md/raid10: resize bitmap when required during reshape.
[pandora-kernel.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define NR_RAID10_BIOS 256
62
63 /* When there are this many requests queue to be written by
64  * the raid10 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int enough(struct r10conf *conf, int ignore);
72 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
73                                 int *skipped);
74 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
75 static void end_reshape_write(struct bio *bio, int error);
76 static void end_reshape(struct r10conf *conf);
77
78 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80         struct r10conf *conf = data;
81         int size = offsetof(struct r10bio, devs[conf->copies]);
82
83         /* allocate a r10bio with room for raid_disks entries in the
84          * bios array */
85         return kzalloc(size, gfp_flags);
86 }
87
88 static void r10bio_pool_free(void *r10_bio, void *data)
89 {
90         kfree(r10_bio);
91 }
92
93 /* Maximum size of each resync request */
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
96 /* amount of memory to reserve for resync requests */
97 #define RESYNC_WINDOW (1024*1024)
98 /* maximum number of concurrent requests, memory permitting */
99 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
100
101 /*
102  * When performing a resync, we need to read and compare, so
103  * we need as many pages are there are copies.
104  * When performing a recovery, we need 2 bios, one for read,
105  * one for write (we recover only one drive per r10buf)
106  *
107  */
108 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         struct page *page;
112         struct r10bio *r10_bio;
113         struct bio *bio;
114         int i, j;
115         int nalloc;
116
117         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
118         if (!r10_bio)
119                 return NULL;
120
121         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
122             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
123                 nalloc = conf->copies; /* resync */
124         else
125                 nalloc = 2; /* recovery */
126
127         /*
128          * Allocate bios.
129          */
130         for (j = nalloc ; j-- ; ) {
131                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
132                 if (!bio)
133                         goto out_free_bio;
134                 r10_bio->devs[j].bio = bio;
135                 if (!conf->have_replacement)
136                         continue;
137                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
138                 if (!bio)
139                         goto out_free_bio;
140                 r10_bio->devs[j].repl_bio = bio;
141         }
142         /*
143          * Allocate RESYNC_PAGES data pages and attach them
144          * where needed.
145          */
146         for (j = 0 ; j < nalloc; j++) {
147                 struct bio *rbio = r10_bio->devs[j].repl_bio;
148                 bio = r10_bio->devs[j].bio;
149                 for (i = 0; i < RESYNC_PAGES; i++) {
150                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
151                                                &conf->mddev->recovery)) {
152                                 /* we can share bv_page's during recovery
153                                  * and reshape */
154                                 struct bio *rbio = r10_bio->devs[0].bio;
155                                 page = rbio->bi_io_vec[i].bv_page;
156                                 get_page(page);
157                         } else
158                                 page = alloc_page(gfp_flags);
159                         if (unlikely(!page))
160                                 goto out_free_pages;
161
162                         bio->bi_io_vec[i].bv_page = page;
163                         if (rbio)
164                                 rbio->bi_io_vec[i].bv_page = page;
165                 }
166         }
167
168         return r10_bio;
169
170 out_free_pages:
171         for ( ; i > 0 ; i--)
172                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
173         while (j--)
174                 for (i = 0; i < RESYNC_PAGES ; i++)
175                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
176         j = 0;
177 out_free_bio:
178         for ( ; j < nalloc; j++) {
179                 if (r10_bio->devs[j].bio)
180                         bio_put(r10_bio->devs[j].bio);
181                 if (r10_bio->devs[j].repl_bio)
182                         bio_put(r10_bio->devs[j].repl_bio);
183         }
184         r10bio_pool_free(r10_bio, conf);
185         return NULL;
186 }
187
188 static void r10buf_pool_free(void *__r10_bio, void *data)
189 {
190         int i;
191         struct r10conf *conf = data;
192         struct r10bio *r10bio = __r10_bio;
193         int j;
194
195         for (j=0; j < conf->copies; j++) {
196                 struct bio *bio = r10bio->devs[j].bio;
197                 if (bio) {
198                         for (i = 0; i < RESYNC_PAGES; i++) {
199                                 safe_put_page(bio->bi_io_vec[i].bv_page);
200                                 bio->bi_io_vec[i].bv_page = NULL;
201                         }
202                         bio_put(bio);
203                 }
204                 bio = r10bio->devs[j].repl_bio;
205                 if (bio)
206                         bio_put(bio);
207         }
208         r10bio_pool_free(r10bio, conf);
209 }
210
211 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
212 {
213         int i;
214
215         for (i = 0; i < conf->copies; i++) {
216                 struct bio **bio = & r10_bio->devs[i].bio;
217                 if (!BIO_SPECIAL(*bio))
218                         bio_put(*bio);
219                 *bio = NULL;
220                 bio = &r10_bio->devs[i].repl_bio;
221                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
222                         bio_put(*bio);
223                 *bio = NULL;
224         }
225 }
226
227 static void free_r10bio(struct r10bio *r10_bio)
228 {
229         struct r10conf *conf = r10_bio->mddev->private;
230
231         put_all_bios(conf, r10_bio);
232         mempool_free(r10_bio, conf->r10bio_pool);
233 }
234
235 static void put_buf(struct r10bio *r10_bio)
236 {
237         struct r10conf *conf = r10_bio->mddev->private;
238
239         mempool_free(r10_bio, conf->r10buf_pool);
240
241         lower_barrier(conf);
242 }
243
244 static void reschedule_retry(struct r10bio *r10_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r10_bio->mddev;
248         struct r10conf *conf = mddev->private;
249
250         spin_lock_irqsave(&conf->device_lock, flags);
251         list_add(&r10_bio->retry_list, &conf->retry_list);
252         conf->nr_queued ++;
253         spin_unlock_irqrestore(&conf->device_lock, flags);
254
255         /* wake up frozen array... */
256         wake_up(&conf->wait_barrier);
257
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void raid_end_bio_io(struct r10bio *r10_bio)
267 {
268         struct bio *bio = r10_bio->master_bio;
269         int done;
270         struct r10conf *conf = r10_bio->mddev->private;
271
272         if (bio->bi_phys_segments) {
273                 unsigned long flags;
274                 spin_lock_irqsave(&conf->device_lock, flags);
275                 bio->bi_phys_segments--;
276                 done = (bio->bi_phys_segments == 0);
277                 spin_unlock_irqrestore(&conf->device_lock, flags);
278         } else
279                 done = 1;
280         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
281                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
282         if (done) {
283                 bio_endio(bio, 0);
284                 /*
285                  * Wake up any possible resync thread that waits for the device
286                  * to go idle.
287                  */
288                 allow_barrier(conf);
289         }
290         free_r10bio(r10_bio);
291 }
292
293 /*
294  * Update disk head position estimator based on IRQ completion info.
295  */
296 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
297 {
298         struct r10conf *conf = r10_bio->mddev->private;
299
300         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
301                 r10_bio->devs[slot].addr + (r10_bio->sectors);
302 }
303
304 /*
305  * Find the disk number which triggered given bio
306  */
307 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
308                          struct bio *bio, int *slotp, int *replp)
309 {
310         int slot;
311         int repl = 0;
312
313         for (slot = 0; slot < conf->copies; slot++) {
314                 if (r10_bio->devs[slot].bio == bio)
315                         break;
316                 if (r10_bio->devs[slot].repl_bio == bio) {
317                         repl = 1;
318                         break;
319                 }
320         }
321
322         BUG_ON(slot == conf->copies);
323         update_head_pos(slot, r10_bio);
324
325         if (slotp)
326                 *slotp = slot;
327         if (replp)
328                 *replp = repl;
329         return r10_bio->devs[slot].devnum;
330 }
331
332 static void raid10_end_read_request(struct bio *bio, int error)
333 {
334         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
335         struct r10bio *r10_bio = bio->bi_private;
336         int slot, dev;
337         struct md_rdev *rdev;
338         struct r10conf *conf = r10_bio->mddev->private;
339
340
341         slot = r10_bio->read_slot;
342         dev = r10_bio->devs[slot].devnum;
343         rdev = r10_bio->devs[slot].rdev;
344         /*
345          * this branch is our 'one mirror IO has finished' event handler:
346          */
347         update_head_pos(slot, r10_bio);
348
349         if (uptodate) {
350                 /*
351                  * Set R10BIO_Uptodate in our master bio, so that
352                  * we will return a good error code to the higher
353                  * levels even if IO on some other mirrored buffer fails.
354                  *
355                  * The 'master' represents the composite IO operation to
356                  * user-side. So if something waits for IO, then it will
357                  * wait for the 'master' bio.
358                  */
359                 set_bit(R10BIO_Uptodate, &r10_bio->state);
360         } else {
361                 /* If all other devices that store this block have
362                  * failed, we want to return the error upwards rather
363                  * than fail the last device.  Here we redefine
364                  * "uptodate" to mean "Don't want to retry"
365                  */
366                 unsigned long flags;
367                 spin_lock_irqsave(&conf->device_lock, flags);
368                 if (!enough(conf, rdev->raid_disk))
369                         uptodate = 1;
370                 spin_unlock_irqrestore(&conf->device_lock, flags);
371         }
372         if (uptodate) {
373                 raid_end_bio_io(r10_bio);
374                 rdev_dec_pending(rdev, conf->mddev);
375         } else {
376                 /*
377                  * oops, read error - keep the refcount on the rdev
378                  */
379                 char b[BDEVNAME_SIZE];
380                 printk_ratelimited(KERN_ERR
381                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
382                                    mdname(conf->mddev),
383                                    bdevname(rdev->bdev, b),
384                                    (unsigned long long)r10_bio->sector);
385                 set_bit(R10BIO_ReadError, &r10_bio->state);
386                 reschedule_retry(r10_bio);
387         }
388 }
389
390 static void close_write(struct r10bio *r10_bio)
391 {
392         /* clear the bitmap if all writes complete successfully */
393         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
394                         r10_bio->sectors,
395                         !test_bit(R10BIO_Degraded, &r10_bio->state),
396                         0);
397         md_write_end(r10_bio->mddev);
398 }
399
400 static void one_write_done(struct r10bio *r10_bio)
401 {
402         if (atomic_dec_and_test(&r10_bio->remaining)) {
403                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
404                         reschedule_retry(r10_bio);
405                 else {
406                         close_write(r10_bio);
407                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
408                                 reschedule_retry(r10_bio);
409                         else
410                                 raid_end_bio_io(r10_bio);
411                 }
412         }
413 }
414
415 static void raid10_end_write_request(struct bio *bio, int error)
416 {
417         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
418         struct r10bio *r10_bio = bio->bi_private;
419         int dev;
420         int dec_rdev = 1;
421         struct r10conf *conf = r10_bio->mddev->private;
422         int slot, repl;
423         struct md_rdev *rdev = NULL;
424
425         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
426
427         if (repl)
428                 rdev = conf->mirrors[dev].replacement;
429         if (!rdev) {
430                 smp_rmb();
431                 repl = 0;
432                 rdev = conf->mirrors[dev].rdev;
433         }
434         /*
435          * this branch is our 'one mirror IO has finished' event handler:
436          */
437         if (!uptodate) {
438                 if (repl)
439                         /* Never record new bad blocks to replacement,
440                          * just fail it.
441                          */
442                         md_error(rdev->mddev, rdev);
443                 else {
444                         set_bit(WriteErrorSeen, &rdev->flags);
445                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
446                                 set_bit(MD_RECOVERY_NEEDED,
447                                         &rdev->mddev->recovery);
448                         set_bit(R10BIO_WriteError, &r10_bio->state);
449                         dec_rdev = 0;
450                 }
451         } else {
452                 /*
453                  * Set R10BIO_Uptodate in our master bio, so that
454                  * we will return a good error code for to the higher
455                  * levels even if IO on some other mirrored buffer fails.
456                  *
457                  * The 'master' represents the composite IO operation to
458                  * user-side. So if something waits for IO, then it will
459                  * wait for the 'master' bio.
460                  */
461                 sector_t first_bad;
462                 int bad_sectors;
463
464                 set_bit(R10BIO_Uptodate, &r10_bio->state);
465
466                 /* Maybe we can clear some bad blocks. */
467                 if (is_badblock(rdev,
468                                 r10_bio->devs[slot].addr,
469                                 r10_bio->sectors,
470                                 &first_bad, &bad_sectors)) {
471                         bio_put(bio);
472                         if (repl)
473                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
474                         else
475                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
476                         dec_rdev = 0;
477                         set_bit(R10BIO_MadeGood, &r10_bio->state);
478                 }
479         }
480
481         /*
482          *
483          * Let's see if all mirrored write operations have finished
484          * already.
485          */
486         one_write_done(r10_bio);
487         if (dec_rdev)
488                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
489 }
490
491 /*
492  * RAID10 layout manager
493  * As well as the chunksize and raid_disks count, there are two
494  * parameters: near_copies and far_copies.
495  * near_copies * far_copies must be <= raid_disks.
496  * Normally one of these will be 1.
497  * If both are 1, we get raid0.
498  * If near_copies == raid_disks, we get raid1.
499  *
500  * Chunks are laid out in raid0 style with near_copies copies of the
501  * first chunk, followed by near_copies copies of the next chunk and
502  * so on.
503  * If far_copies > 1, then after 1/far_copies of the array has been assigned
504  * as described above, we start again with a device offset of near_copies.
505  * So we effectively have another copy of the whole array further down all
506  * the drives, but with blocks on different drives.
507  * With this layout, and block is never stored twice on the one device.
508  *
509  * raid10_find_phys finds the sector offset of a given virtual sector
510  * on each device that it is on.
511  *
512  * raid10_find_virt does the reverse mapping, from a device and a
513  * sector offset to a virtual address
514  */
515
516 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
517 {
518         int n,f;
519         sector_t sector;
520         sector_t chunk;
521         sector_t stripe;
522         int dev;
523         int slot = 0;
524
525         /* now calculate first sector/dev */
526         chunk = r10bio->sector >> geo->chunk_shift;
527         sector = r10bio->sector & geo->chunk_mask;
528
529         chunk *= geo->near_copies;
530         stripe = chunk;
531         dev = sector_div(stripe, geo->raid_disks);
532         if (geo->far_offset)
533                 stripe *= geo->far_copies;
534
535         sector += stripe << geo->chunk_shift;
536
537         /* and calculate all the others */
538         for (n = 0; n < geo->near_copies; n++) {
539                 int d = dev;
540                 sector_t s = sector;
541                 r10bio->devs[slot].addr = sector;
542                 r10bio->devs[slot].devnum = d;
543                 slot++;
544
545                 for (f = 1; f < geo->far_copies; f++) {
546                         d += geo->near_copies;
547                         if (d >= geo->raid_disks)
548                                 d -= geo->raid_disks;
549                         s += geo->stride;
550                         r10bio->devs[slot].devnum = d;
551                         r10bio->devs[slot].addr = s;
552                         slot++;
553                 }
554                 dev++;
555                 if (dev >= geo->raid_disks) {
556                         dev = 0;
557                         sector += (geo->chunk_mask + 1);
558                 }
559         }
560 }
561
562 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
563 {
564         struct geom *geo = &conf->geo;
565
566         if (conf->reshape_progress != MaxSector &&
567             ((r10bio->sector >= conf->reshape_progress) !=
568              conf->mddev->reshape_backwards)) {
569                 set_bit(R10BIO_Previous, &r10bio->state);
570                 geo = &conf->prev;
571         } else
572                 clear_bit(R10BIO_Previous, &r10bio->state);
573
574         __raid10_find_phys(geo, r10bio);
575 }
576
577 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
578 {
579         sector_t offset, chunk, vchunk;
580         /* Never use conf->prev as this is only called during resync
581          * or recovery, so reshape isn't happening
582          */
583         struct geom *geo = &conf->geo;
584
585         offset = sector & geo->chunk_mask;
586         if (geo->far_offset) {
587                 int fc;
588                 chunk = sector >> geo->chunk_shift;
589                 fc = sector_div(chunk, geo->far_copies);
590                 dev -= fc * geo->near_copies;
591                 if (dev < 0)
592                         dev += geo->raid_disks;
593         } else {
594                 while (sector >= geo->stride) {
595                         sector -= geo->stride;
596                         if (dev < geo->near_copies)
597                                 dev += geo->raid_disks - geo->near_copies;
598                         else
599                                 dev -= geo->near_copies;
600                 }
601                 chunk = sector >> geo->chunk_shift;
602         }
603         vchunk = chunk * geo->raid_disks + dev;
604         sector_div(vchunk, geo->near_copies);
605         return (vchunk << geo->chunk_shift) + offset;
606 }
607
608 /**
609  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
610  *      @q: request queue
611  *      @bvm: properties of new bio
612  *      @biovec: the request that could be merged to it.
613  *
614  *      Return amount of bytes we can accept at this offset
615  *      This requires checking for end-of-chunk if near_copies != raid_disks,
616  *      and for subordinate merge_bvec_fns if merge_check_needed.
617  */
618 static int raid10_mergeable_bvec(struct request_queue *q,
619                                  struct bvec_merge_data *bvm,
620                                  struct bio_vec *biovec)
621 {
622         struct mddev *mddev = q->queuedata;
623         struct r10conf *conf = mddev->private;
624         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625         int max;
626         unsigned int chunk_sectors;
627         unsigned int bio_sectors = bvm->bi_size >> 9;
628         struct geom *geo = &conf->geo;
629
630         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
631         if (conf->reshape_progress != MaxSector &&
632             ((sector >= conf->reshape_progress) !=
633              conf->mddev->reshape_backwards))
634                 geo = &conf->prev;
635
636         if (geo->near_copies < geo->raid_disks) {
637                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
638                                         + bio_sectors)) << 9;
639                 if (max < 0)
640                         /* bio_add cannot handle a negative return */
641                         max = 0;
642                 if (max <= biovec->bv_len && bio_sectors == 0)
643                         return biovec->bv_len;
644         } else
645                 max = biovec->bv_len;
646
647         if (mddev->merge_check_needed) {
648                 struct r10bio r10_bio;
649                 int s;
650                 if (conf->reshape_progress != MaxSector) {
651                         /* Cannot give any guidance during reshape */
652                         if (max <= biovec->bv_len && bio_sectors == 0)
653                                 return biovec->bv_len;
654                         return 0;
655                 }
656                 r10_bio.sector = sector;
657                 raid10_find_phys(conf, &r10_bio);
658                 rcu_read_lock();
659                 for (s = 0; s < conf->copies; s++) {
660                         int disk = r10_bio.devs[s].devnum;
661                         struct md_rdev *rdev = rcu_dereference(
662                                 conf->mirrors[disk].rdev);
663                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
664                                 struct request_queue *q =
665                                         bdev_get_queue(rdev->bdev);
666                                 if (q->merge_bvec_fn) {
667                                         bvm->bi_sector = r10_bio.devs[s].addr
668                                                 + rdev->data_offset;
669                                         bvm->bi_bdev = rdev->bdev;
670                                         max = min(max, q->merge_bvec_fn(
671                                                           q, bvm, biovec));
672                                 }
673                         }
674                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
675                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
676                                 struct request_queue *q =
677                                         bdev_get_queue(rdev->bdev);
678                                 if (q->merge_bvec_fn) {
679                                         bvm->bi_sector = r10_bio.devs[s].addr
680                                                 + rdev->data_offset;
681                                         bvm->bi_bdev = rdev->bdev;
682                                         max = min(max, q->merge_bvec_fn(
683                                                           q, bvm, biovec));
684                                 }
685                         }
686                 }
687                 rcu_read_unlock();
688         }
689         return max;
690 }
691
692 /*
693  * This routine returns the disk from which the requested read should
694  * be done. There is a per-array 'next expected sequential IO' sector
695  * number - if this matches on the next IO then we use the last disk.
696  * There is also a per-disk 'last know head position' sector that is
697  * maintained from IRQ contexts, both the normal and the resync IO
698  * completion handlers update this position correctly. If there is no
699  * perfect sequential match then we pick the disk whose head is closest.
700  *
701  * If there are 2 mirrors in the same 2 devices, performance degrades
702  * because position is mirror, not device based.
703  *
704  * The rdev for the device selected will have nr_pending incremented.
705  */
706
707 /*
708  * FIXME: possibly should rethink readbalancing and do it differently
709  * depending on near_copies / far_copies geometry.
710  */
711 static struct md_rdev *read_balance(struct r10conf *conf,
712                                     struct r10bio *r10_bio,
713                                     int *max_sectors)
714 {
715         const sector_t this_sector = r10_bio->sector;
716         int disk, slot;
717         int sectors = r10_bio->sectors;
718         int best_good_sectors;
719         sector_t new_distance, best_dist;
720         struct md_rdev *rdev, *best_rdev;
721         int do_balance;
722         int best_slot;
723         struct geom *geo = &conf->geo;
724
725         raid10_find_phys(conf, r10_bio);
726         rcu_read_lock();
727 retry:
728         sectors = r10_bio->sectors;
729         best_slot = -1;
730         best_rdev = NULL;
731         best_dist = MaxSector;
732         best_good_sectors = 0;
733         do_balance = 1;
734         /*
735          * Check if we can balance. We can balance on the whole
736          * device if no resync is going on (recovery is ok), or below
737          * the resync window. We take the first readable disk when
738          * above the resync window.
739          */
740         if (conf->mddev->recovery_cp < MaxSector
741             && (this_sector + sectors >= conf->next_resync))
742                 do_balance = 0;
743
744         for (slot = 0; slot < conf->copies ; slot++) {
745                 sector_t first_bad;
746                 int bad_sectors;
747                 sector_t dev_sector;
748
749                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750                         continue;
751                 disk = r10_bio->devs[slot].devnum;
752                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754                     test_bit(Unmerged, &rdev->flags) ||
755                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
757                 if (rdev == NULL ||
758                     test_bit(Faulty, &rdev->flags) ||
759                     test_bit(Unmerged, &rdev->flags))
760                         continue;
761                 if (!test_bit(In_sync, &rdev->flags) &&
762                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
763                         continue;
764
765                 dev_sector = r10_bio->devs[slot].addr;
766                 if (is_badblock(rdev, dev_sector, sectors,
767                                 &first_bad, &bad_sectors)) {
768                         if (best_dist < MaxSector)
769                                 /* Already have a better slot */
770                                 continue;
771                         if (first_bad <= dev_sector) {
772                                 /* Cannot read here.  If this is the
773                                  * 'primary' device, then we must not read
774                                  * beyond 'bad_sectors' from another device.
775                                  */
776                                 bad_sectors -= (dev_sector - first_bad);
777                                 if (!do_balance && sectors > bad_sectors)
778                                         sectors = bad_sectors;
779                                 if (best_good_sectors > sectors)
780                                         best_good_sectors = sectors;
781                         } else {
782                                 sector_t good_sectors =
783                                         first_bad - dev_sector;
784                                 if (good_sectors > best_good_sectors) {
785                                         best_good_sectors = good_sectors;
786                                         best_slot = slot;
787                                         best_rdev = rdev;
788                                 }
789                                 if (!do_balance)
790                                         /* Must read from here */
791                                         break;
792                         }
793                         continue;
794                 } else
795                         best_good_sectors = sectors;
796
797                 if (!do_balance)
798                         break;
799
800                 /* This optimisation is debatable, and completely destroys
801                  * sequential read speed for 'far copies' arrays.  So only
802                  * keep it for 'near' arrays, and review those later.
803                  */
804                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
805                         break;
806
807                 /* for far > 1 always use the lowest address */
808                 if (geo->far_copies > 1)
809                         new_distance = r10_bio->devs[slot].addr;
810                 else
811                         new_distance = abs(r10_bio->devs[slot].addr -
812                                            conf->mirrors[disk].head_position);
813                 if (new_distance < best_dist) {
814                         best_dist = new_distance;
815                         best_slot = slot;
816                         best_rdev = rdev;
817                 }
818         }
819         if (slot >= conf->copies) {
820                 slot = best_slot;
821                 rdev = best_rdev;
822         }
823
824         if (slot >= 0) {
825                 atomic_inc(&rdev->nr_pending);
826                 if (test_bit(Faulty, &rdev->flags)) {
827                         /* Cannot risk returning a device that failed
828                          * before we inc'ed nr_pending
829                          */
830                         rdev_dec_pending(rdev, conf->mddev);
831                         goto retry;
832                 }
833                 r10_bio->read_slot = slot;
834         } else
835                 rdev = NULL;
836         rcu_read_unlock();
837         *max_sectors = best_good_sectors;
838
839         return rdev;
840 }
841
842 static int raid10_congested(void *data, int bits)
843 {
844         struct mddev *mddev = data;
845         struct r10conf *conf = mddev->private;
846         int i, ret = 0;
847
848         if ((bits & (1 << BDI_async_congested)) &&
849             conf->pending_count >= max_queued_requests)
850                 return 1;
851
852         if (mddev_congested(mddev, bits))
853                 return 1;
854         rcu_read_lock();
855         for (i = 0;
856              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857                      && ret == 0;
858              i++) {
859                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
860                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
861                         struct request_queue *q = bdev_get_queue(rdev->bdev);
862
863                         ret |= bdi_congested(&q->backing_dev_info, bits);
864                 }
865         }
866         rcu_read_unlock();
867         return ret;
868 }
869
870 static void flush_pending_writes(struct r10conf *conf)
871 {
872         /* Any writes that have been queued but are awaiting
873          * bitmap updates get flushed here.
874          */
875         spin_lock_irq(&conf->device_lock);
876
877         if (conf->pending_bio_list.head) {
878                 struct bio *bio;
879                 bio = bio_list_get(&conf->pending_bio_list);
880                 conf->pending_count = 0;
881                 spin_unlock_irq(&conf->device_lock);
882                 /* flush any pending bitmap writes to disk
883                  * before proceeding w/ I/O */
884                 bitmap_unplug(conf->mddev->bitmap);
885                 wake_up(&conf->wait_barrier);
886
887                 while (bio) { /* submit pending writes */
888                         struct bio *next = bio->bi_next;
889                         bio->bi_next = NULL;
890                         generic_make_request(bio);
891                         bio = next;
892                 }
893         } else
894                 spin_unlock_irq(&conf->device_lock);
895 }
896
897 /* Barriers....
898  * Sometimes we need to suspend IO while we do something else,
899  * either some resync/recovery, or reconfigure the array.
900  * To do this we raise a 'barrier'.
901  * The 'barrier' is a counter that can be raised multiple times
902  * to count how many activities are happening which preclude
903  * normal IO.
904  * We can only raise the barrier if there is no pending IO.
905  * i.e. if nr_pending == 0.
906  * We choose only to raise the barrier if no-one is waiting for the
907  * barrier to go down.  This means that as soon as an IO request
908  * is ready, no other operations which require a barrier will start
909  * until the IO request has had a chance.
910  *
911  * So: regular IO calls 'wait_barrier'.  When that returns there
912  *    is no backgroup IO happening,  It must arrange to call
913  *    allow_barrier when it has finished its IO.
914  * backgroup IO calls must call raise_barrier.  Once that returns
915  *    there is no normal IO happeing.  It must arrange to call
916  *    lower_barrier when the particular background IO completes.
917  */
918
919 static void raise_barrier(struct r10conf *conf, int force)
920 {
921         BUG_ON(force && !conf->barrier);
922         spin_lock_irq(&conf->resync_lock);
923
924         /* Wait until no block IO is waiting (unless 'force') */
925         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
926                             conf->resync_lock, );
927
928         /* block any new IO from starting */
929         conf->barrier++;
930
931         /* Now wait for all pending IO to complete */
932         wait_event_lock_irq(conf->wait_barrier,
933                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
934                             conf->resync_lock, );
935
936         spin_unlock_irq(&conf->resync_lock);
937 }
938
939 static void lower_barrier(struct r10conf *conf)
940 {
941         unsigned long flags;
942         spin_lock_irqsave(&conf->resync_lock, flags);
943         conf->barrier--;
944         spin_unlock_irqrestore(&conf->resync_lock, flags);
945         wake_up(&conf->wait_barrier);
946 }
947
948 static void wait_barrier(struct r10conf *conf)
949 {
950         spin_lock_irq(&conf->resync_lock);
951         if (conf->barrier) {
952                 conf->nr_waiting++;
953                 /* Wait for the barrier to drop.
954                  * However if there are already pending
955                  * requests (preventing the barrier from
956                  * rising completely), and the
957                  * pre-process bio queue isn't empty,
958                  * then don't wait, as we need to empty
959                  * that queue to get the nr_pending
960                  * count down.
961                  */
962                 wait_event_lock_irq(conf->wait_barrier,
963                                     !conf->barrier ||
964                                     (conf->nr_pending &&
965                                      current->bio_list &&
966                                      !bio_list_empty(current->bio_list)),
967                                     conf->resync_lock,
968                         );
969                 conf->nr_waiting--;
970         }
971         conf->nr_pending++;
972         spin_unlock_irq(&conf->resync_lock);
973 }
974
975 static void allow_barrier(struct r10conf *conf)
976 {
977         unsigned long flags;
978         spin_lock_irqsave(&conf->resync_lock, flags);
979         conf->nr_pending--;
980         spin_unlock_irqrestore(&conf->resync_lock, flags);
981         wake_up(&conf->wait_barrier);
982 }
983
984 static void freeze_array(struct r10conf *conf)
985 {
986         /* stop syncio and normal IO and wait for everything to
987          * go quiet.
988          * We increment barrier and nr_waiting, and then
989          * wait until nr_pending match nr_queued+1
990          * This is called in the context of one normal IO request
991          * that has failed. Thus any sync request that might be pending
992          * will be blocked by nr_pending, and we need to wait for
993          * pending IO requests to complete or be queued for re-try.
994          * Thus the number queued (nr_queued) plus this request (1)
995          * must match the number of pending IOs (nr_pending) before
996          * we continue.
997          */
998         spin_lock_irq(&conf->resync_lock);
999         conf->barrier++;
1000         conf->nr_waiting++;
1001         wait_event_lock_irq(conf->wait_barrier,
1002                             conf->nr_pending == conf->nr_queued+1,
1003                             conf->resync_lock,
1004                             flush_pending_writes(conf));
1005
1006         spin_unlock_irq(&conf->resync_lock);
1007 }
1008
1009 static void unfreeze_array(struct r10conf *conf)
1010 {
1011         /* reverse the effect of the freeze */
1012         spin_lock_irq(&conf->resync_lock);
1013         conf->barrier--;
1014         conf->nr_waiting--;
1015         wake_up(&conf->wait_barrier);
1016         spin_unlock_irq(&conf->resync_lock);
1017 }
1018
1019 static sector_t choose_data_offset(struct r10bio *r10_bio,
1020                                    struct md_rdev *rdev)
1021 {
1022         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1023             test_bit(R10BIO_Previous, &r10_bio->state))
1024                 return rdev->data_offset;
1025         else
1026                 return rdev->new_data_offset;
1027 }
1028
1029 static void make_request(struct mddev *mddev, struct bio * bio)
1030 {
1031         struct r10conf *conf = mddev->private;
1032         struct r10bio *r10_bio;
1033         struct bio *read_bio;
1034         int i;
1035         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1036         int chunk_sects = chunk_mask + 1;
1037         const int rw = bio_data_dir(bio);
1038         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1039         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1040         unsigned long flags;
1041         struct md_rdev *blocked_rdev;
1042         int plugged;
1043         int sectors_handled;
1044         int max_sectors;
1045         int sectors;
1046
1047         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1048                 md_flush_request(mddev, bio);
1049                 return;
1050         }
1051
1052         /* If this request crosses a chunk boundary, we need to
1053          * split it.  This will only happen for 1 PAGE (or less) requests.
1054          */
1055         if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1056                      > chunk_sects
1057                      && (conf->geo.near_copies < conf->geo.raid_disks
1058                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1059                 struct bio_pair *bp;
1060                 /* Sanity check -- queue functions should prevent this happening */
1061                 if (bio->bi_vcnt != 1 ||
1062                     bio->bi_idx != 0)
1063                         goto bad_map;
1064                 /* This is a one page bio that upper layers
1065                  * refuse to split for us, so we need to split it.
1066                  */
1067                 bp = bio_split(bio,
1068                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1069
1070                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1071                  * If the first succeeds but the second blocks due to the resync
1072                  * thread raising the barrier, we will deadlock because the
1073                  * IO to the underlying device will be queued in generic_make_request
1074                  * and will never complete, so will never reduce nr_pending.
1075                  * So increment nr_waiting here so no new raise_barriers will
1076                  * succeed, and so the second wait_barrier cannot block.
1077                  */
1078                 spin_lock_irq(&conf->resync_lock);
1079                 conf->nr_waiting++;
1080                 spin_unlock_irq(&conf->resync_lock);
1081
1082                 make_request(mddev, &bp->bio1);
1083                 make_request(mddev, &bp->bio2);
1084
1085                 spin_lock_irq(&conf->resync_lock);
1086                 conf->nr_waiting--;
1087                 wake_up(&conf->wait_barrier);
1088                 spin_unlock_irq(&conf->resync_lock);
1089
1090                 bio_pair_release(bp);
1091                 return;
1092         bad_map:
1093                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1094                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1095                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1096
1097                 bio_io_error(bio);
1098                 return;
1099         }
1100
1101         md_write_start(mddev, bio);
1102
1103         /*
1104          * Register the new request and wait if the reconstruction
1105          * thread has put up a bar for new requests.
1106          * Continue immediately if no resync is active currently.
1107          */
1108         wait_barrier(conf);
1109
1110         sectors = bio->bi_size >> 9;
1111         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1112             bio->bi_sector < conf->reshape_progress &&
1113             bio->bi_sector + sectors > conf->reshape_progress) {
1114                 /* IO spans the reshape position.  Need to wait for
1115                  * reshape to pass
1116                  */
1117                 allow_barrier(conf);
1118                 wait_event(conf->wait_barrier,
1119                            conf->reshape_progress <= bio->bi_sector ||
1120                            conf->reshape_progress >= bio->bi_sector + sectors);
1121                 wait_barrier(conf);
1122         }
1123         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1124             bio_data_dir(bio) == WRITE &&
1125             (mddev->reshape_backwards
1126              ? (bio->bi_sector < conf->reshape_safe &&
1127                 bio->bi_sector + sectors > conf->reshape_progress)
1128              : (bio->bi_sector + sectors > conf->reshape_safe &&
1129                 bio->bi_sector < conf->reshape_progress))) {
1130                 /* Need to update reshape_position in metadata */
1131                 mddev->reshape_position = conf->reshape_progress;
1132                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1133                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1134                 md_wakeup_thread(mddev->thread);
1135                 wait_event(mddev->sb_wait,
1136                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1137
1138                 conf->reshape_safe = mddev->reshape_position;
1139         }
1140
1141         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1142
1143         r10_bio->master_bio = bio;
1144         r10_bio->sectors = sectors;
1145
1146         r10_bio->mddev = mddev;
1147         r10_bio->sector = bio->bi_sector;
1148         r10_bio->state = 0;
1149
1150         /* We might need to issue multiple reads to different
1151          * devices if there are bad blocks around, so we keep
1152          * track of the number of reads in bio->bi_phys_segments.
1153          * If this is 0, there is only one r10_bio and no locking
1154          * will be needed when the request completes.  If it is
1155          * non-zero, then it is the number of not-completed requests.
1156          */
1157         bio->bi_phys_segments = 0;
1158         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1159
1160         if (rw == READ) {
1161                 /*
1162                  * read balancing logic:
1163                  */
1164                 struct md_rdev *rdev;
1165                 int slot;
1166
1167 read_again:
1168                 rdev = read_balance(conf, r10_bio, &max_sectors);
1169                 if (!rdev) {
1170                         raid_end_bio_io(r10_bio);
1171                         return;
1172                 }
1173                 slot = r10_bio->read_slot;
1174
1175                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1176                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1177                             max_sectors);
1178
1179                 r10_bio->devs[slot].bio = read_bio;
1180                 r10_bio->devs[slot].rdev = rdev;
1181
1182                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1183                         choose_data_offset(r10_bio, rdev);
1184                 read_bio->bi_bdev = rdev->bdev;
1185                 read_bio->bi_end_io = raid10_end_read_request;
1186                 read_bio->bi_rw = READ | do_sync;
1187                 read_bio->bi_private = r10_bio;
1188
1189                 if (max_sectors < r10_bio->sectors) {
1190                         /* Could not read all from this device, so we will
1191                          * need another r10_bio.
1192                          */
1193                         sectors_handled = (r10_bio->sectors + max_sectors
1194                                            - bio->bi_sector);
1195                         r10_bio->sectors = max_sectors;
1196                         spin_lock_irq(&conf->device_lock);
1197                         if (bio->bi_phys_segments == 0)
1198                                 bio->bi_phys_segments = 2;
1199                         else
1200                                 bio->bi_phys_segments++;
1201                         spin_unlock(&conf->device_lock);
1202                         /* Cannot call generic_make_request directly
1203                          * as that will be queued in __generic_make_request
1204                          * and subsequent mempool_alloc might block
1205                          * waiting for it.  so hand bio over to raid10d.
1206                          */
1207                         reschedule_retry(r10_bio);
1208
1209                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1210
1211                         r10_bio->master_bio = bio;
1212                         r10_bio->sectors = ((bio->bi_size >> 9)
1213                                             - sectors_handled);
1214                         r10_bio->state = 0;
1215                         r10_bio->mddev = mddev;
1216                         r10_bio->sector = bio->bi_sector + sectors_handled;
1217                         goto read_again;
1218                 } else
1219                         generic_make_request(read_bio);
1220                 return;
1221         }
1222
1223         /*
1224          * WRITE:
1225          */
1226         if (conf->pending_count >= max_queued_requests) {
1227                 md_wakeup_thread(mddev->thread);
1228                 wait_event(conf->wait_barrier,
1229                            conf->pending_count < max_queued_requests);
1230         }
1231         /* first select target devices under rcu_lock and
1232          * inc refcount on their rdev.  Record them by setting
1233          * bios[x] to bio
1234          * If there are known/acknowledged bad blocks on any device
1235          * on which we have seen a write error, we want to avoid
1236          * writing to those blocks.  This potentially requires several
1237          * writes to write around the bad blocks.  Each set of writes
1238          * gets its own r10_bio with a set of bios attached.  The number
1239          * of r10_bios is recored in bio->bi_phys_segments just as with
1240          * the read case.
1241          */
1242         plugged = mddev_check_plugged(mddev);
1243
1244         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1245         raid10_find_phys(conf, r10_bio);
1246 retry_write:
1247         blocked_rdev = NULL;
1248         rcu_read_lock();
1249         max_sectors = r10_bio->sectors;
1250
1251         for (i = 0;  i < conf->copies; i++) {
1252                 int d = r10_bio->devs[i].devnum;
1253                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1254                 struct md_rdev *rrdev = rcu_dereference(
1255                         conf->mirrors[d].replacement);
1256                 if (rdev == rrdev)
1257                         rrdev = NULL;
1258                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1259                         atomic_inc(&rdev->nr_pending);
1260                         blocked_rdev = rdev;
1261                         break;
1262                 }
1263                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1264                         atomic_inc(&rrdev->nr_pending);
1265                         blocked_rdev = rrdev;
1266                         break;
1267                 }
1268                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1269                               || test_bit(Unmerged, &rrdev->flags)))
1270                         rrdev = NULL;
1271
1272                 r10_bio->devs[i].bio = NULL;
1273                 r10_bio->devs[i].repl_bio = NULL;
1274                 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1275                     test_bit(Unmerged, &rdev->flags)) {
1276                         set_bit(R10BIO_Degraded, &r10_bio->state);
1277                         continue;
1278                 }
1279                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280                         sector_t first_bad;
1281                         sector_t dev_sector = r10_bio->devs[i].addr;
1282                         int bad_sectors;
1283                         int is_bad;
1284
1285                         is_bad = is_badblock(rdev, dev_sector,
1286                                              max_sectors,
1287                                              &first_bad, &bad_sectors);
1288                         if (is_bad < 0) {
1289                                 /* Mustn't write here until the bad block
1290                                  * is acknowledged
1291                                  */
1292                                 atomic_inc(&rdev->nr_pending);
1293                                 set_bit(BlockedBadBlocks, &rdev->flags);
1294                                 blocked_rdev = rdev;
1295                                 break;
1296                         }
1297                         if (is_bad && first_bad <= dev_sector) {
1298                                 /* Cannot write here at all */
1299                                 bad_sectors -= (dev_sector - first_bad);
1300                                 if (bad_sectors < max_sectors)
1301                                         /* Mustn't write more than bad_sectors
1302                                          * to other devices yet
1303                                          */
1304                                         max_sectors = bad_sectors;
1305                                 /* We don't set R10BIO_Degraded as that
1306                                  * only applies if the disk is missing,
1307                                  * so it might be re-added, and we want to
1308                                  * know to recover this chunk.
1309                                  * In this case the device is here, and the
1310                                  * fact that this chunk is not in-sync is
1311                                  * recorded in the bad block log.
1312                                  */
1313                                 continue;
1314                         }
1315                         if (is_bad) {
1316                                 int good_sectors = first_bad - dev_sector;
1317                                 if (good_sectors < max_sectors)
1318                                         max_sectors = good_sectors;
1319                         }
1320                 }
1321                 r10_bio->devs[i].bio = bio;
1322                 atomic_inc(&rdev->nr_pending);
1323                 if (rrdev) {
1324                         r10_bio->devs[i].repl_bio = bio;
1325                         atomic_inc(&rrdev->nr_pending);
1326                 }
1327         }
1328         rcu_read_unlock();
1329
1330         if (unlikely(blocked_rdev)) {
1331                 /* Have to wait for this device to get unblocked, then retry */
1332                 int j;
1333                 int d;
1334
1335                 for (j = 0; j < i; j++) {
1336                         if (r10_bio->devs[j].bio) {
1337                                 d = r10_bio->devs[j].devnum;
1338                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1339                         }
1340                         if (r10_bio->devs[j].repl_bio) {
1341                                 struct md_rdev *rdev;
1342                                 d = r10_bio->devs[j].devnum;
1343                                 rdev = conf->mirrors[d].replacement;
1344                                 if (!rdev) {
1345                                         /* Race with remove_disk */
1346                                         smp_mb();
1347                                         rdev = conf->mirrors[d].rdev;
1348                                 }
1349                                 rdev_dec_pending(rdev, mddev);
1350                         }
1351                 }
1352                 allow_barrier(conf);
1353                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1354                 wait_barrier(conf);
1355                 goto retry_write;
1356         }
1357
1358         if (max_sectors < r10_bio->sectors) {
1359                 /* We are splitting this into multiple parts, so
1360                  * we need to prepare for allocating another r10_bio.
1361                  */
1362                 r10_bio->sectors = max_sectors;
1363                 spin_lock_irq(&conf->device_lock);
1364                 if (bio->bi_phys_segments == 0)
1365                         bio->bi_phys_segments = 2;
1366                 else
1367                         bio->bi_phys_segments++;
1368                 spin_unlock_irq(&conf->device_lock);
1369         }
1370         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1371
1372         atomic_set(&r10_bio->remaining, 1);
1373         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1374
1375         for (i = 0; i < conf->copies; i++) {
1376                 struct bio *mbio;
1377                 int d = r10_bio->devs[i].devnum;
1378                 if (!r10_bio->devs[i].bio)
1379                         continue;
1380
1381                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1382                 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1383                             max_sectors);
1384                 r10_bio->devs[i].bio = mbio;
1385
1386                 mbio->bi_sector = (r10_bio->devs[i].addr+
1387                                    choose_data_offset(r10_bio,
1388                                                       conf->mirrors[d].rdev));
1389                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1390                 mbio->bi_end_io = raid10_end_write_request;
1391                 mbio->bi_rw = WRITE | do_sync | do_fua;
1392                 mbio->bi_private = r10_bio;
1393
1394                 atomic_inc(&r10_bio->remaining);
1395                 spin_lock_irqsave(&conf->device_lock, flags);
1396                 bio_list_add(&conf->pending_bio_list, mbio);
1397                 conf->pending_count++;
1398                 spin_unlock_irqrestore(&conf->device_lock, flags);
1399
1400                 if (!r10_bio->devs[i].repl_bio)
1401                         continue;
1402
1403                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404                 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405                             max_sectors);
1406                 r10_bio->devs[i].repl_bio = mbio;
1407
1408                 /* We are actively writing to the original device
1409                  * so it cannot disappear, so the replacement cannot
1410                  * become NULL here
1411                  */
1412                 mbio->bi_sector = (r10_bio->devs[i].addr +
1413                                    choose_data_offset(
1414                                            r10_bio,
1415                                            conf->mirrors[d].replacement));
1416                 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1417                 mbio->bi_end_io = raid10_end_write_request;
1418                 mbio->bi_rw = WRITE | do_sync | do_fua;
1419                 mbio->bi_private = r10_bio;
1420
1421                 atomic_inc(&r10_bio->remaining);
1422                 spin_lock_irqsave(&conf->device_lock, flags);
1423                 bio_list_add(&conf->pending_bio_list, mbio);
1424                 conf->pending_count++;
1425                 spin_unlock_irqrestore(&conf->device_lock, flags);
1426         }
1427
1428         /* Don't remove the bias on 'remaining' (one_write_done) until
1429          * after checking if we need to go around again.
1430          */
1431
1432         if (sectors_handled < (bio->bi_size >> 9)) {
1433                 one_write_done(r10_bio);
1434                 /* We need another r10_bio.  It has already been counted
1435                  * in bio->bi_phys_segments.
1436                  */
1437                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1438
1439                 r10_bio->master_bio = bio;
1440                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1441
1442                 r10_bio->mddev = mddev;
1443                 r10_bio->sector = bio->bi_sector + sectors_handled;
1444                 r10_bio->state = 0;
1445                 goto retry_write;
1446         }
1447         one_write_done(r10_bio);
1448
1449         /* In case raid10d snuck in to freeze_array */
1450         wake_up(&conf->wait_barrier);
1451
1452         if (do_sync || !mddev->bitmap || !plugged)
1453                 md_wakeup_thread(mddev->thread);
1454 }
1455
1456 static void status(struct seq_file *seq, struct mddev *mddev)
1457 {
1458         struct r10conf *conf = mddev->private;
1459         int i;
1460
1461         if (conf->geo.near_copies < conf->geo.raid_disks)
1462                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1463         if (conf->geo.near_copies > 1)
1464                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1465         if (conf->geo.far_copies > 1) {
1466                 if (conf->geo.far_offset)
1467                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1468                 else
1469                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1470         }
1471         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1472                                         conf->geo.raid_disks - mddev->degraded);
1473         for (i = 0; i < conf->geo.raid_disks; i++)
1474                 seq_printf(seq, "%s",
1475                               conf->mirrors[i].rdev &&
1476                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1477         seq_printf(seq, "]");
1478 }
1479
1480 /* check if there are enough drives for
1481  * every block to appear on atleast one.
1482  * Don't consider the device numbered 'ignore'
1483  * as we might be about to remove it.
1484  */
1485 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1486 {
1487         int first = 0;
1488
1489         do {
1490                 int n = conf->copies;
1491                 int cnt = 0;
1492                 while (n--) {
1493                         if (conf->mirrors[first].rdev &&
1494                             first != ignore)
1495                                 cnt++;
1496                         first = (first+1) % geo->raid_disks;
1497                 }
1498                 if (cnt == 0)
1499                         return 0;
1500         } while (first != 0);
1501         return 1;
1502 }
1503
1504 static int enough(struct r10conf *conf, int ignore)
1505 {
1506         return _enough(conf, &conf->geo, ignore) &&
1507                 _enough(conf, &conf->prev, ignore);
1508 }
1509
1510 static void error(struct mddev *mddev, struct md_rdev *rdev)
1511 {
1512         char b[BDEVNAME_SIZE];
1513         struct r10conf *conf = mddev->private;
1514
1515         /*
1516          * If it is not operational, then we have already marked it as dead
1517          * else if it is the last working disks, ignore the error, let the
1518          * next level up know.
1519          * else mark the drive as failed
1520          */
1521         if (test_bit(In_sync, &rdev->flags)
1522             && !enough(conf, rdev->raid_disk))
1523                 /*
1524                  * Don't fail the drive, just return an IO error.
1525                  */
1526                 return;
1527         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1528                 unsigned long flags;
1529                 spin_lock_irqsave(&conf->device_lock, flags);
1530                 mddev->degraded++;
1531                 spin_unlock_irqrestore(&conf->device_lock, flags);
1532                 /*
1533                  * if recovery is running, make sure it aborts.
1534                  */
1535                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1536         }
1537         set_bit(Blocked, &rdev->flags);
1538         set_bit(Faulty, &rdev->flags);
1539         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1540         printk(KERN_ALERT
1541                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1542                "md/raid10:%s: Operation continuing on %d devices.\n",
1543                mdname(mddev), bdevname(rdev->bdev, b),
1544                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1545 }
1546
1547 static void print_conf(struct r10conf *conf)
1548 {
1549         int i;
1550         struct mirror_info *tmp;
1551
1552         printk(KERN_DEBUG "RAID10 conf printout:\n");
1553         if (!conf) {
1554                 printk(KERN_DEBUG "(!conf)\n");
1555                 return;
1556         }
1557         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1558                 conf->geo.raid_disks);
1559
1560         for (i = 0; i < conf->geo.raid_disks; i++) {
1561                 char b[BDEVNAME_SIZE];
1562                 tmp = conf->mirrors + i;
1563                 if (tmp->rdev)
1564                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1565                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1566                                 !test_bit(Faulty, &tmp->rdev->flags),
1567                                 bdevname(tmp->rdev->bdev,b));
1568         }
1569 }
1570
1571 static void close_sync(struct r10conf *conf)
1572 {
1573         wait_barrier(conf);
1574         allow_barrier(conf);
1575
1576         mempool_destroy(conf->r10buf_pool);
1577         conf->r10buf_pool = NULL;
1578 }
1579
1580 static int raid10_spare_active(struct mddev *mddev)
1581 {
1582         int i;
1583         struct r10conf *conf = mddev->private;
1584         struct mirror_info *tmp;
1585         int count = 0;
1586         unsigned long flags;
1587
1588         /*
1589          * Find all non-in_sync disks within the RAID10 configuration
1590          * and mark them in_sync
1591          */
1592         for (i = 0; i < conf->geo.raid_disks; i++) {
1593                 tmp = conf->mirrors + i;
1594                 if (tmp->replacement
1595                     && tmp->replacement->recovery_offset == MaxSector
1596                     && !test_bit(Faulty, &tmp->replacement->flags)
1597                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1598                         /* Replacement has just become active */
1599                         if (!tmp->rdev
1600                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1601                                 count++;
1602                         if (tmp->rdev) {
1603                                 /* Replaced device not technically faulty,
1604                                  * but we need to be sure it gets removed
1605                                  * and never re-added.
1606                                  */
1607                                 set_bit(Faulty, &tmp->rdev->flags);
1608                                 sysfs_notify_dirent_safe(
1609                                         tmp->rdev->sysfs_state);
1610                         }
1611                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1612                 } else if (tmp->rdev
1613                            && !test_bit(Faulty, &tmp->rdev->flags)
1614                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1615                         count++;
1616                         sysfs_notify_dirent(tmp->rdev->sysfs_state);
1617                 }
1618         }
1619         spin_lock_irqsave(&conf->device_lock, flags);
1620         mddev->degraded -= count;
1621         spin_unlock_irqrestore(&conf->device_lock, flags);
1622
1623         print_conf(conf);
1624         return count;
1625 }
1626
1627
1628 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1629 {
1630         struct r10conf *conf = mddev->private;
1631         int err = -EEXIST;
1632         int mirror;
1633         int first = 0;
1634         int last = conf->geo.raid_disks - 1;
1635         struct request_queue *q = bdev_get_queue(rdev->bdev);
1636
1637         if (mddev->recovery_cp < MaxSector)
1638                 /* only hot-add to in-sync arrays, as recovery is
1639                  * very different from resync
1640                  */
1641                 return -EBUSY;
1642         if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1643                 return -EINVAL;
1644
1645         if (rdev->raid_disk >= 0)
1646                 first = last = rdev->raid_disk;
1647
1648         if (q->merge_bvec_fn) {
1649                 set_bit(Unmerged, &rdev->flags);
1650                 mddev->merge_check_needed = 1;
1651         }
1652
1653         if (rdev->saved_raid_disk >= first &&
1654             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1655                 mirror = rdev->saved_raid_disk;
1656         else
1657                 mirror = first;
1658         for ( ; mirror <= last ; mirror++) {
1659                 struct mirror_info *p = &conf->mirrors[mirror];
1660                 if (p->recovery_disabled == mddev->recovery_disabled)
1661                         continue;
1662                 if (p->rdev) {
1663                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1664                             p->replacement != NULL)
1665                                 continue;
1666                         clear_bit(In_sync, &rdev->flags);
1667                         set_bit(Replacement, &rdev->flags);
1668                         rdev->raid_disk = mirror;
1669                         err = 0;
1670                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1671                                           rdev->data_offset << 9);
1672                         conf->fullsync = 1;
1673                         rcu_assign_pointer(p->replacement, rdev);
1674                         break;
1675                 }
1676
1677                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1678                                   rdev->data_offset << 9);
1679
1680                 p->head_position = 0;
1681                 p->recovery_disabled = mddev->recovery_disabled - 1;
1682                 rdev->raid_disk = mirror;
1683                 err = 0;
1684                 if (rdev->saved_raid_disk != mirror)
1685                         conf->fullsync = 1;
1686                 rcu_assign_pointer(p->rdev, rdev);
1687                 break;
1688         }
1689         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1690                 /* Some requests might not have seen this new
1691                  * merge_bvec_fn.  We must wait for them to complete
1692                  * before merging the device fully.
1693                  * First we make sure any code which has tested
1694                  * our function has submitted the request, then
1695                  * we wait for all outstanding requests to complete.
1696                  */
1697                 synchronize_sched();
1698                 raise_barrier(conf, 0);
1699                 lower_barrier(conf);
1700                 clear_bit(Unmerged, &rdev->flags);
1701         }
1702         md_integrity_add_rdev(rdev, mddev);
1703         print_conf(conf);
1704         return err;
1705 }
1706
1707 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1708 {
1709         struct r10conf *conf = mddev->private;
1710         int err = 0;
1711         int number = rdev->raid_disk;
1712         struct md_rdev **rdevp;
1713         struct mirror_info *p = conf->mirrors + number;
1714
1715         print_conf(conf);
1716         if (rdev == p->rdev)
1717                 rdevp = &p->rdev;
1718         else if (rdev == p->replacement)
1719                 rdevp = &p->replacement;
1720         else
1721                 return 0;
1722
1723         if (test_bit(In_sync, &rdev->flags) ||
1724             atomic_read(&rdev->nr_pending)) {
1725                 err = -EBUSY;
1726                 goto abort;
1727         }
1728         /* Only remove faulty devices if recovery
1729          * is not possible.
1730          */
1731         if (!test_bit(Faulty, &rdev->flags) &&
1732             mddev->recovery_disabled != p->recovery_disabled &&
1733             (!p->replacement || p->replacement == rdev) &&
1734             enough(conf, -1)) {
1735                 err = -EBUSY;
1736                 goto abort;
1737         }
1738         *rdevp = NULL;
1739         synchronize_rcu();
1740         if (atomic_read(&rdev->nr_pending)) {
1741                 /* lost the race, try later */
1742                 err = -EBUSY;
1743                 *rdevp = rdev;
1744                 goto abort;
1745         } else if (p->replacement) {
1746                 /* We must have just cleared 'rdev' */
1747                 p->rdev = p->replacement;
1748                 clear_bit(Replacement, &p->replacement->flags);
1749                 smp_mb(); /* Make sure other CPUs may see both as identical
1750                            * but will never see neither -- if they are careful.
1751                            */
1752                 p->replacement = NULL;
1753                 clear_bit(WantReplacement, &rdev->flags);
1754         } else
1755                 /* We might have just remove the Replacement as faulty
1756                  * Clear the flag just in case
1757                  */
1758                 clear_bit(WantReplacement, &rdev->flags);
1759
1760         err = md_integrity_register(mddev);
1761
1762 abort:
1763
1764         print_conf(conf);
1765         return err;
1766 }
1767
1768
1769 static void end_sync_read(struct bio *bio, int error)
1770 {
1771         struct r10bio *r10_bio = bio->bi_private;
1772         struct r10conf *conf = r10_bio->mddev->private;
1773         int d;
1774
1775         if (bio == r10_bio->master_bio) {
1776                 /* this is a reshape read */
1777                 d = r10_bio->read_slot; /* really the read dev */
1778         } else
1779                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1780
1781         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1782                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1783         else
1784                 /* The write handler will notice the lack of
1785                  * R10BIO_Uptodate and record any errors etc
1786                  */
1787                 atomic_add(r10_bio->sectors,
1788                            &conf->mirrors[d].rdev->corrected_errors);
1789
1790         /* for reconstruct, we always reschedule after a read.
1791          * for resync, only after all reads
1792          */
1793         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1794         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1795             atomic_dec_and_test(&r10_bio->remaining)) {
1796                 /* we have read all the blocks,
1797                  * do the comparison in process context in raid10d
1798                  */
1799                 reschedule_retry(r10_bio);
1800         }
1801 }
1802
1803 static void end_sync_request(struct r10bio *r10_bio)
1804 {
1805         struct mddev *mddev = r10_bio->mddev;
1806
1807         while (atomic_dec_and_test(&r10_bio->remaining)) {
1808                 if (r10_bio->master_bio == NULL) {
1809                         /* the primary of several recovery bios */
1810                         sector_t s = r10_bio->sectors;
1811                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1812                             test_bit(R10BIO_WriteError, &r10_bio->state))
1813                                 reschedule_retry(r10_bio);
1814                         else
1815                                 put_buf(r10_bio);
1816                         md_done_sync(mddev, s, 1);
1817                         break;
1818                 } else {
1819                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1820                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1821                             test_bit(R10BIO_WriteError, &r10_bio->state))
1822                                 reschedule_retry(r10_bio);
1823                         else
1824                                 put_buf(r10_bio);
1825                         r10_bio = r10_bio2;
1826                 }
1827         }
1828 }
1829
1830 static void end_sync_write(struct bio *bio, int error)
1831 {
1832         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1833         struct r10bio *r10_bio = bio->bi_private;
1834         struct mddev *mddev = r10_bio->mddev;
1835         struct r10conf *conf = mddev->private;
1836         int d;
1837         sector_t first_bad;
1838         int bad_sectors;
1839         int slot;
1840         int repl;
1841         struct md_rdev *rdev = NULL;
1842
1843         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1844         if (repl)
1845                 rdev = conf->mirrors[d].replacement;
1846         else
1847                 rdev = conf->mirrors[d].rdev;
1848
1849         if (!uptodate) {
1850                 if (repl)
1851                         md_error(mddev, rdev);
1852                 else {
1853                         set_bit(WriteErrorSeen, &rdev->flags);
1854                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1855                                 set_bit(MD_RECOVERY_NEEDED,
1856                                         &rdev->mddev->recovery);
1857                         set_bit(R10BIO_WriteError, &r10_bio->state);
1858                 }
1859         } else if (is_badblock(rdev,
1860                              r10_bio->devs[slot].addr,
1861                              r10_bio->sectors,
1862                              &first_bad, &bad_sectors))
1863                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1864
1865         rdev_dec_pending(rdev, mddev);
1866
1867         end_sync_request(r10_bio);
1868 }
1869
1870 /*
1871  * Note: sync and recover and handled very differently for raid10
1872  * This code is for resync.
1873  * For resync, we read through virtual addresses and read all blocks.
1874  * If there is any error, we schedule a write.  The lowest numbered
1875  * drive is authoritative.
1876  * However requests come for physical address, so we need to map.
1877  * For every physical address there are raid_disks/copies virtual addresses,
1878  * which is always are least one, but is not necessarly an integer.
1879  * This means that a physical address can span multiple chunks, so we may
1880  * have to submit multiple io requests for a single sync request.
1881  */
1882 /*
1883  * We check if all blocks are in-sync and only write to blocks that
1884  * aren't in sync
1885  */
1886 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1887 {
1888         struct r10conf *conf = mddev->private;
1889         int i, first;
1890         struct bio *tbio, *fbio;
1891         int vcnt;
1892
1893         atomic_set(&r10_bio->remaining, 1);
1894
1895         /* find the first device with a block */
1896         for (i=0; i<conf->copies; i++)
1897                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1898                         break;
1899
1900         if (i == conf->copies)
1901                 goto done;
1902
1903         first = i;
1904         fbio = r10_bio->devs[i].bio;
1905
1906         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1907         /* now find blocks with errors */
1908         for (i=0 ; i < conf->copies ; i++) {
1909                 int  j, d;
1910
1911                 tbio = r10_bio->devs[i].bio;
1912
1913                 if (tbio->bi_end_io != end_sync_read)
1914                         continue;
1915                 if (i == first)
1916                         continue;
1917                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1918                         /* We know that the bi_io_vec layout is the same for
1919                          * both 'first' and 'i', so we just compare them.
1920                          * All vec entries are PAGE_SIZE;
1921                          */
1922                         for (j = 0; j < vcnt; j++)
1923                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1924                                            page_address(tbio->bi_io_vec[j].bv_page),
1925                                            fbio->bi_io_vec[j].bv_len))
1926                                         break;
1927                         if (j == vcnt)
1928                                 continue;
1929                         mddev->resync_mismatches += r10_bio->sectors;
1930                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1931                                 /* Don't fix anything. */
1932                                 continue;
1933                 }
1934                 /* Ok, we need to write this bio, either to correct an
1935                  * inconsistency or to correct an unreadable block.
1936                  * First we need to fixup bv_offset, bv_len and
1937                  * bi_vecs, as the read request might have corrupted these
1938                  */
1939                 tbio->bi_vcnt = vcnt;
1940                 tbio->bi_size = r10_bio->sectors << 9;
1941                 tbio->bi_idx = 0;
1942                 tbio->bi_phys_segments = 0;
1943                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1944                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1945                 tbio->bi_next = NULL;
1946                 tbio->bi_rw = WRITE;
1947                 tbio->bi_private = r10_bio;
1948                 tbio->bi_sector = r10_bio->devs[i].addr;
1949
1950                 for (j=0; j < vcnt ; j++) {
1951                         tbio->bi_io_vec[j].bv_offset = 0;
1952                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1953
1954                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1955                                page_address(fbio->bi_io_vec[j].bv_page),
1956                                PAGE_SIZE);
1957                 }
1958                 tbio->bi_end_io = end_sync_write;
1959
1960                 d = r10_bio->devs[i].devnum;
1961                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1962                 atomic_inc(&r10_bio->remaining);
1963                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1964
1965                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1966                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1967                 generic_make_request(tbio);
1968         }
1969
1970         /* Now write out to any replacement devices
1971          * that are active
1972          */
1973         for (i = 0; i < conf->copies; i++) {
1974                 int j, d;
1975
1976                 tbio = r10_bio->devs[i].repl_bio;
1977                 if (!tbio || !tbio->bi_end_io)
1978                         continue;
1979                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1980                     && r10_bio->devs[i].bio != fbio)
1981                         for (j = 0; j < vcnt; j++)
1982                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1983                                        page_address(fbio->bi_io_vec[j].bv_page),
1984                                        PAGE_SIZE);
1985                 d = r10_bio->devs[i].devnum;
1986                 atomic_inc(&r10_bio->remaining);
1987                 md_sync_acct(conf->mirrors[d].replacement->bdev,
1988                              tbio->bi_size >> 9);
1989                 generic_make_request(tbio);
1990         }
1991
1992 done:
1993         if (atomic_dec_and_test(&r10_bio->remaining)) {
1994                 md_done_sync(mddev, r10_bio->sectors, 1);
1995                 put_buf(r10_bio);
1996         }
1997 }
1998
1999 /*
2000  * Now for the recovery code.
2001  * Recovery happens across physical sectors.
2002  * We recover all non-is_sync drives by finding the virtual address of
2003  * each, and then choose a working drive that also has that virt address.
2004  * There is a separate r10_bio for each non-in_sync drive.
2005  * Only the first two slots are in use. The first for reading,
2006  * The second for writing.
2007  *
2008  */
2009 static void fix_recovery_read_error(struct r10bio *r10_bio)
2010 {
2011         /* We got a read error during recovery.
2012          * We repeat the read in smaller page-sized sections.
2013          * If a read succeeds, write it to the new device or record
2014          * a bad block if we cannot.
2015          * If a read fails, record a bad block on both old and
2016          * new devices.
2017          */
2018         struct mddev *mddev = r10_bio->mddev;
2019         struct r10conf *conf = mddev->private;
2020         struct bio *bio = r10_bio->devs[0].bio;
2021         sector_t sect = 0;
2022         int sectors = r10_bio->sectors;
2023         int idx = 0;
2024         int dr = r10_bio->devs[0].devnum;
2025         int dw = r10_bio->devs[1].devnum;
2026
2027         while (sectors) {
2028                 int s = sectors;
2029                 struct md_rdev *rdev;
2030                 sector_t addr;
2031                 int ok;
2032
2033                 if (s > (PAGE_SIZE>>9))
2034                         s = PAGE_SIZE >> 9;
2035
2036                 rdev = conf->mirrors[dr].rdev;
2037                 addr = r10_bio->devs[0].addr + sect,
2038                 ok = sync_page_io(rdev,
2039                                   addr,
2040                                   s << 9,
2041                                   bio->bi_io_vec[idx].bv_page,
2042                                   READ, false);
2043                 if (ok) {
2044                         rdev = conf->mirrors[dw].rdev;
2045                         addr = r10_bio->devs[1].addr + sect;
2046                         ok = sync_page_io(rdev,
2047                                           addr,
2048                                           s << 9,
2049                                           bio->bi_io_vec[idx].bv_page,
2050                                           WRITE, false);
2051                         if (!ok) {
2052                                 set_bit(WriteErrorSeen, &rdev->flags);
2053                                 if (!test_and_set_bit(WantReplacement,
2054                                                       &rdev->flags))
2055                                         set_bit(MD_RECOVERY_NEEDED,
2056                                                 &rdev->mddev->recovery);
2057                         }
2058                 }
2059                 if (!ok) {
2060                         /* We don't worry if we cannot set a bad block -
2061                          * it really is bad so there is no loss in not
2062                          * recording it yet
2063                          */
2064                         rdev_set_badblocks(rdev, addr, s, 0);
2065
2066                         if (rdev != conf->mirrors[dw].rdev) {
2067                                 /* need bad block on destination too */
2068                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2069                                 addr = r10_bio->devs[1].addr + sect;
2070                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2071                                 if (!ok) {
2072                                         /* just abort the recovery */
2073                                         printk(KERN_NOTICE
2074                                                "md/raid10:%s: recovery aborted"
2075                                                " due to read error\n",
2076                                                mdname(mddev));
2077
2078                                         conf->mirrors[dw].recovery_disabled
2079                                                 = mddev->recovery_disabled;
2080                                         set_bit(MD_RECOVERY_INTR,
2081                                                 &mddev->recovery);
2082                                         break;
2083                                 }
2084                         }
2085                 }
2086
2087                 sectors -= s;
2088                 sect += s;
2089                 idx++;
2090         }
2091 }
2092
2093 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2094 {
2095         struct r10conf *conf = mddev->private;
2096         int d;
2097         struct bio *wbio, *wbio2;
2098
2099         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2100                 fix_recovery_read_error(r10_bio);
2101                 end_sync_request(r10_bio);
2102                 return;
2103         }
2104
2105         /*
2106          * share the pages with the first bio
2107          * and submit the write request
2108          */
2109         d = r10_bio->devs[1].devnum;
2110         wbio = r10_bio->devs[1].bio;
2111         wbio2 = r10_bio->devs[1].repl_bio;
2112         if (wbio->bi_end_io) {
2113                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2114                 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2115                 generic_make_request(wbio);
2116         }
2117         if (wbio2 && wbio2->bi_end_io) {
2118                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2119                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2120                              wbio2->bi_size >> 9);
2121                 generic_make_request(wbio2);
2122         }
2123 }
2124
2125
2126 /*
2127  * Used by fix_read_error() to decay the per rdev read_errors.
2128  * We halve the read error count for every hour that has elapsed
2129  * since the last recorded read error.
2130  *
2131  */
2132 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2133 {
2134         struct timespec cur_time_mon;
2135         unsigned long hours_since_last;
2136         unsigned int read_errors = atomic_read(&rdev->read_errors);
2137
2138         ktime_get_ts(&cur_time_mon);
2139
2140         if (rdev->last_read_error.tv_sec == 0 &&
2141             rdev->last_read_error.tv_nsec == 0) {
2142                 /* first time we've seen a read error */
2143                 rdev->last_read_error = cur_time_mon;
2144                 return;
2145         }
2146
2147         hours_since_last = (cur_time_mon.tv_sec -
2148                             rdev->last_read_error.tv_sec) / 3600;
2149
2150         rdev->last_read_error = cur_time_mon;
2151
2152         /*
2153          * if hours_since_last is > the number of bits in read_errors
2154          * just set read errors to 0. We do this to avoid
2155          * overflowing the shift of read_errors by hours_since_last.
2156          */
2157         if (hours_since_last >= 8 * sizeof(read_errors))
2158                 atomic_set(&rdev->read_errors, 0);
2159         else
2160                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2161 }
2162
2163 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2164                             int sectors, struct page *page, int rw)
2165 {
2166         sector_t first_bad;
2167         int bad_sectors;
2168
2169         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2170             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2171                 return -1;
2172         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2173                 /* success */
2174                 return 1;
2175         if (rw == WRITE) {
2176                 set_bit(WriteErrorSeen, &rdev->flags);
2177                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2178                         set_bit(MD_RECOVERY_NEEDED,
2179                                 &rdev->mddev->recovery);
2180         }
2181         /* need to record an error - either for the block or the device */
2182         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2183                 md_error(rdev->mddev, rdev);
2184         return 0;
2185 }
2186
2187 /*
2188  * This is a kernel thread which:
2189  *
2190  *      1.      Retries failed read operations on working mirrors.
2191  *      2.      Updates the raid superblock when problems encounter.
2192  *      3.      Performs writes following reads for array synchronising.
2193  */
2194
2195 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2196 {
2197         int sect = 0; /* Offset from r10_bio->sector */
2198         int sectors = r10_bio->sectors;
2199         struct md_rdev*rdev;
2200         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2201         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2202
2203         /* still own a reference to this rdev, so it cannot
2204          * have been cleared recently.
2205          */
2206         rdev = conf->mirrors[d].rdev;
2207
2208         if (test_bit(Faulty, &rdev->flags))
2209                 /* drive has already been failed, just ignore any
2210                    more fix_read_error() attempts */
2211                 return;
2212
2213         check_decay_read_errors(mddev, rdev);
2214         atomic_inc(&rdev->read_errors);
2215         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2216                 char b[BDEVNAME_SIZE];
2217                 bdevname(rdev->bdev, b);
2218
2219                 printk(KERN_NOTICE
2220                        "md/raid10:%s: %s: Raid device exceeded "
2221                        "read_error threshold [cur %d:max %d]\n",
2222                        mdname(mddev), b,
2223                        atomic_read(&rdev->read_errors), max_read_errors);
2224                 printk(KERN_NOTICE
2225                        "md/raid10:%s: %s: Failing raid device\n",
2226                        mdname(mddev), b);
2227                 md_error(mddev, conf->mirrors[d].rdev);
2228                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2229                 return;
2230         }
2231
2232         while(sectors) {
2233                 int s = sectors;
2234                 int sl = r10_bio->read_slot;
2235                 int success = 0;
2236                 int start;
2237
2238                 if (s > (PAGE_SIZE>>9))
2239                         s = PAGE_SIZE >> 9;
2240
2241                 rcu_read_lock();
2242                 do {
2243                         sector_t first_bad;
2244                         int bad_sectors;
2245
2246                         d = r10_bio->devs[sl].devnum;
2247                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2248                         if (rdev &&
2249                             !test_bit(Unmerged, &rdev->flags) &&
2250                             test_bit(In_sync, &rdev->flags) &&
2251                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2252                                         &first_bad, &bad_sectors) == 0) {
2253                                 atomic_inc(&rdev->nr_pending);
2254                                 rcu_read_unlock();
2255                                 success = sync_page_io(rdev,
2256                                                        r10_bio->devs[sl].addr +
2257                                                        sect,
2258                                                        s<<9,
2259                                                        conf->tmppage, READ, false);
2260                                 rdev_dec_pending(rdev, mddev);
2261                                 rcu_read_lock();
2262                                 if (success)
2263                                         break;
2264                         }
2265                         sl++;
2266                         if (sl == conf->copies)
2267                                 sl = 0;
2268                 } while (!success && sl != r10_bio->read_slot);
2269                 rcu_read_unlock();
2270
2271                 if (!success) {
2272                         /* Cannot read from anywhere, just mark the block
2273                          * as bad on the first device to discourage future
2274                          * reads.
2275                          */
2276                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2277                         rdev = conf->mirrors[dn].rdev;
2278
2279                         if (!rdev_set_badblocks(
2280                                     rdev,
2281                                     r10_bio->devs[r10_bio->read_slot].addr
2282                                     + sect,
2283                                     s, 0)) {
2284                                 md_error(mddev, rdev);
2285                                 r10_bio->devs[r10_bio->read_slot].bio
2286                                         = IO_BLOCKED;
2287                         }
2288                         break;
2289                 }
2290
2291                 start = sl;
2292                 /* write it back and re-read */
2293                 rcu_read_lock();
2294                 while (sl != r10_bio->read_slot) {
2295                         char b[BDEVNAME_SIZE];
2296
2297                         if (sl==0)
2298                                 sl = conf->copies;
2299                         sl--;
2300                         d = r10_bio->devs[sl].devnum;
2301                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2302                         if (!rdev ||
2303                             test_bit(Unmerged, &rdev->flags) ||
2304                             !test_bit(In_sync, &rdev->flags))
2305                                 continue;
2306
2307                         atomic_inc(&rdev->nr_pending);
2308                         rcu_read_unlock();
2309                         if (r10_sync_page_io(rdev,
2310                                              r10_bio->devs[sl].addr +
2311                                              sect,
2312                                              s<<9, conf->tmppage, WRITE)
2313                             == 0) {
2314                                 /* Well, this device is dead */
2315                                 printk(KERN_NOTICE
2316                                        "md/raid10:%s: read correction "
2317                                        "write failed"
2318                                        " (%d sectors at %llu on %s)\n",
2319                                        mdname(mddev), s,
2320                                        (unsigned long long)(
2321                                                sect +
2322                                                choose_data_offset(r10_bio,
2323                                                                   rdev)),
2324                                        bdevname(rdev->bdev, b));
2325                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2326                                        "drive\n",
2327                                        mdname(mddev),
2328                                        bdevname(rdev->bdev, b));
2329                         }
2330                         rdev_dec_pending(rdev, mddev);
2331                         rcu_read_lock();
2332                 }
2333                 sl = start;
2334                 while (sl != r10_bio->read_slot) {
2335                         char b[BDEVNAME_SIZE];
2336
2337                         if (sl==0)
2338                                 sl = conf->copies;
2339                         sl--;
2340                         d = r10_bio->devs[sl].devnum;
2341                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2342                         if (!rdev ||
2343                             !test_bit(In_sync, &rdev->flags))
2344                                 continue;
2345
2346                         atomic_inc(&rdev->nr_pending);
2347                         rcu_read_unlock();
2348                         switch (r10_sync_page_io(rdev,
2349                                              r10_bio->devs[sl].addr +
2350                                              sect,
2351                                              s<<9, conf->tmppage,
2352                                                  READ)) {
2353                         case 0:
2354                                 /* Well, this device is dead */
2355                                 printk(KERN_NOTICE
2356                                        "md/raid10:%s: unable to read back "
2357                                        "corrected sectors"
2358                                        " (%d sectors at %llu on %s)\n",
2359                                        mdname(mddev), s,
2360                                        (unsigned long long)(
2361                                                sect +
2362                                                choose_data_offset(r10_bio, rdev)),
2363                                        bdevname(rdev->bdev, b));
2364                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2365                                        "drive\n",
2366                                        mdname(mddev),
2367                                        bdevname(rdev->bdev, b));
2368                                 break;
2369                         case 1:
2370                                 printk(KERN_INFO
2371                                        "md/raid10:%s: read error corrected"
2372                                        " (%d sectors at %llu on %s)\n",
2373                                        mdname(mddev), s,
2374                                        (unsigned long long)(
2375                                                sect +
2376                                                choose_data_offset(r10_bio, rdev)),
2377                                        bdevname(rdev->bdev, b));
2378                                 atomic_add(s, &rdev->corrected_errors);
2379                         }
2380
2381                         rdev_dec_pending(rdev, mddev);
2382                         rcu_read_lock();
2383                 }
2384                 rcu_read_unlock();
2385
2386                 sectors -= s;
2387                 sect += s;
2388         }
2389 }
2390
2391 static void bi_complete(struct bio *bio, int error)
2392 {
2393         complete((struct completion *)bio->bi_private);
2394 }
2395
2396 static int submit_bio_wait(int rw, struct bio *bio)
2397 {
2398         struct completion event;
2399         rw |= REQ_SYNC;
2400
2401         init_completion(&event);
2402         bio->bi_private = &event;
2403         bio->bi_end_io = bi_complete;
2404         submit_bio(rw, bio);
2405         wait_for_completion(&event);
2406
2407         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2408 }
2409
2410 static int narrow_write_error(struct r10bio *r10_bio, int i)
2411 {
2412         struct bio *bio = r10_bio->master_bio;
2413         struct mddev *mddev = r10_bio->mddev;
2414         struct r10conf *conf = mddev->private;
2415         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2416         /* bio has the data to be written to slot 'i' where
2417          * we just recently had a write error.
2418          * We repeatedly clone the bio and trim down to one block,
2419          * then try the write.  Where the write fails we record
2420          * a bad block.
2421          * It is conceivable that the bio doesn't exactly align with
2422          * blocks.  We must handle this.
2423          *
2424          * We currently own a reference to the rdev.
2425          */
2426
2427         int block_sectors;
2428         sector_t sector;
2429         int sectors;
2430         int sect_to_write = r10_bio->sectors;
2431         int ok = 1;
2432
2433         if (rdev->badblocks.shift < 0)
2434                 return 0;
2435
2436         block_sectors = 1 << rdev->badblocks.shift;
2437         sector = r10_bio->sector;
2438         sectors = ((r10_bio->sector + block_sectors)
2439                    & ~(sector_t)(block_sectors - 1))
2440                 - sector;
2441
2442         while (sect_to_write) {
2443                 struct bio *wbio;
2444                 if (sectors > sect_to_write)
2445                         sectors = sect_to_write;
2446                 /* Write at 'sector' for 'sectors' */
2447                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2448                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2449                 wbio->bi_sector = (r10_bio->devs[i].addr+
2450                                    choose_data_offset(r10_bio, rdev) +
2451                                    (sector - r10_bio->sector));
2452                 wbio->bi_bdev = rdev->bdev;
2453                 if (submit_bio_wait(WRITE, wbio) == 0)
2454                         /* Failure! */
2455                         ok = rdev_set_badblocks(rdev, sector,
2456                                                 sectors, 0)
2457                                 && ok;
2458
2459                 bio_put(wbio);
2460                 sect_to_write -= sectors;
2461                 sector += sectors;
2462                 sectors = block_sectors;
2463         }
2464         return ok;
2465 }
2466
2467 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2468 {
2469         int slot = r10_bio->read_slot;
2470         struct bio *bio;
2471         struct r10conf *conf = mddev->private;
2472         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2473         char b[BDEVNAME_SIZE];
2474         unsigned long do_sync;
2475         int max_sectors;
2476
2477         /* we got a read error. Maybe the drive is bad.  Maybe just
2478          * the block and we can fix it.
2479          * We freeze all other IO, and try reading the block from
2480          * other devices.  When we find one, we re-write
2481          * and check it that fixes the read error.
2482          * This is all done synchronously while the array is
2483          * frozen.
2484          */
2485         bio = r10_bio->devs[slot].bio;
2486         bdevname(bio->bi_bdev, b);
2487         bio_put(bio);
2488         r10_bio->devs[slot].bio = NULL;
2489
2490         if (mddev->ro == 0) {
2491                 freeze_array(conf);
2492                 fix_read_error(conf, mddev, r10_bio);
2493                 unfreeze_array(conf);
2494         } else
2495                 r10_bio->devs[slot].bio = IO_BLOCKED;
2496
2497         rdev_dec_pending(rdev, mddev);
2498
2499 read_more:
2500         rdev = read_balance(conf, r10_bio, &max_sectors);
2501         if (rdev == NULL) {
2502                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2503                        " read error for block %llu\n",
2504                        mdname(mddev), b,
2505                        (unsigned long long)r10_bio->sector);
2506                 raid_end_bio_io(r10_bio);
2507                 return;
2508         }
2509
2510         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2511         slot = r10_bio->read_slot;
2512         printk_ratelimited(
2513                 KERN_ERR
2514                 "md/raid10:%s: %s: redirecting"
2515                 "sector %llu to another mirror\n",
2516                 mdname(mddev),
2517                 bdevname(rdev->bdev, b),
2518                 (unsigned long long)r10_bio->sector);
2519         bio = bio_clone_mddev(r10_bio->master_bio,
2520                               GFP_NOIO, mddev);
2521         md_trim_bio(bio,
2522                     r10_bio->sector - bio->bi_sector,
2523                     max_sectors);
2524         r10_bio->devs[slot].bio = bio;
2525         r10_bio->devs[slot].rdev = rdev;
2526         bio->bi_sector = r10_bio->devs[slot].addr
2527                 + choose_data_offset(r10_bio, rdev);
2528         bio->bi_bdev = rdev->bdev;
2529         bio->bi_rw = READ | do_sync;
2530         bio->bi_private = r10_bio;
2531         bio->bi_end_io = raid10_end_read_request;
2532         if (max_sectors < r10_bio->sectors) {
2533                 /* Drat - have to split this up more */
2534                 struct bio *mbio = r10_bio->master_bio;
2535                 int sectors_handled =
2536                         r10_bio->sector + max_sectors
2537                         - mbio->bi_sector;
2538                 r10_bio->sectors = max_sectors;
2539                 spin_lock_irq(&conf->device_lock);
2540                 if (mbio->bi_phys_segments == 0)
2541                         mbio->bi_phys_segments = 2;
2542                 else
2543                         mbio->bi_phys_segments++;
2544                 spin_unlock_irq(&conf->device_lock);
2545                 generic_make_request(bio);
2546
2547                 r10_bio = mempool_alloc(conf->r10bio_pool,
2548                                         GFP_NOIO);
2549                 r10_bio->master_bio = mbio;
2550                 r10_bio->sectors = (mbio->bi_size >> 9)
2551                         - sectors_handled;
2552                 r10_bio->state = 0;
2553                 set_bit(R10BIO_ReadError,
2554                         &r10_bio->state);
2555                 r10_bio->mddev = mddev;
2556                 r10_bio->sector = mbio->bi_sector
2557                         + sectors_handled;
2558
2559                 goto read_more;
2560         } else
2561                 generic_make_request(bio);
2562 }
2563
2564 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2565 {
2566         /* Some sort of write request has finished and it
2567          * succeeded in writing where we thought there was a
2568          * bad block.  So forget the bad block.
2569          * Or possibly if failed and we need to record
2570          * a bad block.
2571          */
2572         int m;
2573         struct md_rdev *rdev;
2574
2575         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2576             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2577                 for (m = 0; m < conf->copies; m++) {
2578                         int dev = r10_bio->devs[m].devnum;
2579                         rdev = conf->mirrors[dev].rdev;
2580                         if (r10_bio->devs[m].bio == NULL)
2581                                 continue;
2582                         if (test_bit(BIO_UPTODATE,
2583                                      &r10_bio->devs[m].bio->bi_flags)) {
2584                                 rdev_clear_badblocks(
2585                                         rdev,
2586                                         r10_bio->devs[m].addr,
2587                                         r10_bio->sectors, 0);
2588                         } else {
2589                                 if (!rdev_set_badblocks(
2590                                             rdev,
2591                                             r10_bio->devs[m].addr,
2592                                             r10_bio->sectors, 0))
2593                                         md_error(conf->mddev, rdev);
2594                         }
2595                         rdev = conf->mirrors[dev].replacement;
2596                         if (r10_bio->devs[m].repl_bio == NULL)
2597                                 continue;
2598                         if (test_bit(BIO_UPTODATE,
2599                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2600                                 rdev_clear_badblocks(
2601                                         rdev,
2602                                         r10_bio->devs[m].addr,
2603                                         r10_bio->sectors, 0);
2604                         } else {
2605                                 if (!rdev_set_badblocks(
2606                                             rdev,
2607                                             r10_bio->devs[m].addr,
2608                                             r10_bio->sectors, 0))
2609                                         md_error(conf->mddev, rdev);
2610                         }
2611                 }
2612                 put_buf(r10_bio);
2613         } else {
2614                 for (m = 0; m < conf->copies; m++) {
2615                         int dev = r10_bio->devs[m].devnum;
2616                         struct bio *bio = r10_bio->devs[m].bio;
2617                         rdev = conf->mirrors[dev].rdev;
2618                         if (bio == IO_MADE_GOOD) {
2619                                 rdev_clear_badblocks(
2620                                         rdev,
2621                                         r10_bio->devs[m].addr,
2622                                         r10_bio->sectors, 0);
2623                                 rdev_dec_pending(rdev, conf->mddev);
2624                         } else if (bio != NULL &&
2625                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2626                                 if (!narrow_write_error(r10_bio, m)) {
2627                                         md_error(conf->mddev, rdev);
2628                                         set_bit(R10BIO_Degraded,
2629                                                 &r10_bio->state);
2630                                 }
2631                                 rdev_dec_pending(rdev, conf->mddev);
2632                         }
2633                         bio = r10_bio->devs[m].repl_bio;
2634                         rdev = conf->mirrors[dev].replacement;
2635                         if (rdev && bio == IO_MADE_GOOD) {
2636                                 rdev_clear_badblocks(
2637                                         rdev,
2638                                         r10_bio->devs[m].addr,
2639                                         r10_bio->sectors, 0);
2640                                 rdev_dec_pending(rdev, conf->mddev);
2641                         }
2642                 }
2643                 if (test_bit(R10BIO_WriteError,
2644                              &r10_bio->state))
2645                         close_write(r10_bio);
2646                 raid_end_bio_io(r10_bio);
2647         }
2648 }
2649
2650 static void raid10d(struct mddev *mddev)
2651 {
2652         struct r10bio *r10_bio;
2653         unsigned long flags;
2654         struct r10conf *conf = mddev->private;
2655         struct list_head *head = &conf->retry_list;
2656         struct blk_plug plug;
2657
2658         md_check_recovery(mddev);
2659
2660         blk_start_plug(&plug);
2661         for (;;) {
2662
2663                 flush_pending_writes(conf);
2664
2665                 spin_lock_irqsave(&conf->device_lock, flags);
2666                 if (list_empty(head)) {
2667                         spin_unlock_irqrestore(&conf->device_lock, flags);
2668                         break;
2669                 }
2670                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2671                 list_del(head->prev);
2672                 conf->nr_queued--;
2673                 spin_unlock_irqrestore(&conf->device_lock, flags);
2674
2675                 mddev = r10_bio->mddev;
2676                 conf = mddev->private;
2677                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2678                     test_bit(R10BIO_WriteError, &r10_bio->state))
2679                         handle_write_completed(conf, r10_bio);
2680                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2681                         reshape_request_write(mddev, r10_bio);
2682                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2683                         sync_request_write(mddev, r10_bio);
2684                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2685                         recovery_request_write(mddev, r10_bio);
2686                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2687                         handle_read_error(mddev, r10_bio);
2688                 else {
2689                         /* just a partial read to be scheduled from a
2690                          * separate context
2691                          */
2692                         int slot = r10_bio->read_slot;
2693                         generic_make_request(r10_bio->devs[slot].bio);
2694                 }
2695
2696                 cond_resched();
2697                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2698                         md_check_recovery(mddev);
2699         }
2700         blk_finish_plug(&plug);
2701 }
2702
2703
2704 static int init_resync(struct r10conf *conf)
2705 {
2706         int buffs;
2707         int i;
2708
2709         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2710         BUG_ON(conf->r10buf_pool);
2711         conf->have_replacement = 0;
2712         for (i = 0; i < conf->geo.raid_disks; i++)
2713                 if (conf->mirrors[i].replacement)
2714                         conf->have_replacement = 1;
2715         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2716         if (!conf->r10buf_pool)
2717                 return -ENOMEM;
2718         conf->next_resync = 0;
2719         return 0;
2720 }
2721
2722 /*
2723  * perform a "sync" on one "block"
2724  *
2725  * We need to make sure that no normal I/O request - particularly write
2726  * requests - conflict with active sync requests.
2727  *
2728  * This is achieved by tracking pending requests and a 'barrier' concept
2729  * that can be installed to exclude normal IO requests.
2730  *
2731  * Resync and recovery are handled very differently.
2732  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2733  *
2734  * For resync, we iterate over virtual addresses, read all copies,
2735  * and update if there are differences.  If only one copy is live,
2736  * skip it.
2737  * For recovery, we iterate over physical addresses, read a good
2738  * value for each non-in_sync drive, and over-write.
2739  *
2740  * So, for recovery we may have several outstanding complex requests for a
2741  * given address, one for each out-of-sync device.  We model this by allocating
2742  * a number of r10_bio structures, one for each out-of-sync device.
2743  * As we setup these structures, we collect all bio's together into a list
2744  * which we then process collectively to add pages, and then process again
2745  * to pass to generic_make_request.
2746  *
2747  * The r10_bio structures are linked using a borrowed master_bio pointer.
2748  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2749  * has its remaining count decremented to 0, the whole complex operation
2750  * is complete.
2751  *
2752  */
2753
2754 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2755                              int *skipped, int go_faster)
2756 {
2757         struct r10conf *conf = mddev->private;
2758         struct r10bio *r10_bio;
2759         struct bio *biolist = NULL, *bio;
2760         sector_t max_sector, nr_sectors;
2761         int i;
2762         int max_sync;
2763         sector_t sync_blocks;
2764         sector_t sectors_skipped = 0;
2765         int chunks_skipped = 0;
2766         sector_t chunk_mask = conf->geo.chunk_mask;
2767
2768         if (!conf->r10buf_pool)
2769                 if (init_resync(conf))
2770                         return 0;
2771
2772  skipped:
2773         max_sector = mddev->dev_sectors;
2774         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2775             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2776                 max_sector = mddev->resync_max_sectors;
2777         if (sector_nr >= max_sector) {
2778                 /* If we aborted, we need to abort the
2779                  * sync on the 'current' bitmap chucks (there can
2780                  * be several when recovering multiple devices).
2781                  * as we may have started syncing it but not finished.
2782                  * We can find the current address in
2783                  * mddev->curr_resync, but for recovery,
2784                  * we need to convert that to several
2785                  * virtual addresses.
2786                  */
2787                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2788                         end_reshape(conf);
2789                         return 0;
2790                 }
2791
2792                 if (mddev->curr_resync < max_sector) { /* aborted */
2793                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2794                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2795                                                 &sync_blocks, 1);
2796                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2797                                 sector_t sect =
2798                                         raid10_find_virt(conf, mddev->curr_resync, i);
2799                                 bitmap_end_sync(mddev->bitmap, sect,
2800                                                 &sync_blocks, 1);
2801                         }
2802                 } else {
2803                         /* completed sync */
2804                         if ((!mddev->bitmap || conf->fullsync)
2805                             && conf->have_replacement
2806                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2807                                 /* Completed a full sync so the replacements
2808                                  * are now fully recovered.
2809                                  */
2810                                 for (i = 0; i < conf->geo.raid_disks; i++)
2811                                         if (conf->mirrors[i].replacement)
2812                                                 conf->mirrors[i].replacement
2813                                                         ->recovery_offset
2814                                                         = MaxSector;
2815                         }
2816                         conf->fullsync = 0;
2817                 }
2818                 bitmap_close_sync(mddev->bitmap);
2819                 close_sync(conf);
2820                 *skipped = 1;
2821                 return sectors_skipped;
2822         }
2823
2824         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2825                 return reshape_request(mddev, sector_nr, skipped);
2826
2827         if (chunks_skipped >= conf->geo.raid_disks) {
2828                 /* if there has been nothing to do on any drive,
2829                  * then there is nothing to do at all..
2830                  */
2831                 *skipped = 1;
2832                 return (max_sector - sector_nr) + sectors_skipped;
2833         }
2834
2835         if (max_sector > mddev->resync_max)
2836                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2837
2838         /* make sure whole request will fit in a chunk - if chunks
2839          * are meaningful
2840          */
2841         if (conf->geo.near_copies < conf->geo.raid_disks &&
2842             max_sector > (sector_nr | chunk_mask))
2843                 max_sector = (sector_nr | chunk_mask) + 1;
2844         /*
2845          * If there is non-resync activity waiting for us then
2846          * put in a delay to throttle resync.
2847          */
2848         if (!go_faster && conf->nr_waiting)
2849                 msleep_interruptible(1000);
2850
2851         /* Again, very different code for resync and recovery.
2852          * Both must result in an r10bio with a list of bios that
2853          * have bi_end_io, bi_sector, bi_bdev set,
2854          * and bi_private set to the r10bio.
2855          * For recovery, we may actually create several r10bios
2856          * with 2 bios in each, that correspond to the bios in the main one.
2857          * In this case, the subordinate r10bios link back through a
2858          * borrowed master_bio pointer, and the counter in the master
2859          * includes a ref from each subordinate.
2860          */
2861         /* First, we decide what to do and set ->bi_end_io
2862          * To end_sync_read if we want to read, and
2863          * end_sync_write if we will want to write.
2864          */
2865
2866         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2867         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2868                 /* recovery... the complicated one */
2869                 int j;
2870                 r10_bio = NULL;
2871
2872                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2873                         int still_degraded;
2874                         struct r10bio *rb2;
2875                         sector_t sect;
2876                         int must_sync;
2877                         int any_working;
2878                         struct mirror_info *mirror = &conf->mirrors[i];
2879
2880                         if ((mirror->rdev == NULL ||
2881                              test_bit(In_sync, &mirror->rdev->flags))
2882                             &&
2883                             (mirror->replacement == NULL ||
2884                              test_bit(Faulty,
2885                                       &mirror->replacement->flags)))
2886                                 continue;
2887
2888                         still_degraded = 0;
2889                         /* want to reconstruct this device */
2890                         rb2 = r10_bio;
2891                         sect = raid10_find_virt(conf, sector_nr, i);
2892                         /* Unless we are doing a full sync, or a replacement
2893                          * we only need to recover the block if it is set in
2894                          * the bitmap
2895                          */
2896                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2897                                                       &sync_blocks, 1);
2898                         if (sync_blocks < max_sync)
2899                                 max_sync = sync_blocks;
2900                         if (!must_sync &&
2901                             mirror->replacement == NULL &&
2902                             !conf->fullsync) {
2903                                 /* yep, skip the sync_blocks here, but don't assume
2904                                  * that there will never be anything to do here
2905                                  */
2906                                 chunks_skipped = -1;
2907                                 continue;
2908                         }
2909
2910                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2911                         raise_barrier(conf, rb2 != NULL);
2912                         atomic_set(&r10_bio->remaining, 0);
2913
2914                         r10_bio->master_bio = (struct bio*)rb2;
2915                         if (rb2)
2916                                 atomic_inc(&rb2->remaining);
2917                         r10_bio->mddev = mddev;
2918                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2919                         r10_bio->sector = sect;
2920
2921                         raid10_find_phys(conf, r10_bio);
2922
2923                         /* Need to check if the array will still be
2924                          * degraded
2925                          */
2926                         for (j = 0; j < conf->geo.raid_disks; j++)
2927                                 if (conf->mirrors[j].rdev == NULL ||
2928                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2929                                         still_degraded = 1;
2930                                         break;
2931                                 }
2932
2933                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2934                                                       &sync_blocks, still_degraded);
2935
2936                         any_working = 0;
2937                         for (j=0; j<conf->copies;j++) {
2938                                 int k;
2939                                 int d = r10_bio->devs[j].devnum;
2940                                 sector_t from_addr, to_addr;
2941                                 struct md_rdev *rdev;
2942                                 sector_t sector, first_bad;
2943                                 int bad_sectors;
2944                                 if (!conf->mirrors[d].rdev ||
2945                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2946                                         continue;
2947                                 /* This is where we read from */
2948                                 any_working = 1;
2949                                 rdev = conf->mirrors[d].rdev;
2950                                 sector = r10_bio->devs[j].addr;
2951
2952                                 if (is_badblock(rdev, sector, max_sync,
2953                                                 &first_bad, &bad_sectors)) {
2954                                         if (first_bad > sector)
2955                                                 max_sync = first_bad - sector;
2956                                         else {
2957                                                 bad_sectors -= (sector
2958                                                                 - first_bad);
2959                                                 if (max_sync > bad_sectors)
2960                                                         max_sync = bad_sectors;
2961                                                 continue;
2962                                         }
2963                                 }
2964                                 bio = r10_bio->devs[0].bio;
2965                                 bio->bi_next = biolist;
2966                                 biolist = bio;
2967                                 bio->bi_private = r10_bio;
2968                                 bio->bi_end_io = end_sync_read;
2969                                 bio->bi_rw = READ;
2970                                 from_addr = r10_bio->devs[j].addr;
2971                                 bio->bi_sector = from_addr + rdev->data_offset;
2972                                 bio->bi_bdev = rdev->bdev;
2973                                 atomic_inc(&rdev->nr_pending);
2974                                 /* and we write to 'i' (if not in_sync) */
2975
2976                                 for (k=0; k<conf->copies; k++)
2977                                         if (r10_bio->devs[k].devnum == i)
2978                                                 break;
2979                                 BUG_ON(k == conf->copies);
2980                                 to_addr = r10_bio->devs[k].addr;
2981                                 r10_bio->devs[0].devnum = d;
2982                                 r10_bio->devs[0].addr = from_addr;
2983                                 r10_bio->devs[1].devnum = i;
2984                                 r10_bio->devs[1].addr = to_addr;
2985
2986                                 rdev = mirror->rdev;
2987                                 if (!test_bit(In_sync, &rdev->flags)) {
2988                                         bio = r10_bio->devs[1].bio;
2989                                         bio->bi_next = biolist;
2990                                         biolist = bio;
2991                                         bio->bi_private = r10_bio;
2992                                         bio->bi_end_io = end_sync_write;
2993                                         bio->bi_rw = WRITE;
2994                                         bio->bi_sector = to_addr
2995                                                 + rdev->data_offset;
2996                                         bio->bi_bdev = rdev->bdev;
2997                                         atomic_inc(&r10_bio->remaining);
2998                                 } else
2999                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3000
3001                                 /* and maybe write to replacement */
3002                                 bio = r10_bio->devs[1].repl_bio;
3003                                 if (bio)
3004                                         bio->bi_end_io = NULL;
3005                                 rdev = mirror->replacement;
3006                                 /* Note: if rdev != NULL, then bio
3007                                  * cannot be NULL as r10buf_pool_alloc will
3008                                  * have allocated it.
3009                                  * So the second test here is pointless.
3010                                  * But it keeps semantic-checkers happy, and
3011                                  * this comment keeps human reviewers
3012                                  * happy.
3013                                  */
3014                                 if (rdev == NULL || bio == NULL ||
3015                                     test_bit(Faulty, &rdev->flags))
3016                                         break;
3017                                 bio->bi_next = biolist;
3018                                 biolist = bio;
3019                                 bio->bi_private = r10_bio;
3020                                 bio->bi_end_io = end_sync_write;
3021                                 bio->bi_rw = WRITE;
3022                                 bio->bi_sector = to_addr + rdev->data_offset;
3023                                 bio->bi_bdev = rdev->bdev;
3024                                 atomic_inc(&r10_bio->remaining);
3025                                 break;
3026                         }
3027                         if (j == conf->copies) {
3028                                 /* Cannot recover, so abort the recovery or
3029                                  * record a bad block */
3030                                 put_buf(r10_bio);
3031                                 if (rb2)
3032                                         atomic_dec(&rb2->remaining);
3033                                 r10_bio = rb2;
3034                                 if (any_working) {
3035                                         /* problem is that there are bad blocks
3036                                          * on other device(s)
3037                                          */
3038                                         int k;
3039                                         for (k = 0; k < conf->copies; k++)
3040                                                 if (r10_bio->devs[k].devnum == i)
3041                                                         break;
3042                                         if (!test_bit(In_sync,
3043                                                       &mirror->rdev->flags)
3044                                             && !rdev_set_badblocks(
3045                                                     mirror->rdev,
3046                                                     r10_bio->devs[k].addr,
3047                                                     max_sync, 0))
3048                                                 any_working = 0;
3049                                         if (mirror->replacement &&
3050                                             !rdev_set_badblocks(
3051                                                     mirror->replacement,
3052                                                     r10_bio->devs[k].addr,
3053                                                     max_sync, 0))
3054                                                 any_working = 0;
3055                                 }
3056                                 if (!any_working)  {
3057                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3058                                                               &mddev->recovery))
3059                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3060                                                        "working devices for recovery.\n",
3061                                                        mdname(mddev));
3062                                         mirror->recovery_disabled
3063                                                 = mddev->recovery_disabled;
3064                                 }
3065                                 break;
3066                         }
3067                 }
3068                 if (biolist == NULL) {
3069                         while (r10_bio) {
3070                                 struct r10bio *rb2 = r10_bio;
3071                                 r10_bio = (struct r10bio*) rb2->master_bio;
3072                                 rb2->master_bio = NULL;
3073                                 put_buf(rb2);
3074                         }
3075                         goto giveup;
3076                 }
3077         } else {
3078                 /* resync. Schedule a read for every block at this virt offset */
3079                 int count = 0;
3080
3081                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3082
3083                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3084                                        &sync_blocks, mddev->degraded) &&
3085                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3086                                                  &mddev->recovery)) {
3087                         /* We can skip this block */
3088                         *skipped = 1;
3089                         return sync_blocks + sectors_skipped;
3090                 }
3091                 if (sync_blocks < max_sync)
3092                         max_sync = sync_blocks;
3093                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3094
3095                 r10_bio->mddev = mddev;
3096                 atomic_set(&r10_bio->remaining, 0);
3097                 raise_barrier(conf, 0);
3098                 conf->next_resync = sector_nr;
3099
3100                 r10_bio->master_bio = NULL;
3101                 r10_bio->sector = sector_nr;
3102                 set_bit(R10BIO_IsSync, &r10_bio->state);
3103                 raid10_find_phys(conf, r10_bio);
3104                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3105
3106                 for (i = 0; i < conf->copies; i++) {
3107                         int d = r10_bio->devs[i].devnum;
3108                         sector_t first_bad, sector;
3109                         int bad_sectors;
3110
3111                         if (r10_bio->devs[i].repl_bio)
3112                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3113
3114                         bio = r10_bio->devs[i].bio;
3115                         bio->bi_end_io = NULL;
3116                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3117                         if (conf->mirrors[d].rdev == NULL ||
3118                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3119                                 continue;
3120                         sector = r10_bio->devs[i].addr;
3121                         if (is_badblock(conf->mirrors[d].rdev,
3122                                         sector, max_sync,
3123                                         &first_bad, &bad_sectors)) {
3124                                 if (first_bad > sector)
3125                                         max_sync = first_bad - sector;
3126                                 else {
3127                                         bad_sectors -= (sector - first_bad);
3128                                         if (max_sync > bad_sectors)
3129                                                 max_sync = max_sync;
3130                                         continue;
3131                                 }
3132                         }
3133                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3134                         atomic_inc(&r10_bio->remaining);
3135                         bio->bi_next = biolist;
3136                         biolist = bio;
3137                         bio->bi_private = r10_bio;
3138                         bio->bi_end_io = end_sync_read;
3139                         bio->bi_rw = READ;
3140                         bio->bi_sector = sector +
3141                                 conf->mirrors[d].rdev->data_offset;
3142                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3143                         count++;
3144
3145                         if (conf->mirrors[d].replacement == NULL ||
3146                             test_bit(Faulty,
3147                                      &conf->mirrors[d].replacement->flags))
3148                                 continue;
3149
3150                         /* Need to set up for writing to the replacement */
3151                         bio = r10_bio->devs[i].repl_bio;
3152                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3153
3154                         sector = r10_bio->devs[i].addr;
3155                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3156                         bio->bi_next = biolist;
3157                         biolist = bio;
3158                         bio->bi_private = r10_bio;
3159                         bio->bi_end_io = end_sync_write;
3160                         bio->bi_rw = WRITE;
3161                         bio->bi_sector = sector +
3162                                 conf->mirrors[d].replacement->data_offset;
3163                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3164                         count++;
3165                 }
3166
3167                 if (count < 2) {
3168                         for (i=0; i<conf->copies; i++) {
3169                                 int d = r10_bio->devs[i].devnum;
3170                                 if (r10_bio->devs[i].bio->bi_end_io)
3171                                         rdev_dec_pending(conf->mirrors[d].rdev,
3172                                                          mddev);
3173                                 if (r10_bio->devs[i].repl_bio &&
3174                                     r10_bio->devs[i].repl_bio->bi_end_io)
3175                                         rdev_dec_pending(
3176                                                 conf->mirrors[d].replacement,
3177                                                 mddev);
3178                         }
3179                         put_buf(r10_bio);
3180                         biolist = NULL;
3181                         goto giveup;
3182                 }
3183         }
3184
3185         for (bio = biolist; bio ; bio=bio->bi_next) {
3186
3187                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3188                 if (bio->bi_end_io)
3189                         bio->bi_flags |= 1 << BIO_UPTODATE;
3190                 bio->bi_vcnt = 0;
3191                 bio->bi_idx = 0;
3192                 bio->bi_phys_segments = 0;
3193                 bio->bi_size = 0;
3194         }
3195
3196         nr_sectors = 0;
3197         if (sector_nr + max_sync < max_sector)
3198                 max_sector = sector_nr + max_sync;
3199         do {
3200                 struct page *page;
3201                 int len = PAGE_SIZE;
3202                 if (sector_nr + (len>>9) > max_sector)
3203                         len = (max_sector - sector_nr) << 9;
3204                 if (len == 0)
3205                         break;
3206                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3207                         struct bio *bio2;
3208                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3209                         if (bio_add_page(bio, page, len, 0))
3210                                 continue;
3211
3212                         /* stop here */
3213                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3214                         for (bio2 = biolist;
3215                              bio2 && bio2 != bio;
3216                              bio2 = bio2->bi_next) {
3217                                 /* remove last page from this bio */
3218                                 bio2->bi_vcnt--;
3219                                 bio2->bi_size -= len;
3220                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3221                         }
3222                         goto bio_full;
3223                 }
3224                 nr_sectors += len>>9;
3225                 sector_nr += len>>9;
3226         } while (biolist->bi_vcnt < RESYNC_PAGES);
3227  bio_full:
3228         r10_bio->sectors = nr_sectors;
3229
3230         while (biolist) {
3231                 bio = biolist;
3232                 biolist = biolist->bi_next;
3233
3234                 bio->bi_next = NULL;
3235                 r10_bio = bio->bi_private;
3236                 r10_bio->sectors = nr_sectors;
3237
3238                 if (bio->bi_end_io == end_sync_read) {
3239                         md_sync_acct(bio->bi_bdev, nr_sectors);
3240                         generic_make_request(bio);
3241                 }
3242         }
3243
3244         if (sectors_skipped)
3245                 /* pretend they weren't skipped, it makes
3246                  * no important difference in this case
3247                  */
3248                 md_done_sync(mddev, sectors_skipped, 1);
3249
3250         return sectors_skipped + nr_sectors;
3251  giveup:
3252         /* There is nowhere to write, so all non-sync
3253          * drives must be failed or in resync, all drives
3254          * have a bad block, so try the next chunk...
3255          */
3256         if (sector_nr + max_sync < max_sector)
3257                 max_sector = sector_nr + max_sync;
3258
3259         sectors_skipped += (max_sector - sector_nr);
3260         chunks_skipped ++;
3261         sector_nr = max_sector;
3262         goto skipped;
3263 }
3264
3265 static sector_t
3266 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3267 {
3268         sector_t size;
3269         struct r10conf *conf = mddev->private;
3270
3271         if (!raid_disks)
3272                 raid_disks = min(conf->geo.raid_disks,
3273                                  conf->prev.raid_disks);
3274         if (!sectors)
3275                 sectors = conf->dev_sectors;
3276
3277         size = sectors >> conf->geo.chunk_shift;
3278         sector_div(size, conf->geo.far_copies);
3279         size = size * raid_disks;
3280         sector_div(size, conf->geo.near_copies);
3281
3282         return size << conf->geo.chunk_shift;
3283 }
3284
3285 static void calc_sectors(struct r10conf *conf, sector_t size)
3286 {
3287         /* Calculate the number of sectors-per-device that will
3288          * actually be used, and set conf->dev_sectors and
3289          * conf->stride
3290          */
3291
3292         size = size >> conf->geo.chunk_shift;
3293         sector_div(size, conf->geo.far_copies);
3294         size = size * conf->geo.raid_disks;
3295         sector_div(size, conf->geo.near_copies);
3296         /* 'size' is now the number of chunks in the array */
3297         /* calculate "used chunks per device" */
3298         size = size * conf->copies;
3299
3300         /* We need to round up when dividing by raid_disks to
3301          * get the stride size.
3302          */
3303         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3304
3305         conf->dev_sectors = size << conf->geo.chunk_shift;
3306
3307         if (conf->geo.far_offset)
3308                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3309         else {
3310                 sector_div(size, conf->geo.far_copies);
3311                 conf->geo.stride = size << conf->geo.chunk_shift;
3312         }
3313 }
3314
3315 enum geo_type {geo_new, geo_old, geo_start};
3316 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3317 {
3318         int nc, fc, fo;
3319         int layout, chunk, disks;
3320         switch (new) {
3321         case geo_old:
3322                 layout = mddev->layout;
3323                 chunk = mddev->chunk_sectors;
3324                 disks = mddev->raid_disks - mddev->delta_disks;
3325                 break;
3326         case geo_new:
3327                 layout = mddev->new_layout;
3328                 chunk = mddev->new_chunk_sectors;
3329                 disks = mddev->raid_disks;
3330                 break;
3331         default: /* avoid 'may be unused' warnings */
3332         case geo_start: /* new when starting reshape - raid_disks not
3333                          * updated yet. */
3334                 layout = mddev->new_layout;
3335                 chunk = mddev->new_chunk_sectors;
3336                 disks = mddev->raid_disks + mddev->delta_disks;
3337                 break;
3338         }
3339         if (layout >> 17)
3340                 return -1;
3341         if (chunk < (PAGE_SIZE >> 9) ||
3342             !is_power_of_2(chunk))
3343                 return -2;
3344         nc = layout & 255;
3345         fc = (layout >> 8) & 255;
3346         fo = layout & (1<<16);
3347         geo->raid_disks = disks;
3348         geo->near_copies = nc;
3349         geo->far_copies = fc;
3350         geo->far_offset = fo;
3351         geo->chunk_mask = chunk - 1;
3352         geo->chunk_shift = ffz(~chunk);
3353         return nc*fc;
3354 }
3355
3356 static struct r10conf *setup_conf(struct mddev *mddev)
3357 {
3358         struct r10conf *conf = NULL;
3359         int err = -EINVAL;
3360         struct geom geo;
3361         int copies;
3362
3363         copies = setup_geo(&geo, mddev, geo_new);
3364
3365         if (copies == -2) {
3366                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3367                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3368                        mdname(mddev), PAGE_SIZE);
3369                 goto out;
3370         }
3371
3372         if (copies < 2 || copies > mddev->raid_disks) {
3373                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3374                        mdname(mddev), mddev->new_layout);
3375                 goto out;
3376         }
3377
3378         err = -ENOMEM;
3379         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3380         if (!conf)
3381                 goto out;
3382
3383         /* FIXME calc properly */
3384         conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks +
3385                                                             max(0,mddev->delta_disks)),
3386                                 GFP_KERNEL);
3387         if (!conf->mirrors)
3388                 goto out;
3389
3390         conf->tmppage = alloc_page(GFP_KERNEL);
3391         if (!conf->tmppage)
3392                 goto out;
3393
3394         conf->geo = geo;
3395         conf->copies = copies;
3396         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3397                                            r10bio_pool_free, conf);
3398         if (!conf->r10bio_pool)
3399                 goto out;
3400
3401         calc_sectors(conf, mddev->dev_sectors);
3402         if (mddev->reshape_position == MaxSector) {
3403                 conf->prev = conf->geo;
3404                 conf->reshape_progress = MaxSector;
3405         } else {
3406                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3407                         err = -EINVAL;
3408                         goto out;
3409                 }
3410                 conf->reshape_progress = mddev->reshape_position;
3411                 if (conf->prev.far_offset)
3412                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3413                 else
3414                         /* far_copies must be 1 */
3415                         conf->prev.stride = conf->dev_sectors;
3416         }
3417         spin_lock_init(&conf->device_lock);
3418         INIT_LIST_HEAD(&conf->retry_list);
3419
3420         spin_lock_init(&conf->resync_lock);
3421         init_waitqueue_head(&conf->wait_barrier);
3422
3423         conf->thread = md_register_thread(raid10d, mddev, NULL);
3424         if (!conf->thread)
3425                 goto out;
3426
3427         conf->mddev = mddev;
3428         return conf;
3429
3430  out:
3431         if (err == -ENOMEM)
3432                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3433                        mdname(mddev));
3434         if (conf) {
3435                 if (conf->r10bio_pool)
3436                         mempool_destroy(conf->r10bio_pool);
3437                 kfree(conf->mirrors);
3438                 safe_put_page(conf->tmppage);
3439                 kfree(conf);
3440         }
3441         return ERR_PTR(err);
3442 }
3443
3444 static int run(struct mddev *mddev)
3445 {
3446         struct r10conf *conf;
3447         int i, disk_idx, chunk_size;
3448         struct mirror_info *disk;
3449         struct md_rdev *rdev;
3450         sector_t size;
3451         sector_t min_offset_diff = 0;
3452         int first = 1;
3453
3454         if (mddev->private == NULL) {
3455                 conf = setup_conf(mddev);
3456                 if (IS_ERR(conf))
3457                         return PTR_ERR(conf);
3458                 mddev->private = conf;
3459         }
3460         conf = mddev->private;
3461         if (!conf)
3462                 goto out;
3463
3464         mddev->thread = conf->thread;
3465         conf->thread = NULL;
3466
3467         chunk_size = mddev->chunk_sectors << 9;
3468         blk_queue_io_min(mddev->queue, chunk_size);
3469         if (conf->geo.raid_disks % conf->geo.near_copies)
3470                 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3471         else
3472                 blk_queue_io_opt(mddev->queue, chunk_size *
3473                                  (conf->geo.raid_disks / conf->geo.near_copies));
3474
3475         rdev_for_each(rdev, mddev) {
3476                 long long diff;
3477
3478                 disk_idx = rdev->raid_disk;
3479                 if (disk_idx < 0)
3480                         continue;
3481                 if (disk_idx >= conf->geo.raid_disks &&
3482                     disk_idx >= conf->prev.raid_disks)
3483                         continue;
3484                 disk = conf->mirrors + disk_idx;
3485
3486                 if (test_bit(Replacement, &rdev->flags)) {
3487                         if (disk->replacement)
3488                                 goto out_free_conf;
3489                         disk->replacement = rdev;
3490                 } else {
3491                         if (disk->rdev)
3492                                 goto out_free_conf;
3493                         disk->rdev = rdev;
3494                 }
3495                 diff = (rdev->new_data_offset - rdev->data_offset);
3496                 if (!mddev->reshape_backwards)
3497                         diff = -diff;
3498                 if (diff < 0)
3499                         diff = 0;
3500                 if (first || diff < min_offset_diff)
3501                         min_offset_diff = diff;
3502
3503                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3504                                   rdev->data_offset << 9);
3505
3506                 disk->head_position = 0;
3507         }
3508
3509         /* need to check that every block has at least one working mirror */
3510         if (!enough(conf, -1)) {
3511                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3512                        mdname(mddev));
3513                 goto out_free_conf;
3514         }
3515
3516         if (conf->reshape_progress != MaxSector) {
3517                 /* must ensure that shape change is supported */
3518                 if (conf->geo.far_copies != 1 &&
3519                     conf->geo.far_offset == 0)
3520                         goto out_free_conf;
3521                 if (conf->prev.far_copies != 1 &&
3522                     conf->geo.far_offset == 0)
3523                         goto out_free_conf;
3524         }
3525
3526         mddev->degraded = 0;
3527         for (i = 0;
3528              i < conf->geo.raid_disks
3529                      || i < conf->prev.raid_disks;
3530              i++) {
3531
3532                 disk = conf->mirrors + i;
3533
3534                 if (!disk->rdev && disk->replacement) {
3535                         /* The replacement is all we have - use it */
3536                         disk->rdev = disk->replacement;
3537                         disk->replacement = NULL;
3538                         clear_bit(Replacement, &disk->rdev->flags);
3539                 }
3540
3541                 if (!disk->rdev ||
3542                     !test_bit(In_sync, &disk->rdev->flags)) {
3543                         disk->head_position = 0;
3544                         mddev->degraded++;
3545                         if (disk->rdev)
3546                                 conf->fullsync = 1;
3547                 }
3548                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3549         }
3550
3551         if (mddev->recovery_cp != MaxSector)
3552                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3553                        " -- starting background reconstruction\n",
3554                        mdname(mddev));
3555         printk(KERN_INFO
3556                 "md/raid10:%s: active with %d out of %d devices\n",
3557                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3558                 conf->geo.raid_disks);
3559         /*
3560          * Ok, everything is just fine now
3561          */
3562         mddev->dev_sectors = conf->dev_sectors;
3563         size = raid10_size(mddev, 0, 0);
3564         md_set_array_sectors(mddev, size);
3565         mddev->resync_max_sectors = size;
3566
3567         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3568         mddev->queue->backing_dev_info.congested_data = mddev;
3569
3570         /* Calculate max read-ahead size.
3571          * We need to readahead at least twice a whole stripe....
3572          * maybe...
3573          */
3574         {
3575                 int stripe = conf->geo.raid_disks *
3576                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3577                 stripe /= conf->geo.near_copies;
3578                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3579                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3580         }
3581
3582         blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3583
3584         if (md_integrity_register(mddev))
3585                 goto out_free_conf;
3586
3587         if (conf->reshape_progress != MaxSector) {
3588                 unsigned long before_length, after_length;
3589
3590                 before_length = ((1 << conf->prev.chunk_shift) *
3591                                  conf->prev.far_copies);
3592                 after_length = ((1 << conf->geo.chunk_shift) *
3593                                 conf->geo.far_copies);
3594
3595                 if (max(before_length, after_length) > min_offset_diff) {
3596                         /* This cannot work */
3597                         printk("md/raid10: offset difference not enough to continue reshape\n");
3598                         goto out_free_conf;
3599                 }
3600                 conf->offset_diff = min_offset_diff;
3601
3602                 conf->reshape_safe = conf->reshape_progress;
3603                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3604                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3605                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3606                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3607                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3608                                                         "reshape");
3609         }
3610
3611         return 0;
3612
3613 out_free_conf:
3614         md_unregister_thread(&mddev->thread);
3615         if (conf->r10bio_pool)
3616                 mempool_destroy(conf->r10bio_pool);
3617         safe_put_page(conf->tmppage);
3618         kfree(conf->mirrors);
3619         kfree(conf);
3620         mddev->private = NULL;
3621 out:
3622         return -EIO;
3623 }
3624
3625 static int stop(struct mddev *mddev)
3626 {
3627         struct r10conf *conf = mddev->private;
3628
3629         raise_barrier(conf, 0);
3630         lower_barrier(conf);
3631
3632         md_unregister_thread(&mddev->thread);
3633         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3634         if (conf->r10bio_pool)
3635                 mempool_destroy(conf->r10bio_pool);
3636         kfree(conf->mirrors);
3637         kfree(conf);
3638         mddev->private = NULL;
3639         return 0;
3640 }
3641
3642 static void raid10_quiesce(struct mddev *mddev, int state)
3643 {
3644         struct r10conf *conf = mddev->private;
3645
3646         switch(state) {
3647         case 1:
3648                 raise_barrier(conf, 0);
3649                 break;
3650         case 0:
3651                 lower_barrier(conf);
3652                 break;
3653         }
3654 }
3655
3656 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3657 {
3658         /* Resize of 'far' arrays is not supported.
3659          * For 'near' and 'offset' arrays we can set the
3660          * number of sectors used to be an appropriate multiple
3661          * of the chunk size.
3662          * For 'offset', this is far_copies*chunksize.
3663          * For 'near' the multiplier is the LCM of
3664          * near_copies and raid_disks.
3665          * So if far_copies > 1 && !far_offset, fail.
3666          * Else find LCM(raid_disks, near_copy)*far_copies and
3667          * multiply by chunk_size.  Then round to this number.
3668          * This is mostly done by raid10_size()
3669          */
3670         struct r10conf *conf = mddev->private;
3671         sector_t oldsize, size;
3672
3673         if (mddev->reshape_position != MaxSector)
3674                 return -EBUSY;
3675
3676         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3677                 return -EINVAL;
3678
3679         oldsize = raid10_size(mddev, 0, 0);
3680         size = raid10_size(mddev, sectors, 0);
3681         if (mddev->external_size &&
3682             mddev->array_sectors > size)
3683                 return -EINVAL;
3684         if (mddev->bitmap) {
3685                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3686                 if (ret)
3687                         return ret;
3688         }
3689         md_set_array_sectors(mddev, size);
3690         set_capacity(mddev->gendisk, mddev->array_sectors);
3691         revalidate_disk(mddev->gendisk);
3692         if (sectors > mddev->dev_sectors &&
3693             mddev->recovery_cp > oldsize) {
3694                 mddev->recovery_cp = oldsize;
3695                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3696         }
3697         calc_sectors(conf, sectors);
3698         mddev->dev_sectors = conf->dev_sectors;
3699         mddev->resync_max_sectors = size;
3700         return 0;
3701 }
3702
3703 static void *raid10_takeover_raid0(struct mddev *mddev)
3704 {
3705         struct md_rdev *rdev;
3706         struct r10conf *conf;
3707
3708         if (mddev->degraded > 0) {
3709                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3710                        mdname(mddev));
3711                 return ERR_PTR(-EINVAL);
3712         }
3713
3714         /* Set new parameters */
3715         mddev->new_level = 10;
3716         /* new layout: far_copies = 1, near_copies = 2 */
3717         mddev->new_layout = (1<<8) + 2;
3718         mddev->new_chunk_sectors = mddev->chunk_sectors;
3719         mddev->delta_disks = mddev->raid_disks;
3720         mddev->raid_disks *= 2;
3721         /* make sure it will be not marked as dirty */
3722         mddev->recovery_cp = MaxSector;
3723
3724         conf = setup_conf(mddev);
3725         if (!IS_ERR(conf)) {
3726                 rdev_for_each(rdev, mddev)
3727                         if (rdev->raid_disk >= 0)
3728                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3729                 conf->barrier = 1;
3730         }
3731
3732         return conf;
3733 }
3734
3735 static void *raid10_takeover(struct mddev *mddev)
3736 {
3737         struct r0conf *raid0_conf;
3738
3739         /* raid10 can take over:
3740          *  raid0 - providing it has only two drives
3741          */
3742         if (mddev->level == 0) {
3743                 /* for raid0 takeover only one zone is supported */
3744                 raid0_conf = mddev->private;
3745                 if (raid0_conf->nr_strip_zones > 1) {
3746                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3747                                " with more than one zone.\n",
3748                                mdname(mddev));
3749                         return ERR_PTR(-EINVAL);
3750                 }
3751                 return raid10_takeover_raid0(mddev);
3752         }
3753         return ERR_PTR(-EINVAL);
3754 }
3755
3756 static int raid10_check_reshape(struct mddev *mddev)
3757 {
3758         /* Called when there is a request to change
3759          * - layout (to ->new_layout)
3760          * - chunk size (to ->new_chunk_sectors)
3761          * - raid_disks (by delta_disks)
3762          * or when trying to restart a reshape that was ongoing.
3763          *
3764          * We need to validate the request and possibly allocate
3765          * space if that might be an issue later.
3766          *
3767          * Currently we reject any reshape of a 'far' mode array,
3768          * allow chunk size to change if new is generally acceptable,
3769          * allow raid_disks to increase, and allow
3770          * a switch between 'near' mode and 'offset' mode.
3771          */
3772         struct r10conf *conf = mddev->private;
3773         struct geom geo;
3774
3775         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3776                 return -EINVAL;
3777
3778         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3779                 /* mustn't change number of copies */
3780                 return -EINVAL;
3781         if (geo.far_copies > 1 && !geo.far_offset)
3782                 /* Cannot switch to 'far' mode */
3783                 return -EINVAL;
3784
3785         if (mddev->array_sectors & geo.chunk_mask)
3786                         /* not factor of array size */
3787                         return -EINVAL;
3788
3789         if (!enough(conf, -1))
3790                 return -EINVAL;
3791
3792         kfree(conf->mirrors_new);
3793         conf->mirrors_new = NULL;
3794         if (mddev->delta_disks > 0) {
3795                 /* allocate new 'mirrors' list */
3796                 conf->mirrors_new = kzalloc(
3797                         sizeof(struct mirror_info)
3798                         *(mddev->raid_disks +
3799                           mddev->delta_disks),
3800                         GFP_KERNEL);
3801                 if (!conf->mirrors_new)
3802                         return -ENOMEM;
3803         }
3804         return 0;
3805 }
3806
3807 /*
3808  * Need to check if array has failed when deciding whether to:
3809  *  - start an array
3810  *  - remove non-faulty devices
3811  *  - add a spare
3812  *  - allow a reshape
3813  * This determination is simple when no reshape is happening.
3814  * However if there is a reshape, we need to carefully check
3815  * both the before and after sections.
3816  * This is because some failed devices may only affect one
3817  * of the two sections, and some non-in_sync devices may
3818  * be insync in the section most affected by failed devices.
3819  */
3820 static int calc_degraded(struct r10conf *conf)
3821 {
3822         int degraded, degraded2;
3823         int i;
3824
3825         rcu_read_lock();
3826         degraded = 0;
3827         /* 'prev' section first */
3828         for (i = 0; i < conf->prev.raid_disks; i++) {
3829                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3830                 if (!rdev || test_bit(Faulty, &rdev->flags))
3831                         degraded++;
3832                 else if (!test_bit(In_sync, &rdev->flags))
3833                         /* When we can reduce the number of devices in
3834                          * an array, this might not contribute to
3835                          * 'degraded'.  It does now.
3836                          */
3837                         degraded++;
3838         }
3839         rcu_read_unlock();
3840         if (conf->geo.raid_disks == conf->prev.raid_disks)
3841                 return degraded;
3842         rcu_read_lock();
3843         degraded2 = 0;
3844         for (i = 0; i < conf->geo.raid_disks; i++) {
3845                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3846                 if (!rdev || test_bit(Faulty, &rdev->flags))
3847                         degraded2++;
3848                 else if (!test_bit(In_sync, &rdev->flags)) {
3849                         /* If reshape is increasing the number of devices,
3850                          * this section has already been recovered, so
3851                          * it doesn't contribute to degraded.
3852                          * else it does.
3853                          */
3854                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3855                                 degraded2++;
3856                 }
3857         }
3858         rcu_read_unlock();
3859         if (degraded2 > degraded)
3860                 return degraded2;
3861         return degraded;
3862 }
3863
3864 static int raid10_start_reshape(struct mddev *mddev)
3865 {
3866         /* A 'reshape' has been requested. This commits
3867          * the various 'new' fields and sets MD_RECOVER_RESHAPE
3868          * This also checks if there are enough spares and adds them
3869          * to the array.
3870          * We currently require enough spares to make the final
3871          * array non-degraded.  We also require that the difference
3872          * between old and new data_offset - on each device - is
3873          * enough that we never risk over-writing.
3874          */
3875
3876         unsigned long before_length, after_length;
3877         sector_t min_offset_diff = 0;
3878         int first = 1;
3879         struct geom new;
3880         struct r10conf *conf = mddev->private;
3881         struct md_rdev *rdev;
3882         int spares = 0;
3883         int ret;
3884
3885         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3886                 return -EBUSY;
3887
3888         if (setup_geo(&new, mddev, geo_start) != conf->copies)
3889                 return -EINVAL;
3890
3891         before_length = ((1 << conf->prev.chunk_shift) *
3892                          conf->prev.far_copies);
3893         after_length = ((1 << conf->geo.chunk_shift) *
3894                         conf->geo.far_copies);
3895
3896         rdev_for_each(rdev, mddev) {
3897                 if (!test_bit(In_sync, &rdev->flags)
3898                     && !test_bit(Faulty, &rdev->flags))
3899                         spares++;
3900                 if (rdev->raid_disk >= 0) {
3901                         long long diff = (rdev->new_data_offset
3902                                           - rdev->data_offset);
3903                         if (!mddev->reshape_backwards)
3904                                 diff = -diff;
3905                         if (diff < 0)
3906                                 diff = 0;
3907                         if (first || diff < min_offset_diff)
3908                                 min_offset_diff = diff;
3909                 }
3910         }
3911
3912         if (max(before_length, after_length) > min_offset_diff)
3913                 return -EINVAL;
3914
3915         if (spares < mddev->delta_disks)
3916                 return -EINVAL;
3917
3918         conf->offset_diff = min_offset_diff;
3919         spin_lock_irq(&conf->device_lock);
3920         if (conf->mirrors_new) {
3921                 memcpy(conf->mirrors_new, conf->mirrors,
3922                        sizeof(struct mirror_info)*conf->prev.raid_disks);
3923                 smp_mb();
3924                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
3925                 conf->mirrors_old = conf->mirrors;
3926                 conf->mirrors = conf->mirrors_new;
3927                 conf->mirrors_new = NULL;
3928         }
3929         setup_geo(&conf->geo, mddev, geo_start);
3930         smp_mb();
3931         if (mddev->reshape_backwards) {
3932                 sector_t size = raid10_size(mddev, 0, 0);
3933                 if (size < mddev->array_sectors) {
3934                         spin_unlock_irq(&conf->device_lock);
3935                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3936                                mdname(mddev));
3937                         return -EINVAL;
3938                 }
3939                 mddev->resync_max_sectors = size;
3940                 conf->reshape_progress = size;
3941         } else
3942                 conf->reshape_progress = 0;
3943         spin_unlock_irq(&conf->device_lock);
3944
3945         if (mddev->delta_disks && mddev->bitmap) {
3946                 ret = bitmap_resize(mddev->bitmap,
3947                                     raid10_size(mddev, 0,
3948                                                 conf->geo.raid_disks),
3949                                     0, 0);
3950                 if (ret)
3951                         goto abort;
3952         }
3953         if (mddev->delta_disks > 0) {
3954                 rdev_for_each(rdev, mddev)
3955                         if (rdev->raid_disk < 0 &&
3956                             !test_bit(Faulty, &rdev->flags)) {
3957                                 if (raid10_add_disk(mddev, rdev) == 0) {
3958                                         if (rdev->raid_disk >=
3959                                             conf->prev.raid_disks)
3960                                                 set_bit(In_sync, &rdev->flags);
3961                                         else
3962                                                 rdev->recovery_offset = 0;
3963
3964                                         if (sysfs_link_rdev(mddev, rdev))
3965                                                 /* Failure here  is OK */;
3966                                 }
3967                         } else if (rdev->raid_disk >= conf->prev.raid_disks
3968                                    && !test_bit(Faulty, &rdev->flags)) {
3969                                 /* This is a spare that was manually added */
3970                                 set_bit(In_sync, &rdev->flags);
3971                         }
3972         }
3973         /* When a reshape changes the number of devices,
3974          * ->degraded is measured against the larger of the
3975          * pre and  post numbers.
3976          */
3977         spin_lock_irq(&conf->device_lock);
3978         mddev->degraded = calc_degraded(conf);
3979         spin_unlock_irq(&conf->device_lock);
3980         mddev->raid_disks = conf->geo.raid_disks;
3981         mddev->reshape_position = conf->reshape_progress;
3982         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3983
3984         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3985         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3986         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3987         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3988
3989         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3990                                                 "reshape");
3991         if (!mddev->sync_thread) {
3992                 ret = -EAGAIN;
3993                 goto abort;
3994         }
3995         conf->reshape_checkpoint = jiffies;
3996         md_wakeup_thread(mddev->sync_thread);
3997         md_new_event(mddev);
3998         return 0;
3999
4000 abort:
4001         mddev->recovery = 0;
4002         spin_lock_irq(&conf->device_lock);
4003         conf->geo = conf->prev;
4004         mddev->raid_disks = conf->geo.raid_disks;
4005         rdev_for_each(rdev, mddev)
4006                 rdev->new_data_offset = rdev->data_offset;
4007         smp_wmb();
4008         conf->reshape_progress = MaxSector;
4009         mddev->reshape_position = MaxSector;
4010         spin_unlock_irq(&conf->device_lock);
4011         return ret;
4012 }
4013
4014 /* Calculate the last device-address that could contain
4015  * any block from the chunk that includes the array-address 's'
4016  * and report the next address.
4017  * i.e. the address returned will be chunk-aligned and after
4018  * any data that is in the chunk containing 's'.
4019  */
4020 static sector_t last_dev_address(sector_t s, struct geom *geo)
4021 {
4022         s = (s | geo->chunk_mask) + 1;
4023         s >>= geo->chunk_shift;
4024         s *= geo->near_copies;
4025         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4026         s *= geo->far_copies;
4027         s <<= geo->chunk_shift;
4028         return s;
4029 }
4030
4031 /* Calculate the first device-address that could contain
4032  * any block from the chunk that includes the array-address 's'.
4033  * This too will be the start of a chunk
4034  */
4035 static sector_t first_dev_address(sector_t s, struct geom *geo)
4036 {
4037         s >>= geo->chunk_shift;
4038         s *= geo->near_copies;
4039         sector_div(s, geo->raid_disks);
4040         s *= geo->far_copies;
4041         s <<= geo->chunk_shift;
4042         return s;
4043 }
4044
4045 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4046                                 int *skipped)
4047 {
4048         /* We simply copy at most one chunk (smallest of old and new)
4049          * at a time, possibly less if that exceeds RESYNC_PAGES,
4050          * or we hit a bad block or something.
4051          * This might mean we pause for normal IO in the middle of
4052          * a chunk, but that is not a problem was mddev->reshape_position
4053          * can record any location.
4054          *
4055          * If we will want to write to a location that isn't
4056          * yet recorded as 'safe' (i.e. in metadata on disk) then
4057          * we need to flush all reshape requests and update the metadata.
4058          *
4059          * When reshaping forwards (e.g. to more devices), we interpret
4060          * 'safe' as the earliest block which might not have been copied
4061          * down yet.  We divide this by previous stripe size and multiply
4062          * by previous stripe length to get lowest device offset that we
4063          * cannot write to yet.
4064          * We interpret 'sector_nr' as an address that we want to write to.
4065          * From this we use last_device_address() to find where we might
4066          * write to, and first_device_address on the  'safe' position.
4067          * If this 'next' write position is after the 'safe' position,
4068          * we must update the metadata to increase the 'safe' position.
4069          *
4070          * When reshaping backwards, we round in the opposite direction
4071          * and perform the reverse test:  next write position must not be
4072          * less than current safe position.
4073          *
4074          * In all this the minimum difference in data offsets
4075          * (conf->offset_diff - always positive) allows a bit of slack,
4076          * so next can be after 'safe', but not by more than offset_disk
4077          *
4078          * We need to prepare all the bios here before we start any IO
4079          * to ensure the size we choose is acceptable to all devices.
4080          * The means one for each copy for write-out and an extra one for
4081          * read-in.
4082          * We store the read-in bio in ->master_bio and the others in
4083          * ->devs[x].bio and ->devs[x].repl_bio.
4084          */
4085         struct r10conf *conf = mddev->private;
4086         struct r10bio *r10_bio;
4087         sector_t next, safe, last;
4088         int max_sectors;
4089         int nr_sectors;
4090         int s;
4091         struct md_rdev *rdev;
4092         int need_flush = 0;
4093         struct bio *blist;
4094         struct bio *bio, *read_bio;
4095         int sectors_done = 0;
4096
4097         if (sector_nr == 0) {
4098                 /* If restarting in the middle, skip the initial sectors */
4099                 if (mddev->reshape_backwards &&
4100                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4101                         sector_nr = (raid10_size(mddev, 0, 0)
4102                                      - conf->reshape_progress);
4103                 } else if (!mddev->reshape_backwards &&
4104                            conf->reshape_progress > 0)
4105                         sector_nr = conf->reshape_progress;
4106                 if (sector_nr) {
4107                         mddev->curr_resync_completed = sector_nr;
4108                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4109                         *skipped = 1;
4110                         return sector_nr;
4111                 }
4112         }
4113
4114         /* We don't use sector_nr to track where we are up to
4115          * as that doesn't work well for ->reshape_backwards.
4116          * So just use ->reshape_progress.
4117          */
4118         if (mddev->reshape_backwards) {
4119                 /* 'next' is the earliest device address that we might
4120                  * write to for this chunk in the new layout
4121                  */
4122                 next = first_dev_address(conf->reshape_progress - 1,
4123                                          &conf->geo);
4124
4125                 /* 'safe' is the last device address that we might read from
4126                  * in the old layout after a restart
4127                  */
4128                 safe = last_dev_address(conf->reshape_safe - 1,
4129                                         &conf->prev);
4130
4131                 if (next + conf->offset_diff < safe)
4132                         need_flush = 1;
4133
4134                 last = conf->reshape_progress - 1;
4135                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4136                                                & conf->prev.chunk_mask);
4137                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4138                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4139         } else {
4140                 /* 'next' is after the last device address that we
4141                  * might write to for this chunk in the new layout
4142                  */
4143                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4144
4145                 /* 'safe' is the earliest device address that we might
4146                  * read from in the old layout after a restart
4147                  */
4148                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4149
4150                 /* Need to update metadata if 'next' might be beyond 'safe'
4151                  * as that would possibly corrupt data
4152                  */
4153                 if (next > safe + conf->offset_diff)
4154                         need_flush = 1;
4155
4156                 sector_nr = conf->reshape_progress;
4157                 last  = sector_nr | (conf->geo.chunk_mask
4158                                      & conf->prev.chunk_mask);
4159
4160                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4161                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4162         }
4163
4164         if (need_flush ||
4165             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4166                 /* Need to update reshape_position in metadata */
4167                 wait_barrier(conf);
4168                 mddev->reshape_position = conf->reshape_progress;
4169                 if (mddev->reshape_backwards)
4170                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4171                                 - conf->reshape_progress;
4172                 else
4173                         mddev->curr_resync_completed = conf->reshape_progress;
4174                 conf->reshape_checkpoint = jiffies;
4175                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4176                 md_wakeup_thread(mddev->thread);
4177                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4178                            kthread_should_stop());
4179                 conf->reshape_safe = mddev->reshape_position;
4180                 allow_barrier(conf);
4181         }
4182
4183 read_more:
4184         /* Now schedule reads for blocks from sector_nr to last */
4185         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4186         raise_barrier(conf, sectors_done != 0);
4187         atomic_set(&r10_bio->remaining, 0);
4188         r10_bio->mddev = mddev;
4189         r10_bio->sector = sector_nr;
4190         set_bit(R10BIO_IsReshape, &r10_bio->state);
4191         r10_bio->sectors = last - sector_nr + 1;
4192         rdev = read_balance(conf, r10_bio, &max_sectors);
4193         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4194
4195         if (!rdev) {
4196                 /* Cannot read from here, so need to record bad blocks
4197                  * on all the target devices.
4198                  */
4199                 // FIXME
4200                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4201                 return sectors_done;
4202         }
4203
4204         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4205
4206         read_bio->bi_bdev = rdev->bdev;
4207         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4208                                + rdev->data_offset);
4209         read_bio->bi_private = r10_bio;
4210         read_bio->bi_end_io = end_sync_read;
4211         read_bio->bi_rw = READ;
4212         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4213         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4214         read_bio->bi_vcnt = 0;
4215         read_bio->bi_idx = 0;
4216         read_bio->bi_size = 0;
4217         r10_bio->master_bio = read_bio;
4218         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4219
4220         /* Now find the locations in the new layout */
4221         __raid10_find_phys(&conf->geo, r10_bio);
4222
4223         blist = read_bio;
4224         read_bio->bi_next = NULL;
4225
4226         for (s = 0; s < conf->copies*2; s++) {
4227                 struct bio *b;
4228                 int d = r10_bio->devs[s/2].devnum;
4229                 struct md_rdev *rdev2;
4230                 if (s&1) {
4231                         rdev2 = conf->mirrors[d].replacement;
4232                         b = r10_bio->devs[s/2].repl_bio;
4233                 } else {
4234                         rdev2 = conf->mirrors[d].rdev;
4235                         b = r10_bio->devs[s/2].bio;
4236                 }
4237                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4238                         continue;
4239                 b->bi_bdev = rdev2->bdev;
4240                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4241                 b->bi_private = r10_bio;
4242                 b->bi_end_io = end_reshape_write;
4243                 b->bi_rw = WRITE;
4244                 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4245                 b->bi_flags |= 1 << BIO_UPTODATE;
4246                 b->bi_next = blist;
4247                 b->bi_vcnt = 0;
4248                 b->bi_idx = 0;
4249                 b->bi_size = 0;
4250                 blist = b;
4251         }
4252
4253         /* Now add as many pages as possible to all of these bios. */
4254
4255         nr_sectors = 0;
4256         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4257                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4258                 int len = (max_sectors - s) << 9;
4259                 if (len > PAGE_SIZE)
4260                         len = PAGE_SIZE;
4261                 for (bio = blist; bio ; bio = bio->bi_next) {
4262                         struct bio *bio2;
4263                         if (bio_add_page(bio, page, len, 0))
4264                                 continue;
4265
4266                         /* Didn't fit, must stop */
4267                         for (bio2 = blist;
4268                              bio2 && bio2 != bio;
4269                              bio2 = bio2->bi_next) {
4270                                 /* Remove last page from this bio */
4271                                 bio2->bi_vcnt--;
4272                                 bio2->bi_size -= len;
4273                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4274                         }
4275                         goto bio_full;
4276                 }
4277                 sector_nr += len >> 9;
4278                 nr_sectors += len >> 9;
4279         }
4280 bio_full:
4281         r10_bio->sectors = nr_sectors;
4282
4283         /* Now submit the read */
4284         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4285         atomic_inc(&r10_bio->remaining);
4286         read_bio->bi_next = NULL;
4287         generic_make_request(read_bio);
4288         sector_nr += nr_sectors;
4289         sectors_done += nr_sectors;
4290         if (sector_nr <= last)
4291                 goto read_more;
4292
4293         /* Now that we have done the whole section we can
4294          * update reshape_progress
4295          */
4296         if (mddev->reshape_backwards)
4297                 conf->reshape_progress -= sectors_done;
4298         else
4299                 conf->reshape_progress += sectors_done;
4300
4301         return sectors_done;
4302 }
4303
4304 static void end_reshape_request(struct r10bio *r10_bio);
4305 static int handle_reshape_read_error(struct mddev *mddev,
4306                                      struct r10bio *r10_bio);
4307 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4308 {
4309         /* Reshape read completed.  Hopefully we have a block
4310          * to write out.
4311          * If we got a read error then we do sync 1-page reads from
4312          * elsewhere until we find the data - or give up.
4313          */
4314         struct r10conf *conf = mddev->private;
4315         int s;
4316
4317         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4318                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4319                         /* Reshape has been aborted */
4320                         md_done_sync(mddev, r10_bio->sectors, 0);
4321                         return;
4322                 }
4323
4324         /* We definitely have the data in the pages, schedule the
4325          * writes.
4326          */
4327         atomic_set(&r10_bio->remaining, 1);
4328         for (s = 0; s < conf->copies*2; s++) {
4329                 struct bio *b;
4330                 int d = r10_bio->devs[s/2].devnum;
4331                 struct md_rdev *rdev;
4332                 if (s&1) {
4333                         rdev = conf->mirrors[d].replacement;
4334                         b = r10_bio->devs[s/2].repl_bio;
4335                 } else {
4336                         rdev = conf->mirrors[d].rdev;
4337                         b = r10_bio->devs[s/2].bio;
4338                 }
4339                 if (!rdev || test_bit(Faulty, &rdev->flags))
4340                         continue;
4341                 atomic_inc(&rdev->nr_pending);
4342                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4343                 atomic_inc(&r10_bio->remaining);
4344                 b->bi_next = NULL;
4345                 generic_make_request(b);
4346         }
4347         end_reshape_request(r10_bio);
4348 }
4349
4350 static void end_reshape(struct r10conf *conf)
4351 {
4352         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4353                 return;
4354
4355         spin_lock_irq(&conf->device_lock);
4356         conf->prev = conf->geo;
4357         md_finish_reshape(conf->mddev);
4358         smp_wmb();
4359         conf->reshape_progress = MaxSector;
4360         spin_unlock_irq(&conf->device_lock);
4361
4362         /* read-ahead size must cover two whole stripes, which is
4363          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4364          */
4365         if (conf->mddev->queue) {
4366                 int stripe = conf->geo.raid_disks *
4367                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4368                 stripe /= conf->geo.near_copies;
4369                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4370                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4371         }
4372         conf->fullsync = 0;
4373 }
4374
4375
4376 static int handle_reshape_read_error(struct mddev *mddev,
4377                                      struct r10bio *r10_bio)
4378 {
4379         /* Use sync reads to get the blocks from somewhere else */
4380         int sectors = r10_bio->sectors;
4381         struct r10bio r10b;
4382         struct r10conf *conf = mddev->private;
4383         int slot = 0;
4384         int idx = 0;
4385         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4386
4387         r10b.sector = r10_bio->sector;
4388         __raid10_find_phys(&conf->prev, &r10b);
4389
4390         while (sectors) {
4391                 int s = sectors;
4392                 int success = 0;
4393                 int first_slot = slot;
4394
4395                 if (s > (PAGE_SIZE >> 9))
4396                         s = PAGE_SIZE >> 9;
4397
4398                 while (!success) {
4399                         int d = r10b.devs[slot].devnum;
4400                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4401                         sector_t addr;
4402                         if (rdev == NULL ||
4403                             test_bit(Faulty, &rdev->flags) ||
4404                             !test_bit(In_sync, &rdev->flags))
4405                                 goto failed;
4406
4407                         addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4408                         success = sync_page_io(rdev,
4409                                                addr,
4410                                                s << 9,
4411                                                bvec[idx].bv_page,
4412                                                READ, false);
4413                         if (success)
4414                                 break;
4415                 failed:
4416                         slot++;
4417                         if (slot >= conf->copies)
4418                                 slot = 0;
4419                         if (slot == first_slot)
4420                                 break;
4421                 }
4422                 if (!success) {
4423                         /* couldn't read this block, must give up */
4424                         set_bit(MD_RECOVERY_INTR,
4425                                 &mddev->recovery);
4426                         return -EIO;
4427                 }
4428                 sectors -= s;
4429                 idx++;
4430         }
4431         return 0;
4432 }
4433
4434 static void end_reshape_write(struct bio *bio, int error)
4435 {
4436         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4437         struct r10bio *r10_bio = bio->bi_private;
4438         struct mddev *mddev = r10_bio->mddev;
4439         struct r10conf *conf = mddev->private;
4440         int d;
4441         int slot;
4442         int repl;
4443         struct md_rdev *rdev = NULL;
4444
4445         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4446         if (repl)
4447                 rdev = conf->mirrors[d].replacement;
4448         if (!rdev) {
4449                 smp_mb();
4450                 rdev = conf->mirrors[d].rdev;
4451         }
4452
4453         if (!uptodate) {
4454                 /* FIXME should record badblock */
4455                 md_error(mddev, rdev);
4456         }
4457
4458         rdev_dec_pending(rdev, mddev);
4459         end_reshape_request(r10_bio);
4460 }
4461
4462 static void end_reshape_request(struct r10bio *r10_bio)
4463 {
4464         if (!atomic_dec_and_test(&r10_bio->remaining))
4465                 return;
4466         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4467         bio_put(r10_bio->master_bio);
4468         put_buf(r10_bio);
4469 }
4470
4471 static void raid10_finish_reshape(struct mddev *mddev)
4472 {
4473         struct r10conf *conf = mddev->private;
4474
4475         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4476                 return;
4477
4478         if (mddev->delta_disks > 0) {
4479                 sector_t size = raid10_size(mddev, 0, 0);
4480                 md_set_array_sectors(mddev, size);
4481                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4482                         mddev->recovery_cp = mddev->resync_max_sectors;
4483                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4484                 }
4485                 mddev->resync_max_sectors = size;
4486                 set_capacity(mddev->gendisk, mddev->array_sectors);
4487                 revalidate_disk(mddev->gendisk);
4488         }
4489         mddev->layout = mddev->new_layout;
4490         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4491         mddev->reshape_position = MaxSector;
4492         mddev->delta_disks = 0;
4493         mddev->reshape_backwards = 0;
4494 }
4495
4496 static struct md_personality raid10_personality =
4497 {
4498         .name           = "raid10",
4499         .level          = 10,
4500         .owner          = THIS_MODULE,
4501         .make_request   = make_request,
4502         .run            = run,
4503         .stop           = stop,
4504         .status         = status,
4505         .error_handler  = error,
4506         .hot_add_disk   = raid10_add_disk,
4507         .hot_remove_disk= raid10_remove_disk,
4508         .spare_active   = raid10_spare_active,
4509         .sync_request   = sync_request,
4510         .quiesce        = raid10_quiesce,
4511         .size           = raid10_size,
4512         .resize         = raid10_resize,
4513         .takeover       = raid10_takeover,
4514         .check_reshape  = raid10_check_reshape,
4515         .start_reshape  = raid10_start_reshape,
4516         .finish_reshape = raid10_finish_reshape,
4517 };
4518
4519 static int __init raid_init(void)
4520 {
4521         return register_md_personality(&raid10_personality);
4522 }
4523
4524 static void raid_exit(void)
4525 {
4526         unregister_md_personality(&raid10_personality);
4527 }
4528
4529 module_init(raid_init);
4530 module_exit(raid_exit);
4531 MODULE_LICENSE("GPL");
4532 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4533 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4534 MODULE_ALIAS("md-raid10");
4535 MODULE_ALIAS("md-level-10");
4536
4537 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);