md/raid5: be careful not to resize_stripes too big.
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105         return (atomic_read(segments) >> 16) & 0xffff;
106 }
107
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return atomic_sub_return(1, segments) & 0xffff;
112 }
113
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         atomic_inc(segments);
118 }
119
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121         unsigned int cnt)
122 {
123         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124         int old, new;
125
126         do {
127                 old = atomic_read(segments);
128                 new = (old & 0xffff) | (cnt << 16);
129         } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135         atomic_set(segments, cnt);
136 }
137
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141         if (sh->ddf_layout)
142                 /* ddf always start from first device */
143                 return 0;
144         /* md starts just after Q block */
145         if (sh->qd_idx == sh->disks - 1)
146                 return 0;
147         else
148                 return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152         disk++;
153         return (disk < raid_disks) ? disk : 0;
154 }
155
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162                              int *count, int syndrome_disks)
163 {
164         int slot = *count;
165
166         if (sh->ddf_layout)
167                 (*count)++;
168         if (idx == sh->pd_idx)
169                 return syndrome_disks;
170         if (idx == sh->qd_idx)
171                 return syndrome_disks + 1;
172         if (!sh->ddf_layout)
173                 (*count)++;
174         return slot;
175 }
176
177 static void return_io(struct bio *return_bi)
178 {
179         struct bio *bi = return_bi;
180         while (bi) {
181
182                 return_bi = bi->bi_next;
183                 bi->bi_next = NULL;
184                 bi->bi_size = 0;
185                 bio_endio(bi, 0);
186                 bi = return_bi;
187         }
188 }
189
190 static void print_raid5_conf (struct r5conf *conf);
191
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194         return sh->check_state || sh->reconstruct_state ||
195                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201         BUG_ON(!list_empty(&sh->lru));
202         BUG_ON(atomic_read(&conf->active_stripes)==0);
203         if (test_bit(STRIPE_HANDLE, &sh->state)) {
204                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206                         list_add_tail(&sh->lru, &conf->delayed_list);
207                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208                            sh->bm_seq - conf->seq_write > 0)
209                         list_add_tail(&sh->lru, &conf->bitmap_list);
210                 else {
211                         clear_bit(STRIPE_DELAYED, &sh->state);
212                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
213                         list_add_tail(&sh->lru, &conf->handle_list);
214                 }
215                 md_wakeup_thread(conf->mddev->thread);
216         } else {
217                 BUG_ON(stripe_operations_active(sh));
218                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219                         if (atomic_dec_return(&conf->preread_active_stripes)
220                             < IO_THRESHOLD)
221                                 md_wakeup_thread(conf->mddev->thread);
222                 atomic_dec(&conf->active_stripes);
223                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224                         list_add_tail(&sh->lru, &conf->inactive_list);
225                         wake_up(&conf->wait_for_stripe);
226                         if (conf->retry_read_aligned)
227                                 md_wakeup_thread(conf->mddev->thread);
228                 }
229         }
230 }
231
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234         if (atomic_dec_and_test(&sh->count))
235                 do_release_stripe(conf, sh);
236 }
237
238 static void release_stripe(struct stripe_head *sh)
239 {
240         struct r5conf *conf = sh->raid_conf;
241         unsigned long flags;
242
243         local_irq_save(flags);
244         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245                 do_release_stripe(conf, sh);
246                 spin_unlock(&conf->device_lock);
247         }
248         local_irq_restore(flags);
249 }
250
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253         pr_debug("remove_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         hlist_del_init(&sh->hash);
257 }
258
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261         struct hlist_head *hp = stripe_hash(conf, sh->sector);
262
263         pr_debug("insert_hash(), stripe %llu\n",
264                 (unsigned long long)sh->sector);
265
266         hlist_add_head(&sh->hash, hp);
267 }
268
269
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273         struct stripe_head *sh = NULL;
274         struct list_head *first;
275
276         if (list_empty(&conf->inactive_list))
277                 goto out;
278         first = conf->inactive_list.next;
279         sh = list_entry(first, struct stripe_head, lru);
280         list_del_init(first);
281         remove_hash(sh);
282         atomic_inc(&conf->active_stripes);
283 out:
284         return sh;
285 }
286
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289         struct page *p;
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num ; i++) {
294                 p = sh->dev[i].page;
295                 if (!p)
296                         continue;
297                 sh->dev[i].page = NULL;
298                 put_page(p);
299         }
300 }
301
302 static int grow_buffers(struct stripe_head *sh)
303 {
304         int i;
305         int num = sh->raid_conf->pool_size;
306
307         for (i = 0; i < num; i++) {
308                 struct page *page;
309
310                 if (!(page = alloc_page(GFP_KERNEL))) {
311                         return 1;
312                 }
313                 sh->dev[i].page = page;
314         }
315         return 0;
316 }
317
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320                             struct stripe_head *sh);
321
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324         struct r5conf *conf = sh->raid_conf;
325         int i;
326
327         BUG_ON(atomic_read(&sh->count) != 0);
328         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329         BUG_ON(stripe_operations_active(sh));
330
331         pr_debug("init_stripe called, stripe %llu\n",
332                 (unsigned long long)sh->sector);
333
334         remove_hash(sh);
335
336         sh->generation = conf->generation - previous;
337         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338         sh->sector = sector;
339         stripe_set_idx(sector, conf, previous, sh);
340         sh->state = 0;
341
342
343         for (i = sh->disks; i--; ) {
344                 struct r5dev *dev = &sh->dev[i];
345
346                 if (dev->toread || dev->read || dev->towrite || dev->written ||
347                     test_bit(R5_LOCKED, &dev->flags)) {
348                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349                                (unsigned long long)sh->sector, i, dev->toread,
350                                dev->read, dev->towrite, dev->written,
351                                test_bit(R5_LOCKED, &dev->flags));
352                         WARN_ON(1);
353                 }
354                 dev->flags = 0;
355                 raid5_build_block(sh, i, previous);
356         }
357         insert_hash(conf, sh);
358 }
359
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361                                          short generation)
362 {
363         struct stripe_head *sh;
364         struct hlist_node *hn;
365
366         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368                 if (sh->sector == sector && sh->generation == generation)
369                         return sh;
370         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371         return NULL;
372 }
373
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389         int degraded, degraded2;
390         int i;
391
392         rcu_read_lock();
393         degraded = 0;
394         for (i = 0; i < conf->previous_raid_disks; i++) {
395                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396                 if (!rdev || test_bit(Faulty, &rdev->flags))
397                         degraded++;
398                 else if (test_bit(In_sync, &rdev->flags))
399                         ;
400                 else
401                         /* not in-sync or faulty.
402                          * If the reshape increases the number of devices,
403                          * this is being recovered by the reshape, so
404                          * this 'previous' section is not in_sync.
405                          * If the number of devices is being reduced however,
406                          * the device can only be part of the array if
407                          * we are reverting a reshape, so this section will
408                          * be in-sync.
409                          */
410                         if (conf->raid_disks >= conf->previous_raid_disks)
411                                 degraded++;
412         }
413         rcu_read_unlock();
414         if (conf->raid_disks == conf->previous_raid_disks)
415                 return degraded;
416         rcu_read_lock();
417         degraded2 = 0;
418         for (i = 0; i < conf->raid_disks; i++) {
419                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
420                 if (!rdev || test_bit(Faulty, &rdev->flags))
421                         degraded2++;
422                 else if (test_bit(In_sync, &rdev->flags))
423                         ;
424                 else
425                         /* not in-sync or faulty.
426                          * If reshape increases the number of devices, this
427                          * section has already been recovered, else it
428                          * almost certainly hasn't.
429                          */
430                         if (conf->raid_disks <= conf->previous_raid_disks)
431                                 degraded2++;
432         }
433         rcu_read_unlock();
434         if (degraded2 > degraded)
435                 return degraded2;
436         return degraded;
437 }
438
439 static int has_failed(struct r5conf *conf)
440 {
441         int degraded;
442
443         if (conf->mddev->reshape_position == MaxSector)
444                 return conf->mddev->degraded > conf->max_degraded;
445
446         degraded = calc_degraded(conf);
447         if (degraded > conf->max_degraded)
448                 return 1;
449         return 0;
450 }
451
452 static struct stripe_head *
453 get_active_stripe(struct r5conf *conf, sector_t sector,
454                   int previous, int noblock, int noquiesce)
455 {
456         struct stripe_head *sh;
457
458         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
459
460         spin_lock_irq(&conf->device_lock);
461
462         do {
463                 wait_event_lock_irq(conf->wait_for_stripe,
464                                     conf->quiesce == 0 || noquiesce,
465                                     conf->device_lock, /* nothing */);
466                 sh = __find_stripe(conf, sector, conf->generation - previous);
467                 if (!sh) {
468                         if (!conf->inactive_blocked)
469                                 sh = get_free_stripe(conf);
470                         if (noblock && sh == NULL)
471                                 break;
472                         if (!sh) {
473                                 conf->inactive_blocked = 1;
474                                 wait_event_lock_irq(conf->wait_for_stripe,
475                                                     !list_empty(&conf->inactive_list) &&
476                                                     (atomic_read(&conf->active_stripes)
477                                                      < (conf->max_nr_stripes *3/4)
478                                                      || !conf->inactive_blocked),
479                                                     conf->device_lock,
480                                                     );
481                                 conf->inactive_blocked = 0;
482                         } else
483                                 init_stripe(sh, sector, previous);
484                 } else {
485                         if (atomic_read(&sh->count)) {
486                                 BUG_ON(!list_empty(&sh->lru)
487                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
488                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
489                         } else {
490                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
491                                         atomic_inc(&conf->active_stripes);
492                                 if (list_empty(&sh->lru) &&
493                                     !test_bit(STRIPE_EXPANDING, &sh->state))
494                                         BUG();
495                                 list_del_init(&sh->lru);
496                         }
497                 }
498         } while (sh == NULL);
499
500         if (sh)
501                 atomic_inc(&sh->count);
502
503         spin_unlock_irq(&conf->device_lock);
504         return sh;
505 }
506
507 /* Determine if 'data_offset' or 'new_data_offset' should be used
508  * in this stripe_head.
509  */
510 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
511 {
512         sector_t progress = conf->reshape_progress;
513         /* Need a memory barrier to make sure we see the value
514          * of conf->generation, or ->data_offset that was set before
515          * reshape_progress was updated.
516          */
517         smp_rmb();
518         if (progress == MaxSector)
519                 return 0;
520         if (sh->generation == conf->generation - 1)
521                 return 0;
522         /* We are in a reshape, and this is a new-generation stripe,
523          * so use new_data_offset.
524          */
525         return 1;
526 }
527
528 static void
529 raid5_end_read_request(struct bio *bi, int error);
530 static void
531 raid5_end_write_request(struct bio *bi, int error);
532
533 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
534 {
535         struct r5conf *conf = sh->raid_conf;
536         int i, disks = sh->disks;
537
538         might_sleep();
539
540         for (i = disks; i--; ) {
541                 int rw;
542                 int replace_only = 0;
543                 struct bio *bi, *rbi;
544                 struct md_rdev *rdev, *rrdev = NULL;
545                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
546                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
547                                 rw = WRITE_FUA;
548                         else
549                                 rw = WRITE;
550                         if (test_bit(R5_Discard, &sh->dev[i].flags))
551                                 rw |= REQ_DISCARD;
552                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
553                         rw = READ;
554                 else if (test_and_clear_bit(R5_WantReplace,
555                                             &sh->dev[i].flags)) {
556                         rw = WRITE;
557                         replace_only = 1;
558                 } else
559                         continue;
560                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
561                         rw |= REQ_SYNC;
562
563                 bi = &sh->dev[i].req;
564                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
565
566                 bi->bi_rw = rw;
567                 rbi->bi_rw = rw;
568                 if (rw & WRITE) {
569                         bi->bi_end_io = raid5_end_write_request;
570                         rbi->bi_end_io = raid5_end_write_request;
571                 } else
572                         bi->bi_end_io = raid5_end_read_request;
573
574                 rcu_read_lock();
575                 rrdev = rcu_dereference(conf->disks[i].replacement);
576                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
577                 rdev = rcu_dereference(conf->disks[i].rdev);
578                 if (!rdev) {
579                         rdev = rrdev;
580                         rrdev = NULL;
581                 }
582                 if (rw & WRITE) {
583                         if (replace_only)
584                                 rdev = NULL;
585                         if (rdev == rrdev)
586                                 /* We raced and saw duplicates */
587                                 rrdev = NULL;
588                 } else {
589                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
590                                 rdev = rrdev;
591                         rrdev = NULL;
592                 }
593
594                 if (rdev && test_bit(Faulty, &rdev->flags))
595                         rdev = NULL;
596                 if (rdev)
597                         atomic_inc(&rdev->nr_pending);
598                 if (rrdev && test_bit(Faulty, &rrdev->flags))
599                         rrdev = NULL;
600                 if (rrdev)
601                         atomic_inc(&rrdev->nr_pending);
602                 rcu_read_unlock();
603
604                 /* We have already checked bad blocks for reads.  Now
605                  * need to check for writes.  We never accept write errors
606                  * on the replacement, so we don't to check rrdev.
607                  */
608                 while ((rw & WRITE) && rdev &&
609                        test_bit(WriteErrorSeen, &rdev->flags)) {
610                         sector_t first_bad;
611                         int bad_sectors;
612                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
613                                               &first_bad, &bad_sectors);
614                         if (!bad)
615                                 break;
616
617                         if (bad < 0) {
618                                 set_bit(BlockedBadBlocks, &rdev->flags);
619                                 if (!conf->mddev->external &&
620                                     conf->mddev->flags) {
621                                         /* It is very unlikely, but we might
622                                          * still need to write out the
623                                          * bad block log - better give it
624                                          * a chance*/
625                                         md_check_recovery(conf->mddev);
626                                 }
627                                 /*
628                                  * Because md_wait_for_blocked_rdev
629                                  * will dec nr_pending, we must
630                                  * increment it first.
631                                  */
632                                 atomic_inc(&rdev->nr_pending);
633                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
634                         } else {
635                                 /* Acknowledged bad block - skip the write */
636                                 rdev_dec_pending(rdev, conf->mddev);
637                                 rdev = NULL;
638                         }
639                 }
640
641                 if (rdev) {
642                         if (s->syncing || s->expanding || s->expanded
643                             || s->replacing)
644                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
645
646                         set_bit(STRIPE_IO_STARTED, &sh->state);
647
648                         bi->bi_bdev = rdev->bdev;
649                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
650                                 __func__, (unsigned long long)sh->sector,
651                                 bi->bi_rw, i);
652                         atomic_inc(&sh->count);
653                         if (use_new_offset(conf, sh))
654                                 bi->bi_sector = (sh->sector
655                                                  + rdev->new_data_offset);
656                         else
657                                 bi->bi_sector = (sh->sector
658                                                  + rdev->data_offset);
659                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
660                                 bi->bi_rw |= REQ_FLUSH;
661
662                         bi->bi_flags = 1 << BIO_UPTODATE;
663                         bi->bi_idx = 0;
664                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
665                         bi->bi_io_vec[0].bv_offset = 0;
666                         bi->bi_size = STRIPE_SIZE;
667                         bi->bi_next = NULL;
668                         if (rrdev)
669                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
670                         generic_make_request(bi);
671                 }
672                 if (rrdev) {
673                         if (s->syncing || s->expanding || s->expanded
674                             || s->replacing)
675                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
676
677                         set_bit(STRIPE_IO_STARTED, &sh->state);
678
679                         rbi->bi_bdev = rrdev->bdev;
680                         pr_debug("%s: for %llu schedule op %ld on "
681                                  "replacement disc %d\n",
682                                 __func__, (unsigned long long)sh->sector,
683                                 rbi->bi_rw, i);
684                         atomic_inc(&sh->count);
685                         if (use_new_offset(conf, sh))
686                                 rbi->bi_sector = (sh->sector
687                                                   + rrdev->new_data_offset);
688                         else
689                                 rbi->bi_sector = (sh->sector
690                                                   + rrdev->data_offset);
691                         rbi->bi_flags = 1 << BIO_UPTODATE;
692                         rbi->bi_idx = 0;
693                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
694                         rbi->bi_io_vec[0].bv_offset = 0;
695                         rbi->bi_size = STRIPE_SIZE;
696                         rbi->bi_next = NULL;
697                         generic_make_request(rbi);
698                 }
699                 if (!rdev && !rrdev) {
700                         if (rw & WRITE)
701                                 set_bit(STRIPE_DEGRADED, &sh->state);
702                         pr_debug("skip op %ld on disc %d for sector %llu\n",
703                                 bi->bi_rw, i, (unsigned long long)sh->sector);
704                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
705                         set_bit(STRIPE_HANDLE, &sh->state);
706                 }
707         }
708 }
709
710 static struct dma_async_tx_descriptor *
711 async_copy_data(int frombio, struct bio *bio, struct page *page,
712         sector_t sector, struct dma_async_tx_descriptor *tx)
713 {
714         struct bio_vec *bvl;
715         struct page *bio_page;
716         int i;
717         int page_offset;
718         struct async_submit_ctl submit;
719         enum async_tx_flags flags = 0;
720
721         if (bio->bi_sector >= sector)
722                 page_offset = (signed)(bio->bi_sector - sector) * 512;
723         else
724                 page_offset = (signed)(sector - bio->bi_sector) * -512;
725
726         if (frombio)
727                 flags |= ASYNC_TX_FENCE;
728         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
729
730         bio_for_each_segment(bvl, bio, i) {
731                 int len = bvl->bv_len;
732                 int clen;
733                 int b_offset = 0;
734
735                 if (page_offset < 0) {
736                         b_offset = -page_offset;
737                         page_offset += b_offset;
738                         len -= b_offset;
739                 }
740
741                 if (len > 0 && page_offset + len > STRIPE_SIZE)
742                         clen = STRIPE_SIZE - page_offset;
743                 else
744                         clen = len;
745
746                 if (clen > 0) {
747                         b_offset += bvl->bv_offset;
748                         bio_page = bvl->bv_page;
749                         if (frombio)
750                                 tx = async_memcpy(page, bio_page, page_offset,
751                                                   b_offset, clen, &submit);
752                         else
753                                 tx = async_memcpy(bio_page, page, b_offset,
754                                                   page_offset, clen, &submit);
755                 }
756                 /* chain the operations */
757                 submit.depend_tx = tx;
758
759                 if (clen < len) /* hit end of page */
760                         break;
761                 page_offset +=  len;
762         }
763
764         return tx;
765 }
766
767 static void ops_complete_biofill(void *stripe_head_ref)
768 {
769         struct stripe_head *sh = stripe_head_ref;
770         struct bio *return_bi = NULL;
771         int i;
772
773         pr_debug("%s: stripe %llu\n", __func__,
774                 (unsigned long long)sh->sector);
775
776         /* clear completed biofills */
777         for (i = sh->disks; i--; ) {
778                 struct r5dev *dev = &sh->dev[i];
779
780                 /* acknowledge completion of a biofill operation */
781                 /* and check if we need to reply to a read request,
782                  * new R5_Wantfill requests are held off until
783                  * !STRIPE_BIOFILL_RUN
784                  */
785                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
786                         struct bio *rbi, *rbi2;
787
788                         BUG_ON(!dev->read);
789                         rbi = dev->read;
790                         dev->read = NULL;
791                         while (rbi && rbi->bi_sector <
792                                 dev->sector + STRIPE_SECTORS) {
793                                 rbi2 = r5_next_bio(rbi, dev->sector);
794                                 if (!raid5_dec_bi_active_stripes(rbi)) {
795                                         rbi->bi_next = return_bi;
796                                         return_bi = rbi;
797                                 }
798                                 rbi = rbi2;
799                         }
800                 }
801         }
802         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
803
804         return_io(return_bi);
805
806         set_bit(STRIPE_HANDLE, &sh->state);
807         release_stripe(sh);
808 }
809
810 static void ops_run_biofill(struct stripe_head *sh)
811 {
812         struct dma_async_tx_descriptor *tx = NULL;
813         struct async_submit_ctl submit;
814         int i;
815
816         pr_debug("%s: stripe %llu\n", __func__,
817                 (unsigned long long)sh->sector);
818
819         for (i = sh->disks; i--; ) {
820                 struct r5dev *dev = &sh->dev[i];
821                 if (test_bit(R5_Wantfill, &dev->flags)) {
822                         struct bio *rbi;
823                         spin_lock_irq(&sh->stripe_lock);
824                         dev->read = rbi = dev->toread;
825                         dev->toread = NULL;
826                         spin_unlock_irq(&sh->stripe_lock);
827                         while (rbi && rbi->bi_sector <
828                                 dev->sector + STRIPE_SECTORS) {
829                                 tx = async_copy_data(0, rbi, dev->page,
830                                         dev->sector, tx);
831                                 rbi = r5_next_bio(rbi, dev->sector);
832                         }
833                 }
834         }
835
836         atomic_inc(&sh->count);
837         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
838         async_trigger_callback(&submit);
839 }
840
841 static void mark_target_uptodate(struct stripe_head *sh, int target)
842 {
843         struct r5dev *tgt;
844
845         if (target < 0)
846                 return;
847
848         tgt = &sh->dev[target];
849         set_bit(R5_UPTODATE, &tgt->flags);
850         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
851         clear_bit(R5_Wantcompute, &tgt->flags);
852 }
853
854 static void ops_complete_compute(void *stripe_head_ref)
855 {
856         struct stripe_head *sh = stripe_head_ref;
857
858         pr_debug("%s: stripe %llu\n", __func__,
859                 (unsigned long long)sh->sector);
860
861         /* mark the computed target(s) as uptodate */
862         mark_target_uptodate(sh, sh->ops.target);
863         mark_target_uptodate(sh, sh->ops.target2);
864
865         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
866         if (sh->check_state == check_state_compute_run)
867                 sh->check_state = check_state_compute_result;
868         set_bit(STRIPE_HANDLE, &sh->state);
869         release_stripe(sh);
870 }
871
872 /* return a pointer to the address conversion region of the scribble buffer */
873 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
874                                  struct raid5_percpu *percpu)
875 {
876         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
877 }
878
879 static struct dma_async_tx_descriptor *
880 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
881 {
882         int disks = sh->disks;
883         struct page **xor_srcs = percpu->scribble;
884         int target = sh->ops.target;
885         struct r5dev *tgt = &sh->dev[target];
886         struct page *xor_dest = tgt->page;
887         int count = 0;
888         struct dma_async_tx_descriptor *tx;
889         struct async_submit_ctl submit;
890         int i;
891
892         pr_debug("%s: stripe %llu block: %d\n",
893                 __func__, (unsigned long long)sh->sector, target);
894         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
895
896         for (i = disks; i--; )
897                 if (i != target)
898                         xor_srcs[count++] = sh->dev[i].page;
899
900         atomic_inc(&sh->count);
901
902         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
903                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
904         if (unlikely(count == 1))
905                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
906         else
907                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
908
909         return tx;
910 }
911
912 /* set_syndrome_sources - populate source buffers for gen_syndrome
913  * @srcs - (struct page *) array of size sh->disks
914  * @sh - stripe_head to parse
915  *
916  * Populates srcs in proper layout order for the stripe and returns the
917  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
918  * destination buffer is recorded in srcs[count] and the Q destination
919  * is recorded in srcs[count+1]].
920  */
921 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
922 {
923         int disks = sh->disks;
924         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
925         int d0_idx = raid6_d0(sh);
926         int count;
927         int i;
928
929         for (i = 0; i < disks; i++)
930                 srcs[i] = NULL;
931
932         count = 0;
933         i = d0_idx;
934         do {
935                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
936
937                 srcs[slot] = sh->dev[i].page;
938                 i = raid6_next_disk(i, disks);
939         } while (i != d0_idx);
940
941         return syndrome_disks;
942 }
943
944 static struct dma_async_tx_descriptor *
945 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
946 {
947         int disks = sh->disks;
948         struct page **blocks = percpu->scribble;
949         int target;
950         int qd_idx = sh->qd_idx;
951         struct dma_async_tx_descriptor *tx;
952         struct async_submit_ctl submit;
953         struct r5dev *tgt;
954         struct page *dest;
955         int i;
956         int count;
957
958         if (sh->ops.target < 0)
959                 target = sh->ops.target2;
960         else if (sh->ops.target2 < 0)
961                 target = sh->ops.target;
962         else
963                 /* we should only have one valid target */
964                 BUG();
965         BUG_ON(target < 0);
966         pr_debug("%s: stripe %llu block: %d\n",
967                 __func__, (unsigned long long)sh->sector, target);
968
969         tgt = &sh->dev[target];
970         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
971         dest = tgt->page;
972
973         atomic_inc(&sh->count);
974
975         if (target == qd_idx) {
976                 count = set_syndrome_sources(blocks, sh);
977                 blocks[count] = NULL; /* regenerating p is not necessary */
978                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
979                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
980                                   ops_complete_compute, sh,
981                                   to_addr_conv(sh, percpu));
982                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
983         } else {
984                 /* Compute any data- or p-drive using XOR */
985                 count = 0;
986                 for (i = disks; i-- ; ) {
987                         if (i == target || i == qd_idx)
988                                 continue;
989                         blocks[count++] = sh->dev[i].page;
990                 }
991
992                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
993                                   NULL, ops_complete_compute, sh,
994                                   to_addr_conv(sh, percpu));
995                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
996         }
997
998         return tx;
999 }
1000
1001 static struct dma_async_tx_descriptor *
1002 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1003 {
1004         int i, count, disks = sh->disks;
1005         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1006         int d0_idx = raid6_d0(sh);
1007         int faila = -1, failb = -1;
1008         int target = sh->ops.target;
1009         int target2 = sh->ops.target2;
1010         struct r5dev *tgt = &sh->dev[target];
1011         struct r5dev *tgt2 = &sh->dev[target2];
1012         struct dma_async_tx_descriptor *tx;
1013         struct page **blocks = percpu->scribble;
1014         struct async_submit_ctl submit;
1015
1016         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1017                  __func__, (unsigned long long)sh->sector, target, target2);
1018         BUG_ON(target < 0 || target2 < 0);
1019         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1020         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1021
1022         /* we need to open-code set_syndrome_sources to handle the
1023          * slot number conversion for 'faila' and 'failb'
1024          */
1025         for (i = 0; i < disks ; i++)
1026                 blocks[i] = NULL;
1027         count = 0;
1028         i = d0_idx;
1029         do {
1030                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1031
1032                 blocks[slot] = sh->dev[i].page;
1033
1034                 if (i == target)
1035                         faila = slot;
1036                 if (i == target2)
1037                         failb = slot;
1038                 i = raid6_next_disk(i, disks);
1039         } while (i != d0_idx);
1040
1041         BUG_ON(faila == failb);
1042         if (failb < faila)
1043                 swap(faila, failb);
1044         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1045                  __func__, (unsigned long long)sh->sector, faila, failb);
1046
1047         atomic_inc(&sh->count);
1048
1049         if (failb == syndrome_disks+1) {
1050                 /* Q disk is one of the missing disks */
1051                 if (faila == syndrome_disks) {
1052                         /* Missing P+Q, just recompute */
1053                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1054                                           ops_complete_compute, sh,
1055                                           to_addr_conv(sh, percpu));
1056                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1057                                                   STRIPE_SIZE, &submit);
1058                 } else {
1059                         struct page *dest;
1060                         int data_target;
1061                         int qd_idx = sh->qd_idx;
1062
1063                         /* Missing D+Q: recompute D from P, then recompute Q */
1064                         if (target == qd_idx)
1065                                 data_target = target2;
1066                         else
1067                                 data_target = target;
1068
1069                         count = 0;
1070                         for (i = disks; i-- ; ) {
1071                                 if (i == data_target || i == qd_idx)
1072                                         continue;
1073                                 blocks[count++] = sh->dev[i].page;
1074                         }
1075                         dest = sh->dev[data_target].page;
1076                         init_async_submit(&submit,
1077                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1078                                           NULL, NULL, NULL,
1079                                           to_addr_conv(sh, percpu));
1080                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1081                                        &submit);
1082
1083                         count = set_syndrome_sources(blocks, sh);
1084                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1085                                           ops_complete_compute, sh,
1086                                           to_addr_conv(sh, percpu));
1087                         return async_gen_syndrome(blocks, 0, count+2,
1088                                                   STRIPE_SIZE, &submit);
1089                 }
1090         } else {
1091                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1092                                   ops_complete_compute, sh,
1093                                   to_addr_conv(sh, percpu));
1094                 if (failb == syndrome_disks) {
1095                         /* We're missing D+P. */
1096                         return async_raid6_datap_recov(syndrome_disks+2,
1097                                                        STRIPE_SIZE, faila,
1098                                                        blocks, &submit);
1099                 } else {
1100                         /* We're missing D+D. */
1101                         return async_raid6_2data_recov(syndrome_disks+2,
1102                                                        STRIPE_SIZE, faila, failb,
1103                                                        blocks, &submit);
1104                 }
1105         }
1106 }
1107
1108
1109 static void ops_complete_prexor(void *stripe_head_ref)
1110 {
1111         struct stripe_head *sh = stripe_head_ref;
1112
1113         pr_debug("%s: stripe %llu\n", __func__,
1114                 (unsigned long long)sh->sector);
1115 }
1116
1117 static struct dma_async_tx_descriptor *
1118 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1119                struct dma_async_tx_descriptor *tx)
1120 {
1121         int disks = sh->disks;
1122         struct page **xor_srcs = percpu->scribble;
1123         int count = 0, pd_idx = sh->pd_idx, i;
1124         struct async_submit_ctl submit;
1125
1126         /* existing parity data subtracted */
1127         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128
1129         pr_debug("%s: stripe %llu\n", __func__,
1130                 (unsigned long long)sh->sector);
1131
1132         for (i = disks; i--; ) {
1133                 struct r5dev *dev = &sh->dev[i];
1134                 /* Only process blocks that are known to be uptodate */
1135                 if (test_bit(R5_Wantdrain, &dev->flags))
1136                         xor_srcs[count++] = dev->page;
1137         }
1138
1139         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1140                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1141         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1142
1143         return tx;
1144 }
1145
1146 static struct dma_async_tx_descriptor *
1147 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1148 {
1149         int disks = sh->disks;
1150         int i;
1151
1152         pr_debug("%s: stripe %llu\n", __func__,
1153                 (unsigned long long)sh->sector);
1154
1155         for (i = disks; i--; ) {
1156                 struct r5dev *dev = &sh->dev[i];
1157                 struct bio *chosen;
1158
1159                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1160                         struct bio *wbi;
1161
1162                         spin_lock_irq(&sh->stripe_lock);
1163                         chosen = dev->towrite;
1164                         dev->towrite = NULL;
1165                         BUG_ON(dev->written);
1166                         wbi = dev->written = chosen;
1167                         spin_unlock_irq(&sh->stripe_lock);
1168
1169                         while (wbi && wbi->bi_sector <
1170                                 dev->sector + STRIPE_SECTORS) {
1171                                 if (wbi->bi_rw & REQ_FUA)
1172                                         set_bit(R5_WantFUA, &dev->flags);
1173                                 if (wbi->bi_rw & REQ_SYNC)
1174                                         set_bit(R5_SyncIO, &dev->flags);
1175                                 if (wbi->bi_rw & REQ_DISCARD)
1176                                         set_bit(R5_Discard, &dev->flags);
1177                                 else
1178                                         tx = async_copy_data(1, wbi, dev->page,
1179                                                 dev->sector, tx);
1180                                 wbi = r5_next_bio(wbi, dev->sector);
1181                         }
1182                 }
1183         }
1184
1185         return tx;
1186 }
1187
1188 static void ops_complete_reconstruct(void *stripe_head_ref)
1189 {
1190         struct stripe_head *sh = stripe_head_ref;
1191         int disks = sh->disks;
1192         int pd_idx = sh->pd_idx;
1193         int qd_idx = sh->qd_idx;
1194         int i;
1195         bool fua = false, sync = false, discard = false;
1196
1197         pr_debug("%s: stripe %llu\n", __func__,
1198                 (unsigned long long)sh->sector);
1199
1200         for (i = disks; i--; ) {
1201                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1202                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1203                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1204         }
1205
1206         for (i = disks; i--; ) {
1207                 struct r5dev *dev = &sh->dev[i];
1208
1209                 if (dev->written || i == pd_idx || i == qd_idx) {
1210                         if (!discard)
1211                                 set_bit(R5_UPTODATE, &dev->flags);
1212                         if (fua)
1213                                 set_bit(R5_WantFUA, &dev->flags);
1214                         if (sync)
1215                                 set_bit(R5_SyncIO, &dev->flags);
1216                 }
1217         }
1218
1219         if (sh->reconstruct_state == reconstruct_state_drain_run)
1220                 sh->reconstruct_state = reconstruct_state_drain_result;
1221         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1222                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1223         else {
1224                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1225                 sh->reconstruct_state = reconstruct_state_result;
1226         }
1227
1228         set_bit(STRIPE_HANDLE, &sh->state);
1229         release_stripe(sh);
1230 }
1231
1232 static void
1233 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1234                      struct dma_async_tx_descriptor *tx)
1235 {
1236         int disks = sh->disks;
1237         struct page **xor_srcs = percpu->scribble;
1238         struct async_submit_ctl submit;
1239         int count = 0, pd_idx = sh->pd_idx, i;
1240         struct page *xor_dest;
1241         int prexor = 0;
1242         unsigned long flags;
1243
1244         pr_debug("%s: stripe %llu\n", __func__,
1245                 (unsigned long long)sh->sector);
1246
1247         for (i = 0; i < sh->disks; i++) {
1248                 if (pd_idx == i)
1249                         continue;
1250                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1251                         break;
1252         }
1253         if (i >= sh->disks) {
1254                 atomic_inc(&sh->count);
1255                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1256                 ops_complete_reconstruct(sh);
1257                 return;
1258         }
1259         /* check if prexor is active which means only process blocks
1260          * that are part of a read-modify-write (written)
1261          */
1262         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1263                 prexor = 1;
1264                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1265                 for (i = disks; i--; ) {
1266                         struct r5dev *dev = &sh->dev[i];
1267                         if (dev->written)
1268                                 xor_srcs[count++] = dev->page;
1269                 }
1270         } else {
1271                 xor_dest = sh->dev[pd_idx].page;
1272                 for (i = disks; i--; ) {
1273                         struct r5dev *dev = &sh->dev[i];
1274                         if (i != pd_idx)
1275                                 xor_srcs[count++] = dev->page;
1276                 }
1277         }
1278
1279         /* 1/ if we prexor'd then the dest is reused as a source
1280          * 2/ if we did not prexor then we are redoing the parity
1281          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1282          * for the synchronous xor case
1283          */
1284         flags = ASYNC_TX_ACK |
1285                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1286
1287         atomic_inc(&sh->count);
1288
1289         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1290                           to_addr_conv(sh, percpu));
1291         if (unlikely(count == 1))
1292                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1293         else
1294                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1295 }
1296
1297 static void
1298 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1299                      struct dma_async_tx_descriptor *tx)
1300 {
1301         struct async_submit_ctl submit;
1302         struct page **blocks = percpu->scribble;
1303         int count, i;
1304
1305         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1306
1307         for (i = 0; i < sh->disks; i++) {
1308                 if (sh->pd_idx == i || sh->qd_idx == i)
1309                         continue;
1310                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1311                         break;
1312         }
1313         if (i >= sh->disks) {
1314                 atomic_inc(&sh->count);
1315                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1316                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1317                 ops_complete_reconstruct(sh);
1318                 return;
1319         }
1320
1321         count = set_syndrome_sources(blocks, sh);
1322
1323         atomic_inc(&sh->count);
1324
1325         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1326                           sh, to_addr_conv(sh, percpu));
1327         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1328 }
1329
1330 static void ops_complete_check(void *stripe_head_ref)
1331 {
1332         struct stripe_head *sh = stripe_head_ref;
1333
1334         pr_debug("%s: stripe %llu\n", __func__,
1335                 (unsigned long long)sh->sector);
1336
1337         sh->check_state = check_state_check_result;
1338         set_bit(STRIPE_HANDLE, &sh->state);
1339         release_stripe(sh);
1340 }
1341
1342 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1343 {
1344         int disks = sh->disks;
1345         int pd_idx = sh->pd_idx;
1346         int qd_idx = sh->qd_idx;
1347         struct page *xor_dest;
1348         struct page **xor_srcs = percpu->scribble;
1349         struct dma_async_tx_descriptor *tx;
1350         struct async_submit_ctl submit;
1351         int count;
1352         int i;
1353
1354         pr_debug("%s: stripe %llu\n", __func__,
1355                 (unsigned long long)sh->sector);
1356
1357         count = 0;
1358         xor_dest = sh->dev[pd_idx].page;
1359         xor_srcs[count++] = xor_dest;
1360         for (i = disks; i--; ) {
1361                 if (i == pd_idx || i == qd_idx)
1362                         continue;
1363                 xor_srcs[count++] = sh->dev[i].page;
1364         }
1365
1366         init_async_submit(&submit, 0, NULL, NULL, NULL,
1367                           to_addr_conv(sh, percpu));
1368         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1369                            &sh->ops.zero_sum_result, &submit);
1370
1371         atomic_inc(&sh->count);
1372         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1373         tx = async_trigger_callback(&submit);
1374 }
1375
1376 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1377 {
1378         struct page **srcs = percpu->scribble;
1379         struct async_submit_ctl submit;
1380         int count;
1381
1382         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1383                 (unsigned long long)sh->sector, checkp);
1384
1385         count = set_syndrome_sources(srcs, sh);
1386         if (!checkp)
1387                 srcs[count] = NULL;
1388
1389         atomic_inc(&sh->count);
1390         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1391                           sh, to_addr_conv(sh, percpu));
1392         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1393                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1394 }
1395
1396 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1397 {
1398         int overlap_clear = 0, i, disks = sh->disks;
1399         struct dma_async_tx_descriptor *tx = NULL;
1400         struct r5conf *conf = sh->raid_conf;
1401         int level = conf->level;
1402         struct raid5_percpu *percpu;
1403         unsigned long cpu;
1404
1405         cpu = get_cpu();
1406         percpu = per_cpu_ptr(conf->percpu, cpu);
1407         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1408                 ops_run_biofill(sh);
1409                 overlap_clear++;
1410         }
1411
1412         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1413                 if (level < 6)
1414                         tx = ops_run_compute5(sh, percpu);
1415                 else {
1416                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1417                                 tx = ops_run_compute6_1(sh, percpu);
1418                         else
1419                                 tx = ops_run_compute6_2(sh, percpu);
1420                 }
1421                 /* terminate the chain if reconstruct is not set to be run */
1422                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1423                         async_tx_ack(tx);
1424         }
1425
1426         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1427                 tx = ops_run_prexor(sh, percpu, tx);
1428
1429         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1430                 tx = ops_run_biodrain(sh, tx);
1431                 overlap_clear++;
1432         }
1433
1434         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1435                 if (level < 6)
1436                         ops_run_reconstruct5(sh, percpu, tx);
1437                 else
1438                         ops_run_reconstruct6(sh, percpu, tx);
1439         }
1440
1441         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1442                 if (sh->check_state == check_state_run)
1443                         ops_run_check_p(sh, percpu);
1444                 else if (sh->check_state == check_state_run_q)
1445                         ops_run_check_pq(sh, percpu, 0);
1446                 else if (sh->check_state == check_state_run_pq)
1447                         ops_run_check_pq(sh, percpu, 1);
1448                 else
1449                         BUG();
1450         }
1451
1452         if (overlap_clear)
1453                 for (i = disks; i--; ) {
1454                         struct r5dev *dev = &sh->dev[i];
1455                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1456                                 wake_up(&sh->raid_conf->wait_for_overlap);
1457                 }
1458         put_cpu();
1459 }
1460
1461 #ifdef CONFIG_MULTICORE_RAID456
1462 static void async_run_ops(void *param, async_cookie_t cookie)
1463 {
1464         struct stripe_head *sh = param;
1465         unsigned long ops_request = sh->ops.request;
1466
1467         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1468         wake_up(&sh->ops.wait_for_ops);
1469
1470         __raid_run_ops(sh, ops_request);
1471         release_stripe(sh);
1472 }
1473
1474 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1475 {
1476         /* since handle_stripe can be called outside of raid5d context
1477          * we need to ensure sh->ops.request is de-staged before another
1478          * request arrives
1479          */
1480         wait_event(sh->ops.wait_for_ops,
1481                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1482         sh->ops.request = ops_request;
1483
1484         atomic_inc(&sh->count);
1485         async_schedule(async_run_ops, sh);
1486 }
1487 #else
1488 #define raid_run_ops __raid_run_ops
1489 #endif
1490
1491 static int grow_one_stripe(struct r5conf *conf)
1492 {
1493         struct stripe_head *sh;
1494         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1495         if (!sh)
1496                 return 0;
1497
1498         sh->raid_conf = conf;
1499         #ifdef CONFIG_MULTICORE_RAID456
1500         init_waitqueue_head(&sh->ops.wait_for_ops);
1501         #endif
1502
1503         spin_lock_init(&sh->stripe_lock);
1504
1505         if (grow_buffers(sh)) {
1506                 shrink_buffers(sh);
1507                 kmem_cache_free(conf->slab_cache, sh);
1508                 return 0;
1509         }
1510         /* we just created an active stripe so... */
1511         atomic_set(&sh->count, 1);
1512         atomic_inc(&conf->active_stripes);
1513         INIT_LIST_HEAD(&sh->lru);
1514         release_stripe(sh);
1515         return 1;
1516 }
1517
1518 static int grow_stripes(struct r5conf *conf, int num)
1519 {
1520         struct kmem_cache *sc;
1521         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1522
1523         if (conf->mddev->gendisk)
1524                 sprintf(conf->cache_name[0],
1525                         "raid%d-%s", conf->level, mdname(conf->mddev));
1526         else
1527                 sprintf(conf->cache_name[0],
1528                         "raid%d-%p", conf->level, conf->mddev);
1529         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1530
1531         conf->active_name = 0;
1532         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1533                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1534                                0, 0, NULL);
1535         if (!sc)
1536                 return 1;
1537         conf->slab_cache = sc;
1538         conf->pool_size = devs;
1539         while (num--)
1540                 if (!grow_one_stripe(conf))
1541                         return 1;
1542         return 0;
1543 }
1544
1545 /**
1546  * scribble_len - return the required size of the scribble region
1547  * @num - total number of disks in the array
1548  *
1549  * The size must be enough to contain:
1550  * 1/ a struct page pointer for each device in the array +2
1551  * 2/ room to convert each entry in (1) to its corresponding dma
1552  *    (dma_map_page()) or page (page_address()) address.
1553  *
1554  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1555  * calculate over all devices (not just the data blocks), using zeros in place
1556  * of the P and Q blocks.
1557  */
1558 static size_t scribble_len(int num)
1559 {
1560         size_t len;
1561
1562         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1563
1564         return len;
1565 }
1566
1567 static int resize_stripes(struct r5conf *conf, int newsize)
1568 {
1569         /* Make all the stripes able to hold 'newsize' devices.
1570          * New slots in each stripe get 'page' set to a new page.
1571          *
1572          * This happens in stages:
1573          * 1/ create a new kmem_cache and allocate the required number of
1574          *    stripe_heads.
1575          * 2/ gather all the old stripe_heads and tranfer the pages across
1576          *    to the new stripe_heads.  This will have the side effect of
1577          *    freezing the array as once all stripe_heads have been collected,
1578          *    no IO will be possible.  Old stripe heads are freed once their
1579          *    pages have been transferred over, and the old kmem_cache is
1580          *    freed when all stripes are done.
1581          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1582          *    we simple return a failre status - no need to clean anything up.
1583          * 4/ allocate new pages for the new slots in the new stripe_heads.
1584          *    If this fails, we don't bother trying the shrink the
1585          *    stripe_heads down again, we just leave them as they are.
1586          *    As each stripe_head is processed the new one is released into
1587          *    active service.
1588          *
1589          * Once step2 is started, we cannot afford to wait for a write,
1590          * so we use GFP_NOIO allocations.
1591          */
1592         struct stripe_head *osh, *nsh;
1593         LIST_HEAD(newstripes);
1594         struct disk_info *ndisks;
1595         unsigned long cpu;
1596         int err;
1597         struct kmem_cache *sc;
1598         int i;
1599
1600         if (newsize <= conf->pool_size)
1601                 return 0; /* never bother to shrink */
1602
1603         err = md_allow_write(conf->mddev);
1604         if (err)
1605                 return err;
1606
1607         /* Step 1 */
1608         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1609                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1610                                0, 0, NULL);
1611         if (!sc)
1612                 return -ENOMEM;
1613
1614         for (i = conf->max_nr_stripes; i; i--) {
1615                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1616                 if (!nsh)
1617                         break;
1618
1619                 nsh->raid_conf = conf;
1620                 #ifdef CONFIG_MULTICORE_RAID456
1621                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1622                 #endif
1623
1624                 list_add(&nsh->lru, &newstripes);
1625         }
1626         if (i) {
1627                 /* didn't get enough, give up */
1628                 while (!list_empty(&newstripes)) {
1629                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1630                         list_del(&nsh->lru);
1631                         kmem_cache_free(sc, nsh);
1632                 }
1633                 kmem_cache_destroy(sc);
1634                 return -ENOMEM;
1635         }
1636         /* Step 2 - Must use GFP_NOIO now.
1637          * OK, we have enough stripes, start collecting inactive
1638          * stripes and copying them over
1639          */
1640         list_for_each_entry(nsh, &newstripes, lru) {
1641                 spin_lock_irq(&conf->device_lock);
1642                 wait_event_lock_irq(conf->wait_for_stripe,
1643                                     !list_empty(&conf->inactive_list),
1644                                     conf->device_lock,
1645                                     );
1646                 osh = get_free_stripe(conf);
1647                 spin_unlock_irq(&conf->device_lock);
1648                 atomic_set(&nsh->count, 1);
1649                 for(i=0; i<conf->pool_size; i++)
1650                         nsh->dev[i].page = osh->dev[i].page;
1651                 for( ; i<newsize; i++)
1652                         nsh->dev[i].page = NULL;
1653                 kmem_cache_free(conf->slab_cache, osh);
1654         }
1655         kmem_cache_destroy(conf->slab_cache);
1656
1657         /* Step 3.
1658          * At this point, we are holding all the stripes so the array
1659          * is completely stalled, so now is a good time to resize
1660          * conf->disks and the scribble region
1661          */
1662         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1663         if (ndisks) {
1664                 for (i=0; i<conf->raid_disks; i++)
1665                         ndisks[i] = conf->disks[i];
1666                 kfree(conf->disks);
1667                 conf->disks = ndisks;
1668         } else
1669                 err = -ENOMEM;
1670
1671         get_online_cpus();
1672         conf->scribble_len = scribble_len(newsize);
1673         for_each_present_cpu(cpu) {
1674                 struct raid5_percpu *percpu;
1675                 void *scribble;
1676
1677                 percpu = per_cpu_ptr(conf->percpu, cpu);
1678                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1679
1680                 if (scribble) {
1681                         kfree(percpu->scribble);
1682                         percpu->scribble = scribble;
1683                 } else {
1684                         err = -ENOMEM;
1685                         break;
1686                 }
1687         }
1688         put_online_cpus();
1689
1690         /* Step 4, return new stripes to service */
1691         while(!list_empty(&newstripes)) {
1692                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1693                 list_del_init(&nsh->lru);
1694
1695                 for (i=conf->raid_disks; i < newsize; i++)
1696                         if (nsh->dev[i].page == NULL) {
1697                                 struct page *p = alloc_page(GFP_NOIO);
1698                                 nsh->dev[i].page = p;
1699                                 if (!p)
1700                                         err = -ENOMEM;
1701                         }
1702                 release_stripe(nsh);
1703         }
1704         /* critical section pass, GFP_NOIO no longer needed */
1705
1706         conf->slab_cache = sc;
1707         conf->active_name = 1-conf->active_name;
1708         conf->pool_size = newsize;
1709         return err;
1710 }
1711
1712 static int drop_one_stripe(struct r5conf *conf)
1713 {
1714         struct stripe_head *sh;
1715
1716         spin_lock_irq(&conf->device_lock);
1717         sh = get_free_stripe(conf);
1718         spin_unlock_irq(&conf->device_lock);
1719         if (!sh)
1720                 return 0;
1721         BUG_ON(atomic_read(&sh->count));
1722         shrink_buffers(sh);
1723         kmem_cache_free(conf->slab_cache, sh);
1724         atomic_dec(&conf->active_stripes);
1725         return 1;
1726 }
1727
1728 static void shrink_stripes(struct r5conf *conf)
1729 {
1730         while (drop_one_stripe(conf))
1731                 ;
1732
1733         if (conf->slab_cache)
1734                 kmem_cache_destroy(conf->slab_cache);
1735         conf->slab_cache = NULL;
1736 }
1737
1738 static void raid5_end_read_request(struct bio * bi, int error)
1739 {
1740         struct stripe_head *sh = bi->bi_private;
1741         struct r5conf *conf = sh->raid_conf;
1742         int disks = sh->disks, i;
1743         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1744         char b[BDEVNAME_SIZE];
1745         struct md_rdev *rdev = NULL;
1746         sector_t s;
1747
1748         for (i=0 ; i<disks; i++)
1749                 if (bi == &sh->dev[i].req)
1750                         break;
1751
1752         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1753                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1754                 uptodate);
1755         if (i == disks) {
1756                 BUG();
1757                 return;
1758         }
1759         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1760                 /* If replacement finished while this request was outstanding,
1761                  * 'replacement' might be NULL already.
1762                  * In that case it moved down to 'rdev'.
1763                  * rdev is not removed until all requests are finished.
1764                  */
1765                 rdev = conf->disks[i].replacement;
1766         if (!rdev)
1767                 rdev = conf->disks[i].rdev;
1768
1769         if (use_new_offset(conf, sh))
1770                 s = sh->sector + rdev->new_data_offset;
1771         else
1772                 s = sh->sector + rdev->data_offset;
1773         if (uptodate) {
1774                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1775                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1776                         /* Note that this cannot happen on a
1777                          * replacement device.  We just fail those on
1778                          * any error
1779                          */
1780                         printk_ratelimited(
1781                                 KERN_INFO
1782                                 "md/raid:%s: read error corrected"
1783                                 " (%lu sectors at %llu on %s)\n",
1784                                 mdname(conf->mddev), STRIPE_SECTORS,
1785                                 (unsigned long long)s,
1786                                 bdevname(rdev->bdev, b));
1787                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1788                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1789                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1790                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1791                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1792
1793                 if (atomic_read(&rdev->read_errors))
1794                         atomic_set(&rdev->read_errors, 0);
1795         } else {
1796                 const char *bdn = bdevname(rdev->bdev, b);
1797                 int retry = 0;
1798                 int set_bad = 0;
1799
1800                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1801                 atomic_inc(&rdev->read_errors);
1802                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1803                         printk_ratelimited(
1804                                 KERN_WARNING
1805                                 "md/raid:%s: read error on replacement device "
1806                                 "(sector %llu on %s).\n",
1807                                 mdname(conf->mddev),
1808                                 (unsigned long long)s,
1809                                 bdn);
1810                 else if (conf->mddev->degraded >= conf->max_degraded) {
1811                         set_bad = 1;
1812                         printk_ratelimited(
1813                                 KERN_WARNING
1814                                 "md/raid:%s: read error not correctable "
1815                                 "(sector %llu on %s).\n",
1816                                 mdname(conf->mddev),
1817                                 (unsigned long long)s,
1818                                 bdn);
1819                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1820                         /* Oh, no!!! */
1821                         set_bad = 1;
1822                         printk_ratelimited(
1823                                 KERN_WARNING
1824                                 "md/raid:%s: read error NOT corrected!! "
1825                                 "(sector %llu on %s).\n",
1826                                 mdname(conf->mddev),
1827                                 (unsigned long long)s,
1828                                 bdn);
1829                 } else if (atomic_read(&rdev->read_errors)
1830                          > conf->max_nr_stripes)
1831                         printk(KERN_WARNING
1832                                "md/raid:%s: Too many read errors, failing device %s.\n",
1833                                mdname(conf->mddev), bdn);
1834                 else
1835                         retry = 1;
1836                 if (retry)
1837                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1838                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1839                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1840                         } else
1841                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1842                 else {
1843                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1844                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1845                         if (!(set_bad
1846                               && test_bit(In_sync, &rdev->flags)
1847                               && rdev_set_badblocks(
1848                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1849                                 md_error(conf->mddev, rdev);
1850                 }
1851         }
1852         rdev_dec_pending(rdev, conf->mddev);
1853         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1854         set_bit(STRIPE_HANDLE, &sh->state);
1855         release_stripe(sh);
1856 }
1857
1858 static void raid5_end_write_request(struct bio *bi, int error)
1859 {
1860         struct stripe_head *sh = bi->bi_private;
1861         struct r5conf *conf = sh->raid_conf;
1862         int disks = sh->disks, i;
1863         struct md_rdev *uninitialized_var(rdev);
1864         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1865         sector_t first_bad;
1866         int bad_sectors;
1867         int replacement = 0;
1868
1869         for (i = 0 ; i < disks; i++) {
1870                 if (bi == &sh->dev[i].req) {
1871                         rdev = conf->disks[i].rdev;
1872                         break;
1873                 }
1874                 if (bi == &sh->dev[i].rreq) {
1875                         rdev = conf->disks[i].replacement;
1876                         if (rdev)
1877                                 replacement = 1;
1878                         else
1879                                 /* rdev was removed and 'replacement'
1880                                  * replaced it.  rdev is not removed
1881                                  * until all requests are finished.
1882                                  */
1883                                 rdev = conf->disks[i].rdev;
1884                         break;
1885                 }
1886         }
1887         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1888                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1889                 uptodate);
1890         if (i == disks) {
1891                 BUG();
1892                 return;
1893         }
1894
1895         if (replacement) {
1896                 if (!uptodate)
1897                         md_error(conf->mddev, rdev);
1898                 else if (is_badblock(rdev, sh->sector,
1899                                      STRIPE_SECTORS,
1900                                      &first_bad, &bad_sectors))
1901                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1902         } else {
1903                 if (!uptodate) {
1904                         set_bit(WriteErrorSeen, &rdev->flags);
1905                         set_bit(R5_WriteError, &sh->dev[i].flags);
1906                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1907                                 set_bit(MD_RECOVERY_NEEDED,
1908                                         &rdev->mddev->recovery);
1909                 } else if (is_badblock(rdev, sh->sector,
1910                                        STRIPE_SECTORS,
1911                                        &first_bad, &bad_sectors))
1912                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1913         }
1914         rdev_dec_pending(rdev, conf->mddev);
1915
1916         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1917                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1918         set_bit(STRIPE_HANDLE, &sh->state);
1919         release_stripe(sh);
1920 }
1921
1922 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1923         
1924 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1925 {
1926         struct r5dev *dev = &sh->dev[i];
1927
1928         bio_init(&dev->req);
1929         dev->req.bi_io_vec = &dev->vec;
1930         dev->req.bi_vcnt++;
1931         dev->req.bi_max_vecs++;
1932         dev->req.bi_private = sh;
1933         dev->vec.bv_page = dev->page;
1934
1935         bio_init(&dev->rreq);
1936         dev->rreq.bi_io_vec = &dev->rvec;
1937         dev->rreq.bi_vcnt++;
1938         dev->rreq.bi_max_vecs++;
1939         dev->rreq.bi_private = sh;
1940         dev->rvec.bv_page = dev->page;
1941
1942         dev->flags = 0;
1943         dev->sector = compute_blocknr(sh, i, previous);
1944 }
1945
1946 static void error(struct mddev *mddev, struct md_rdev *rdev)
1947 {
1948         char b[BDEVNAME_SIZE];
1949         struct r5conf *conf = mddev->private;
1950         unsigned long flags;
1951         pr_debug("raid456: error called\n");
1952
1953         spin_lock_irqsave(&conf->device_lock, flags);
1954         clear_bit(In_sync, &rdev->flags);
1955         mddev->degraded = calc_degraded(conf);
1956         spin_unlock_irqrestore(&conf->device_lock, flags);
1957         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1958
1959         set_bit(Blocked, &rdev->flags);
1960         set_bit(Faulty, &rdev->flags);
1961         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1962         printk(KERN_ALERT
1963                "md/raid:%s: Disk failure on %s, disabling device.\n"
1964                "md/raid:%s: Operation continuing on %d devices.\n",
1965                mdname(mddev),
1966                bdevname(rdev->bdev, b),
1967                mdname(mddev),
1968                conf->raid_disks - mddev->degraded);
1969 }
1970
1971 /*
1972  * Input: a 'big' sector number,
1973  * Output: index of the data and parity disk, and the sector # in them.
1974  */
1975 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1976                                      int previous, int *dd_idx,
1977                                      struct stripe_head *sh)
1978 {
1979         sector_t stripe, stripe2;
1980         sector_t chunk_number;
1981         unsigned int chunk_offset;
1982         int pd_idx, qd_idx;
1983         int ddf_layout = 0;
1984         sector_t new_sector;
1985         int algorithm = previous ? conf->prev_algo
1986                                  : conf->algorithm;
1987         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1988                                          : conf->chunk_sectors;
1989         int raid_disks = previous ? conf->previous_raid_disks
1990                                   : conf->raid_disks;
1991         int data_disks = raid_disks - conf->max_degraded;
1992
1993         /* First compute the information on this sector */
1994
1995         /*
1996          * Compute the chunk number and the sector offset inside the chunk
1997          */
1998         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1999         chunk_number = r_sector;
2000
2001         /*
2002          * Compute the stripe number
2003          */
2004         stripe = chunk_number;
2005         *dd_idx = sector_div(stripe, data_disks);
2006         stripe2 = stripe;
2007         /*
2008          * Select the parity disk based on the user selected algorithm.
2009          */
2010         pd_idx = qd_idx = -1;
2011         switch(conf->level) {
2012         case 4:
2013                 pd_idx = data_disks;
2014                 break;
2015         case 5:
2016                 switch (algorithm) {
2017                 case ALGORITHM_LEFT_ASYMMETRIC:
2018                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2019                         if (*dd_idx >= pd_idx)
2020                                 (*dd_idx)++;
2021                         break;
2022                 case ALGORITHM_RIGHT_ASYMMETRIC:
2023                         pd_idx = sector_div(stripe2, raid_disks);
2024                         if (*dd_idx >= pd_idx)
2025                                 (*dd_idx)++;
2026                         break;
2027                 case ALGORITHM_LEFT_SYMMETRIC:
2028                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2029                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2030                         break;
2031                 case ALGORITHM_RIGHT_SYMMETRIC:
2032                         pd_idx = sector_div(stripe2, raid_disks);
2033                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2034                         break;
2035                 case ALGORITHM_PARITY_0:
2036                         pd_idx = 0;
2037                         (*dd_idx)++;
2038                         break;
2039                 case ALGORITHM_PARITY_N:
2040                         pd_idx = data_disks;
2041                         break;
2042                 default:
2043                         BUG();
2044                 }
2045                 break;
2046         case 6:
2047
2048                 switch (algorithm) {
2049                 case ALGORITHM_LEFT_ASYMMETRIC:
2050                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2051                         qd_idx = pd_idx + 1;
2052                         if (pd_idx == raid_disks-1) {
2053                                 (*dd_idx)++;    /* Q D D D P */
2054                                 qd_idx = 0;
2055                         } else if (*dd_idx >= pd_idx)
2056                                 (*dd_idx) += 2; /* D D P Q D */
2057                         break;
2058                 case ALGORITHM_RIGHT_ASYMMETRIC:
2059                         pd_idx = sector_div(stripe2, raid_disks);
2060                         qd_idx = pd_idx + 1;
2061                         if (pd_idx == raid_disks-1) {
2062                                 (*dd_idx)++;    /* Q D D D P */
2063                                 qd_idx = 0;
2064                         } else if (*dd_idx >= pd_idx)
2065                                 (*dd_idx) += 2; /* D D P Q D */
2066                         break;
2067                 case ALGORITHM_LEFT_SYMMETRIC:
2068                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2069                         qd_idx = (pd_idx + 1) % raid_disks;
2070                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2071                         break;
2072                 case ALGORITHM_RIGHT_SYMMETRIC:
2073                         pd_idx = sector_div(stripe2, raid_disks);
2074                         qd_idx = (pd_idx + 1) % raid_disks;
2075                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076                         break;
2077
2078                 case ALGORITHM_PARITY_0:
2079                         pd_idx = 0;
2080                         qd_idx = 1;
2081                         (*dd_idx) += 2;
2082                         break;
2083                 case ALGORITHM_PARITY_N:
2084                         pd_idx = data_disks;
2085                         qd_idx = data_disks + 1;
2086                         break;
2087
2088                 case ALGORITHM_ROTATING_ZERO_RESTART:
2089                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2090                          * of blocks for computing Q is different.
2091                          */
2092                         pd_idx = sector_div(stripe2, raid_disks);
2093                         qd_idx = pd_idx + 1;
2094                         if (pd_idx == raid_disks-1) {
2095                                 (*dd_idx)++;    /* Q D D D P */
2096                                 qd_idx = 0;
2097                         } else if (*dd_idx >= pd_idx)
2098                                 (*dd_idx) += 2; /* D D P Q D */
2099                         ddf_layout = 1;
2100                         break;
2101
2102                 case ALGORITHM_ROTATING_N_RESTART:
2103                         /* Same a left_asymmetric, by first stripe is
2104                          * D D D P Q  rather than
2105                          * Q D D D P
2106                          */
2107                         stripe2 += 1;
2108                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2109                         qd_idx = pd_idx + 1;
2110                         if (pd_idx == raid_disks-1) {
2111                                 (*dd_idx)++;    /* Q D D D P */
2112                                 qd_idx = 0;
2113                         } else if (*dd_idx >= pd_idx)
2114                                 (*dd_idx) += 2; /* D D P Q D */
2115                         ddf_layout = 1;
2116                         break;
2117
2118                 case ALGORITHM_ROTATING_N_CONTINUE:
2119                         /* Same as left_symmetric but Q is before P */
2120                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2121                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2122                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2123                         ddf_layout = 1;
2124                         break;
2125
2126                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2127                         /* RAID5 left_asymmetric, with Q on last device */
2128                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2129                         if (*dd_idx >= pd_idx)
2130                                 (*dd_idx)++;
2131                         qd_idx = raid_disks - 1;
2132                         break;
2133
2134                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2135                         pd_idx = sector_div(stripe2, raid_disks-1);
2136                         if (*dd_idx >= pd_idx)
2137                                 (*dd_idx)++;
2138                         qd_idx = raid_disks - 1;
2139                         break;
2140
2141                 case ALGORITHM_LEFT_SYMMETRIC_6:
2142                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2143                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2144                         qd_idx = raid_disks - 1;
2145                         break;
2146
2147                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2148                         pd_idx = sector_div(stripe2, raid_disks-1);
2149                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2150                         qd_idx = raid_disks - 1;
2151                         break;
2152
2153                 case ALGORITHM_PARITY_0_6:
2154                         pd_idx = 0;
2155                         (*dd_idx)++;
2156                         qd_idx = raid_disks - 1;
2157                         break;
2158
2159                 default:
2160                         BUG();
2161                 }
2162                 break;
2163         }
2164
2165         if (sh) {
2166                 sh->pd_idx = pd_idx;
2167                 sh->qd_idx = qd_idx;
2168                 sh->ddf_layout = ddf_layout;
2169         }
2170         /*
2171          * Finally, compute the new sector number
2172          */
2173         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2174         return new_sector;
2175 }
2176
2177
2178 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2179 {
2180         struct r5conf *conf = sh->raid_conf;
2181         int raid_disks = sh->disks;
2182         int data_disks = raid_disks - conf->max_degraded;
2183         sector_t new_sector = sh->sector, check;
2184         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2185                                          : conf->chunk_sectors;
2186         int algorithm = previous ? conf->prev_algo
2187                                  : conf->algorithm;
2188         sector_t stripe;
2189         int chunk_offset;
2190         sector_t chunk_number;
2191         int dummy1, dd_idx = i;
2192         sector_t r_sector;
2193         struct stripe_head sh2;
2194
2195
2196         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2197         stripe = new_sector;
2198
2199         if (i == sh->pd_idx)
2200                 return 0;
2201         switch(conf->level) {
2202         case 4: break;
2203         case 5:
2204                 switch (algorithm) {
2205                 case ALGORITHM_LEFT_ASYMMETRIC:
2206                 case ALGORITHM_RIGHT_ASYMMETRIC:
2207                         if (i > sh->pd_idx)
2208                                 i--;
2209                         break;
2210                 case ALGORITHM_LEFT_SYMMETRIC:
2211                 case ALGORITHM_RIGHT_SYMMETRIC:
2212                         if (i < sh->pd_idx)
2213                                 i += raid_disks;
2214                         i -= (sh->pd_idx + 1);
2215                         break;
2216                 case ALGORITHM_PARITY_0:
2217                         i -= 1;
2218                         break;
2219                 case ALGORITHM_PARITY_N:
2220                         break;
2221                 default:
2222                         BUG();
2223                 }
2224                 break;
2225         case 6:
2226                 if (i == sh->qd_idx)
2227                         return 0; /* It is the Q disk */
2228                 switch (algorithm) {
2229                 case ALGORITHM_LEFT_ASYMMETRIC:
2230                 case ALGORITHM_RIGHT_ASYMMETRIC:
2231                 case ALGORITHM_ROTATING_ZERO_RESTART:
2232                 case ALGORITHM_ROTATING_N_RESTART:
2233                         if (sh->pd_idx == raid_disks-1)
2234                                 i--;    /* Q D D D P */
2235                         else if (i > sh->pd_idx)
2236                                 i -= 2; /* D D P Q D */
2237                         break;
2238                 case ALGORITHM_LEFT_SYMMETRIC:
2239                 case ALGORITHM_RIGHT_SYMMETRIC:
2240                         if (sh->pd_idx == raid_disks-1)
2241                                 i--; /* Q D D D P */
2242                         else {
2243                                 /* D D P Q D */
2244                                 if (i < sh->pd_idx)
2245                                         i += raid_disks;
2246                                 i -= (sh->pd_idx + 2);
2247                         }
2248                         break;
2249                 case ALGORITHM_PARITY_0:
2250                         i -= 2;
2251                         break;
2252                 case ALGORITHM_PARITY_N:
2253                         break;
2254                 case ALGORITHM_ROTATING_N_CONTINUE:
2255                         /* Like left_symmetric, but P is before Q */
2256                         if (sh->pd_idx == 0)
2257                                 i--;    /* P D D D Q */
2258                         else {
2259                                 /* D D Q P D */
2260                                 if (i < sh->pd_idx)
2261                                         i += raid_disks;
2262                                 i -= (sh->pd_idx + 1);
2263                         }
2264                         break;
2265                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2266                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2267                         if (i > sh->pd_idx)
2268                                 i--;
2269                         break;
2270                 case ALGORITHM_LEFT_SYMMETRIC_6:
2271                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2272                         if (i < sh->pd_idx)
2273                                 i += data_disks + 1;
2274                         i -= (sh->pd_idx + 1);
2275                         break;
2276                 case ALGORITHM_PARITY_0_6:
2277                         i -= 1;
2278                         break;
2279                 default:
2280                         BUG();
2281                 }
2282                 break;
2283         }
2284
2285         chunk_number = stripe * data_disks + i;
2286         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2287
2288         check = raid5_compute_sector(conf, r_sector,
2289                                      previous, &dummy1, &sh2);
2290         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2291                 || sh2.qd_idx != sh->qd_idx) {
2292                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2293                        mdname(conf->mddev));
2294                 return 0;
2295         }
2296         return r_sector;
2297 }
2298
2299
2300 static void
2301 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2302                          int rcw, int expand)
2303 {
2304         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2305         struct r5conf *conf = sh->raid_conf;
2306         int level = conf->level;
2307
2308         if (rcw) {
2309                 /* if we are not expanding this is a proper write request, and
2310                  * there will be bios with new data to be drained into the
2311                  * stripe cache
2312                  */
2313                 if (!expand) {
2314                         sh->reconstruct_state = reconstruct_state_drain_run;
2315                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2316                 } else
2317                         sh->reconstruct_state = reconstruct_state_run;
2318
2319                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2320
2321                 for (i = disks; i--; ) {
2322                         struct r5dev *dev = &sh->dev[i];
2323
2324                         if (dev->towrite) {
2325                                 set_bit(R5_LOCKED, &dev->flags);
2326                                 set_bit(R5_Wantdrain, &dev->flags);
2327                                 if (!expand)
2328                                         clear_bit(R5_UPTODATE, &dev->flags);
2329                                 s->locked++;
2330                         }
2331                 }
2332                 if (s->locked + conf->max_degraded == disks)
2333                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2334                                 atomic_inc(&conf->pending_full_writes);
2335         } else {
2336                 BUG_ON(level == 6);
2337                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2338                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2339
2340                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2341                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2342                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2343                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2344
2345                 for (i = disks; i--; ) {
2346                         struct r5dev *dev = &sh->dev[i];
2347                         if (i == pd_idx)
2348                                 continue;
2349
2350                         if (dev->towrite &&
2351                             (test_bit(R5_UPTODATE, &dev->flags) ||
2352                              test_bit(R5_Wantcompute, &dev->flags))) {
2353                                 set_bit(R5_Wantdrain, &dev->flags);
2354                                 set_bit(R5_LOCKED, &dev->flags);
2355                                 clear_bit(R5_UPTODATE, &dev->flags);
2356                                 s->locked++;
2357                         }
2358                 }
2359         }
2360
2361         /* keep the parity disk(s) locked while asynchronous operations
2362          * are in flight
2363          */
2364         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2365         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2366         s->locked++;
2367
2368         if (level == 6) {
2369                 int qd_idx = sh->qd_idx;
2370                 struct r5dev *dev = &sh->dev[qd_idx];
2371
2372                 set_bit(R5_LOCKED, &dev->flags);
2373                 clear_bit(R5_UPTODATE, &dev->flags);
2374                 s->locked++;
2375         }
2376
2377         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2378                 __func__, (unsigned long long)sh->sector,
2379                 s->locked, s->ops_request);
2380 }
2381
2382 /*
2383  * Each stripe/dev can have one or more bion attached.
2384  * toread/towrite point to the first in a chain.
2385  * The bi_next chain must be in order.
2386  */
2387 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2388 {
2389         struct bio **bip;
2390         struct r5conf *conf = sh->raid_conf;
2391         int firstwrite=0;
2392
2393         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2394                 (unsigned long long)bi->bi_sector,
2395                 (unsigned long long)sh->sector);
2396
2397         /*
2398          * If several bio share a stripe. The bio bi_phys_segments acts as a
2399          * reference count to avoid race. The reference count should already be
2400          * increased before this function is called (for example, in
2401          * make_request()), so other bio sharing this stripe will not free the
2402          * stripe. If a stripe is owned by one stripe, the stripe lock will
2403          * protect it.
2404          */
2405         spin_lock_irq(&sh->stripe_lock);
2406         if (forwrite) {
2407                 bip = &sh->dev[dd_idx].towrite;
2408                 if (*bip == NULL)
2409                         firstwrite = 1;
2410         } else
2411                 bip = &sh->dev[dd_idx].toread;
2412         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2413                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2414                         goto overlap;
2415                 bip = & (*bip)->bi_next;
2416         }
2417         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2418                 goto overlap;
2419
2420         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2421         if (*bip)
2422                 bi->bi_next = *bip;
2423         *bip = bi;
2424         raid5_inc_bi_active_stripes(bi);
2425
2426         if (forwrite) {
2427                 /* check if page is covered */
2428                 sector_t sector = sh->dev[dd_idx].sector;
2429                 for (bi=sh->dev[dd_idx].towrite;
2430                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2431                              bi && bi->bi_sector <= sector;
2432                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2433                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2434                                 sector = bi->bi_sector + (bi->bi_size>>9);
2435                 }
2436                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2437                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2438         }
2439
2440         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2441                 (unsigned long long)(*bip)->bi_sector,
2442                 (unsigned long long)sh->sector, dd_idx);
2443         spin_unlock_irq(&sh->stripe_lock);
2444
2445         if (conf->mddev->bitmap && firstwrite) {
2446                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2447                                   STRIPE_SECTORS, 0);
2448                 sh->bm_seq = conf->seq_flush+1;
2449                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2450         }
2451         return 1;
2452
2453  overlap:
2454         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2455         spin_unlock_irq(&sh->stripe_lock);
2456         return 0;
2457 }
2458
2459 static void end_reshape(struct r5conf *conf);
2460
2461 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2462                             struct stripe_head *sh)
2463 {
2464         int sectors_per_chunk =
2465                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2466         int dd_idx;
2467         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2468         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2469
2470         raid5_compute_sector(conf,
2471                              stripe * (disks - conf->max_degraded)
2472                              *sectors_per_chunk + chunk_offset,
2473                              previous,
2474                              &dd_idx, sh);
2475 }
2476
2477 static void
2478 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2479                                 struct stripe_head_state *s, int disks,
2480                                 struct bio **return_bi)
2481 {
2482         int i;
2483         for (i = disks; i--; ) {
2484                 struct bio *bi;
2485                 int bitmap_end = 0;
2486
2487                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2488                         struct md_rdev *rdev;
2489                         rcu_read_lock();
2490                         rdev = rcu_dereference(conf->disks[i].rdev);
2491                         if (rdev && test_bit(In_sync, &rdev->flags))
2492                                 atomic_inc(&rdev->nr_pending);
2493                         else
2494                                 rdev = NULL;
2495                         rcu_read_unlock();
2496                         if (rdev) {
2497                                 if (!rdev_set_badblocks(
2498                                             rdev,
2499                                             sh->sector,
2500                                             STRIPE_SECTORS, 0))
2501                                         md_error(conf->mddev, rdev);
2502                                 rdev_dec_pending(rdev, conf->mddev);
2503                         }
2504                 }
2505                 spin_lock_irq(&sh->stripe_lock);
2506                 /* fail all writes first */
2507                 bi = sh->dev[i].towrite;
2508                 sh->dev[i].towrite = NULL;
2509                 spin_unlock_irq(&sh->stripe_lock);
2510                 if (bi)
2511                         bitmap_end = 1;
2512
2513                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2514                         wake_up(&conf->wait_for_overlap);
2515
2516                 while (bi && bi->bi_sector <
2517                         sh->dev[i].sector + STRIPE_SECTORS) {
2518                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2519                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2520                         if (!raid5_dec_bi_active_stripes(bi)) {
2521                                 md_write_end(conf->mddev);
2522                                 bi->bi_next = *return_bi;
2523                                 *return_bi = bi;
2524                         }
2525                         bi = nextbi;
2526                 }
2527                 if (bitmap_end)
2528                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2529                                 STRIPE_SECTORS, 0, 0);
2530                 bitmap_end = 0;
2531                 /* and fail all 'written' */
2532                 bi = sh->dev[i].written;
2533                 sh->dev[i].written = NULL;
2534                 if (bi) bitmap_end = 1;
2535                 while (bi && bi->bi_sector <
2536                        sh->dev[i].sector + STRIPE_SECTORS) {
2537                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2538                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2539                         if (!raid5_dec_bi_active_stripes(bi)) {
2540                                 md_write_end(conf->mddev);
2541                                 bi->bi_next = *return_bi;
2542                                 *return_bi = bi;
2543                         }
2544                         bi = bi2;
2545                 }
2546
2547                 /* fail any reads if this device is non-operational and
2548                  * the data has not reached the cache yet.
2549                  */
2550                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2551                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2552                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2553                         spin_lock_irq(&sh->stripe_lock);
2554                         bi = sh->dev[i].toread;
2555                         sh->dev[i].toread = NULL;
2556                         spin_unlock_irq(&sh->stripe_lock);
2557                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2558                                 wake_up(&conf->wait_for_overlap);
2559                         while (bi && bi->bi_sector <
2560                                sh->dev[i].sector + STRIPE_SECTORS) {
2561                                 struct bio *nextbi =
2562                                         r5_next_bio(bi, sh->dev[i].sector);
2563                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2564                                 if (!raid5_dec_bi_active_stripes(bi)) {
2565                                         bi->bi_next = *return_bi;
2566                                         *return_bi = bi;
2567                                 }
2568                                 bi = nextbi;
2569                         }
2570                 }
2571                 if (bitmap_end)
2572                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2573                                         STRIPE_SECTORS, 0, 0);
2574                 /* If we were in the middle of a write the parity block might
2575                  * still be locked - so just clear all R5_LOCKED flags
2576                  */
2577                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2578         }
2579
2580         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2581                 if (atomic_dec_and_test(&conf->pending_full_writes))
2582                         md_wakeup_thread(conf->mddev->thread);
2583 }
2584
2585 static void
2586 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2587                    struct stripe_head_state *s)
2588 {
2589         int abort = 0;
2590         int i;
2591
2592         clear_bit(STRIPE_SYNCING, &sh->state);
2593         s->syncing = 0;
2594         s->replacing = 0;
2595         /* There is nothing more to do for sync/check/repair.
2596          * Don't even need to abort as that is handled elsewhere
2597          * if needed, and not always wanted e.g. if there is a known
2598          * bad block here.
2599          * For recover/replace we need to record a bad block on all
2600          * non-sync devices, or abort the recovery
2601          */
2602         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2603                 /* During recovery devices cannot be removed, so
2604                  * locking and refcounting of rdevs is not needed
2605                  */
2606                 for (i = 0; i < conf->raid_disks; i++) {
2607                         struct md_rdev *rdev = conf->disks[i].rdev;
2608                         if (rdev
2609                             && !test_bit(Faulty, &rdev->flags)
2610                             && !test_bit(In_sync, &rdev->flags)
2611                             && !rdev_set_badblocks(rdev, sh->sector,
2612                                                    STRIPE_SECTORS, 0))
2613                                 abort = 1;
2614                         rdev = conf->disks[i].replacement;
2615                         if (rdev
2616                             && !test_bit(Faulty, &rdev->flags)
2617                             && !test_bit(In_sync, &rdev->flags)
2618                             && !rdev_set_badblocks(rdev, sh->sector,
2619                                                    STRIPE_SECTORS, 0))
2620                                 abort = 1;
2621                 }
2622                 if (abort)
2623                         conf->recovery_disabled =
2624                                 conf->mddev->recovery_disabled;
2625         }
2626         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2627 }
2628
2629 static int want_replace(struct stripe_head *sh, int disk_idx)
2630 {
2631         struct md_rdev *rdev;
2632         int rv = 0;
2633         /* Doing recovery so rcu locking not required */
2634         rdev = sh->raid_conf->disks[disk_idx].replacement;
2635         if (rdev
2636             && !test_bit(Faulty, &rdev->flags)
2637             && !test_bit(In_sync, &rdev->flags)
2638             && (rdev->recovery_offset <= sh->sector
2639                 || rdev->mddev->recovery_cp <= sh->sector))
2640                 rv = 1;
2641
2642         return rv;
2643 }
2644
2645 /* fetch_block - checks the given member device to see if its data needs
2646  * to be read or computed to satisfy a request.
2647  *
2648  * Returns 1 when no more member devices need to be checked, otherwise returns
2649  * 0 to tell the loop in handle_stripe_fill to continue
2650  */
2651 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2652                        int disk_idx, int disks)
2653 {
2654         struct r5dev *dev = &sh->dev[disk_idx];
2655         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2656                                   &sh->dev[s->failed_num[1]] };
2657
2658         /* is the data in this block needed, and can we get it? */
2659         if (!test_bit(R5_LOCKED, &dev->flags) &&
2660             !test_bit(R5_UPTODATE, &dev->flags) &&
2661             (dev->toread ||
2662              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2663              s->syncing || s->expanding ||
2664              (s->replacing && want_replace(sh, disk_idx)) ||
2665              (s->failed >= 1 && fdev[0]->toread) ||
2666              (s->failed >= 2 && fdev[1]->toread) ||
2667              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2668               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2669              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2670                 /* we would like to get this block, possibly by computing it,
2671                  * otherwise read it if the backing disk is insync
2672                  */
2673                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2674                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2675                 if ((s->uptodate == disks - 1) &&
2676                     (s->failed && (disk_idx == s->failed_num[0] ||
2677                                    disk_idx == s->failed_num[1]))) {
2678                         /* have disk failed, and we're requested to fetch it;
2679                          * do compute it
2680                          */
2681                         pr_debug("Computing stripe %llu block %d\n",
2682                                (unsigned long long)sh->sector, disk_idx);
2683                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2684                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2685                         set_bit(R5_Wantcompute, &dev->flags);
2686                         sh->ops.target = disk_idx;
2687                         sh->ops.target2 = -1; /* no 2nd target */
2688                         s->req_compute = 1;
2689                         /* Careful: from this point on 'uptodate' is in the eye
2690                          * of raid_run_ops which services 'compute' operations
2691                          * before writes. R5_Wantcompute flags a block that will
2692                          * be R5_UPTODATE by the time it is needed for a
2693                          * subsequent operation.
2694                          */
2695                         s->uptodate++;
2696                         return 1;
2697                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2698                         /* Computing 2-failure is *very* expensive; only
2699                          * do it if failed >= 2
2700                          */
2701                         int other;
2702                         for (other = disks; other--; ) {
2703                                 if (other == disk_idx)
2704                                         continue;
2705                                 if (!test_bit(R5_UPTODATE,
2706                                       &sh->dev[other].flags))
2707                                         break;
2708                         }
2709                         BUG_ON(other < 0);
2710                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2711                                (unsigned long long)sh->sector,
2712                                disk_idx, other);
2713                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2714                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2715                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2716                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2717                         sh->ops.target = disk_idx;
2718                         sh->ops.target2 = other;
2719                         s->uptodate += 2;
2720                         s->req_compute = 1;
2721                         return 1;
2722                 } else if (test_bit(R5_Insync, &dev->flags)) {
2723                         set_bit(R5_LOCKED, &dev->flags);
2724                         set_bit(R5_Wantread, &dev->flags);
2725                         s->locked++;
2726                         pr_debug("Reading block %d (sync=%d)\n",
2727                                 disk_idx, s->syncing);
2728                 }
2729         }
2730
2731         return 0;
2732 }
2733
2734 /**
2735  * handle_stripe_fill - read or compute data to satisfy pending requests.
2736  */
2737 static void handle_stripe_fill(struct stripe_head *sh,
2738                                struct stripe_head_state *s,
2739                                int disks)
2740 {
2741         int i;
2742
2743         /* look for blocks to read/compute, skip this if a compute
2744          * is already in flight, or if the stripe contents are in the
2745          * midst of changing due to a write
2746          */
2747         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2748             !sh->reconstruct_state)
2749                 for (i = disks; i--; )
2750                         if (fetch_block(sh, s, i, disks))
2751                                 break;
2752         set_bit(STRIPE_HANDLE, &sh->state);
2753 }
2754
2755
2756 /* handle_stripe_clean_event
2757  * any written block on an uptodate or failed drive can be returned.
2758  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2759  * never LOCKED, so we don't need to test 'failed' directly.
2760  */
2761 static void handle_stripe_clean_event(struct r5conf *conf,
2762         struct stripe_head *sh, int disks, struct bio **return_bi)
2763 {
2764         int i;
2765         struct r5dev *dev;
2766
2767         for (i = disks; i--; )
2768                 if (sh->dev[i].written) {
2769                         dev = &sh->dev[i];
2770                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2771                             (test_bit(R5_UPTODATE, &dev->flags) ||
2772                              test_and_clear_bit(R5_Discard, &dev->flags))) {
2773                                 /* We can return any write requests */
2774                                 struct bio *wbi, *wbi2;
2775                                 pr_debug("Return write for disc %d\n", i);
2776                                 wbi = dev->written;
2777                                 dev->written = NULL;
2778                                 while (wbi && wbi->bi_sector <
2779                                         dev->sector + STRIPE_SECTORS) {
2780                                         wbi2 = r5_next_bio(wbi, dev->sector);
2781                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2782                                                 md_write_end(conf->mddev);
2783                                                 wbi->bi_next = *return_bi;
2784                                                 *return_bi = wbi;
2785                                         }
2786                                         wbi = wbi2;
2787                                 }
2788                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2789                                                 STRIPE_SECTORS,
2790                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2791                                                 0);
2792                         }
2793                 }
2794
2795         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2796                 if (atomic_dec_and_test(&conf->pending_full_writes))
2797                         md_wakeup_thread(conf->mddev->thread);
2798 }
2799
2800 static void handle_stripe_dirtying(struct r5conf *conf,
2801                                    struct stripe_head *sh,
2802                                    struct stripe_head_state *s,
2803                                    int disks)
2804 {
2805         int rmw = 0, rcw = 0, i;
2806         sector_t recovery_cp = conf->mddev->recovery_cp;
2807
2808         /* RAID6 requires 'rcw' in current implementation.
2809          * Otherwise, check whether resync is now happening or should start.
2810          * If yes, then the array is dirty (after unclean shutdown or
2811          * initial creation), so parity in some stripes might be inconsistent.
2812          * In this case, we need to always do reconstruct-write, to ensure
2813          * that in case of drive failure or read-error correction, we
2814          * generate correct data from the parity.
2815          */
2816         if (conf->max_degraded == 2 ||
2817             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2818                 /* Calculate the real rcw later - for now make it
2819                  * look like rcw is cheaper
2820                  */
2821                 rcw = 1; rmw = 2;
2822                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2823                          conf->max_degraded, (unsigned long long)recovery_cp,
2824                          (unsigned long long)sh->sector);
2825         } else for (i = disks; i--; ) {
2826                 /* would I have to read this buffer for read_modify_write */
2827                 struct r5dev *dev = &sh->dev[i];
2828                 if ((dev->towrite || i == sh->pd_idx) &&
2829                     !test_bit(R5_LOCKED, &dev->flags) &&
2830                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2831                       test_bit(R5_Wantcompute, &dev->flags))) {
2832                         if (test_bit(R5_Insync, &dev->flags))
2833                                 rmw++;
2834                         else
2835                                 rmw += 2*disks;  /* cannot read it */
2836                 }
2837                 /* Would I have to read this buffer for reconstruct_write */
2838                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2839                     !test_bit(R5_LOCKED, &dev->flags) &&
2840                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2841                     test_bit(R5_Wantcompute, &dev->flags))) {
2842                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2843                         else
2844                                 rcw += 2*disks;
2845                 }
2846         }
2847         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2848                 (unsigned long long)sh->sector, rmw, rcw);
2849         set_bit(STRIPE_HANDLE, &sh->state);
2850         if (rmw < rcw && rmw > 0)
2851                 /* prefer read-modify-write, but need to get some data */
2852                 for (i = disks; i--; ) {
2853                         struct r5dev *dev = &sh->dev[i];
2854                         if ((dev->towrite || i == sh->pd_idx) &&
2855                             !test_bit(R5_LOCKED, &dev->flags) &&
2856                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2857                             test_bit(R5_Wantcompute, &dev->flags)) &&
2858                             test_bit(R5_Insync, &dev->flags)) {
2859                                 if (
2860                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2861                                         pr_debug("Read_old block "
2862                                                 "%d for r-m-w\n", i);
2863                                         set_bit(R5_LOCKED, &dev->flags);
2864                                         set_bit(R5_Wantread, &dev->flags);
2865                                         s->locked++;
2866                                 } else {
2867                                         set_bit(STRIPE_DELAYED, &sh->state);
2868                                         set_bit(STRIPE_HANDLE, &sh->state);
2869                                 }
2870                         }
2871                 }
2872         if (rcw <= rmw && rcw > 0) {
2873                 /* want reconstruct write, but need to get some data */
2874                 rcw = 0;
2875                 for (i = disks; i--; ) {
2876                         struct r5dev *dev = &sh->dev[i];
2877                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2878                             i != sh->pd_idx && i != sh->qd_idx &&
2879                             !test_bit(R5_LOCKED, &dev->flags) &&
2880                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2881                               test_bit(R5_Wantcompute, &dev->flags))) {
2882                                 rcw++;
2883                                 if (!test_bit(R5_Insync, &dev->flags))
2884                                         continue; /* it's a failed drive */
2885                                 if (
2886                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2887                                         pr_debug("Read_old block "
2888                                                 "%d for Reconstruct\n", i);
2889                                         set_bit(R5_LOCKED, &dev->flags);
2890                                         set_bit(R5_Wantread, &dev->flags);
2891                                         s->locked++;
2892                                 } else {
2893                                         set_bit(STRIPE_DELAYED, &sh->state);
2894                                         set_bit(STRIPE_HANDLE, &sh->state);
2895                                 }
2896                         }
2897                 }
2898         }
2899         /* now if nothing is locked, and if we have enough data,
2900          * we can start a write request
2901          */
2902         /* since handle_stripe can be called at any time we need to handle the
2903          * case where a compute block operation has been submitted and then a
2904          * subsequent call wants to start a write request.  raid_run_ops only
2905          * handles the case where compute block and reconstruct are requested
2906          * simultaneously.  If this is not the case then new writes need to be
2907          * held off until the compute completes.
2908          */
2909         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2910             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2911             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2912                 schedule_reconstruction(sh, s, rcw == 0, 0);
2913 }
2914
2915 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2916                                 struct stripe_head_state *s, int disks)
2917 {
2918         struct r5dev *dev = NULL;
2919
2920         set_bit(STRIPE_HANDLE, &sh->state);
2921
2922         switch (sh->check_state) {
2923         case check_state_idle:
2924                 /* start a new check operation if there are no failures */
2925                 if (s->failed == 0) {
2926                         BUG_ON(s->uptodate != disks);
2927                         sh->check_state = check_state_run;
2928                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2929                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2930                         s->uptodate--;
2931                         break;
2932                 }
2933                 dev = &sh->dev[s->failed_num[0]];
2934                 /* fall through */
2935         case check_state_compute_result:
2936                 sh->check_state = check_state_idle;
2937                 if (!dev)
2938                         dev = &sh->dev[sh->pd_idx];
2939
2940                 /* check that a write has not made the stripe insync */
2941                 if (test_bit(STRIPE_INSYNC, &sh->state))
2942                         break;
2943
2944                 /* either failed parity check, or recovery is happening */
2945                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2946                 BUG_ON(s->uptodate != disks);
2947
2948                 set_bit(R5_LOCKED, &dev->flags);
2949                 s->locked++;
2950                 set_bit(R5_Wantwrite, &dev->flags);
2951
2952                 clear_bit(STRIPE_DEGRADED, &sh->state);
2953                 set_bit(STRIPE_INSYNC, &sh->state);
2954                 break;
2955         case check_state_run:
2956                 break; /* we will be called again upon completion */
2957         case check_state_check_result:
2958                 sh->check_state = check_state_idle;
2959
2960                 /* if a failure occurred during the check operation, leave
2961                  * STRIPE_INSYNC not set and let the stripe be handled again
2962                  */
2963                 if (s->failed)
2964                         break;
2965
2966                 /* handle a successful check operation, if parity is correct
2967                  * we are done.  Otherwise update the mismatch count and repair
2968                  * parity if !MD_RECOVERY_CHECK
2969                  */
2970                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2971                         /* parity is correct (on disc,
2972                          * not in buffer any more)
2973                          */
2974                         set_bit(STRIPE_INSYNC, &sh->state);
2975                 else {
2976                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2977                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2978                                 /* don't try to repair!! */
2979                                 set_bit(STRIPE_INSYNC, &sh->state);
2980                         else {
2981                                 sh->check_state = check_state_compute_run;
2982                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2983                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2984                                 set_bit(R5_Wantcompute,
2985                                         &sh->dev[sh->pd_idx].flags);
2986                                 sh->ops.target = sh->pd_idx;
2987                                 sh->ops.target2 = -1;
2988                                 s->uptodate++;
2989                         }
2990                 }
2991                 break;
2992         case check_state_compute_run:
2993                 break;
2994         default:
2995                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2996                        __func__, sh->check_state,
2997                        (unsigned long long) sh->sector);
2998                 BUG();
2999         }
3000 }
3001
3002
3003 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3004                                   struct stripe_head_state *s,
3005                                   int disks)
3006 {
3007         int pd_idx = sh->pd_idx;
3008         int qd_idx = sh->qd_idx;
3009         struct r5dev *dev;
3010
3011         set_bit(STRIPE_HANDLE, &sh->state);
3012
3013         BUG_ON(s->failed > 2);
3014
3015         /* Want to check and possibly repair P and Q.
3016          * However there could be one 'failed' device, in which
3017          * case we can only check one of them, possibly using the
3018          * other to generate missing data
3019          */
3020
3021         switch (sh->check_state) {
3022         case check_state_idle:
3023                 /* start a new check operation if there are < 2 failures */
3024                 if (s->failed == s->q_failed) {
3025                         /* The only possible failed device holds Q, so it
3026                          * makes sense to check P (If anything else were failed,
3027                          * we would have used P to recreate it).
3028                          */
3029                         sh->check_state = check_state_run;
3030                 }
3031                 if (!s->q_failed && s->failed < 2) {
3032                         /* Q is not failed, and we didn't use it to generate
3033                          * anything, so it makes sense to check it
3034                          */
3035                         if (sh->check_state == check_state_run)
3036                                 sh->check_state = check_state_run_pq;
3037                         else
3038                                 sh->check_state = check_state_run_q;
3039                 }
3040
3041                 /* discard potentially stale zero_sum_result */
3042                 sh->ops.zero_sum_result = 0;
3043
3044                 if (sh->check_state == check_state_run) {
3045                         /* async_xor_zero_sum destroys the contents of P */
3046                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3047                         s->uptodate--;
3048                 }
3049                 if (sh->check_state >= check_state_run &&
3050                     sh->check_state <= check_state_run_pq) {
3051                         /* async_syndrome_zero_sum preserves P and Q, so
3052                          * no need to mark them !uptodate here
3053                          */
3054                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3055                         break;
3056                 }
3057
3058                 /* we have 2-disk failure */
3059                 BUG_ON(s->failed != 2);
3060                 /* fall through */
3061         case check_state_compute_result:
3062                 sh->check_state = check_state_idle;
3063
3064                 /* check that a write has not made the stripe insync */
3065                 if (test_bit(STRIPE_INSYNC, &sh->state))
3066                         break;
3067
3068                 /* now write out any block on a failed drive,
3069                  * or P or Q if they were recomputed
3070                  */
3071                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3072                 if (s->failed == 2) {
3073                         dev = &sh->dev[s->failed_num[1]];
3074                         s->locked++;
3075                         set_bit(R5_LOCKED, &dev->flags);
3076                         set_bit(R5_Wantwrite, &dev->flags);
3077                 }
3078                 if (s->failed >= 1) {
3079                         dev = &sh->dev[s->failed_num[0]];
3080                         s->locked++;
3081                         set_bit(R5_LOCKED, &dev->flags);
3082                         set_bit(R5_Wantwrite, &dev->flags);
3083                 }
3084                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3085                         dev = &sh->dev[pd_idx];
3086                         s->locked++;
3087                         set_bit(R5_LOCKED, &dev->flags);
3088                         set_bit(R5_Wantwrite, &dev->flags);
3089                 }
3090                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3091                         dev = &sh->dev[qd_idx];
3092                         s->locked++;
3093                         set_bit(R5_LOCKED, &dev->flags);
3094                         set_bit(R5_Wantwrite, &dev->flags);
3095                 }
3096                 clear_bit(STRIPE_DEGRADED, &sh->state);
3097
3098                 set_bit(STRIPE_INSYNC, &sh->state);
3099                 break;
3100         case check_state_run:
3101         case check_state_run_q:
3102         case check_state_run_pq:
3103                 break; /* we will be called again upon completion */
3104         case check_state_check_result:
3105                 sh->check_state = check_state_idle;
3106
3107                 /* handle a successful check operation, if parity is correct
3108                  * we are done.  Otherwise update the mismatch count and repair
3109                  * parity if !MD_RECOVERY_CHECK
3110                  */
3111                 if (sh->ops.zero_sum_result == 0) {
3112                         /* both parities are correct */
3113                         if (!s->failed)
3114                                 set_bit(STRIPE_INSYNC, &sh->state);
3115                         else {
3116                                 /* in contrast to the raid5 case we can validate
3117                                  * parity, but still have a failure to write
3118                                  * back
3119                                  */
3120                                 sh->check_state = check_state_compute_result;
3121                                 /* Returning at this point means that we may go
3122                                  * off and bring p and/or q uptodate again so
3123                                  * we make sure to check zero_sum_result again
3124                                  * to verify if p or q need writeback
3125                                  */
3126                         }
3127                 } else {
3128                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3129                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3130                                 /* don't try to repair!! */
3131                                 set_bit(STRIPE_INSYNC, &sh->state);
3132                         else {
3133                                 int *target = &sh->ops.target;
3134
3135                                 sh->ops.target = -1;
3136                                 sh->ops.target2 = -1;
3137                                 sh->check_state = check_state_compute_run;
3138                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3139                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3140                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3141                                         set_bit(R5_Wantcompute,
3142                                                 &sh->dev[pd_idx].flags);
3143                                         *target = pd_idx;
3144                                         target = &sh->ops.target2;
3145                                         s->uptodate++;
3146                                 }
3147                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3148                                         set_bit(R5_Wantcompute,
3149                                                 &sh->dev[qd_idx].flags);
3150                                         *target = qd_idx;
3151                                         s->uptodate++;
3152                                 }
3153                         }
3154                 }
3155                 break;
3156         case check_state_compute_run:
3157                 break;
3158         default:
3159                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3160                        __func__, sh->check_state,
3161                        (unsigned long long) sh->sector);
3162                 BUG();
3163         }
3164 }
3165
3166 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3167 {
3168         int i;
3169
3170         /* We have read all the blocks in this stripe and now we need to
3171          * copy some of them into a target stripe for expand.
3172          */
3173         struct dma_async_tx_descriptor *tx = NULL;
3174         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3175         for (i = 0; i < sh->disks; i++)
3176                 if (i != sh->pd_idx && i != sh->qd_idx) {
3177                         int dd_idx, j;
3178                         struct stripe_head *sh2;
3179                         struct async_submit_ctl submit;
3180
3181                         sector_t bn = compute_blocknr(sh, i, 1);
3182                         sector_t s = raid5_compute_sector(conf, bn, 0,
3183                                                           &dd_idx, NULL);
3184                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3185                         if (sh2 == NULL)
3186                                 /* so far only the early blocks of this stripe
3187                                  * have been requested.  When later blocks
3188                                  * get requested, we will try again
3189                                  */
3190                                 continue;
3191                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3192                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3193                                 /* must have already done this block */
3194                                 release_stripe(sh2);
3195                                 continue;
3196                         }
3197
3198                         /* place all the copies on one channel */
3199                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3200                         tx = async_memcpy(sh2->dev[dd_idx].page,
3201                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3202                                           &submit);
3203
3204                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3205                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3206                         for (j = 0; j < conf->raid_disks; j++)
3207                                 if (j != sh2->pd_idx &&
3208                                     j != sh2->qd_idx &&
3209                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3210                                         break;
3211                         if (j == conf->raid_disks) {
3212                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3213                                 set_bit(STRIPE_HANDLE, &sh2->state);
3214                         }
3215                         release_stripe(sh2);
3216
3217                 }
3218         /* done submitting copies, wait for them to complete */
3219         if (tx) {
3220                 async_tx_ack(tx);
3221                 dma_wait_for_async_tx(tx);
3222         }
3223 }
3224
3225 /*
3226  * handle_stripe - do things to a stripe.
3227  *
3228  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3229  * state of various bits to see what needs to be done.
3230  * Possible results:
3231  *    return some read requests which now have data
3232  *    return some write requests which are safely on storage
3233  *    schedule a read on some buffers
3234  *    schedule a write of some buffers
3235  *    return confirmation of parity correctness
3236  *
3237  */
3238
3239 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3240 {
3241         struct r5conf *conf = sh->raid_conf;
3242         int disks = sh->disks;
3243         struct r5dev *dev;
3244         int i;
3245         int do_recovery = 0;
3246
3247         memset(s, 0, sizeof(*s));
3248
3249         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3250         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3251         s->failed_num[0] = -1;
3252         s->failed_num[1] = -1;
3253
3254         /* Now to look around and see what can be done */
3255         rcu_read_lock();
3256         for (i=disks; i--; ) {
3257                 struct md_rdev *rdev;
3258                 sector_t first_bad;
3259                 int bad_sectors;
3260                 int is_bad = 0;
3261
3262                 dev = &sh->dev[i];
3263
3264                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3265                          i, dev->flags,
3266                          dev->toread, dev->towrite, dev->written);
3267                 /* maybe we can reply to a read
3268                  *
3269                  * new wantfill requests are only permitted while
3270                  * ops_complete_biofill is guaranteed to be inactive
3271                  */
3272                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3273                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3274                         set_bit(R5_Wantfill, &dev->flags);
3275
3276                 /* now count some things */
3277                 if (test_bit(R5_LOCKED, &dev->flags))
3278                         s->locked++;
3279                 if (test_bit(R5_UPTODATE, &dev->flags))
3280                         s->uptodate++;
3281                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3282                         s->compute++;
3283                         BUG_ON(s->compute > 2);
3284                 }
3285
3286                 if (test_bit(R5_Wantfill, &dev->flags))
3287                         s->to_fill++;
3288                 else if (dev->toread)
3289                         s->to_read++;
3290                 if (dev->towrite) {
3291                         s->to_write++;
3292                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3293                                 s->non_overwrite++;
3294                 }
3295                 if (dev->written)
3296                         s->written++;
3297                 /* Prefer to use the replacement for reads, but only
3298                  * if it is recovered enough and has no bad blocks.
3299                  */
3300                 rdev = rcu_dereference(conf->disks[i].replacement);
3301                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3302                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3303                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3304                                  &first_bad, &bad_sectors))
3305                         set_bit(R5_ReadRepl, &dev->flags);
3306                 else {
3307                         if (rdev)
3308                                 set_bit(R5_NeedReplace, &dev->flags);
3309                         rdev = rcu_dereference(conf->disks[i].rdev);
3310                         clear_bit(R5_ReadRepl, &dev->flags);
3311                 }
3312                 if (rdev && test_bit(Faulty, &rdev->flags))
3313                         rdev = NULL;
3314                 if (rdev) {
3315                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3316                                              &first_bad, &bad_sectors);
3317                         if (s->blocked_rdev == NULL
3318                             && (test_bit(Blocked, &rdev->flags)
3319                                 || is_bad < 0)) {
3320                                 if (is_bad < 0)
3321                                         set_bit(BlockedBadBlocks,
3322                                                 &rdev->flags);
3323                                 s->blocked_rdev = rdev;
3324                                 atomic_inc(&rdev->nr_pending);
3325                         }
3326                 }
3327                 clear_bit(R5_Insync, &dev->flags);
3328                 if (!rdev)
3329                         /* Not in-sync */;
3330                 else if (is_bad) {
3331                         /* also not in-sync */
3332                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3333                             test_bit(R5_UPTODATE, &dev->flags)) {
3334                                 /* treat as in-sync, but with a read error
3335                                  * which we can now try to correct
3336                                  */
3337                                 set_bit(R5_Insync, &dev->flags);
3338                                 set_bit(R5_ReadError, &dev->flags);
3339                         }
3340                 } else if (test_bit(In_sync, &rdev->flags))
3341                         set_bit(R5_Insync, &dev->flags);
3342                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3343                         /* in sync if before recovery_offset */
3344                         set_bit(R5_Insync, &dev->flags);
3345                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3346                          test_bit(R5_Expanded, &dev->flags))
3347                         /* If we've reshaped into here, we assume it is Insync.
3348                          * We will shortly update recovery_offset to make
3349                          * it official.
3350                          */
3351                         set_bit(R5_Insync, &dev->flags);
3352
3353                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3354                         /* This flag does not apply to '.replacement'
3355                          * only to .rdev, so make sure to check that*/
3356                         struct md_rdev *rdev2 = rcu_dereference(
3357                                 conf->disks[i].rdev);
3358                         if (rdev2 == rdev)
3359                                 clear_bit(R5_Insync, &dev->flags);
3360                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3361                                 s->handle_bad_blocks = 1;
3362                                 atomic_inc(&rdev2->nr_pending);
3363                         } else
3364                                 clear_bit(R5_WriteError, &dev->flags);
3365                 }
3366                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3367                         /* This flag does not apply to '.replacement'
3368                          * only to .rdev, so make sure to check that*/
3369                         struct md_rdev *rdev2 = rcu_dereference(
3370                                 conf->disks[i].rdev);
3371                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3372                                 s->handle_bad_blocks = 1;
3373                                 atomic_inc(&rdev2->nr_pending);
3374                         } else
3375                                 clear_bit(R5_MadeGood, &dev->flags);
3376                 }
3377                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3378                         struct md_rdev *rdev2 = rcu_dereference(
3379                                 conf->disks[i].replacement);
3380                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3381                                 s->handle_bad_blocks = 1;
3382                                 atomic_inc(&rdev2->nr_pending);
3383                         } else
3384                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3385                 }
3386                 if (!test_bit(R5_Insync, &dev->flags)) {
3387                         /* The ReadError flag will just be confusing now */
3388                         clear_bit(R5_ReadError, &dev->flags);
3389                         clear_bit(R5_ReWrite, &dev->flags);
3390                 }
3391                 if (test_bit(R5_ReadError, &dev->flags))
3392                         clear_bit(R5_Insync, &dev->flags);
3393                 if (!test_bit(R5_Insync, &dev->flags)) {
3394                         if (s->failed < 2)
3395                                 s->failed_num[s->failed] = i;
3396                         s->failed++;
3397                         if (rdev && !test_bit(Faulty, &rdev->flags))
3398                                 do_recovery = 1;
3399                 }
3400         }
3401         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3402                 /* If there is a failed device being replaced,
3403                  *     we must be recovering.
3404                  * else if we are after recovery_cp, we must be syncing
3405                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3406                  * else we can only be replacing
3407                  * sync and recovery both need to read all devices, and so
3408                  * use the same flag.
3409                  */
3410                 if (do_recovery ||
3411                     sh->sector >= conf->mddev->recovery_cp ||
3412                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3413                         s->syncing = 1;
3414                 else
3415                         s->replacing = 1;
3416         }
3417         rcu_read_unlock();
3418 }
3419
3420 static void handle_stripe(struct stripe_head *sh)
3421 {
3422         struct stripe_head_state s;
3423         struct r5conf *conf = sh->raid_conf;
3424         int i;
3425         int prexor;
3426         int disks = sh->disks;
3427         struct r5dev *pdev, *qdev;
3428
3429         clear_bit(STRIPE_HANDLE, &sh->state);
3430         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3431                 /* already being handled, ensure it gets handled
3432                  * again when current action finishes */
3433                 set_bit(STRIPE_HANDLE, &sh->state);
3434                 return;
3435         }
3436
3437         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3438                 set_bit(STRIPE_SYNCING, &sh->state);
3439                 clear_bit(STRIPE_INSYNC, &sh->state);
3440         }
3441         clear_bit(STRIPE_DELAYED, &sh->state);
3442
3443         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3444                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3445                (unsigned long long)sh->sector, sh->state,
3446                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3447                sh->check_state, sh->reconstruct_state);
3448
3449         analyse_stripe(sh, &s);
3450
3451         if (s.handle_bad_blocks) {
3452                 set_bit(STRIPE_HANDLE, &sh->state);
3453                 goto finish;
3454         }
3455
3456         if (unlikely(s.blocked_rdev)) {
3457                 if (s.syncing || s.expanding || s.expanded ||
3458                     s.replacing || s.to_write || s.written) {
3459                         set_bit(STRIPE_HANDLE, &sh->state);
3460                         goto finish;
3461                 }
3462                 /* There is nothing for the blocked_rdev to block */
3463                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3464                 s.blocked_rdev = NULL;
3465         }
3466
3467         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3468                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3469                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3470         }
3471
3472         pr_debug("locked=%d uptodate=%d to_read=%d"
3473                " to_write=%d failed=%d failed_num=%d,%d\n",
3474                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3475                s.failed_num[0], s.failed_num[1]);
3476         /* check if the array has lost more than max_degraded devices and,
3477          * if so, some requests might need to be failed.
3478          */
3479         if (s.failed > conf->max_degraded) {
3480                 sh->check_state = 0;
3481                 sh->reconstruct_state = 0;
3482                 if (s.to_read+s.to_write+s.written)
3483                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3484                 if (s.syncing + s.replacing)
3485                         handle_failed_sync(conf, sh, &s);
3486         }
3487
3488         /*
3489          * might be able to return some write requests if the parity blocks
3490          * are safe, or on a failed drive
3491          */
3492         pdev = &sh->dev[sh->pd_idx];
3493         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3494                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3495         qdev = &sh->dev[sh->qd_idx];
3496         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3497                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3498                 || conf->level < 6;
3499
3500         if (s.written &&
3501             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3502                              && !test_bit(R5_LOCKED, &pdev->flags)
3503                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3504                                  test_bit(R5_Discard, &pdev->flags))))) &&
3505             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3506                              && !test_bit(R5_LOCKED, &qdev->flags)
3507                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3508                                  test_bit(R5_Discard, &qdev->flags))))))
3509                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3510
3511         /* Now we might consider reading some blocks, either to check/generate
3512          * parity, or to satisfy requests
3513          * or to load a block that is being partially written.
3514          */
3515         if (s.to_read || s.non_overwrite
3516             || (conf->level == 6 && s.to_write && s.failed)
3517             || (s.syncing && (s.uptodate + s.compute < disks))
3518             || s.replacing
3519             || s.expanding)
3520                 handle_stripe_fill(sh, &s, disks);
3521
3522         /* Now we check to see if any write operations have recently
3523          * completed
3524          */
3525         prexor = 0;
3526         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3527                 prexor = 1;
3528         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3529             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3530                 sh->reconstruct_state = reconstruct_state_idle;
3531
3532                 /* All the 'written' buffers and the parity block are ready to
3533                  * be written back to disk
3534                  */
3535                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3536                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3537                 BUG_ON(sh->qd_idx >= 0 &&
3538                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3539                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3540                 for (i = disks; i--; ) {
3541                         struct r5dev *dev = &sh->dev[i];
3542                         if (test_bit(R5_LOCKED, &dev->flags) &&
3543                                 (i == sh->pd_idx || i == sh->qd_idx ||
3544                                  dev->written)) {
3545                                 pr_debug("Writing block %d\n", i);
3546                                 set_bit(R5_Wantwrite, &dev->flags);
3547                                 if (prexor)
3548                                         continue;
3549                                 if (!test_bit(R5_Insync, &dev->flags) ||
3550                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3551                                      s.failed == 0))
3552                                         set_bit(STRIPE_INSYNC, &sh->state);
3553                         }
3554                 }
3555                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3556                         s.dec_preread_active = 1;
3557         }
3558
3559         /* Now to consider new write requests and what else, if anything
3560          * should be read.  We do not handle new writes when:
3561          * 1/ A 'write' operation (copy+xor) is already in flight.
3562          * 2/ A 'check' operation is in flight, as it may clobber the parity
3563          *    block.
3564          */
3565         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3566                 handle_stripe_dirtying(conf, sh, &s, disks);
3567
3568         /* maybe we need to check and possibly fix the parity for this stripe
3569          * Any reads will already have been scheduled, so we just see if enough
3570          * data is available.  The parity check is held off while parity
3571          * dependent operations are in flight.
3572          */
3573         if (sh->check_state ||
3574             (s.syncing && s.locked == 0 &&
3575              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3576              !test_bit(STRIPE_INSYNC, &sh->state))) {
3577                 if (conf->level == 6)
3578                         handle_parity_checks6(conf, sh, &s, disks);
3579                 else
3580                         handle_parity_checks5(conf, sh, &s, disks);
3581         }
3582
3583         if (s.replacing && s.locked == 0
3584             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3585                 /* Write out to replacement devices where possible */
3586                 for (i = 0; i < conf->raid_disks; i++)
3587                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3588                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3589                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3590                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3591                                 s.locked++;
3592                         }
3593                 set_bit(STRIPE_INSYNC, &sh->state);
3594         }
3595         if ((s.syncing || s.replacing) && s.locked == 0 &&
3596             test_bit(STRIPE_INSYNC, &sh->state)) {
3597                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3598                 clear_bit(STRIPE_SYNCING, &sh->state);
3599         }
3600
3601         /* If the failed drives are just a ReadError, then we might need
3602          * to progress the repair/check process
3603          */
3604         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3605                 for (i = 0; i < s.failed; i++) {
3606                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3607                         if (test_bit(R5_ReadError, &dev->flags)
3608                             && !test_bit(R5_LOCKED, &dev->flags)
3609                             && test_bit(R5_UPTODATE, &dev->flags)
3610                                 ) {
3611                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3612                                         set_bit(R5_Wantwrite, &dev->flags);
3613                                         set_bit(R5_ReWrite, &dev->flags);
3614                                         set_bit(R5_LOCKED, &dev->flags);
3615                                         s.locked++;
3616                                 } else {
3617                                         /* let's read it back */
3618                                         set_bit(R5_Wantread, &dev->flags);
3619                                         set_bit(R5_LOCKED, &dev->flags);
3620                                         s.locked++;
3621                                 }
3622                         }
3623                 }
3624
3625
3626         /* Finish reconstruct operations initiated by the expansion process */
3627         if (sh->reconstruct_state == reconstruct_state_result) {
3628                 struct stripe_head *sh_src
3629                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3630                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3631                         /* sh cannot be written until sh_src has been read.
3632                          * so arrange for sh to be delayed a little
3633                          */
3634                         set_bit(STRIPE_DELAYED, &sh->state);
3635                         set_bit(STRIPE_HANDLE, &sh->state);
3636                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3637                                               &sh_src->state))
3638                                 atomic_inc(&conf->preread_active_stripes);
3639                         release_stripe(sh_src);
3640                         goto finish;
3641                 }
3642                 if (sh_src)
3643                         release_stripe(sh_src);
3644
3645                 sh->reconstruct_state = reconstruct_state_idle;
3646                 clear_bit(STRIPE_EXPANDING, &sh->state);
3647                 for (i = conf->raid_disks; i--; ) {
3648                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3649                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3650                         s.locked++;
3651                 }
3652         }
3653
3654         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3655             !sh->reconstruct_state) {
3656                 /* Need to write out all blocks after computing parity */
3657                 sh->disks = conf->raid_disks;
3658                 stripe_set_idx(sh->sector, conf, 0, sh);
3659                 schedule_reconstruction(sh, &s, 1, 1);
3660         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3661                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3662                 atomic_dec(&conf->reshape_stripes);
3663                 wake_up(&conf->wait_for_overlap);
3664                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3665         }
3666
3667         if (s.expanding && s.locked == 0 &&
3668             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3669                 handle_stripe_expansion(conf, sh);
3670
3671 finish:
3672         /* wait for this device to become unblocked */
3673         if (unlikely(s.blocked_rdev)) {
3674                 if (conf->mddev->external)
3675                         md_wait_for_blocked_rdev(s.blocked_rdev,
3676                                                  conf->mddev);
3677                 else
3678                         /* Internal metadata will immediately
3679                          * be written by raid5d, so we don't
3680                          * need to wait here.
3681                          */
3682                         rdev_dec_pending(s.blocked_rdev,
3683                                          conf->mddev);
3684         }
3685
3686         if (s.handle_bad_blocks)
3687                 for (i = disks; i--; ) {
3688                         struct md_rdev *rdev;
3689                         struct r5dev *dev = &sh->dev[i];
3690                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3691                                 /* We own a safe reference to the rdev */
3692                                 rdev = conf->disks[i].rdev;
3693                                 if (!rdev_set_badblocks(rdev, sh->sector,
3694                                                         STRIPE_SECTORS, 0))
3695                                         md_error(conf->mddev, rdev);
3696                                 rdev_dec_pending(rdev, conf->mddev);
3697                         }
3698                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3699                                 rdev = conf->disks[i].rdev;
3700                                 rdev_clear_badblocks(rdev, sh->sector,
3701                                                      STRIPE_SECTORS, 0);
3702                                 rdev_dec_pending(rdev, conf->mddev);
3703                         }
3704                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3705                                 rdev = conf->disks[i].replacement;
3706                                 if (!rdev)
3707                                         /* rdev have been moved down */
3708                                         rdev = conf->disks[i].rdev;
3709                                 rdev_clear_badblocks(rdev, sh->sector,
3710                                                      STRIPE_SECTORS, 0);
3711                                 rdev_dec_pending(rdev, conf->mddev);
3712                         }
3713                 }
3714
3715         if (s.ops_request)
3716                 raid_run_ops(sh, s.ops_request);
3717
3718         ops_run_io(sh, &s);
3719
3720         if (s.dec_preread_active) {
3721                 /* We delay this until after ops_run_io so that if make_request
3722                  * is waiting on a flush, it won't continue until the writes
3723                  * have actually been submitted.
3724                  */
3725                 atomic_dec(&conf->preread_active_stripes);
3726                 if (atomic_read(&conf->preread_active_stripes) <
3727                     IO_THRESHOLD)
3728                         md_wakeup_thread(conf->mddev->thread);
3729         }
3730
3731         return_io(s.return_bi);
3732
3733         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3734 }
3735
3736 static void raid5_activate_delayed(struct r5conf *conf)
3737 {
3738         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3739                 while (!list_empty(&conf->delayed_list)) {
3740                         struct list_head *l = conf->delayed_list.next;
3741                         struct stripe_head *sh;
3742                         sh = list_entry(l, struct stripe_head, lru);
3743                         list_del_init(l);
3744                         clear_bit(STRIPE_DELAYED, &sh->state);
3745                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3746                                 atomic_inc(&conf->preread_active_stripes);
3747                         list_add_tail(&sh->lru, &conf->hold_list);
3748                 }
3749         }
3750 }
3751
3752 static void activate_bit_delay(struct r5conf *conf)
3753 {
3754         /* device_lock is held */
3755         struct list_head head;
3756         list_add(&head, &conf->bitmap_list);
3757         list_del_init(&conf->bitmap_list);
3758         while (!list_empty(&head)) {
3759                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3760                 list_del_init(&sh->lru);
3761                 atomic_inc(&sh->count);
3762                 __release_stripe(conf, sh);
3763         }
3764 }
3765
3766 int md_raid5_congested(struct mddev *mddev, int bits)
3767 {
3768         struct r5conf *conf = mddev->private;
3769
3770         /* No difference between reads and writes.  Just check
3771          * how busy the stripe_cache is
3772          */
3773
3774         if (conf->inactive_blocked)
3775                 return 1;
3776         if (conf->quiesce)
3777                 return 1;
3778         if (list_empty_careful(&conf->inactive_list))
3779                 return 1;
3780
3781         return 0;
3782 }
3783 EXPORT_SYMBOL_GPL(md_raid5_congested);
3784
3785 static int raid5_congested(void *data, int bits)
3786 {
3787         struct mddev *mddev = data;
3788
3789         return mddev_congested(mddev, bits) ||
3790                 md_raid5_congested(mddev, bits);
3791 }
3792
3793 /* We want read requests to align with chunks where possible,
3794  * but write requests don't need to.
3795  */
3796 static int raid5_mergeable_bvec(struct request_queue *q,
3797                                 struct bvec_merge_data *bvm,
3798                                 struct bio_vec *biovec)
3799 {
3800         struct mddev *mddev = q->queuedata;
3801         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3802         int max;
3803         unsigned int chunk_sectors = mddev->chunk_sectors;
3804         unsigned int bio_sectors = bvm->bi_size >> 9;
3805
3806         if ((bvm->bi_rw & 1) == WRITE)
3807                 return biovec->bv_len; /* always allow writes to be mergeable */
3808
3809         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3810                 chunk_sectors = mddev->new_chunk_sectors;
3811         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3812         if (max < 0) max = 0;
3813         if (max <= biovec->bv_len && bio_sectors == 0)
3814                 return biovec->bv_len;
3815         else
3816                 return max;
3817 }
3818
3819
3820 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3821 {
3822         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3823         unsigned int chunk_sectors = mddev->chunk_sectors;
3824         unsigned int bio_sectors = bio->bi_size >> 9;
3825
3826         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3827                 chunk_sectors = mddev->new_chunk_sectors;
3828         return  chunk_sectors >=
3829                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3830 }
3831
3832 /*
3833  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3834  *  later sampled by raid5d.
3835  */
3836 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3837 {
3838         unsigned long flags;
3839
3840         spin_lock_irqsave(&conf->device_lock, flags);
3841
3842         bi->bi_next = conf->retry_read_aligned_list;
3843         conf->retry_read_aligned_list = bi;
3844
3845         spin_unlock_irqrestore(&conf->device_lock, flags);
3846         md_wakeup_thread(conf->mddev->thread);
3847 }
3848
3849
3850 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3851 {
3852         struct bio *bi;
3853
3854         bi = conf->retry_read_aligned;
3855         if (bi) {
3856                 conf->retry_read_aligned = NULL;
3857                 return bi;
3858         }
3859         bi = conf->retry_read_aligned_list;
3860         if(bi) {
3861                 conf->retry_read_aligned_list = bi->bi_next;
3862                 bi->bi_next = NULL;
3863                 /*
3864                  * this sets the active strip count to 1 and the processed
3865                  * strip count to zero (upper 8 bits)
3866                  */
3867                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3868         }
3869
3870         return bi;
3871 }
3872
3873
3874 /*
3875  *  The "raid5_align_endio" should check if the read succeeded and if it
3876  *  did, call bio_endio on the original bio (having bio_put the new bio
3877  *  first).
3878  *  If the read failed..
3879  */
3880 static void raid5_align_endio(struct bio *bi, int error)
3881 {
3882         struct bio* raid_bi  = bi->bi_private;
3883         struct mddev *mddev;
3884         struct r5conf *conf;
3885         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3886         struct md_rdev *rdev;
3887
3888         bio_put(bi);
3889
3890         rdev = (void*)raid_bi->bi_next;
3891         raid_bi->bi_next = NULL;
3892         mddev = rdev->mddev;
3893         conf = mddev->private;
3894
3895         rdev_dec_pending(rdev, conf->mddev);
3896
3897         if (!error && uptodate) {
3898                 bio_endio(raid_bi, 0);
3899                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3900                         wake_up(&conf->wait_for_stripe);
3901                 return;
3902         }
3903
3904
3905         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3906
3907         add_bio_to_retry(raid_bi, conf);
3908 }
3909
3910 static int bio_fits_rdev(struct bio *bi)
3911 {
3912         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3913
3914         if ((bi->bi_size>>9) > queue_max_sectors(q))
3915                 return 0;
3916         blk_recount_segments(q, bi);
3917         if (bi->bi_phys_segments > queue_max_segments(q))
3918                 return 0;
3919
3920         if (q->merge_bvec_fn)
3921                 /* it's too hard to apply the merge_bvec_fn at this stage,
3922                  * just just give up
3923                  */
3924                 return 0;
3925
3926         return 1;
3927 }
3928
3929
3930 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3931 {
3932         struct r5conf *conf = mddev->private;
3933         int dd_idx;
3934         struct bio* align_bi;
3935         struct md_rdev *rdev;
3936         sector_t end_sector;
3937
3938         if (!in_chunk_boundary(mddev, raid_bio)) {
3939                 pr_debug("chunk_aligned_read : non aligned\n");
3940                 return 0;
3941         }
3942         /*
3943          * use bio_clone_mddev to make a copy of the bio
3944          */
3945         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3946         if (!align_bi)
3947                 return 0;
3948         /*
3949          *   set bi_end_io to a new function, and set bi_private to the
3950          *     original bio.
3951          */
3952         align_bi->bi_end_io  = raid5_align_endio;
3953         align_bi->bi_private = raid_bio;
3954         /*
3955          *      compute position
3956          */
3957         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3958                                                     0,
3959                                                     &dd_idx, NULL);
3960
3961         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3962         rcu_read_lock();
3963         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3964         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3965             rdev->recovery_offset < end_sector) {
3966                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3967                 if (rdev &&
3968                     (test_bit(Faulty, &rdev->flags) ||
3969                     !(test_bit(In_sync, &rdev->flags) ||
3970                       rdev->recovery_offset >= end_sector)))
3971                         rdev = NULL;
3972         }
3973         if (rdev) {
3974                 sector_t first_bad;
3975                 int bad_sectors;
3976
3977                 atomic_inc(&rdev->nr_pending);
3978                 rcu_read_unlock();
3979                 raid_bio->bi_next = (void*)rdev;
3980                 align_bi->bi_bdev =  rdev->bdev;
3981                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3982
3983                 if (!bio_fits_rdev(align_bi) ||
3984                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3985                                 &first_bad, &bad_sectors)) {
3986                         /* too big in some way, or has a known bad block */
3987                         bio_put(align_bi);
3988                         rdev_dec_pending(rdev, mddev);
3989                         return 0;
3990                 }
3991
3992                 /* No reshape active, so we can trust rdev->data_offset */
3993                 align_bi->bi_sector += rdev->data_offset;
3994
3995                 spin_lock_irq(&conf->device_lock);
3996                 wait_event_lock_irq(conf->wait_for_stripe,
3997                                     conf->quiesce == 0,
3998                                     conf->device_lock, /* nothing */);
3999                 atomic_inc(&conf->active_aligned_reads);
4000                 spin_unlock_irq(&conf->device_lock);
4001
4002                 generic_make_request(align_bi);
4003                 return 1;
4004         } else {
4005                 rcu_read_unlock();
4006                 bio_put(align_bi);
4007                 return 0;
4008         }
4009 }
4010
4011 /* __get_priority_stripe - get the next stripe to process
4012  *
4013  * Full stripe writes are allowed to pass preread active stripes up until
4014  * the bypass_threshold is exceeded.  In general the bypass_count
4015  * increments when the handle_list is handled before the hold_list; however, it
4016  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4017  * stripe with in flight i/o.  The bypass_count will be reset when the
4018  * head of the hold_list has changed, i.e. the head was promoted to the
4019  * handle_list.
4020  */
4021 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4022 {
4023         struct stripe_head *sh;
4024
4025         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4026                   __func__,
4027                   list_empty(&conf->handle_list) ? "empty" : "busy",
4028                   list_empty(&conf->hold_list) ? "empty" : "busy",
4029                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4030
4031         if (!list_empty(&conf->handle_list)) {
4032                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4033
4034                 if (list_empty(&conf->hold_list))
4035                         conf->bypass_count = 0;
4036                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4037                         if (conf->hold_list.next == conf->last_hold)
4038                                 conf->bypass_count++;
4039                         else {
4040                                 conf->last_hold = conf->hold_list.next;
4041                                 conf->bypass_count -= conf->bypass_threshold;
4042                                 if (conf->bypass_count < 0)
4043                                         conf->bypass_count = 0;
4044                         }
4045                 }
4046         } else if (!list_empty(&conf->hold_list) &&
4047                    ((conf->bypass_threshold &&
4048                      conf->bypass_count > conf->bypass_threshold) ||
4049                     atomic_read(&conf->pending_full_writes) == 0)) {
4050                 sh = list_entry(conf->hold_list.next,
4051                                 typeof(*sh), lru);
4052                 conf->bypass_count -= conf->bypass_threshold;
4053                 if (conf->bypass_count < 0)
4054                         conf->bypass_count = 0;
4055         } else
4056                 return NULL;
4057
4058         list_del_init(&sh->lru);
4059         atomic_inc(&sh->count);
4060         BUG_ON(atomic_read(&sh->count) != 1);
4061         return sh;
4062 }
4063
4064 struct raid5_plug_cb {
4065         struct blk_plug_cb      cb;
4066         struct list_head        list;
4067 };
4068
4069 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4070 {
4071         struct raid5_plug_cb *cb = container_of(
4072                 blk_cb, struct raid5_plug_cb, cb);
4073         struct stripe_head *sh;
4074         struct mddev *mddev = cb->cb.data;
4075         struct r5conf *conf = mddev->private;
4076
4077         if (cb->list.next && !list_empty(&cb->list)) {
4078                 spin_lock_irq(&conf->device_lock);
4079                 while (!list_empty(&cb->list)) {
4080                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4081                         list_del_init(&sh->lru);
4082                         /*
4083                          * avoid race release_stripe_plug() sees
4084                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4085                          * is still in our list
4086                          */
4087                         smp_mb__before_clear_bit();
4088                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4089                         __release_stripe(conf, sh);
4090                 }
4091                 spin_unlock_irq(&conf->device_lock);
4092         }
4093         kfree(cb);
4094 }
4095
4096 static void release_stripe_plug(struct mddev *mddev,
4097                                 struct stripe_head *sh)
4098 {
4099         struct blk_plug_cb *blk_cb = blk_check_plugged(
4100                 raid5_unplug, mddev,
4101                 sizeof(struct raid5_plug_cb));
4102         struct raid5_plug_cb *cb;
4103
4104         if (!blk_cb) {
4105                 release_stripe(sh);
4106                 return;
4107         }
4108
4109         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4110
4111         if (cb->list.next == NULL)
4112                 INIT_LIST_HEAD(&cb->list);
4113
4114         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4115                 list_add_tail(&sh->lru, &cb->list);
4116         else
4117                 release_stripe(sh);
4118 }
4119
4120 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4121 {
4122         struct r5conf *conf = mddev->private;
4123         sector_t logical_sector, last_sector;
4124         struct stripe_head *sh;
4125         int remaining;
4126         int stripe_sectors;
4127
4128         if (mddev->reshape_position != MaxSector)
4129                 /* Skip discard while reshape is happening */
4130                 return;
4131
4132         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4133         last_sector = bi->bi_sector + (bi->bi_size>>9);
4134
4135         bi->bi_next = NULL;
4136         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4137
4138         stripe_sectors = conf->chunk_sectors *
4139                 (conf->raid_disks - conf->max_degraded);
4140         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4141                                                stripe_sectors);
4142         sector_div(last_sector, stripe_sectors);
4143
4144         logical_sector *= conf->chunk_sectors;
4145         last_sector *= conf->chunk_sectors;
4146
4147         for (; logical_sector < last_sector;
4148              logical_sector += STRIPE_SECTORS) {
4149                 DEFINE_WAIT(w);
4150                 int d;
4151         again:
4152                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4153                 prepare_to_wait(&conf->wait_for_overlap, &w,
4154                                 TASK_UNINTERRUPTIBLE);
4155                 spin_lock_irq(&sh->stripe_lock);
4156                 for (d = 0; d < conf->raid_disks; d++) {
4157                         if (d == sh->pd_idx || d == sh->qd_idx)
4158                                 continue;
4159                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4160                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4161                                 spin_unlock_irq(&sh->stripe_lock);
4162                                 release_stripe(sh);
4163                                 schedule();
4164                                 goto again;
4165                         }
4166                 }
4167                 finish_wait(&conf->wait_for_overlap, &w);
4168                 for (d = 0; d < conf->raid_disks; d++) {
4169                         if (d == sh->pd_idx || d == sh->qd_idx)
4170                                 continue;
4171                         sh->dev[d].towrite = bi;
4172                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4173                         raid5_inc_bi_active_stripes(bi);
4174                 }
4175                 spin_unlock_irq(&sh->stripe_lock);
4176                 if (conf->mddev->bitmap) {
4177                         for (d = 0;
4178                              d < conf->raid_disks - conf->max_degraded;
4179                              d++)
4180                                 bitmap_startwrite(mddev->bitmap,
4181                                                   sh->sector,
4182                                                   STRIPE_SECTORS,
4183                                                   0);
4184                         sh->bm_seq = conf->seq_flush + 1;
4185                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4186                 }
4187
4188                 set_bit(STRIPE_HANDLE, &sh->state);
4189                 clear_bit(STRIPE_DELAYED, &sh->state);
4190                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4191                         atomic_inc(&conf->preread_active_stripes);
4192                 release_stripe_plug(mddev, sh);
4193         }
4194
4195         remaining = raid5_dec_bi_active_stripes(bi);
4196         if (remaining == 0) {
4197                 md_write_end(mddev);
4198                 bio_endio(bi, 0);
4199         }
4200 }
4201
4202 static void make_request(struct mddev *mddev, struct bio * bi)
4203 {
4204         struct r5conf *conf = mddev->private;
4205         int dd_idx;
4206         sector_t new_sector;
4207         sector_t logical_sector, last_sector;
4208         struct stripe_head *sh;
4209         const int rw = bio_data_dir(bi);
4210         int remaining;
4211
4212         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4213                 md_flush_request(mddev, bi);
4214                 return;
4215         }
4216
4217         md_write_start(mddev, bi);
4218
4219         if (rw == READ &&
4220              mddev->reshape_position == MaxSector &&
4221              chunk_aligned_read(mddev,bi))
4222                 return;
4223
4224         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4225                 make_discard_request(mddev, bi);
4226                 return;
4227         }
4228
4229         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4230         last_sector = bi->bi_sector + (bi->bi_size>>9);
4231         bi->bi_next = NULL;
4232         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4233
4234         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4235                 DEFINE_WAIT(w);
4236                 int previous;
4237
4238         retry:
4239                 previous = 0;
4240                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4241                 if (unlikely(conf->reshape_progress != MaxSector)) {
4242                         /* spinlock is needed as reshape_progress may be
4243                          * 64bit on a 32bit platform, and so it might be
4244                          * possible to see a half-updated value
4245                          * Of course reshape_progress could change after
4246                          * the lock is dropped, so once we get a reference
4247                          * to the stripe that we think it is, we will have
4248                          * to check again.
4249                          */
4250                         spin_lock_irq(&conf->device_lock);
4251                         if (mddev->reshape_backwards
4252                             ? logical_sector < conf->reshape_progress
4253                             : logical_sector >= conf->reshape_progress) {
4254                                 previous = 1;
4255                         } else {
4256                                 if (mddev->reshape_backwards
4257                                     ? logical_sector < conf->reshape_safe
4258                                     : logical_sector >= conf->reshape_safe) {
4259                                         spin_unlock_irq(&conf->device_lock);
4260                                         schedule();
4261                                         goto retry;
4262                                 }
4263                         }
4264                         spin_unlock_irq(&conf->device_lock);
4265                 }
4266
4267                 new_sector = raid5_compute_sector(conf, logical_sector,
4268                                                   previous,
4269                                                   &dd_idx, NULL);
4270                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4271                         (unsigned long long)new_sector, 
4272                         (unsigned long long)logical_sector);
4273
4274                 sh = get_active_stripe(conf, new_sector, previous,
4275                                        (bi->bi_rw&RWA_MASK), 0);
4276                 if (sh) {
4277                         if (unlikely(previous)) {
4278                                 /* expansion might have moved on while waiting for a
4279                                  * stripe, so we must do the range check again.
4280                                  * Expansion could still move past after this
4281                                  * test, but as we are holding a reference to
4282                                  * 'sh', we know that if that happens,
4283                                  *  STRIPE_EXPANDING will get set and the expansion
4284                                  * won't proceed until we finish with the stripe.
4285                                  */
4286                                 int must_retry = 0;
4287                                 spin_lock_irq(&conf->device_lock);
4288                                 if (mddev->reshape_backwards
4289                                     ? logical_sector >= conf->reshape_progress
4290                                     : logical_sector < conf->reshape_progress)
4291                                         /* mismatch, need to try again */
4292                                         must_retry = 1;
4293                                 spin_unlock_irq(&conf->device_lock);
4294                                 if (must_retry) {
4295                                         release_stripe(sh);
4296                                         schedule();
4297                                         goto retry;
4298                                 }
4299                         }
4300
4301                         if (rw == WRITE &&
4302                             logical_sector >= mddev->suspend_lo &&
4303                             logical_sector < mddev->suspend_hi) {
4304                                 release_stripe(sh);
4305                                 /* As the suspend_* range is controlled by
4306                                  * userspace, we want an interruptible
4307                                  * wait.
4308                                  */
4309                                 flush_signals(current);
4310                                 prepare_to_wait(&conf->wait_for_overlap,
4311                                                 &w, TASK_INTERRUPTIBLE);
4312                                 if (logical_sector >= mddev->suspend_lo &&
4313                                     logical_sector < mddev->suspend_hi)
4314                                         schedule();
4315                                 goto retry;
4316                         }
4317
4318                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4319                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4320                                 /* Stripe is busy expanding or
4321                                  * add failed due to overlap.  Flush everything
4322                                  * and wait a while
4323                                  */
4324                                 md_wakeup_thread(mddev->thread);
4325                                 release_stripe(sh);
4326                                 schedule();
4327                                 goto retry;
4328                         }
4329                         finish_wait(&conf->wait_for_overlap, &w);
4330                         set_bit(STRIPE_HANDLE, &sh->state);
4331                         clear_bit(STRIPE_DELAYED, &sh->state);
4332                         if ((bi->bi_rw & REQ_NOIDLE) &&
4333                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4334                                 atomic_inc(&conf->preread_active_stripes);
4335                         release_stripe_plug(mddev, sh);
4336                 } else {
4337                         /* cannot get stripe for read-ahead, just give-up */
4338                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4339                         finish_wait(&conf->wait_for_overlap, &w);
4340                         break;
4341                 }
4342         }
4343
4344         remaining = raid5_dec_bi_active_stripes(bi);
4345         if (remaining == 0) {
4346
4347                 if ( rw == WRITE )
4348                         md_write_end(mddev);
4349
4350                 bio_endio(bi, 0);
4351         }
4352 }
4353
4354 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4355
4356 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4357 {
4358         /* reshaping is quite different to recovery/resync so it is
4359          * handled quite separately ... here.
4360          *
4361          * On each call to sync_request, we gather one chunk worth of
4362          * destination stripes and flag them as expanding.
4363          * Then we find all the source stripes and request reads.
4364          * As the reads complete, handle_stripe will copy the data
4365          * into the destination stripe and release that stripe.
4366          */
4367         struct r5conf *conf = mddev->private;
4368         struct stripe_head *sh;
4369         sector_t first_sector, last_sector;
4370         int raid_disks = conf->previous_raid_disks;
4371         int data_disks = raid_disks - conf->max_degraded;
4372         int new_data_disks = conf->raid_disks - conf->max_degraded;
4373         int i;
4374         int dd_idx;
4375         sector_t writepos, readpos, safepos;
4376         sector_t stripe_addr;
4377         int reshape_sectors;
4378         struct list_head stripes;
4379
4380         if (sector_nr == 0) {
4381                 /* If restarting in the middle, skip the initial sectors */
4382                 if (mddev->reshape_backwards &&
4383                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4384                         sector_nr = raid5_size(mddev, 0, 0)
4385                                 - conf->reshape_progress;
4386                 } else if (!mddev->reshape_backwards &&
4387                            conf->reshape_progress > 0)
4388                         sector_nr = conf->reshape_progress;
4389                 sector_div(sector_nr, new_data_disks);
4390                 if (sector_nr) {
4391                         mddev->curr_resync_completed = sector_nr;
4392                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4393                         *skipped = 1;
4394                         return sector_nr;
4395                 }
4396         }
4397
4398         /* We need to process a full chunk at a time.
4399          * If old and new chunk sizes differ, we need to process the
4400          * largest of these
4401          */
4402         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4403                 reshape_sectors = mddev->new_chunk_sectors;
4404         else
4405                 reshape_sectors = mddev->chunk_sectors;
4406
4407         /* We update the metadata at least every 10 seconds, or when
4408          * the data about to be copied would over-write the source of
4409          * the data at the front of the range.  i.e. one new_stripe
4410          * along from reshape_progress new_maps to after where
4411          * reshape_safe old_maps to
4412          */
4413         writepos = conf->reshape_progress;
4414         sector_div(writepos, new_data_disks);
4415         readpos = conf->reshape_progress;
4416         sector_div(readpos, data_disks);
4417         safepos = conf->reshape_safe;
4418         sector_div(safepos, data_disks);
4419         if (mddev->reshape_backwards) {
4420                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4421                 readpos += reshape_sectors;
4422                 safepos += reshape_sectors;
4423         } else {
4424                 writepos += reshape_sectors;
4425                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4426                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4427         }
4428
4429         /* Having calculated the 'writepos' possibly use it
4430          * to set 'stripe_addr' which is where we will write to.
4431          */
4432         if (mddev->reshape_backwards) {
4433                 BUG_ON(conf->reshape_progress == 0);
4434                 stripe_addr = writepos;
4435                 BUG_ON((mddev->dev_sectors &
4436                         ~((sector_t)reshape_sectors - 1))
4437                        - reshape_sectors - stripe_addr
4438                        != sector_nr);
4439         } else {
4440                 BUG_ON(writepos != sector_nr + reshape_sectors);
4441                 stripe_addr = sector_nr;
4442         }
4443
4444         /* 'writepos' is the most advanced device address we might write.
4445          * 'readpos' is the least advanced device address we might read.
4446          * 'safepos' is the least address recorded in the metadata as having
4447          *     been reshaped.
4448          * If there is a min_offset_diff, these are adjusted either by
4449          * increasing the safepos/readpos if diff is negative, or
4450          * increasing writepos if diff is positive.
4451          * If 'readpos' is then behind 'writepos', there is no way that we can
4452          * ensure safety in the face of a crash - that must be done by userspace
4453          * making a backup of the data.  So in that case there is no particular
4454          * rush to update metadata.
4455          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4456          * update the metadata to advance 'safepos' to match 'readpos' so that
4457          * we can be safe in the event of a crash.
4458          * So we insist on updating metadata if safepos is behind writepos and
4459          * readpos is beyond writepos.
4460          * In any case, update the metadata every 10 seconds.
4461          * Maybe that number should be configurable, but I'm not sure it is
4462          * worth it.... maybe it could be a multiple of safemode_delay???
4463          */
4464         if (conf->min_offset_diff < 0) {
4465                 safepos += -conf->min_offset_diff;
4466                 readpos += -conf->min_offset_diff;
4467         } else
4468                 writepos += conf->min_offset_diff;
4469
4470         if ((mddev->reshape_backwards
4471              ? (safepos > writepos && readpos < writepos)
4472              : (safepos < writepos && readpos > writepos)) ||
4473             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4474                 /* Cannot proceed until we've updated the superblock... */
4475                 wait_event(conf->wait_for_overlap,
4476                            atomic_read(&conf->reshape_stripes)==0);
4477                 mddev->reshape_position = conf->reshape_progress;
4478                 mddev->curr_resync_completed = sector_nr;
4479                 conf->reshape_checkpoint = jiffies;
4480                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4481                 md_wakeup_thread(mddev->thread);
4482                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4483                            kthread_should_stop());
4484                 spin_lock_irq(&conf->device_lock);
4485                 conf->reshape_safe = mddev->reshape_position;
4486                 spin_unlock_irq(&conf->device_lock);
4487                 wake_up(&conf->wait_for_overlap);
4488                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4489         }
4490
4491         INIT_LIST_HEAD(&stripes);
4492         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4493                 int j;
4494                 int skipped_disk = 0;
4495                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4496                 set_bit(STRIPE_EXPANDING, &sh->state);
4497                 atomic_inc(&conf->reshape_stripes);
4498                 /* If any of this stripe is beyond the end of the old
4499                  * array, then we need to zero those blocks
4500                  */
4501                 for (j=sh->disks; j--;) {
4502                         sector_t s;
4503                         if (j == sh->pd_idx)
4504                                 continue;
4505                         if (conf->level == 6 &&
4506                             j == sh->qd_idx)
4507                                 continue;
4508                         s = compute_blocknr(sh, j, 0);
4509                         if (s < raid5_size(mddev, 0, 0)) {
4510                                 skipped_disk = 1;
4511                                 continue;
4512                         }
4513                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4514                         set_bit(R5_Expanded, &sh->dev[j].flags);
4515                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4516                 }
4517                 if (!skipped_disk) {
4518                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4519                         set_bit(STRIPE_HANDLE, &sh->state);
4520                 }
4521                 list_add(&sh->lru, &stripes);
4522         }
4523         spin_lock_irq(&conf->device_lock);
4524         if (mddev->reshape_backwards)
4525                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4526         else
4527                 conf->reshape_progress += reshape_sectors * new_data_disks;
4528         spin_unlock_irq(&conf->device_lock);
4529         /* Ok, those stripe are ready. We can start scheduling
4530          * reads on the source stripes.
4531          * The source stripes are determined by mapping the first and last
4532          * block on the destination stripes.
4533          */
4534         first_sector =
4535                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4536                                      1, &dd_idx, NULL);
4537         last_sector =
4538                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4539                                             * new_data_disks - 1),
4540                                      1, &dd_idx, NULL);
4541         if (last_sector >= mddev->dev_sectors)
4542                 last_sector = mddev->dev_sectors - 1;
4543         while (first_sector <= last_sector) {
4544                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4545                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4546                 set_bit(STRIPE_HANDLE, &sh->state);
4547                 release_stripe(sh);
4548                 first_sector += STRIPE_SECTORS;
4549         }
4550         /* Now that the sources are clearly marked, we can release
4551          * the destination stripes
4552          */
4553         while (!list_empty(&stripes)) {
4554                 sh = list_entry(stripes.next, struct stripe_head, lru);
4555                 list_del_init(&sh->lru);
4556                 release_stripe(sh);
4557         }
4558         /* If this takes us to the resync_max point where we have to pause,
4559          * then we need to write out the superblock.
4560          */
4561         sector_nr += reshape_sectors;
4562         if ((sector_nr - mddev->curr_resync_completed) * 2
4563             >= mddev->resync_max - mddev->curr_resync_completed) {
4564                 /* Cannot proceed until we've updated the superblock... */
4565                 wait_event(conf->wait_for_overlap,
4566                            atomic_read(&conf->reshape_stripes) == 0);
4567                 mddev->reshape_position = conf->reshape_progress;
4568                 mddev->curr_resync_completed = sector_nr;
4569                 conf->reshape_checkpoint = jiffies;
4570                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4571                 md_wakeup_thread(mddev->thread);
4572                 wait_event(mddev->sb_wait,
4573                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4574                            || kthread_should_stop());
4575                 spin_lock_irq(&conf->device_lock);
4576                 conf->reshape_safe = mddev->reshape_position;
4577                 spin_unlock_irq(&conf->device_lock);
4578                 wake_up(&conf->wait_for_overlap);
4579                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4580         }
4581         return reshape_sectors;
4582 }
4583
4584 /* FIXME go_faster isn't used */
4585 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4586 {
4587         struct r5conf *conf = mddev->private;
4588         struct stripe_head *sh;
4589         sector_t max_sector = mddev->dev_sectors;
4590         sector_t sync_blocks;
4591         int still_degraded = 0;
4592         int i;
4593
4594         if (sector_nr >= max_sector) {
4595                 /* just being told to finish up .. nothing much to do */
4596
4597                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4598                         end_reshape(conf);
4599                         return 0;
4600                 }
4601
4602                 if (mddev->curr_resync < max_sector) /* aborted */
4603                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4604                                         &sync_blocks, 1);
4605                 else /* completed sync */
4606                         conf->fullsync = 0;
4607                 bitmap_close_sync(mddev->bitmap);
4608
4609                 return 0;
4610         }
4611
4612         /* Allow raid5_quiesce to complete */
4613         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4614
4615         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4616                 return reshape_request(mddev, sector_nr, skipped);
4617
4618         /* No need to check resync_max as we never do more than one
4619          * stripe, and as resync_max will always be on a chunk boundary,
4620          * if the check in md_do_sync didn't fire, there is no chance
4621          * of overstepping resync_max here
4622          */
4623
4624         /* if there is too many failed drives and we are trying
4625          * to resync, then assert that we are finished, because there is
4626          * nothing we can do.
4627          */
4628         if (mddev->degraded >= conf->max_degraded &&
4629             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4630                 sector_t rv = mddev->dev_sectors - sector_nr;
4631                 *skipped = 1;
4632                 return rv;
4633         }
4634         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4635             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4636             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4637                 /* we can skip this block, and probably more */
4638                 sync_blocks /= STRIPE_SECTORS;
4639                 *skipped = 1;
4640                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4641         }
4642
4643         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4644
4645         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4646         if (sh == NULL) {
4647                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4648                 /* make sure we don't swamp the stripe cache if someone else
4649                  * is trying to get access
4650                  */
4651                 schedule_timeout_uninterruptible(1);
4652         }
4653         /* Need to check if array will still be degraded after recovery/resync
4654          * We don't need to check the 'failed' flag as when that gets set,
4655          * recovery aborts.
4656          */
4657         for (i = 0; i < conf->raid_disks; i++)
4658                 if (conf->disks[i].rdev == NULL)
4659                         still_degraded = 1;
4660
4661         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4662
4663         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4664
4665         handle_stripe(sh);
4666         release_stripe(sh);
4667
4668         return STRIPE_SECTORS;
4669 }
4670
4671 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4672 {
4673         /* We may not be able to submit a whole bio at once as there
4674          * may not be enough stripe_heads available.
4675          * We cannot pre-allocate enough stripe_heads as we may need
4676          * more than exist in the cache (if we allow ever large chunks).
4677          * So we do one stripe head at a time and record in
4678          * ->bi_hw_segments how many have been done.
4679          *
4680          * We *know* that this entire raid_bio is in one chunk, so
4681          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4682          */
4683         struct stripe_head *sh;
4684         int dd_idx;
4685         sector_t sector, logical_sector, last_sector;
4686         int scnt = 0;
4687         int remaining;
4688         int handled = 0;
4689
4690         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4691         sector = raid5_compute_sector(conf, logical_sector,
4692                                       0, &dd_idx, NULL);
4693         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4694
4695         for (; logical_sector < last_sector;
4696              logical_sector += STRIPE_SECTORS,
4697                      sector += STRIPE_SECTORS,
4698                      scnt++) {
4699
4700                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4701                         /* already done this stripe */
4702                         continue;
4703
4704                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4705
4706                 if (!sh) {
4707                         /* failed to get a stripe - must wait */
4708                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4709                         conf->retry_read_aligned = raid_bio;
4710                         return handled;
4711                 }
4712
4713                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4714                         release_stripe(sh);
4715                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4716                         conf->retry_read_aligned = raid_bio;
4717                         return handled;
4718                 }
4719
4720                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4721                 handle_stripe(sh);
4722                 release_stripe(sh);
4723                 handled++;
4724         }
4725         remaining = raid5_dec_bi_active_stripes(raid_bio);
4726         if (remaining == 0)
4727                 bio_endio(raid_bio, 0);
4728         if (atomic_dec_and_test(&conf->active_aligned_reads))
4729                 wake_up(&conf->wait_for_stripe);
4730         return handled;
4731 }
4732
4733 #define MAX_STRIPE_BATCH 8
4734 static int handle_active_stripes(struct r5conf *conf)
4735 {
4736         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4737         int i, batch_size = 0;
4738
4739         while (batch_size < MAX_STRIPE_BATCH &&
4740                         (sh = __get_priority_stripe(conf)) != NULL)
4741                 batch[batch_size++] = sh;
4742
4743         if (batch_size == 0)
4744                 return batch_size;
4745         spin_unlock_irq(&conf->device_lock);
4746
4747         for (i = 0; i < batch_size; i++)
4748                 handle_stripe(batch[i]);
4749
4750         cond_resched();
4751
4752         spin_lock_irq(&conf->device_lock);
4753         for (i = 0; i < batch_size; i++)
4754                 __release_stripe(conf, batch[i]);
4755         return batch_size;
4756 }
4757
4758 /*
4759  * This is our raid5 kernel thread.
4760  *
4761  * We scan the hash table for stripes which can be handled now.
4762  * During the scan, completed stripes are saved for us by the interrupt
4763  * handler, so that they will not have to wait for our next wakeup.
4764  */
4765 static void raid5d(struct md_thread *thread)
4766 {
4767         struct mddev *mddev = thread->mddev;
4768         struct r5conf *conf = mddev->private;
4769         int handled;
4770         struct blk_plug plug;
4771
4772         pr_debug("+++ raid5d active\n");
4773
4774         md_check_recovery(mddev);
4775
4776         blk_start_plug(&plug);
4777         handled = 0;
4778         spin_lock_irq(&conf->device_lock);
4779         while (1) {
4780                 struct bio *bio;
4781                 int batch_size;
4782
4783                 if (
4784                     !list_empty(&conf->bitmap_list)) {
4785                         /* Now is a good time to flush some bitmap updates */
4786                         conf->seq_flush++;
4787                         spin_unlock_irq(&conf->device_lock);
4788                         bitmap_unplug(mddev->bitmap);
4789                         spin_lock_irq(&conf->device_lock);
4790                         conf->seq_write = conf->seq_flush;
4791                         activate_bit_delay(conf);
4792                 }
4793                 raid5_activate_delayed(conf);
4794
4795                 while ((bio = remove_bio_from_retry(conf))) {
4796                         int ok;
4797                         spin_unlock_irq(&conf->device_lock);
4798                         ok = retry_aligned_read(conf, bio);
4799                         spin_lock_irq(&conf->device_lock);
4800                         if (!ok)
4801                                 break;
4802                         handled++;
4803                 }
4804
4805                 batch_size = handle_active_stripes(conf);
4806                 if (!batch_size)
4807                         break;
4808                 handled += batch_size;
4809
4810                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4811                         spin_unlock_irq(&conf->device_lock);
4812                         md_check_recovery(mddev);
4813                         spin_lock_irq(&conf->device_lock);
4814                 }
4815         }
4816         pr_debug("%d stripes handled\n", handled);
4817
4818         spin_unlock_irq(&conf->device_lock);
4819
4820         async_tx_issue_pending_all();
4821         blk_finish_plug(&plug);
4822
4823         pr_debug("--- raid5d inactive\n");
4824 }
4825
4826 static ssize_t
4827 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4828 {
4829         struct r5conf *conf = mddev->private;
4830         if (conf)
4831                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4832         else
4833                 return 0;
4834 }
4835
4836 int
4837 raid5_set_cache_size(struct mddev *mddev, int size)
4838 {
4839         struct r5conf *conf = mddev->private;
4840         int err;
4841
4842         if (size <= 16 || size > 32768)
4843                 return -EINVAL;
4844         while (size < conf->max_nr_stripes) {
4845                 if (drop_one_stripe(conf))
4846                         conf->max_nr_stripes--;
4847                 else
4848                         break;
4849         }
4850         err = md_allow_write(mddev);
4851         if (err)
4852                 return err;
4853         while (size > conf->max_nr_stripes) {
4854                 if (grow_one_stripe(conf))
4855                         conf->max_nr_stripes++;
4856                 else break;
4857         }
4858         return 0;
4859 }
4860 EXPORT_SYMBOL(raid5_set_cache_size);
4861
4862 static ssize_t
4863 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4864 {
4865         struct r5conf *conf = mddev->private;
4866         unsigned long new;
4867         int err;
4868
4869         if (len >= PAGE_SIZE)
4870                 return -EINVAL;
4871         if (!conf)
4872                 return -ENODEV;
4873
4874         if (strict_strtoul(page, 10, &new))
4875                 return -EINVAL;
4876         err = raid5_set_cache_size(mddev, new);
4877         if (err)
4878                 return err;
4879         return len;
4880 }
4881
4882 static struct md_sysfs_entry
4883 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4884                                 raid5_show_stripe_cache_size,
4885                                 raid5_store_stripe_cache_size);
4886
4887 static ssize_t
4888 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4889 {
4890         struct r5conf *conf = mddev->private;
4891         if (conf)
4892                 return sprintf(page, "%d\n", conf->bypass_threshold);
4893         else
4894                 return 0;
4895 }
4896
4897 static ssize_t
4898 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4899 {
4900         struct r5conf *conf = mddev->private;
4901         unsigned long new;
4902         if (len >= PAGE_SIZE)
4903                 return -EINVAL;
4904         if (!conf)
4905                 return -ENODEV;
4906
4907         if (strict_strtoul(page, 10, &new))
4908                 return -EINVAL;
4909         if (new > conf->max_nr_stripes)
4910                 return -EINVAL;
4911         conf->bypass_threshold = new;
4912         return len;
4913 }
4914
4915 static struct md_sysfs_entry
4916 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4917                                         S_IRUGO | S_IWUSR,
4918                                         raid5_show_preread_threshold,
4919                                         raid5_store_preread_threshold);
4920
4921 static ssize_t
4922 stripe_cache_active_show(struct mddev *mddev, char *page)
4923 {
4924         struct r5conf *conf = mddev->private;
4925         if (conf)
4926                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4927         else
4928                 return 0;
4929 }
4930
4931 static struct md_sysfs_entry
4932 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4933
4934 static struct attribute *raid5_attrs[] =  {
4935         &raid5_stripecache_size.attr,
4936         &raid5_stripecache_active.attr,
4937         &raid5_preread_bypass_threshold.attr,
4938         NULL,
4939 };
4940 static struct attribute_group raid5_attrs_group = {
4941         .name = NULL,
4942         .attrs = raid5_attrs,
4943 };
4944
4945 static sector_t
4946 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4947 {
4948         struct r5conf *conf = mddev->private;
4949
4950         if (!sectors)
4951                 sectors = mddev->dev_sectors;
4952         if (!raid_disks)
4953                 /* size is defined by the smallest of previous and new size */
4954                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4955
4956         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4957         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4958         return sectors * (raid_disks - conf->max_degraded);
4959 }
4960
4961 static void raid5_free_percpu(struct r5conf *conf)
4962 {
4963         struct raid5_percpu *percpu;
4964         unsigned long cpu;
4965
4966         if (!conf->percpu)
4967                 return;
4968
4969         get_online_cpus();
4970         for_each_possible_cpu(cpu) {
4971                 percpu = per_cpu_ptr(conf->percpu, cpu);
4972                 safe_put_page(percpu->spare_page);
4973                 kfree(percpu->scribble);
4974         }
4975 #ifdef CONFIG_HOTPLUG_CPU
4976         unregister_cpu_notifier(&conf->cpu_notify);
4977 #endif
4978         put_online_cpus();
4979
4980         free_percpu(conf->percpu);
4981 }
4982
4983 static void free_conf(struct r5conf *conf)
4984 {
4985         shrink_stripes(conf);
4986         raid5_free_percpu(conf);
4987         kfree(conf->disks);
4988         kfree(conf->stripe_hashtbl);
4989         kfree(conf);
4990 }
4991
4992 #ifdef CONFIG_HOTPLUG_CPU
4993 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4994                               void *hcpu)
4995 {
4996         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4997         long cpu = (long)hcpu;
4998         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4999
5000         switch (action) {
5001         case CPU_UP_PREPARE:
5002         case CPU_UP_PREPARE_FROZEN:
5003                 if (conf->level == 6 && !percpu->spare_page)
5004                         percpu->spare_page = alloc_page(GFP_KERNEL);
5005                 if (!percpu->scribble)
5006                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5007
5008                 if (!percpu->scribble ||
5009                     (conf->level == 6 && !percpu->spare_page)) {
5010                         safe_put_page(percpu->spare_page);
5011                         kfree(percpu->scribble);
5012                         pr_err("%s: failed memory allocation for cpu%ld\n",
5013                                __func__, cpu);
5014                         return notifier_from_errno(-ENOMEM);
5015                 }
5016                 break;
5017         case CPU_DEAD:
5018         case CPU_DEAD_FROZEN:
5019                 safe_put_page(percpu->spare_page);
5020                 kfree(percpu->scribble);
5021                 percpu->spare_page = NULL;
5022                 percpu->scribble = NULL;
5023                 break;
5024         default:
5025                 break;
5026         }
5027         return NOTIFY_OK;
5028 }
5029 #endif
5030
5031 static int raid5_alloc_percpu(struct r5conf *conf)
5032 {
5033         unsigned long cpu;
5034         struct page *spare_page;
5035         struct raid5_percpu __percpu *allcpus;
5036         void *scribble;
5037         int err;
5038
5039         allcpus = alloc_percpu(struct raid5_percpu);
5040         if (!allcpus)
5041                 return -ENOMEM;
5042         conf->percpu = allcpus;
5043
5044         get_online_cpus();
5045         err = 0;
5046         for_each_present_cpu(cpu) {
5047                 if (conf->level == 6) {
5048                         spare_page = alloc_page(GFP_KERNEL);
5049                         if (!spare_page) {
5050                                 err = -ENOMEM;
5051                                 break;
5052                         }
5053                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5054                 }
5055                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5056                 if (!scribble) {
5057                         err = -ENOMEM;
5058                         break;
5059                 }
5060                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5061         }
5062 #ifdef CONFIG_HOTPLUG_CPU
5063         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5064         conf->cpu_notify.priority = 0;
5065         if (err == 0)
5066                 err = register_cpu_notifier(&conf->cpu_notify);
5067 #endif
5068         put_online_cpus();
5069
5070         return err;
5071 }
5072
5073 static struct r5conf *setup_conf(struct mddev *mddev)
5074 {
5075         struct r5conf *conf;
5076         int raid_disk, memory, max_disks;
5077         struct md_rdev *rdev;
5078         struct disk_info *disk;
5079         char pers_name[6];
5080
5081         if (mddev->new_level != 5
5082             && mddev->new_level != 4
5083             && mddev->new_level != 6) {
5084                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5085                        mdname(mddev), mddev->new_level);
5086                 return ERR_PTR(-EIO);
5087         }
5088         if ((mddev->new_level == 5
5089              && !algorithm_valid_raid5(mddev->new_layout)) ||
5090             (mddev->new_level == 6
5091              && !algorithm_valid_raid6(mddev->new_layout))) {
5092                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5093                        mdname(mddev), mddev->new_layout);
5094                 return ERR_PTR(-EIO);
5095         }
5096         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5097                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5098                        mdname(mddev), mddev->raid_disks);
5099                 return ERR_PTR(-EINVAL);
5100         }
5101
5102         if (!mddev->new_chunk_sectors ||
5103             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5104             !is_power_of_2(mddev->new_chunk_sectors)) {
5105                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5106                        mdname(mddev), mddev->new_chunk_sectors << 9);
5107                 return ERR_PTR(-EINVAL);
5108         }
5109
5110         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5111         if (conf == NULL)
5112                 goto abort;
5113         spin_lock_init(&conf->device_lock);
5114         init_waitqueue_head(&conf->wait_for_stripe);
5115         init_waitqueue_head(&conf->wait_for_overlap);
5116         INIT_LIST_HEAD(&conf->handle_list);
5117         INIT_LIST_HEAD(&conf->hold_list);
5118         INIT_LIST_HEAD(&conf->delayed_list);
5119         INIT_LIST_HEAD(&conf->bitmap_list);
5120         INIT_LIST_HEAD(&conf->inactive_list);
5121         atomic_set(&conf->active_stripes, 0);
5122         atomic_set(&conf->preread_active_stripes, 0);
5123         atomic_set(&conf->active_aligned_reads, 0);
5124         conf->bypass_threshold = BYPASS_THRESHOLD;
5125         conf->recovery_disabled = mddev->recovery_disabled - 1;
5126
5127         conf->raid_disks = mddev->raid_disks;
5128         if (mddev->reshape_position == MaxSector)
5129                 conf->previous_raid_disks = mddev->raid_disks;
5130         else
5131                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5132         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5133         conf->scribble_len = scribble_len(max_disks);
5134
5135         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5136                               GFP_KERNEL);
5137         if (!conf->disks)
5138                 goto abort;
5139
5140         conf->mddev = mddev;
5141
5142         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5143                 goto abort;
5144
5145         conf->level = mddev->new_level;
5146         if (raid5_alloc_percpu(conf) != 0)
5147                 goto abort;
5148
5149         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5150
5151         rdev_for_each(rdev, mddev) {
5152                 raid_disk = rdev->raid_disk;
5153                 if (raid_disk >= max_disks
5154                     || raid_disk < 0)
5155                         continue;
5156                 disk = conf->disks + raid_disk;
5157
5158                 if (test_bit(Replacement, &rdev->flags)) {
5159                         if (disk->replacement)
5160                                 goto abort;
5161                         disk->replacement = rdev;
5162                 } else {
5163                         if (disk->rdev)
5164                                 goto abort;
5165                         disk->rdev = rdev;
5166                 }
5167
5168                 if (test_bit(In_sync, &rdev->flags)) {
5169                         char b[BDEVNAME_SIZE];
5170                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5171                                " disk %d\n",
5172                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5173                 } else if (rdev->saved_raid_disk != raid_disk)
5174                         /* Cannot rely on bitmap to complete recovery */
5175                         conf->fullsync = 1;
5176         }
5177
5178         conf->chunk_sectors = mddev->new_chunk_sectors;
5179         conf->level = mddev->new_level;
5180         if (conf->level == 6)
5181                 conf->max_degraded = 2;
5182         else
5183                 conf->max_degraded = 1;
5184         conf->algorithm = mddev->new_layout;
5185         conf->max_nr_stripes = NR_STRIPES;
5186         conf->reshape_progress = mddev->reshape_position;
5187         if (conf->reshape_progress != MaxSector) {
5188                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5189                 conf->prev_algo = mddev->layout;
5190         }
5191
5192         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5193                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5194         if (grow_stripes(conf, conf->max_nr_stripes)) {
5195                 printk(KERN_ERR
5196                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5197                        mdname(mddev), memory);
5198                 goto abort;
5199         } else
5200                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5201                        mdname(mddev), memory);
5202
5203         sprintf(pers_name, "raid%d", mddev->new_level);
5204         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5205         if (!conf->thread) {
5206                 printk(KERN_ERR
5207                        "md/raid:%s: couldn't allocate thread.\n",
5208                        mdname(mddev));
5209                 goto abort;
5210         }
5211
5212         return conf;
5213
5214  abort:
5215         if (conf) {
5216                 free_conf(conf);
5217                 return ERR_PTR(-EIO);
5218         } else
5219                 return ERR_PTR(-ENOMEM);
5220 }
5221
5222
5223 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5224 {
5225         switch (algo) {
5226         case ALGORITHM_PARITY_0:
5227                 if (raid_disk < max_degraded)
5228                         return 1;
5229                 break;
5230         case ALGORITHM_PARITY_N:
5231                 if (raid_disk >= raid_disks - max_degraded)
5232                         return 1;
5233                 break;
5234         case ALGORITHM_PARITY_0_6:
5235                 if (raid_disk == 0 || 
5236                     raid_disk == raid_disks - 1)
5237                         return 1;
5238                 break;
5239         case ALGORITHM_LEFT_ASYMMETRIC_6:
5240         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5241         case ALGORITHM_LEFT_SYMMETRIC_6:
5242         case ALGORITHM_RIGHT_SYMMETRIC_6:
5243                 if (raid_disk == raid_disks - 1)
5244                         return 1;
5245         }
5246         return 0;
5247 }
5248
5249 static int run(struct mddev *mddev)
5250 {
5251         struct r5conf *conf;
5252         int working_disks = 0;
5253         int dirty_parity_disks = 0;
5254         struct md_rdev *rdev;
5255         sector_t reshape_offset = 0;
5256         int i;
5257         long long min_offset_diff = 0;
5258         int first = 1;
5259
5260         if (mddev->recovery_cp != MaxSector)
5261                 printk(KERN_NOTICE "md/raid:%s: not clean"
5262                        " -- starting background reconstruction\n",
5263                        mdname(mddev));
5264
5265         rdev_for_each(rdev, mddev) {
5266                 long long diff;
5267                 if (rdev->raid_disk < 0)
5268                         continue;
5269                 diff = (rdev->new_data_offset - rdev->data_offset);
5270                 if (first) {
5271                         min_offset_diff = diff;
5272                         first = 0;
5273                 } else if (mddev->reshape_backwards &&
5274                          diff < min_offset_diff)
5275                         min_offset_diff = diff;
5276                 else if (!mddev->reshape_backwards &&
5277                          diff > min_offset_diff)
5278                         min_offset_diff = diff;
5279         }
5280
5281         if (mddev->reshape_position != MaxSector) {
5282                 /* Check that we can continue the reshape.
5283                  * Difficulties arise if the stripe we would write to
5284                  * next is at or after the stripe we would read from next.
5285                  * For a reshape that changes the number of devices, this
5286                  * is only possible for a very short time, and mdadm makes
5287                  * sure that time appears to have past before assembling
5288                  * the array.  So we fail if that time hasn't passed.
5289                  * For a reshape that keeps the number of devices the same
5290                  * mdadm must be monitoring the reshape can keeping the
5291                  * critical areas read-only and backed up.  It will start
5292                  * the array in read-only mode, so we check for that.
5293                  */
5294                 sector_t here_new, here_old;
5295                 int old_disks;
5296                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5297
5298                 if (mddev->new_level != mddev->level) {
5299                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5300                                "required - aborting.\n",
5301                                mdname(mddev));
5302                         return -EINVAL;
5303                 }
5304                 old_disks = mddev->raid_disks - mddev->delta_disks;
5305                 /* reshape_position must be on a new-stripe boundary, and one
5306                  * further up in new geometry must map after here in old
5307                  * geometry.
5308                  */
5309                 here_new = mddev->reshape_position;
5310                 if (sector_div(here_new, mddev->new_chunk_sectors *
5311                                (mddev->raid_disks - max_degraded))) {
5312                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5313                                "on a stripe boundary\n", mdname(mddev));
5314                         return -EINVAL;
5315                 }
5316                 reshape_offset = here_new * mddev->new_chunk_sectors;
5317                 /* here_new is the stripe we will write to */
5318                 here_old = mddev->reshape_position;
5319                 sector_div(here_old, mddev->chunk_sectors *
5320                            (old_disks-max_degraded));
5321                 /* here_old is the first stripe that we might need to read
5322                  * from */
5323                 if (mddev->delta_disks == 0) {
5324                         if ((here_new * mddev->new_chunk_sectors !=
5325                              here_old * mddev->chunk_sectors)) {
5326                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5327                                        " confused - aborting\n", mdname(mddev));
5328                                 return -EINVAL;
5329                         }
5330                         /* We cannot be sure it is safe to start an in-place
5331                          * reshape.  It is only safe if user-space is monitoring
5332                          * and taking constant backups.
5333                          * mdadm always starts a situation like this in
5334                          * readonly mode so it can take control before
5335                          * allowing any writes.  So just check for that.
5336                          */
5337                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5338                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5339                                 /* not really in-place - so OK */;
5340                         else if (mddev->ro == 0) {
5341                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5342                                        "must be started in read-only mode "
5343                                        "- aborting\n",
5344                                        mdname(mddev));
5345                                 return -EINVAL;
5346                         }
5347                 } else if (mddev->reshape_backwards
5348                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5349                        here_old * mddev->chunk_sectors)
5350                     : (here_new * mddev->new_chunk_sectors >=
5351                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5352                         /* Reading from the same stripe as writing to - bad */
5353                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5354                                "auto-recovery - aborting.\n",
5355                                mdname(mddev));
5356                         return -EINVAL;
5357                 }
5358                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5359                        mdname(mddev));
5360                 /* OK, we should be able to continue; */
5361         } else {
5362                 BUG_ON(mddev->level != mddev->new_level);
5363                 BUG_ON(mddev->layout != mddev->new_layout);
5364                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5365                 BUG_ON(mddev->delta_disks != 0);
5366         }
5367
5368         if (mddev->private == NULL)
5369                 conf = setup_conf(mddev);
5370         else
5371                 conf = mddev->private;
5372
5373         if (IS_ERR(conf))
5374                 return PTR_ERR(conf);
5375
5376         conf->min_offset_diff = min_offset_diff;
5377         mddev->thread = conf->thread;
5378         conf->thread = NULL;
5379         mddev->private = conf;
5380
5381         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5382              i++) {
5383                 rdev = conf->disks[i].rdev;
5384                 if (!rdev && conf->disks[i].replacement) {
5385                         /* The replacement is all we have yet */
5386                         rdev = conf->disks[i].replacement;
5387                         conf->disks[i].replacement = NULL;
5388                         clear_bit(Replacement, &rdev->flags);
5389                         conf->disks[i].rdev = rdev;
5390                 }
5391                 if (!rdev)
5392                         continue;
5393                 if (conf->disks[i].replacement &&
5394                     conf->reshape_progress != MaxSector) {
5395                         /* replacements and reshape simply do not mix. */
5396                         printk(KERN_ERR "md: cannot handle concurrent "
5397                                "replacement and reshape.\n");
5398                         goto abort;
5399                 }
5400                 if (test_bit(In_sync, &rdev->flags)) {
5401                         working_disks++;
5402                         continue;
5403                 }
5404                 /* This disc is not fully in-sync.  However if it
5405                  * just stored parity (beyond the recovery_offset),
5406                  * when we don't need to be concerned about the
5407                  * array being dirty.
5408                  * When reshape goes 'backwards', we never have
5409                  * partially completed devices, so we only need
5410                  * to worry about reshape going forwards.
5411                  */
5412                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5413                 if (mddev->major_version == 0 &&
5414                     mddev->minor_version > 90)
5415                         rdev->recovery_offset = reshape_offset;
5416                         
5417                 if (rdev->recovery_offset < reshape_offset) {
5418                         /* We need to check old and new layout */
5419                         if (!only_parity(rdev->raid_disk,
5420                                          conf->algorithm,
5421                                          conf->raid_disks,
5422                                          conf->max_degraded))
5423                                 continue;
5424                 }
5425                 if (!only_parity(rdev->raid_disk,
5426                                  conf->prev_algo,
5427                                  conf->previous_raid_disks,
5428                                  conf->max_degraded))
5429                         continue;
5430                 dirty_parity_disks++;
5431         }
5432
5433         /*
5434          * 0 for a fully functional array, 1 or 2 for a degraded array.
5435          */
5436         mddev->degraded = calc_degraded(conf);
5437
5438         if (has_failed(conf)) {
5439                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5440                         " (%d/%d failed)\n",
5441                         mdname(mddev), mddev->degraded, conf->raid_disks);
5442                 goto abort;
5443         }
5444
5445         /* device size must be a multiple of chunk size */
5446         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5447         mddev->resync_max_sectors = mddev->dev_sectors;
5448
5449         if (mddev->degraded > dirty_parity_disks &&
5450             mddev->recovery_cp != MaxSector) {
5451                 if (mddev->ok_start_degraded)
5452                         printk(KERN_WARNING
5453                                "md/raid:%s: starting dirty degraded array"
5454                                " - data corruption possible.\n",
5455                                mdname(mddev));
5456                 else {
5457                         printk(KERN_ERR
5458                                "md/raid:%s: cannot start dirty degraded array.\n",
5459                                mdname(mddev));
5460                         goto abort;
5461                 }
5462         }
5463
5464         if (mddev->degraded == 0)
5465                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5466                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5467                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5468                        mddev->new_layout);
5469         else
5470                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5471                        " out of %d devices, algorithm %d\n",
5472                        mdname(mddev), conf->level,
5473                        mddev->raid_disks - mddev->degraded,
5474                        mddev->raid_disks, mddev->new_layout);
5475
5476         print_raid5_conf(conf);
5477
5478         if (conf->reshape_progress != MaxSector) {
5479                 conf->reshape_safe = conf->reshape_progress;
5480                 atomic_set(&conf->reshape_stripes, 0);
5481                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5482                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5483                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5484                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5485                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5486                                                         "reshape");
5487         }
5488
5489
5490         /* Ok, everything is just fine now */
5491         if (mddev->to_remove == &raid5_attrs_group)
5492                 mddev->to_remove = NULL;
5493         else if (mddev->kobj.sd &&
5494             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5495                 printk(KERN_WARNING
5496                        "raid5: failed to create sysfs attributes for %s\n",
5497                        mdname(mddev));
5498         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5499
5500         if (mddev->queue) {
5501                 int chunk_size;
5502                 bool discard_supported = true;
5503                 /* read-ahead size must cover two whole stripes, which
5504                  * is 2 * (datadisks) * chunksize where 'n' is the
5505                  * number of raid devices
5506                  */
5507                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5508                 int stripe = data_disks *
5509                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5510                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5511                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5512
5513                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5514
5515                 mddev->queue->backing_dev_info.congested_data = mddev;
5516                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5517
5518                 chunk_size = mddev->chunk_sectors << 9;
5519                 blk_queue_io_min(mddev->queue, chunk_size);
5520                 blk_queue_io_opt(mddev->queue, chunk_size *
5521                                  (conf->raid_disks - conf->max_degraded));
5522                 /*
5523                  * We can only discard a whole stripe. It doesn't make sense to
5524                  * discard data disk but write parity disk
5525                  */
5526                 stripe = stripe * PAGE_SIZE;
5527                 mddev->queue->limits.discard_alignment = stripe;
5528                 mddev->queue->limits.discard_granularity = stripe;
5529                 /*
5530                  * unaligned part of discard request will be ignored, so can't
5531                  * guarantee discard_zerors_data
5532                  */
5533                 mddev->queue->limits.discard_zeroes_data = 0;
5534
5535                 rdev_for_each(rdev, mddev) {
5536                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5537                                           rdev->data_offset << 9);
5538                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5539                                           rdev->new_data_offset << 9);
5540                         /*
5541                          * discard_zeroes_data is required, otherwise data
5542                          * could be lost. Consider a scenario: discard a stripe
5543                          * (the stripe could be inconsistent if
5544                          * discard_zeroes_data is 0); write one disk of the
5545                          * stripe (the stripe could be inconsistent again
5546                          * depending on which disks are used to calculate
5547                          * parity); the disk is broken; The stripe data of this
5548                          * disk is lost.
5549                          */
5550                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5551                             !bdev_get_queue(rdev->bdev)->
5552                                                 limits.discard_zeroes_data)
5553                                 discard_supported = false;
5554                 }
5555
5556                 if (discard_supported &&
5557                    mddev->queue->limits.max_discard_sectors >= stripe &&
5558                    mddev->queue->limits.discard_granularity >= stripe)
5559                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5560                                                 mddev->queue);
5561                 else
5562                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5563                                                 mddev->queue);
5564         }
5565
5566         return 0;
5567 abort:
5568         md_unregister_thread(&mddev->thread);
5569         print_raid5_conf(conf);
5570         free_conf(conf);
5571         mddev->private = NULL;
5572         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5573         return -EIO;
5574 }
5575
5576 static int stop(struct mddev *mddev)
5577 {
5578         struct r5conf *conf = mddev->private;
5579
5580         md_unregister_thread(&mddev->thread);
5581         if (mddev->queue)
5582                 mddev->queue->backing_dev_info.congested_fn = NULL;
5583         free_conf(conf);
5584         mddev->private = NULL;
5585         mddev->to_remove = &raid5_attrs_group;
5586         return 0;
5587 }
5588
5589 static void status(struct seq_file *seq, struct mddev *mddev)
5590 {
5591         struct r5conf *conf = mddev->private;
5592         int i;
5593
5594         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5595                 mddev->chunk_sectors / 2, mddev->layout);
5596         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5597         for (i = 0; i < conf->raid_disks; i++)
5598                 seq_printf (seq, "%s",
5599                                conf->disks[i].rdev &&
5600                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5601         seq_printf (seq, "]");
5602 }
5603
5604 static void print_raid5_conf (struct r5conf *conf)
5605 {
5606         int i;
5607         struct disk_info *tmp;
5608
5609         printk(KERN_DEBUG "RAID conf printout:\n");
5610         if (!conf) {
5611                 printk("(conf==NULL)\n");
5612                 return;
5613         }
5614         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5615                conf->raid_disks,
5616                conf->raid_disks - conf->mddev->degraded);
5617
5618         for (i = 0; i < conf->raid_disks; i++) {
5619                 char b[BDEVNAME_SIZE];
5620                 tmp = conf->disks + i;
5621                 if (tmp->rdev)
5622                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5623                                i, !test_bit(Faulty, &tmp->rdev->flags),
5624                                bdevname(tmp->rdev->bdev, b));
5625         }
5626 }
5627
5628 static int raid5_spare_active(struct mddev *mddev)
5629 {
5630         int i;
5631         struct r5conf *conf = mddev->private;
5632         struct disk_info *tmp;
5633         int count = 0;
5634         unsigned long flags;
5635
5636         for (i = 0; i < conf->raid_disks; i++) {
5637                 tmp = conf->disks + i;
5638                 if (tmp->replacement
5639                     && tmp->replacement->recovery_offset == MaxSector
5640                     && !test_bit(Faulty, &tmp->replacement->flags)
5641                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5642                         /* Replacement has just become active. */
5643                         if (!tmp->rdev
5644                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5645                                 count++;
5646                         if (tmp->rdev) {
5647                                 /* Replaced device not technically faulty,
5648                                  * but we need to be sure it gets removed
5649                                  * and never re-added.
5650                                  */
5651                                 set_bit(Faulty, &tmp->rdev->flags);
5652                                 sysfs_notify_dirent_safe(
5653                                         tmp->rdev->sysfs_state);
5654                         }
5655                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5656                 } else if (tmp->rdev
5657                     && tmp->rdev->recovery_offset == MaxSector
5658                     && !test_bit(Faulty, &tmp->rdev->flags)
5659                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5660                         count++;
5661                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5662                 }
5663         }
5664         spin_lock_irqsave(&conf->device_lock, flags);
5665         mddev->degraded = calc_degraded(conf);
5666         spin_unlock_irqrestore(&conf->device_lock, flags);
5667         print_raid5_conf(conf);
5668         return count;
5669 }
5670
5671 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5672 {
5673         struct r5conf *conf = mddev->private;
5674         int err = 0;
5675         int number = rdev->raid_disk;
5676         struct md_rdev **rdevp;
5677         struct disk_info *p = conf->disks + number;
5678
5679         print_raid5_conf(conf);
5680         if (rdev == p->rdev)
5681                 rdevp = &p->rdev;
5682         else if (rdev == p->replacement)
5683                 rdevp = &p->replacement;
5684         else
5685                 return 0;
5686
5687         if (number >= conf->raid_disks &&
5688             conf->reshape_progress == MaxSector)
5689                 clear_bit(In_sync, &rdev->flags);
5690
5691         if (test_bit(In_sync, &rdev->flags) ||
5692             atomic_read(&rdev->nr_pending)) {
5693                 err = -EBUSY;
5694                 goto abort;
5695         }
5696         /* Only remove non-faulty devices if recovery
5697          * isn't possible.
5698          */
5699         if (!test_bit(Faulty, &rdev->flags) &&
5700             mddev->recovery_disabled != conf->recovery_disabled &&
5701             !has_failed(conf) &&
5702             (!p->replacement || p->replacement == rdev) &&
5703             number < conf->raid_disks) {
5704                 err = -EBUSY;
5705                 goto abort;
5706         }
5707         *rdevp = NULL;
5708         synchronize_rcu();
5709         if (atomic_read(&rdev->nr_pending)) {
5710                 /* lost the race, try later */
5711                 err = -EBUSY;
5712                 *rdevp = rdev;
5713         } else if (p->replacement) {
5714                 /* We must have just cleared 'rdev' */
5715                 p->rdev = p->replacement;
5716                 clear_bit(Replacement, &p->replacement->flags);
5717                 smp_mb(); /* Make sure other CPUs may see both as identical
5718                            * but will never see neither - if they are careful
5719                            */
5720                 p->replacement = NULL;
5721                 clear_bit(WantReplacement, &rdev->flags);
5722         } else
5723                 /* We might have just removed the Replacement as faulty-
5724                  * clear the bit just in case
5725                  */
5726                 clear_bit(WantReplacement, &rdev->flags);
5727 abort:
5728
5729         print_raid5_conf(conf);
5730         return err;
5731 }
5732
5733 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5734 {
5735         struct r5conf *conf = mddev->private;
5736         int err = -EEXIST;
5737         int disk;
5738         struct disk_info *p;
5739         int first = 0;
5740         int last = conf->raid_disks - 1;
5741
5742         if (mddev->recovery_disabled == conf->recovery_disabled)
5743                 return -EBUSY;
5744
5745         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5746                 /* no point adding a device */
5747                 return -EINVAL;
5748
5749         if (rdev->raid_disk >= 0)
5750                 first = last = rdev->raid_disk;
5751
5752         /*
5753          * find the disk ... but prefer rdev->saved_raid_disk
5754          * if possible.
5755          */
5756         if (rdev->saved_raid_disk >= 0 &&
5757             rdev->saved_raid_disk >= first &&
5758             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5759                 first = rdev->saved_raid_disk;
5760
5761         for (disk = first; disk <= last; disk++) {
5762                 p = conf->disks + disk;
5763                 if (p->rdev == NULL) {
5764                         clear_bit(In_sync, &rdev->flags);
5765                         rdev->raid_disk = disk;
5766                         err = 0;
5767                         if (rdev->saved_raid_disk != disk)
5768                                 conf->fullsync = 1;
5769                         rcu_assign_pointer(p->rdev, rdev);
5770                         goto out;
5771                 }
5772         }
5773         for (disk = first; disk <= last; disk++) {
5774                 p = conf->disks + disk;
5775                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5776                     p->replacement == NULL) {
5777                         clear_bit(In_sync, &rdev->flags);
5778                         set_bit(Replacement, &rdev->flags);
5779                         rdev->raid_disk = disk;
5780                         err = 0;
5781                         conf->fullsync = 1;
5782                         rcu_assign_pointer(p->replacement, rdev);
5783                         break;
5784                 }
5785         }
5786 out:
5787         print_raid5_conf(conf);
5788         return err;
5789 }
5790
5791 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5792 {
5793         /* no resync is happening, and there is enough space
5794          * on all devices, so we can resize.
5795          * We need to make sure resync covers any new space.
5796          * If the array is shrinking we should possibly wait until
5797          * any io in the removed space completes, but it hardly seems
5798          * worth it.
5799          */
5800         sector_t newsize;
5801         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5802         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5803         if (mddev->external_size &&
5804             mddev->array_sectors > newsize)
5805                 return -EINVAL;
5806         if (mddev->bitmap) {
5807                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5808                 if (ret)
5809                         return ret;
5810         }
5811         md_set_array_sectors(mddev, newsize);
5812         set_capacity(mddev->gendisk, mddev->array_sectors);
5813         revalidate_disk(mddev->gendisk);
5814         if (sectors > mddev->dev_sectors &&
5815             mddev->recovery_cp > mddev->dev_sectors) {
5816                 mddev->recovery_cp = mddev->dev_sectors;
5817                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5818         }
5819         mddev->dev_sectors = sectors;
5820         mddev->resync_max_sectors = sectors;
5821         return 0;
5822 }
5823
5824 static int check_stripe_cache(struct mddev *mddev)
5825 {
5826         /* Can only proceed if there are plenty of stripe_heads.
5827          * We need a minimum of one full stripe,, and for sensible progress
5828          * it is best to have about 4 times that.
5829          * If we require 4 times, then the default 256 4K stripe_heads will
5830          * allow for chunk sizes up to 256K, which is probably OK.
5831          * If the chunk size is greater, user-space should request more
5832          * stripe_heads first.
5833          */
5834         struct r5conf *conf = mddev->private;
5835         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5836             > conf->max_nr_stripes ||
5837             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5838             > conf->max_nr_stripes) {
5839                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5840                        mdname(mddev),
5841                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5842                         / STRIPE_SIZE)*4);
5843                 return 0;
5844         }
5845         return 1;
5846 }
5847
5848 static int check_reshape(struct mddev *mddev)
5849 {
5850         struct r5conf *conf = mddev->private;
5851
5852         if (mddev->delta_disks == 0 &&
5853             mddev->new_layout == mddev->layout &&
5854             mddev->new_chunk_sectors == mddev->chunk_sectors)
5855                 return 0; /* nothing to do */
5856         if (has_failed(conf))
5857                 return -EINVAL;
5858         if (mddev->delta_disks < 0) {
5859                 /* We might be able to shrink, but the devices must
5860                  * be made bigger first.
5861                  * For raid6, 4 is the minimum size.
5862                  * Otherwise 2 is the minimum
5863                  */
5864                 int min = 2;
5865                 if (mddev->level == 6)
5866                         min = 4;
5867                 if (mddev->raid_disks + mddev->delta_disks < min)
5868                         return -EINVAL;
5869         }
5870
5871         if (!check_stripe_cache(mddev))
5872                 return -ENOSPC;
5873
5874         return resize_stripes(conf, (conf->previous_raid_disks
5875                                      + mddev->delta_disks));
5876 }
5877
5878 static int raid5_start_reshape(struct mddev *mddev)
5879 {
5880         struct r5conf *conf = mddev->private;
5881         struct md_rdev *rdev;
5882         int spares = 0;
5883         unsigned long flags;
5884
5885         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5886                 return -EBUSY;
5887
5888         if (!check_stripe_cache(mddev))
5889                 return -ENOSPC;
5890
5891         if (has_failed(conf))
5892                 return -EINVAL;
5893
5894         rdev_for_each(rdev, mddev) {
5895                 if (!test_bit(In_sync, &rdev->flags)
5896                     && !test_bit(Faulty, &rdev->flags))
5897                         spares++;
5898         }
5899
5900         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5901                 /* Not enough devices even to make a degraded array
5902                  * of that size
5903                  */
5904                 return -EINVAL;
5905
5906         /* Refuse to reduce size of the array.  Any reductions in
5907          * array size must be through explicit setting of array_size
5908          * attribute.
5909          */
5910         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5911             < mddev->array_sectors) {
5912                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5913                        "before number of disks\n", mdname(mddev));
5914                 return -EINVAL;
5915         }
5916
5917         atomic_set(&conf->reshape_stripes, 0);
5918         spin_lock_irq(&conf->device_lock);
5919         conf->previous_raid_disks = conf->raid_disks;
5920         conf->raid_disks += mddev->delta_disks;
5921         conf->prev_chunk_sectors = conf->chunk_sectors;
5922         conf->chunk_sectors = mddev->new_chunk_sectors;
5923         conf->prev_algo = conf->algorithm;
5924         conf->algorithm = mddev->new_layout;
5925         conf->generation++;
5926         /* Code that selects data_offset needs to see the generation update
5927          * if reshape_progress has been set - so a memory barrier needed.
5928          */
5929         smp_mb();
5930         if (mddev->reshape_backwards)
5931                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5932         else
5933                 conf->reshape_progress = 0;
5934         conf->reshape_safe = conf->reshape_progress;
5935         spin_unlock_irq(&conf->device_lock);
5936
5937         /* Add some new drives, as many as will fit.
5938          * We know there are enough to make the newly sized array work.
5939          * Don't add devices if we are reducing the number of
5940          * devices in the array.  This is because it is not possible
5941          * to correctly record the "partially reconstructed" state of
5942          * such devices during the reshape and confusion could result.
5943          */
5944         if (mddev->delta_disks >= 0) {
5945                 rdev_for_each(rdev, mddev)
5946                         if (rdev->raid_disk < 0 &&
5947                             !test_bit(Faulty, &rdev->flags)) {
5948                                 if (raid5_add_disk(mddev, rdev) == 0) {
5949                                         if (rdev->raid_disk
5950                                             >= conf->previous_raid_disks)
5951                                                 set_bit(In_sync, &rdev->flags);
5952                                         else
5953                                                 rdev->recovery_offset = 0;
5954
5955                                         if (sysfs_link_rdev(mddev, rdev))
5956                                                 /* Failure here is OK */;
5957                                 }
5958                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5959                                    && !test_bit(Faulty, &rdev->flags)) {
5960                                 /* This is a spare that was manually added */
5961                                 set_bit(In_sync, &rdev->flags);
5962                         }
5963
5964                 /* When a reshape changes the number of devices,
5965                  * ->degraded is measured against the larger of the
5966                  * pre and post number of devices.
5967                  */
5968                 spin_lock_irqsave(&conf->device_lock, flags);
5969                 mddev->degraded = calc_degraded(conf);
5970                 spin_unlock_irqrestore(&conf->device_lock, flags);
5971         }
5972         mddev->raid_disks = conf->raid_disks;
5973         mddev->reshape_position = conf->reshape_progress;
5974         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5975
5976         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5977         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5978         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5979         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5980         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5981                                                 "reshape");
5982         if (!mddev->sync_thread) {
5983                 mddev->recovery = 0;
5984                 spin_lock_irq(&conf->device_lock);
5985                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5986                 rdev_for_each(rdev, mddev)
5987                         rdev->new_data_offset = rdev->data_offset;
5988                 smp_wmb();
5989                 conf->reshape_progress = MaxSector;
5990                 mddev->reshape_position = MaxSector;
5991                 spin_unlock_irq(&conf->device_lock);
5992                 return -EAGAIN;
5993         }
5994         conf->reshape_checkpoint = jiffies;
5995         md_wakeup_thread(mddev->sync_thread);
5996         md_new_event(mddev);
5997         return 0;
5998 }
5999
6000 /* This is called from the reshape thread and should make any
6001  * changes needed in 'conf'
6002  */
6003 static void end_reshape(struct r5conf *conf)
6004 {
6005
6006         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6007                 struct md_rdev *rdev;
6008
6009                 spin_lock_irq(&conf->device_lock);
6010                 conf->previous_raid_disks = conf->raid_disks;
6011                 rdev_for_each(rdev, conf->mddev)
6012                         rdev->data_offset = rdev->new_data_offset;
6013                 smp_wmb();
6014                 conf->reshape_progress = MaxSector;
6015                 spin_unlock_irq(&conf->device_lock);
6016                 wake_up(&conf->wait_for_overlap);
6017
6018                 /* read-ahead size must cover two whole stripes, which is
6019                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6020                  */
6021                 if (conf->mddev->queue) {
6022                         int data_disks = conf->raid_disks - conf->max_degraded;
6023                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6024                                                    / PAGE_SIZE);
6025                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6026                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6027                 }
6028         }
6029 }
6030
6031 /* This is called from the raid5d thread with mddev_lock held.
6032  * It makes config changes to the device.
6033  */
6034 static void raid5_finish_reshape(struct mddev *mddev)
6035 {
6036         struct r5conf *conf = mddev->private;
6037
6038         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6039
6040                 if (mddev->delta_disks > 0) {
6041                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6042                         set_capacity(mddev->gendisk, mddev->array_sectors);
6043                         revalidate_disk(mddev->gendisk);
6044                 } else {
6045                         int d;
6046                         spin_lock_irq(&conf->device_lock);
6047                         mddev->degraded = calc_degraded(conf);
6048                         spin_unlock_irq(&conf->device_lock);
6049                         for (d = conf->raid_disks ;
6050                              d < conf->raid_disks - mddev->delta_disks;
6051                              d++) {
6052                                 struct md_rdev *rdev = conf->disks[d].rdev;
6053                                 if (rdev)
6054                                         clear_bit(In_sync, &rdev->flags);
6055                                 rdev = conf->disks[d].replacement;
6056                                 if (rdev)
6057                                         clear_bit(In_sync, &rdev->flags);
6058                         }
6059                 }
6060                 mddev->layout = conf->algorithm;
6061                 mddev->chunk_sectors = conf->chunk_sectors;
6062                 mddev->reshape_position = MaxSector;
6063                 mddev->delta_disks = 0;
6064                 mddev->reshape_backwards = 0;
6065         }
6066 }
6067
6068 static void raid5_quiesce(struct mddev *mddev, int state)
6069 {
6070         struct r5conf *conf = mddev->private;
6071
6072         switch(state) {
6073         case 2: /* resume for a suspend */
6074                 wake_up(&conf->wait_for_overlap);
6075                 break;
6076
6077         case 1: /* stop all writes */
6078                 spin_lock_irq(&conf->device_lock);
6079                 /* '2' tells resync/reshape to pause so that all
6080                  * active stripes can drain
6081                  */
6082                 conf->quiesce = 2;
6083                 wait_event_lock_irq(conf->wait_for_stripe,
6084                                     atomic_read(&conf->active_stripes) == 0 &&
6085                                     atomic_read(&conf->active_aligned_reads) == 0,
6086                                     conf->device_lock, /* nothing */);
6087                 conf->quiesce = 1;
6088                 spin_unlock_irq(&conf->device_lock);
6089                 /* allow reshape to continue */
6090                 wake_up(&conf->wait_for_overlap);
6091                 break;
6092
6093         case 0: /* re-enable writes */
6094                 spin_lock_irq(&conf->device_lock);
6095                 conf->quiesce = 0;
6096                 wake_up(&conf->wait_for_stripe);
6097                 wake_up(&conf->wait_for_overlap);
6098                 spin_unlock_irq(&conf->device_lock);
6099                 break;
6100         }
6101 }
6102
6103
6104 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6105 {
6106         struct r0conf *raid0_conf = mddev->private;
6107         sector_t sectors;
6108
6109         /* for raid0 takeover only one zone is supported */
6110         if (raid0_conf->nr_strip_zones > 1) {
6111                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6112                        mdname(mddev));
6113                 return ERR_PTR(-EINVAL);
6114         }
6115
6116         sectors = raid0_conf->strip_zone[0].zone_end;
6117         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6118         mddev->dev_sectors = sectors;
6119         mddev->new_level = level;
6120         mddev->new_layout = ALGORITHM_PARITY_N;
6121         mddev->new_chunk_sectors = mddev->chunk_sectors;
6122         mddev->raid_disks += 1;
6123         mddev->delta_disks = 1;
6124         /* make sure it will be not marked as dirty */
6125         mddev->recovery_cp = MaxSector;
6126
6127         return setup_conf(mddev);
6128 }
6129
6130
6131 static void *raid5_takeover_raid1(struct mddev *mddev)
6132 {
6133         int chunksect;
6134
6135         if (mddev->raid_disks != 2 ||
6136             mddev->degraded > 1)
6137                 return ERR_PTR(-EINVAL);
6138
6139         /* Should check if there are write-behind devices? */
6140
6141         chunksect = 64*2; /* 64K by default */
6142
6143         /* The array must be an exact multiple of chunksize */
6144         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6145                 chunksect >>= 1;
6146
6147         if ((chunksect<<9) < STRIPE_SIZE)
6148                 /* array size does not allow a suitable chunk size */
6149                 return ERR_PTR(-EINVAL);
6150
6151         mddev->new_level = 5;
6152         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6153         mddev->new_chunk_sectors = chunksect;
6154
6155         return setup_conf(mddev);
6156 }
6157
6158 static void *raid5_takeover_raid6(struct mddev *mddev)
6159 {
6160         int new_layout;
6161
6162         switch (mddev->layout) {
6163         case ALGORITHM_LEFT_ASYMMETRIC_6:
6164                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6165                 break;
6166         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6167                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6168                 break;
6169         case ALGORITHM_LEFT_SYMMETRIC_6:
6170                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6171                 break;
6172         case ALGORITHM_RIGHT_SYMMETRIC_6:
6173                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6174                 break;
6175         case ALGORITHM_PARITY_0_6:
6176                 new_layout = ALGORITHM_PARITY_0;
6177                 break;
6178         case ALGORITHM_PARITY_N:
6179                 new_layout = ALGORITHM_PARITY_N;
6180                 break;
6181         default:
6182                 return ERR_PTR(-EINVAL);
6183         }
6184         mddev->new_level = 5;
6185         mddev->new_layout = new_layout;
6186         mddev->delta_disks = -1;
6187         mddev->raid_disks -= 1;
6188         return setup_conf(mddev);
6189 }
6190
6191
6192 static int raid5_check_reshape(struct mddev *mddev)
6193 {
6194         /* For a 2-drive array, the layout and chunk size can be changed
6195          * immediately as not restriping is needed.
6196          * For larger arrays we record the new value - after validation
6197          * to be used by a reshape pass.
6198          */
6199         struct r5conf *conf = mddev->private;
6200         int new_chunk = mddev->new_chunk_sectors;
6201
6202         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6203                 return -EINVAL;
6204         if (new_chunk > 0) {
6205                 if (!is_power_of_2(new_chunk))
6206                         return -EINVAL;
6207                 if (new_chunk < (PAGE_SIZE>>9))
6208                         return -EINVAL;
6209                 if (mddev->array_sectors & (new_chunk-1))
6210                         /* not factor of array size */
6211                         return -EINVAL;
6212         }
6213
6214         /* They look valid */
6215
6216         if (mddev->raid_disks == 2) {
6217                 /* can make the change immediately */
6218                 if (mddev->new_layout >= 0) {
6219                         conf->algorithm = mddev->new_layout;
6220                         mddev->layout = mddev->new_layout;
6221                 }
6222                 if (new_chunk > 0) {
6223                         conf->chunk_sectors = new_chunk ;
6224                         mddev->chunk_sectors = new_chunk;
6225                 }
6226                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6227                 md_wakeup_thread(mddev->thread);
6228         }
6229         return check_reshape(mddev);
6230 }
6231
6232 static int raid6_check_reshape(struct mddev *mddev)
6233 {
6234         int new_chunk = mddev->new_chunk_sectors;
6235
6236         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6237                 return -EINVAL;
6238         if (new_chunk > 0) {
6239                 if (!is_power_of_2(new_chunk))
6240                         return -EINVAL;
6241                 if (new_chunk < (PAGE_SIZE >> 9))
6242                         return -EINVAL;
6243                 if (mddev->array_sectors & (new_chunk-1))
6244                         /* not factor of array size */
6245                         return -EINVAL;
6246         }
6247
6248         /* They look valid */
6249         return check_reshape(mddev);
6250 }
6251
6252 static void *raid5_takeover(struct mddev *mddev)
6253 {
6254         /* raid5 can take over:
6255          *  raid0 - if there is only one strip zone - make it a raid4 layout
6256          *  raid1 - if there are two drives.  We need to know the chunk size
6257          *  raid4 - trivial - just use a raid4 layout.
6258          *  raid6 - Providing it is a *_6 layout
6259          */
6260         if (mddev->level == 0)
6261                 return raid45_takeover_raid0(mddev, 5);
6262         if (mddev->level == 1)
6263                 return raid5_takeover_raid1(mddev);
6264         if (mddev->level == 4) {
6265                 mddev->new_layout = ALGORITHM_PARITY_N;
6266                 mddev->new_level = 5;
6267                 return setup_conf(mddev);
6268         }
6269         if (mddev->level == 6)
6270                 return raid5_takeover_raid6(mddev);
6271
6272         return ERR_PTR(-EINVAL);
6273 }
6274
6275 static void *raid4_takeover(struct mddev *mddev)
6276 {
6277         /* raid4 can take over:
6278          *  raid0 - if there is only one strip zone
6279          *  raid5 - if layout is right
6280          */
6281         if (mddev->level == 0)
6282                 return raid45_takeover_raid0(mddev, 4);
6283         if (mddev->level == 5 &&
6284             mddev->layout == ALGORITHM_PARITY_N) {
6285                 mddev->new_layout = 0;
6286                 mddev->new_level = 4;
6287                 return setup_conf(mddev);
6288         }
6289         return ERR_PTR(-EINVAL);
6290 }
6291
6292 static struct md_personality raid5_personality;
6293
6294 static void *raid6_takeover(struct mddev *mddev)
6295 {
6296         /* Currently can only take over a raid5.  We map the
6297          * personality to an equivalent raid6 personality
6298          * with the Q block at the end.
6299          */
6300         int new_layout;
6301
6302         if (mddev->pers != &raid5_personality)
6303                 return ERR_PTR(-EINVAL);
6304         if (mddev->degraded > 1)
6305                 return ERR_PTR(-EINVAL);
6306         if (mddev->raid_disks > 253)
6307                 return ERR_PTR(-EINVAL);
6308         if (mddev->raid_disks < 3)
6309                 return ERR_PTR(-EINVAL);
6310
6311         switch (mddev->layout) {
6312         case ALGORITHM_LEFT_ASYMMETRIC:
6313                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6314                 break;
6315         case ALGORITHM_RIGHT_ASYMMETRIC:
6316                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6317                 break;
6318         case ALGORITHM_LEFT_SYMMETRIC:
6319                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6320                 break;
6321         case ALGORITHM_RIGHT_SYMMETRIC:
6322                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6323                 break;
6324         case ALGORITHM_PARITY_0:
6325                 new_layout = ALGORITHM_PARITY_0_6;
6326                 break;
6327         case ALGORITHM_PARITY_N:
6328                 new_layout = ALGORITHM_PARITY_N;
6329                 break;
6330         default:
6331                 return ERR_PTR(-EINVAL);
6332         }
6333         mddev->new_level = 6;
6334         mddev->new_layout = new_layout;
6335         mddev->delta_disks = 1;
6336         mddev->raid_disks += 1;
6337         return setup_conf(mddev);
6338 }
6339
6340
6341 static struct md_personality raid6_personality =
6342 {
6343         .name           = "raid6",
6344         .level          = 6,
6345         .owner          = THIS_MODULE,
6346         .make_request   = make_request,
6347         .run            = run,
6348         .stop           = stop,
6349         .status         = status,
6350         .error_handler  = error,
6351         .hot_add_disk   = raid5_add_disk,
6352         .hot_remove_disk= raid5_remove_disk,
6353         .spare_active   = raid5_spare_active,
6354         .sync_request   = sync_request,
6355         .resize         = raid5_resize,
6356         .size           = raid5_size,
6357         .check_reshape  = raid6_check_reshape,
6358         .start_reshape  = raid5_start_reshape,
6359         .finish_reshape = raid5_finish_reshape,
6360         .quiesce        = raid5_quiesce,
6361         .takeover       = raid6_takeover,
6362 };
6363 static struct md_personality raid5_personality =
6364 {
6365         .name           = "raid5",
6366         .level          = 5,
6367         .owner          = THIS_MODULE,
6368         .make_request   = make_request,
6369         .run            = run,
6370         .stop           = stop,
6371         .status         = status,
6372         .error_handler  = error,
6373         .hot_add_disk   = raid5_add_disk,
6374         .hot_remove_disk= raid5_remove_disk,
6375         .spare_active   = raid5_spare_active,
6376         .sync_request   = sync_request,
6377         .resize         = raid5_resize,
6378         .size           = raid5_size,
6379         .check_reshape  = raid5_check_reshape,
6380         .start_reshape  = raid5_start_reshape,
6381         .finish_reshape = raid5_finish_reshape,
6382         .quiesce        = raid5_quiesce,
6383         .takeover       = raid5_takeover,
6384 };
6385
6386 static struct md_personality raid4_personality =
6387 {
6388         .name           = "raid4",
6389         .level          = 4,
6390         .owner          = THIS_MODULE,
6391         .make_request   = make_request,
6392         .run            = run,
6393         .stop           = stop,
6394         .status         = status,
6395         .error_handler  = error,
6396         .hot_add_disk   = raid5_add_disk,
6397         .hot_remove_disk= raid5_remove_disk,
6398         .spare_active   = raid5_spare_active,
6399         .sync_request   = sync_request,
6400         .resize         = raid5_resize,
6401         .size           = raid5_size,
6402         .check_reshape  = raid5_check_reshape,
6403         .start_reshape  = raid5_start_reshape,
6404         .finish_reshape = raid5_finish_reshape,
6405         .quiesce        = raid5_quiesce,
6406         .takeover       = raid4_takeover,
6407 };
6408
6409 static int __init raid5_init(void)
6410 {
6411         register_md_personality(&raid6_personality);
6412         register_md_personality(&raid5_personality);
6413         register_md_personality(&raid4_personality);
6414         return 0;
6415 }
6416
6417 static void raid5_exit(void)
6418 {
6419         unregister_md_personality(&raid6_personality);
6420         unregister_md_personality(&raid5_personality);
6421         unregister_md_personality(&raid4_personality);
6422 }
6423
6424 module_init(raid5_init);
6425 module_exit(raid5_exit);
6426 MODULE_LICENSE("GPL");
6427 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6428 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6429 MODULE_ALIAS("md-raid5");
6430 MODULE_ALIAS("md-raid4");
6431 MODULE_ALIAS("md-level-5");
6432 MODULE_ALIAS("md-level-4");
6433 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6434 MODULE_ALIAS("md-raid6");
6435 MODULE_ALIAS("md-level-6");
6436
6437 /* This used to be two separate modules, they were: */
6438 MODULE_ALIAS("raid5");
6439 MODULE_ALIAS("raid6");