protect it.
2954          */
2955         spin_lock_irq(&sh->stripe_lock);
2956         /* Don't allow new IO added to stripes in batch list */
2957         if (sh->batch_head)
2958                 goto overlap;
2959         if (forwrite) {
2960                 bip = &sh->dev[dd_idx].towrite;
2961                 if (*bip == NULL)
2962                         firstwrite = 1;
2963         } else
2964                 bip = &sh->dev[dd_idx].toread;
2965         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2966                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2967                         goto overlap;
2968                 bip = & (*bip)->bi_next;
2969         }
2970         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2971                 goto overlap;
2972
2973         if (!forwrite || previous)
2974                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2975
2976         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2977         if (*bip)
2978                 bi->bi_next = *bip;
2979         *bip = bi;
2980         raid5_inc_bi_active_stripes(bi);
2981
2982         if (forwrite) {
2983                 /* check if page is covered */
2984                 sector_t sector = sh->dev[dd_idx].sector;
2985                 for (bi=sh->dev[dd_idx].towrite;
2986                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2987                              bi && bi->bi_iter.bi_sector <= sector;
2988                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2989                         if (bio_end_sector(bi) >= sector)
2990                                 sector = bio_end_sector(bi);
2991                 }
2992                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2993                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2994                                 sh->overwrite_disks++;
2995         }
2996
2997         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2998                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2999                 (unsigned long long)sh->sector, dd_idx);
3000
3001         if (conf->mddev->bitmap && firstwrite) {
3002                 /* Cannot hold spinlock over bitmap_startwrite,
3003                  * but must ensure this isn't added to a batch until
3004                  * we have added to the bitmap and set bm_seq.
3005                  * So set STRIPE_BITMAP_PENDING to prevent
3006                  * batching.
3007                  * If multiple add_stripe_bio() calls race here they
3008                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3009                  * to complete "bitmap_startwrite" gets to set
3010                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3011                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3012                  * any more.
3013                  */
3014                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3015                 spin_unlock_irq(&sh->stripe_lock);
3016                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3017                                   STRIPE_SECTORS, 0);
3018                 spin_lock_irq(&sh->stripe_lock);
3019                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3020                 if (!sh->batch_head) {
3021                         sh->bm_seq = conf->seq_flush+1;
3022                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3023                 }
3024         }
3025         spin_unlock_irq(&sh->stripe_lock);
3026
3027         if (stripe_can_batch(sh))
3028                 stripe_add_to_batch_list(conf, sh);
3029         return 1;
3030
3031  overlap:
3032         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3033         spin_unlock_irq(&sh->stripe_lock);
3034         return 0;
3035 }
3036
3037 static void end_reshape(struct r5conf *conf);
3038
3039 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3040                             struct stripe_head *sh)
3041 {
3042         int sectors_per_chunk =
3043                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3044         int dd_idx;
3045         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3046         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3047
3048         raid5_compute_sector(conf,
3049                              stripe * (disks - conf->max_degraded)
3050                              *sectors_per_chunk + chunk_offset,
3051                              previous,
3052                              &dd_idx, sh);
3053 }
3054
3055 static void
3056 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3057                                 struct stripe_head_state *s, int disks,
3058                                 struct bio **return_bi)
3059 {
3060         int i;
3061         BUG_ON(sh->batch_head);
3062         for (i = disks; i--; ) {
3063                 struct bio *bi;
3064                 int bitmap_end = 0;
3065
3066                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3067                         struct md_rdev *rdev;
3068                         rcu_read_lock();
3069                         rdev = rcu_dereference(conf->disks[i].rdev);
3070                         if (rdev && test_bit(In_sync, &rdev->flags))
3071                                 atomic_inc(&rdev->nr_pending);
3072                         else
3073                                 rdev = NULL;
3074                         rcu_read_unlock();
3075                         if (rdev) {
3076                                 if (!rdev_set_badblocks(
3077                                             rdev,
3078                                             sh->sector,
3079                                             STRIPE_SECTORS, 0))
3080                                         md_error(conf->mddev, rdev);
3081                                 rdev_dec_pending(rdev, conf->mddev);
3082                         }
3083                 }
3084                 spin_lock_irq(&sh->stripe_lock);
3085                 /* fail all writes first */
3086                 bi = sh->dev[i].towrite;
3087                 sh->dev[i].towrite = NULL;
3088                 sh->overwrite_disks = 0;
3089                 spin_unlock_irq(&sh->stripe_lock);
3090                 if (bi)
3091                         bitmap_end = 1;
3092
3093                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3094                         wake_up(&conf->wait_for_overlap);
3095
3096                 while (bi && bi->bi_iter.bi_sector <
3097                         sh->dev[i].sector + STRIPE_SECTORS) {
3098                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3099                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3100                         if (!raid5_dec_bi_active_stripes(bi)) {
3101                                 md_write_end(conf->mddev);
3102                                 bi->bi_next = *return_bi;
3103                                 *return_bi = bi;
3104                         }
3105                         bi = nextbi;
3106                 }
3107                 if (bitmap_end)
3108                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3109                                 STRIPE_SECTORS, 0, 0);
3110                 bitmap_end = 0;
3111                 /* and fail all 'written' */
3112                 bi = sh->dev[i].written;
3113                 sh->dev[i].written = NULL;
3114                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3115                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3116                         sh->dev[i].page = sh->dev[i].orig_page;
3117                 }
3118
3119                 if (bi) bitmap_end = 1;
3120                 while (bi && bi->bi_iter.bi_sector <
3121                        sh->dev[i].sector + STRIPE_SECTORS) {
3122                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3123                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3124                         if (!raid5_dec_bi_active_stripes(bi)) {
3125                                 md_write_end(conf->mddev);
3126                                 bi->bi_next = *return_bi;
3127                                 *return_bi = bi;
3128                         }
3129                         bi = bi2;
3130                 }
3131
3132                 /* fail any reads if this device is non-operational and
3133                  * the data has not reached the cache yet.
3134                  */
3135                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3136                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3137                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3138                         spin_lock_irq(&sh->stripe_lock);
3139                         bi = sh->dev[i].toread;
3140                         sh->dev[i].toread = NULL;
3141                         spin_unlock_irq(&sh->stripe_lock);
3142                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3143                                 wake_up(&conf->wait_for_overlap);
3144                         while (bi && bi->bi_iter.bi_sector <
3145                                sh->dev[i].sector + STRIPE_SECTORS) {
3146                                 struct bio *nextbi =
3147                                         r5_next_bio(bi, sh->dev[i].sector);
3148                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3149                                 if (!raid5_dec_bi_active_stripes(bi)) {
3150                                         bi->bi_next = *return_bi;
3151                                         *return_bi = bi;
3152                                 }
3153                                 bi = nextbi;
3154                         }
3155                 }
3156                 if (bitmap_end)
3157                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3158                                         STRIPE_SECTORS, 0, 0);
3159                 /* If we were in the middle of a write the parity block might
3160                  * still be locked - so just clear all R5_LOCKED flags
3161                  */
3162                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3163         }
3164
3165         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3166                 if (atomic_dec_and_test(&conf->pending_full_writes))
3167                         md_wakeup_thread(conf->mddev->thread);
3168 }
3169
3170 static void
3171 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3172                    struct stripe_head_state *s)
3173 {
3174         int abort = 0;
3175         int i;
3176
3177         BUG_ON(sh->batch_head);
3178         clear_bit(STRIPE_SYNCING, &sh->state);
3179         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3180                 wake_up(&conf->wait_for_overlap);
3181         s->syncing = 0;
3182         s->replacing = 0;
3183         /* There is nothing more to do for sync/check/repair.
3184          * Don't even need to abort as that is handled elsewhere
3185          * if needed, and not always wanted e.g. if there is a known
3186          * bad block here.
3187          * For recover/replace we need to record a bad block on all
3188          * non-sync devices, or abort the recovery
3189          */
3190         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3191                 /* During recovery devices cannot be removed, so
3192                  * locking and refcounting of rdevs is not needed
3193                  */
3194                 for (i = 0; i < conf->raid_disks; i++) {
3195                         struct md_rdev *rdev = conf->disks[i].rdev;
3196                         if (rdev
3197                             && !test_bit(Faulty, &rdev->flags)
3198                             && !test_bit(In_sync, &rdev->flags)
3199                             && !rdev_set_badblocks(rdev, sh->sector,
3200                                                    STRIPE_SECTORS, 0))
3201                                 abort = 1;
3202                         rdev = conf->disks[i].replacement;
3203                         if (rdev
3204                             && !test_bit(Faulty, &rdev->flags)
3205                             && !test_bit(In_sync, &rdev->flags)
3206                             && !rdev_set_badblocks(rdev, sh->sector,
3207                                                    STRIPE_SECTORS, 0))
3208                                 abort = 1;
3209                 }
3210                 if (abort)
3211                         conf->recovery_disabled =
3212                                 conf->mddev->recovery_disabled;
3213         }
3214         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3215 }
3216
3217 static int want_replace(struct stripe_head *sh, int disk_idx)
3218 {
3219         struct md_rdev *rdev;
3220         int rv = 0;
3221         /* Doing recovery so rcu locking not required */
3222         rdev = sh->raid_conf->disks[disk_idx].replacement;
3223         if (rdev
3224             && !test_bit(Faulty, &rdev->flags)
3225             && !test_bit(In_sync, &rdev->flags)
3226             && (rdev->recovery_offset <= sh->sector
3227                 || rdev->mddev->recovery_cp <= sh->sector))
3228                 rv = 1;
3229
3230         return rv;
3231 }
3232
3233 /* fetch_block - checks the given member device to see if its data needs
3234  * to be read or computed to satisfy a request.
3235  *
3236  * Returns 1 when no more member devices need to be checked, otherwise returns
3237  * 0 to tell the loop in handle_stripe_fill to continue
3238  */
3239
3240 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3241                            int disk_idx, int disks)
3242 {
3243         struct r5dev *dev = &sh->dev[disk_idx];
3244         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3245                                   &sh->dev[s->failed_num[1]] };
3246         int i;
3247
3248
3249         if (test_bit(R5_LOCKED, &dev->flags) ||
3250             test_bit(R5_UPTODATE, &dev->flags))
3251                 /* No point reading this as we already have it or have
3252                  * decided to get it.
3253                  */
3254                 return 0;
3255
3256         if (dev->toread ||
3257             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3258                 /* We need this block to directly satisfy a request */
3259                 return 1;
3260
3261         if (s->syncing || s->expanding ||
3262             (s->replacing && want_replace(sh, disk_idx)))
3263                 /* When syncing, or expanding we read everything.
3264                  * When replacing, we need the replaced block.
3265                  */
3266                 return 1;
3267
3268         if ((s->failed >= 1 && fdev[0]->toread) ||
3269             (s->failed >= 2 && fdev[1]->toread))
3270                 /* If we want to read from a failed device, then
3271                  * we need to actually read every other device.
3272                  */
3273                 return 1;
3274
3275         /* Sometimes neither read-modify-write nor reconstruct-write
3276          * cycles can work.  In those cases we read every block we
3277          * can.  Then the parity-update is certain to have enough to
3278          * work with.
3279          * This can only be a problem when we need to write something,
3280          * and some device has failed.  If either of those tests
3281          * fail we need look no further.
3282          */
3283         if (!s->failed || !s->to_write)
3284                 return 0;
3285
3286         if (test_bit(R5_Insync, &dev->flags) &&
3287             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3288                 /* Pre-reads at not permitted until after short delay
3289                  * to gather multiple requests.  However if this
3290                  * device is no Insync, the block could only be be computed
3291                  * and there is no need to delay that.
3292                  */
3293                 return 0;
3294
3295         for (i = 0; i < s->failed; i++) {
3296                 if (fdev[i]->towrite &&
3297                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3298                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3299                         /* If we have a partial write to a failed
3300                          * device, then we will need to reconstruct
3301                          * the content of that device, so all other
3302                          * devices must be read.
3303                          */
3304                         return 1;
3305         }
3306
3307         /* If we are forced to do a reconstruct-write, either because
3308          * the current RAID6 implementation only supports that, or
3309          * or because parity cannot be trusted and we are currently
3310          * recovering it, there is extra need to be careful.
3311          * If one of the devices that we would need to read, because
3312          * it is not being overwritten (and maybe not written at all)
3313          * is missing/faulty, then we need to read everything we can.
3314          */
3315         if (sh->raid_conf->level != 6 &&
3316             sh->sector < sh->raid_conf->mddev->recovery_cp)
3317                 /* reconstruct-write isn't being forced */
3318                 return 0;
3319         for (i = 0; i < s->failed; i++) {
3320                 if (s->failed_num[i] != sh->pd_idx &&
3321                     s->failed_num[i] != sh->qd_idx &&
3322                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3323                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3324                         return 1;
3325         }
3326
3327         return 0;
3328 }
3329
3330 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3331                        int disk_idx, int disks)
3332 {
3333         struct r5dev *dev = &sh->dev[disk_idx];
3334
3335         /* is the data in this block needed, and can we get it? */
3336         if (need_this_block(sh, s, disk_idx, disks)) {
3337                 /* we would like to get this block, possibly by computing it,
3338                  * otherwise read it if the backing disk is insync
3339                  */
3340                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3341                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3342                 BUG_ON(sh->batch_head);
3343                 if ((s->uptodate == disks - 1) &&
3344                     (s->failed && (disk_idx == s->failed_num[0] ||
3345                                    disk_idx == s->failed_num[1]))) {
3346                         /* have disk failed, and we're requested to fetch it;
3347                          * do compute it
3348                          */
3349                         pr_debug("Computing stripe %llu block %d\n",
3350                                (unsigned long long)sh->sector, disk_idx);
3351                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3352                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3353                         set_bit(R5_Wantcompute, &dev->flags);
3354                         sh->ops.target = disk_idx;
3355                         sh->ops.target2 = -1; /* no 2nd target */
3356                         s->req_compute = 1;
3357                         /* Careful: from this point on 'uptodate' is in the eye
3358                          * of raid_run_ops which services 'compute' operations
3359                          * before writes. R5_Wantcompute flags a block that will
3360                          * be R5_UPTODATE by the time it is needed for a
3361                          * subsequent operation.
3362                          */
3363                         s->uptodate++;
3364                         return 1;
3365                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3366                         /* Computing 2-failure is *very* expensive; only
3367                          * do it if failed >= 2
3368                          */
3369                         int other;
3370                         for (other = disks; other--; ) {
3371                                 if (other == disk_idx)
3372                                         continue;
3373                                 if (!test_bit(R5_UPTODATE,
3374                                       &sh->dev[other].flags))
3375                                         break;
3376                         }
3377                         BUG_ON(other < 0);
3378                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3379                                (unsigned long long)sh->sector,
3380                                disk_idx, other);
3381                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3382                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3383                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3384                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3385                         sh->ops.target = disk_idx;
3386                         sh->ops.target2 = other;
3387                         s->uptodate += 2;
3388                         s->req_compute = 1;
3389                         return 1;
3390                 } else if (test_bit(R5_Insync, &dev->flags)) {
3391                         set_bit(R5_LOCKED, &dev->flags);
3392                         set_bit(R5_Wantread, &dev->flags);
3393                         s->locked++;
3394                         pr_debug("Reading block %d (sync=%d)\n",
3395                                 disk_idx, s->syncing);
3396                 }
3397         }
3398
3399         return 0;
3400 }
3401
3402 /**
3403  * handle_stripe_fill - read or compute data to satisfy pending requests.
3404  */
3405 static void handle_stripe_fill(struct stripe_head *sh,
3406                                struct stripe_head_state *s,
3407                                int disks)
3408 {
3409         int i;
3410
3411         /* look for blocks to read/compute, skip this if a compute
3412          * is already in flight, or if the stripe contents are in the
3413          * midst of changing due to a write
3414          */
3415         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3416             !sh->reconstruct_state)
3417                 for (i = disks; i--; )
3418                         if (fetch_block(sh, s, i, disks))
3419                                 break;
3420         set_bit(STRIPE_HANDLE, &sh->state);
3421 }
3422
3423 /* handle_stripe_clean_event
3424  * any written block on an uptodate or failed drive can be returned.
3425  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3426  * never LOCKED, so we don't need to test 'failed' directly.
3427  */
3428 static void handle_stripe_clean_event(struct r5conf *conf,
3429         struct stripe_head *sh, int disks, struct bio **return_bi)
3430 {
3431         int i;
3432         struct r5dev *dev;
3433         int discard_pending = 0;
3434         struct stripe_head *head_sh = sh;
3435         bool do_endio = false;
3436         int wakeup_nr = 0;
3437
3438         for (i = disks; i--; )
3439                 if (sh->dev[i].written) {
3440                         dev = &sh->dev[i];
3441                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3442                             (test_bit(R5_UPTODATE, &dev->flags) ||
3443                              test_bit(R5_Discard, &dev->flags) ||
3444                              test_bit(R5_SkipCopy, &dev->flags))) {
3445                                 /* We can return any write requests */
3446                                 struct bio *wbi, *wbi2;
3447                                 pr_debug("Return write for disc %d\n", i);
3448                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3449                                         clear_bit(R5_UPTODATE, &dev->flags);
3450                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3451                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3452                                 }
3453                                 do_endio = true;
3454
3455 returnbi:
3456                                 dev->page = dev->orig_page;
3457                                 wbi = dev->written;
3458                                 dev->written = NULL;
3459                                 while (wbi && wbi->bi_iter.bi_sector <
3460                                         dev->sector + STRIPE_SECTORS) {
3461                                         wbi2 = r5_next_bio(wbi, dev->sector);
3462                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3463                                                 md_write_end(conf->mddev);
3464                                                 wbi->bi_next = *return_bi;
3465                                                 *return_bi = wbi;
3466                                         }
3467                                         wbi = wbi2;
3468                                 }
3469                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3470                                                 STRIPE_SECTORS,
3471                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3472                                                 0);
3473                                 if (head_sh->batch_head) {
3474                                         sh = list_first_entry(&sh->batch_list,
3475                                                               struct stripe_head,
3476                                                               batch_list);
3477                                         if (sh != head_sh) {
3478                                                 dev = &sh->dev[i];
3479                                                 goto returnbi;
3480                                         }
3481                                 }
3482                                 sh = head_sh;
3483                                 dev = &sh->dev[i];
3484                         } else if (test_bit(R5_Discard, &dev->flags))
3485                                 discard_pending = 1;
3486                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3487                         WARN_ON(dev->page != dev->orig_page);
3488                 }
3489         if (!discard_pending &&
3490             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3491                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3492                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3493                 if (sh->qd_idx >= 0) {
3494                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3495                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3496                 }
3497                 /* now that discard is done we can proceed with any sync */
3498                 clear_bit(STRIPE_DISCARD, &sh->state);
3499                 /*
3500                  * SCSI discard will change some bio fields and the stripe has
3501                  * no updated data, so remove it from hash list and the stripe
3502                  * will be reinitialized
3503                  */
3504                 spin_lock_irq(&conf->device_lock);
3505 unhash:
3506                 remove_hash(sh);
3507                 if (head_sh->batch_head) {
3508                         sh = list_first_entry(&sh->batch_list,
3509                                               struct stripe_head, batch_list);
3510                         if (sh != head_sh)
3511                                         goto unhash;
3512                 }
3513                 spin_unlock_irq(&conf->device_lock);
3514                 sh = head_sh;
3515
3516                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3517                         set_bit(STRIPE_HANDLE, &sh->state);
3518
3519         }
3520
3521         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3522                 if (atomic_dec_and_test(&conf->pending_full_writes))
3523                         md_wakeup_thread(conf->mddev->thread);
3524
3525         if (!head_sh->batch_head || !do_endio)
3526                 return;
3527         for (i = 0; i < head_sh->disks; i++) {
3528                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3529                         wakeup_nr++;
3530         }
3531         while (!list_empty(&head_sh->batch_list)) {
3532                 int i;
3533                 sh = list_first_entry(&head_sh->batch_list,
3534                                       struct stripe_head, batch_list);
3535                 list_del_init(&sh->batch_list);
3536
3537                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3538                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
3539                                                  (1 << STRIPE_PREREAD_ACTIVE) |
3540                                                  STRIPE_EXPAND_SYNC_FLAG));
3541                 sh->check_state = head_sh->check_state;
3542                 sh->reconstruct_state = head_sh->reconstruct_state;
3543                 for (i = 0; i < sh->disks; i++) {
3544                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3545                                 wakeup_nr++;
3546                         sh->dev[i].flags = head_sh->dev[i].flags;
3547                 }
3548
3549                 spin_lock_irq(&sh->stripe_lock);
3550                 sh->batch_head = NULL;
3551                 spin_unlock_irq(&sh->stripe_lock);
3552                 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3553                         set_bit(STRIPE_HANDLE, &sh->state);
3554                 release_stripe(sh);
3555         }
3556
3557         spin_lock_irq(&head_sh->stripe_lock);
3558         head_sh->batch_head = NULL;
3559         spin_unlock_irq(&head_sh->stripe_lock);
3560         if (wakeup_nr)
3561                 wake_up(&conf->wait_for_overlap);
3562         if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3563                 set_bit(STRIPE_HANDLE, &head_sh->state);
3564 }
3565
3566 static void handle_stripe_dirtying(struct r5conf *conf,
3567                                    struct stripe_head *sh,
3568                                    struct stripe_head_state *s,
3569                                    int disks)
3570 {
3571         int rmw = 0, rcw = 0, i;
3572         sector_t recovery_cp = conf->mddev->recovery_cp;
3573
3574         /* Check whether resync is now happening or should start.
3575          * If yes, then the array is dirty (after unclean shutdown or
3576          * initial creation), so parity in some stripes might be inconsistent.
3577          * In this case, we need to always do reconstruct-write, to ensure
3578          * that in case of drive failure or read-error correction, we
3579          * generate correct data from the parity.
3580          */
3581         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3582             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3583              s->failed == 0)) {
3584                 /* Calculate the real rcw later - for now make it
3585                  * look like rcw is cheaper
3586                  */
3587                 rcw = 1; rmw = 2;
3588                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3589                          conf->rmw_level, (unsigned long long)recovery_cp,
3590                          (unsigned long long)sh->sector);
3591         } else for (i = disks; i--; ) {
3592                 /* would I have to read this buffer for read_modify_write */
3593                 struct r5dev *dev = &sh->dev[i];
3594                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3595                     !test_bit(R5_LOCKED, &dev->flags) &&
3596                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3597                       test_bit(R5_Wantcompute, &dev->flags))) {
3598                         if (test_bit(R5_Insync, &dev->flags))
3599                                 rmw++;
3600                         else
3601                                 rmw += 2*disks;  /* cannot read it */
3602                 }
3603                 /* Would I have to read this buffer for reconstruct_write */
3604                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3605                     i != sh->pd_idx && i != sh->qd_idx &&
3606                     !test_bit(R5_LOCKED, &dev->flags) &&
3607                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3608                     test_bit(R5_Wantcompute, &dev->flags))) {
3609                         if (test_bit(R5_Insync, &dev->flags))
3610                                 rcw++;
3611                         else
3612                                 rcw += 2*disks;
3613                 }
3614         }
3615         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3616                 (unsigned long long)sh->sector, rmw, rcw);
3617         set_bit(STRIPE_HANDLE, &sh->state);
3618         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3619                 /* prefer read-modify-write, but need to get some data */
3620                 if (conf->mddev->queue)
3621                         blk_add_trace_msg(conf->mddev->queue,
3622                                           "raid5 rmw %llu %d",
3623                                           (unsigned long long)sh->sector, rmw);
3624                 for (i = disks; i--; ) {
3625                         struct r5dev *dev = &sh->dev[i];
3626                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3627                             !test_bit(R5_LOCKED, &dev->flags) &&
3628                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3629                             test_bit(R5_Wantcompute, &dev->flags)) &&
3630                             test_bit(R5_Insync, &dev->flags)) {
3631                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3632                                              &sh->state)) {
3633                                         pr_debug("Read_old block %d for r-m-w\n",
3634                                                  i);
3635                                         set_bit(R5_LOCKED, &dev->flags);
3636                                         set_bit(R5_Wantread, &dev->flags);
3637                                         s->locked++;
3638                                 } else {
3639                                         set_bit(STRIPE_DELAYED, &sh->state);
3640                                         set_bit(STRIPE_HANDLE, &sh->state);
3641                                 }
3642                         }
3643                 }
3644         }
3645         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3646                 /* want reconstruct write, but need to get some data */
3647                 int qread =0;
3648                 rcw = 0;
3649                 for (i = disks; i--; ) {
3650                         struct r5dev *dev = &sh->dev[i];
3651                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3652                             i != sh->pd_idx && i != sh->qd_idx &&
3653                             !test_bit(R5_LOCKED, &dev->flags) &&
3654                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3655                               test_bit(R5_Wantcompute, &dev->flags))) {
3656                                 rcw++;
3657                                 if (test_bit(R5_Insync, &dev->flags) &&
3658                                     test_bit(STRIPE_PREREAD_ACTIVE,
3659                                              &sh->state)) {
3660                                         pr_debug("Read_old block "
3661                                                 "%d for Reconstruct\n", i);
3662                                         set_bit(R5_LOCKED, &dev->flags);
3663                                         set_bit(R5_Wantread, &dev->flags);
3664                                         s->locked++;
3665                                         qread++;
3666                                 } else {
3667                                         set_bit(STRIPE_DELAYED, &sh->state);
3668                                         set_bit(STRIPE_HANDLE, &sh->state);
3669                                 }
3670                         }
3671                 }
3672                 if (rcw && conf->mddev->queue)
3673                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3674                                           (unsigned long long)sh->sector,
3675                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3676         }
3677
3678         if (rcw > disks && rmw > disks &&
3679             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3680                 set_bit(STRIPE_DELAYED, &sh->state);
3681
3682         /* now if nothing is locked, and if we have enough data,
3683          * we can start a write request
3684          */
3685         /* since handle_stripe can be called at any time we need to handle the
3686          * case where a compute block operation has been submitted and then a
3687          * subsequent call wants to start a write request.  raid_run_ops only
3688          * handles the case where compute block and reconstruct are requested
3689          * simultaneously.  If this is not the case then new writes need to be
3690          * held off until the compute completes.
3691          */
3692         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3693             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3694             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3695                 schedule_reconstruction(sh, s, rcw == 0, 0);
3696 }
3697
3698 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3699                                 struct stripe_head_state *s, int disks)
3700 {
3701         struct r5dev *dev = NULL;
3702
3703         BUG_ON(sh->batch_head);
3704         set_bit(STRIPE_HANDLE, &sh->state);
3705
3706         switch (sh->check_state) {
3707         case check_state_idle:
3708                 /* start a new check operation if there are no failures */
3709                 if (s->failed == 0) {
3710                         BUG_ON(s->uptodate != disks);
3711                         sh->check_state = check_state_run;
3712                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3713                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3714                         s->uptodate--;
3715                         break;
3716                 }
3717                 dev = &sh->dev[s->failed_num[0]];
3718                 /* fall through */
3719         case check_state_compute_result:
3720                 sh->check_state = check_state_idle;
3721                 if (!dev)
3722                         dev = &sh->dev[sh->pd_idx];
3723
3724                 /* check that a write has not made the stripe insync */
3725                 if (test_bit(STRIPE_INSYNC, &sh->state))
3726                         break;
3727
3728                 /* either failed parity check, or recovery is happening */
3729                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3730                 BUG_ON(s->uptodate != disks);
3731
3732                 set_bit(R5_LOCKED, &dev->flags);
3733                 s->locked++;
3734                 set_bit(R5_Wantwrite, &dev->flags);
3735
3736                 clear_bit(STRIPE_DEGRADED, &sh->state);
3737                 set_bit(STRIPE_INSYNC, &sh->state);
3738                 break;
3739         case check_state_run:
3740                 break; /* we will be called again upon completion */
3741         case check_state_check_result:
3742                 sh->check_state = check_state_idle;
3743
3744                 /* if a failure occurred during the check operation, leave
3745                  * STRIPE_INSYNC not set and let the stripe be handled again
3746                  */
3747                 if (s->failed)
3748                         break;
3749
3750                 /* handle a successful check operation, if parity is correct
3751                  * we are done.  Otherwise update the mismatch count and repair
3752                  * parity if !MD_RECOVERY_CHECK
3753                  */
3754                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3755                         /* parity is correct (on disc,
3756                          * not in buffer any more)
3757                          */
3758                         set_bit(STRIPE_INSYNC, &sh->state);
3759                 else {
3760                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3761                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3762                                 /* don't try to repair!! */
3763                                 set_bit(STRIPE_INSYNC, &sh->state);
3764                         else {
3765                                 sh->check_state = check_state_compute_run;
3766                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3767                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3768                                 set_bit(R5_Wantcompute,
3769                                         &sh->dev[sh->pd_idx].flags);
3770                                 sh->ops.target = sh->pd_idx;
3771                                 sh->ops.target2 = -1;
3772                                 s->uptodate++;
3773                         }
3774                 }
3775                 break;
3776         case check_state_compute_run:
3777                 break;
3778         default:
3779                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3780                        __func__, sh->check_state,
3781                        (unsigned long long) sh->sector);
3782                 BUG();
3783         }
3784 }
3785
3786 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3787                                   struct stripe_head_state *s,
3788                                   int disks)
3789 {
3790         int pd_idx = sh->pd_idx;
3791         int qd_idx = sh->qd_idx;
3792         struct r5dev *dev;
3793
3794         BUG_ON(sh->batch_head);
3795         set_bit(STRIPE_HANDLE, &sh->state);
3796
3797         BUG_ON(s->failed > 2);
3798
3799         /* Want to check and possibly repair P and Q.
3800          * However there could be one 'failed' device, in which
3801          * case we can only check one of them, possibly using the
3802          * other to generate missing data
3803          */
3804
3805         switch (sh->check_state) {
3806         case check_state_idle:
3807                 /* start a new check operation if there are < 2 failures */
3808                 if (s->failed == s->q_failed) {
3809                         /* The only possible failed device holds Q, so it
3810                          * makes sense to check P (If anything else were failed,
3811                          * we would have used P to recreate it).
3812                          */
3813                         sh->check_state = check_state_run;
3814                 }
3815                 if (!s->q_failed && s->failed < 2) {
3816                         /* Q is not failed, and we didn't use it to generate
3817                          * anything, so it makes sense to check it
3818                          */
3819                         if (sh->check_state == check_state_run)
3820                                 sh->check_state = check_state_run_pq;
3821                         else
3822                                 sh->check_state = check_state_run_q;
3823                 }
3824
3825                 /* discard potentially stale zero_sum_result */
3826                 sh->ops.zero_sum_result = 0;
3827
3828                 if (sh->check_state == check_state_run) {
3829                         /* async_xor_zero_sum destroys the contents of P */
3830                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3831                         s->uptodate--;
3832                 }
3833                 if (sh->check_state >= check_state_run &&
3834                     sh->check_state <= check_state_run_pq) {
3835                         /* async_syndrome_zero_sum preserves P and Q, so
3836                          * no need to mark them !uptodate here
3837                          */
3838                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3839                         break;
3840                 }
3841
3842                 /* we have 2-disk failure */
3843                 BUG_ON(s->failed != 2);
3844                 /* fall through */
3845         case check_state_compute_result:
3846                 sh->check_state = check_state_idle;
3847
3848                 /* check that a write has not made the stripe insync */
3849                 if (test_bit(STRIPE_INSYNC, &sh->state))
3850                         break;
3851
3852                 /* now write out any block on a failed drive,
3853                  * or P or Q if they were recomputed
3854                  */
3855                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3856                 if (s->failed == 2) {
3857                         dev = &sh->dev[s->failed_num[1]];
3858                         s->locked++;
3859                         set_bit(R5_LOCKED, &dev->flags);
3860                         set_bit(R5_Wantwrite, &dev->flags);
3861                 }
3862                 if (s->failed >= 1) {
3863                         dev = &sh->dev[s->failed_num[0]];
3864                         s->locked++;
3865                         set_bit(R5_LOCKED, &dev->flags);
3866                         set_bit(R5_Wantwrite, &dev->flags);
3867                 }
3868                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3869                         dev = &sh->dev[pd_idx];
3870                         s->locked++;
3871                         set_bit(R5_LOCKED, &dev->flags);
3872                         set_bit(R5_Wantwrite, &dev->flags);
3873                 }
3874                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3875                         dev = &sh->dev[qd_idx];
3876                         s->locked++;
3877                         set_bit(R5_LOCKED, &dev->flags);
3878                         set_bit(R5_Wantwrite, &dev->flags);
3879                 }
3880                 clear_bit(STRIPE_DEGRADED, &sh->state);
3881
3882                 set_bit(STRIPE_INSYNC, &sh->state);
3883                 break;
3884         case check_state_run:
3885         case check_state_run_q:
3886         case check_state_run_pq:
3887                 break; /* we will be called again upon completion */
3888         case check_state_check_result:
3889                 sh->check_state = check_state_idle;
3890
3891                 /* handle a successful check operation, if parity is correct
3892                  * we are done.  Otherwise update the mismatch count and repair
3893                  * parity if !MD_RECOVERY_CHECK
3894                  */
3895                 if (sh->ops.zero_sum_result == 0) {
3896                         /* both parities are correct */
3897                         if (!s->failed)
3898                                 set_bit(STRIPE_INSYNC, &sh->state);
3899                         else {
3900                                 /* in contrast to the raid5 case we can validate
3901                                  * parity, but still have a failure to write
3902                                  * back
3903                                  */
3904                                 sh->check_state = check_state_compute_result;
3905                                 /* Returning at this point means that we may go
3906                                  * off and bring p and/or q uptodate again so
3907                                  * we make sure to check zero_sum_result again
3908                                  * to verify if p or q need writeback
3909                                  */
3910                         }
3911                 } else {
3912                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3913                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3914                                 /* don't try to repair!! */
3915                                 set_bit(STRIPE_INSYNC, &sh->state);
3916                         else {
3917                                 int *target = &sh->ops.target;
3918
3919                                 sh->ops.target = -1;
3920                                 sh->ops.target2 = -1;
3921                                 sh->check_state = check_state_compute_run;
3922                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3923                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3924                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3925                                         set_bit(R5_Wantcompute,
3926                                                 &sh->dev[pd_idx].flags);
3927                                         *target = pd_idx;
3928                                         target = &sh->ops.target2;
3929                                         s->uptodate++;
3930                                 }
3931                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3932                                         set_bit(R5_Wantcompute,
3933                                                 &sh->dev[qd_idx].flags);
3934                                         *target = qd_idx;
3935                                         s->uptodate++;
3936                                 }
3937                         }
3938                 }
3939                 break;
3940         case check_state_compute_run:
3941                 break;
3942         default:
3943                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3944                        __func__, sh->check_state,
3945                        (unsigned long long) sh->sector);
3946                 BUG();
3947         }
3948 }
3949
3950 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3951 {
3952         int i;
3953
3954         /* We have read all the blocks in this stripe and now we need to
3955          * copy some of them into a target stripe for expand.
3956          */
3957         struct dma_async_tx_descriptor *tx = NULL;
3958         BUG_ON(sh->batch_head);
3959         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3960         for (i = 0; i < sh->disks; i++)
3961                 if (i != sh->pd_idx && i != sh->qd_idx) {
3962                         int dd_idx, j;
3963                         struct stripe_head *sh2;
3964                         struct async_submit_ctl submit;
3965
3966                         sector_t bn = compute_blocknr(sh, i, 1);
3967                         sector_t s = raid5_compute_sector(conf, bn, 0,
3968                                                           &dd_idx, NULL);
3969                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3970                         if (sh2 == NULL)
3971                                 /* so far only the early blocks of this stripe
3972                                  * have been requested.  When later blocks
3973                                  * get requested, we will try again
3974                                  */
3975                                 continue;
3976                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3977                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3978                                 /* must have already done this block */
3979                                 release_stripe(sh2);
3980                                 continue;
3981                         }
3982
3983                         /* place all the copies on one channel */
3984                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3985                         tx = async_memcpy(sh2->dev[dd_idx].page,
3986                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3987                                           &submit);
3988
3989                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3990                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3991                         for (j = 0; j < conf->raid_disks; j++)
3992                                 if (j != sh2->pd_idx &&
3993                                     j != sh2->qd_idx &&
3994                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3995                                         break;
3996                         if (j == conf->raid_disks) {
3997                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3998                                 set_bit(STRIPE_HANDLE, &sh2->state);
3999                         }
4000                         release_stripe(sh2);
4001
4002                 }
4003         /* done submitting copies, wait for them to complete */
4004         async_tx_quiesce(&tx);
4005 }
4006
4007 /*
4008  * handle_stripe - do things to a stripe.
4009  *
4010  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4011  * state of various bits to see what needs to be done.
4012  * Possible results:
4013  *    return some read requests which now have data
4014  *    return some write requests which are safely on storage
4015  *    schedule a read on some buffers
4016  *    schedule a write of some buffers
4017  *    return confirmation of parity correctness
4018  *
4019  */
4020
4021 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4022 {
4023         struct r5conf *conf = sh->raid_conf;
4024         int disks = sh->disks;
4025         struct r5dev *dev;
4026         int i;
4027         int do_recovery = 0;
4028
4029         memset(s, 0, sizeof(*s));
4030
4031         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4032         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4033         s->failed_num[0] = -1;
4034         s->failed_num[1] = -1;
4035
4036         /* Now to look around and see what can be done */
4037         rcu_read_lock();
4038         for (i=disks; i--; ) {
4039                 struct md_rdev *rdev;
4040                 sector_t first_bad;
4041                 int bad_sectors;
4042                 int is_bad = 0;
4043
4044                 dev = &sh->dev[i];
4045
4046                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4047                          i, dev->flags,
4048                          dev->toread, dev->towrite, dev->written);
4049                 /* maybe we can reply to a read
4050                  *
4051                  * new wantfill requests are only permitted while
4052                  * ops_complete_biofill is guaranteed to be inactive
4053                  */
4054                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4055                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4056                         set_bit(R5_Wantfill, &dev->flags);
4057
4058                 /* now count some things */
4059                 if (test_bit(R5_LOCKED, &dev->flags))
4060                         s->locked++;
4061                 if (test_bit(R5_UPTODATE, &dev->flags))
4062                         s->uptodate++;
4063                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4064                         s->compute++;
4065                         BUG_ON(s->compute > 2);
4066                 }
4067
4068                 if (test_bit(R5_Wantfill, &dev->flags))
4069                         s->to_fill++;
4070                 else if (dev->toread)
4071                         s->to_read++;
4072                 if (dev->towrite) {
4073                         s->to_write++;
4074                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4075                                 s->non_overwrite++;
4076                 }
4077                 if (dev->written)
4078                         s->written++;
4079                 /* Prefer to use the replacement for reads, but only
4080                  * if it is recovered enough and has no bad blocks.
4081                  */
4082                 rdev = rcu_dereference(conf->disks[i].replacement);
4083                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4084                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4085                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4086                                  &first_bad, &bad_sectors))
4087                         set_bit(R5_ReadRepl, &dev->flags);
4088                 else {
4089                         if (rdev)
4090                                 set_bit(R5_NeedReplace, &dev->flags);
4091                         rdev = rcu_dereference(conf->disks[i].rdev);
4092                         clear_bit(R5_ReadRepl, &dev->flags);
4093                 }
4094                 if (rdev && test_bit(Faulty, &rdev->flags))
4095                         rdev = NULL;
4096                 if (rdev) {
4097                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4098                                              &first_bad, &bad_sectors);
4099                         if (s->blocked_rdev == NULL
4100                             && (test_bit(Blocked, &rdev->flags)
4101                                 || is_bad < 0)) {
4102                                 if (is_bad < 0)
4103                                         set_bit(BlockedBadBlocks,
4104                                                 &rdev->flags);
4105                                 s->blocked_rdev = rdev;
4106                                 atomic_inc(&rdev->nr_pending);
4107                         }
4108                 }
4109                 clear_bit(R5_Insync, &dev->flags);
4110                 if (!rdev)
4111                         /* Not in-sync */;
4112                 else if (is_bad) {
4113                         /* also not in-sync */
4114                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4115                             test_bit(R5_UPTODATE, &dev->flags)) {
4116                                 /* treat as in-sync, but with a read error
4117                                  * which we can now try to correct
4118                                  */
4119                                 set_bit(R5_Insync, &dev->flags);
4120                                 set_bit(R5_ReadError, &dev->flags);
4121                         }
4122                 } else if (test_bit(In_sync, &rdev->flags))
4123                         set_bit(R5_Insync, &dev->flags);
4124                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4125                         /* in sync if before recovery_offset */
4126                         set_bit(R5_Insync, &dev->flags);
4127                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4128                          test_bit(R5_Expanded, &dev->flags))
4129                         /* If we've reshaped into here, we assume it is Insync.
4130                          * We will shortly update recovery_offset to make
4131                          * it official.
4132                          */
4133                         set_bit(R5_Insync, &dev->flags);
4134
4135                 if (test_bit(R5_WriteError, &dev->flags)) {
4136                         /* This flag does not apply to '.replacement'
4137                          * only to .rdev, so make sure to check that*/
4138                         struct md_rdev *rdev2 = rcu_dereference(
4139                                 conf->disks[i].rdev);
4140                         if (rdev2 == rdev)
4141                                 clear_bit(R5_Insync, &dev->flags);
4142                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4143                                 s->handle_bad_blocks = 1;
4144                                 atomic_inc(&rdev2->nr_pending);
4145                         } else
4146                                 clear_bit(R5_WriteError, &dev->flags);
4147                 }
4148                 if (test_bit(R5_MadeGood, &dev->flags)) {
4149                         /* This flag does not apply to '.replacement'
4150                          * only to .rdev, so make sure to check that*/
4151                         struct md_rdev *rdev2 = rcu_dereference(
4152                                 conf->disks[i].rdev);
4153                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4154                                 s->handle_bad_blocks = 1;
4155                                 atomic_inc(&rdev2->nr_pending);
4156                         } else
4157                                 clear_bit(R5_MadeGood, &dev->flags);
4158                 }
4159                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4160                         struct md_rdev *rdev2 = rcu_dereference(
4161                                 conf->disks[i].replacement);
4162                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4163                                 s->handle_bad_blocks = 1;
4164                                 atomic_inc(&rdev2->nr_pending);
4165                         } else
4166                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4167                 }
4168                 if (!test_bit(R5_Insync, &dev->flags)) {
4169                         /* The ReadError flag will just be confusing now */
4170                         clear_bit(R5_ReadError, &dev->flags);
4171                         clear_bit(R5_ReWrite, &dev->flags);
4172                 }
4173                 if (test_bit(R5_ReadError, &dev->flags))
4174                         clear_bit(R5_Insync, &dev->flags);
4175                 if (!test_bit(R5_Insync, &dev->flags)) {
4176                         if (s->failed < 2)
4177                                 s->failed_num[s->failed] = i;
4178                         s->failed++;
4179                         if (rdev && !test_bit(Faulty, &rdev->flags))
4180                                 do_recovery = 1;
4181                 }
4182         }
4183         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4184                 /* If there is a failed device being replaced,
4185                  *     we must be recovering.
4186                  * else if we are after recovery_cp, we must be syncing
4187                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4188                  * else we can only be replacing
4189                  * sync and recovery both need to read all devices, and so
4190                  * use the same flag.
4191                  */
4192                 if (do_recovery ||
4193                     sh->sector >= conf->mddev->recovery_cp ||
4194                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4195                         s->syncing = 1;
4196                 else
4197                         s->replacing = 1;
4198         }
4199         rcu_read_unlock();
4200 }
4201
4202 static int clear_batch_ready(struct stripe_head *sh)
4203 {
4204         /* Return '1' if this is a member of batch, or
4205          * '0' if it is a lone stripe or a head which can now be
4206          * handled.
4207          */
4208         struct stripe_head *tmp;
4209         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4210                 return (sh->batch_head && sh->batch_head != sh);
4211         spin_lock(&sh->stripe_lock);
4212         if (!sh->batch_head) {
4213                 spin_unlock(&sh->stripe_lock);
4214                 return 0;
4215         }
4216
4217         /*
4218          * this stripe could be added to a batch list before we check
4219          * BATCH_READY, skips it
4220          */
4221         if (sh->batch_head != sh) {
4222                 spin_unlock(&sh->stripe_lock);
4223                 return 1;
4224         }
4225         spin_lock(&sh->batch_lock);
4226         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4227                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4228         spin_unlock(&sh->batch_lock);
4229         spin_unlock(&sh->stripe_lock);
4230
4231         /*
4232          * BATCH_READY is cleared, no new stripes can be added.
4233          * batch_list can be accessed without lock
4234          */
4235         return 0;
4236 }
4237
4238 static void break_stripe_batch_list(struct stripe_head *head_sh)
4239 {
4240         struct stripe_head *sh, *next;
4241         int i;
4242         int do_wakeup = 0;
4243
4244         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4245
4246                 list_del_init(&sh->batch_list);
4247
4248                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4249                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
4250                                                  (1 << STRIPE_PREREAD_ACTIVE) |
4251                                                  (1 << STRIPE_DEGRADED) |
4252                                                  STRIPE_EXPAND_SYNC_FLAG));
4253                 sh->check_state = head_sh->check_state;
4254                 sh->reconstruct_state = head_sh->reconstruct_state;
4255                 for (i = 0; i < sh->disks; i++) {
4256                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4257                                 do_wakeup = 1;
4258                         sh->dev[i].flags = head_sh->dev[i].flags &
4259                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4260                 }
4261                 spin_lock_irq(&sh->stripe_lock);
4262                 sh->batch_head = NULL;
4263                 spin_unlock_irq(&sh->stripe_lock);
4264
4265                 set_bit(STRIPE_HANDLE, &sh->state);
4266                 release_stripe(sh);
4267         }
4268         spin_lock_irq(&head_sh->stripe_lock);
4269         head_sh->batch_head = NULL;
4270         spin_unlock_irq(&head_sh->stripe_lock);
4271         for (i = 0; i < head_sh->disks; i++)
4272                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4273                         do_wakeup = 1;
4274
4275         if (do_wakeup)
4276                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4277 }
4278
4279 static void handle_stripe(struct stripe_head *sh)
4280 {
4281         struct stripe_head_state s;
4282         struct r5conf *conf = sh->raid_conf;
4283         int i;
4284         int prexor;
4285         int disks = sh->disks;
4286         struct r5dev *pdev, *qdev;
4287
4288         clear_bit(STRIPE_HANDLE, &sh->state);
4289         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4290                 /* already being handled, ensure it gets handled
4291                  * again when current action finishes */
4292                 set_bit(STRIPE_HANDLE, &sh->state);
4293                 return;
4294         }
4295
4296         if (clear_batch_ready(sh) ) {
4297                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4298                 return;
4299         }
4300
4301         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4302                 break_stripe_batch_list(sh);
4303
4304         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4305                 spin_lock(&sh->stripe_lock);
4306                 /* Cannot process 'sync' concurrently with 'discard' */
4307                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4308                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4309                         set_bit(STRIPE_SYNCING, &sh->state);
4310                         clear_bit(STRIPE_INSYNC, &sh->state);
4311                         clear_bit(STRIPE_REPLACED, &sh->state);
4312                 }
4313                 spin_unlock(&sh->stripe_lock);
4314         }
4315         clear_bit(STRIPE_DELAYED, &sh->state);
4316
4317         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4318                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4319                (unsigned long long)sh->sector, sh->state,
4320                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4321                sh->check_state, sh->reconstruct_state);
4322
4323         analyse_stripe(sh, &s);
4324
4325         if (s.handle_bad_blocks) {
4326                 set_bit(STRIPE_HANDLE, &sh->state);
4327                 goto finish;
4328         }
4329
4330         if (unlikely(s.blocked_rdev)) {
4331                 if (s.syncing || s.expanding || s.expanded ||
4332                     s.replacing || s.to_write || s.written) {
4333                         set_bit(STRIPE_HANDLE, &sh->state);
4334                         goto finish;
4335                 }
4336                 /* There is nothing for the blocked_rdev to block */
4337                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4338                 s.blocked_rdev = NULL;
4339         }
4340
4341         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4342                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4343                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4344         }
4345
4346         pr_debug("locked=%d uptodate=%d to_read=%d"
4347                " to_write=%d failed=%d failed_num=%d,%d\n",
4348                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4349                s.failed_num[0], s.failed_num[1]);
4350         /* check if the array has lost more than max_degraded devices and,
4351          * if so, some requests might need to be failed.
4352          */
4353         if (s.failed > conf->max_degraded) {
4354                 sh->check_state = 0;
4355                 sh->reconstruct_state = 0;
4356                 if (s.to_read+s.to_write+s.written)
4357                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4358                 if (s.syncing + s.replacing)
4359                         handle_failed_sync(conf, sh, &s);
4360         }
4361
4362         /* Now we check to see if any write operations have recently
4363          * completed
4364          */
4365         prexor = 0;
4366         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4367                 prexor = 1;
4368         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4369             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4370                 sh->reconstruct_state = reconstruct_state_idle;
4371
4372                 /* All the 'written' buffers and the parity block are ready to
4373                  * be written back to disk
4374                  */
4375                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4376                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4377                 BUG_ON(sh->qd_idx >= 0 &&
4378                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4379                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4380                 for (i = disks; i--; ) {
4381                         struct r5dev *dev = &sh->dev[i];
4382                         if (test_bit(R5_LOCKED, &dev->flags) &&
4383                                 (i == sh->pd_idx || i == sh->qd_idx ||
4384                                  dev->written)) {
4385                                 pr_debug("Writing block %d\n", i);
4386                                 set_bit(R5_Wantwrite, &dev->flags);
4387                                 if (prexor)
4388                                         continue;
4389                                 if (s.failed > 1)
4390                                         continue;
4391                                 if (!test_bit(R5_Insync, &dev->flags) ||
4392                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4393                                      s.failed == 0))
4394                                         set_bit(STRIPE_INSYNC, &sh->state);
4395                         }
4396                 }
4397                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4398                         s.dec_preread_active = 1;
4399         }
4400
4401         /*
4402          * might be able to return some write requests if the parity blocks
4403          * are safe, or on a failed drive
4404          */
4405         pdev = &sh->dev[sh->pd_idx];
4406         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4407                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4408         qdev = &sh->dev[sh->qd_idx];
4409         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4410                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4411                 || conf->level < 6;
4412
4413         if (s.written &&
4414             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4415                              && !test_bit(R5_LOCKED, &pdev->flags)
4416                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4417                                  test_bit(R5_Discard, &pdev->flags))))) &&
4418             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4419                              && !test_bit(R5_LOCKED, &qdev->flags)
4420                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4421                                  test_bit(R5_Discard, &qdev->flags))))))
4422                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4423
4424         /* Now we might consider reading some blocks, either to check/generate
4425          * parity, or to satisfy requests
4426          * or to load a block that is being partially written.
4427          */
4428         if (s.to_read || s.non_overwrite
4429             || (conf->level == 6 && s.to_write && s.failed)
4430             || (s.syncing && (s.uptodate + s.compute < disks))
4431             || s.replacing
4432             || s.expanding)
4433                 handle_stripe_fill(sh, &s, disks);
4434
4435         /* Now to consider new write requests and what else, if anything
4436          * should be read.  We do not handle new writes when:
4437          * 1/ A 'write' operation (copy+xor) is already in flight.
4438          * 2/ A 'check' operation is in flight, as it may clobber the parity
4439          *    block.
4440          */
4441         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4442                 handle_stripe_dirtying(conf, sh, &s, disks);
4443
4444         /* maybe we need to check and possibly fix the parity for this stripe
4445          * Any reads will already have been scheduled, so we just see if enough
4446          * data is available.  The parity check is held off while parity
4447          * dependent operations are in flight.
4448          */
4449         if (sh->check_state ||
4450             (s.syncing && s.locked == 0 &&
4451              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4452              !test_bit(STRIPE_INSYNC, &sh->state))) {
4453                 if (conf->level == 6)
4454                         handle_parity_checks6(conf, sh, &s, disks);
4455                 else
4456                         handle_parity_checks5(conf, sh, &s, disks);
4457         }
4458
4459         if ((s.replacing || s.syncing) && s.locked == 0
4460             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4461             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4462                 /* Write out to replacement devices where possible */
4463                 for (i = 0; i < conf->raid_disks; i++)
4464                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4465                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4466                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4467                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4468                                 s.locked++;
4469                         }
4470                 if (s.replacing)
4471                         set_bit(STRIPE_INSYNC, &sh->state);
4472                 set_bit(STRIPE_REPLACED, &sh->state);
4473         }
4474         if ((s.syncing || s.replacing) && s.locked == 0 &&
4475             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4476             test_bit(STRIPE_INSYNC, &sh->state)) {
4477                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4478                 clear_bit(STRIPE_SYNCING, &sh->state);
4479                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4480                         wake_up(&conf->wait_for_overlap);
4481         }
4482
4483         /* If the failed drives are just a ReadError, then we might need
4484          * to progress the repair/check process
4485          */
4486         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4487                 for (i = 0; i < s.failed; i++) {
4488                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4489                         if (test_bit(R5_ReadError, &dev->flags)
4490                             && !test_bit(R5_LOCKED, &dev->flags)
4491                             && test_bit(R5_UPTODATE, &dev->flags)
4492                                 ) {
4493                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4494                                         set_bit(R5_Wantwrite, &dev->flags);
4495                                         set_bit(R5_ReWrite, &dev->flags);
4496                                         set_bit(R5_LOCKED, &dev->flags);
4497                                         s.locked++;
4498                                 } else {
4499                                         /* let's read it back */
4500                                         set_bit(R5_Wantread, &dev->flags);
4501                                         set_bit(R5_LOCKED, &dev->flags);
4502                                         s.locked++;
4503                                 }
4504                         }
4505                 }
4506
4507         /* Finish reconstruct operations initiated by the expansion process */
4508         if (sh->reconstruct_state == reconstruct_state_result) {
4509                 struct stripe_head *sh_src
4510                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4511                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4512                         /* sh cannot be written until sh_src has been read.
4513                          * so arrange for sh to be delayed a little
4514                          */
4515                         set_bit(STRIPE_DELAYED, &sh->state);
4516                         set_bit(STRIPE_HANDLE, &sh->state);
4517                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4518                                               &sh_src->state))
4519                                 atomic_inc(&conf->preread_active_stripes);
4520                         release_stripe(sh_src);
4521                         goto finish;
4522                 }
4523                 if (sh_src)
4524                         release_stripe(sh_src);
4525
4526                 sh->reconstruct_state = reconstruct_state_idle;
4527                 clear_bit(STRIPE_EXPANDING, &sh->state);
4528                 for (i = conf->raid_disks; i--; ) {
4529                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4530                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4531                         s.locked++;
4532                 }
4533         }
4534
4535         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4536             !sh->reconstruct_state) {
4537                 /* Need to write out all blocks after computing parity */
4538                 sh->disks = conf->raid_disks;
4539                 stripe_set_idx(sh->sector, conf, 0, sh);
4540                 schedule_reconstruction(sh, &s, 1, 1);
4541         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4542                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4543                 atomic_dec(&conf->reshape_stripes);
4544                 wake_up(&conf->wait_for_overlap);
4545                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4546         }
4547
4548         if (s.expanding && s.locked == 0 &&
4549             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4550                 handle_stripe_expansion(conf, sh);
4551
4552 finish:
4553         /* wait for this device to become unblocked */
4554         if (unlikely(s.blocked_rdev)) {
4555                 if (conf->mddev->external)
4556                         md_wait_for_blocked_rdev(s.blocked_rdev,
4557                                                  conf->mddev);
4558                 else
4559                         /* Internal metadata will immediately
4560                          * be written by raid5d, so we don't
4561                          * need to wait here.
4562                          */
4563                         rdev_dec_pending(s.blocked_rdev,
4564                                          conf->mddev);
4565         }
4566
4567         if (s.handle_bad_blocks)
4568                 for (i = disks; i--; ) {
4569                         struct md_rdev *rdev;
4570                         struct r5dev *dev = &sh->dev[i];
4571                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4572                                 /* We own a safe reference to the rdev */
4573                                 rdev = conf->disks[i].rdev;
4574                                 if (!rdev_set_badblocks(rdev, sh->sector,
4575                                                         STRIPE_SECTORS, 0))
4576                                         md_error(conf->mddev, rdev);
4577                                 rdev_dec_pending(rdev, conf->mddev);
4578                         }
4579                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4580                                 rdev = conf->disks[i].rdev;
4581                                 rdev_clear_badblocks(rdev, sh->sector,
4582                                                      STRIPE_SECTORS, 0);
4583                                 rdev_dec_pending(rdev, conf->mddev);
4584                         }
4585                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4586                                 rdev = conf->disks[i].replacement;
4587                                 if (!rdev)
4588                                         /* rdev have been moved down */
4589                                         rdev = conf->disks[i].rdev;
4590                                 rdev_clear_badblocks(rdev, sh->sector,
4591                                                      STRIPE_SECTORS, 0);
4592                                 rdev_dec_pending(rdev, conf->mddev);
4593                         }
4594                 }
4595
4596         if (s.ops_request)
4597                 raid_run_ops(sh, s.ops_request);
4598
4599         ops_run_io(sh, &s);
4600
4601         if (s.dec_preread_active) {
4602                 /* We delay this until after ops_run_io so that if make_request
4603                  * is waiting on a flush, it won't continue until the writes
4604                  * have actually been submitted.
4605                  */
4606                 atomic_dec(&conf->preread_active_stripes);
4607                 if (atomic_read(&conf->preread_active_stripes) <
4608                     IO_THRESHOLD)
4609                         md_wakeup_thread(conf->mddev->thread);
4610         }
4611
4612         return_io(s.return_bi);
4613
4614         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4615 }
4616
4617 static void raid5_activate_delayed(struct r5conf *conf)
4618 {
4619         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4620                 while (!list_empty(&conf->delayed_list)) {
4621                         struct list_head *l = conf->delayed_list.next;
4622                         struct stripe_head *sh;
4623                         sh = list_entry(l, struct stripe_head, lru);
4624                         list_del_init(l);
4625                         clear_bit(STRIPE_DELAYED, &sh->state);
4626                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4627                                 atomic_inc(&conf->preread_active_stripes);
4628                         list_add_tail(&sh->lru, &conf->hold_list);
4629                         raid5_wakeup_stripe_thread(sh);
4630                 }
4631         }
4632 }
4633
4634 static void activate_bit_delay(struct r5conf *conf,
4635         struct list_head *temp_inactive_list)
4636 {
4637         /* device_lock is held */
4638         struct list_head head;
4639         list_add(&head, &conf->bitmap_list);
4640         list_del_init(&conf->bitmap_list);
4641         while (!list_empty(&head)) {
4642                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4643                 int hash;
4644                 list_del_init(&sh->lru);
4645                 atomic_inc(&sh->count);
4646                 hash = sh->hash_lock_index;
4647                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4648         }
4649 }
4650
4651 static int raid5_congested(struct mddev *mddev, int bits)
4652 {
4653         struct r5conf *conf = mddev->private;
4654
4655         /* No difference between reads and writes.  Just check
4656          * how busy the stripe_cache is
4657          */
4658
4659         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4660                 return 1;
4661         if (conf->quiesce)
4662                 return 1;
4663         if (atomic_read(&conf->empty_inactive_list_nr))
4664                 return 1;
4665
4666         return 0;
4667 }
4668
4669 /* We want read requests to align with chunks where possible,
4670  * but write requests don't need to.
4671  */
4672 static int raid5_mergeable_bvec(struct mddev *mddev,
4673                                 struct bvec_merge_data *bvm,
4674                                 struct bio_vec *biovec)
4675 {
4676         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4677         int max;
4678         unsigned int chunk_sectors = mddev->chunk_sectors;
4679         unsigned int bio_sectors = bvm->bi_size >> 9;
4680
4681         /*
4682          * always allow writes to be mergeable, read as well if array
4683          * is degraded as we'll go through stripe cache anyway.
4684          */
4685         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4686                 return biovec->bv_len;
4687
4688         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4689                 chunk_sectors = mddev->new_chunk_sectors;
4690         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4691         if (max < 0) max = 0;
4692         if (max <= biovec->bv_len && bio_sectors == 0)
4693                 return biovec->bv_len;
4694         else
4695                 return max;
4696 }
4697
4698 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4699 {
4700         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4701         unsigned int chunk_sectors = mddev->chunk_sectors;
4702         unsigned int bio_sectors = bio_sectors(bio);
4703
4704         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4705                 chunk_sectors = mddev->new_chunk_sectors;
4706         return  chunk_sectors >=
4707                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4708 }
4709
4710 /*
4711  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4712  *  later sampled by raid5d.
4713  */
4714 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4715 {
4716         unsigned long flags;
4717
4718         spin_lock_irqsave(&conf->device_lock, flags);
4719
4720         bi->bi_next = conf->retry_read_aligned_list;
4721         conf->retry_read_aligned_list = bi;
4722
4723         spin_unlock_irqrestore(&conf->device_lock, flags);
4724         md_wakeup_thread(conf->mddev->thread);
4725 }
4726
4727 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4728 {
4729         struct bio *bi;
4730
4731         bi = conf->retry_read_aligned;
4732         if (bi) {
4733                 conf->retry_read_aligned = NULL;
4734                 return bi;
4735         }
4736         bi = conf->retry_read_aligned_list;
4737         if(bi) {
4738                 conf->retry_read_aligned_list = bi->bi_next;
4739                 bi->bi_next = NULL;
4740                 /*
4741                  * this sets the active strip count to 1 and the processed
4742                  * strip count to zero (upper 8 bits)
4743                  */
4744                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4745         }
4746
4747         return bi;
4748 }
4749
4750 /*
4751  *  The "raid5_align_endio" should check if the read succeeded and if it
4752  *  did, call bio_endio on the original bio (having bio_put the new bio
4753  *  first).
4754  *  If the read failed..
4755  */
4756 static void raid5_align_endio(struct bio *bi, int error)
4757 {
4758         struct bio* raid_bi  = bi->bi_private;
4759         struct mddev *mddev;
4760         struct r5conf *conf;
4761         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4762         struct md_rdev *rdev;
4763
4764         bio_put(bi);
4765
4766         rdev = (void*)raid_bi->bi_next;
4767         raid_bi->bi_next = NULL;
4768         mddev = rdev->mddev;
4769         conf = mddev->private;
4770
4771         rdev_dec_pending(rdev, conf->mddev);
4772
4773         if (!error && uptodate) {
4774                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4775                                          raid_bi, 0);
4776                 bio_endio(raid_bi, 0);
4777                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4778                         wake_up(&conf->wait_for_stripe);
4779                 return;
4780         }
4781
4782         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4783
4784         add_bio_to_retry(raid_bi, conf);
4785 }
4786
4787 static int bio_fits_rdev(struct bio *bi)
4788 {
4789         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4790
4791         if (bio_sectors(bi) > queue_max_sectors(q))
4792                 return 0;
4793         blk_recount_segments(q, bi);
4794         if (bi->bi_phys_segments > queue_max_segments(q))
4795                 return 0;
4796
4797         if (q->merge_bvec_fn)
4798                 /* it's too hard to apply the merge_bvec_fn at this stage,
4799                  * just just give up
4800                  */
4801                 return 0;
4802
4803         return 1;
4804 }
4805
4806 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4807 {
4808         struct r5conf *conf = mddev->private;
4809         int dd_idx;
4810         struct bio* align_bi;
4811         struct md_rdev *rdev;
4812         sector_t end_sector;
4813
4814         if (!in_chunk_boundary(mddev, raid_bio)) {
4815                 pr_debug("chunk_aligned_read : non aligned\n");
4816                 return 0;
4817         }
4818         /*
4819          * use bio_clone_mddev to make a copy of the bio
4820          */
4821         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4822         if (!align_bi)
4823                 return 0;
4824         /*
4825          *   set bi_end_io to a new function, and set bi_private to the
4826          *     original bio.
4827          */
4828         align_bi->bi_end_io  = raid5_align_endio;
4829         align_bi->bi_private = raid_bio;
4830         /*
4831          *      compute position
4832          */
4833         align_bi->bi_iter.bi_sector =
4834                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4835                                      0, &dd_idx, NULL);
4836
4837         end_sector = bio_end_sector(align_bi);
4838         rcu_read_lock();
4839         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4840         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4841             rdev->recovery_offset < end_sector) {
4842                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4843                 if (rdev &&
4844                     (test_bit(Faulty, &rdev->flags) ||
4845                     !(test_bit(In_sync, &rdev->flags) ||
4846                       rdev->recovery_offset >= end_sector)))
4847                         rdev = NULL;
4848         }
4849         if (rdev) {
4850                 sector_t first_bad;
4851                 int bad_sectors;
4852
4853                 atomic_inc(&rdev->nr_pending);
4854                 rcu_read_unlock();
4855                 raid_bio->bi_next = (void*)rdev;
4856                 align_bi->bi_bdev =  rdev->bdev;
4857                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4858
4859                 if (!bio_fits_rdev(align_bi) ||
4860                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4861                                 bio_sectors(align_bi),
4862                                 &first_bad, &bad_sectors)) {
4863                         /* too big in some way, or has a known bad block */
4864                         bio_put(align_bi);
4865                         rdev_dec_pending(rdev, mddev);
4866                         return 0;
4867                 }
4868
4869                 /* No reshape active, so we can trust rdev->data_offset */
4870                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4871
4872                 spin_lock_irq(&conf->device_lock);
4873                 wait_event_lock_irq(conf->wait_for_stripe,
4874                                     conf->quiesce == 0,
4875                                     conf->device_lock);
4876                 atomic_inc(&conf->active_aligned_reads);
4877                 spin_unlock_irq(&conf->device_lock);
4878
4879                 if (mddev->gendisk)
4880                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4881                                               align_bi, disk_devt(mddev->gendisk),
4882                                               raid_bio->bi_iter.bi_sector);
4883                 generic_make_request(align_bi);
4884                 return 1;
4885         } else {
4886                 rcu_read_unlock();
4887                 bio_put(align_bi);
4888                 return 0;
4889         }
4890 }
4891
4892 /* __get_priority_stripe - get the next stripe to process
4893  *
4894  * Full stripe writes are allowed to pass preread active stripes up until
4895  * the bypass_threshold is exceeded.  In general the bypass_count
4896  * increments when the handle_list is handled before the hold_list; however, it
4897  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4898  * stripe with in flight i/o.  The bypass_count will be reset when the
4899  * head of the hold_list has changed, i.e. the head was promoted to the
4900  * handle_list.
4901  */
4902 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4903 {
4904         struct stripe_head *sh = NULL, *tmp;
4905         struct list_head *handle_list = NULL;
4906         struct r5worker_group *wg = NULL;
4907
4908         if (conf->worker_cnt_per_group == 0) {
4909                 handle_list = &conf->handle_list;
4910         } else if (group != ANY_GROUP) {
4911                 handle_list = &conf->worker_groups[group].handle_list;
4912                 wg = &conf->worker_groups[group];
4913         } else {
4914                 int i;
4915                 for (i = 0; i < conf->group_cnt; i++) {
4916                         handle_list = &conf->worker_groups[i].handle_list;
4917                         wg = &conf->worker_groups[i];
4918                         if (!list_empty(handle_list))
4919                                 break;
4920                 }
4921         }
4922
4923         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4924                   __func__,
4925                   list_empty(handle_list) ? "empty" : "busy",
4926                   list_empty(&conf->hold_list) ? "empty" : "busy",
4927                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4928
4929         if (!list_empty(handle_list)) {
4930                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4931
4932                 if (list_empty(&conf->hold_list))
4933                         conf->bypass_count = 0;
4934                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4935                         if (conf->hold_list.next == conf->last_hold)
4936                                 conf->bypass_count++;
4937                         else {
4938                                 conf->last_hold = conf->hold_list.next;
4939                                 conf->bypass_count -= conf->bypass_threshold;
4940                                 if (conf->bypass_count < 0)
4941                                         conf->bypass_count = 0;
4942                         }
4943                 }
4944         } else if (!list_empty(&conf->hold_list) &&
4945                    ((conf->bypass_threshold &&
4946                      conf->bypass_count > conf->bypass_threshold) ||
4947                     atomic_read(&conf->pending_full_writes) == 0)) {
4948
4949                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4950                         if (conf->worker_cnt_per_group == 0 ||
4951                             group == ANY_GROUP ||
4952                             !cpu_online(tmp->cpu) ||
4953                             cpu_to_group(tmp->cpu) == group) {
4954                                 sh = tmp;
4955                                 break;
4956                         }
4957                 }
4958
4959                 if (sh) {
4960                         conf->bypass_count -= conf->bypass_threshold;
4961                         if (conf->bypass_count < 0)
4962                                 conf->bypass_count = 0;
4963                 }
4964                 wg = NULL;
4965         }
4966
4967         if (!sh)
4968                 return NULL;
4969
4970         if (wg) {
4971                 wg->stripes_cnt--;
4972                 sh->group = NULL;
4973         }
4974         list_del_init(&sh->lru);
4975         BUG_ON(atomic_inc_return(&sh->count) != 1);
4976         return sh;
4977 }
4978
4979 struct raid5_plug_cb {
4980         struct blk_plug_cb      cb;
4981         struct list_head        list;
4982         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4983 };
4984
4985 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4986 {
4987         struct raid5_plug_cb *cb = container_of(
4988                 blk_cb, struct raid5_plug_cb, cb);
4989         struct stripe_head *sh;
4990         struct mddev *mddev = cb->cb.data;
4991         struct r5conf *conf = mddev->private;
4992         int cnt = 0;
4993         int hash;
4994
4995         if (cb->list.next && !list_empty(&cb->list)) {
4996                 spin_lock_irq(&conf->device_lock);
4997                 while (!list_empty(&cb->list)) {
4998                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4999                         list_del_init(&sh->lru);
5000                         /*
5001                          * avoid race release_stripe_plug() sees
5002                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5003                          * is still in our list
5004                          */
5005                         smp_mb__before_atomic();
5006                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5007                         /*
5008                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5009                          * case, the count is always > 1 here
5010                          */
5011                         hash = sh->hash_lock_index;
5012                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5013                         cnt++;
5014                 }
5015                 spin_unlock_irq(&conf->device_lock);
5016         }
5017         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5018                                      NR_STRIPE_HASH_LOCKS);
5019         if (mddev->queue)
5020                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5021         kfree(cb);
5022 }
5023
5024 static void release_stripe_plug(struct mddev *mddev,
5025                                 struct stripe_head *sh)
5026 {
5027         struct blk_plug_cb *blk_cb = blk_check_plugged(
5028                 raid5_unplug, mddev,
5029                 sizeof(struct raid5_plug_cb));
5030         struct raid5_plug_cb *cb;
5031
5032         if (!blk_cb) {
5033                 release_stripe(sh);
5034                 return;
5035         }
5036
5037         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5038
5039         if (cb->list.next == NULL) {
5040                 int i;
5041                 INIT_LIST_HEAD(&cb->list);
5042                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5043                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5044         }
5045
5046         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5047                 list_add_tail(&sh->lru, &cb->list);
5048         else
5049                 release_stripe(sh);
5050 }
5051
5052 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5053 {
5054         struct r5conf *conf = mddev->private;
5055         sector_t logical_sector, last_sector;
5056         struct stripe_head *sh;
5057         int remaining;
5058         int stripe_sectors;
5059
5060         if (mddev->reshape_position != MaxSector)
5061                 /* Skip discard while reshape is happening */
5062                 return;
5063
5064         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5065         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5066
5067         bi->bi_next = NULL;
5068         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5069
5070         stripe_sectors = conf->chunk_sectors *
5071                 (conf->raid_disks - conf->max_degraded);
5072         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5073                                                stripe_sectors);
5074         sector_div(last_sector, stripe_sectors);
5075
5076         logical_sector *= conf->chunk_sectors;
5077         last_sector *= conf->chunk_sectors;
5078
5079         for (; logical_sector < last_sector;
5080              logical_sector += STRIPE_SECTORS) {
5081                 DEFINE_WAIT(w);
5082                 int d;
5083         again:
5084                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5085                 prepare_to_wait(&conf->wait_for_overlap, &w,
5086                                 TASK_UNINTERRUPTIBLE);
5087                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5088                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5089                         release_stripe(sh);
5090                         schedule();
5091                         goto again;
5092                 }
5093                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5094                 spin_lock_irq(&sh->stripe_lock);
5095                 for (d = 0; d < conf->raid_disks; d++) {
5096                         if (d == sh->pd_idx || d == sh->qd_idx)
5097                                 continue;
5098                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5099                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5100                                 spin_unlock_irq(&sh->stripe_lock);
5101                                 release_stripe(sh);
5102                                 schedule();
5103                                 goto again;
5104                         }
5105                 }
5106                 set_bit(STRIPE_DISCARD, &sh->state);
5107                 finish_wait(&conf->wait_for_overlap, &w);
5108                 sh->overwrite_disks = 0;
5109                 for (d = 0; d < conf->raid_disks; d++) {
5110                         if (d == sh->pd_idx || d == sh->qd_idx)
5111                                 continue;
5112                         sh->dev[d].towrite = bi;
5113                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5114                         raid5_inc_bi_active_stripes(bi);
5115                         sh->overwrite_disks++;
5116                 }
5117                 spin_unlock_irq(&sh->stripe_lock);
5118                 if (conf->mddev->bitmap) {
5119                         for (d = 0;
5120                              d < conf->raid_disks - conf->max_degraded;
5121                              d++)
5122                                 bitmap_startwrite(mddev->bitmap,
5123                                                   sh->sector,
5124                                                   STRIPE_SECTORS,
5125                                                   0);
5126                         sh->bm_seq = conf->seq_flush + 1;
5127                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5128                 }
5129
5130                 set_bit(STRIPE_HANDLE, &sh->state);
5131                 clear_bit(STRIPE_DELAYED, &sh->state);
5132                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5133                         atomic_inc(&conf->preread_active_stripes);
5134                 release_stripe_plug(mddev, sh);
5135         }
5136
5137         remaining = raid5_dec_bi_active_stripes(bi);
5138         if (remaining == 0) {
5139                 md_write_end(mddev);
5140                 bio_endio(bi, 0);
5141         }
5142 }
5143
5144 static void make_request(struct mddev *mddev, struct bio * bi)
5145 {
5146         struct r5conf *conf = mddev->private;
5147         int dd_idx;
5148         sector_t new_sector;
5149         sector_t logical_sector, last_sector;
5150         struct stripe_head *sh;
5151         const int rw = bio_data_dir(bi);
5152         int remaining;
5153         DEFINE_WAIT(w);
5154         bool do_prepare;
5155
5156         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5157                 md_flush_request(mddev, bi);
5158                 return;
5159         }
5160
5161         md_write_start(mddev, bi);
5162
5163         /*
5164          * If array is degraded, better not do chunk aligned read because
5165          * later we might have to read it again in order to reconstruct
5166          * data on failed drives.
5167          */
5168         if (rw == READ && mddev->degraded == 0 &&
5169              mddev->reshape_position == MaxSector &&
5170              chunk_aligned_read(mddev,bi))
5171                 return;
5172
5173         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5174                 make_discard_request(mddev, bi);
5175                 return;
5176         }
5177
5178         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5179         last_sector = bio_end_sector(bi);
5180         bi->bi_next = NULL;
5181         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5182
5183         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5184         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5185                 int previous;
5186                 int seq;
5187
5188                 do_prepare = false;
5189         retry:
5190                 seq = read_seqcount_begin(&conf->gen_lock);
5191                 previous = 0;
5192                 if (do_prepare)
5193                         prepare_to_wait(&conf->wait_for_overlap, &w,
5194                                 TASK_UNINTERRUPTIBLE);
5195                 if (unlikely(conf->reshape_progress != MaxSector)) {
5196                         /* spinlock is needed as reshape_progress may be
5197                          * 64bit on a 32bit platform, and so it might be
5198                          * possible to see a half-updated value
5199                          * Of course reshape_progress could change after
5200                          * the lock is dropped, so once we get a reference
5201                          * to the stripe that we think it is, we will have
5202                          * to check again.
5203                          */
5204                         spin_lock_irq(&conf->device_lock);
5205                         if (mddev->reshape_backwards
5206                             ? logical_sector < conf->reshape_progress
5207                             : logical_sector >= conf->reshape_progress) {
5208                                 previous = 1;
5209                         } else {
5210                                 if (mddev->reshape_backwards
5211                                     ? logical_sector < conf->reshape_safe
5212                                     : logical_sector >= conf->reshape_safe) {
5213                                         spin_unlock_irq(&conf->device_lock);
5214                                         schedule();
5215                                         do_prepare = true;
5216                                         goto retry;
5217                                 }
5218                         }
5219                         spin_unlock_irq(&conf->device_lock);
5220                 }
5221
5222                 new_sector = raid5_compute_sector(conf, logical_sector,
5223                                                   previous,
5224                                                   &dd_idx, NULL);
5225                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5226                         (unsigned long long)new_sector,
5227                         (unsigned long long)logical_sector);
5228
5229                 sh = get_active_stripe(conf, new_sector, previous,
5230                                        (bi->bi_rw&RWA_MASK), 0);
5231                 if (sh) {
5232                         if (unlikely(previous)) {
5233                                 /* expansion might have moved on while waiting for a
5234                                  * stripe, so we must do the range check again.
5235                                  * Expansion could still move past after this
5236                                  * test, but as we are holding a reference to
5237                                  * 'sh', we know that if that happens,
5238                                  *  STRIPE_EXPANDING will get set and the expansion
5239                                  * won't proceed until we finish with the stripe.
5240                                  */
5241                                 int must_retry = 0;
5242                                 spin_lock_irq(&conf->device_lock);
5243                                 if (mddev->reshape_backwards
5244                                     ? logical_sector >= conf->reshape_progress
5245                                     : logical_sector < conf->reshape_progress)
5246                                         /* mismatch, need to try again */
5247                                         must_retry = 1;
5248                                 spin_unlock_irq(&conf->device_lock);
5249                                 if (must_retry) {
5250                                         release_stripe(sh);
5251                                         schedule();
5252                                         do_prepare = true;
5253                                         goto retry;
5254                                 }
5255                         }
5256                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5257                                 /* Might have got the wrong stripe_head
5258                                  * by accident
5259                                  */
5260                                 release_stripe(sh);
5261                                 goto retry;
5262                         }
5263
5264                         if (rw == WRITE &&
5265                             logical_sector >= mddev->suspend_lo &&
5266                             logical_sector < mddev->suspend_hi) {
5267                                 release_stripe(sh);
5268                                 /* As the suspend_* range is controlled by
5269                                  * userspace, we want an interruptible
5270                                  * wait.
5271                                  */
5272                                 flush_signals(current);
5273                                 prepare_to_wait(&conf->wait_for_overlap,
5274                                                 &w, TASK_INTERRUPTIBLE);
5275                                 if (logical_sector >= mddev->suspend_lo &&
5276                                     logical_sector < mddev->suspend_hi) {
5277                                         schedule();
5278                                         do_prepare = true;
5279                                 }
5280                                 goto retry;
5281                         }
5282
5283                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5284                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5285                                 /* Stripe is busy expanding or
5286                                  * add failed due to overlap.  Flush everything
5287                                  * and wait a while
5288                                  */
5289                                 md_wakeup_thread(mddev->thread);
5290                                 release_stripe(sh);
5291                                 schedule();
5292                                 do_prepare = true;
5293                                 goto retry;
5294                         }
5295                         set_bit(STRIPE_HANDLE, &sh->state);
5296                         clear_bit(STRIPE_DELAYED, &sh->state);
5297                         if ((!sh->batch_head || sh == sh->batch_head) &&
5298                             (bi->bi_rw & REQ_SYNC) &&
5299                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5300                                 atomic_inc(&conf->preread_active_stripes);
5301                         release_stripe_plug(mddev, sh);
5302                 } else {
5303                         /* cannot get stripe for read-ahead, just give-up */
5304                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5305                         break;
5306                 }
5307         }
5308         finish_wait(&conf->wait_for_overlap, &w);
5309
5310         remaining = raid5_dec_bi_active_stripes(bi);
5311         if (remaining == 0) {
5312
5313                 if ( rw == WRITE )
5314                         md_write_end(mddev);
5315
5316                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5317                                          bi, 0);
5318                 bio_endio(bi, 0);
5319         }
5320 }
5321
5322 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5323
5324 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5325 {
5326         /* reshaping is quite different to recovery/resync so it is
5327          * handled quite separately ... here.
5328          *
5329          * On each call to sync_request, we gather one chunk worth of
5330          * destination stripes and flag them as expanding.
5331          * Then we find all the source stripes and request reads.
5332          * As the reads complete, handle_stripe will copy the data
5333          * into the destination stripe and release that stripe.
5334          */
5335         struct r5conf *conf = mddev->private;
5336         struct stripe_head *sh;
5337         sector_t first_sector, last_sector;
5338         int raid_disks = conf->previous_raid_disks;
5339         int data_disks = raid_disks - conf->max_degraded;
5340         int new_data_disks = conf->raid_disks - conf->max_degraded;
5341         int i;
5342         int dd_idx;
5343         sector_t writepos, readpos, safepos;
5344         sector_t stripe_addr;
5345         int reshape_sectors;
5346         struct list_head stripes;
5347
5348         if (sector_nr == 0) {
5349                 /* If restarting in the middle, skip the initial sectors */
5350                 if (mddev->reshape_backwards &&
5351                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5352                         sector_nr = raid5_size(mddev, 0, 0)
5353                                 - conf->reshape_progress;
5354                 } else if (!mddev->reshape_backwards &&
5355                            conf->reshape_progress > 0)
5356                         sector_nr = conf->reshape_progress;
5357                 sector_div(sector_nr, new_data_disks);
5358                 if (sector_nr) {
5359                         mddev->curr_resync_completed = sector_nr;
5360                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5361                         *skipped = 1;
5362                         return sector_nr;
5363                 }
5364         }
5365
5366         /* We need to process a full chunk at a time.
5367          * If old and new chunk sizes differ, we need to process the
5368          * largest of these
5369          */
5370         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5371                 reshape_sectors = mddev->new_chunk_sectors;
5372         else
5373                 reshape_sectors = mddev->chunk_sectors;
5374
5375         /* We update the metadata at least every 10 seconds, or when
5376          * the data about to be copied would over-write the source of
5377          * the data at the front of the range.  i.e. one new_stripe
5378          * along from reshape_progress new_maps to after where
5379          * reshape_safe old_maps to
5380          */
5381         writepos = conf->reshape_progress;
5382         sector_div(writepos, new_data_disks);
5383         readpos = conf->reshape_progress;
5384         sector_div(readpos, data_disks);
5385         safepos = conf->reshape_safe;
5386         sector_div(safepos, data_disks);
5387         if (mddev->reshape_backwards) {
5388                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5389                 readpos += reshape_sectors;
5390                 safepos += reshape_sectors;
5391         } else {
5392                 writepos += reshape_sectors;
5393                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5394                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5395         }
5396
5397         /* Having calculated the 'writepos' possibly use it
5398          * to set 'stripe_addr' which is where we will write to.
5399          */
5400         if (mddev->reshape_backwards) {
5401                 BUG_ON(conf->reshape_progress == 0);
5402                 stripe_addr = writepos;
5403                 BUG_ON((mddev->dev_sectors &
5404                         ~((sector_t)reshape_sectors - 1))
5405                        - reshape_sectors - stripe_addr
5406                        != sector_nr);
5407         } else {
5408                 BUG_ON(writepos != sector_nr + reshape_sectors);
5409                 stripe_addr = sector_nr;
5410         }
5411
5412         /* 'writepos' is the most advanced device address we might write.
5413          * 'readpos' is the least advanced device address we might read.
5414          * 'safepos' is the least address recorded in the metadata as having
5415          *     been reshaped.
5416          * If there is a min_offset_diff, these are adjusted either by
5417          * increasing the safepos/readpos if diff is negative, or
5418          * increasing writepos if diff is positive.
5419          * If 'readpos' is then behind 'writepos', there is no way that we can
5420          * ensure safety in the face of a crash - that must be done by userspace
5421          * making a backup of the data.  So in that case there is no particular
5422          * rush to update metadata.
5423          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5424          * update the metadata to advance 'safepos' to match 'readpos' so that
5425          * we can be safe in the event of a crash.
5426          * So we insist on updating metadata if safepos is behind writepos and
5427          * readpos is beyond writepos.
5428          * In any case, update the metadata every 10 seconds.
5429          * Maybe that number should be configurable, but I'm not sure it is
5430          * worth it.... maybe it could be a multiple of safemode_delay???
5431          */
5432         if (conf->min_offset_diff < 0) {
5433                 safepos += -conf->min_offset_diff;
5434                 readpos += -conf->min_offset_diff;
5435         } else
5436                 writepos += conf->min_offset_diff;
5437
5438         if ((mddev->reshape_backwards
5439              ? (safepos > writepos && readpos < writepos)
5440              : (safepos < writepos && readpos > writepos)) ||
5441             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5442                 /* Cannot proceed until we've updated the superblock... */
5443                 wait_event(conf->wait_for_overlap,
5444                            atomic_read(&conf->reshape_stripes)==0
5445                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5446                 if (atomic_read(&conf->reshape_stripes) != 0)
5447                         return 0;
5448                 mddev->reshape_position = conf->reshape_progress;
5449                 mddev->curr_resync_completed = sector_nr;
5450                 conf->reshape_checkpoint = jiffies;
5451                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5452                 md_wakeup_thread(mddev->thread);
5453                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5454                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5455                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5456                         return 0;
5457                 spin_lock_irq(&conf->device_lock);
5458                 conf->reshape_safe = mddev->reshape_position;
5459                 spin_unlock_irq(&conf->device_lock);
5460                 wake_up(&conf->wait_for_overlap);
5461                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5462         }
5463
5464         INIT_LIST_HEAD(&stripes);
5465         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5466                 int j;
5467                 int skipped_disk = 0;
5468                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5469                 set_bit(STRIPE_EXPANDING, &sh->state);
5470                 atomic_inc(&conf->reshape_stripes);
5471                 /* If any of this stripe is beyond the end of the old
5472                  * array, then we need to zero those blocks
5473                  */
5474                 for (j=sh->disks; j--;) {
5475                         sector_t s;
5476                         if (j == sh->pd_idx)
5477                                 continue;
5478                         if (conf->level == 6 &&
5479                             j == sh->qd_idx)
5480                                 continue;
5481                         s = compute_blocknr(sh, j, 0);
5482                         if (s < raid5_size(mddev, 0, 0)) {
5483                                 skipped_disk = 1;
5484                                 continue;
5485                         }
5486                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5487                         set_bit(R5_Expanded, &sh->dev[j].flags);
5488                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5489                 }
5490                 if (!skipped_disk) {
5491                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5492                         set_bit(STRIPE_HANDLE, &sh->state);
5493                 }
5494                 list_add(&sh->lru, &stripes);
5495         }
5496         spin_lock_irq(&conf->device_lock);
5497         if (mddev->reshape_backwards)
5498                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5499         else
5500                 conf->reshape_progress += reshape_sectors * new_data_disks;
5501         spin_unlock_irq(&conf->device_lock);
5502         /* Ok, those stripe are ready. We can start scheduling
5503          * reads on the source stripes.
5504          * The source stripes are determined by mapping the first and last
5505          * block on the destination stripes.
5506          */
5507         first_sector =
5508                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5509                                      1, &dd_idx, NULL);
5510         last_sector =
5511                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5512                                             * new_data_disks - 1),
5513                                      1, &dd_idx, NULL);
5514         if (last_sector >= mddev->dev_sectors)
5515                 last_sector = mddev->dev_sectors - 1;
5516         while (first_sector <= last_sector) {
5517                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5518                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5519                 set_bit(STRIPE_HANDLE, &sh->state);
5520                 release_stripe(sh);
5521                 first_sector += STRIPE_SECTORS;
5522         }
5523         /* Now that the sources are clearly marked, we can release
5524          * the destination stripes
5525          */
5526         while (!list_empty(&stripes)) {
5527                 sh = list_entry(stripes.next, struct stripe_head, lru);
5528                 list_del_init(&sh->lru);
5529                 release_stripe(sh);
5530         }
5531         /* If this takes us to the resync_max point where we have to pause,
5532          * then we need to write out the superblock.
5533          */
5534         sector_nr += reshape_sectors;
5535         if ((sector_nr - mddev->curr_resync_completed) * 2
5536             >= mddev->resync_max - mddev->curr_resync_completed) {
5537                 /* Cannot proceed until we've updated the superblock... */
5538                 wait_event(conf->wait_for_overlap,
5539                            atomic_read(&conf->reshape_stripes) == 0
5540                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5541                 if (atomic_read(&conf->reshape_stripes) != 0)
5542                         goto ret;
5543                 mddev->reshape_position = conf->reshape_progress;
5544                 mddev->curr_resync_completed = sector_nr;
5545                 conf->reshape_checkpoint = jiffies;
5546                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5547                 md_wakeup_thread(mddev->thread);
5548                 wait_event(mddev->sb_wait,
5549                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5550                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5551                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5552                         goto ret;
5553                 spin_lock_irq(&conf->device_lock);
5554                 conf->reshape_safe = mddev->reshape_position;
5555                 spin_unlock_irq(&conf->device_lock);
5556                 wake_up(&conf->wait_for_overlap);
5557                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5558         }
5559 ret:
5560         return reshape_sectors;
5561 }
5562
5563 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5564 {
5565         struct r5conf *conf = mddev->private;
5566         struct stripe_head *sh;
5567         sector_t max_sector = mddev->dev_sectors;
5568         sector_t sync_blocks;
5569         int still_degraded = 0;
5570         int i;
5571
5572         if (sector_nr >= max_sector) {
5573                 /* just being told to finish up .. nothing much to do */
5574
5575                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5576                         end_reshape(conf);
5577                         return 0;
5578                 }
5579
5580                 if (mddev->curr_resync < max_sector) /* aborted */
5581                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5582                                         &sync_blocks, 1);
5583                 else /* completed sync */
5584                         conf->fullsync = 0;
5585                 bitmap_close_sync(mddev->bitmap);
5586
5587                 return 0;
5588         }
5589
5590         /* Allow raid5_quiesce to complete */
5591         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5592
5593         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5594                 return reshape_request(mddev, sector_nr, skipped);
5595
5596         /* No need to check resync_max as we never do more than one
5597          * stripe, and as resync_max will always be on a chunk boundary,
5598          * if the check in md_do_sync didn't fire, there is no chance
5599          * of overstepping resync_max here
5600          */
5601
5602         /* if there is too many failed drives and we are trying
5603          * to resync, then assert that we are finished, because there is
5604          * nothing we can do.
5605          */
5606         if (mddev->degraded >= conf->max_degraded &&
5607             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5608                 sector_t rv = mddev->dev_sectors - sector_nr;
5609                 *skipped = 1;
5610                 return rv;
5611         }
5612         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5613             !conf->fullsync &&
5614             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5615             sync_blocks >= STRIPE_SECTORS) {
5616                 /* we can skip this block, and probably more */
5617                 sync_blocks /= STRIPE_SECTORS;
5618                 *skipped = 1;
5619                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5620         }
5621
5622         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5623
5624         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5625         if (sh == NULL) {
5626                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5627                 /* make sure we don't swamp the stripe cache if someone else
5628                  * is trying to get access
5629                  */
5630                 schedule_timeout_uninterruptible(1);
5631         }
5632         /* Need to check if array will still be degraded after recovery/resync
5633          * Note in case of > 1 drive failures it's possible we're rebuilding
5634          * one drive while leaving another faulty drive in array.
5635          */
5636         rcu_read_lock();
5637         for (i = 0; i < conf->raid_disks; i++) {
5638                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5639
5640                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5641                         still_degraded = 1;
5642         }
5643         rcu_read_unlock();
5644
5645         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5646
5647         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5648         set_bit(STRIPE_HANDLE, &sh->state);
5649
5650         release_stripe(sh);
5651
5652         return STRIPE_SECTORS;
5653 }
5654
5655 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5656 {
5657         /* We may not be able to submit a whole bio at once as there
5658          * may not be enough stripe_heads available.
5659          * We cannot pre-allocate enough stripe_heads as we may need
5660          * more than exist in the cache (if we allow ever large chunks).
5661          * So we do one stripe head at a time and record in
5662          * ->bi_hw_segments how many have been done.
5663          *
5664          * We *know* that this entire raid_bio is in one chunk, so
5665          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5666          */
5667         struct stripe_head *sh;
5668         int dd_idx;
5669         sector_t sector, logical_sector, last_sector;
5670         int scnt = 0;
5671         int remaining;
5672         int handled = 0;
5673
5674         logical_sector = raid_bio->bi_iter.bi_sector &
5675                 ~((sector_t)STRIPE_SECTORS-1);
5676         sector = raid5_compute_sector(conf, logical_sector,
5677                                       0, &dd_idx, NULL);
5678         last_sector = bio_end_sector(raid_bio);
5679
5680         for (; logical_sector < last_sector;
5681              logical_sector += STRIPE_SECTORS,
5682                      sector += STRIPE_SECTORS,
5683                      scnt++) {
5684
5685                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5686                         /* already done this stripe */
5687                         continue;
5688
5689                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5690
5691                 if (!sh) {
5692                         /* failed to get a stripe - must wait */
5693                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5694                         conf->retry_read_aligned = raid_bio;
5695                         return handled;
5696                 }
5697
5698                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5699                         release_stripe(sh);
5700                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5701                         conf->retry_read_aligned = raid_bio;
5702                         return handled;
5703                 }
5704
5705                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5706                 handle_stripe(sh);
5707                 release_stripe(sh);
5708                 handled++;
5709         }
5710         remaining = raid5_dec_bi_active_stripes(raid_bio);
5711         if (remaining == 0) {
5712                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5713                                          raid_bio, 0);
5714                 bio_endio(raid_bio, 0);
5715         }
5716         if (atomic_dec_and_test(&conf->active_aligned_reads))
5717                 wake_up(&conf->wait_for_stripe);
5718         return handled;
5719 }
5720
5721 static int handle_active_stripes(struct r5conf *conf, int group,
5722                                  struct r5worker *worker,
5723                                  struct list_head *temp_inactive_list)
5724 {
5725         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5726         int i, batch_size = 0, hash;
5727         bool release_inactive = false;
5728
5729         while (batch_size < MAX_STRIPE_BATCH &&
5730                         (sh = __get_priority_stripe(conf, group)) != NULL)
5731                 batch[batch_size++] = sh;
5732
5733         if (batch_size == 0) {
5734                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5735                         if (!list_empty(temp_inactive_list + i))
5736                                 break;
5737                 if (i == NR_STRIPE_HASH_LOCKS)
5738                         return batch_size;
5739                 release_inactive = true;
5740         }
5741         spin_unlock_irq(&conf->device_lock);
5742
5743         release_inactive_stripe_list(conf, temp_inactive_list,
5744                                      NR_STRIPE_HASH_LOCKS);
5745
5746         if (release_inactive) {
5747                 spin_lock_irq(&conf->device_lock);
5748                 return 0;
5749         }
5750
5751         for (i = 0; i < batch_size; i++)
5752                 handle_stripe(batch[i]);
5753
5754         cond_resched();
5755
5756         spin_lock_irq(&conf->device_lock);
5757         for (i = 0; i < batch_size; i++) {
5758                 hash = batch[i]->hash_lock_index;
5759                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5760         }
5761         return batch_size;
5762 }
5763
5764 static void raid5_do_work(struct work_struct *work)
5765 {
5766         struct r5worker *worker = container_of(work, struct r5worker, work);
5767         struct r5worker_group *group = worker->group;
5768         struct r5conf *conf = group->conf;
5769         int group_id = group - conf->worker_groups;
5770         int handled;
5771         struct blk_plug plug;
5772
5773         pr_debug("+++ raid5worker active\n");
5774
5775         blk_start_plug(&plug);
5776         handled = 0;
5777         spin_lock_irq(&conf->device_lock);
5778         while (1) {
5779                 int batch_size, released;
5780
5781                 released = release_stripe_list(conf, worker->temp_inactive_list);
5782
5783                 batch_size = handle_active_stripes(conf, group_id, worker,
5784                                                    worker->temp_inactive_list);
5785                 worker->working = false;
5786                 if (!batch_size && !released)
5787                         break;
5788                 handled += batch_size;
5789         }
5790         pr_debug("%d stripes handled\n", handled);
5791
5792         spin_unlock_irq(&conf->device_lock);
5793         blk_finish_plug(&plug);
5794
5795         pr_debug("--- raid5worker inactive\n");
5796 }
5797
5798 /*
5799  * This is our raid5 kernel thread.
5800  *
5801  * We scan the hash table for stripes which can be handled now.
5802  * During the scan, completed stripes are saved for us by the interrupt
5803  * handler, so that they will not have to wait for our next wakeup.
5804  */
5805 static void raid5d(struct md_thread *thread)
5806 {
5807         struct mddev *mddev = thread->mddev;
5808         struct r5conf *conf = mddev->private;
5809         int handled;
5810         struct blk_plug plug;
5811
5812         pr_debug("+++ raid5d active\n");
5813
5814         md_check_recovery(mddev);
5815
5816         blk_start_plug(&plug);
5817         handled = 0;
5818         spin_lock_irq(&conf->device_lock);
5819         while (1) {
5820                 struct bio *bio;
5821                 int batch_size, released;
5822
5823                 released = release_stripe_list(conf, conf->temp_inactive_list);
5824                 if (released)
5825                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5826
5827                 if (
5828                     !list_empty(&conf->bitmap_list)) {
5829                         /* Now is a good time to flush some bitmap updates */
5830                         conf->seq_flush++;
5831                         spin_unlock_irq(&conf->device_lock);
5832                         bitmap_unplug(mddev->bitmap);
5833                         spin_lock_irq(&conf->device_lock);
5834                         conf->seq_write = conf->seq_flush;
5835                         activate_bit_delay(conf, conf->temp_inactive_list);
5836                 }
5837                 raid5_activate_delayed(conf);
5838
5839                 while ((bio = remove_bio_from_retry(conf))) {
5840                         int ok;
5841                         spin_unlock_irq(&conf->device_lock);
5842                         ok = retry_aligned_read(conf, bio);
5843                         spin_lock_irq(&conf->device_lock);
5844                         if (!ok)
5845                                 break;
5846                         handled++;
5847                 }
5848
5849                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5850                                                    conf->temp_inactive_list);
5851                 if (!batch_size && !released)
5852                         break;
5853                 handled += batch_size;
5854
5855                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5856                         spin_unlock_irq(&conf->device_lock);
5857                         md_check_recovery(mddev);
5858                         spin_lock_irq(&conf->device_lock);
5859                 }
5860         }
5861         pr_debug("%d stripes handled\n", handled);
5862
5863         spin_unlock_irq(&conf->device_lock);
5864         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5865                 grow_one_stripe(conf, __GFP_NOWARN);
5866                 /* Set flag even if allocation failed.  This helps
5867                  * slow down allocation requests when mem is short
5868                  */
5869                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5870         }
5871
5872         async_tx_issue_pending_all();
5873         blk_finish_plug(&plug);
5874
5875         pr_debug("--- raid5d inactive\n");
5876 }
5877
5878 static ssize_t
5879 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5880 {
5881         struct r5conf *conf;
5882         int ret = 0;
5883         spin_lock(&mddev->lock);
5884         conf = mddev->private;
5885         if (conf)
5886                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5887         spin_unlock(&mddev->lock);
5888         return ret;
5889 }
5890
5891 int
5892 raid5_set_cache_size(struct mddev *mddev, int size)
5893 {
5894         struct r5conf *conf = mddev->private;
5895         int err;
5896
5897         if (size <= 16 || size > 32768)
5898                 return -EINVAL;
5899
5900         conf->min_nr_stripes = size;
5901         while (size < conf->max_nr_stripes &&
5902                drop_one_stripe(conf))
5903                 ;
5904
5905
5906         err = md_allow_write(mddev);
5907         if (err)
5908                 return err;
5909
5910         while (size > conf->max_nr_stripes)
5911                 if (!grow_one_stripe(conf, GFP_KERNEL))
5912                         break;
5913
5914         return 0;
5915 }
5916 EXPORT_SYMBOL(raid5_set_cache_size);
5917
5918 static ssize_t
5919 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5920 {
5921         struct r5conf *conf;
5922         unsigned long new;
5923         int err;
5924
5925         if (len >= PAGE_SIZE)
5926                 return -EINVAL;
5927         if (kstrtoul(page, 10, &new))
5928                 return -EINVAL;
5929         err = mddev_lock(mddev);
5930         if (err)
5931                 return err;
5932         conf = mddev->private;
5933         if (!conf)
5934                 err = -ENODEV;
5935         else
5936                 err = raid5_set_cache_size(mddev, new);
5937         mddev_unlock(mddev);
5938
5939         return err ?: len;
5940 }
5941
5942 static struct md_sysfs_entry
5943 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5944                                 raid5_show_stripe_cache_size,
5945                                 raid5_store_stripe_cache_size);
5946
5947 static ssize_t
5948 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5949 {
5950         struct r5conf *conf = mddev->private;
5951         if (conf)
5952                 return sprintf(page, "%d\n", conf->rmw_level);
5953         else
5954                 return 0;
5955 }
5956
5957 static ssize_t
5958 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5959 {
5960         struct r5conf *conf = mddev->private;
5961         unsigned long new;
5962
5963         if (!conf)
5964                 return -ENODEV;
5965
5966         if (len >= PAGE_SIZE)
5967                 return -EINVAL;
5968
5969         if (kstrtoul(page, 10, &new))
5970                 return -EINVAL;
5971
5972         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5973                 return -EINVAL;
5974
5975         if (new != PARITY_DISABLE_RMW &&
5976             new != PARITY_ENABLE_RMW &&
5977             new != PARITY_PREFER_RMW)
5978                 return -EINVAL;
5979
5980         conf->rmw_level = new;
5981         return len;
5982 }
5983
5984 static struct md_sysfs_entry
5985 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5986                          raid5_show_rmw_level,
5987                          raid5_store_rmw_level);
5988
5989
5990 static ssize_t
5991 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5992 {
5993         struct r5conf *conf;
5994         int ret = 0;
5995         spin_lock(&mddev->lock);
5996         conf = mddev->private;
5997         if (conf)
5998                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5999         spin_unlock(&mddev->lock);
6000         return ret;
6001 }
6002
6003 static ssize_t
6004 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6005 {
6006         struct r5conf *conf;
6007         unsigned long new;
6008         int err;
6009
6010         if (len >= PAGE_SIZE)
6011                 return -EINVAL;
6012         if (kstrtoul(page, 10, &new))
6013                 return -EINVAL;
6014
6015         err = mddev_lock(mddev);
6016         if (err)
6017                 return err;
6018         conf = mddev->private;
6019         if (!conf)
6020                 err = -ENODEV;
6021         else if (new > conf->min_nr_stripes)
6022                 err = -EINVAL;
6023         else
6024                 conf->bypass_threshold = new;
6025         mddev_unlock(mddev);
6026         return err ?: len;
6027 }
6028
6029 static struct md_sysfs_entry
6030 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6031                                         S_IRUGO | S_IWUSR,
6032                                         raid5_show_preread_threshold,
6033                                         raid5_store_preread_threshold);
6034
6035 static ssize_t
6036 raid5_show_skip_copy(struct mddev *mddev, char *page)
6037 {
6038         struct r5conf *conf;
6039         int ret = 0;
6040         spin_lock(&mddev->lock);
6041         conf = mddev->private;
6042         if (conf)
6043                 ret = sprintf(page, "%d\n", conf->skip_copy);
6044         spin_unlock(&mddev->lock);
6045         return ret;
6046 }
6047
6048 static ssize_t
6049 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6050 {
6051         struct r5conf *conf;
6052         unsigned long new;
6053         int err;
6054
6055         if (len >= PAGE_SIZE)
6056                 return -EINVAL;
6057         if (kstrtoul(page, 10, &new))
6058                 return -EINVAL;
6059         new = !!new;
6060
6061         err = mddev_lock(mddev);
6062         if (err)
6063                 return err;
6064         conf = mddev->private;
6065         if (!conf)
6066                 err = -ENODEV;
6067         else if (new != conf->skip_copy) {
6068                 mddev_suspend(mddev);
6069                 conf->skip_copy = new;
6070                 if (new)
6071                         mddev->queue->backing_dev_info.capabilities |=
6072                                 BDI_CAP_STABLE_WRITES;
6073                 else
6074                         mddev->queue->backing_dev_info.capabilities &=
6075                                 ~BDI_CAP_STABLE_WRITES;
6076                 mddev_resume(mddev);
6077         }
6078         mddev_unlock(mddev);
6079         return err ?: len;
6080 }
6081
6082 static struct md_sysfs_entry
6083 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6084                                         raid5_show_skip_copy,
6085                                         raid5_store_skip_copy);
6086
6087 static ssize_t
6088 stripe_cache_active_show(struct mddev *mddev, char *page)
6089 {
6090         struct r5conf *conf = mddev->private;
6091         if (conf)
6092                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6093         else
6094                 return 0;
6095 }
6096
6097 static struct md_sysfs_entry
6098 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6099
6100 static ssize_t
6101 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6102 {
6103         struct r5conf *conf;
6104         int ret = 0;
6105         spin_lock(&mddev->lock);
6106         conf = mddev->private;
6107         if (conf)
6108                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6109         spin_unlock(&mddev->lock);
6110         return ret;
6111 }
6112
6113 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6114                                int *group_cnt,
6115                                int *worker_cnt_per_group,
6116                                struct r5worker_group **worker_groups);
6117 static ssize_t
6118 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6119 {
6120         struct r5conf *conf;
6121         unsigned long new;
6122         int err;
6123         struct r5worker_group *new_groups, *old_groups;
6124         int group_cnt, worker_cnt_per_group;
6125
6126         if (len >= PAGE_SIZE)
6127                 return -EINVAL;
6128         if (kstrtoul(page, 10, &new))
6129                 return -EINVAL;
6130
6131         err = mddev_lock(mddev);
6132         if (err)
6133                 return err;
6134         conf = mddev->private;
6135         if (!conf)
6136                 err = -ENODEV;
6137         else if (new != conf->worker_cnt_per_group) {
6138                 mddev_suspend(mddev);
6139
6140                 old_groups = conf->worker_groups;
6141                 if (old_groups)
6142                         flush_workqueue(raid5_wq);
6143
6144                 err = alloc_thread_groups(conf, new,
6145                                           &group_cnt, &worker_cnt_per_group,
6146                                           &new_groups);
6147                 if (!err) {
6148                         spin_lock_irq(&conf->device_lock);
6149                         conf->group_cnt = group_cnt;
6150                         conf->worker_cnt_per_group = worker_cnt_per_group;
6151                         conf->worker_groups = new_groups;
6152                         spin_unlock_irq(&conf->device_lock);
6153
6154                         if (old_groups)
6155                                 kfree(old_groups[0].workers);
6156                         kfree(old_groups);
6157                 }
6158                 mddev_resume(mddev);
6159         }
6160         mddev_unlock(mddev);
6161
6162         return err ?: len;
6163 }
6164
6165 static struct md_sysfs_entry
6166 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6167                                 raid5_show_group_thread_cnt,
6168                                 raid5_store_group_thread_cnt);
6169
6170 static struct attribute *raid5_attrs[] =  {
6171         &raid5_stripecache_size.attr,
6172         &raid5_stripecache_active.attr,
6173         &raid5_preread_bypass_threshold.attr,
6174         &raid5_group_thread_cnt.attr,
6175         &raid5_skip_copy.attr,
6176         &raid5_rmw_level.attr,
6177         NULL,
6178 };
6179 static struct attribute_group raid5_attrs_group = {
6180         .name = NULL,
6181         .attrs = raid5_attrs,
6182 };
6183
6184 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6185                                int *group_cnt,
6186                                int *worker_cnt_per_group,
6187                                struct r5worker_group **worker_groups)
6188 {
6189         int i, j, k;
6190         ssize_t size;
6191         struct r5worker *workers;
6192
6193         *worker_cnt_per_group = cnt;
6194         if (cnt == 0) {
6195                 *group_cnt = 0;
6196                 *worker_groups = NULL;
6197                 return 0;
6198         }
6199         *group_cnt = num_possible_nodes();
6200         size = sizeof(struct r5worker) * cnt;
6201         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6202         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6203                                 *group_cnt, GFP_NOIO);
6204         if (!*worker_groups || !workers) {
6205                 kfree(workers);
6206                 kfree(*worker_groups);
6207                 return -ENOMEM;
6208         }
6209
6210         for (i = 0; i < *group_cnt; i++) {
6211                 struct r5worker_group *group;
6212
6213                 group = &(*worker_groups)[i];
6214                 INIT_LIST_HEAD(&group->handle_list);
6215                 group->conf = conf;
6216                 group->workers = workers + i * cnt;
6217
6218                 for (j = 0; j < cnt; j++) {
6219                         struct r5worker *worker = group->workers + j;
6220                         worker->group = group;
6221                         INIT_WORK(&worker->work, raid5_do_work);
6222
6223                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6224                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6225                 }
6226         }
6227
6228         return 0;
6229 }
6230
6231 static void free_thread_groups(struct r5conf *conf)
6232 {
6233         if (conf->worker_groups)
6234                 kfree(conf->worker_groups[0].workers);
6235         kfree(conf->worker_groups);
6236         conf->worker_groups = NULL;
6237 }
6238
6239 static sector_t
6240 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6241 {
6242         struct r5conf *conf = mddev->private;
6243
6244         if (!sectors)
6245                 sectors = mddev->dev_sectors;
6246         if (!raid_disks)
6247                 /* size is defined by the smallest of previous and new size */
6248                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6249
6250         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6251         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6252         return sectors * (raid_disks - conf->max_degraded);
6253 }
6254
6255 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6256 {
6257         safe_put_page(percpu->spare_page);
6258         if (percpu->scribble)
6259                 flex_array_free(percpu->scribble);
6260         percpu->spare_page = NULL;
6261         percpu->scribble = NULL;
6262 }
6263
6264 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6265 {
6266         if (conf->level == 6 && !percpu->spare_page)
6267                 percpu->spare_page = alloc_page(GFP_KERNEL);
6268         if (!percpu->scribble)
6269                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6270                                                       conf->previous_raid_disks),
6271                                                   max(conf->chunk_sectors,
6272                                                       conf->prev_chunk_sectors)
6273                                                    / STRIPE_SECTORS,
6274                                                   GFP_KERNEL);
6275
6276         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6277                 free_scratch_buffer(conf, percpu);
6278                 return -ENOMEM;
6279         }
6280
6281         return 0;
6282 }
6283
6284 static void raid5_free_percpu(struct r5conf *conf)
6285 {
6286         unsigned long cpu;
6287
6288         if (!conf->percpu)
6289                 return;
6290
6291 #ifdef CONFIG_HOTPLUG_CPU
6292         unregister_cpu_notifier(&conf->cpu_notify);
6293 #endif
6294
6295         get_online_cpus();
6296         for_each_possible_cpu(cpu)
6297                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6298         put_online_cpus();
6299
6300         free_percpu(conf->percpu);
6301 }
6302
6303 static void free_conf(struct r5conf *conf)
6304 {
6305         if (conf->shrinker.seeks)
6306                 unregister_shrinker(&conf->shrinker);
6307         free_thread_groups(conf);
6308         shrink_stripes(conf);
6309         raid5_free_percpu(conf);
6310         kfree(conf->disks);
6311         kfree(conf->stripe_hashtbl);
6312         kfree(conf);
6313 }
6314
6315 #ifdef CONFIG_HOTPLUG_CPU
6316 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6317                               void *hcpu)
6318 {
6319         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6320         long cpu = (long)hcpu;
6321         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6322
6323         switch (action) {
6324         case CPU_UP_PREPARE:
6325         case CPU_UP_PREPARE_FROZEN:
6326                 if (alloc_scratch_buffer(conf, percpu)) {
6327                         pr_err("%s: failed memory allocation for cpu%ld\n",
6328                                __func__, cpu);
6329                         return notifier_from_errno(-ENOMEM);
6330                 }
6331                 break;
6332         case CPU_DEAD:
6333         case CPU_DEAD_FROZEN:
6334                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6335                 break;
6336         default:
6337                 break;
6338         }
6339         return NOTIFY_OK;
6340 }
6341 #endif
6342
6343 static int raid5_alloc_percpu(struct r5conf *conf)
6344 {
6345         unsigned long cpu;
6346         int err = 0;
6347
6348         conf->percpu = alloc_percpu(struct raid5_percpu);
6349         if (!conf->percpu)
6350                 return -ENOMEM;
6351
6352 #ifdef CONFIG_HOTPLUG_CPU
6353         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6354         conf->cpu_notify.priority = 0;
6355         err = register_cpu_notifier(&conf->cpu_notify);
6356         if (err)
6357                 return err;
6358 #endif
6359
6360         get_online_cpus();
6361         for_each_present_cpu(cpu) {
6362                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6363                 if (err) {
6364                         pr_err("%s: failed memory allocation for cpu%ld\n",
6365                                __func__, cpu);
6366                         break;
6367                 }
6368         }
6369         put_online_cpus();
6370
6371         return err;
6372 }
6373
6374 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6375                                       struct shrink_control *sc)
6376 {
6377         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6378         int ret = 0;
6379         while (ret < sc->nr_to_scan) {
6380                 if (drop_one_stripe(conf) == 0)
6381                         return SHRINK_STOP;
6382                 ret++;
6383         }
6384         return ret;
6385 }
6386
6387 static unsigned long raid5_cache_count(struct shrinker *shrink,
6388                                        struct shrink_control *sc)
6389 {
6390         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6391
6392         if (conf->max_nr_stripes < conf->min_nr_stripes)
6393                 /* unlikely, but not impossible */
6394                 return 0;
6395         return conf->max_nr_stripes - conf->min_nr_stripes;
6396 }
6397
6398 static struct r5conf *setup_conf(struct mddev *mddev)
6399 {
6400         struct r5conf *conf;
6401         int raid_disk, memory, max_disks;
6402         struct md_rdev *rdev;
6403         struct disk_info *disk;
6404         char pers_name[6];
6405         int i;
6406         int group_cnt, worker_cnt_per_group;
6407         struct r5worker_group *new_group;
6408
6409         if (mddev->new_level != 5
6410             && mddev->new_level != 4
6411             && mddev->new_level != 6) {
6412                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6413                        mdname(mddev), mddev->new_level);
6414                 return ERR_PTR(-EIO);
6415         }
6416         if ((mddev->new_level == 5
6417              && !algorithm_valid_raid5(mddev->new_layout)) ||
6418             (mddev->new_level == 6
6419              && !algorithm_valid_raid6(mddev->new_layout))) {
6420                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6421                        mdname(mddev), mddev->new_layout);
6422                 return ERR_PTR(-EIO);
6423         }
6424         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6425                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6426                        mdname(mddev), mddev->raid_disks);
6427                 return ERR_PTR(-EINVAL);
6428         }
6429
6430         if (!mddev->new_chunk_sectors ||
6431             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6432             !is_power_of_2(mddev->new_chunk_sectors)) {
6433                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6434                        mdname(mddev), mddev->new_chunk_sectors << 9);
6435                 return ERR_PTR(-EINVAL);
6436         }
6437
6438         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6439         if (conf == NULL)
6440                 goto abort;
6441         /* Don't enable multi-threading by default*/
6442         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6443                                  &new_group)) {
6444                 conf->group_cnt = group_cnt;
6445                 conf->worker_cnt_per_group = worker_cnt_per_group;
6446                 conf->worker_groups = new_group;
6447         } else
6448                 goto abort;
6449         spin_lock_init(&conf->device_lock);
6450         seqcount_init(&conf->gen_lock);
6451         init_waitqueue_head(&conf->wait_for_stripe);
6452         init_waitqueue_head(&conf->wait_for_overlap);
6453         INIT_LIST_HEAD(&conf->handle_list);
6454         INIT_LIST_HEAD(&conf->hold_list);
6455         INIT_LIST_HEAD(&conf->delayed_list);
6456         INIT_LIST_HEAD(&conf->bitmap_list);
6457         init_llist_head(&conf->released_stripes);
6458         atomic_set(&conf->active_stripes, 0);
6459         atomic_set(&conf->preread_active_stripes, 0);
6460         atomic_set(&conf->active_aligned_reads, 0);
6461         conf->bypass_threshold = BYPASS_THRESHOLD;
6462         conf->recovery_disabled = mddev->recovery_disabled - 1;
6463
6464         conf->raid_disks = mddev->raid_disks;
6465         if (mddev->reshape_position == MaxSector)
6466                 conf->previous_raid_disks = mddev->raid_disks;
6467         else
6468                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6469         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6470
6471         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6472                               GFP_KERNEL);
6473         if (!conf->disks)
6474                 goto abort;
6475
6476         conf->mddev = mddev;
6477
6478         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6479                 goto abort;
6480
6481         /* We init hash_locks[0] separately to that it can be used
6482          * as the reference lock in the spin_lock_nest_lock() call
6483          * in lock_all_device_hash_locks_irq in order to convince
6484          * lockdep that we know what we are doing.
6485          */
6486         spin_lock_init(conf->hash_locks);
6487         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6488                 spin_lock_init(conf->hash_locks + i);
6489
6490         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6491                 INIT_LIST_HEAD(conf->inactive_list + i);
6492
6493         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6494                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6495
6496         conf->level = mddev->new_level;
6497         conf->chunk_sectors = mddev->new_chunk_sectors;
6498         if (raid5_alloc_percpu(conf) != 0)
6499                 goto abort;
6500
6501         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6502
6503         rdev_for_each(rdev, mddev) {
6504                 raid_disk = rdev->raid_disk;
6505                 if (raid_disk >= max_disks
6506                     || raid_disk < 0)
6507                         continue;
6508                 disk = conf->disks + raid_disk;
6509
6510                 if (test_bit(Replacement, &rdev->flags)) {
6511                         if (disk->replacement)
6512                                 goto abort;
6513                         disk->replacement = rdev;
6514                 } else {
6515                         if (disk->rdev)
6516                                 goto abort;
6517                         disk->rdev = rdev;
6518                 }
6519
6520                 if (test_bit(In_sync, &rdev->flags)) {
6521                         char b[BDEVNAME_SIZE];
6522                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6523                                " disk %d\n",
6524                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6525                 } else if (rdev->saved_raid_disk != raid_disk)
6526                         /* Cannot rely on bitmap to complete recovery */
6527                         conf->fullsync = 1;
6528         }
6529
6530         conf->level = mddev->new_level;
6531         if (conf->level == 6) {
6532                 conf->max_degraded = 2;
6533                 if (raid6_call.xor_syndrome)
6534                         conf->rmw_level = PARITY_ENABLE_RMW;
6535                 else
6536                         conf->rmw_level = PARITY_DISABLE_RMW;
6537         } else {
6538                 conf->max_degraded = 1;
6539                 conf->rmw_level = PARITY_ENABLE_RMW;
6540         }
6541         conf->algorithm = mddev->new_layout;
6542         conf->reshape_progress = mddev->reshape_position;
6543         if (conf->reshape_progress != MaxSector) {
6544                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6545                 conf->prev_algo = mddev->layout;
6546         }
6547
6548         conf->min_nr_stripes = NR_STRIPES;
6549         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6550                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6551         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6552         if (grow_stripes(conf, conf->min_nr_stripes)) {
6553                 printk(KERN_ERR
6554                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6555                        mdname(mddev), memory);
6556                 goto abort;
6557         } else
6558                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6559                        mdname(mddev), memory);
6560         /*
6561          * Losing a stripe head costs more than the time to refill it,
6562          * it reduces the queue depth and so can hurt throughput.
6563          * So set it rather large, scaled by number of devices.
6564          */
6565         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6566         conf->shrinker.scan_objects = raid5_cache_scan;
6567         conf->shrinker.count_objects = raid5_cache_count;
6568         conf->shrinker.batch = 128;
6569         conf->shrinker.flags = 0;
6570         register_shrinker(&conf->shrinker);
6571
6572         sprintf(pers_name, "raid%d", mddev->new_level);
6573         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6574         if (!conf->thread) {
6575                 printk(KERN_ERR
6576                        "md/raid:%s: couldn't allocate thread.\n",
6577                        mdname(mddev));
6578                 goto abort;
6579         }
6580
6581         return conf;
6582
6583  abort:
6584         if (conf) {
6585                 free_conf(conf);
6586                 return ERR_PTR(-EIO);
6587         } else
6588                 return ERR_PTR(-ENOMEM);
6589 }
6590
6591 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6592 {
6593         switch (algo) {
6594         case ALGORITHM_PARITY_0:
6595                 if (raid_disk < max_degraded)
6596                         return 1;
6597                 break;
6598         case ALGORITHM_PARITY_N:
6599                 if (raid_disk >= raid_disks - max_degraded)
6600                         return 1;
6601                 break;
6602         case ALGORITHM_PARITY_0_6:
6603                 if (raid_disk == 0 ||
6604                     raid_disk == raid_disks - 1)
6605                         return 1;
6606                 break;
6607         case ALGORITHM_LEFT_ASYMMETRIC_6:
6608         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6609         case ALGORITHM_LEFT_SYMMETRIC_6:
6610         case ALGORITHM_RIGHT_SYMMETRIC_6:
6611                 if (raid_disk == raid_disks - 1)
6612                         return 1;
6613         }
6614         return 0;
6615 }
6616
6617 static int run(struct mddev *mddev)
6618 {
6619         struct r5conf *conf;
6620         int working_disks = 0;
6621         int dirty_parity_disks = 0;
6622         struct md_rdev *rdev;
6623         sector_t reshape_offset = 0;
6624         int i;
6625         long long min_offset_diff = 0;
6626         int first = 1;
6627
6628         if (mddev->recovery_cp != MaxSector)
6629                 printk(KERN_NOTICE "md/raid:%s: not clean"
6630                        " -- starting background reconstruction\n",
6631                        mdname(mddev));
6632
6633         rdev_for_each(rdev, mddev) {
6634                 long long diff;
6635                 if (rdev->raid_disk < 0)
6636                         continue;
6637                 diff = (rdev->new_data_offset - rdev->data_offset);
6638                 if (first) {
6639                         min_offset_diff = diff;
6640                         first = 0;
6641                 } else if (mddev->reshape_backwards &&
6642                          diff < min_offset_diff)
6643                         min_offset_diff = diff;
6644                 else if (!mddev->reshape_backwards &&
6645                          diff > min_offset_diff)
6646                         min_offset_diff = diff;
6647         }
6648
6649         if (mddev->reshape_position != MaxSector) {
6650                 /* Check that we can continue the reshape.
6651                  * Difficulties arise if the stripe we would write to
6652                  * next is at or after the stripe we would read from next.
6653                  * For a reshape that changes the number of devices, this
6654                  * is only possible for a very short time, and mdadm makes
6655                  * sure that time appears to have past before assembling
6656                  * the array.  So we fail if that time hasn't passed.
6657                  * For a reshape that keeps the number of devices the same
6658                  * mdadm must be monitoring the reshape can keeping the
6659                  * critical areas read-only and backed up.  It will start
6660                  * the array in read-only mode, so we check for that.
6661                  */
6662                 sector_t here_new, here_old;
6663                 int old_disks;
6664                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6665
6666                 if (mddev->new_level != mddev->level) {
6667                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6668                                "required - aborting.\n",
6669                                mdname(mddev));
6670                         return -EINVAL;
6671                 }
6672                 old_disks = mddev->raid_disks - mddev->delta_disks;
6673                 /* reshape_position must be on a new-stripe boundary, and one
6674                  * further up in new geometry must map after here in old
6675                  * geometry.
6676                  */
6677                 here_new = mddev->reshape_position;
6678                 if (sector_div(here_new, mddev->new_chunk_sectors *
6679                                (mddev->raid_disks - max_degraded))) {
6680                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6681                                "on a stripe boundary\n", mdname(mddev));
6682                         return -EINVAL;
6683                 }
6684                 reshape_offset = here_new * mddev->new_chunk_sectors;
6685                 /* here_new is the stripe we will write to */
6686                 here_old = mddev->reshape_position;
6687                 sector_div(here_old, mddev->chunk_sectors *
6688                            (old_disks-max_degraded));
6689                 /* here_old is the first stripe that we might need to read
6690                  * from */
6691                 if (mddev->delta_disks == 0) {
6692                         if ((here_new * mddev->new_chunk_sectors !=
6693                              here_old * mddev->chunk_sectors)) {
6694                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6695                                        " confused - aborting\n", mdname(mddev));
6696                                 return -EINVAL;
6697                         }
6698                         /* We cannot be sure it is safe to start an in-place
6699                          * reshape.  It is only safe if user-space is monitoring
6700                          * and taking constant backups.
6701                          * mdadm always starts a situation like this in
6702                          * readonly mode so it can take control before
6703                          * allowing any writes.  So just check for that.
6704                          */
6705                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6706                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6707                                 /* not really in-place - so OK */;
6708                         else if (mddev->ro == 0) {
6709                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6710                                        "must be started in read-only mode "
6711                                        "- aborting\n",
6712                                        mdname(mddev));
6713                                 return -EINVAL;
6714                         }
6715                 } else if (mddev->reshape_backwards
6716                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6717                        here_old * mddev->chunk_sectors)
6718                     : (here_new * mddev->new_chunk_sectors >=
6719                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6720                         /* Reading from the same stripe as writing to - bad */
6721                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6722                                "auto-recovery - aborting.\n",
6723                                mdname(mddev));
6724                         return -EINVAL;
6725                 }
6726                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6727                        mdname(mddev));
6728                 /* OK, we should be able to continue; */
6729         } else {
6730                 BUG_ON(mddev->level != mddev->new_level);
6731                 BUG_ON(mddev->layout != mddev->new_layout);
6732                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6733                 BUG_ON(mddev->delta_disks != 0);
6734         }
6735
6736         if (mddev->private == NULL)
6737                 conf = setup_conf(mddev);
6738         else
6739                 conf = mddev->private;
6740
6741         if (IS_ERR(conf))
6742                 return PTR_ERR(conf);
6743
6744         conf->min_offset_diff = min_offset_diff;
6745         mddev->thread = conf->thread;
6746         conf->thread = NULL;
6747         mddev->private = conf;
6748
6749         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6750              i++) {
6751                 rdev = conf->disks[i].rdev;
6752                 if (!rdev && conf->disks[i].replacement) {
6753                         /* The replacement is all we have yet */
6754                         rdev = conf->disks[i].replacement;
6755                         conf->disks[i].replacement = NULL;
6756                         clear_bit(Replacement, &rdev->flags);
6757                         conf->disks[i].rdev = rdev;
6758                 }
6759                 if (!rdev)
6760                         continue;
6761                 if (conf->disks[i].replacement &&
6762                     conf->reshape_progress != MaxSector) {
6763                         /* replacements and reshape simply do not mix. */
6764                         printk(KERN_ERR "md: cannot handle concurrent "
6765                                "replacement and reshape.\n");
6766                         goto abort;
6767                 }
6768                 if (test_bit(In_sync, &rdev->flags)) {
6769                         working_disks++;
6770                         continue;
6771                 }
6772                 /* This disc is not fully in-sync.  However if it
6773                  * just stored parity (beyond the recovery_offset),
6774                  * when we don't need to be concerned about the
6775                  * array being dirty.
6776                  * When reshape goes 'backwards', we never have
6777                  * partially completed devices, so we only need
6778                  * to worry about reshape going forwards.
6779                  */
6780                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6781                 if (mddev->major_version == 0 &&
6782                     mddev->minor_version > 90)
6783                         rdev->recovery_offset = reshape_offset;
6784
6785                 if (rdev->recovery_offset < reshape_offset) {
6786                         /* We need to check old and new layout */
6787                         if (!only_parity(rdev->raid_disk,
6788                                          conf->algorithm,
6789                                          conf->raid_disks,
6790                                          conf->max_degraded))
6791                                 continue;
6792                 }
6793                 if (!only_parity(rdev->raid_disk,
6794                                  conf->prev_algo,
6795                                  conf->previous_raid_disks,
6796                                  conf->max_degraded))
6797                         continue;
6798                 dirty_parity_disks++;
6799         }
6800
6801         /*
6802          * 0 for a fully functional array, 1 or 2 for a degraded array.
6803          */
6804         mddev->degraded = calc_degraded(conf);
6805
6806         if (has_failed(conf)) {
6807                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6808                         " (%d/%d failed)\n",
6809                         mdname(mddev), mddev->degraded, conf->raid_disks);
6810                 goto abort;
6811         }
6812
6813         /* device size must be a multiple of chunk size */
6814         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6815         mddev->resync_max_sectors = mddev->dev_sectors;
6816
6817         if (mddev->degraded > dirty_parity_disks &&
6818             mddev->recovery_cp != MaxSector) {
6819                 if (mddev->ok_start_degraded)
6820                         printk(KERN_WARNING
6821                                "md/raid:%s: starting dirty degraded array"
6822                                " - data corruption possible.\n",
6823                                mdname(mddev));
6824                 else {
6825                         printk(KERN_ERR
6826                                "md/raid:%s: cannot start dirty degraded array.\n",
6827                                mdname(mddev));
6828                         goto abort;
6829                 }
6830         }
6831
6832         if (mddev->degraded == 0)
6833                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6834                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6835                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6836                        mddev->new_layout);
6837         else
6838                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6839                        " out of %d devices, algorithm %d\n",
6840                        mdname(mddev), conf->level,
6841                        mddev->raid_disks - mddev->degraded,
6842                        mddev->raid_disks, mddev->new_layout);
6843
6844         print_raid5_conf(conf);
6845
6846         if (conf->reshape_progress != MaxSector) {
6847                 conf->reshape_safe = conf->reshape_progress;
6848                 atomic_set(&conf->reshape_stripes, 0);
6849                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6850                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6851                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6852                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6853                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6854                                                         "reshape");
6855         }
6856
6857         /* Ok, everything is just fine now */
6858         if (mddev->to_remove == &raid5_attrs_group)
6859                 mddev->to_remove = NULL;
6860         else if (mddev->kobj.sd &&
6861             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6862                 printk(KERN_WARNING
6863                        "raid5: failed to create sysfs attributes for %s\n",
6864                        mdname(mddev));
6865         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6866
6867         if (mddev->queue) {
6868                 int chunk_size;
6869                 bool discard_supported = true;
6870                 /* read-ahead size must cover two whole stripes, which
6871                  * is 2 * (datadisks) * chunksize where 'n' is the
6872                  * number of raid devices
6873                  */
6874                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6875                 int stripe = data_disks *
6876                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6877                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6878                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6879
6880                 chunk_size = mddev->chunk_sectors << 9;
6881                 blk_queue_io_min(mddev->queue, chunk_size);
6882                 blk_queue_io_opt(mddev->queue, chunk_size *
6883                                  (conf->raid_disks - conf->max_degraded));
6884                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6885                 /*
6886                  * We can only discard a whole stripe. It doesn't make sense to
6887                  * discard data disk but write parity disk
6888                  */
6889                 stripe = stripe * PAGE_SIZE;
6890                 /* Round up to power of 2, as discard handling
6891                  * currently assumes that */
6892                 while ((stripe-1) & stripe)
6893                         stripe = (stripe | (stripe-1)) + 1;
6894                 mddev->queue->limits.discard_alignment = stripe;
6895                 mddev->queue->limits.discard_granularity = stripe;
6896                 /*
6897                  * unaligned part of discard request will be ignored, so can't
6898                  * guarantee discard_zeroes_data
6899                  */
6900                 mddev->queue->limits.discard_zeroes_data = 0;
6901
6902                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6903
6904                 rdev_for_each(rdev, mddev) {
6905                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6906                                           rdev->data_offset << 9);
6907                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6908                                           rdev->new_data_offset << 9);
6909                         /*
6910                          * discard_zeroes_data is required, otherwise data
6911                          * could be lost. Consider a scenario: discard a stripe
6912                          * (the stripe could be inconsistent if
6913                          * discard_zeroes_data is 0); write one disk of the
6914                          * stripe (the stripe could be inconsistent again
6915                          * depending on which disks are used to calculate
6916                          * parity); the disk is broken; The stripe data of this
6917                          * disk is lost.
6918                          */
6919                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6920                             !bdev_get_queue(rdev->bdev)->
6921                                                 limits.discard_zeroes_data)
6922                                 discard_supported = false;
6923                         /* Unfortunately, discard_zeroes_data is not currently
6924                          * a guarantee - just a hint.  So we only allow DISCARD
6925                          * if the sysadmin has confirmed that only safe devices
6926                          * are in use by setting a module parameter.
6927                          */
6928                         if (!devices_handle_discard_safely) {
6929                                 if (discard_supported) {
6930                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6931                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6932                                 }
6933                                 discard_supported = false;
6934                         }
6935                 }
6936
6937                 if (discard_supported &&
6938                    mddev->queue->limits.max_discard_sectors >= stripe &&
6939                    mddev->queue->limits.discard_granularity >= stripe)
6940                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6941                                                 mddev->queue);
6942                 else
6943                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6944                                                 mddev->queue);
6945         }
6946
6947         return 0;
6948 abort:
6949         md_unregister_thread(&mddev->thread);
6950         print_raid5_conf(conf);
6951         free_conf(conf);
6952         mddev->private = NULL;
6953         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6954         return -EIO;
6955 }
6956
6957 static void raid5_free(struct mddev *mddev, void *priv)
6958 {
6959         struct r5conf *conf = priv;
6960
6961         free_conf(conf);
6962         mddev->to_remove = &raid5_attrs_group;
6963 }
6964
6965 static void status(struct seq_file *seq, struct mddev *mddev)
6966 {
6967         struct r5conf *conf = mddev->private;
6968         int i;
6969
6970         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6971                 mddev->chunk_sectors / 2, mddev->layout);
6972         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6973         for (i = 0; i < conf->raid_disks; i++)
6974                 seq_printf (seq, "%s",
6975                                conf->disks[i].rdev &&
6976                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6977         seq_printf (seq, "]");
6978 }
6979
6980 static void print_raid5_conf (struct r5conf *conf)
6981 {
6982         int i;
6983         struct disk_info *tmp;
6984
6985         printk(KERN_DEBUG "RAID conf printout:\n");
6986         if (!conf) {
6987                 printk("(conf==NULL)\n");
6988                 return;
6989         }
6990         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6991                conf->raid_disks,
6992                conf->raid_disks - conf->mddev->degraded);
6993
6994         for (i = 0; i < conf->raid_disks; i++) {
6995                 char b[BDEVNAME_SIZE];
6996                 tmp = conf->disks + i;
6997                 if (tmp->rdev)
6998                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6999                                i, !test_bit(Faulty, &tmp->rdev->flags),
7000                                bdevname(tmp->rdev->bdev, b));
7001         }
7002 }
7003
7004 static int raid5_spare_active(struct mddev *mddev)
7005 {
7006         int i;
7007         struct r5conf *conf = mddev->private;
7008         struct disk_info *tmp;
7009         int count = 0;
7010         unsigned long flags;
7011
7012         for (i = 0; i < conf->raid_disks; i++) {
7013                 tmp = conf->disks + i;
7014                 if (tmp->replacement
7015                     && tmp->replacement->recovery_offset == MaxSector
7016                     && !test_bit(Faulty, &tmp->replacement->flags)
7017                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7018                         /* Replacement has just become active. */
7019                         if (!tmp->rdev
7020                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7021                                 count++;
7022                         if (tmp->rdev) {
7023                                 /* Replaced device not technically faulty,
7024                                  * but we need to be sure it gets removed
7025                                  * and never re-added.
7026                                  */
7027                                 set_bit(Faulty, &tmp->rdev->flags);
7028                                 sysfs_notify_dirent_safe(
7029                                         tmp->rdev->sysfs_state);
7030                         }
7031                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7032                 } else if (tmp->rdev
7033                     && tmp->rdev->recovery_offset == MaxSector
7034                     && !test_bit(Faulty, &tmp->rdev->flags)
7035                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7036                         count++;
7037                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7038                 }
7039         }
7040         spin_lock_irqsave(&conf->device_lock, flags);
7041         mddev->degraded = calc_degraded(conf);
7042         spin_unlock_irqrestore(&conf->device_lock, flags);
7043         print_raid5_conf(conf);
7044         return count;
7045 }
7046
7047 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7048 {
7049         struct r5conf *conf = mddev->private;
7050         int err = 0;
7051         int number = rdev->raid_disk;
7052         struct md_rdev **rdevp;
7053         struct disk_info *p = conf->disks + number;
7054
7055         print_raid5_conf(conf);
7056         if (rdev == p->rdev)
7057                 rdevp = &p->rdev;
7058         else if (rdev == p->replacement)
7059                 rdevp = &p->replacement;
7060         else
7061                 return 0;
7062
7063         if (number >= conf->raid_disks &&
7064             conf->reshape_progress == MaxSector)
7065                 clear_bit(In_sync, &rdev->flags);
7066
7067         if (test_bit(In_sync, &rdev->flags) ||
7068             atomic_read(&rdev->nr_pending)) {
7069                 err = -EBUSY;
7070                 goto abort;
7071         }
7072         /* Only remove non-faulty devices if recovery
7073          * isn't possible.
7074          */
7075         if (!test_bit(Faulty, &rdev->flags) &&
7076             mddev->recovery_disabled != conf->recovery_disabled &&
7077             !has_failed(conf) &&
7078             (!p->replacement || p->replacement == rdev) &&
7079             number < conf->raid_disks) {
7080                 err = -EBUSY;
7081                 goto abort;
7082         }
7083         *rdevp = NULL;
7084         synchronize_rcu();
7085         if (atomic_read(&rdev->nr_pending)) {
7086                 /* lost the race, try later */
7087                 err = -EBUSY;
7088                 *rdevp = rdev;
7089         } else if (p->replacement) {
7090                 /* We must have just cleared 'rdev' */
7091                 p->rdev = p->replacement;
7092                 clear_bit(Replacement, &p->replacement->flags);
7093                 smp_mb(); /* Make sure other CPUs may see both as identical
7094                            * but will never see neither - if they are careful
7095                            */
7096                 p->replacement = NULL;
7097                 clear_bit(WantReplacement, &rdev->flags);
7098         } else
7099                 /* We might have just removed the Replacement as faulty-
7100                  * clear the bit just in case
7101                  */
7102                 clear_bit(WantReplacement, &rdev->flags);
7103 abort:
7104
7105         print_raid5_conf(conf);
7106         return err;
7107 }
7108
7109 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7110 {
7111         struct r5conf *conf = mddev->private;
7112         int err = -EEXIST;
7113         int disk;
7114         struct disk_info *p;
7115         int first = 0;
7116         int last = conf->raid_disks - 1;
7117
7118         if (mddev->recovery_disabled == conf->recovery_disabled)
7119                 return -EBUSY;
7120
7121         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7122                 /* no point adding a device */
7123                 return -EINVAL;
7124
7125         if (rdev->raid_disk >= 0)
7126                 first = last = rdev->raid_disk;
7127
7128         /*
7129          * find the disk ... but prefer rdev->saved_raid_disk
7130          * if possible.
7131          */
7132         if (rdev->saved_raid_disk >= 0 &&
7133             rdev->saved_raid_disk >= first &&
7134             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7135                 first = rdev->saved_raid_disk;
7136
7137         for (disk = first; disk <= last; disk++) {
7138                 p = conf->disks + disk;
7139                 if (p->rdev == NULL) {
7140                         clear_bit(In_sync, &rdev->flags);
7141                         rdev->raid_disk = disk;
7142                         err = 0;
7143                         if (rdev->saved_raid_disk != disk)
7144                                 conf->fullsync = 1;
7145                         rcu_assign_pointer(p->rdev, rdev);
7146                         goto out;
7147                 }
7148         }
7149         for (disk = first; disk <= last; disk++) {
7150                 p = conf->disks + disk;
7151                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7152                     p->replacement == NULL) {
7153                         clear_bit(In_sync, &rdev->flags);
7154                         set_bit(Replacement, &rdev->flags);
7155                         rdev->raid_disk = disk;
7156                         err = 0;
7157                         conf->fullsync = 1;
7158                         rcu_assign_pointer(p->replacement, rdev);
7159                         break;
7160                 }
7161         }
7162 out:
7163         print_raid5_conf(conf);
7164         return err;
7165 }
7166
7167 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7168 {
7169         /* no resync is happening, and there is enough space
7170          * on all devices, so we can resize.
7171          * We need to make sure resync covers any new space.
7172          * If the array is shrinking we should possibly wait until
7173          * any io in the removed space completes, but it hardly seems
7174          * worth it.
7175          */
7176         sector_t newsize;
7177         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7178         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7179         if (mddev->external_size &&
7180             mddev->array_sectors > newsize)
7181                 return -EINVAL;
7182         if (mddev->bitmap) {
7183                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7184                 if (ret)
7185                         return ret;
7186         }
7187         md_set_array_sectors(mddev, newsize);
7188         set_capacity(mddev->gendisk, mddev->array_sectors);
7189         revalidate_disk(mddev->gendisk);
7190         if (sectors > mddev->dev_sectors &&
7191             mddev->recovery_cp > mddev->dev_sectors) {
7192                 mddev->recovery_cp = mddev->dev_sectors;
7193                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7194         }
7195         mddev->dev_sectors = sectors;
7196         mddev->resync_max_sectors = sectors;
7197         return 0;
7198 }
7199
7200 static int check_stripe_cache(struct mddev *mddev)
7201 {
7202         /* Can only proceed if there are plenty of stripe_heads.
7203          * We need a minimum of one full stripe,, and for sensible progress
7204          * it is best to have about 4 times that.
7205          * If we require 4 times, then the default 256 4K stripe_heads will
7206          * allow for chunk sizes up to 256K, which is probably OK.
7207          * If the chunk size is greater, user-space should request more
7208          * stripe_heads first.
7209          */
7210         struct r5conf *conf = mddev->private;
7211         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7212             > conf->min_nr_stripes ||
7213             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7214             > conf->min_nr_stripes) {
7215                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7216                        mdname(mddev),
7217                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7218                         / STRIPE_SIZE)*4);
7219                 return 0;
7220         }
7221         return 1;
7222 }
7223
7224 static int check_reshape(struct mddev *mddev)
7225 {
7226         struct r5conf *conf = mddev->private;
7227
7228         if (mddev->delta_disks == 0 &&
7229             mddev->new_layout == mddev->layout &&
7230             mddev->new_chunk_sectors == mddev->chunk_sectors)
7231                 return 0; /* nothing to do */
7232         if (has_failed(conf))
7233                 return -EINVAL;
7234         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7235                 /* We might be able to shrink, but the devices must
7236                  * be made bigger first.
7237                  * For raid6, 4 is the minimum size.
7238                  * Otherwise 2 is the minimum
7239                  */
7240                 int min = 2;
7241                 if (mddev->level == 6)
7242                         min = 4;
7243                 if (mddev->raid_disks + mddev->delta_disks < min)
7244                         return -EINVAL;
7245         }
7246
7247         if (!check_stripe_cache(mddev))
7248                 return -ENOSPC;
7249
7250         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7251             mddev->delta_disks > 0)
7252                 if (resize_chunks(conf,
7253                                   conf->previous_raid_disks
7254                                   + max(0, mddev->delta_disks),
7255                                   max(mddev->new_chunk_sectors,
7256                                       mddev->chunk_sectors)
7257                             ) < 0)
7258                         return -ENOMEM;
7259         return resize_stripes(conf, (conf->previous_raid_disks
7260                                      + mddev->delta_disks));
7261 }
7262
7263 static int raid5_start_reshape(struct mddev *mddev)
7264 {
7265         struct r5conf *conf = mddev->private;
7266         struct md_rdev *rdev;
7267         int spares = 0;
7268         unsigned long flags;
7269
7270         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7271                 return -EBUSY;
7272
7273         if (!check_stripe_cache(mddev))
7274                 return -ENOSPC;
7275
7276         if (has_failed(conf))
7277                 return -EINVAL;
7278
7279         rdev_for_each(rdev, mddev) {
7280                 if (!test_bit(In_sync, &rdev->flags)
7281                     && !test_bit(Faulty, &rdev->flags))
7282                         spares++;
7283         }
7284
7285         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7286                 /* Not enough devices even to make a degraded array
7287                  * of that size
7288                  */
7289                 return -EINVAL;
7290
7291         /* Refuse to reduce size of the array.  Any reductions in
7292          * array size must be through explicit setting of array_size
7293          * attribute.
7294          */
7295         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7296             < mddev->array_sectors) {
7297                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7298                        "before number of disks\n", mdname(mddev));
7299                 return -EINVAL;
7300         }
7301
7302         atomic_set(&conf->reshape_stripes, 0);
7303         spin_lock_irq(&conf->device_lock);
7304         write_seqcount_begin(&conf->gen_lock);
7305         conf->previous_raid_disks = conf->raid_disks;
7306         conf->raid_disks += mddev->delta_disks;
7307         conf->prev_chunk_sectors = conf->chunk_sectors;
7308         conf->chunk_sectors = mddev->new_chunk_sectors;
7309         conf->prev_algo = conf->algorithm;
7310         conf->algorithm = mddev->new_layout;
7311         conf->generation++;
7312         /* Code that selects data_offset needs to see the generation update
7313          * if reshape_progress has been set - so a memory barrier needed.
7314          */
7315         smp_mb();
7316         if (mddev->reshape_backwards)
7317                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7318         else
7319                 conf->reshape_progress = 0;
7320         conf->reshape_safe = conf->reshape_progress;
7321         write_seqcount_end(&conf->gen_lock);
7322         spin_unlock_irq(&conf->device_lock);
7323
7324         /* Now make sure any requests that proceeded on the assumption
7325          * the reshape wasn't running - like Discard or Read - have
7326          * completed.
7327          */
7328         mddev_suspend(mddev);
7329         mddev_resume(mddev);
7330
7331         /* Add some new drives, as many as will fit.
7332          * We know there are enough to make the newly sized array work.
7333          * Don't add devices if we are reducing the number of
7334          * devices in the array.  This is because it is not possible
7335          * to correctly record the "partially reconstructed" state of
7336          * such devices during the reshape and confusion could result.
7337          */
7338         if (mddev->delta_disks >= 0) {
7339                 rdev_for_each(rdev, mddev)
7340                         if (rdev->raid_disk < 0 &&
7341                             !test_bit(Faulty, &rdev->flags)) {
7342                                 if (raid5_add_disk(mddev, rdev) == 0) {
7343                                         if (rdev->raid_disk
7344                                             >= conf->previous_raid_disks)
7345                                                 set_bit(In_sync, &rdev->flags);
7346                                         else
7347                                                 rdev->recovery_offset = 0;
7348
7349                                         if (sysfs_link_rdev(mddev, rdev))
7350                                                 /* Failure here is OK */;
7351                                 }
7352                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7353                                    && !test_bit(Faulty, &rdev->flags)) {
7354                                 /* This is a spare that was manually added */
7355                                 set_bit(In_sync, &rdev->flags);
7356                         }
7357
7358                 /* When a reshape changes the number of devices,
7359                  * ->degraded is measured against the larger of the
7360                  * pre and post number of devices.
7361                  */
7362                 spin_lock_irqsave(&conf->device_lock, flags);
7363                 mddev->degraded = calc_degraded(conf);
7364                 spin_unlock_irqrestore(&conf->device_lock, flags);
7365         }
7366         mddev->raid_disks = conf->raid_disks;
7367         mddev->reshape_position = conf->reshape_progress;
7368         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7369
7370         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7371         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7372         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7373         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7374         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7375                                                 "reshape");
7376         if (!mddev->sync_thread) {
7377                 mddev->recovery = 0;
7378                 spin_lock_irq(&conf->device_lock);
7379                 write_seqcount_begin(&conf->gen_lock);
7380                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7381                 mddev->new_chunk_sectors =
7382                         conf->chunk_sectors = conf->prev_chunk_sectors;
7383                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7384                 rdev_for_each(rdev, mddev)
7385                         rdev->new_data_offset = rdev->data_offset;
7386                 smp_wmb();
7387                 conf->generation --;
7388                 conf->reshape_progress = MaxSector;
7389                 mddev->reshape_position = MaxSector;
7390                 write_seqcount_end(&conf->gen_lock);
7391                 spin_unlock_irq(&conf->device_lock);
7392                 return -EAGAIN;
7393         }
7394         conf->reshape_checkpoint = jiffies;
7395         md_wakeup_thread(mddev->sync_thread);
7396         md_new_event(mddev);
7397         return 0;
7398 }
7399
7400 /* This is called from the reshape thread and should make any
7401  * changes needed in 'conf'
7402  */
7403 static void end_reshape(struct r5conf *conf)
7404 {
7405
7406         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7407                 struct md_rdev *rdev;
7408
7409                 spin_lock_irq(&conf->device_lock);
7410                 conf->previous_raid_disks = conf->raid_disks;
7411                 rdev_for_each(rdev, conf->mddev)
7412                         rdev->data_offset = rdev->new_data_offset;
7413                 smp_wmb();
7414                 conf->reshape_progress = MaxSector;
7415                 spin_unlock_irq(&conf->device_lock);
7416                 wake_up(&conf->wait_for_overlap);
7417
7418                 /* read-ahead size must cover two whole stripes, which is
7419                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7420                  */
7421                 if (conf->mddev->queue) {
7422                         int data_disks = conf->raid_disks - conf->max_degraded;
7423                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7424                                                    / PAGE_SIZE);
7425                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7426                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7427                 }
7428         }
7429 }
7430
7431 /* This is called from the raid5d thread with mddev_lock held.
7432  * It makes config changes to the device.
7433  */
7434 static void raid5_finish_reshape(struct mddev *mddev)
7435 {
7436         struct r5conf *conf = mddev->private;
7437
7438         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7439
7440                 if (mddev->delta_disks > 0) {
7441                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7442                         set_capacity(mddev->gendisk, mddev->array_sectors);
7443                         revalidate_disk(mddev->gendisk);
7444                 } else {
7445                         int d;
7446                         spin_lock_irq(&conf->device_lock);
7447                         mddev->degraded = calc_degraded(conf);
7448                         spin_unlock_irq(&conf->device_lock);
7449                         for (d = conf->raid_disks ;
7450                              d < conf->raid_disks - mddev->delta_disks;
7451                              d++) {
7452                                 struct md_rdev *rdev = conf->disks[d].rdev;
7453                                 if (rdev)
7454                                         clear_bit(In_sync, &rdev->flags);
7455                                 rdev = conf->disks[d].replacement;
7456                                 if (rdev)
7457                                         clear_bit(In_sync, &rdev->flags);
7458                         }
7459                 }
7460                 mddev->layout = conf->algorithm;
7461                 mddev->chunk_sectors = conf->chunk_sectors;
7462                 mddev->reshape_position = MaxSector;
7463                 mddev->delta_disks = 0;
7464                 mddev->reshape_backwards = 0;
7465         }
7466 }
7467
7468 static void raid5_quiesce(struct mddev *mddev, int state)
7469 {
7470         struct r5conf *conf = mddev->private;
7471
7472         switch(state) {
7473         case 2: /* resume for a suspend */
7474                 wake_up(&conf->wait_for_overlap);
7475                 break;
7476
7477         case 1: /* stop all writes */
7478                 lock_all_device_hash_locks_irq(conf);
7479                 /* '2' tells resync/reshape to pause so that all
7480                  * active stripes can drain
7481                  */
7482                 conf->quiesce = 2;
7483                 wait_event_cmd(conf->wait_for_stripe,
7484                                     atomic_read(&conf->active_stripes) == 0 &&
7485                                     atomic_read(&conf->active_aligned_reads) == 0,
7486                                     unlock_all_device_hash_locks_irq(conf),
7487                                     lock_all_device_hash_locks_irq(conf));
7488                 conf->quiesce = 1;
7489                 unlock_all_device_hash_locks_irq(conf);
7490                 /* allow reshape to continue */
7491                 wake_up(&conf->wait_for_overlap);
7492                 break;
7493
7494         case 0: /* re-enable writes */
7495                 lock_all_device_hash_locks_irq(conf);
7496                 conf->quiesce = 0;
7497                 wake_up(&conf->wait_for_stripe);
7498                 wake_up(&conf->wait_for_overlap);
7499                 unlock_all_device_hash_locks_irq(conf);
7500                 break;
7501         }
7502 }
7503
7504 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7505 {
7506         struct r0conf *raid0_conf = mddev->private;
7507         sector_t sectors;
7508
7509         /* for raid0 takeover only one zone is supported */
7510         if (raid0_conf->nr_strip_zones > 1) {
7511                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7512                        mdname(mddev));
7513                 return ERR_PTR(-EINVAL);
7514         }
7515
7516         sectors = raid0_conf->strip_zone[0].zone_end;
7517         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7518         mddev->dev_sectors = sectors;
7519         mddev->new_level = level;
7520         mddev->new_layout = ALGORITHM_PARITY_N;
7521         mddev->new_chunk_sectors = mddev->chunk_sectors;
7522         mddev->raid_disks += 1;
7523         mddev->delta_disks = 1;
7524         /* make sure it will be not marked as dirty */
7525         mddev->recovery_cp = MaxSector;
7526
7527         return setup_conf(mddev);
7528 }
7529
7530 static void *raid5_takeover_raid1(struct mddev *mddev)
7531 {
7532         int chunksect;
7533
7534         if (mddev->raid_disks != 2 ||
7535             mddev->degraded > 1)
7536                 return ERR_PTR(-EINVAL);
7537
7538         /* Should check if there are write-behind devices? */
7539
7540         chunksect = 64*2; /* 64K by default */
7541
7542         /* The array must be an exact multiple of chunksize */
7543         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7544                 chunksect >>= 1;
7545
7546         if ((chunksect<<9) < STRIPE_SIZE)
7547                 /* array size does not allow a suitable chunk size */
7548                 return ERR_PTR(-EINVAL);
7549
7550         mddev->new_level = 5;
7551         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7552         mddev->new_chunk_sectors = chunksect;
7553
7554         return setup_conf(mddev);
7555 }
7556
7557 static void *raid5_takeover_raid6(struct mddev *mddev)
7558 {
7559         int new_layout;
7560
7561         switch (mddev->layout) {
7562         case ALGORITHM_LEFT_ASYMMETRIC_6:
7563                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7564                 break;
7565         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7566                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7567                 break;
7568         case ALGORITHM_LEFT_SYMMETRIC_6:
7569                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7570                 break;
7571         case ALGORITHM_RIGHT_SYMMETRIC_6:
7572                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7573                 break;
7574         case ALGORITHM_PARITY_0_6:
7575                 new_layout = ALGORITHM_PARITY_0;
7576                 break;
7577         case ALGORITHM_PARITY_N:
7578                 new_layout = ALGORITHM_PARITY_N;
7579                 break;
7580         default:
7581                 return ERR_PTR(-EINVAL);
7582         }
7583         mddev->new_level = 5;
7584         mddev->new_layout = new_layout;
7585         mddev->delta_disks = -1;
7586         mddev->raid_disks -= 1;
7587         return setup_conf(mddev);
7588 }
7589
7590 static int raid5_check_reshape(struct mddev *mddev)
7591 {
7592         /* For a 2-drive array, the layout and chunk size can be changed
7593          * immediately as not restriping is needed.
7594          * For larger arrays we record the new value - after validation
7595          * to be used by a reshape pass.
7596          */
7597         struct r5conf *conf = mddev->private;
7598         int new_chunk = mddev->new_chunk_sectors;
7599
7600         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7601                 return -EINVAL;
7602         if (new_chunk > 0) {
7603                 if (!is_power_of_2(new_chunk))
7604                         return -EINVAL;
7605                 if (new_chunk < (PAGE_SIZE>>9))
7606                         return -EINVAL;
7607                 if (mddev->array_sectors & (new_chunk-1))
7608                         /* not factor of array size */
7609                         return -EINVAL;
7610         }
7611
7612         /* They look valid */
7613
7614         if (mddev->raid_disks == 2) {
7615                 /* can make the change immediately */
7616                 if (mddev->new_layout >= 0) {
7617                         conf->algorithm = mddev->new_layout;
7618                         mddev->layout = mddev->new_layout;
7619                 }
7620                 if (new_chunk > 0) {
7621                         conf->chunk_sectors = new_chunk ;
7622                         mddev->chunk_sectors = new_chunk;
7623                 }
7624                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7625                 md_wakeup_thread(mddev->thread);
7626         }
7627         return check_reshape(mddev);
7628 }
7629
7630 static int raid6_check_reshape(struct mddev *mddev)
7631 {
7632         int new_chunk = mddev->new_chunk_sectors;
7633
7634         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7635                 return -EINVAL;
7636         if (new_chunk > 0) {
7637                 if (!is_power_of_2(new_chunk))
7638                         return -EINVAL;
7639                 if (new_chunk < (PAGE_SIZE >> 9))
7640                         return -EINVAL;
7641                 if (mddev->array_sectors & (new_chunk-1))
7642                         /* not factor of array size */
7643                         return -EINVAL;
7644         }
7645
7646         /* They look valid */
7647         return check_reshape(mddev);
7648 }
7649
7650 static void *raid5_takeover(struct mddev *mddev)
7651 {
7652         /* raid5 can take over:
7653          *  raid0 - if there is only one strip zone - make it a raid4 layout
7654          *  raid1 - if there are two drives.  We need to know the chunk size
7655          *  raid4 - trivial - just use a raid4 layout.
7656          *  raid6 - Providing it is a *_6 layout
7657          */
7658         if (mddev->level == 0)
7659                 return raid45_takeover_raid0(mddev, 5);
7660         if (mddev->level == 1)
7661                 return raid5_takeover_raid1(mddev);
7662         if (mddev->level == 4) {
7663                 mddev->new_layout = ALGORITHM_PARITY_N;
7664                 mddev->new_level = 5;
7665                 return setup_conf(mddev);
7666         }
7667         if (mddev->level == 6)
7668                 return raid5_takeover_raid6(mddev);
7669
7670         return ERR_PTR(-EINVAL);
7671 }
7672
7673 static void *raid4_takeover(struct mddev *mddev)
7674 {
7675         /* raid4 can take over:
7676          *  raid0 - if there is only one strip zone
7677          *  raid5 - if layout is right
7678          */
7679         if (mddev->level == 0)
7680                 return raid45_takeover_raid0(mddev, 4);
7681         if (mddev->level == 5 &&
7682             mddev->layout == ALGORITHM_PARITY_N) {
7683                 mddev->new_layout = 0;
7684                 mddev->new_level = 4;
7685                 return setup_conf(mddev);
7686         }
7687         return ERR_PTR(-EINVAL);
7688 }
7689
7690 static struct md_personality raid5_personality;
7691
7692 static void *raid6_takeover(struct mddev *mddev)
7693 {
7694         /* Currently can only take over a raid5.  We map the
7695          * personality to an equivalent raid6 personality
7696          * with the Q block at the end.
7697          */
7698         int new_layout;
7699
7700         if (mddev->pers != &raid5_personality)
7701                 return ERR_PTR(-EINVAL);
7702         if (mddev->degraded > 1)
7703                 return ERR_PTR(-EINVAL);
7704         if (mddev->raid_disks > 253)
7705                 return ERR_PTR(-EINVAL);
7706         if (mddev->raid_disks < 3)
7707                 return ERR_PTR(-EINVAL);
7708
7709         switch (mddev->layout) {
7710         case ALGORITHM_LEFT_ASYMMETRIC:
7711                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7712                 break;
7713         case ALGORITHM_RIGHT_ASYMMETRIC:
7714                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7715                 break;
7716         case ALGORITHM_LEFT_SYMMETRIC:
7717                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7718                 break;
7719         case ALGORITHM_RIGHT_SYMMETRIC:
7720                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7721                 break;
7722         case ALGORITHM_PARITY_0:
7723                 new_layout = ALGORITHM_PARITY_0_6;
7724                 break;
7725         case ALGORITHM_PARITY_N:
7726                 new_layout = ALGORITHM_PARITY_N;
7727                 break;
7728         default:
7729                 return ERR_PTR(-EINVAL);
7730         }
7731         mddev->new_level = 6;
7732         mddev->new_layout = new_layout;
7733         mddev->delta_disks = 1;
7734         mddev->raid_disks += 1;
7735         return setup_conf(mddev);
7736 }
7737
7738 static struct md_personality raid6_personality =
7739 {
7740         .name           = "raid6",
7741         .level          = 6,
7742         .owner          = THIS_MODULE,
7743         .make_request   = make_request,
7744         .run            = run,
7745         .free           = raid5_free,
7746         .status         = status,
7747         .error_handler  = error,
7748         .hot_add_disk   = raid5_add_disk,
7749         .hot_remove_disk= raid5_remove_disk,
7750         .spare_active   = raid5_spare_active,
7751         .sync_request   = sync_request,
7752         .resize         = raid5_resize,
7753         .size           = raid5_size,
7754         .check_reshape  = raid6_check_reshape,
7755         .start_reshape  = raid5_start_reshape,
7756         .finish_reshape = raid5_finish_reshape,
7757         .quiesce        = raid5_quiesce,
7758         .takeover       = raid6_takeover,
7759         .congested      = raid5_congested,
7760         .mergeable_bvec = raid5_mergeable_bvec,
7761 };
7762 static struct md_personality raid5_personality =
7763 {
7764         .name           = "raid5",
7765         .level          = 5,
7766         .owner          = THIS_MODULE,
7767         .make_request   = make_request,
7768         .run            = run,
7769         .free           = raid5_free,
7770         .status         = status,
7771         .error_handler  = error,
7772         .hot_add_disk   = raid5_add_disk,
7773         .hot_remove_disk= raid5_remove_disk,
7774         .spare_active   = raid5_spare_active,
7775         .sync_request   = sync_request,
7776         .resize         = raid5_resize,
7777         .size           = raid5_size,
7778         .check_reshape  = raid5_check_reshape,
7779         .start_reshape  = raid5_start_reshape,
7780         .finish_reshape = raid5_finish_reshape,
7781         .quiesce        = raid5_quiesce,
7782         .takeover       = raid5_takeover,
7783         .congested      = raid5_congested,
7784         .mergeable_bvec = raid5_mergeable_bvec,
7785 };
7786
7787 static struct md_personality raid4_personality =
7788 {
7789         .name           = "raid4",
7790         .level          = 4,
7791         .owner          = THIS_MODULE,
7792         .make_request   = make_request,
7793         .run            = run,
7794         .free           = raid5_free,
7795         .status         = status,
7796         .error_handler  = error,
7797         .hot_add_disk   = raid5_add_disk,
7798         .hot_remove_disk= raid5_remove_disk,
7799         .spare_active   = raid5_spare_active,
7800         .sync_request   = sync_request,
7801         .resize         = raid5_resize,
7802         .size           = raid5_size,
7803         .check_reshape  = raid5_check_reshape,
7804         .start_reshape  = raid5_start_reshape,
7805         .finish_reshape = raid5_finish_reshape,
7806         .quiesce        = raid5_quiesce,
7807         .takeover       = raid4_takeover,
7808         .congested      = raid5_congested,
7809         .mergeable_bvec = raid5_mergeable_bvec,
7810 };
7811
7812 static int __init raid5_init(void)
7813 {
7814         raid5_wq = alloc_workqueue("raid5wq",
7815                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7816         if (!raid5_wq)
7817                 return -ENOMEM;
7818         register_md_personality(&raid6_personality);
7819         register_md_personality(&raid5_personality);
7820         register_md_personality(&raid4_personality);
7821         return 0;
7822 }
7823
7824 static void raid5_exit(void)
7825 {
7826         unregister_md_personality(&raid6_personality);
7827         unregister_md_personality(&raid5_personality);
7828         unregister_md_personality(&raid4_personality);
7829         destroy_workqueue(raid5_wq);
7830 }
7831
7832 module_init(raid5_init);
7833 module_exit(raid5_exit);
7834 MODULE_LICENSE("GPL");
7835 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7836 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7837 MODULE_ALIAS("md-raid5");
7838 MODULE_ALIAS("md-raid4");
7839 MODULE_ALIAS("md-level-5");
7840 MODULE_ALIAS("md-level-4");
7841 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7842 MODULE_ALIAS("md-raid6");
7843 MODULE_ALIAS("md-level-6");
7844
7845 /* This used to be two separate modules, they were: */
7846 MODULE_ALIAS("raid5");
7847 MODULE_ALIAS("raid6");