md/raid5. Don't write to known bad block on doubtful devices.
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
59
60 /*
61  * Stripe cache
62  */
63
64 #define NR_STRIPES              256
65 #define STRIPE_SIZE             PAGE_SIZE
66 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD            1
69 #define BYPASS_THRESHOLD        1
70 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK               (NR_HASH - 1)
72
73 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
76  * order without overlap.  There may be several bio's per stripe+device, and
77  * a bio could span several devices.
78  * When walking this list for a particular stripe+device, we must never proceed
79  * beyond a bio that extends past this device, as the next bio might no longer
80  * be valid.
81  * This macro is used to determine the 'next' bio in the list, given the sector
82  * of the current stripe+device
83  */
84 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 /*
86  * The following can be used to debug the driver
87  */
88 #define RAID5_PARANOIA  1
89 #if RAID5_PARANOIA && defined(CONFIG_SMP)
90 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 #else
92 # define CHECK_DEVLOCK()
93 #endif
94
95 #ifdef DEBUG
96 #define inline
97 #define __inline__
98 #endif
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106         return bio->bi_phys_segments & 0xffff;
107 }
108
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111         return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116         --bio->bi_phys_segments;
117         return raid5_bi_phys_segments(bio);
118 }
119
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122         unsigned short val = raid5_bi_hw_segments(bio);
123
124         --val;
125         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126         return val;
127 }
128
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 }
133
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137         if (sh->ddf_layout)
138                 /* ddf always start from first device */
139                 return 0;
140         /* md starts just after Q block */
141         if (sh->qd_idx == sh->disks - 1)
142                 return 0;
143         else
144                 return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148         disk++;
149         return (disk < raid_disks) ? disk : 0;
150 }
151
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153  * We need to map each disk to a 'slot', where the data disks are slot
154  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155  * is raid_disks-1.  This help does that mapping.
156  */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158                              int *count, int syndrome_disks)
159 {
160         int slot = *count;
161
162         if (sh->ddf_layout)
163                 (*count)++;
164         if (idx == sh->pd_idx)
165                 return syndrome_disks;
166         if (idx == sh->qd_idx)
167                 return syndrome_disks + 1;
168         if (!sh->ddf_layout)
169                 (*count)++;
170         return slot;
171 }
172
173 static void return_io(struct bio *return_bi)
174 {
175         struct bio *bi = return_bi;
176         while (bi) {
177
178                 return_bi = bi->bi_next;
179                 bi->bi_next = NULL;
180                 bi->bi_size = 0;
181                 bio_endio(bi, 0);
182                 bi = return_bi;
183         }
184 }
185
186 static void print_raid5_conf (raid5_conf_t *conf);
187
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190         return sh->check_state || sh->reconstruct_state ||
191                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197         if (atomic_dec_and_test(&sh->count)) {
198                 BUG_ON(!list_empty(&sh->lru));
199                 BUG_ON(atomic_read(&conf->active_stripes)==0);
200                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201                         if (test_bit(STRIPE_DELAYED, &sh->state))
202                                 list_add_tail(&sh->lru, &conf->delayed_list);
203                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204                                    sh->bm_seq - conf->seq_write > 0)
205                                 list_add_tail(&sh->lru, &conf->bitmap_list);
206                         else {
207                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208                                 list_add_tail(&sh->lru, &conf->handle_list);
209                         }
210                         md_wakeup_thread(conf->mddev->thread);
211                 } else {
212                         BUG_ON(stripe_operations_active(sh));
213                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214                                 atomic_dec(&conf->preread_active_stripes);
215                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216                                         md_wakeup_thread(conf->mddev->thread);
217                         }
218                         atomic_dec(&conf->active_stripes);
219                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220                                 list_add_tail(&sh->lru, &conf->inactive_list);
221                                 wake_up(&conf->wait_for_stripe);
222                                 if (conf->retry_read_aligned)
223                                         md_wakeup_thread(conf->mddev->thread);
224                         }
225                 }
226         }
227 }
228
229 static void release_stripe(struct stripe_head *sh)
230 {
231         raid5_conf_t *conf = sh->raid_conf;
232         unsigned long flags;
233
234         spin_lock_irqsave(&conf->device_lock, flags);
235         __release_stripe(conf, sh);
236         spin_unlock_irqrestore(&conf->device_lock, flags);
237 }
238
239 static inline void remove_hash(struct stripe_head *sh)
240 {
241         pr_debug("remove_hash(), stripe %llu\n",
242                 (unsigned long long)sh->sector);
243
244         hlist_del_init(&sh->hash);
245 }
246
247 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248 {
249         struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251         pr_debug("insert_hash(), stripe %llu\n",
252                 (unsigned long long)sh->sector);
253
254         CHECK_DEVLOCK();
255         hlist_add_head(&sh->hash, hp);
256 }
257
258
259 /* find an idle stripe, make sure it is unhashed, and return it. */
260 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261 {
262         struct stripe_head *sh = NULL;
263         struct list_head *first;
264
265         CHECK_DEVLOCK();
266         if (list_empty(&conf->inactive_list))
267                 goto out;
268         first = conf->inactive_list.next;
269         sh = list_entry(first, struct stripe_head, lru);
270         list_del_init(first);
271         remove_hash(sh);
272         atomic_inc(&conf->active_stripes);
273 out:
274         return sh;
275 }
276
277 static void shrink_buffers(struct stripe_head *sh)
278 {
279         struct page *p;
280         int i;
281         int num = sh->raid_conf->pool_size;
282
283         for (i = 0; i < num ; i++) {
284                 p = sh->dev[i].page;
285                 if (!p)
286                         continue;
287                 sh->dev[i].page = NULL;
288                 put_page(p);
289         }
290 }
291
292 static int grow_buffers(struct stripe_head *sh)
293 {
294         int i;
295         int num = sh->raid_conf->pool_size;
296
297         for (i = 0; i < num; i++) {
298                 struct page *page;
299
300                 if (!(page = alloc_page(GFP_KERNEL))) {
301                         return 1;
302                 }
303                 sh->dev[i].page = page;
304         }
305         return 0;
306 }
307
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310                             struct stripe_head *sh);
311
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314         raid5_conf_t *conf = sh->raid_conf;
315         int i;
316
317         BUG_ON(atomic_read(&sh->count) != 0);
318         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319         BUG_ON(stripe_operations_active(sh));
320
321         CHECK_DEVLOCK();
322         pr_debug("init_stripe called, stripe %llu\n",
323                 (unsigned long long)sh->sector);
324
325         remove_hash(sh);
326
327         sh->generation = conf->generation - previous;
328         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329         sh->sector = sector;
330         stripe_set_idx(sector, conf, previous, sh);
331         sh->state = 0;
332
333
334         for (i = sh->disks; i--; ) {
335                 struct r5dev *dev = &sh->dev[i];
336
337                 if (dev->toread || dev->read || dev->towrite || dev->written ||
338                     test_bit(R5_LOCKED, &dev->flags)) {
339                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340                                (unsigned long long)sh->sector, i, dev->toread,
341                                dev->read, dev->towrite, dev->written,
342                                test_bit(R5_LOCKED, &dev->flags));
343                         WARN_ON(1);
344                 }
345                 dev->flags = 0;
346                 raid5_build_block(sh, i, previous);
347         }
348         insert_hash(conf, sh);
349 }
350
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352                                          short generation)
353 {
354         struct stripe_head *sh;
355         struct hlist_node *hn;
356
357         CHECK_DEVLOCK();
358         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360                 if (sh->sector == sector && sh->generation == generation)
361                         return sh;
362         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363         return NULL;
364 }
365
366 /*
367  * Need to check if array has failed when deciding whether to:
368  *  - start an array
369  *  - remove non-faulty devices
370  *  - add a spare
371  *  - allow a reshape
372  * This determination is simple when no reshape is happening.
373  * However if there is a reshape, we need to carefully check
374  * both the before and after sections.
375  * This is because some failed devices may only affect one
376  * of the two sections, and some non-in_sync devices may
377  * be insync in the section most affected by failed devices.
378  */
379 static int has_failed(raid5_conf_t *conf)
380 {
381         int degraded;
382         int i;
383         if (conf->mddev->reshape_position == MaxSector)
384                 return conf->mddev->degraded > conf->max_degraded;
385
386         rcu_read_lock();
387         degraded = 0;
388         for (i = 0; i < conf->previous_raid_disks; i++) {
389                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390                 if (!rdev || test_bit(Faulty, &rdev->flags))
391                         degraded++;
392                 else if (test_bit(In_sync, &rdev->flags))
393                         ;
394                 else
395                         /* not in-sync or faulty.
396                          * If the reshape increases the number of devices,
397                          * this is being recovered by the reshape, so
398                          * this 'previous' section is not in_sync.
399                          * If the number of devices is being reduced however,
400                          * the device can only be part of the array if
401                          * we are reverting a reshape, so this section will
402                          * be in-sync.
403                          */
404                         if (conf->raid_disks >= conf->previous_raid_disks)
405                                 degraded++;
406         }
407         rcu_read_unlock();
408         if (degraded > conf->max_degraded)
409                 return 1;
410         rcu_read_lock();
411         degraded = 0;
412         for (i = 0; i < conf->raid_disks; i++) {
413                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414                 if (!rdev || test_bit(Faulty, &rdev->flags))
415                         degraded++;
416                 else if (test_bit(In_sync, &rdev->flags))
417                         ;
418                 else
419                         /* not in-sync or faulty.
420                          * If reshape increases the number of devices, this
421                          * section has already been recovered, else it
422                          * almost certainly hasn't.
423                          */
424                         if (conf->raid_disks <= conf->previous_raid_disks)
425                                 degraded++;
426         }
427         rcu_read_unlock();
428         if (degraded > conf->max_degraded)
429                 return 1;
430         return 0;
431 }
432
433 static struct stripe_head *
434 get_active_stripe(raid5_conf_t *conf, sector_t sector,
435                   int previous, int noblock, int noquiesce)
436 {
437         struct stripe_head *sh;
438
439         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441         spin_lock_irq(&conf->device_lock);
442
443         do {
444                 wait_event_lock_irq(conf->wait_for_stripe,
445                                     conf->quiesce == 0 || noquiesce,
446                                     conf->device_lock, /* nothing */);
447                 sh = __find_stripe(conf, sector, conf->generation - previous);
448                 if (!sh) {
449                         if (!conf->inactive_blocked)
450                                 sh = get_free_stripe(conf);
451                         if (noblock && sh == NULL)
452                                 break;
453                         if (!sh) {
454                                 conf->inactive_blocked = 1;
455                                 wait_event_lock_irq(conf->wait_for_stripe,
456                                                     !list_empty(&conf->inactive_list) &&
457                                                     (atomic_read(&conf->active_stripes)
458                                                      < (conf->max_nr_stripes *3/4)
459                                                      || !conf->inactive_blocked),
460                                                     conf->device_lock,
461                                                     );
462                                 conf->inactive_blocked = 0;
463                         } else
464                                 init_stripe(sh, sector, previous);
465                 } else {
466                         if (atomic_read(&sh->count)) {
467                                 BUG_ON(!list_empty(&sh->lru)
468                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
469                         } else {
470                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
471                                         atomic_inc(&conf->active_stripes);
472                                 if (list_empty(&sh->lru) &&
473                                     !test_bit(STRIPE_EXPANDING, &sh->state))
474                                         BUG();
475                                 list_del_init(&sh->lru);
476                         }
477                 }
478         } while (sh == NULL);
479
480         if (sh)
481                 atomic_inc(&sh->count);
482
483         spin_unlock_irq(&conf->device_lock);
484         return sh;
485 }
486
487 static void
488 raid5_end_read_request(struct bio *bi, int error);
489 static void
490 raid5_end_write_request(struct bio *bi, int error);
491
492 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493 {
494         raid5_conf_t *conf = sh->raid_conf;
495         int i, disks = sh->disks;
496
497         might_sleep();
498
499         for (i = disks; i--; ) {
500                 int rw;
501                 struct bio *bi;
502                 mdk_rdev_t *rdev;
503                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505                                 rw = WRITE_FUA;
506                         else
507                                 rw = WRITE;
508                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509                         rw = READ;
510                 else
511                         continue;
512
513                 bi = &sh->dev[i].req;
514
515                 bi->bi_rw = rw;
516                 if (rw & WRITE)
517                         bi->bi_end_io = raid5_end_write_request;
518                 else
519                         bi->bi_end_io = raid5_end_read_request;
520
521                 rcu_read_lock();
522                 rdev = rcu_dereference(conf->disks[i].rdev);
523                 if (rdev && test_bit(Faulty, &rdev->flags))
524                         rdev = NULL;
525                 if (rdev)
526                         atomic_inc(&rdev->nr_pending);
527                 rcu_read_unlock();
528
529                 /* We have already checked bad blocks for reads.  Now
530                  * need to check for writes.
531                  */
532                 while ((rw & WRITE) && rdev &&
533                        test_bit(WriteErrorSeen, &rdev->flags)) {
534                         sector_t first_bad;
535                         int bad_sectors;
536                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
537                                               &first_bad, &bad_sectors);
538                         if (!bad)
539                                 break;
540
541                         if (bad < 0) {
542                                 set_bit(BlockedBadBlocks, &rdev->flags);
543                                 if (!conf->mddev->external &&
544                                     conf->mddev->flags) {
545                                         /* It is very unlikely, but we might
546                                          * still need to write out the
547                                          * bad block log - better give it
548                                          * a chance*/
549                                         md_check_recovery(conf->mddev);
550                                 }
551                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
552                         } else {
553                                 /* Acknowledged bad block - skip the write */
554                                 rdev_dec_pending(rdev, conf->mddev);
555                                 rdev = NULL;
556                         }
557                 }
558
559                 if (rdev) {
560                         if (s->syncing || s->expanding || s->expanded)
561                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
562
563                         set_bit(STRIPE_IO_STARTED, &sh->state);
564
565                         bi->bi_bdev = rdev->bdev;
566                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
567                                 __func__, (unsigned long long)sh->sector,
568                                 bi->bi_rw, i);
569                         atomic_inc(&sh->count);
570                         bi->bi_sector = sh->sector + rdev->data_offset;
571                         bi->bi_flags = 1 << BIO_UPTODATE;
572                         bi->bi_vcnt = 1;
573                         bi->bi_max_vecs = 1;
574                         bi->bi_idx = 0;
575                         bi->bi_io_vec = &sh->dev[i].vec;
576                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
577                         bi->bi_io_vec[0].bv_offset = 0;
578                         bi->bi_size = STRIPE_SIZE;
579                         bi->bi_next = NULL;
580                         generic_make_request(bi);
581                 } else {
582                         if (rw & WRITE)
583                                 set_bit(STRIPE_DEGRADED, &sh->state);
584                         pr_debug("skip op %ld on disc %d for sector %llu\n",
585                                 bi->bi_rw, i, (unsigned long long)sh->sector);
586                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
587                         set_bit(STRIPE_HANDLE, &sh->state);
588                 }
589         }
590 }
591
592 static struct dma_async_tx_descriptor *
593 async_copy_data(int frombio, struct bio *bio, struct page *page,
594         sector_t sector, struct dma_async_tx_descriptor *tx)
595 {
596         struct bio_vec *bvl;
597         struct page *bio_page;
598         int i;
599         int page_offset;
600         struct async_submit_ctl submit;
601         enum async_tx_flags flags = 0;
602
603         if (bio->bi_sector >= sector)
604                 page_offset = (signed)(bio->bi_sector - sector) * 512;
605         else
606                 page_offset = (signed)(sector - bio->bi_sector) * -512;
607
608         if (frombio)
609                 flags |= ASYNC_TX_FENCE;
610         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
611
612         bio_for_each_segment(bvl, bio, i) {
613                 int len = bvl->bv_len;
614                 int clen;
615                 int b_offset = 0;
616
617                 if (page_offset < 0) {
618                         b_offset = -page_offset;
619                         page_offset += b_offset;
620                         len -= b_offset;
621                 }
622
623                 if (len > 0 && page_offset + len > STRIPE_SIZE)
624                         clen = STRIPE_SIZE - page_offset;
625                 else
626                         clen = len;
627
628                 if (clen > 0) {
629                         b_offset += bvl->bv_offset;
630                         bio_page = bvl->bv_page;
631                         if (frombio)
632                                 tx = async_memcpy(page, bio_page, page_offset,
633                                                   b_offset, clen, &submit);
634                         else
635                                 tx = async_memcpy(bio_page, page, b_offset,
636                                                   page_offset, clen, &submit);
637                 }
638                 /* chain the operations */
639                 submit.depend_tx = tx;
640
641                 if (clen < len) /* hit end of page */
642                         break;
643                 page_offset +=  len;
644         }
645
646         return tx;
647 }
648
649 static void ops_complete_biofill(void *stripe_head_ref)
650 {
651         struct stripe_head *sh = stripe_head_ref;
652         struct bio *return_bi = NULL;
653         raid5_conf_t *conf = sh->raid_conf;
654         int i;
655
656         pr_debug("%s: stripe %llu\n", __func__,
657                 (unsigned long long)sh->sector);
658
659         /* clear completed biofills */
660         spin_lock_irq(&conf->device_lock);
661         for (i = sh->disks; i--; ) {
662                 struct r5dev *dev = &sh->dev[i];
663
664                 /* acknowledge completion of a biofill operation */
665                 /* and check if we need to reply to a read request,
666                  * new R5_Wantfill requests are held off until
667                  * !STRIPE_BIOFILL_RUN
668                  */
669                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
670                         struct bio *rbi, *rbi2;
671
672                         BUG_ON(!dev->read);
673                         rbi = dev->read;
674                         dev->read = NULL;
675                         while (rbi && rbi->bi_sector <
676                                 dev->sector + STRIPE_SECTORS) {
677                                 rbi2 = r5_next_bio(rbi, dev->sector);
678                                 if (!raid5_dec_bi_phys_segments(rbi)) {
679                                         rbi->bi_next = return_bi;
680                                         return_bi = rbi;
681                                 }
682                                 rbi = rbi2;
683                         }
684                 }
685         }
686         spin_unlock_irq(&conf->device_lock);
687         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
688
689         return_io(return_bi);
690
691         set_bit(STRIPE_HANDLE, &sh->state);
692         release_stripe(sh);
693 }
694
695 static void ops_run_biofill(struct stripe_head *sh)
696 {
697         struct dma_async_tx_descriptor *tx = NULL;
698         raid5_conf_t *conf = sh->raid_conf;
699         struct async_submit_ctl submit;
700         int i;
701
702         pr_debug("%s: stripe %llu\n", __func__,
703                 (unsigned long long)sh->sector);
704
705         for (i = sh->disks; i--; ) {
706                 struct r5dev *dev = &sh->dev[i];
707                 if (test_bit(R5_Wantfill, &dev->flags)) {
708                         struct bio *rbi;
709                         spin_lock_irq(&conf->device_lock);
710                         dev->read = rbi = dev->toread;
711                         dev->toread = NULL;
712                         spin_unlock_irq(&conf->device_lock);
713                         while (rbi && rbi->bi_sector <
714                                 dev->sector + STRIPE_SECTORS) {
715                                 tx = async_copy_data(0, rbi, dev->page,
716                                         dev->sector, tx);
717                                 rbi = r5_next_bio(rbi, dev->sector);
718                         }
719                 }
720         }
721
722         atomic_inc(&sh->count);
723         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
724         async_trigger_callback(&submit);
725 }
726
727 static void mark_target_uptodate(struct stripe_head *sh, int target)
728 {
729         struct r5dev *tgt;
730
731         if (target < 0)
732                 return;
733
734         tgt = &sh->dev[target];
735         set_bit(R5_UPTODATE, &tgt->flags);
736         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
737         clear_bit(R5_Wantcompute, &tgt->flags);
738 }
739
740 static void ops_complete_compute(void *stripe_head_ref)
741 {
742         struct stripe_head *sh = stripe_head_ref;
743
744         pr_debug("%s: stripe %llu\n", __func__,
745                 (unsigned long long)sh->sector);
746
747         /* mark the computed target(s) as uptodate */
748         mark_target_uptodate(sh, sh->ops.target);
749         mark_target_uptodate(sh, sh->ops.target2);
750
751         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
752         if (sh->check_state == check_state_compute_run)
753                 sh->check_state = check_state_compute_result;
754         set_bit(STRIPE_HANDLE, &sh->state);
755         release_stripe(sh);
756 }
757
758 /* return a pointer to the address conversion region of the scribble buffer */
759 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
760                                  struct raid5_percpu *percpu)
761 {
762         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
763 }
764
765 static struct dma_async_tx_descriptor *
766 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
767 {
768         int disks = sh->disks;
769         struct page **xor_srcs = percpu->scribble;
770         int target = sh->ops.target;
771         struct r5dev *tgt = &sh->dev[target];
772         struct page *xor_dest = tgt->page;
773         int count = 0;
774         struct dma_async_tx_descriptor *tx;
775         struct async_submit_ctl submit;
776         int i;
777
778         pr_debug("%s: stripe %llu block: %d\n",
779                 __func__, (unsigned long long)sh->sector, target);
780         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
781
782         for (i = disks; i--; )
783                 if (i != target)
784                         xor_srcs[count++] = sh->dev[i].page;
785
786         atomic_inc(&sh->count);
787
788         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
789                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
790         if (unlikely(count == 1))
791                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
792         else
793                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
794
795         return tx;
796 }
797
798 /* set_syndrome_sources - populate source buffers for gen_syndrome
799  * @srcs - (struct page *) array of size sh->disks
800  * @sh - stripe_head to parse
801  *
802  * Populates srcs in proper layout order for the stripe and returns the
803  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
804  * destination buffer is recorded in srcs[count] and the Q destination
805  * is recorded in srcs[count+1]].
806  */
807 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
808 {
809         int disks = sh->disks;
810         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
811         int d0_idx = raid6_d0(sh);
812         int count;
813         int i;
814
815         for (i = 0; i < disks; i++)
816                 srcs[i] = NULL;
817
818         count = 0;
819         i = d0_idx;
820         do {
821                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823                 srcs[slot] = sh->dev[i].page;
824                 i = raid6_next_disk(i, disks);
825         } while (i != d0_idx);
826
827         return syndrome_disks;
828 }
829
830 static struct dma_async_tx_descriptor *
831 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
832 {
833         int disks = sh->disks;
834         struct page **blocks = percpu->scribble;
835         int target;
836         int qd_idx = sh->qd_idx;
837         struct dma_async_tx_descriptor *tx;
838         struct async_submit_ctl submit;
839         struct r5dev *tgt;
840         struct page *dest;
841         int i;
842         int count;
843
844         if (sh->ops.target < 0)
845                 target = sh->ops.target2;
846         else if (sh->ops.target2 < 0)
847                 target = sh->ops.target;
848         else
849                 /* we should only have one valid target */
850                 BUG();
851         BUG_ON(target < 0);
852         pr_debug("%s: stripe %llu block: %d\n",
853                 __func__, (unsigned long long)sh->sector, target);
854
855         tgt = &sh->dev[target];
856         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
857         dest = tgt->page;
858
859         atomic_inc(&sh->count);
860
861         if (target == qd_idx) {
862                 count = set_syndrome_sources(blocks, sh);
863                 blocks[count] = NULL; /* regenerating p is not necessary */
864                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
865                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
866                                   ops_complete_compute, sh,
867                                   to_addr_conv(sh, percpu));
868                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
869         } else {
870                 /* Compute any data- or p-drive using XOR */
871                 count = 0;
872                 for (i = disks; i-- ; ) {
873                         if (i == target || i == qd_idx)
874                                 continue;
875                         blocks[count++] = sh->dev[i].page;
876                 }
877
878                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
879                                   NULL, ops_complete_compute, sh,
880                                   to_addr_conv(sh, percpu));
881                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
882         }
883
884         return tx;
885 }
886
887 static struct dma_async_tx_descriptor *
888 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
889 {
890         int i, count, disks = sh->disks;
891         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
892         int d0_idx = raid6_d0(sh);
893         int faila = -1, failb = -1;
894         int target = sh->ops.target;
895         int target2 = sh->ops.target2;
896         struct r5dev *tgt = &sh->dev[target];
897         struct r5dev *tgt2 = &sh->dev[target2];
898         struct dma_async_tx_descriptor *tx;
899         struct page **blocks = percpu->scribble;
900         struct async_submit_ctl submit;
901
902         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
903                  __func__, (unsigned long long)sh->sector, target, target2);
904         BUG_ON(target < 0 || target2 < 0);
905         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
906         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
907
908         /* we need to open-code set_syndrome_sources to handle the
909          * slot number conversion for 'faila' and 'failb'
910          */
911         for (i = 0; i < disks ; i++)
912                 blocks[i] = NULL;
913         count = 0;
914         i = d0_idx;
915         do {
916                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
917
918                 blocks[slot] = sh->dev[i].page;
919
920                 if (i == target)
921                         faila = slot;
922                 if (i == target2)
923                         failb = slot;
924                 i = raid6_next_disk(i, disks);
925         } while (i != d0_idx);
926
927         BUG_ON(faila == failb);
928         if (failb < faila)
929                 swap(faila, failb);
930         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
931                  __func__, (unsigned long long)sh->sector, faila, failb);
932
933         atomic_inc(&sh->count);
934
935         if (failb == syndrome_disks+1) {
936                 /* Q disk is one of the missing disks */
937                 if (faila == syndrome_disks) {
938                         /* Missing P+Q, just recompute */
939                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
940                                           ops_complete_compute, sh,
941                                           to_addr_conv(sh, percpu));
942                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
943                                                   STRIPE_SIZE, &submit);
944                 } else {
945                         struct page *dest;
946                         int data_target;
947                         int qd_idx = sh->qd_idx;
948
949                         /* Missing D+Q: recompute D from P, then recompute Q */
950                         if (target == qd_idx)
951                                 data_target = target2;
952                         else
953                                 data_target = target;
954
955                         count = 0;
956                         for (i = disks; i-- ; ) {
957                                 if (i == data_target || i == qd_idx)
958                                         continue;
959                                 blocks[count++] = sh->dev[i].page;
960                         }
961                         dest = sh->dev[data_target].page;
962                         init_async_submit(&submit,
963                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
964                                           NULL, NULL, NULL,
965                                           to_addr_conv(sh, percpu));
966                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
967                                        &submit);
968
969                         count = set_syndrome_sources(blocks, sh);
970                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
971                                           ops_complete_compute, sh,
972                                           to_addr_conv(sh, percpu));
973                         return async_gen_syndrome(blocks, 0, count+2,
974                                                   STRIPE_SIZE, &submit);
975                 }
976         } else {
977                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978                                   ops_complete_compute, sh,
979                                   to_addr_conv(sh, percpu));
980                 if (failb == syndrome_disks) {
981                         /* We're missing D+P. */
982                         return async_raid6_datap_recov(syndrome_disks+2,
983                                                        STRIPE_SIZE, faila,
984                                                        blocks, &submit);
985                 } else {
986                         /* We're missing D+D. */
987                         return async_raid6_2data_recov(syndrome_disks+2,
988                                                        STRIPE_SIZE, faila, failb,
989                                                        blocks, &submit);
990                 }
991         }
992 }
993
994
995 static void ops_complete_prexor(void *stripe_head_ref)
996 {
997         struct stripe_head *sh = stripe_head_ref;
998
999         pr_debug("%s: stripe %llu\n", __func__,
1000                 (unsigned long long)sh->sector);
1001 }
1002
1003 static struct dma_async_tx_descriptor *
1004 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005                struct dma_async_tx_descriptor *tx)
1006 {
1007         int disks = sh->disks;
1008         struct page **xor_srcs = percpu->scribble;
1009         int count = 0, pd_idx = sh->pd_idx, i;
1010         struct async_submit_ctl submit;
1011
1012         /* existing parity data subtracted */
1013         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
1015         pr_debug("%s: stripe %llu\n", __func__,
1016                 (unsigned long long)sh->sector);
1017
1018         for (i = disks; i--; ) {
1019                 struct r5dev *dev = &sh->dev[i];
1020                 /* Only process blocks that are known to be uptodate */
1021                 if (test_bit(R5_Wantdrain, &dev->flags))
1022                         xor_srcs[count++] = dev->page;
1023         }
1024
1025         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1026                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1027         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1028
1029         return tx;
1030 }
1031
1032 static struct dma_async_tx_descriptor *
1033 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1034 {
1035         int disks = sh->disks;
1036         int i;
1037
1038         pr_debug("%s: stripe %llu\n", __func__,
1039                 (unsigned long long)sh->sector);
1040
1041         for (i = disks; i--; ) {
1042                 struct r5dev *dev = &sh->dev[i];
1043                 struct bio *chosen;
1044
1045                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1046                         struct bio *wbi;
1047
1048                         spin_lock_irq(&sh->raid_conf->device_lock);
1049                         chosen = dev->towrite;
1050                         dev->towrite = NULL;
1051                         BUG_ON(dev->written);
1052                         wbi = dev->written = chosen;
1053                         spin_unlock_irq(&sh->raid_conf->device_lock);
1054
1055                         while (wbi && wbi->bi_sector <
1056                                 dev->sector + STRIPE_SECTORS) {
1057                                 if (wbi->bi_rw & REQ_FUA)
1058                                         set_bit(R5_WantFUA, &dev->flags);
1059                                 tx = async_copy_data(1, wbi, dev->page,
1060                                         dev->sector, tx);
1061                                 wbi = r5_next_bio(wbi, dev->sector);
1062                         }
1063                 }
1064         }
1065
1066         return tx;
1067 }
1068
1069 static void ops_complete_reconstruct(void *stripe_head_ref)
1070 {
1071         struct stripe_head *sh = stripe_head_ref;
1072         int disks = sh->disks;
1073         int pd_idx = sh->pd_idx;
1074         int qd_idx = sh->qd_idx;
1075         int i;
1076         bool fua = false;
1077
1078         pr_debug("%s: stripe %llu\n", __func__,
1079                 (unsigned long long)sh->sector);
1080
1081         for (i = disks; i--; )
1082                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1083
1084         for (i = disks; i--; ) {
1085                 struct r5dev *dev = &sh->dev[i];
1086
1087                 if (dev->written || i == pd_idx || i == qd_idx) {
1088                         set_bit(R5_UPTODATE, &dev->flags);
1089                         if (fua)
1090                                 set_bit(R5_WantFUA, &dev->flags);
1091                 }
1092         }
1093
1094         if (sh->reconstruct_state == reconstruct_state_drain_run)
1095                 sh->reconstruct_state = reconstruct_state_drain_result;
1096         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098         else {
1099                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100                 sh->reconstruct_state = reconstruct_state_result;
1101         }
1102
1103         set_bit(STRIPE_HANDLE, &sh->state);
1104         release_stripe(sh);
1105 }
1106
1107 static void
1108 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109                      struct dma_async_tx_descriptor *tx)
1110 {
1111         int disks = sh->disks;
1112         struct page **xor_srcs = percpu->scribble;
1113         struct async_submit_ctl submit;
1114         int count = 0, pd_idx = sh->pd_idx, i;
1115         struct page *xor_dest;
1116         int prexor = 0;
1117         unsigned long flags;
1118
1119         pr_debug("%s: stripe %llu\n", __func__,
1120                 (unsigned long long)sh->sector);
1121
1122         /* check if prexor is active which means only process blocks
1123          * that are part of a read-modify-write (written)
1124          */
1125         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126                 prexor = 1;
1127                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128                 for (i = disks; i--; ) {
1129                         struct r5dev *dev = &sh->dev[i];
1130                         if (dev->written)
1131                                 xor_srcs[count++] = dev->page;
1132                 }
1133         } else {
1134                 xor_dest = sh->dev[pd_idx].page;
1135                 for (i = disks; i--; ) {
1136                         struct r5dev *dev = &sh->dev[i];
1137                         if (i != pd_idx)
1138                                 xor_srcs[count++] = dev->page;
1139                 }
1140         }
1141
1142         /* 1/ if we prexor'd then the dest is reused as a source
1143          * 2/ if we did not prexor then we are redoing the parity
1144          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145          * for the synchronous xor case
1146          */
1147         flags = ASYNC_TX_ACK |
1148                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150         atomic_inc(&sh->count);
1151
1152         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1153                           to_addr_conv(sh, percpu));
1154         if (unlikely(count == 1))
1155                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156         else
1157                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1158 }
1159
1160 static void
1161 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162                      struct dma_async_tx_descriptor *tx)
1163 {
1164         struct async_submit_ctl submit;
1165         struct page **blocks = percpu->scribble;
1166         int count;
1167
1168         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170         count = set_syndrome_sources(blocks, sh);
1171
1172         atomic_inc(&sh->count);
1173
1174         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175                           sh, to_addr_conv(sh, percpu));
1176         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1177 }
1178
1179 static void ops_complete_check(void *stripe_head_ref)
1180 {
1181         struct stripe_head *sh = stripe_head_ref;
1182
1183         pr_debug("%s: stripe %llu\n", __func__,
1184                 (unsigned long long)sh->sector);
1185
1186         sh->check_state = check_state_check_result;
1187         set_bit(STRIPE_HANDLE, &sh->state);
1188         release_stripe(sh);
1189 }
1190
1191 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1192 {
1193         int disks = sh->disks;
1194         int pd_idx = sh->pd_idx;
1195         int qd_idx = sh->qd_idx;
1196         struct page *xor_dest;
1197         struct page **xor_srcs = percpu->scribble;
1198         struct dma_async_tx_descriptor *tx;
1199         struct async_submit_ctl submit;
1200         int count;
1201         int i;
1202
1203         pr_debug("%s: stripe %llu\n", __func__,
1204                 (unsigned long long)sh->sector);
1205
1206         count = 0;
1207         xor_dest = sh->dev[pd_idx].page;
1208         xor_srcs[count++] = xor_dest;
1209         for (i = disks; i--; ) {
1210                 if (i == pd_idx || i == qd_idx)
1211                         continue;
1212                 xor_srcs[count++] = sh->dev[i].page;
1213         }
1214
1215         init_async_submit(&submit, 0, NULL, NULL, NULL,
1216                           to_addr_conv(sh, percpu));
1217         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1218                            &sh->ops.zero_sum_result, &submit);
1219
1220         atomic_inc(&sh->count);
1221         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222         tx = async_trigger_callback(&submit);
1223 }
1224
1225 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226 {
1227         struct page **srcs = percpu->scribble;
1228         struct async_submit_ctl submit;
1229         int count;
1230
1231         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232                 (unsigned long long)sh->sector, checkp);
1233
1234         count = set_syndrome_sources(srcs, sh);
1235         if (!checkp)
1236                 srcs[count] = NULL;
1237
1238         atomic_inc(&sh->count);
1239         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240                           sh, to_addr_conv(sh, percpu));
1241         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1243 }
1244
1245 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1246 {
1247         int overlap_clear = 0, i, disks = sh->disks;
1248         struct dma_async_tx_descriptor *tx = NULL;
1249         raid5_conf_t *conf = sh->raid_conf;
1250         int level = conf->level;
1251         struct raid5_percpu *percpu;
1252         unsigned long cpu;
1253
1254         cpu = get_cpu();
1255         percpu = per_cpu_ptr(conf->percpu, cpu);
1256         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1257                 ops_run_biofill(sh);
1258                 overlap_clear++;
1259         }
1260
1261         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1262                 if (level < 6)
1263                         tx = ops_run_compute5(sh, percpu);
1264                 else {
1265                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266                                 tx = ops_run_compute6_1(sh, percpu);
1267                         else
1268                                 tx = ops_run_compute6_2(sh, percpu);
1269                 }
1270                 /* terminate the chain if reconstruct is not set to be run */
1271                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1272                         async_tx_ack(tx);
1273         }
1274
1275         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1276                 tx = ops_run_prexor(sh, percpu, tx);
1277
1278         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1279                 tx = ops_run_biodrain(sh, tx);
1280                 overlap_clear++;
1281         }
1282
1283         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284                 if (level < 6)
1285                         ops_run_reconstruct5(sh, percpu, tx);
1286                 else
1287                         ops_run_reconstruct6(sh, percpu, tx);
1288         }
1289
1290         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291                 if (sh->check_state == check_state_run)
1292                         ops_run_check_p(sh, percpu);
1293                 else if (sh->check_state == check_state_run_q)
1294                         ops_run_check_pq(sh, percpu, 0);
1295                 else if (sh->check_state == check_state_run_pq)
1296                         ops_run_check_pq(sh, percpu, 1);
1297                 else
1298                         BUG();
1299         }
1300
1301         if (overlap_clear)
1302                 for (i = disks; i--; ) {
1303                         struct r5dev *dev = &sh->dev[i];
1304                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305                                 wake_up(&sh->raid_conf->wait_for_overlap);
1306                 }
1307         put_cpu();
1308 }
1309
1310 #ifdef CONFIG_MULTICORE_RAID456
1311 static void async_run_ops(void *param, async_cookie_t cookie)
1312 {
1313         struct stripe_head *sh = param;
1314         unsigned long ops_request = sh->ops.request;
1315
1316         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317         wake_up(&sh->ops.wait_for_ops);
1318
1319         __raid_run_ops(sh, ops_request);
1320         release_stripe(sh);
1321 }
1322
1323 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1324 {
1325         /* since handle_stripe can be called outside of raid5d context
1326          * we need to ensure sh->ops.request is de-staged before another
1327          * request arrives
1328          */
1329         wait_event(sh->ops.wait_for_ops,
1330                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331         sh->ops.request = ops_request;
1332
1333         atomic_inc(&sh->count);
1334         async_schedule(async_run_ops, sh);
1335 }
1336 #else
1337 #define raid_run_ops __raid_run_ops
1338 #endif
1339
1340 static int grow_one_stripe(raid5_conf_t *conf)
1341 {
1342         struct stripe_head *sh;
1343         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1344         if (!sh)
1345                 return 0;
1346
1347         sh->raid_conf = conf;
1348         #ifdef CONFIG_MULTICORE_RAID456
1349         init_waitqueue_head(&sh->ops.wait_for_ops);
1350         #endif
1351
1352         if (grow_buffers(sh)) {
1353                 shrink_buffers(sh);
1354                 kmem_cache_free(conf->slab_cache, sh);
1355                 return 0;
1356         }
1357         /* we just created an active stripe so... */
1358         atomic_set(&sh->count, 1);
1359         atomic_inc(&conf->active_stripes);
1360         INIT_LIST_HEAD(&sh->lru);
1361         release_stripe(sh);
1362         return 1;
1363 }
1364
1365 static int grow_stripes(raid5_conf_t *conf, int num)
1366 {
1367         struct kmem_cache *sc;
1368         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1369
1370         if (conf->mddev->gendisk)
1371                 sprintf(conf->cache_name[0],
1372                         "raid%d-%s", conf->level, mdname(conf->mddev));
1373         else
1374                 sprintf(conf->cache_name[0],
1375                         "raid%d-%p", conf->level, conf->mddev);
1376         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
1378         conf->active_name = 0;
1379         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1380                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1381                                0, 0, NULL);
1382         if (!sc)
1383                 return 1;
1384         conf->slab_cache = sc;
1385         conf->pool_size = devs;
1386         while (num--)
1387                 if (!grow_one_stripe(conf))
1388                         return 1;
1389         return 0;
1390 }
1391
1392 /**
1393  * scribble_len - return the required size of the scribble region
1394  * @num - total number of disks in the array
1395  *
1396  * The size must be enough to contain:
1397  * 1/ a struct page pointer for each device in the array +2
1398  * 2/ room to convert each entry in (1) to its corresponding dma
1399  *    (dma_map_page()) or page (page_address()) address.
1400  *
1401  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402  * calculate over all devices (not just the data blocks), using zeros in place
1403  * of the P and Q blocks.
1404  */
1405 static size_t scribble_len(int num)
1406 {
1407         size_t len;
1408
1409         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1410
1411         return len;
1412 }
1413
1414 static int resize_stripes(raid5_conf_t *conf, int newsize)
1415 {
1416         /* Make all the stripes able to hold 'newsize' devices.
1417          * New slots in each stripe get 'page' set to a new page.
1418          *
1419          * This happens in stages:
1420          * 1/ create a new kmem_cache and allocate the required number of
1421          *    stripe_heads.
1422          * 2/ gather all the old stripe_heads and tranfer the pages across
1423          *    to the new stripe_heads.  This will have the side effect of
1424          *    freezing the array as once all stripe_heads have been collected,
1425          *    no IO will be possible.  Old stripe heads are freed once their
1426          *    pages have been transferred over, and the old kmem_cache is
1427          *    freed when all stripes are done.
1428          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1429          *    we simple return a failre status - no need to clean anything up.
1430          * 4/ allocate new pages for the new slots in the new stripe_heads.
1431          *    If this fails, we don't bother trying the shrink the
1432          *    stripe_heads down again, we just leave them as they are.
1433          *    As each stripe_head is processed the new one is released into
1434          *    active service.
1435          *
1436          * Once step2 is started, we cannot afford to wait for a write,
1437          * so we use GFP_NOIO allocations.
1438          */
1439         struct stripe_head *osh, *nsh;
1440         LIST_HEAD(newstripes);
1441         struct disk_info *ndisks;
1442         unsigned long cpu;
1443         int err;
1444         struct kmem_cache *sc;
1445         int i;
1446
1447         if (newsize <= conf->pool_size)
1448                 return 0; /* never bother to shrink */
1449
1450         err = md_allow_write(conf->mddev);
1451         if (err)
1452                 return err;
1453
1454         /* Step 1 */
1455         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1457                                0, 0, NULL);
1458         if (!sc)
1459                 return -ENOMEM;
1460
1461         for (i = conf->max_nr_stripes; i; i--) {
1462                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1463                 if (!nsh)
1464                         break;
1465
1466                 nsh->raid_conf = conf;
1467                 #ifdef CONFIG_MULTICORE_RAID456
1468                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1469                 #endif
1470
1471                 list_add(&nsh->lru, &newstripes);
1472         }
1473         if (i) {
1474                 /* didn't get enough, give up */
1475                 while (!list_empty(&newstripes)) {
1476                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477                         list_del(&nsh->lru);
1478                         kmem_cache_free(sc, nsh);
1479                 }
1480                 kmem_cache_destroy(sc);
1481                 return -ENOMEM;
1482         }
1483         /* Step 2 - Must use GFP_NOIO now.
1484          * OK, we have enough stripes, start collecting inactive
1485          * stripes and copying them over
1486          */
1487         list_for_each_entry(nsh, &newstripes, lru) {
1488                 spin_lock_irq(&conf->device_lock);
1489                 wait_event_lock_irq(conf->wait_for_stripe,
1490                                     !list_empty(&conf->inactive_list),
1491                                     conf->device_lock,
1492                                     );
1493                 osh = get_free_stripe(conf);
1494                 spin_unlock_irq(&conf->device_lock);
1495                 atomic_set(&nsh->count, 1);
1496                 for(i=0; i<conf->pool_size; i++)
1497                         nsh->dev[i].page = osh->dev[i].page;
1498                 for( ; i<newsize; i++)
1499                         nsh->dev[i].page = NULL;
1500                 kmem_cache_free(conf->slab_cache, osh);
1501         }
1502         kmem_cache_destroy(conf->slab_cache);
1503
1504         /* Step 3.
1505          * At this point, we are holding all the stripes so the array
1506          * is completely stalled, so now is a good time to resize
1507          * conf->disks and the scribble region
1508          */
1509         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510         if (ndisks) {
1511                 for (i=0; i<conf->raid_disks; i++)
1512                         ndisks[i] = conf->disks[i];
1513                 kfree(conf->disks);
1514                 conf->disks = ndisks;
1515         } else
1516                 err = -ENOMEM;
1517
1518         get_online_cpus();
1519         conf->scribble_len = scribble_len(newsize);
1520         for_each_present_cpu(cpu) {
1521                 struct raid5_percpu *percpu;
1522                 void *scribble;
1523
1524                 percpu = per_cpu_ptr(conf->percpu, cpu);
1525                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527                 if (scribble) {
1528                         kfree(percpu->scribble);
1529                         percpu->scribble = scribble;
1530                 } else {
1531                         err = -ENOMEM;
1532                         break;
1533                 }
1534         }
1535         put_online_cpus();
1536
1537         /* Step 4, return new stripes to service */
1538         while(!list_empty(&newstripes)) {
1539                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540                 list_del_init(&nsh->lru);
1541
1542                 for (i=conf->raid_disks; i < newsize; i++)
1543                         if (nsh->dev[i].page == NULL) {
1544                                 struct page *p = alloc_page(GFP_NOIO);
1545                                 nsh->dev[i].page = p;
1546                                 if (!p)
1547                                         err = -ENOMEM;
1548                         }
1549                 release_stripe(nsh);
1550         }
1551         /* critical section pass, GFP_NOIO no longer needed */
1552
1553         conf->slab_cache = sc;
1554         conf->active_name = 1-conf->active_name;
1555         conf->pool_size = newsize;
1556         return err;
1557 }
1558
1559 static int drop_one_stripe(raid5_conf_t *conf)
1560 {
1561         struct stripe_head *sh;
1562
1563         spin_lock_irq(&conf->device_lock);
1564         sh = get_free_stripe(conf);
1565         spin_unlock_irq(&conf->device_lock);
1566         if (!sh)
1567                 return 0;
1568         BUG_ON(atomic_read(&sh->count));
1569         shrink_buffers(sh);
1570         kmem_cache_free(conf->slab_cache, sh);
1571         atomic_dec(&conf->active_stripes);
1572         return 1;
1573 }
1574
1575 static void shrink_stripes(raid5_conf_t *conf)
1576 {
1577         while (drop_one_stripe(conf))
1578                 ;
1579
1580         if (conf->slab_cache)
1581                 kmem_cache_destroy(conf->slab_cache);
1582         conf->slab_cache = NULL;
1583 }
1584
1585 static void raid5_end_read_request(struct bio * bi, int error)
1586 {
1587         struct stripe_head *sh = bi->bi_private;
1588         raid5_conf_t *conf = sh->raid_conf;
1589         int disks = sh->disks, i;
1590         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1591         char b[BDEVNAME_SIZE];
1592         mdk_rdev_t *rdev;
1593
1594
1595         for (i=0 ; i<disks; i++)
1596                 if (bi == &sh->dev[i].req)
1597                         break;
1598
1599         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1601                 uptodate);
1602         if (i == disks) {
1603                 BUG();
1604                 return;
1605         }
1606
1607         if (uptodate) {
1608                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1609                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1610                         rdev = conf->disks[i].rdev;
1611                         printk_ratelimited(
1612                                 KERN_INFO
1613                                 "md/raid:%s: read error corrected"
1614                                 " (%lu sectors at %llu on %s)\n",
1615                                 mdname(conf->mddev), STRIPE_SECTORS,
1616                                 (unsigned long long)(sh->sector
1617                                                      + rdev->data_offset),
1618                                 bdevname(rdev->bdev, b));
1619                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1620                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1621                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622                 }
1623                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1624                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1625         } else {
1626                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1627                 int retry = 0;
1628                 rdev = conf->disks[i].rdev;
1629
1630                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1631                 atomic_inc(&rdev->read_errors);
1632                 if (conf->mddev->degraded >= conf->max_degraded)
1633                         printk_ratelimited(
1634                                 KERN_WARNING
1635                                 "md/raid:%s: read error not correctable "
1636                                 "(sector %llu on %s).\n",
1637                                 mdname(conf->mddev),
1638                                 (unsigned long long)(sh->sector
1639                                                      + rdev->data_offset),
1640                                 bdn);
1641                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1642                         /* Oh, no!!! */
1643                         printk_ratelimited(
1644                                 KERN_WARNING
1645                                 "md/raid:%s: read error NOT corrected!! "
1646                                 "(sector %llu on %s).\n",
1647                                 mdname(conf->mddev),
1648                                 (unsigned long long)(sh->sector
1649                                                      + rdev->data_offset),
1650                                 bdn);
1651                 else if (atomic_read(&rdev->read_errors)
1652                          > conf->max_nr_stripes)
1653                         printk(KERN_WARNING
1654                                "md/raid:%s: Too many read errors, failing device %s.\n",
1655                                mdname(conf->mddev), bdn);
1656                 else
1657                         retry = 1;
1658                 if (retry)
1659                         set_bit(R5_ReadError, &sh->dev[i].flags);
1660                 else {
1661                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1662                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1663                         md_error(conf->mddev, rdev);
1664                 }
1665         }
1666         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1667         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668         set_bit(STRIPE_HANDLE, &sh->state);
1669         release_stripe(sh);
1670 }
1671
1672 static void raid5_end_write_request(struct bio *bi, int error)
1673 {
1674         struct stripe_head *sh = bi->bi_private;
1675         raid5_conf_t *conf = sh->raid_conf;
1676         int disks = sh->disks, i;
1677         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678
1679         for (i=0 ; i<disks; i++)
1680                 if (bi == &sh->dev[i].req)
1681                         break;
1682
1683         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1684                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1685                 uptodate);
1686         if (i == disks) {
1687                 BUG();
1688                 return;
1689         }
1690
1691         if (!uptodate) {
1692                 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1693                 set_bit(R5_WriteError, &sh->dev[i].flags);
1694         }
1695
1696         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1697         
1698         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1699         set_bit(STRIPE_HANDLE, &sh->state);
1700         release_stripe(sh);
1701 }
1702
1703
1704 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1705         
1706 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1707 {
1708         struct r5dev *dev = &sh->dev[i];
1709
1710         bio_init(&dev->req);
1711         dev->req.bi_io_vec = &dev->vec;
1712         dev->req.bi_vcnt++;
1713         dev->req.bi_max_vecs++;
1714         dev->vec.bv_page = dev->page;
1715         dev->vec.bv_len = STRIPE_SIZE;
1716         dev->vec.bv_offset = 0;
1717
1718         dev->req.bi_sector = sh->sector;
1719         dev->req.bi_private = sh;
1720
1721         dev->flags = 0;
1722         dev->sector = compute_blocknr(sh, i, previous);
1723 }
1724
1725 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1726 {
1727         char b[BDEVNAME_SIZE];
1728         raid5_conf_t *conf = mddev->private;
1729         pr_debug("raid456: error called\n");
1730
1731         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1732                 unsigned long flags;
1733                 spin_lock_irqsave(&conf->device_lock, flags);
1734                 mddev->degraded++;
1735                 spin_unlock_irqrestore(&conf->device_lock, flags);
1736                 /*
1737                  * if recovery was running, make sure it aborts.
1738                  */
1739                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1740         }
1741         set_bit(Blocked, &rdev->flags);
1742         set_bit(Faulty, &rdev->flags);
1743         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1744         printk(KERN_ALERT
1745                "md/raid:%s: Disk failure on %s, disabling device.\n"
1746                "md/raid:%s: Operation continuing on %d devices.\n",
1747                mdname(mddev),
1748                bdevname(rdev->bdev, b),
1749                mdname(mddev),
1750                conf->raid_disks - mddev->degraded);
1751 }
1752
1753 /*
1754  * Input: a 'big' sector number,
1755  * Output: index of the data and parity disk, and the sector # in them.
1756  */
1757 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1758                                      int previous, int *dd_idx,
1759                                      struct stripe_head *sh)
1760 {
1761         sector_t stripe, stripe2;
1762         sector_t chunk_number;
1763         unsigned int chunk_offset;
1764         int pd_idx, qd_idx;
1765         int ddf_layout = 0;
1766         sector_t new_sector;
1767         int algorithm = previous ? conf->prev_algo
1768                                  : conf->algorithm;
1769         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1770                                          : conf->chunk_sectors;
1771         int raid_disks = previous ? conf->previous_raid_disks
1772                                   : conf->raid_disks;
1773         int data_disks = raid_disks - conf->max_degraded;
1774
1775         /* First compute the information on this sector */
1776
1777         /*
1778          * Compute the chunk number and the sector offset inside the chunk
1779          */
1780         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1781         chunk_number = r_sector;
1782
1783         /*
1784          * Compute the stripe number
1785          */
1786         stripe = chunk_number;
1787         *dd_idx = sector_div(stripe, data_disks);
1788         stripe2 = stripe;
1789         /*
1790          * Select the parity disk based on the user selected algorithm.
1791          */
1792         pd_idx = qd_idx = -1;
1793         switch(conf->level) {
1794         case 4:
1795                 pd_idx = data_disks;
1796                 break;
1797         case 5:
1798                 switch (algorithm) {
1799                 case ALGORITHM_LEFT_ASYMMETRIC:
1800                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1801                         if (*dd_idx >= pd_idx)
1802                                 (*dd_idx)++;
1803                         break;
1804                 case ALGORITHM_RIGHT_ASYMMETRIC:
1805                         pd_idx = sector_div(stripe2, raid_disks);
1806                         if (*dd_idx >= pd_idx)
1807                                 (*dd_idx)++;
1808                         break;
1809                 case ALGORITHM_LEFT_SYMMETRIC:
1810                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1811                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1812                         break;
1813                 case ALGORITHM_RIGHT_SYMMETRIC:
1814                         pd_idx = sector_div(stripe2, raid_disks);
1815                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1816                         break;
1817                 case ALGORITHM_PARITY_0:
1818                         pd_idx = 0;
1819                         (*dd_idx)++;
1820                         break;
1821                 case ALGORITHM_PARITY_N:
1822                         pd_idx = data_disks;
1823                         break;
1824                 default:
1825                         BUG();
1826                 }
1827                 break;
1828         case 6:
1829
1830                 switch (algorithm) {
1831                 case ALGORITHM_LEFT_ASYMMETRIC:
1832                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1833                         qd_idx = pd_idx + 1;
1834                         if (pd_idx == raid_disks-1) {
1835                                 (*dd_idx)++;    /* Q D D D P */
1836                                 qd_idx = 0;
1837                         } else if (*dd_idx >= pd_idx)
1838                                 (*dd_idx) += 2; /* D D P Q D */
1839                         break;
1840                 case ALGORITHM_RIGHT_ASYMMETRIC:
1841                         pd_idx = sector_div(stripe2, raid_disks);
1842                         qd_idx = pd_idx + 1;
1843                         if (pd_idx == raid_disks-1) {
1844                                 (*dd_idx)++;    /* Q D D D P */
1845                                 qd_idx = 0;
1846                         } else if (*dd_idx >= pd_idx)
1847                                 (*dd_idx) += 2; /* D D P Q D */
1848                         break;
1849                 case ALGORITHM_LEFT_SYMMETRIC:
1850                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1851                         qd_idx = (pd_idx + 1) % raid_disks;
1852                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1853                         break;
1854                 case ALGORITHM_RIGHT_SYMMETRIC:
1855                         pd_idx = sector_div(stripe2, raid_disks);
1856                         qd_idx = (pd_idx + 1) % raid_disks;
1857                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1858                         break;
1859
1860                 case ALGORITHM_PARITY_0:
1861                         pd_idx = 0;
1862                         qd_idx = 1;
1863                         (*dd_idx) += 2;
1864                         break;
1865                 case ALGORITHM_PARITY_N:
1866                         pd_idx = data_disks;
1867                         qd_idx = data_disks + 1;
1868                         break;
1869
1870                 case ALGORITHM_ROTATING_ZERO_RESTART:
1871                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1872                          * of blocks for computing Q is different.
1873                          */
1874                         pd_idx = sector_div(stripe2, raid_disks);
1875                         qd_idx = pd_idx + 1;
1876                         if (pd_idx == raid_disks-1) {
1877                                 (*dd_idx)++;    /* Q D D D P */
1878                                 qd_idx = 0;
1879                         } else if (*dd_idx >= pd_idx)
1880                                 (*dd_idx) += 2; /* D D P Q D */
1881                         ddf_layout = 1;
1882                         break;
1883
1884                 case ALGORITHM_ROTATING_N_RESTART:
1885                         /* Same a left_asymmetric, by first stripe is
1886                          * D D D P Q  rather than
1887                          * Q D D D P
1888                          */
1889                         stripe2 += 1;
1890                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1891                         qd_idx = pd_idx + 1;
1892                         if (pd_idx == raid_disks-1) {
1893                                 (*dd_idx)++;    /* Q D D D P */
1894                                 qd_idx = 0;
1895                         } else if (*dd_idx >= pd_idx)
1896                                 (*dd_idx) += 2; /* D D P Q D */
1897                         ddf_layout = 1;
1898                         break;
1899
1900                 case ALGORITHM_ROTATING_N_CONTINUE:
1901                         /* Same as left_symmetric but Q is before P */
1902                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1903                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1904                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1905                         ddf_layout = 1;
1906                         break;
1907
1908                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1909                         /* RAID5 left_asymmetric, with Q on last device */
1910                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1911                         if (*dd_idx >= pd_idx)
1912                                 (*dd_idx)++;
1913                         qd_idx = raid_disks - 1;
1914                         break;
1915
1916                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1917                         pd_idx = sector_div(stripe2, raid_disks-1);
1918                         if (*dd_idx >= pd_idx)
1919                                 (*dd_idx)++;
1920                         qd_idx = raid_disks - 1;
1921                         break;
1922
1923                 case ALGORITHM_LEFT_SYMMETRIC_6:
1924                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1925                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1926                         qd_idx = raid_disks - 1;
1927                         break;
1928
1929                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1930                         pd_idx = sector_div(stripe2, raid_disks-1);
1931                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1932                         qd_idx = raid_disks - 1;
1933                         break;
1934
1935                 case ALGORITHM_PARITY_0_6:
1936                         pd_idx = 0;
1937                         (*dd_idx)++;
1938                         qd_idx = raid_disks - 1;
1939                         break;
1940
1941                 default:
1942                         BUG();
1943                 }
1944                 break;
1945         }
1946
1947         if (sh) {
1948                 sh->pd_idx = pd_idx;
1949                 sh->qd_idx = qd_idx;
1950                 sh->ddf_layout = ddf_layout;
1951         }
1952         /*
1953          * Finally, compute the new sector number
1954          */
1955         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1956         return new_sector;
1957 }
1958
1959
1960 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1961 {
1962         raid5_conf_t *conf = sh->raid_conf;
1963         int raid_disks = sh->disks;
1964         int data_disks = raid_disks - conf->max_degraded;
1965         sector_t new_sector = sh->sector, check;
1966         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1967                                          : conf->chunk_sectors;
1968         int algorithm = previous ? conf->prev_algo
1969                                  : conf->algorithm;
1970         sector_t stripe;
1971         int chunk_offset;
1972         sector_t chunk_number;
1973         int dummy1, dd_idx = i;
1974         sector_t r_sector;
1975         struct stripe_head sh2;
1976
1977
1978         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1979         stripe = new_sector;
1980
1981         if (i == sh->pd_idx)
1982                 return 0;
1983         switch(conf->level) {
1984         case 4: break;
1985         case 5:
1986                 switch (algorithm) {
1987                 case ALGORITHM_LEFT_ASYMMETRIC:
1988                 case ALGORITHM_RIGHT_ASYMMETRIC:
1989                         if (i > sh->pd_idx)
1990                                 i--;
1991                         break;
1992                 case ALGORITHM_LEFT_SYMMETRIC:
1993                 case ALGORITHM_RIGHT_SYMMETRIC:
1994                         if (i < sh->pd_idx)
1995                                 i += raid_disks;
1996                         i -= (sh->pd_idx + 1);
1997                         break;
1998                 case ALGORITHM_PARITY_0:
1999                         i -= 1;
2000                         break;
2001                 case ALGORITHM_PARITY_N:
2002                         break;
2003                 default:
2004                         BUG();
2005                 }
2006                 break;
2007         case 6:
2008                 if (i == sh->qd_idx)
2009                         return 0; /* It is the Q disk */
2010                 switch (algorithm) {
2011                 case ALGORITHM_LEFT_ASYMMETRIC:
2012                 case ALGORITHM_RIGHT_ASYMMETRIC:
2013                 case ALGORITHM_ROTATING_ZERO_RESTART:
2014                 case ALGORITHM_ROTATING_N_RESTART:
2015                         if (sh->pd_idx == raid_disks-1)
2016                                 i--;    /* Q D D D P */
2017                         else if (i > sh->pd_idx)
2018                                 i -= 2; /* D D P Q D */
2019                         break;
2020                 case ALGORITHM_LEFT_SYMMETRIC:
2021                 case ALGORITHM_RIGHT_SYMMETRIC:
2022                         if (sh->pd_idx == raid_disks-1)
2023                                 i--; /* Q D D D P */
2024                         else {
2025                                 /* D D P Q D */
2026                                 if (i < sh->pd_idx)
2027                                         i += raid_disks;
2028                                 i -= (sh->pd_idx + 2);
2029                         }
2030                         break;
2031                 case ALGORITHM_PARITY_0:
2032                         i -= 2;
2033                         break;
2034                 case ALGORITHM_PARITY_N:
2035                         break;
2036                 case ALGORITHM_ROTATING_N_CONTINUE:
2037                         /* Like left_symmetric, but P is before Q */
2038                         if (sh->pd_idx == 0)
2039                                 i--;    /* P D D D Q */
2040                         else {
2041                                 /* D D Q P D */
2042                                 if (i < sh->pd_idx)
2043                                         i += raid_disks;
2044                                 i -= (sh->pd_idx + 1);
2045                         }
2046                         break;
2047                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2048                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2049                         if (i > sh->pd_idx)
2050                                 i--;
2051                         break;
2052                 case ALGORITHM_LEFT_SYMMETRIC_6:
2053                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2054                         if (i < sh->pd_idx)
2055                                 i += data_disks + 1;
2056                         i -= (sh->pd_idx + 1);
2057                         break;
2058                 case ALGORITHM_PARITY_0_6:
2059                         i -= 1;
2060                         break;
2061                 default:
2062                         BUG();
2063                 }
2064                 break;
2065         }
2066
2067         chunk_number = stripe * data_disks + i;
2068         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2069
2070         check = raid5_compute_sector(conf, r_sector,
2071                                      previous, &dummy1, &sh2);
2072         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2073                 || sh2.qd_idx != sh->qd_idx) {
2074                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2075                        mdname(conf->mddev));
2076                 return 0;
2077         }
2078         return r_sector;
2079 }
2080
2081
2082 static void
2083 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2084                          int rcw, int expand)
2085 {
2086         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2087         raid5_conf_t *conf = sh->raid_conf;
2088         int level = conf->level;
2089
2090         if (rcw) {
2091                 /* if we are not expanding this is a proper write request, and
2092                  * there will be bios with new data to be drained into the
2093                  * stripe cache
2094                  */
2095                 if (!expand) {
2096                         sh->reconstruct_state = reconstruct_state_drain_run;
2097                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2098                 } else
2099                         sh->reconstruct_state = reconstruct_state_run;
2100
2101                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2102
2103                 for (i = disks; i--; ) {
2104                         struct r5dev *dev = &sh->dev[i];
2105
2106                         if (dev->towrite) {
2107                                 set_bit(R5_LOCKED, &dev->flags);
2108                                 set_bit(R5_Wantdrain, &dev->flags);
2109                                 if (!expand)
2110                                         clear_bit(R5_UPTODATE, &dev->flags);
2111                                 s->locked++;
2112                         }
2113                 }
2114                 if (s->locked + conf->max_degraded == disks)
2115                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2116                                 atomic_inc(&conf->pending_full_writes);
2117         } else {
2118                 BUG_ON(level == 6);
2119                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2120                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2121
2122                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2123                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2124                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2125                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2126
2127                 for (i = disks; i--; ) {
2128                         struct r5dev *dev = &sh->dev[i];
2129                         if (i == pd_idx)
2130                                 continue;
2131
2132                         if (dev->towrite &&
2133                             (test_bit(R5_UPTODATE, &dev->flags) ||
2134                              test_bit(R5_Wantcompute, &dev->flags))) {
2135                                 set_bit(R5_Wantdrain, &dev->flags);
2136                                 set_bit(R5_LOCKED, &dev->flags);
2137                                 clear_bit(R5_UPTODATE, &dev->flags);
2138                                 s->locked++;
2139                         }
2140                 }
2141         }
2142
2143         /* keep the parity disk(s) locked while asynchronous operations
2144          * are in flight
2145          */
2146         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2147         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2148         s->locked++;
2149
2150         if (level == 6) {
2151                 int qd_idx = sh->qd_idx;
2152                 struct r5dev *dev = &sh->dev[qd_idx];
2153
2154                 set_bit(R5_LOCKED, &dev->flags);
2155                 clear_bit(R5_UPTODATE, &dev->flags);
2156                 s->locked++;
2157         }
2158
2159         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2160                 __func__, (unsigned long long)sh->sector,
2161                 s->locked, s->ops_request);
2162 }
2163
2164 /*
2165  * Each stripe/dev can have one or more bion attached.
2166  * toread/towrite point to the first in a chain.
2167  * The bi_next chain must be in order.
2168  */
2169 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2170 {
2171         struct bio **bip;
2172         raid5_conf_t *conf = sh->raid_conf;
2173         int firstwrite=0;
2174
2175         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2176                 (unsigned long long)bi->bi_sector,
2177                 (unsigned long long)sh->sector);
2178
2179
2180         spin_lock_irq(&conf->device_lock);
2181         if (forwrite) {
2182                 bip = &sh->dev[dd_idx].towrite;
2183                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2184                         firstwrite = 1;
2185         } else
2186                 bip = &sh->dev[dd_idx].toread;
2187         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2188                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2189                         goto overlap;
2190                 bip = & (*bip)->bi_next;
2191         }
2192         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2193                 goto overlap;
2194
2195         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2196         if (*bip)
2197                 bi->bi_next = *bip;
2198         *bip = bi;
2199         bi->bi_phys_segments++;
2200
2201         if (forwrite) {
2202                 /* check if page is covered */
2203                 sector_t sector = sh->dev[dd_idx].sector;
2204                 for (bi=sh->dev[dd_idx].towrite;
2205                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2206                              bi && bi->bi_sector <= sector;
2207                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2208                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2209                                 sector = bi->bi_sector + (bi->bi_size>>9);
2210                 }
2211                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2212                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2213         }
2214         spin_unlock_irq(&conf->device_lock);
2215
2216         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2217                 (unsigned long long)(*bip)->bi_sector,
2218                 (unsigned long long)sh->sector, dd_idx);
2219
2220         if (conf->mddev->bitmap && firstwrite) {
2221                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2222                                   STRIPE_SECTORS, 0);
2223                 sh->bm_seq = conf->seq_flush+1;
2224                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2225         }
2226         return 1;
2227
2228  overlap:
2229         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2230         spin_unlock_irq(&conf->device_lock);
2231         return 0;
2232 }
2233
2234 static void end_reshape(raid5_conf_t *conf);
2235
2236 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2237                             struct stripe_head *sh)
2238 {
2239         int sectors_per_chunk =
2240                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2241         int dd_idx;
2242         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2243         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2244
2245         raid5_compute_sector(conf,
2246                              stripe * (disks - conf->max_degraded)
2247                              *sectors_per_chunk + chunk_offset,
2248                              previous,
2249                              &dd_idx, sh);
2250 }
2251
2252 static void
2253 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2254                                 struct stripe_head_state *s, int disks,
2255                                 struct bio **return_bi)
2256 {
2257         int i;
2258         for (i = disks; i--; ) {
2259                 struct bio *bi;
2260                 int bitmap_end = 0;
2261
2262                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2263                         mdk_rdev_t *rdev;
2264                         rcu_read_lock();
2265                         rdev = rcu_dereference(conf->disks[i].rdev);
2266                         if (rdev && test_bit(In_sync, &rdev->flags))
2267                                 atomic_inc(&rdev->nr_pending);
2268                         else
2269                                 rdev = NULL;
2270                         rcu_read_unlock();
2271                         if (rdev) {
2272                                 if (!rdev_set_badblocks(
2273                                             rdev,
2274                                             sh->sector,
2275                                             STRIPE_SECTORS, 0))
2276                                         md_error(conf->mddev, rdev);
2277                                 rdev_dec_pending(rdev, conf->mddev);
2278                         }
2279                 }
2280                 spin_lock_irq(&conf->device_lock);
2281                 /* fail all writes first */
2282                 bi = sh->dev[i].towrite;
2283                 sh->dev[i].towrite = NULL;
2284                 if (bi) {
2285                         s->to_write--;
2286                         bitmap_end = 1;
2287                 }
2288
2289                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2290                         wake_up(&conf->wait_for_overlap);
2291
2292                 while (bi && bi->bi_sector <
2293                         sh->dev[i].sector + STRIPE_SECTORS) {
2294                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2295                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2296                         if (!raid5_dec_bi_phys_segments(bi)) {
2297                                 md_write_end(conf->mddev);
2298                                 bi->bi_next = *return_bi;
2299                                 *return_bi = bi;
2300                         }
2301                         bi = nextbi;
2302                 }
2303                 /* and fail all 'written' */
2304                 bi = sh->dev[i].written;
2305                 sh->dev[i].written = NULL;
2306                 if (bi) bitmap_end = 1;
2307                 while (bi && bi->bi_sector <
2308                        sh->dev[i].sector + STRIPE_SECTORS) {
2309                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2310                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2311                         if (!raid5_dec_bi_phys_segments(bi)) {
2312                                 md_write_end(conf->mddev);
2313                                 bi->bi_next = *return_bi;
2314                                 *return_bi = bi;
2315                         }
2316                         bi = bi2;
2317                 }
2318
2319                 /* fail any reads if this device is non-operational and
2320                  * the data has not reached the cache yet.
2321                  */
2322                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2323                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2324                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2325                         bi = sh->dev[i].toread;
2326                         sh->dev[i].toread = NULL;
2327                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2328                                 wake_up(&conf->wait_for_overlap);
2329                         if (bi) s->to_read--;
2330                         while (bi && bi->bi_sector <
2331                                sh->dev[i].sector + STRIPE_SECTORS) {
2332                                 struct bio *nextbi =
2333                                         r5_next_bio(bi, sh->dev[i].sector);
2334                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2335                                 if (!raid5_dec_bi_phys_segments(bi)) {
2336                                         bi->bi_next = *return_bi;
2337                                         *return_bi = bi;
2338                                 }
2339                                 bi = nextbi;
2340                         }
2341                 }
2342                 spin_unlock_irq(&conf->device_lock);
2343                 if (bitmap_end)
2344                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2345                                         STRIPE_SECTORS, 0, 0);
2346                 /* If we were in the middle of a write the parity block might
2347                  * still be locked - so just clear all R5_LOCKED flags
2348                  */
2349                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2350         }
2351
2352         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2353                 if (atomic_dec_and_test(&conf->pending_full_writes))
2354                         md_wakeup_thread(conf->mddev->thread);
2355 }
2356
2357 static void
2358 handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2359                    struct stripe_head_state *s)
2360 {
2361         int abort = 0;
2362         int i;
2363
2364         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2365         clear_bit(STRIPE_SYNCING, &sh->state);
2366         s->syncing = 0;
2367         /* There is nothing more to do for sync/check/repair.
2368          * For recover we need to record a bad block on all
2369          * non-sync devices, or abort the recovery
2370          */
2371         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2372                 return;
2373         /* During recovery devices cannot be removed, so locking and
2374          * refcounting of rdevs is not needed
2375          */
2376         for (i = 0; i < conf->raid_disks; i++) {
2377                 mdk_rdev_t *rdev = conf->disks[i].rdev;
2378                 if (!rdev
2379                     || test_bit(Faulty, &rdev->flags)
2380                     || test_bit(In_sync, &rdev->flags))
2381                         continue;
2382                 if (!rdev_set_badblocks(rdev, sh->sector,
2383                                         STRIPE_SECTORS, 0))
2384                         abort = 1;
2385         }
2386         if (abort) {
2387                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2388                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2389         }
2390 }
2391
2392 /* fetch_block - checks the given member device to see if its data needs
2393  * to be read or computed to satisfy a request.
2394  *
2395  * Returns 1 when no more member devices need to be checked, otherwise returns
2396  * 0 to tell the loop in handle_stripe_fill to continue
2397  */
2398 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2399                        int disk_idx, int disks)
2400 {
2401         struct r5dev *dev = &sh->dev[disk_idx];
2402         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2403                                   &sh->dev[s->failed_num[1]] };
2404
2405         /* is the data in this block needed, and can we get it? */
2406         if (!test_bit(R5_LOCKED, &dev->flags) &&
2407             !test_bit(R5_UPTODATE, &dev->flags) &&
2408             (dev->toread ||
2409              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2410              s->syncing || s->expanding ||
2411              (s->failed >= 1 && fdev[0]->toread) ||
2412              (s->failed >= 2 && fdev[1]->toread) ||
2413              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2414               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2415              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2416                 /* we would like to get this block, possibly by computing it,
2417                  * otherwise read it if the backing disk is insync
2418                  */
2419                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2420                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2421                 if ((s->uptodate == disks - 1) &&
2422                     (s->failed && (disk_idx == s->failed_num[0] ||
2423                                    disk_idx == s->failed_num[1]))) {
2424                         /* have disk failed, and we're requested to fetch it;
2425                          * do compute it
2426                          */
2427                         pr_debug("Computing stripe %llu block %d\n",
2428                                (unsigned long long)sh->sector, disk_idx);
2429                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2430                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2431                         set_bit(R5_Wantcompute, &dev->flags);
2432                         sh->ops.target = disk_idx;
2433                         sh->ops.target2 = -1; /* no 2nd target */
2434                         s->req_compute = 1;
2435                         /* Careful: from this point on 'uptodate' is in the eye
2436                          * of raid_run_ops which services 'compute' operations
2437                          * before writes. R5_Wantcompute flags a block that will
2438                          * be R5_UPTODATE by the time it is needed for a
2439                          * subsequent operation.
2440                          */
2441                         s->uptodate++;
2442                         return 1;
2443                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2444                         /* Computing 2-failure is *very* expensive; only
2445                          * do it if failed >= 2
2446                          */
2447                         int other;
2448                         for (other = disks; other--; ) {
2449                                 if (other == disk_idx)
2450                                         continue;
2451                                 if (!test_bit(R5_UPTODATE,
2452                                       &sh->dev[other].flags))
2453                                         break;
2454                         }
2455                         BUG_ON(other < 0);
2456                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2457                                (unsigned long long)sh->sector,
2458                                disk_idx, other);
2459                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2460                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2461                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2462                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2463                         sh->ops.target = disk_idx;
2464                         sh->ops.target2 = other;
2465                         s->uptodate += 2;
2466                         s->req_compute = 1;
2467                         return 1;
2468                 } else if (test_bit(R5_Insync, &dev->flags)) {
2469                         set_bit(R5_LOCKED, &dev->flags);
2470                         set_bit(R5_Wantread, &dev->flags);
2471                         s->locked++;
2472                         pr_debug("Reading block %d (sync=%d)\n",
2473                                 disk_idx, s->syncing);
2474                 }
2475         }
2476
2477         return 0;
2478 }
2479
2480 /**
2481  * handle_stripe_fill - read or compute data to satisfy pending requests.
2482  */
2483 static void handle_stripe_fill(struct stripe_head *sh,
2484                                struct stripe_head_state *s,
2485                                int disks)
2486 {
2487         int i;
2488
2489         /* look for blocks to read/compute, skip this if a compute
2490          * is already in flight, or if the stripe contents are in the
2491          * midst of changing due to a write
2492          */
2493         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2494             !sh->reconstruct_state)
2495                 for (i = disks; i--; )
2496                         if (fetch_block(sh, s, i, disks))
2497                                 break;
2498         set_bit(STRIPE_HANDLE, &sh->state);
2499 }
2500
2501
2502 /* handle_stripe_clean_event
2503  * any written block on an uptodate or failed drive can be returned.
2504  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2505  * never LOCKED, so we don't need to test 'failed' directly.
2506  */
2507 static void handle_stripe_clean_event(raid5_conf_t *conf,
2508         struct stripe_head *sh, int disks, struct bio **return_bi)
2509 {
2510         int i;
2511         struct r5dev *dev;
2512
2513         for (i = disks; i--; )
2514                 if (sh->dev[i].written) {
2515                         dev = &sh->dev[i];
2516                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2517                                 test_bit(R5_UPTODATE, &dev->flags)) {
2518                                 /* We can return any write requests */
2519                                 struct bio *wbi, *wbi2;
2520                                 int bitmap_end = 0;
2521                                 pr_debug("Return write for disc %d\n", i);
2522                                 spin_lock_irq(&conf->device_lock);
2523                                 wbi = dev->written;
2524                                 dev->written = NULL;
2525                                 while (wbi && wbi->bi_sector <
2526                                         dev->sector + STRIPE_SECTORS) {
2527                                         wbi2 = r5_next_bio(wbi, dev->sector);
2528                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2529                                                 md_write_end(conf->mddev);
2530                                                 wbi->bi_next = *return_bi;
2531                                                 *return_bi = wbi;
2532                                         }
2533                                         wbi = wbi2;
2534                                 }
2535                                 if (dev->towrite == NULL)
2536                                         bitmap_end = 1;
2537                                 spin_unlock_irq(&conf->device_lock);
2538                                 if (bitmap_end)
2539                                         bitmap_endwrite(conf->mddev->bitmap,
2540                                                         sh->sector,
2541                                                         STRIPE_SECTORS,
2542                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2543                                                         0);
2544                         }
2545                 }
2546
2547         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2548                 if (atomic_dec_and_test(&conf->pending_full_writes))
2549                         md_wakeup_thread(conf->mddev->thread);
2550 }
2551
2552 static void handle_stripe_dirtying(raid5_conf_t *conf,
2553                                    struct stripe_head *sh,
2554                                    struct stripe_head_state *s,
2555                                    int disks)
2556 {
2557         int rmw = 0, rcw = 0, i;
2558         if (conf->max_degraded == 2) {
2559                 /* RAID6 requires 'rcw' in current implementation
2560                  * Calculate the real rcw later - for now fake it
2561                  * look like rcw is cheaper
2562                  */
2563                 rcw = 1; rmw = 2;
2564         } else for (i = disks; i--; ) {
2565                 /* would I have to read this buffer for read_modify_write */
2566                 struct r5dev *dev = &sh->dev[i];
2567                 if ((dev->towrite || i == sh->pd_idx) &&
2568                     !test_bit(R5_LOCKED, &dev->flags) &&
2569                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2570                       test_bit(R5_Wantcompute, &dev->flags))) {
2571                         if (test_bit(R5_Insync, &dev->flags))
2572                                 rmw++;
2573                         else
2574                                 rmw += 2*disks;  /* cannot read it */
2575                 }
2576                 /* Would I have to read this buffer for reconstruct_write */
2577                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2578                     !test_bit(R5_LOCKED, &dev->flags) &&
2579                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2580                     test_bit(R5_Wantcompute, &dev->flags))) {
2581                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2582                         else
2583                                 rcw += 2*disks;
2584                 }
2585         }
2586         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2587                 (unsigned long long)sh->sector, rmw, rcw);
2588         set_bit(STRIPE_HANDLE, &sh->state);
2589         if (rmw < rcw && rmw > 0)
2590                 /* prefer read-modify-write, but need to get some data */
2591                 for (i = disks; i--; ) {
2592                         struct r5dev *dev = &sh->dev[i];
2593                         if ((dev->towrite || i == sh->pd_idx) &&
2594                             !test_bit(R5_LOCKED, &dev->flags) &&
2595                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2596                             test_bit(R5_Wantcompute, &dev->flags)) &&
2597                             test_bit(R5_Insync, &dev->flags)) {
2598                                 if (
2599                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2600                                         pr_debug("Read_old block "
2601                                                 "%d for r-m-w\n", i);
2602                                         set_bit(R5_LOCKED, &dev->flags);
2603                                         set_bit(R5_Wantread, &dev->flags);
2604                                         s->locked++;
2605                                 } else {
2606                                         set_bit(STRIPE_DELAYED, &sh->state);
2607                                         set_bit(STRIPE_HANDLE, &sh->state);
2608                                 }
2609                         }
2610                 }
2611         if (rcw <= rmw && rcw > 0) {
2612                 /* want reconstruct write, but need to get some data */
2613                 rcw = 0;
2614                 for (i = disks; i--; ) {
2615                         struct r5dev *dev = &sh->dev[i];
2616                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2617                             i != sh->pd_idx && i != sh->qd_idx &&
2618                             !test_bit(R5_LOCKED, &dev->flags) &&
2619                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2620                               test_bit(R5_Wantcompute, &dev->flags))) {
2621                                 rcw++;
2622                                 if (!test_bit(R5_Insync, &dev->flags))
2623                                         continue; /* it's a failed drive */
2624                                 if (
2625                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2626                                         pr_debug("Read_old block "
2627                                                 "%d for Reconstruct\n", i);
2628                                         set_bit(R5_LOCKED, &dev->flags);
2629                                         set_bit(R5_Wantread, &dev->flags);
2630                                         s->locked++;
2631                                 } else {
2632                                         set_bit(STRIPE_DELAYED, &sh->state);
2633                                         set_bit(STRIPE_HANDLE, &sh->state);
2634                                 }
2635                         }
2636                 }
2637         }
2638         /* now if nothing is locked, and if we have enough data,
2639          * we can start a write request
2640          */
2641         /* since handle_stripe can be called at any time we need to handle the
2642          * case where a compute block operation has been submitted and then a
2643          * subsequent call wants to start a write request.  raid_run_ops only
2644          * handles the case where compute block and reconstruct are requested
2645          * simultaneously.  If this is not the case then new writes need to be
2646          * held off until the compute completes.
2647          */
2648         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2649             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2650             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2651                 schedule_reconstruction(sh, s, rcw == 0, 0);
2652 }
2653
2654 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2655                                 struct stripe_head_state *s, int disks)
2656 {
2657         struct r5dev *dev = NULL;
2658
2659         set_bit(STRIPE_HANDLE, &sh->state);
2660
2661         switch (sh->check_state) {
2662         case check_state_idle:
2663                 /* start a new check operation if there are no failures */
2664                 if (s->failed == 0) {
2665                         BUG_ON(s->uptodate != disks);
2666                         sh->check_state = check_state_run;
2667                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2668                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2669                         s->uptodate--;
2670                         break;
2671                 }
2672                 dev = &sh->dev[s->failed_num[0]];
2673                 /* fall through */
2674         case check_state_compute_result:
2675                 sh->check_state = check_state_idle;
2676                 if (!dev)
2677                         dev = &sh->dev[sh->pd_idx];
2678
2679                 /* check that a write has not made the stripe insync */
2680                 if (test_bit(STRIPE_INSYNC, &sh->state))
2681                         break;
2682
2683                 /* either failed parity check, or recovery is happening */
2684                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2685                 BUG_ON(s->uptodate != disks);
2686
2687                 set_bit(R5_LOCKED, &dev->flags);
2688                 s->locked++;
2689                 set_bit(R5_Wantwrite, &dev->flags);
2690
2691                 clear_bit(STRIPE_DEGRADED, &sh->state);
2692                 set_bit(STRIPE_INSYNC, &sh->state);
2693                 break;
2694         case check_state_run:
2695                 break; /* we will be called again upon completion */
2696         case check_state_check_result:
2697                 sh->check_state = check_state_idle;
2698
2699                 /* if a failure occurred during the check operation, leave
2700                  * STRIPE_INSYNC not set and let the stripe be handled again
2701                  */
2702                 if (s->failed)
2703                         break;
2704
2705                 /* handle a successful check operation, if parity is correct
2706                  * we are done.  Otherwise update the mismatch count and repair
2707                  * parity if !MD_RECOVERY_CHECK
2708                  */
2709                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2710                         /* parity is correct (on disc,
2711                          * not in buffer any more)
2712                          */
2713                         set_bit(STRIPE_INSYNC, &sh->state);
2714                 else {
2715                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2716                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2717                                 /* don't try to repair!! */
2718                                 set_bit(STRIPE_INSYNC, &sh->state);
2719                         else {
2720                                 sh->check_state = check_state_compute_run;
2721                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2722                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2723                                 set_bit(R5_Wantcompute,
2724                                         &sh->dev[sh->pd_idx].flags);
2725                                 sh->ops.target = sh->pd_idx;
2726                                 sh->ops.target2 = -1;
2727                                 s->uptodate++;
2728                         }
2729                 }
2730                 break;
2731         case check_state_compute_run:
2732                 break;
2733         default:
2734                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2735                        __func__, sh->check_state,
2736                        (unsigned long long) sh->sector);
2737                 BUG();
2738         }
2739 }
2740
2741
2742 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2743                                   struct stripe_head_state *s,
2744                                   int disks)
2745 {
2746         int pd_idx = sh->pd_idx;
2747         int qd_idx = sh->qd_idx;
2748         struct r5dev *dev;
2749
2750         set_bit(STRIPE_HANDLE, &sh->state);
2751
2752         BUG_ON(s->failed > 2);
2753
2754         /* Want to check and possibly repair P and Q.
2755          * However there could be one 'failed' device, in which
2756          * case we can only check one of them, possibly using the
2757          * other to generate missing data
2758          */
2759
2760         switch (sh->check_state) {
2761         case check_state_idle:
2762                 /* start a new check operation if there are < 2 failures */
2763                 if (s->failed == s->q_failed) {
2764                         /* The only possible failed device holds Q, so it
2765                          * makes sense to check P (If anything else were failed,
2766                          * we would have used P to recreate it).
2767                          */
2768                         sh->check_state = check_state_run;
2769                 }
2770                 if (!s->q_failed && s->failed < 2) {
2771                         /* Q is not failed, and we didn't use it to generate
2772                          * anything, so it makes sense to check it
2773                          */
2774                         if (sh->check_state == check_state_run)
2775                                 sh->check_state = check_state_run_pq;
2776                         else
2777                                 sh->check_state = check_state_run_q;
2778                 }
2779
2780                 /* discard potentially stale zero_sum_result */
2781                 sh->ops.zero_sum_result = 0;
2782
2783                 if (sh->check_state == check_state_run) {
2784                         /* async_xor_zero_sum destroys the contents of P */
2785                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2786                         s->uptodate--;
2787                 }
2788                 if (sh->check_state >= check_state_run &&
2789                     sh->check_state <= check_state_run_pq) {
2790                         /* async_syndrome_zero_sum preserves P and Q, so
2791                          * no need to mark them !uptodate here
2792                          */
2793                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2794                         break;
2795                 }
2796
2797                 /* we have 2-disk failure */
2798                 BUG_ON(s->failed != 2);
2799                 /* fall through */
2800         case check_state_compute_result:
2801                 sh->check_state = check_state_idle;
2802
2803                 /* check that a write has not made the stripe insync */
2804                 if (test_bit(STRIPE_INSYNC, &sh->state))
2805                         break;
2806
2807                 /* now write out any block on a failed drive,
2808                  * or P or Q if they were recomputed
2809                  */
2810                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2811                 if (s->failed == 2) {
2812                         dev = &sh->dev[s->failed_num[1]];
2813                         s->locked++;
2814                         set_bit(R5_LOCKED, &dev->flags);
2815                         set_bit(R5_Wantwrite, &dev->flags);
2816                 }
2817                 if (s->failed >= 1) {
2818                         dev = &sh->dev[s->failed_num[0]];
2819                         s->locked++;
2820                         set_bit(R5_LOCKED, &dev->flags);
2821                         set_bit(R5_Wantwrite, &dev->flags);
2822                 }
2823                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2824                         dev = &sh->dev[pd_idx];
2825                         s->locked++;
2826                         set_bit(R5_LOCKED, &dev->flags);
2827                         set_bit(R5_Wantwrite, &dev->flags);
2828                 }
2829                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2830                         dev = &sh->dev[qd_idx];
2831                         s->locked++;
2832                         set_bit(R5_LOCKED, &dev->flags);
2833                         set_bit(R5_Wantwrite, &dev->flags);
2834                 }
2835                 clear_bit(STRIPE_DEGRADED, &sh->state);
2836
2837                 set_bit(STRIPE_INSYNC, &sh->state);
2838                 break;
2839         case check_state_run:
2840         case check_state_run_q:
2841         case check_state_run_pq:
2842                 break; /* we will be called again upon completion */
2843         case check_state_check_result:
2844                 sh->check_state = check_state_idle;
2845
2846                 /* handle a successful check operation, if parity is correct
2847                  * we are done.  Otherwise update the mismatch count and repair
2848                  * parity if !MD_RECOVERY_CHECK
2849                  */
2850                 if (sh->ops.zero_sum_result == 0) {
2851                         /* both parities are correct */
2852                         if (!s->failed)
2853                                 set_bit(STRIPE_INSYNC, &sh->state);
2854                         else {
2855                                 /* in contrast to the raid5 case we can validate
2856                                  * parity, but still have a failure to write
2857                                  * back
2858                                  */
2859                                 sh->check_state = check_state_compute_result;
2860                                 /* Returning at this point means that we may go
2861                                  * off and bring p and/or q uptodate again so
2862                                  * we make sure to check zero_sum_result again
2863                                  * to verify if p or q need writeback
2864                                  */
2865                         }
2866                 } else {
2867                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2868                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2869                                 /* don't try to repair!! */
2870                                 set_bit(STRIPE_INSYNC, &sh->state);
2871                         else {
2872                                 int *target = &sh->ops.target;
2873
2874                                 sh->ops.target = -1;
2875                                 sh->ops.target2 = -1;
2876                                 sh->check_state = check_state_compute_run;
2877                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2878                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2879                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2880                                         set_bit(R5_Wantcompute,
2881                                                 &sh->dev[pd_idx].flags);
2882                                         *target = pd_idx;
2883                                         target = &sh->ops.target2;
2884                                         s->uptodate++;
2885                                 }
2886                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2887                                         set_bit(R5_Wantcompute,
2888                                                 &sh->dev[qd_idx].flags);
2889                                         *target = qd_idx;
2890                                         s->uptodate++;
2891                                 }
2892                         }
2893                 }
2894                 break;
2895         case check_state_compute_run:
2896                 break;
2897         default:
2898                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2899                        __func__, sh->check_state,
2900                        (unsigned long long) sh->sector);
2901                 BUG();
2902         }
2903 }
2904
2905 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2906 {
2907         int i;
2908
2909         /* We have read all the blocks in this stripe and now we need to
2910          * copy some of them into a target stripe for expand.
2911          */
2912         struct dma_async_tx_descriptor *tx = NULL;
2913         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2914         for (i = 0; i < sh->disks; i++)
2915                 if (i != sh->pd_idx && i != sh->qd_idx) {
2916                         int dd_idx, j;
2917                         struct stripe_head *sh2;
2918                         struct async_submit_ctl submit;
2919
2920                         sector_t bn = compute_blocknr(sh, i, 1);
2921                         sector_t s = raid5_compute_sector(conf, bn, 0,
2922                                                           &dd_idx, NULL);
2923                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2924                         if (sh2 == NULL)
2925                                 /* so far only the early blocks of this stripe
2926                                  * have been requested.  When later blocks
2927                                  * get requested, we will try again
2928                                  */
2929                                 continue;
2930                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2931                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2932                                 /* must have already done this block */
2933                                 release_stripe(sh2);
2934                                 continue;
2935                         }
2936
2937                         /* place all the copies on one channel */
2938                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2939                         tx = async_memcpy(sh2->dev[dd_idx].page,
2940                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2941                                           &submit);
2942
2943                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2944                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2945                         for (j = 0; j < conf->raid_disks; j++)
2946                                 if (j != sh2->pd_idx &&
2947                                     j != sh2->qd_idx &&
2948                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2949                                         break;
2950                         if (j == conf->raid_disks) {
2951                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2952                                 set_bit(STRIPE_HANDLE, &sh2->state);
2953                         }
2954                         release_stripe(sh2);
2955
2956                 }
2957         /* done submitting copies, wait for them to complete */
2958         if (tx) {
2959                 async_tx_ack(tx);
2960                 dma_wait_for_async_tx(tx);
2961         }
2962 }
2963
2964
2965 /*
2966  * handle_stripe - do things to a stripe.
2967  *
2968  * We lock the stripe and then examine the state of various bits
2969  * to see what needs to be done.
2970  * Possible results:
2971  *    return some read request which now have data
2972  *    return some write requests which are safely on disc
2973  *    schedule a read on some buffers
2974  *    schedule a write of some buffers
2975  *    return confirmation of parity correctness
2976  *
2977  * buffers are taken off read_list or write_list, and bh_cache buffers
2978  * get BH_Lock set before the stripe lock is released.
2979  *
2980  */
2981
2982 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2983 {
2984         raid5_conf_t *conf = sh->raid_conf;
2985         int disks = sh->disks;
2986         struct r5dev *dev;
2987         int i;
2988
2989         memset(s, 0, sizeof(*s));
2990
2991         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2992         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2993         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2994         s->failed_num[0] = -1;
2995         s->failed_num[1] = -1;
2996
2997         /* Now to look around and see what can be done */
2998         rcu_read_lock();
2999         spin_lock_irq(&conf->device_lock);
3000         for (i=disks; i--; ) {
3001                 mdk_rdev_t *rdev;
3002                 sector_t first_bad;
3003                 int bad_sectors;
3004                 int is_bad = 0;
3005
3006                 dev = &sh->dev[i];
3007
3008                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3009                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3010                 /* maybe we can reply to a read
3011                  *
3012                  * new wantfill requests are only permitted while
3013                  * ops_complete_biofill is guaranteed to be inactive
3014                  */
3015                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3016                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3017                         set_bit(R5_Wantfill, &dev->flags);
3018
3019                 /* now count some things */
3020                 if (test_bit(R5_LOCKED, &dev->flags))
3021                         s->locked++;
3022                 if (test_bit(R5_UPTODATE, &dev->flags))
3023                         s->uptodate++;
3024                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3025                         s->compute++;
3026                         BUG_ON(s->compute > 2);
3027                 }
3028
3029                 if (test_bit(R5_Wantfill, &dev->flags))
3030                         s->to_fill++;
3031                 else if (dev->toread)
3032                         s->to_read++;
3033                 if (dev->towrite) {
3034                         s->to_write++;
3035                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3036                                 s->non_overwrite++;
3037                 }
3038                 if (dev->written)
3039                         s->written++;
3040                 rdev = rcu_dereference(conf->disks[i].rdev);
3041                 if (rdev) {
3042                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3043                                              &first_bad, &bad_sectors);
3044                         if (s->blocked_rdev == NULL
3045                             && (test_bit(Blocked, &rdev->flags)
3046                                 || is_bad < 0)) {
3047                                 if (is_bad < 0)
3048                                         set_bit(BlockedBadBlocks,
3049                                                 &rdev->flags);
3050                                 s->blocked_rdev = rdev;
3051                                 atomic_inc(&rdev->nr_pending);
3052                         }
3053                 }
3054                 clear_bit(R5_Insync, &dev->flags);
3055                 if (!rdev)
3056                         /* Not in-sync */;
3057                 else if (is_bad) {
3058                         /* also not in-sync */
3059                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3060                                 /* treat as in-sync, but with a read error
3061                                  * which we can now try to correct
3062                                  */
3063                                 set_bit(R5_Insync, &dev->flags);
3064                                 set_bit(R5_ReadError, &dev->flags);
3065                         }
3066                 } else if (test_bit(In_sync, &rdev->flags))
3067                         set_bit(R5_Insync, &dev->flags);
3068                 else {
3069                         /* in sync if before recovery_offset */
3070                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3071                                 set_bit(R5_Insync, &dev->flags);
3072                 }
3073                 if (test_bit(R5_WriteError, &dev->flags)) {
3074                         clear_bit(R5_Insync, &dev->flags);
3075                         if (!test_bit(Faulty, &rdev->flags)) {
3076                                 s->handle_bad_blocks = 1;
3077                                 atomic_inc(&rdev->nr_pending);
3078                         } else
3079                                 clear_bit(R5_WriteError, &dev->flags);
3080                 }
3081                 if (!test_bit(R5_Insync, &dev->flags)) {
3082                         /* The ReadError flag will just be confusing now */
3083                         clear_bit(R5_ReadError, &dev->flags);
3084                         clear_bit(R5_ReWrite, &dev->flags);
3085                 }
3086                 if (test_bit(R5_ReadError, &dev->flags))
3087                         clear_bit(R5_Insync, &dev->flags);
3088                 if (!test_bit(R5_Insync, &dev->flags)) {
3089                         if (s->failed < 2)
3090                                 s->failed_num[s->failed] = i;
3091                         s->failed++;
3092                 }
3093         }
3094         spin_unlock_irq(&conf->device_lock);
3095         rcu_read_unlock();
3096 }
3097
3098 static void handle_stripe(struct stripe_head *sh)
3099 {
3100         struct stripe_head_state s;
3101         raid5_conf_t *conf = sh->raid_conf;
3102         int i;
3103         int prexor;
3104         int disks = sh->disks;
3105         struct r5dev *pdev, *qdev;
3106
3107         clear_bit(STRIPE_HANDLE, &sh->state);
3108         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3109                 /* already being handled, ensure it gets handled
3110                  * again when current action finishes */
3111                 set_bit(STRIPE_HANDLE, &sh->state);
3112                 return;
3113         }
3114
3115         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3116                 set_bit(STRIPE_SYNCING, &sh->state);
3117                 clear_bit(STRIPE_INSYNC, &sh->state);
3118         }
3119         clear_bit(STRIPE_DELAYED, &sh->state);
3120
3121         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3122                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3123                (unsigned long long)sh->sector, sh->state,
3124                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3125                sh->check_state, sh->reconstruct_state);
3126
3127         analyse_stripe(sh, &s);
3128
3129         if (s.handle_bad_blocks) {
3130                 set_bit(STRIPE_HANDLE, &sh->state);
3131                 goto finish;
3132         }
3133
3134         if (unlikely(s.blocked_rdev)) {
3135                 if (s.syncing || s.expanding || s.expanded ||
3136                     s.to_write || s.written) {
3137                         set_bit(STRIPE_HANDLE, &sh->state);
3138                         goto finish;
3139                 }
3140                 /* There is nothing for the blocked_rdev to block */
3141                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3142                 s.blocked_rdev = NULL;
3143         }
3144
3145         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3146                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3147                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3148         }
3149
3150         pr_debug("locked=%d uptodate=%d to_read=%d"
3151                " to_write=%d failed=%d failed_num=%d,%d\n",
3152                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3153                s.failed_num[0], s.failed_num[1]);
3154         /* check if the array has lost more than max_degraded devices and,
3155          * if so, some requests might need to be failed.
3156          */
3157         if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3158                 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3159         if (s.failed > conf->max_degraded && s.syncing)
3160                 handle_failed_sync(conf, sh, &s);
3161
3162         /*
3163          * might be able to return some write requests if the parity blocks
3164          * are safe, or on a failed drive
3165          */
3166         pdev = &sh->dev[sh->pd_idx];
3167         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3168                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3169         qdev = &sh->dev[sh->qd_idx];
3170         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3171                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3172                 || conf->level < 6;
3173
3174         if (s.written &&
3175             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3176                              && !test_bit(R5_LOCKED, &pdev->flags)
3177                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3178             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3179                              && !test_bit(R5_LOCKED, &qdev->flags)
3180                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3181                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3182
3183         /* Now we might consider reading some blocks, either to check/generate
3184          * parity, or to satisfy requests
3185          * or to load a block that is being partially written.
3186          */
3187         if (s.to_read || s.non_overwrite
3188             || (conf->level == 6 && s.to_write && s.failed)
3189             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3190                 handle_stripe_fill(sh, &s, disks);
3191
3192         /* Now we check to see if any write operations have recently
3193          * completed
3194          */
3195         prexor = 0;
3196         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3197                 prexor = 1;
3198         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3199             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3200                 sh->reconstruct_state = reconstruct_state_idle;
3201
3202                 /* All the 'written' buffers and the parity block are ready to
3203                  * be written back to disk
3204                  */
3205                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3206                 BUG_ON(sh->qd_idx >= 0 &&
3207                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3208                 for (i = disks; i--; ) {
3209                         struct r5dev *dev = &sh->dev[i];
3210                         if (test_bit(R5_LOCKED, &dev->flags) &&
3211                                 (i == sh->pd_idx || i == sh->qd_idx ||
3212                                  dev->written)) {
3213                                 pr_debug("Writing block %d\n", i);
3214                                 set_bit(R5_Wantwrite, &dev->flags);
3215                                 if (prexor)
3216                                         continue;
3217                                 if (!test_bit(R5_Insync, &dev->flags) ||
3218                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3219                                      s.failed == 0))
3220                                         set_bit(STRIPE_INSYNC, &sh->state);
3221                         }
3222                 }
3223                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3224                         s.dec_preread_active = 1;
3225         }
3226
3227         /* Now to consider new write requests and what else, if anything
3228          * should be read.  We do not handle new writes when:
3229          * 1/ A 'write' operation (copy+xor) is already in flight.
3230          * 2/ A 'check' operation is in flight, as it may clobber the parity
3231          *    block.
3232          */
3233         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3234                 handle_stripe_dirtying(conf, sh, &s, disks);
3235
3236         /* maybe we need to check and possibly fix the parity for this stripe
3237          * Any reads will already have been scheduled, so we just see if enough
3238          * data is available.  The parity check is held off while parity
3239          * dependent operations are in flight.
3240          */
3241         if (sh->check_state ||
3242             (s.syncing && s.locked == 0 &&
3243              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3244              !test_bit(STRIPE_INSYNC, &sh->state))) {
3245                 if (conf->level == 6)
3246                         handle_parity_checks6(conf, sh, &s, disks);
3247                 else
3248                         handle_parity_checks5(conf, sh, &s, disks);
3249         }
3250
3251         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3252                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3253                 clear_bit(STRIPE_SYNCING, &sh->state);
3254         }
3255
3256         /* If the failed drives are just a ReadError, then we might need
3257          * to progress the repair/check process
3258          */
3259         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3260                 for (i = 0; i < s.failed; i++) {
3261                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3262                         if (test_bit(R5_ReadError, &dev->flags)
3263                             && !test_bit(R5_LOCKED, &dev->flags)
3264                             && test_bit(R5_UPTODATE, &dev->flags)
3265                                 ) {
3266                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3267                                         set_bit(R5_Wantwrite, &dev->flags);
3268                                         set_bit(R5_ReWrite, &dev->flags);
3269                                         set_bit(R5_LOCKED, &dev->flags);
3270                                         s.locked++;
3271                                 } else {
3272                                         /* let's read it back */
3273                                         set_bit(R5_Wantread, &dev->flags);
3274                                         set_bit(R5_LOCKED, &dev->flags);
3275                                         s.locked++;
3276                                 }
3277                         }
3278                 }
3279
3280
3281         /* Finish reconstruct operations initiated by the expansion process */
3282         if (sh->reconstruct_state == reconstruct_state_result) {
3283                 struct stripe_head *sh_src
3284                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3285                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3286                         /* sh cannot be written until sh_src has been read.
3287                          * so arrange for sh to be delayed a little
3288                          */
3289                         set_bit(STRIPE_DELAYED, &sh->state);
3290                         set_bit(STRIPE_HANDLE, &sh->state);
3291                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3292                                               &sh_src->state))
3293                                 atomic_inc(&conf->preread_active_stripes);
3294                         release_stripe(sh_src);
3295                         goto finish;
3296                 }
3297                 if (sh_src)
3298                         release_stripe(sh_src);
3299
3300                 sh->reconstruct_state = reconstruct_state_idle;
3301                 clear_bit(STRIPE_EXPANDING, &sh->state);
3302                 for (i = conf->raid_disks; i--; ) {
3303                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3304                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3305                         s.locked++;
3306                 }
3307         }
3308
3309         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3310             !sh->reconstruct_state) {
3311                 /* Need to write out all blocks after computing parity */
3312                 sh->disks = conf->raid_disks;
3313                 stripe_set_idx(sh->sector, conf, 0, sh);
3314                 schedule_reconstruction(sh, &s, 1, 1);
3315         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3316                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3317                 atomic_dec(&conf->reshape_stripes);
3318                 wake_up(&conf->wait_for_overlap);
3319                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3320         }
3321
3322         if (s.expanding && s.locked == 0 &&
3323             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3324                 handle_stripe_expansion(conf, sh);
3325
3326 finish:
3327         /* wait for this device to become unblocked */
3328         if (unlikely(s.blocked_rdev))
3329                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3330
3331         if (s.handle_bad_blocks)
3332                 for (i = disks; i--; ) {
3333                         mdk_rdev_t *rdev;
3334                         struct r5dev *dev = &sh->dev[i];
3335                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3336                                 /* We own a safe reference to the rdev */
3337                                 rdev = conf->disks[i].rdev;
3338                                 if (!rdev_set_badblocks(rdev, sh->sector,
3339                                                         STRIPE_SECTORS, 0))
3340                                         md_error(conf->mddev, rdev);
3341                                 rdev_dec_pending(rdev, conf->mddev);
3342                         }
3343                 }
3344
3345         if (s.ops_request)
3346                 raid_run_ops(sh, s.ops_request);
3347
3348         ops_run_io(sh, &s);
3349
3350         if (s.dec_preread_active) {
3351                 /* We delay this until after ops_run_io so that if make_request
3352                  * is waiting on a flush, it won't continue until the writes
3353                  * have actually been submitted.
3354                  */
3355                 atomic_dec(&conf->preread_active_stripes);
3356                 if (atomic_read(&conf->preread_active_stripes) <
3357                     IO_THRESHOLD)
3358                         md_wakeup_thread(conf->mddev->thread);
3359         }
3360
3361         return_io(s.return_bi);
3362
3363         clear_bit(STRIPE_ACTIVE, &sh->state);
3364 }
3365
3366 static void raid5_activate_delayed(raid5_conf_t *conf)
3367 {
3368         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3369                 while (!list_empty(&conf->delayed_list)) {
3370                         struct list_head *l = conf->delayed_list.next;
3371                         struct stripe_head *sh;
3372                         sh = list_entry(l, struct stripe_head, lru);
3373                         list_del_init(l);
3374                         clear_bit(STRIPE_DELAYED, &sh->state);
3375                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3376                                 atomic_inc(&conf->preread_active_stripes);
3377                         list_add_tail(&sh->lru, &conf->hold_list);
3378                 }
3379         }
3380 }
3381
3382 static void activate_bit_delay(raid5_conf_t *conf)
3383 {
3384         /* device_lock is held */
3385         struct list_head head;
3386         list_add(&head, &conf->bitmap_list);
3387         list_del_init(&conf->bitmap_list);
3388         while (!list_empty(&head)) {
3389                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3390                 list_del_init(&sh->lru);
3391                 atomic_inc(&sh->count);
3392                 __release_stripe(conf, sh);
3393         }
3394 }
3395
3396 int md_raid5_congested(mddev_t *mddev, int bits)
3397 {
3398         raid5_conf_t *conf = mddev->private;
3399
3400         /* No difference between reads and writes.  Just check
3401          * how busy the stripe_cache is
3402          */
3403
3404         if (conf->inactive_blocked)
3405                 return 1;
3406         if (conf->quiesce)
3407                 return 1;
3408         if (list_empty_careful(&conf->inactive_list))
3409                 return 1;
3410
3411         return 0;
3412 }
3413 EXPORT_SYMBOL_GPL(md_raid5_congested);
3414
3415 static int raid5_congested(void *data, int bits)
3416 {
3417         mddev_t *mddev = data;
3418
3419         return mddev_congested(mddev, bits) ||
3420                 md_raid5_congested(mddev, bits);
3421 }
3422
3423 /* We want read requests to align with chunks where possible,
3424  * but write requests don't need to.
3425  */
3426 static int raid5_mergeable_bvec(struct request_queue *q,
3427                                 struct bvec_merge_data *bvm,
3428                                 struct bio_vec *biovec)
3429 {
3430         mddev_t *mddev = q->queuedata;
3431         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3432         int max;
3433         unsigned int chunk_sectors = mddev->chunk_sectors;
3434         unsigned int bio_sectors = bvm->bi_size >> 9;
3435
3436         if ((bvm->bi_rw & 1) == WRITE)
3437                 return biovec->bv_len; /* always allow writes to be mergeable */
3438
3439         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3440                 chunk_sectors = mddev->new_chunk_sectors;
3441         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3442         if (max < 0) max = 0;
3443         if (max <= biovec->bv_len && bio_sectors == 0)
3444                 return biovec->bv_len;
3445         else
3446                 return max;
3447 }
3448
3449
3450 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3451 {
3452         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3453         unsigned int chunk_sectors = mddev->chunk_sectors;
3454         unsigned int bio_sectors = bio->bi_size >> 9;
3455
3456         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457                 chunk_sectors = mddev->new_chunk_sectors;
3458         return  chunk_sectors >=
3459                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3460 }
3461
3462 /*
3463  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3464  *  later sampled by raid5d.
3465  */
3466 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3467 {
3468         unsigned long flags;
3469
3470         spin_lock_irqsave(&conf->device_lock, flags);
3471
3472         bi->bi_next = conf->retry_read_aligned_list;
3473         conf->retry_read_aligned_list = bi;
3474
3475         spin_unlock_irqrestore(&conf->device_lock, flags);
3476         md_wakeup_thread(conf->mddev->thread);
3477 }
3478
3479
3480 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3481 {
3482         struct bio *bi;
3483
3484         bi = conf->retry_read_aligned;
3485         if (bi) {
3486                 conf->retry_read_aligned = NULL;
3487                 return bi;
3488         }
3489         bi = conf->retry_read_aligned_list;
3490         if(bi) {
3491                 conf->retry_read_aligned_list = bi->bi_next;
3492                 bi->bi_next = NULL;
3493                 /*
3494                  * this sets the active strip count to 1 and the processed
3495                  * strip count to zero (upper 8 bits)
3496                  */
3497                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3498         }
3499
3500         return bi;
3501 }
3502
3503
3504 /*
3505  *  The "raid5_align_endio" should check if the read succeeded and if it
3506  *  did, call bio_endio on the original bio (having bio_put the new bio
3507  *  first).
3508  *  If the read failed..
3509  */
3510 static void raid5_align_endio(struct bio *bi, int error)
3511 {
3512         struct bio* raid_bi  = bi->bi_private;
3513         mddev_t *mddev;
3514         raid5_conf_t *conf;
3515         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3516         mdk_rdev_t *rdev;
3517
3518         bio_put(bi);
3519
3520         rdev = (void*)raid_bi->bi_next;
3521         raid_bi->bi_next = NULL;
3522         mddev = rdev->mddev;
3523         conf = mddev->private;
3524
3525         rdev_dec_pending(rdev, conf->mddev);
3526
3527         if (!error && uptodate) {
3528                 bio_endio(raid_bi, 0);
3529                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3530                         wake_up(&conf->wait_for_stripe);
3531                 return;
3532         }
3533
3534
3535         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3536
3537         add_bio_to_retry(raid_bi, conf);
3538 }
3539
3540 static int bio_fits_rdev(struct bio *bi)
3541 {
3542         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3543
3544         if ((bi->bi_size>>9) > queue_max_sectors(q))
3545                 return 0;
3546         blk_recount_segments(q, bi);
3547         if (bi->bi_phys_segments > queue_max_segments(q))
3548                 return 0;
3549
3550         if (q->merge_bvec_fn)
3551                 /* it's too hard to apply the merge_bvec_fn at this stage,
3552                  * just just give up
3553                  */
3554                 return 0;
3555
3556         return 1;
3557 }
3558
3559
3560 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3561 {
3562         raid5_conf_t *conf = mddev->private;
3563         int dd_idx;
3564         struct bio* align_bi;
3565         mdk_rdev_t *rdev;
3566
3567         if (!in_chunk_boundary(mddev, raid_bio)) {
3568                 pr_debug("chunk_aligned_read : non aligned\n");
3569                 return 0;
3570         }
3571         /*
3572          * use bio_clone_mddev to make a copy of the bio
3573          */
3574         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3575         if (!align_bi)
3576                 return 0;
3577         /*
3578          *   set bi_end_io to a new function, and set bi_private to the
3579          *     original bio.
3580          */
3581         align_bi->bi_end_io  = raid5_align_endio;
3582         align_bi->bi_private = raid_bio;
3583         /*
3584          *      compute position
3585          */
3586         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3587                                                     0,
3588                                                     &dd_idx, NULL);
3589
3590         rcu_read_lock();
3591         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3592         if (rdev && test_bit(In_sync, &rdev->flags)) {
3593                 sector_t first_bad;
3594                 int bad_sectors;
3595
3596                 atomic_inc(&rdev->nr_pending);
3597                 rcu_read_unlock();
3598                 raid_bio->bi_next = (void*)rdev;
3599                 align_bi->bi_bdev =  rdev->bdev;
3600                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3601                 align_bi->bi_sector += rdev->data_offset;
3602
3603                 if (!bio_fits_rdev(align_bi) ||
3604                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3605                                 &first_bad, &bad_sectors)) {
3606                         /* too big in some way, or has a known bad block */
3607                         bio_put(align_bi);
3608                         rdev_dec_pending(rdev, mddev);
3609                         return 0;
3610                 }
3611
3612                 spin_lock_irq(&conf->device_lock);
3613                 wait_event_lock_irq(conf->wait_for_stripe,
3614                                     conf->quiesce == 0,
3615                                     conf->device_lock, /* nothing */);
3616                 atomic_inc(&conf->active_aligned_reads);
3617                 spin_unlock_irq(&conf->device_lock);
3618
3619                 generic_make_request(align_bi);
3620                 return 1;
3621         } else {
3622                 rcu_read_unlock();
3623                 bio_put(align_bi);
3624                 return 0;
3625         }
3626 }
3627
3628 /* __get_priority_stripe - get the next stripe to process
3629  *
3630  * Full stripe writes are allowed to pass preread active stripes up until
3631  * the bypass_threshold is exceeded.  In general the bypass_count
3632  * increments when the handle_list is handled before the hold_list; however, it
3633  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3634  * stripe with in flight i/o.  The bypass_count will be reset when the
3635  * head of the hold_list has changed, i.e. the head was promoted to the
3636  * handle_list.
3637  */
3638 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3639 {
3640         struct stripe_head *sh;
3641
3642         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3643                   __func__,
3644                   list_empty(&conf->handle_list) ? "empty" : "busy",
3645                   list_empty(&conf->hold_list) ? "empty" : "busy",
3646                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3647
3648         if (!list_empty(&conf->handle_list)) {
3649                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3650
3651                 if (list_empty(&conf->hold_list))
3652                         conf->bypass_count = 0;
3653                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3654                         if (conf->hold_list.next == conf->last_hold)
3655                                 conf->bypass_count++;
3656                         else {
3657                                 conf->last_hold = conf->hold_list.next;
3658                                 conf->bypass_count -= conf->bypass_threshold;
3659                                 if (conf->bypass_count < 0)
3660                                         conf->bypass_count = 0;
3661                         }
3662                 }
3663         } else if (!list_empty(&conf->hold_list) &&
3664                    ((conf->bypass_threshold &&
3665                      conf->bypass_count > conf->bypass_threshold) ||
3666                     atomic_read(&conf->pending_full_writes) == 0)) {
3667                 sh = list_entry(conf->hold_list.next,
3668                                 typeof(*sh), lru);
3669                 conf->bypass_count -= conf->bypass_threshold;
3670                 if (conf->bypass_count < 0)
3671                         conf->bypass_count = 0;
3672         } else
3673                 return NULL;
3674
3675         list_del_init(&sh->lru);
3676         atomic_inc(&sh->count);
3677         BUG_ON(atomic_read(&sh->count) != 1);
3678         return sh;
3679 }
3680
3681 static int make_request(mddev_t *mddev, struct bio * bi)
3682 {
3683         raid5_conf_t *conf = mddev->private;
3684         int dd_idx;
3685         sector_t new_sector;
3686         sector_t logical_sector, last_sector;
3687         struct stripe_head *sh;
3688         const int rw = bio_data_dir(bi);
3689         int remaining;
3690         int plugged;
3691
3692         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3693                 md_flush_request(mddev, bi);
3694                 return 0;
3695         }
3696
3697         md_write_start(mddev, bi);
3698
3699         if (rw == READ &&
3700              mddev->reshape_position == MaxSector &&
3701              chunk_aligned_read(mddev,bi))
3702                 return 0;
3703
3704         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3705         last_sector = bi->bi_sector + (bi->bi_size>>9);
3706         bi->bi_next = NULL;
3707         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3708
3709         plugged = mddev_check_plugged(mddev);
3710         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3711                 DEFINE_WAIT(w);
3712                 int disks, data_disks;
3713                 int previous;
3714
3715         retry:
3716                 previous = 0;
3717                 disks = conf->raid_disks;
3718                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3719                 if (unlikely(conf->reshape_progress != MaxSector)) {
3720                         /* spinlock is needed as reshape_progress may be
3721                          * 64bit on a 32bit platform, and so it might be
3722                          * possible to see a half-updated value
3723                          * Of course reshape_progress could change after
3724                          * the lock is dropped, so once we get a reference
3725                          * to the stripe that we think it is, we will have
3726                          * to check again.
3727                          */
3728                         spin_lock_irq(&conf->device_lock);
3729                         if (mddev->delta_disks < 0
3730                             ? logical_sector < conf->reshape_progress
3731                             : logical_sector >= conf->reshape_progress) {
3732                                 disks = conf->previous_raid_disks;
3733                                 previous = 1;
3734                         } else {
3735                                 if (mddev->delta_disks < 0
3736                                     ? logical_sector < conf->reshape_safe
3737                                     : logical_sector >= conf->reshape_safe) {
3738                                         spin_unlock_irq(&conf->device_lock);
3739                                         schedule();
3740                                         goto retry;
3741                                 }
3742                         }
3743                         spin_unlock_irq(&conf->device_lock);
3744                 }
3745                 data_disks = disks - conf->max_degraded;
3746
3747                 new_sector = raid5_compute_sector(conf, logical_sector,
3748                                                   previous,
3749                                                   &dd_idx, NULL);
3750                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3751                         (unsigned long long)new_sector, 
3752                         (unsigned long long)logical_sector);
3753
3754                 sh = get_active_stripe(conf, new_sector, previous,
3755                                        (bi->bi_rw&RWA_MASK), 0);
3756                 if (sh) {
3757                         if (unlikely(previous)) {
3758                                 /* expansion might have moved on while waiting for a
3759                                  * stripe, so we must do the range check again.
3760                                  * Expansion could still move past after this
3761                                  * test, but as we are holding a reference to
3762                                  * 'sh', we know that if that happens,
3763                                  *  STRIPE_EXPANDING will get set and the expansion
3764                                  * won't proceed until we finish with the stripe.
3765                                  */
3766                                 int must_retry = 0;
3767                                 spin_lock_irq(&conf->device_lock);
3768                                 if (mddev->delta_disks < 0
3769                                     ? logical_sector >= conf->reshape_progress
3770                                     : logical_sector < conf->reshape_progress)
3771                                         /* mismatch, need to try again */
3772                                         must_retry = 1;
3773                                 spin_unlock_irq(&conf->device_lock);
3774                                 if (must_retry) {
3775                                         release_stripe(sh);
3776                                         schedule();
3777                                         goto retry;
3778                                 }
3779                         }
3780
3781                         if (rw == WRITE &&
3782                             logical_sector >= mddev->suspend_lo &&
3783                             logical_sector < mddev->suspend_hi) {
3784                                 release_stripe(sh);
3785                                 /* As the suspend_* range is controlled by
3786                                  * userspace, we want an interruptible
3787                                  * wait.
3788                                  */
3789                                 flush_signals(current);
3790                                 prepare_to_wait(&conf->wait_for_overlap,
3791                                                 &w, TASK_INTERRUPTIBLE);
3792                                 if (logical_sector >= mddev->suspend_lo &&
3793                                     logical_sector < mddev->suspend_hi)
3794                                         schedule();
3795                                 goto retry;
3796                         }
3797
3798                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3799                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3800                                 /* Stripe is busy expanding or
3801                                  * add failed due to overlap.  Flush everything
3802                                  * and wait a while
3803                                  */
3804                                 md_wakeup_thread(mddev->thread);
3805                                 release_stripe(sh);
3806                                 schedule();
3807                                 goto retry;
3808                         }
3809                         finish_wait(&conf->wait_for_overlap, &w);
3810                         set_bit(STRIPE_HANDLE, &sh->state);
3811                         clear_bit(STRIPE_DELAYED, &sh->state);
3812                         if ((bi->bi_rw & REQ_SYNC) &&
3813                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3814                                 atomic_inc(&conf->preread_active_stripes);
3815                         release_stripe(sh);
3816                 } else {
3817                         /* cannot get stripe for read-ahead, just give-up */
3818                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3819                         finish_wait(&conf->wait_for_overlap, &w);
3820                         break;
3821                 }
3822                         
3823         }
3824         if (!plugged)
3825                 md_wakeup_thread(mddev->thread);
3826
3827         spin_lock_irq(&conf->device_lock);
3828         remaining = raid5_dec_bi_phys_segments(bi);
3829         spin_unlock_irq(&conf->device_lock);
3830         if (remaining == 0) {
3831
3832                 if ( rw == WRITE )
3833                         md_write_end(mddev);
3834
3835                 bio_endio(bi, 0);
3836         }
3837
3838         return 0;
3839 }
3840
3841 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3842
3843 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3844 {
3845         /* reshaping is quite different to recovery/resync so it is
3846          * handled quite separately ... here.
3847          *
3848          * On each call to sync_request, we gather one chunk worth of
3849          * destination stripes and flag them as expanding.
3850          * Then we find all the source stripes and request reads.
3851          * As the reads complete, handle_stripe will copy the data
3852          * into the destination stripe and release that stripe.
3853          */
3854         raid5_conf_t *conf = mddev->private;
3855         struct stripe_head *sh;
3856         sector_t first_sector, last_sector;
3857         int raid_disks = conf->previous_raid_disks;
3858         int data_disks = raid_disks - conf->max_degraded;
3859         int new_data_disks = conf->raid_disks - conf->max_degraded;
3860         int i;
3861         int dd_idx;
3862         sector_t writepos, readpos, safepos;
3863         sector_t stripe_addr;
3864         int reshape_sectors;
3865         struct list_head stripes;
3866
3867         if (sector_nr == 0) {
3868                 /* If restarting in the middle, skip the initial sectors */
3869                 if (mddev->delta_disks < 0 &&
3870                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3871                         sector_nr = raid5_size(mddev, 0, 0)
3872                                 - conf->reshape_progress;
3873                 } else if (mddev->delta_disks >= 0 &&
3874                            conf->reshape_progress > 0)
3875                         sector_nr = conf->reshape_progress;
3876                 sector_div(sector_nr, new_data_disks);
3877                 if (sector_nr) {
3878                         mddev->curr_resync_completed = sector_nr;
3879                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3880                         *skipped = 1;
3881                         return sector_nr;
3882                 }
3883         }
3884
3885         /* We need to process a full chunk at a time.
3886          * If old and new chunk sizes differ, we need to process the
3887          * largest of these
3888          */
3889         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3890                 reshape_sectors = mddev->new_chunk_sectors;
3891         else
3892                 reshape_sectors = mddev->chunk_sectors;
3893
3894         /* we update the metadata when there is more than 3Meg
3895          * in the block range (that is rather arbitrary, should
3896          * probably be time based) or when the data about to be
3897          * copied would over-write the source of the data at
3898          * the front of the range.
3899          * i.e. one new_stripe along from reshape_progress new_maps
3900          * to after where reshape_safe old_maps to
3901          */
3902         writepos = conf->reshape_progress;
3903         sector_div(writepos, new_data_disks);
3904         readpos = conf->reshape_progress;
3905         sector_div(readpos, data_disks);
3906         safepos = conf->reshape_safe;
3907         sector_div(safepos, data_disks);
3908         if (mddev->delta_disks < 0) {
3909                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3910                 readpos += reshape_sectors;
3911                 safepos += reshape_sectors;
3912         } else {
3913                 writepos += reshape_sectors;
3914                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3915                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3916         }
3917
3918         /* 'writepos' is the most advanced device address we might write.
3919          * 'readpos' is the least advanced device address we might read.
3920          * 'safepos' is the least address recorded in the metadata as having
3921          *     been reshaped.
3922          * If 'readpos' is behind 'writepos', then there is no way that we can
3923          * ensure safety in the face of a crash - that must be done by userspace
3924          * making a backup of the data.  So in that case there is no particular
3925          * rush to update metadata.
3926          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3927          * update the metadata to advance 'safepos' to match 'readpos' so that
3928          * we can be safe in the event of a crash.
3929          * So we insist on updating metadata if safepos is behind writepos and
3930          * readpos is beyond writepos.
3931          * In any case, update the metadata every 10 seconds.
3932          * Maybe that number should be configurable, but I'm not sure it is
3933          * worth it.... maybe it could be a multiple of safemode_delay???
3934          */
3935         if ((mddev->delta_disks < 0
3936              ? (safepos > writepos && readpos < writepos)
3937              : (safepos < writepos && readpos > writepos)) ||
3938             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3939                 /* Cannot proceed until we've updated the superblock... */
3940                 wait_event(conf->wait_for_overlap,
3941                            atomic_read(&conf->reshape_stripes)==0);
3942                 mddev->reshape_position = conf->reshape_progress;
3943                 mddev->curr_resync_completed = sector_nr;
3944                 conf->reshape_checkpoint = jiffies;
3945                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3946                 md_wakeup_thread(mddev->thread);
3947                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3948                            kthread_should_stop());
3949                 spin_lock_irq(&conf->device_lock);
3950                 conf->reshape_safe = mddev->reshape_position;
3951                 spin_unlock_irq(&conf->device_lock);
3952                 wake_up(&conf->wait_for_overlap);
3953                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3954         }
3955
3956         if (mddev->delta_disks < 0) {
3957                 BUG_ON(conf->reshape_progress == 0);
3958                 stripe_addr = writepos;
3959                 BUG_ON((mddev->dev_sectors &
3960                         ~((sector_t)reshape_sectors - 1))
3961                        - reshape_sectors - stripe_addr
3962                        != sector_nr);
3963         } else {
3964                 BUG_ON(writepos != sector_nr + reshape_sectors);
3965                 stripe_addr = sector_nr;
3966         }
3967         INIT_LIST_HEAD(&stripes);
3968         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3969                 int j;
3970                 int skipped_disk = 0;
3971                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3972                 set_bit(STRIPE_EXPANDING, &sh->state);
3973                 atomic_inc(&conf->reshape_stripes);
3974                 /* If any of this stripe is beyond the end of the old
3975                  * array, then we need to zero those blocks
3976                  */
3977                 for (j=sh->disks; j--;) {
3978                         sector_t s;
3979                         if (j == sh->pd_idx)
3980                                 continue;
3981                         if (conf->level == 6 &&
3982                             j == sh->qd_idx)
3983                                 continue;
3984                         s = compute_blocknr(sh, j, 0);
3985                         if (s < raid5_size(mddev, 0, 0)) {
3986                                 skipped_disk = 1;
3987                                 continue;
3988                         }
3989                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3990                         set_bit(R5_Expanded, &sh->dev[j].flags);
3991                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3992                 }
3993                 if (!skipped_disk) {
3994                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3995                         set_bit(STRIPE_HANDLE, &sh->state);
3996                 }
3997                 list_add(&sh->lru, &stripes);
3998         }
3999         spin_lock_irq(&conf->device_lock);
4000         if (mddev->delta_disks < 0)
4001                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4002         else
4003                 conf->reshape_progress += reshape_sectors * new_data_disks;
4004         spin_unlock_irq(&conf->device_lock);
4005         /* Ok, those stripe are ready. We can start scheduling
4006          * reads on the source stripes.
4007          * The source stripes are determined by mapping the first and last
4008          * block on the destination stripes.
4009          */
4010         first_sector =
4011                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4012                                      1, &dd_idx, NULL);
4013         last_sector =
4014                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4015                                             * new_data_disks - 1),
4016                                      1, &dd_idx, NULL);
4017         if (last_sector >= mddev->dev_sectors)
4018                 last_sector = mddev->dev_sectors - 1;
4019         while (first_sector <= last_sector) {
4020                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4021                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4022                 set_bit(STRIPE_HANDLE, &sh->state);
4023                 release_stripe(sh);
4024                 first_sector += STRIPE_SECTORS;
4025         }
4026         /* Now that the sources are clearly marked, we can release
4027          * the destination stripes
4028          */
4029         while (!list_empty(&stripes)) {
4030                 sh = list_entry(stripes.next, struct stripe_head, lru);
4031                 list_del_init(&sh->lru);
4032                 release_stripe(sh);
4033         }
4034         /* If this takes us to the resync_max point where we have to pause,
4035          * then we need to write out the superblock.
4036          */
4037         sector_nr += reshape_sectors;
4038         if ((sector_nr - mddev->curr_resync_completed) * 2
4039             >= mddev->resync_max - mddev->curr_resync_completed) {
4040                 /* Cannot proceed until we've updated the superblock... */
4041                 wait_event(conf->wait_for_overlap,
4042                            atomic_read(&conf->reshape_stripes) == 0);
4043                 mddev->reshape_position = conf->reshape_progress;
4044                 mddev->curr_resync_completed = sector_nr;
4045                 conf->reshape_checkpoint = jiffies;
4046                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4047                 md_wakeup_thread(mddev->thread);
4048                 wait_event(mddev->sb_wait,
4049                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4050                            || kthread_should_stop());
4051                 spin_lock_irq(&conf->device_lock);
4052                 conf->reshape_safe = mddev->reshape_position;
4053                 spin_unlock_irq(&conf->device_lock);
4054                 wake_up(&conf->wait_for_overlap);
4055                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4056         }
4057         return reshape_sectors;
4058 }
4059
4060 /* FIXME go_faster isn't used */
4061 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4062 {
4063         raid5_conf_t *conf = mddev->private;
4064         struct stripe_head *sh;
4065         sector_t max_sector = mddev->dev_sectors;
4066         sector_t sync_blocks;
4067         int still_degraded = 0;
4068         int i;
4069
4070         if (sector_nr >= max_sector) {
4071                 /* just being told to finish up .. nothing much to do */
4072
4073                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4074                         end_reshape(conf);
4075                         return 0;
4076                 }
4077
4078                 if (mddev->curr_resync < max_sector) /* aborted */
4079                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4080                                         &sync_blocks, 1);
4081                 else /* completed sync */
4082                         conf->fullsync = 0;
4083                 bitmap_close_sync(mddev->bitmap);
4084
4085                 return 0;
4086         }
4087
4088         /* Allow raid5_quiesce to complete */
4089         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4090
4091         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4092                 return reshape_request(mddev, sector_nr, skipped);
4093
4094         /* No need to check resync_max as we never do more than one
4095          * stripe, and as resync_max will always be on a chunk boundary,
4096          * if the check in md_do_sync didn't fire, there is no chance
4097          * of overstepping resync_max here
4098          */
4099
4100         /* if there is too many failed drives and we are trying
4101          * to resync, then assert that we are finished, because there is
4102          * nothing we can do.
4103          */
4104         if (mddev->degraded >= conf->max_degraded &&
4105             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4106                 sector_t rv = mddev->dev_sectors - sector_nr;
4107                 *skipped = 1;
4108                 return rv;
4109         }
4110         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4111             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4112             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4113                 /* we can skip this block, and probably more */
4114                 sync_blocks /= STRIPE_SECTORS;
4115                 *skipped = 1;
4116                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4117         }
4118
4119
4120         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4121
4122         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4123         if (sh == NULL) {
4124                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4125                 /* make sure we don't swamp the stripe cache if someone else
4126                  * is trying to get access
4127                  */
4128                 schedule_timeout_uninterruptible(1);
4129         }
4130         /* Need to check if array will still be degraded after recovery/resync
4131          * We don't need to check the 'failed' flag as when that gets set,
4132          * recovery aborts.
4133          */
4134         for (i = 0; i < conf->raid_disks; i++)
4135                 if (conf->disks[i].rdev == NULL)
4136                         still_degraded = 1;
4137
4138         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4139
4140         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4141
4142         handle_stripe(sh);
4143         release_stripe(sh);
4144
4145         return STRIPE_SECTORS;
4146 }
4147
4148 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4149 {
4150         /* We may not be able to submit a whole bio at once as there
4151          * may not be enough stripe_heads available.
4152          * We cannot pre-allocate enough stripe_heads as we may need
4153          * more than exist in the cache (if we allow ever large chunks).
4154          * So we do one stripe head at a time and record in
4155          * ->bi_hw_segments how many have been done.
4156          *
4157          * We *know* that this entire raid_bio is in one chunk, so
4158          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4159          */
4160         struct stripe_head *sh;
4161         int dd_idx;
4162         sector_t sector, logical_sector, last_sector;
4163         int scnt = 0;
4164         int remaining;
4165         int handled = 0;
4166
4167         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4168         sector = raid5_compute_sector(conf, logical_sector,
4169                                       0, &dd_idx, NULL);
4170         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4171
4172         for (; logical_sector < last_sector;
4173              logical_sector += STRIPE_SECTORS,
4174                      sector += STRIPE_SECTORS,
4175                      scnt++) {
4176
4177                 if (scnt < raid5_bi_hw_segments(raid_bio))
4178                         /* already done this stripe */
4179                         continue;
4180
4181                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4182
4183                 if (!sh) {
4184                         /* failed to get a stripe - must wait */
4185                         raid5_set_bi_hw_segments(raid_bio, scnt);
4186                         conf->retry_read_aligned = raid_bio;
4187                         return handled;
4188                 }
4189
4190                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4191                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4192                         release_stripe(sh);
4193                         raid5_set_bi_hw_segments(raid_bio, scnt);
4194                         conf->retry_read_aligned = raid_bio;
4195                         return handled;
4196                 }
4197
4198                 handle_stripe(sh);
4199                 release_stripe(sh);
4200                 handled++;
4201         }
4202         spin_lock_irq(&conf->device_lock);
4203         remaining = raid5_dec_bi_phys_segments(raid_bio);
4204         spin_unlock_irq(&conf->device_lock);
4205         if (remaining == 0)
4206                 bio_endio(raid_bio, 0);
4207         if (atomic_dec_and_test(&conf->active_aligned_reads))
4208                 wake_up(&conf->wait_for_stripe);
4209         return handled;
4210 }
4211
4212
4213 /*
4214  * This is our raid5 kernel thread.
4215  *
4216  * We scan the hash table for stripes which can be handled now.
4217  * During the scan, completed stripes are saved for us by the interrupt
4218  * handler, so that they will not have to wait for our next wakeup.
4219  */
4220 static void raid5d(mddev_t *mddev)
4221 {
4222         struct stripe_head *sh;
4223         raid5_conf_t *conf = mddev->private;
4224         int handled;
4225         struct blk_plug plug;
4226
4227         pr_debug("+++ raid5d active\n");
4228
4229         md_check_recovery(mddev);
4230
4231         blk_start_plug(&plug);
4232         handled = 0;
4233         spin_lock_irq(&conf->device_lock);
4234         while (1) {
4235                 struct bio *bio;
4236
4237                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4238                     !list_empty(&conf->bitmap_list)) {
4239                         /* Now is a good time to flush some bitmap updates */
4240                         conf->seq_flush++;
4241                         spin_unlock_irq(&conf->device_lock);
4242                         bitmap_unplug(mddev->bitmap);
4243                         spin_lock_irq(&conf->device_lock);
4244                         conf->seq_write = conf->seq_flush;
4245                         activate_bit_delay(conf);
4246                 }
4247                 if (atomic_read(&mddev->plug_cnt) == 0)
4248                         raid5_activate_delayed(conf);
4249
4250                 while ((bio = remove_bio_from_retry(conf))) {
4251                         int ok;
4252                         spin_unlock_irq(&conf->device_lock);
4253                         ok = retry_aligned_read(conf, bio);
4254                         spin_lock_irq(&conf->device_lock);
4255                         if (!ok)
4256                                 break;
4257                         handled++;
4258                 }
4259
4260                 sh = __get_priority_stripe(conf);
4261
4262                 if (!sh)
4263                         break;
4264                 spin_unlock_irq(&conf->device_lock);
4265                 
4266                 handled++;
4267                 handle_stripe(sh);
4268                 release_stripe(sh);
4269                 cond_resched();
4270
4271                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4272                         md_check_recovery(mddev);
4273
4274                 spin_lock_irq(&conf->device_lock);
4275         }
4276         pr_debug("%d stripes handled\n", handled);
4277
4278         spin_unlock_irq(&conf->device_lock);
4279
4280         async_tx_issue_pending_all();
4281         blk_finish_plug(&plug);
4282
4283         pr_debug("--- raid5d inactive\n");
4284 }
4285
4286 static ssize_t
4287 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4288 {
4289         raid5_conf_t *conf = mddev->private;
4290         if (conf)
4291                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4292         else
4293                 return 0;
4294 }
4295
4296 int
4297 raid5_set_cache_size(mddev_t *mddev, int size)
4298 {
4299         raid5_conf_t *conf = mddev->private;
4300         int err;
4301
4302         if (size <= 16 || size > 32768)
4303                 return -EINVAL;
4304         while (size < conf->max_nr_stripes) {
4305                 if (drop_one_stripe(conf))
4306                         conf->max_nr_stripes--;
4307                 else
4308                         break;
4309         }
4310         err = md_allow_write(mddev);
4311         if (err)
4312                 return err;
4313         while (size > conf->max_nr_stripes) {
4314                 if (grow_one_stripe(conf))
4315                         conf->max_nr_stripes++;
4316                 else break;
4317         }
4318         return 0;
4319 }
4320 EXPORT_SYMBOL(raid5_set_cache_size);
4321
4322 static ssize_t
4323 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4324 {
4325         raid5_conf_t *conf = mddev->private;
4326         unsigned long new;
4327         int err;
4328
4329         if (len >= PAGE_SIZE)
4330                 return -EINVAL;
4331         if (!conf)
4332                 return -ENODEV;
4333
4334         if (strict_strtoul(page, 10, &new))
4335                 return -EINVAL;
4336         err = raid5_set_cache_size(mddev, new);
4337         if (err)
4338                 return err;
4339         return len;
4340 }
4341
4342 static struct md_sysfs_entry
4343 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4344                                 raid5_show_stripe_cache_size,
4345                                 raid5_store_stripe_cache_size);
4346
4347 static ssize_t
4348 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4349 {
4350         raid5_conf_t *conf = mddev->private;
4351         if (conf)
4352                 return sprintf(page, "%d\n", conf->bypass_threshold);
4353         else
4354                 return 0;
4355 }
4356
4357 static ssize_t
4358 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4359 {
4360         raid5_conf_t *conf = mddev->private;
4361         unsigned long new;
4362         if (len >= PAGE_SIZE)
4363                 return -EINVAL;
4364         if (!conf)
4365                 return -ENODEV;
4366
4367         if (strict_strtoul(page, 10, &new))
4368                 return -EINVAL;
4369         if (new > conf->max_nr_stripes)
4370                 return -EINVAL;
4371         conf->bypass_threshold = new;
4372         return len;
4373 }
4374
4375 static struct md_sysfs_entry
4376 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4377                                         S_IRUGO | S_IWUSR,
4378                                         raid5_show_preread_threshold,
4379                                         raid5_store_preread_threshold);
4380
4381 static ssize_t
4382 stripe_cache_active_show(mddev_t *mddev, char *page)
4383 {
4384         raid5_conf_t *conf = mddev->private;
4385         if (conf)
4386                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4387         else
4388                 return 0;
4389 }
4390
4391 static struct md_sysfs_entry
4392 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4393
4394 static struct attribute *raid5_attrs[] =  {
4395         &raid5_stripecache_size.attr,
4396         &raid5_stripecache_active.attr,
4397         &raid5_preread_bypass_threshold.attr,
4398         NULL,
4399 };
4400 static struct attribute_group raid5_attrs_group = {
4401         .name = NULL,
4402         .attrs = raid5_attrs,
4403 };
4404
4405 static sector_t
4406 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4407 {
4408         raid5_conf_t *conf = mddev->private;
4409
4410         if (!sectors)
4411                 sectors = mddev->dev_sectors;
4412         if (!raid_disks)
4413                 /* size is defined by the smallest of previous and new size */
4414                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4415
4416         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4417         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4418         return sectors * (raid_disks - conf->max_degraded);
4419 }
4420
4421 static void raid5_free_percpu(raid5_conf_t *conf)
4422 {
4423         struct raid5_percpu *percpu;
4424         unsigned long cpu;
4425
4426         if (!conf->percpu)
4427                 return;
4428
4429         get_online_cpus();
4430         for_each_possible_cpu(cpu) {
4431                 percpu = per_cpu_ptr(conf->percpu, cpu);
4432                 safe_put_page(percpu->spare_page);
4433                 kfree(percpu->scribble);
4434         }
4435 #ifdef CONFIG_HOTPLUG_CPU
4436         unregister_cpu_notifier(&conf->cpu_notify);
4437 #endif
4438         put_online_cpus();
4439
4440         free_percpu(conf->percpu);
4441 }
4442
4443 static void free_conf(raid5_conf_t *conf)
4444 {
4445         shrink_stripes(conf);
4446         raid5_free_percpu(conf);
4447         kfree(conf->disks);
4448         kfree(conf->stripe_hashtbl);
4449         kfree(conf);
4450 }
4451
4452 #ifdef CONFIG_HOTPLUG_CPU
4453 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4454                               void *hcpu)
4455 {
4456         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4457         long cpu = (long)hcpu;
4458         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4459
4460         switch (action) {
4461         case CPU_UP_PREPARE:
4462         case CPU_UP_PREPARE_FROZEN:
4463                 if (conf->level == 6 && !percpu->spare_page)
4464                         percpu->spare_page = alloc_page(GFP_KERNEL);
4465                 if (!percpu->scribble)
4466                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4467
4468                 if (!percpu->scribble ||
4469                     (conf->level == 6 && !percpu->spare_page)) {
4470                         safe_put_page(percpu->spare_page);
4471                         kfree(percpu->scribble);
4472                         pr_err("%s: failed memory allocation for cpu%ld\n",
4473                                __func__, cpu);
4474                         return notifier_from_errno(-ENOMEM);
4475                 }
4476                 break;
4477         case CPU_DEAD:
4478         case CPU_DEAD_FROZEN:
4479                 safe_put_page(percpu->spare_page);
4480                 kfree(percpu->scribble);
4481                 percpu->spare_page = NULL;
4482                 percpu->scribble = NULL;
4483                 break;
4484         default:
4485                 break;
4486         }
4487         return NOTIFY_OK;
4488 }
4489 #endif
4490
4491 static int raid5_alloc_percpu(raid5_conf_t *conf)
4492 {
4493         unsigned long cpu;
4494         struct page *spare_page;
4495         struct raid5_percpu __percpu *allcpus;
4496         void *scribble;
4497         int err;
4498
4499         allcpus = alloc_percpu(struct raid5_percpu);
4500         if (!allcpus)
4501                 return -ENOMEM;
4502         conf->percpu = allcpus;
4503
4504         get_online_cpus();
4505         err = 0;
4506         for_each_present_cpu(cpu) {
4507                 if (conf->level == 6) {
4508                         spare_page = alloc_page(GFP_KERNEL);
4509                         if (!spare_page) {
4510                                 err = -ENOMEM;
4511                                 break;
4512                         }
4513                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4514                 }
4515                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4516                 if (!scribble) {
4517                         err = -ENOMEM;
4518                         break;
4519                 }
4520                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4521         }
4522 #ifdef CONFIG_HOTPLUG_CPU
4523         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4524         conf->cpu_notify.priority = 0;
4525         if (err == 0)
4526                 err = register_cpu_notifier(&conf->cpu_notify);
4527 #endif
4528         put_online_cpus();
4529
4530         return err;
4531 }
4532
4533 static raid5_conf_t *setup_conf(mddev_t *mddev)
4534 {
4535         raid5_conf_t *conf;
4536         int raid_disk, memory, max_disks;
4537         mdk_rdev_t *rdev;
4538         struct disk_info *disk;
4539
4540         if (mddev->new_level != 5
4541             && mddev->new_level != 4
4542             && mddev->new_level != 6) {
4543                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4544                        mdname(mddev), mddev->new_level);
4545                 return ERR_PTR(-EIO);
4546         }
4547         if ((mddev->new_level == 5
4548              && !algorithm_valid_raid5(mddev->new_layout)) ||
4549             (mddev->new_level == 6
4550              && !algorithm_valid_raid6(mddev->new_layout))) {
4551                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4552                        mdname(mddev), mddev->new_layout);
4553                 return ERR_PTR(-EIO);
4554         }
4555         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4556                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4557                        mdname(mddev), mddev->raid_disks);
4558                 return ERR_PTR(-EINVAL);
4559         }
4560
4561         if (!mddev->new_chunk_sectors ||
4562             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4563             !is_power_of_2(mddev->new_chunk_sectors)) {
4564                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4565                        mdname(mddev), mddev->new_chunk_sectors << 9);
4566                 return ERR_PTR(-EINVAL);
4567         }
4568
4569         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4570         if (conf == NULL)
4571                 goto abort;
4572         spin_lock_init(&conf->device_lock);
4573         init_waitqueue_head(&conf->wait_for_stripe);
4574         init_waitqueue_head(&conf->wait_for_overlap);
4575         INIT_LIST_HEAD(&conf->handle_list);
4576         INIT_LIST_HEAD(&conf->hold_list);
4577         INIT_LIST_HEAD(&conf->delayed_list);
4578         INIT_LIST_HEAD(&conf->bitmap_list);
4579         INIT_LIST_HEAD(&conf->inactive_list);
4580         atomic_set(&conf->active_stripes, 0);
4581         atomic_set(&conf->preread_active_stripes, 0);
4582         atomic_set(&conf->active_aligned_reads, 0);
4583         conf->bypass_threshold = BYPASS_THRESHOLD;
4584
4585         conf->raid_disks = mddev->raid_disks;
4586         if (mddev->reshape_position == MaxSector)
4587                 conf->previous_raid_disks = mddev->raid_disks;
4588         else
4589                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4590         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4591         conf->scribble_len = scribble_len(max_disks);
4592
4593         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4594                               GFP_KERNEL);
4595         if (!conf->disks)
4596                 goto abort;
4597
4598         conf->mddev = mddev;
4599
4600         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4601                 goto abort;
4602
4603         conf->level = mddev->new_level;
4604         if (raid5_alloc_percpu(conf) != 0)
4605                 goto abort;
4606
4607         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4608
4609         list_for_each_entry(rdev, &mddev->disks, same_set) {
4610                 raid_disk = rdev->raid_disk;
4611                 if (raid_disk >= max_disks
4612                     || raid_disk < 0)
4613                         continue;
4614                 disk = conf->disks + raid_disk;
4615
4616                 disk->rdev = rdev;
4617
4618                 if (test_bit(In_sync, &rdev->flags)) {
4619                         char b[BDEVNAME_SIZE];
4620                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4621                                " disk %d\n",
4622                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4623                 } else if (rdev->saved_raid_disk != raid_disk)
4624                         /* Cannot rely on bitmap to complete recovery */
4625                         conf->fullsync = 1;
4626         }
4627
4628         conf->chunk_sectors = mddev->new_chunk_sectors;
4629         conf->level = mddev->new_level;
4630         if (conf->level == 6)
4631                 conf->max_degraded = 2;
4632         else
4633                 conf->max_degraded = 1;
4634         conf->algorithm = mddev->new_layout;
4635         conf->max_nr_stripes = NR_STRIPES;
4636         conf->reshape_progress = mddev->reshape_position;
4637         if (conf->reshape_progress != MaxSector) {
4638                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4639                 conf->prev_algo = mddev->layout;
4640         }
4641
4642         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4643                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4644         if (grow_stripes(conf, conf->max_nr_stripes)) {
4645                 printk(KERN_ERR
4646                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4647                        mdname(mddev), memory);
4648                 goto abort;
4649         } else
4650                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4651                        mdname(mddev), memory);
4652
4653         conf->thread = md_register_thread(raid5d, mddev, NULL);
4654         if (!conf->thread) {
4655                 printk(KERN_ERR
4656                        "md/raid:%s: couldn't allocate thread.\n",
4657                        mdname(mddev));
4658                 goto abort;
4659         }
4660
4661         return conf;
4662
4663  abort:
4664         if (conf) {
4665                 free_conf(conf);
4666                 return ERR_PTR(-EIO);
4667         } else
4668                 return ERR_PTR(-ENOMEM);
4669 }
4670
4671
4672 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4673 {
4674         switch (algo) {
4675         case ALGORITHM_PARITY_0:
4676                 if (raid_disk < max_degraded)
4677                         return 1;
4678                 break;
4679         case ALGORITHM_PARITY_N:
4680                 if (raid_disk >= raid_disks - max_degraded)
4681                         return 1;
4682                 break;
4683         case ALGORITHM_PARITY_0_6:
4684                 if (raid_disk == 0 || 
4685                     raid_disk == raid_disks - 1)
4686                         return 1;
4687                 break;
4688         case ALGORITHM_LEFT_ASYMMETRIC_6:
4689         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4690         case ALGORITHM_LEFT_SYMMETRIC_6:
4691         case ALGORITHM_RIGHT_SYMMETRIC_6:
4692                 if (raid_disk == raid_disks - 1)
4693                         return 1;
4694         }
4695         return 0;
4696 }
4697
4698 static int run(mddev_t *mddev)
4699 {
4700         raid5_conf_t *conf;
4701         int working_disks = 0;
4702         int dirty_parity_disks = 0;
4703         mdk_rdev_t *rdev;
4704         sector_t reshape_offset = 0;
4705
4706         if (mddev->recovery_cp != MaxSector)
4707                 printk(KERN_NOTICE "md/raid:%s: not clean"
4708                        " -- starting background reconstruction\n",
4709                        mdname(mddev));
4710         if (mddev->reshape_position != MaxSector) {
4711                 /* Check that we can continue the reshape.
4712                  * Currently only disks can change, it must
4713                  * increase, and we must be past the point where
4714                  * a stripe over-writes itself
4715                  */
4716                 sector_t here_new, here_old;
4717                 int old_disks;
4718                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4719
4720                 if (mddev->new_level != mddev->level) {
4721                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4722                                "required - aborting.\n",
4723                                mdname(mddev));
4724                         return -EINVAL;
4725                 }
4726                 old_disks = mddev->raid_disks - mddev->delta_disks;
4727                 /* reshape_position must be on a new-stripe boundary, and one
4728                  * further up in new geometry must map after here in old
4729                  * geometry.
4730                  */
4731                 here_new = mddev->reshape_position;
4732                 if (sector_div(here_new, mddev->new_chunk_sectors *
4733                                (mddev->raid_disks - max_degraded))) {
4734                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4735                                "on a stripe boundary\n", mdname(mddev));
4736                         return -EINVAL;
4737                 }
4738                 reshape_offset = here_new * mddev->new_chunk_sectors;
4739                 /* here_new is the stripe we will write to */
4740                 here_old = mddev->reshape_position;
4741                 sector_div(here_old, mddev->chunk_sectors *
4742                            (old_disks-max_degraded));
4743                 /* here_old is the first stripe that we might need to read
4744                  * from */
4745                 if (mddev->delta_disks == 0) {
4746                         /* We cannot be sure it is safe to start an in-place
4747                          * reshape.  It is only safe if user-space if monitoring
4748                          * and taking constant backups.
4749                          * mdadm always starts a situation like this in
4750                          * readonly mode so it can take control before
4751                          * allowing any writes.  So just check for that.
4752                          */
4753                         if ((here_new * mddev->new_chunk_sectors != 
4754                              here_old * mddev->chunk_sectors) ||
4755                             mddev->ro == 0) {
4756                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4757                                        " in read-only mode - aborting\n",
4758                                        mdname(mddev));
4759                                 return -EINVAL;
4760                         }
4761                 } else if (mddev->delta_disks < 0
4762                     ? (here_new * mddev->new_chunk_sectors <=
4763                        here_old * mddev->chunk_sectors)
4764                     : (here_new * mddev->new_chunk_sectors >=
4765                        here_old * mddev->chunk_sectors)) {
4766                         /* Reading from the same stripe as writing to - bad */
4767                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4768                                "auto-recovery - aborting.\n",
4769                                mdname(mddev));
4770                         return -EINVAL;
4771                 }
4772                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4773                        mdname(mddev));
4774                 /* OK, we should be able to continue; */
4775         } else {
4776                 BUG_ON(mddev->level != mddev->new_level);
4777                 BUG_ON(mddev->layout != mddev->new_layout);
4778                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4779                 BUG_ON(mddev->delta_disks != 0);
4780         }
4781
4782         if (mddev->private == NULL)
4783                 conf = setup_conf(mddev);
4784         else
4785                 conf = mddev->private;
4786
4787         if (IS_ERR(conf))
4788                 return PTR_ERR(conf);
4789
4790         mddev->thread = conf->thread;
4791         conf->thread = NULL;
4792         mddev->private = conf;
4793
4794         /*
4795          * 0 for a fully functional array, 1 or 2 for a degraded array.
4796          */
4797         list_for_each_entry(rdev, &mddev->disks, same_set) {
4798                 if (rdev->raid_disk < 0)
4799                         continue;
4800                 if (test_bit(In_sync, &rdev->flags)) {
4801                         working_disks++;
4802                         continue;
4803                 }
4804                 /* This disc is not fully in-sync.  However if it
4805                  * just stored parity (beyond the recovery_offset),
4806                  * when we don't need to be concerned about the
4807                  * array being dirty.
4808                  * When reshape goes 'backwards', we never have
4809                  * partially completed devices, so we only need
4810                  * to worry about reshape going forwards.
4811                  */
4812                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4813                 if (mddev->major_version == 0 &&
4814                     mddev->minor_version > 90)
4815                         rdev->recovery_offset = reshape_offset;
4816                         
4817                 if (rdev->recovery_offset < reshape_offset) {
4818                         /* We need to check old and new layout */
4819                         if (!only_parity(rdev->raid_disk,
4820                                          conf->algorithm,
4821                                          conf->raid_disks,
4822                                          conf->max_degraded))
4823                                 continue;
4824                 }
4825                 if (!only_parity(rdev->raid_disk,
4826                                  conf->prev_algo,
4827                                  conf->previous_raid_disks,
4828                                  conf->max_degraded))
4829                         continue;
4830                 dirty_parity_disks++;
4831         }
4832
4833         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4834                            - working_disks);
4835
4836         if (has_failed(conf)) {
4837                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4838                         " (%d/%d failed)\n",
4839                         mdname(mddev), mddev->degraded, conf->raid_disks);
4840                 goto abort;
4841         }
4842
4843         /* device size must be a multiple of chunk size */
4844         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4845         mddev->resync_max_sectors = mddev->dev_sectors;
4846
4847         if (mddev->degraded > dirty_parity_disks &&
4848             mddev->recovery_cp != MaxSector) {
4849                 if (mddev->ok_start_degraded)
4850                         printk(KERN_WARNING
4851                                "md/raid:%s: starting dirty degraded array"
4852                                " - data corruption possible.\n",
4853                                mdname(mddev));
4854                 else {
4855                         printk(KERN_ERR
4856                                "md/raid:%s: cannot start dirty degraded array.\n",
4857                                mdname(mddev));
4858                         goto abort;
4859                 }
4860         }
4861
4862         if (mddev->degraded == 0)
4863                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4864                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4865                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4866                        mddev->new_layout);
4867         else
4868                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4869                        " out of %d devices, algorithm %d\n",
4870                        mdname(mddev), conf->level,
4871                        mddev->raid_disks - mddev->degraded,
4872                        mddev->raid_disks, mddev->new_layout);
4873
4874         print_raid5_conf(conf);
4875
4876         if (conf->reshape_progress != MaxSector) {
4877                 conf->reshape_safe = conf->reshape_progress;
4878                 atomic_set(&conf->reshape_stripes, 0);
4879                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4880                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4881                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4882                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4883                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4884                                                         "reshape");
4885         }
4886
4887
4888         /* Ok, everything is just fine now */
4889         if (mddev->to_remove == &raid5_attrs_group)
4890                 mddev->to_remove = NULL;
4891         else if (mddev->kobj.sd &&
4892             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4893                 printk(KERN_WARNING
4894                        "raid5: failed to create sysfs attributes for %s\n",
4895                        mdname(mddev));
4896         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4897
4898         if (mddev->queue) {
4899                 int chunk_size;
4900                 /* read-ahead size must cover two whole stripes, which
4901                  * is 2 * (datadisks) * chunksize where 'n' is the
4902                  * number of raid devices
4903                  */
4904                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4905                 int stripe = data_disks *
4906                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4907                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4908                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4909
4910                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4911
4912                 mddev->queue->backing_dev_info.congested_data = mddev;
4913                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4914
4915                 chunk_size = mddev->chunk_sectors << 9;
4916                 blk_queue_io_min(mddev->queue, chunk_size);
4917                 blk_queue_io_opt(mddev->queue, chunk_size *
4918                                  (conf->raid_disks - conf->max_degraded));
4919
4920                 list_for_each_entry(rdev, &mddev->disks, same_set)
4921                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4922                                           rdev->data_offset << 9);
4923         }
4924
4925         return 0;
4926 abort:
4927         md_unregister_thread(mddev->thread);
4928         mddev->thread = NULL;
4929         if (conf) {
4930                 print_raid5_conf(conf);
4931                 free_conf(conf);
4932         }
4933         mddev->private = NULL;
4934         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4935         return -EIO;
4936 }
4937
4938 static int stop(mddev_t *mddev)
4939 {
4940         raid5_conf_t *conf = mddev->private;
4941
4942         md_unregister_thread(mddev->thread);
4943         mddev->thread = NULL;
4944         if (mddev->queue)
4945                 mddev->queue->backing_dev_info.congested_fn = NULL;
4946         free_conf(conf);
4947         mddev->private = NULL;
4948         mddev->to_remove = &raid5_attrs_group;
4949         return 0;
4950 }
4951
4952 #ifdef DEBUG
4953 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4954 {
4955         int i;
4956
4957         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4958                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4959         seq_printf(seq, "sh %llu,  count %d.\n",
4960                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4961         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4962         for (i = 0; i < sh->disks; i++) {
4963                 seq_printf(seq, "(cache%d: %p %ld) ",
4964                            i, sh->dev[i].page, sh->dev[i].flags);
4965         }
4966         seq_printf(seq, "\n");
4967 }
4968
4969 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4970 {
4971         struct stripe_head *sh;
4972         struct hlist_node *hn;
4973         int i;
4974
4975         spin_lock_irq(&conf->device_lock);
4976         for (i = 0; i < NR_HASH; i++) {
4977                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4978                         if (sh->raid_conf != conf)
4979                                 continue;
4980                         print_sh(seq, sh);
4981                 }
4982         }
4983         spin_unlock_irq(&conf->device_lock);
4984 }
4985 #endif
4986
4987 static void status(struct seq_file *seq, mddev_t *mddev)
4988 {
4989         raid5_conf_t *conf = mddev->private;
4990         int i;
4991
4992         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4993                 mddev->chunk_sectors / 2, mddev->layout);
4994         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4995         for (i = 0; i < conf->raid_disks; i++)
4996                 seq_printf (seq, "%s",
4997                                conf->disks[i].rdev &&
4998                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4999         seq_printf (seq, "]");
5000 #ifdef DEBUG
5001         seq_printf (seq, "\n");
5002         printall(seq, conf);
5003 #endif
5004 }
5005
5006 static void print_raid5_conf (raid5_conf_t *conf)
5007 {
5008         int i;
5009         struct disk_info *tmp;
5010
5011         printk(KERN_DEBUG "RAID conf printout:\n");
5012         if (!conf) {
5013                 printk("(conf==NULL)\n");
5014                 return;
5015         }
5016         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5017                conf->raid_disks,
5018                conf->raid_disks - conf->mddev->degraded);
5019
5020         for (i = 0; i < conf->raid_disks; i++) {
5021                 char b[BDEVNAME_SIZE];
5022                 tmp = conf->disks + i;
5023                 if (tmp->rdev)
5024                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5025                                i, !test_bit(Faulty, &tmp->rdev->flags),
5026                                bdevname(tmp->rdev->bdev, b));
5027         }
5028 }
5029
5030 static int raid5_spare_active(mddev_t *mddev)
5031 {
5032         int i;
5033         raid5_conf_t *conf = mddev->private;
5034         struct disk_info *tmp;
5035         int count = 0;
5036         unsigned long flags;
5037
5038         for (i = 0; i < conf->raid_disks; i++) {
5039                 tmp = conf->disks + i;
5040                 if (tmp->rdev
5041                     && tmp->rdev->recovery_offset == MaxSector
5042                     && !test_bit(Faulty, &tmp->rdev->flags)
5043                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5044                         count++;
5045                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5046                 }
5047         }
5048         spin_lock_irqsave(&conf->device_lock, flags);
5049         mddev->degraded -= count;
5050         spin_unlock_irqrestore(&conf->device_lock, flags);
5051         print_raid5_conf(conf);
5052         return count;
5053 }
5054
5055 static int raid5_remove_disk(mddev_t *mddev, int number)
5056 {
5057         raid5_conf_t *conf = mddev->private;
5058         int err = 0;
5059         mdk_rdev_t *rdev;
5060         struct disk_info *p = conf->disks + number;
5061
5062         print_raid5_conf(conf);
5063         rdev = p->rdev;
5064         if (rdev) {
5065                 if (number >= conf->raid_disks &&
5066                     conf->reshape_progress == MaxSector)
5067                         clear_bit(In_sync, &rdev->flags);
5068
5069                 if (test_bit(In_sync, &rdev->flags) ||
5070                     atomic_read(&rdev->nr_pending)) {
5071                         err = -EBUSY;
5072                         goto abort;
5073                 }
5074                 /* Only remove non-faulty devices if recovery
5075                  * isn't possible.
5076                  */
5077                 if (!test_bit(Faulty, &rdev->flags) &&
5078                     mddev->recovery_disabled != conf->recovery_disabled &&
5079                     !has_failed(conf) &&
5080                     number < conf->raid_disks) {
5081                         err = -EBUSY;
5082                         goto abort;
5083                 }
5084                 p->rdev = NULL;
5085                 synchronize_rcu();
5086                 if (atomic_read(&rdev->nr_pending)) {
5087                         /* lost the race, try later */
5088                         err = -EBUSY;
5089                         p->rdev = rdev;
5090                 }
5091         }
5092 abort:
5093
5094         print_raid5_conf(conf);
5095         return err;
5096 }
5097
5098 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5099 {
5100         raid5_conf_t *conf = mddev->private;
5101         int err = -EEXIST;
5102         int disk;
5103         struct disk_info *p;
5104         int first = 0;
5105         int last = conf->raid_disks - 1;
5106
5107         if (mddev->recovery_disabled == conf->recovery_disabled)
5108                 return -EBUSY;
5109
5110         if (has_failed(conf))
5111                 /* no point adding a device */
5112                 return -EINVAL;
5113
5114         if (rdev->raid_disk >= 0)
5115                 first = last = rdev->raid_disk;
5116
5117         /*
5118          * find the disk ... but prefer rdev->saved_raid_disk
5119          * if possible.
5120          */
5121         if (rdev->saved_raid_disk >= 0 &&
5122             rdev->saved_raid_disk >= first &&
5123             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5124                 disk = rdev->saved_raid_disk;
5125         else
5126                 disk = first;
5127         for ( ; disk <= last ; disk++)
5128                 if ((p=conf->disks + disk)->rdev == NULL) {
5129                         clear_bit(In_sync, &rdev->flags);
5130                         rdev->raid_disk = disk;
5131                         err = 0;
5132                         if (rdev->saved_raid_disk != disk)
5133                                 conf->fullsync = 1;
5134                         rcu_assign_pointer(p->rdev, rdev);
5135                         break;
5136                 }
5137         print_raid5_conf(conf);
5138         return err;
5139 }
5140
5141 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5142 {
5143         /* no resync is happening, and there is enough space
5144          * on all devices, so we can resize.
5145          * We need to make sure resync covers any new space.
5146          * If the array is shrinking we should possibly wait until
5147          * any io in the removed space completes, but it hardly seems
5148          * worth it.
5149          */
5150         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5151         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5152                                                mddev->raid_disks));
5153         if (mddev->array_sectors >
5154             raid5_size(mddev, sectors, mddev->raid_disks))
5155                 return -EINVAL;
5156         set_capacity(mddev->gendisk, mddev->array_sectors);
5157         revalidate_disk(mddev->gendisk);
5158         if (sectors > mddev->dev_sectors &&
5159             mddev->recovery_cp > mddev->dev_sectors) {
5160                 mddev->recovery_cp = mddev->dev_sectors;
5161                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5162         }
5163         mddev->dev_sectors = sectors;
5164         mddev->resync_max_sectors = sectors;
5165         return 0;
5166 }
5167
5168 static int check_stripe_cache(mddev_t *mddev)
5169 {
5170         /* Can only proceed if there are plenty of stripe_heads.
5171          * We need a minimum of one full stripe,, and for sensible progress
5172          * it is best to have about 4 times that.
5173          * If we require 4 times, then the default 256 4K stripe_heads will
5174          * allow for chunk sizes up to 256K, which is probably OK.
5175          * If the chunk size is greater, user-space should request more
5176          * stripe_heads first.
5177          */
5178         raid5_conf_t *conf = mddev->private;
5179         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5180             > conf->max_nr_stripes ||
5181             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5182             > conf->max_nr_stripes) {
5183                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5184                        mdname(mddev),
5185                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5186                         / STRIPE_SIZE)*4);
5187                 return 0;
5188         }
5189         return 1;
5190 }
5191
5192 static int check_reshape(mddev_t *mddev)
5193 {
5194         raid5_conf_t *conf = mddev->private;
5195
5196         if (mddev->delta_disks == 0 &&
5197             mddev->new_layout == mddev->layout &&
5198             mddev->new_chunk_sectors == mddev->chunk_sectors)
5199                 return 0; /* nothing to do */
5200         if (mddev->bitmap)
5201                 /* Cannot grow a bitmap yet */
5202                 return -EBUSY;
5203         if (has_failed(conf))
5204                 return -EINVAL;
5205         if (mddev->delta_disks < 0) {
5206                 /* We might be able to shrink, but the devices must
5207                  * be made bigger first.
5208                  * For raid6, 4 is the minimum size.
5209                  * Otherwise 2 is the minimum
5210                  */
5211                 int min = 2;
5212                 if (mddev->level == 6)
5213                         min = 4;
5214                 if (mddev->raid_disks + mddev->delta_disks < min)
5215                         return -EINVAL;
5216         }
5217
5218         if (!check_stripe_cache(mddev))
5219                 return -ENOSPC;
5220
5221         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5222 }
5223
5224 static int raid5_start_reshape(mddev_t *mddev)
5225 {
5226         raid5_conf_t *conf = mddev->private;
5227         mdk_rdev_t *rdev;
5228         int spares = 0;
5229         unsigned long flags;
5230
5231         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5232                 return -EBUSY;
5233
5234         if (!check_stripe_cache(mddev))
5235                 return -ENOSPC;
5236
5237         list_for_each_entry(rdev, &mddev->disks, same_set)
5238                 if (!test_bit(In_sync, &rdev->flags)
5239                     && !test_bit(Faulty, &rdev->flags))
5240                         spares++;
5241
5242         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5243                 /* Not enough devices even to make a degraded array
5244                  * of that size
5245                  */
5246                 return -EINVAL;
5247
5248         /* Refuse to reduce size of the array.  Any reductions in
5249          * array size must be through explicit setting of array_size
5250          * attribute.
5251          */
5252         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5253             < mddev->array_sectors) {
5254                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5255                        "before number of disks\n", mdname(mddev));
5256                 return -EINVAL;
5257         }
5258
5259         atomic_set(&conf->reshape_stripes, 0);
5260         spin_lock_irq(&conf->device_lock);
5261         conf->previous_raid_disks = conf->raid_disks;
5262         conf->raid_disks += mddev->delta_disks;
5263         conf->prev_chunk_sectors = conf->chunk_sectors;
5264         conf->chunk_sectors = mddev->new_chunk_sectors;
5265         conf->prev_algo = conf->algorithm;
5266         conf->algorithm = mddev->new_layout;
5267         if (mddev->delta_disks < 0)
5268                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5269         else
5270                 conf->reshape_progress = 0;
5271         conf->reshape_safe = conf->reshape_progress;
5272         conf->generation++;
5273         spin_unlock_irq(&conf->device_lock);
5274
5275         /* Add some new drives, as many as will fit.
5276          * We know there are enough to make the newly sized array work.
5277          * Don't add devices if we are reducing the number of
5278          * devices in the array.  This is because it is not possible
5279          * to correctly record the "partially reconstructed" state of
5280          * such devices during the reshape and confusion could result.
5281          */
5282         if (mddev->delta_disks >= 0) {
5283                 int added_devices = 0;
5284                 list_for_each_entry(rdev, &mddev->disks, same_set)
5285                         if (rdev->raid_disk < 0 &&
5286                             !test_bit(Faulty, &rdev->flags)) {
5287                                 if (raid5_add_disk(mddev, rdev) == 0) {
5288                                         if (rdev->raid_disk
5289                                             >= conf->previous_raid_disks) {
5290                                                 set_bit(In_sync, &rdev->flags);
5291                                                 added_devices++;
5292                                         } else
5293                                                 rdev->recovery_offset = 0;
5294
5295                                         if (sysfs_link_rdev(mddev, rdev))
5296                                                 /* Failure here is OK */;
5297                                 }
5298                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5299                                    && !test_bit(Faulty, &rdev->flags)) {
5300                                 /* This is a spare that was manually added */
5301                                 set_bit(In_sync, &rdev->flags);
5302                                 added_devices++;
5303                         }
5304
5305                 /* When a reshape changes the number of devices,
5306                  * ->degraded is measured against the larger of the
5307                  * pre and post number of devices.
5308                  */
5309                 spin_lock_irqsave(&conf->device_lock, flags);
5310                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5311                         - added_devices;
5312                 spin_unlock_irqrestore(&conf->device_lock, flags);
5313         }
5314         mddev->raid_disks = conf->raid_disks;
5315         mddev->reshape_position = conf->reshape_progress;
5316         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5317
5318         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5319         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5320         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5321         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5322         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5323                                                 "reshape");
5324         if (!mddev->sync_thread) {
5325                 mddev->recovery = 0;
5326                 spin_lock_irq(&conf->device_lock);
5327                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5328                 conf->reshape_progress = MaxSector;
5329                 spin_unlock_irq(&conf->device_lock);
5330                 return -EAGAIN;
5331         }
5332         conf->reshape_checkpoint = jiffies;
5333         md_wakeup_thread(mddev->sync_thread);
5334         md_new_event(mddev);
5335         return 0;
5336 }
5337
5338 /* This is called from the reshape thread and should make any
5339  * changes needed in 'conf'
5340  */
5341 static void end_reshape(raid5_conf_t *conf)
5342 {
5343
5344         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5345
5346                 spin_lock_irq(&conf->device_lock);
5347                 conf->previous_raid_disks = conf->raid_disks;
5348                 conf->reshape_progress = MaxSector;
5349                 spin_unlock_irq(&conf->device_lock);
5350                 wake_up(&conf->wait_for_overlap);
5351
5352                 /* read-ahead size must cover two whole stripes, which is
5353                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5354                  */
5355                 if (conf->mddev->queue) {
5356                         int data_disks = conf->raid_disks - conf->max_degraded;
5357                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5358                                                    / PAGE_SIZE);
5359                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5360                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5361                 }
5362         }
5363 }
5364
5365 /* This is called from the raid5d thread with mddev_lock held.
5366  * It makes config changes to the device.
5367  */
5368 static void raid5_finish_reshape(mddev_t *mddev)
5369 {
5370         raid5_conf_t *conf = mddev->private;
5371
5372         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5373
5374                 if (mddev->delta_disks > 0) {
5375                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5376                         set_capacity(mddev->gendisk, mddev->array_sectors);
5377                         revalidate_disk(mddev->gendisk);
5378                 } else {
5379                         int d;
5380                         mddev->degraded = conf->raid_disks;
5381                         for (d = 0; d < conf->raid_disks ; d++)
5382                                 if (conf->disks[d].rdev &&
5383                                     test_bit(In_sync,
5384                                              &conf->disks[d].rdev->flags))
5385                                         mddev->degraded--;
5386                         for (d = conf->raid_disks ;
5387                              d < conf->raid_disks - mddev->delta_disks;
5388                              d++) {
5389                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5390                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5391                                         sysfs_unlink_rdev(mddev, rdev);
5392                                         rdev->raid_disk = -1;
5393                                 }
5394                         }
5395                 }
5396                 mddev->layout = conf->algorithm;
5397                 mddev->chunk_sectors = conf->chunk_sectors;
5398                 mddev->reshape_position = MaxSector;
5399                 mddev->delta_disks = 0;
5400         }
5401 }
5402
5403 static void raid5_quiesce(mddev_t *mddev, int state)
5404 {
5405         raid5_conf_t *conf = mddev->private;
5406
5407         switch(state) {
5408         case 2: /* resume for a suspend */
5409                 wake_up(&conf->wait_for_overlap);
5410                 break;
5411
5412         case 1: /* stop all writes */
5413                 spin_lock_irq(&conf->device_lock);
5414                 /* '2' tells resync/reshape to pause so that all
5415                  * active stripes can drain
5416                  */
5417                 conf->quiesce = 2;
5418                 wait_event_lock_irq(conf->wait_for_stripe,
5419                                     atomic_read(&conf->active_stripes) == 0 &&
5420                                     atomic_read(&conf->active_aligned_reads) == 0,
5421                                     conf->device_lock, /* nothing */);
5422                 conf->quiesce = 1;
5423                 spin_unlock_irq(&conf->device_lock);
5424                 /* allow reshape to continue */
5425                 wake_up(&conf->wait_for_overlap);
5426                 break;
5427
5428         case 0: /* re-enable writes */
5429                 spin_lock_irq(&conf->device_lock);
5430                 conf->quiesce = 0;
5431                 wake_up(&conf->wait_for_stripe);
5432                 wake_up(&conf->wait_for_overlap);
5433                 spin_unlock_irq(&conf->device_lock);
5434                 break;
5435         }
5436 }
5437
5438
5439 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5440 {
5441         struct raid0_private_data *raid0_priv = mddev->private;
5442         sector_t sectors;
5443
5444         /* for raid0 takeover only one zone is supported */
5445         if (raid0_priv->nr_strip_zones > 1) {
5446                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5447                        mdname(mddev));
5448                 return ERR_PTR(-EINVAL);
5449         }
5450
5451         sectors = raid0_priv->strip_zone[0].zone_end;
5452         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5453         mddev->dev_sectors = sectors;
5454         mddev->new_level = level;
5455         mddev->new_layout = ALGORITHM_PARITY_N;
5456         mddev->new_chunk_sectors = mddev->chunk_sectors;
5457         mddev->raid_disks += 1;
5458         mddev->delta_disks = 1;
5459         /* make sure it will be not marked as dirty */
5460         mddev->recovery_cp = MaxSector;
5461
5462         return setup_conf(mddev);
5463 }
5464
5465
5466 static void *raid5_takeover_raid1(mddev_t *mddev)
5467 {
5468         int chunksect;
5469
5470         if (mddev->raid_disks != 2 ||
5471             mddev->degraded > 1)
5472                 return ERR_PTR(-EINVAL);
5473
5474         /* Should check if there are write-behind devices? */
5475
5476         chunksect = 64*2; /* 64K by default */
5477
5478         /* The array must be an exact multiple of chunksize */
5479         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5480                 chunksect >>= 1;
5481
5482         if ((chunksect<<9) < STRIPE_SIZE)
5483                 /* array size does not allow a suitable chunk size */
5484                 return ERR_PTR(-EINVAL);
5485
5486         mddev->new_level = 5;
5487         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5488         mddev->new_chunk_sectors = chunksect;
5489
5490         return setup_conf(mddev);
5491 }
5492
5493 static void *raid5_takeover_raid6(mddev_t *mddev)
5494 {
5495         int new_layout;
5496
5497         switch (mddev->layout) {
5498         case ALGORITHM_LEFT_ASYMMETRIC_6:
5499                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5500                 break;
5501         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5502                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5503                 break;
5504         case ALGORITHM_LEFT_SYMMETRIC_6:
5505                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5506                 break;
5507         case ALGORITHM_RIGHT_SYMMETRIC_6:
5508                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5509                 break;
5510         case ALGORITHM_PARITY_0_6:
5511                 new_layout = ALGORITHM_PARITY_0;
5512                 break;
5513         case ALGORITHM_PARITY_N:
5514                 new_layout = ALGORITHM_PARITY_N;
5515                 break;
5516         default:
5517                 return ERR_PTR(-EINVAL);
5518         }
5519         mddev->new_level = 5;
5520         mddev->new_layout = new_layout;
5521         mddev->delta_disks = -1;
5522         mddev->raid_disks -= 1;
5523         return setup_conf(mddev);
5524 }
5525
5526
5527 static int raid5_check_reshape(mddev_t *mddev)
5528 {
5529         /* For a 2-drive array, the layout and chunk size can be changed
5530          * immediately as not restriping is needed.
5531          * For larger arrays we record the new value - after validation
5532          * to be used by a reshape pass.
5533          */
5534         raid5_conf_t *conf = mddev->private;
5535         int new_chunk = mddev->new_chunk_sectors;
5536
5537         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5538                 return -EINVAL;
5539         if (new_chunk > 0) {
5540                 if (!is_power_of_2(new_chunk))
5541                         return -EINVAL;
5542                 if (new_chunk < (PAGE_SIZE>>9))
5543                         return -EINVAL;
5544                 if (mddev->array_sectors & (new_chunk-1))
5545                         /* not factor of array size */
5546                         return -EINVAL;
5547         }
5548
5549         /* They look valid */
5550
5551         if (mddev->raid_disks == 2) {
5552                 /* can make the change immediately */
5553                 if (mddev->new_layout >= 0) {
5554                         conf->algorithm = mddev->new_layout;
5555                         mddev->layout = mddev->new_layout;
5556                 }
5557                 if (new_chunk > 0) {
5558                         conf->chunk_sectors = new_chunk ;
5559                         mddev->chunk_sectors = new_chunk;
5560                 }
5561                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5562                 md_wakeup_thread(mddev->thread);
5563         }
5564         return check_reshape(mddev);
5565 }
5566
5567 static int raid6_check_reshape(mddev_t *mddev)
5568 {
5569         int new_chunk = mddev->new_chunk_sectors;
5570
5571         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5572                 return -EINVAL;
5573         if (new_chunk > 0) {
5574                 if (!is_power_of_2(new_chunk))
5575                         return -EINVAL;
5576                 if (new_chunk < (PAGE_SIZE >> 9))
5577                         return -EINVAL;
5578                 if (mddev->array_sectors & (new_chunk-1))
5579                         /* not factor of array size */
5580                         return -EINVAL;
5581         }
5582
5583         /* They look valid */
5584         return check_reshape(mddev);
5585 }
5586
5587 static void *raid5_takeover(mddev_t *mddev)
5588 {
5589         /* raid5 can take over:
5590          *  raid0 - if there is only one strip zone - make it a raid4 layout
5591          *  raid1 - if there are two drives.  We need to know the chunk size
5592          *  raid4 - trivial - just use a raid4 layout.
5593          *  raid6 - Providing it is a *_6 layout
5594          */
5595         if (mddev->level == 0)
5596                 return raid45_takeover_raid0(mddev, 5);
5597         if (mddev->level == 1)
5598                 return raid5_takeover_raid1(mddev);
5599         if (mddev->level == 4) {
5600                 mddev->new_layout = ALGORITHM_PARITY_N;
5601                 mddev->new_level = 5;
5602                 return setup_conf(mddev);
5603         }
5604         if (mddev->level == 6)
5605                 return raid5_takeover_raid6(mddev);
5606
5607         return ERR_PTR(-EINVAL);
5608 }
5609
5610 static void *raid4_takeover(mddev_t *mddev)
5611 {
5612         /* raid4 can take over:
5613          *  raid0 - if there is only one strip zone
5614          *  raid5 - if layout is right
5615          */
5616         if (mddev->level == 0)
5617                 return raid45_takeover_raid0(mddev, 4);
5618         if (mddev->level == 5 &&
5619             mddev->layout == ALGORITHM_PARITY_N) {
5620                 mddev->new_layout = 0;
5621                 mddev->new_level = 4;
5622                 return setup_conf(mddev);
5623         }
5624         return ERR_PTR(-EINVAL);
5625 }
5626
5627 static struct mdk_personality raid5_personality;
5628
5629 static void *raid6_takeover(mddev_t *mddev)
5630 {
5631         /* Currently can only take over a raid5.  We map the
5632          * personality to an equivalent raid6 personality
5633          * with the Q block at the end.
5634          */
5635         int new_layout;
5636
5637         if (mddev->pers != &raid5_personality)
5638                 return ERR_PTR(-EINVAL);
5639         if (mddev->degraded > 1)
5640                 return ERR_PTR(-EINVAL);
5641         if (mddev->raid_disks > 253)
5642                 return ERR_PTR(-EINVAL);
5643         if (mddev->raid_disks < 3)
5644                 return ERR_PTR(-EINVAL);
5645
5646         switch (mddev->layout) {
5647         case ALGORITHM_LEFT_ASYMMETRIC:
5648                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5649                 break;
5650         case ALGORITHM_RIGHT_ASYMMETRIC:
5651                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5652                 break;
5653         case ALGORITHM_LEFT_SYMMETRIC:
5654                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5655                 break;
5656         case ALGORITHM_RIGHT_SYMMETRIC:
5657                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5658                 break;
5659         case ALGORITHM_PARITY_0:
5660                 new_layout = ALGORITHM_PARITY_0_6;
5661                 break;
5662         case ALGORITHM_PARITY_N:
5663                 new_layout = ALGORITHM_PARITY_N;
5664                 break;
5665         default:
5666                 return ERR_PTR(-EINVAL);
5667         }
5668         mddev->new_level = 6;
5669         mddev->new_layout = new_layout;
5670         mddev->delta_disks = 1;
5671         mddev->raid_disks += 1;
5672         return setup_conf(mddev);
5673 }
5674
5675
5676 static struct mdk_personality raid6_personality =
5677 {
5678         .name           = "raid6",
5679         .level          = 6,
5680         .owner          = THIS_MODULE,
5681         .make_request   = make_request,
5682         .run            = run,
5683         .stop           = stop,
5684         .status         = status,
5685         .error_handler  = error,
5686         .hot_add_disk   = raid5_add_disk,
5687         .hot_remove_disk= raid5_remove_disk,
5688         .spare_active   = raid5_spare_active,
5689         .sync_request   = sync_request,
5690         .resize         = raid5_resize,
5691         .size           = raid5_size,
5692         .check_reshape  = raid6_check_reshape,
5693         .start_reshape  = raid5_start_reshape,
5694         .finish_reshape = raid5_finish_reshape,
5695         .quiesce        = raid5_quiesce,
5696         .takeover       = raid6_takeover,
5697 };
5698 static struct mdk_personality raid5_personality =
5699 {
5700         .name           = "raid5",
5701         .level          = 5,
5702         .owner          = THIS_MODULE,
5703         .make_request   = make_request,
5704         .run            = run,
5705         .stop           = stop,
5706         .status         = status,
5707         .error_handler  = error,
5708         .hot_add_disk   = raid5_add_disk,
5709         .hot_remove_disk= raid5_remove_disk,
5710         .spare_active   = raid5_spare_active,
5711         .sync_request   = sync_request,
5712         .resize         = raid5_resize,
5713         .size           = raid5_size,
5714         .check_reshape  = raid5_check_reshape,
5715         .start_reshape  = raid5_start_reshape,
5716         .finish_reshape = raid5_finish_reshape,
5717         .quiesce        = raid5_quiesce,
5718         .takeover       = raid5_takeover,
5719 };
5720
5721 static struct mdk_personality raid4_personality =
5722 {
5723         .name           = "raid4",
5724         .level          = 4,
5725         .owner          = THIS_MODULE,
5726         .make_request   = make_request,
5727         .run            = run,
5728         .stop           = stop,
5729         .status         = status,
5730         .error_handler  = error,
5731         .hot_add_disk   = raid5_add_disk,
5732         .hot_remove_disk= raid5_remove_disk,
5733         .spare_active   = raid5_spare_active,
5734         .sync_request   = sync_request,
5735         .resize         = raid5_resize,
5736         .size           = raid5_size,
5737         .check_reshape  = raid5_check_reshape,
5738         .start_reshape  = raid5_start_reshape,
5739         .finish_reshape = raid5_finish_reshape,
5740         .quiesce        = raid5_quiesce,
5741         .takeover       = raid4_takeover,
5742 };
5743
5744 static int __init raid5_init(void)
5745 {
5746         register_md_personality(&raid6_personality);
5747         register_md_personality(&raid5_personality);
5748         register_md_personality(&raid4_personality);
5749         return 0;
5750 }
5751
5752 static void raid5_exit(void)
5753 {
5754         unregister_md_personality(&raid6_personality);
5755         unregister_md_personality(&raid5_personality);
5756         unregister_md_personality(&raid4_personality);
5757 }
5758
5759 module_init(raid5_init);
5760 module_exit(raid5_exit);
5761 MODULE_LICENSE("GPL");
5762 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5763 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5764 MODULE_ALIAS("md-raid5");
5765 MODULE_ALIAS("md-raid4");
5766 MODULE_ALIAS("md-level-5");
5767 MODULE_ALIAS("md-level-4");
5768 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5769 MODULE_ALIAS("md-raid6");
5770 MODULE_ALIAS("md-level-6");
5771
5772 /* This used to be two separate modules, they were: */
5773 MODULE_ALIAS("raid5");
5774 MODULE_ALIAS("raid6");