2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
53 static int max_queued_requests = 1024;
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 struct pool_info *pi = data;
61 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size, gfp_flags);
67 static void r1bio_pool_free(void *r1_bio, void *data)
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
80 struct pool_info *pi = data;
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j = pi->raid_disks ; j-- ; ) {
94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
97 r1_bio->bios[j] = bio;
100 * Allocate RESYNC_PAGES data pages and attach them to
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
116 bio->bi_io_vec[i].bv_page = page;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
128 r1_bio->master_bio = NULL;
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
138 while (++j < pi->raid_disks)
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
144 static void r1buf_pool_free(void *__r1_bio, void *data)
146 struct pool_info *pi = data;
148 struct r1bio *r1bio = __r1_bio;
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
160 r1bio_pool_free(r1bio, data);
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
167 for (i = 0; i < conf->raid_disks * 2; i++) {
168 struct bio **bio = r1_bio->bios + i;
169 if (!BIO_SPECIAL(*bio))
175 static void free_r1bio(struct r1bio *r1_bio)
177 struct r1conf *conf = r1_bio->mddev->private;
179 put_all_bios(conf, r1_bio);
180 mempool_free(r1_bio, conf->r1bio_pool);
183 static void put_buf(struct r1bio *r1_bio)
185 struct r1conf *conf = r1_bio->mddev->private;
188 for (i = 0; i < conf->raid_disks * 2; i++) {
189 struct bio *bio = r1_bio->bios[i];
191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
194 mempool_free(r1_bio, conf->r1buf_pool);
199 static void reschedule_retry(struct r1bio *r1_bio)
202 struct mddev *mddev = r1_bio->mddev;
203 struct r1conf *conf = mddev->private;
205 spin_lock_irqsave(&conf->device_lock, flags);
206 list_add(&r1_bio->retry_list, &conf->retry_list);
208 spin_unlock_irqrestore(&conf->device_lock, flags);
210 wake_up(&conf->wait_barrier);
211 md_wakeup_thread(mddev->thread);
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
219 static void call_bio_endio(struct r1bio *r1_bio)
221 struct bio *bio = r1_bio->master_bio;
223 struct r1conf *conf = r1_bio->mddev->private;
225 if (bio->bi_phys_segments) {
227 spin_lock_irqsave(&conf->device_lock, flags);
228 bio->bi_phys_segments--;
229 done = (bio->bi_phys_segments == 0);
230 spin_unlock_irqrestore(&conf->device_lock, flags);
234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 clear_bit(BIO_UPTODATE, &bio->bi_flags);
239 * Wake up any possible resync thread that waits for the device
246 static void raid_end_bio_io(struct r1bio *r1_bio)
248 struct bio *bio = r1_bio->master_bio;
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 (unsigned long long) bio->bi_sector,
255 (unsigned long long) bio->bi_sector +
256 (bio->bi_size >> 9) - 1);
258 call_bio_endio(r1_bio);
264 * Update disk head position estimator based on IRQ completion info.
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
268 struct r1conf *conf = r1_bio->mddev->private;
270 conf->mirrors[disk].head_position =
271 r1_bio->sector + (r1_bio->sectors);
275 * Find the disk number which triggered given bio
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
280 struct r1conf *conf = r1_bio->mddev->private;
281 int raid_disks = conf->raid_disks;
283 for (mirror = 0; mirror < raid_disks * 2; mirror++)
284 if (r1_bio->bios[mirror] == bio)
287 BUG_ON(mirror == raid_disks * 2);
288 update_head_pos(mirror, r1_bio);
293 static void raid1_end_read_request(struct bio *bio, int error)
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 struct r1bio *r1_bio = bio->bi_private;
298 struct r1conf *conf = r1_bio->mddev->private;
300 mirror = r1_bio->read_disk;
302 * this branch is our 'one mirror IO has finished' event handler:
304 update_head_pos(mirror, r1_bio);
307 set_bit(R1BIO_Uptodate, &r1_bio->state);
309 /* If all other devices have failed, we want to return
310 * the error upwards rather than fail the last device.
311 * Here we redefine "uptodate" to mean "Don't want to retry"
314 spin_lock_irqsave(&conf->device_lock, flags);
315 if (r1_bio->mddev->degraded == conf->raid_disks ||
316 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
319 spin_unlock_irqrestore(&conf->device_lock, flags);
323 raid_end_bio_io(r1_bio);
328 char b[BDEVNAME_SIZE];
330 KERN_ERR "md/raid1:%s: %s: "
331 "rescheduling sector %llu\n",
333 bdevname(conf->mirrors[mirror].rdev->bdev,
335 (unsigned long long)r1_bio->sector);
336 set_bit(R1BIO_ReadError, &r1_bio->state);
337 reschedule_retry(r1_bio);
340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
343 static void close_write(struct r1bio *r1_bio)
345 /* it really is the end of this request */
346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 /* free extra copy of the data pages */
348 int i = r1_bio->behind_page_count;
350 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 kfree(r1_bio->behind_bvecs);
352 r1_bio->behind_bvecs = NULL;
354 /* clear the bitmap if all writes complete successfully */
355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
357 !test_bit(R1BIO_Degraded, &r1_bio->state),
358 test_bit(R1BIO_BehindIO, &r1_bio->state));
359 md_write_end(r1_bio->mddev);
362 static void r1_bio_write_done(struct r1bio *r1_bio)
364 if (!atomic_dec_and_test(&r1_bio->remaining))
367 if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 reschedule_retry(r1_bio);
371 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 reschedule_retry(r1_bio);
374 raid_end_bio_io(r1_bio);
378 static void raid1_end_write_request(struct bio *bio, int error)
380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381 struct r1bio *r1_bio = bio->bi_private;
382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383 struct r1conf *conf = r1_bio->mddev->private;
384 struct bio *to_put = NULL;
386 mirror = find_bio_disk(r1_bio, bio);
389 * 'one mirror IO has finished' event handler:
392 set_bit(WriteErrorSeen,
393 &conf->mirrors[mirror].rdev->flags);
394 if (!test_and_set_bit(WantReplacement,
395 &conf->mirrors[mirror].rdev->flags))
396 set_bit(MD_RECOVERY_NEEDED, &
397 conf->mddev->recovery);
399 set_bit(R1BIO_WriteError, &r1_bio->state);
402 * Set R1BIO_Uptodate in our master bio, so that we
403 * will return a good error code for to the higher
404 * levels even if IO on some other mirrored buffer
407 * The 'master' represents the composite IO operation
408 * to user-side. So if something waits for IO, then it
409 * will wait for the 'master' bio.
414 r1_bio->bios[mirror] = NULL;
416 set_bit(R1BIO_Uptodate, &r1_bio->state);
418 /* Maybe we can clear some bad blocks. */
419 if (is_badblock(conf->mirrors[mirror].rdev,
420 r1_bio->sector, r1_bio->sectors,
421 &first_bad, &bad_sectors)) {
422 r1_bio->bios[mirror] = IO_MADE_GOOD;
423 set_bit(R1BIO_MadeGood, &r1_bio->state);
428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 atomic_dec(&r1_bio->behind_remaining);
432 * In behind mode, we ACK the master bio once the I/O
433 * has safely reached all non-writemostly
434 * disks. Setting the Returned bit ensures that this
435 * gets done only once -- we don't ever want to return
436 * -EIO here, instead we'll wait
438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 /* Maybe we can return now */
441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 struct bio *mbio = r1_bio->master_bio;
443 pr_debug("raid1: behind end write sectors"
445 (unsigned long long) mbio->bi_sector,
446 (unsigned long long) mbio->bi_sector +
447 (mbio->bi_size >> 9) - 1);
448 call_bio_endio(r1_bio);
452 if (r1_bio->bios[mirror] == NULL)
453 rdev_dec_pending(conf->mirrors[mirror].rdev,
457 * Let's see if all mirrored write operations have finished
460 r1_bio_write_done(r1_bio);
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
479 * The rdev for the device selected will have nr_pending incremented.
481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
483 const sector_t this_sector = r1_bio->sector;
485 int best_good_sectors;
490 struct md_rdev *rdev;
495 * Check if we can balance. We can balance on the whole
496 * device if no resync is going on, or below the resync window.
497 * We take the first readable disk when above the resync window.
500 sectors = r1_bio->sectors;
502 best_dist = MaxSector;
503 best_good_sectors = 0;
505 if (conf->mddev->recovery_cp < MaxSector &&
506 (this_sector + sectors >= conf->next_resync)) {
511 start_disk = conf->last_used;
514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
519 int disk = start_disk + i;
520 if (disk >= conf->raid_disks)
521 disk -= conf->raid_disks;
523 rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 if (r1_bio->bios[disk] == IO_BLOCKED
526 || test_bit(Unmerged, &rdev->flags)
527 || test_bit(Faulty, &rdev->flags))
529 if (!test_bit(In_sync, &rdev->flags) &&
530 rdev->recovery_offset < this_sector + sectors)
532 if (test_bit(WriteMostly, &rdev->flags)) {
533 /* Don't balance among write-mostly, just
534 * use the first as a last resort */
536 if (is_badblock(rdev, this_sector, sectors,
537 &first_bad, &bad_sectors)) {
538 if (first_bad < this_sector)
539 /* Cannot use this */
541 best_good_sectors = first_bad - this_sector;
543 best_good_sectors = sectors;
548 /* This is a reasonable device to use. It might
551 if (is_badblock(rdev, this_sector, sectors,
552 &first_bad, &bad_sectors)) {
553 if (best_dist < MaxSector)
554 /* already have a better device */
556 if (first_bad <= this_sector) {
557 /* cannot read here. If this is the 'primary'
558 * device, then we must not read beyond
559 * bad_sectors from another device..
561 bad_sectors -= (this_sector - first_bad);
562 if (choose_first && sectors > bad_sectors)
563 sectors = bad_sectors;
564 if (best_good_sectors > sectors)
565 best_good_sectors = sectors;
568 sector_t good_sectors = first_bad - this_sector;
569 if (good_sectors > best_good_sectors) {
570 best_good_sectors = good_sectors;
578 best_good_sectors = sectors;
580 dist = abs(this_sector - conf->mirrors[disk].head_position);
582 /* Don't change to another disk for sequential reads */
583 || conf->next_seq_sect == this_sector
585 /* If device is idle, use it */
586 || atomic_read(&rdev->nr_pending) == 0) {
590 if (dist < best_dist) {
596 if (best_disk >= 0) {
597 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
600 atomic_inc(&rdev->nr_pending);
601 if (test_bit(Faulty, &rdev->flags)) {
602 /* cannot risk returning a device that failed
603 * before we inc'ed nr_pending
605 rdev_dec_pending(rdev, conf->mddev);
608 sectors = best_good_sectors;
609 conf->next_seq_sect = this_sector + sectors;
610 conf->last_used = best_disk;
613 *max_sectors = sectors;
618 static int raid1_mergeable_bvec(struct request_queue *q,
619 struct bvec_merge_data *bvm,
620 struct bio_vec *biovec)
622 struct mddev *mddev = q->queuedata;
623 struct r1conf *conf = mddev->private;
624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625 int max = biovec->bv_len;
627 if (mddev->merge_check_needed) {
630 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
631 struct md_rdev *rdev = rcu_dereference(
632 conf->mirrors[disk].rdev);
633 if (rdev && !test_bit(Faulty, &rdev->flags)) {
634 struct request_queue *q =
635 bdev_get_queue(rdev->bdev);
636 if (q->merge_bvec_fn) {
637 bvm->bi_sector = sector +
639 bvm->bi_bdev = rdev->bdev;
640 max = min(max, q->merge_bvec_fn(
651 int md_raid1_congested(struct mddev *mddev, int bits)
653 struct r1conf *conf = mddev->private;
656 if ((bits & (1 << BDI_async_congested)) &&
657 conf->pending_count >= max_queued_requests)
661 for (i = 0; i < conf->raid_disks * 2; i++) {
662 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
663 if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 struct request_queue *q = bdev_get_queue(rdev->bdev);
668 /* Note the '|| 1' - when read_balance prefers
669 * non-congested targets, it can be removed
671 if ((bits & (1<<BDI_async_congested)) || 1)
672 ret |= bdi_congested(&q->backing_dev_info, bits);
674 ret &= bdi_congested(&q->backing_dev_info, bits);
680 EXPORT_SYMBOL_GPL(md_raid1_congested);
682 static int raid1_congested(void *data, int bits)
684 struct mddev *mddev = data;
686 return mddev_congested(mddev, bits) ||
687 md_raid1_congested(mddev, bits);
690 static void flush_pending_writes(struct r1conf *conf)
692 /* Any writes that have been queued but are awaiting
693 * bitmap updates get flushed here.
695 spin_lock_irq(&conf->device_lock);
697 if (conf->pending_bio_list.head) {
699 bio = bio_list_get(&conf->pending_bio_list);
700 conf->pending_count = 0;
701 spin_unlock_irq(&conf->device_lock);
702 /* flush any pending bitmap writes to
703 * disk before proceeding w/ I/O */
704 bitmap_unplug(conf->mddev->bitmap);
705 wake_up(&conf->wait_barrier);
707 while (bio) { /* submit pending writes */
708 struct bio *next = bio->bi_next;
710 generic_make_request(bio);
714 spin_unlock_irq(&conf->device_lock);
718 * Sometimes we need to suspend IO while we do something else,
719 * either some resync/recovery, or reconfigure the array.
720 * To do this we raise a 'barrier'.
721 * The 'barrier' is a counter that can be raised multiple times
722 * to count how many activities are happening which preclude
724 * We can only raise the barrier if there is no pending IO.
725 * i.e. if nr_pending == 0.
726 * We choose only to raise the barrier if no-one is waiting for the
727 * barrier to go down. This means that as soon as an IO request
728 * is ready, no other operations which require a barrier will start
729 * until the IO request has had a chance.
731 * So: regular IO calls 'wait_barrier'. When that returns there
732 * is no backgroup IO happening, It must arrange to call
733 * allow_barrier when it has finished its IO.
734 * backgroup IO calls must call raise_barrier. Once that returns
735 * there is no normal IO happeing. It must arrange to call
736 * lower_barrier when the particular background IO completes.
738 #define RESYNC_DEPTH 32
740 static void raise_barrier(struct r1conf *conf)
742 spin_lock_irq(&conf->resync_lock);
744 /* Wait until no block IO is waiting */
745 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
746 conf->resync_lock, );
748 /* block any new IO from starting */
751 /* Now wait for all pending IO to complete */
752 wait_event_lock_irq(conf->wait_barrier,
753 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
754 conf->resync_lock, );
756 spin_unlock_irq(&conf->resync_lock);
759 static void lower_barrier(struct r1conf *conf)
762 BUG_ON(conf->barrier <= 0);
763 spin_lock_irqsave(&conf->resync_lock, flags);
765 spin_unlock_irqrestore(&conf->resync_lock, flags);
766 wake_up(&conf->wait_barrier);
769 static void wait_barrier(struct r1conf *conf)
771 spin_lock_irq(&conf->resync_lock);
774 /* Wait for the barrier to drop.
775 * However if there are already pending
776 * requests (preventing the barrier from
777 * rising completely), and the
778 * pre-process bio queue isn't empty,
779 * then don't wait, as we need to empty
780 * that queue to get the nr_pending
783 wait_event_lock_irq(conf->wait_barrier,
787 !bio_list_empty(current->bio_list)),
793 spin_unlock_irq(&conf->resync_lock);
796 static void allow_barrier(struct r1conf *conf)
799 spin_lock_irqsave(&conf->resync_lock, flags);
801 spin_unlock_irqrestore(&conf->resync_lock, flags);
802 wake_up(&conf->wait_barrier);
805 static void freeze_array(struct r1conf *conf)
807 /* stop syncio and normal IO and wait for everything to
809 * We increment barrier and nr_waiting, and then
810 * wait until nr_pending match nr_queued+1
811 * This is called in the context of one normal IO request
812 * that has failed. Thus any sync request that might be pending
813 * will be blocked by nr_pending, and we need to wait for
814 * pending IO requests to complete or be queued for re-try.
815 * Thus the number queued (nr_queued) plus this request (1)
816 * must match the number of pending IOs (nr_pending) before
819 spin_lock_irq(&conf->resync_lock);
822 wait_event_lock_irq(conf->wait_barrier,
823 conf->nr_pending == conf->nr_queued+1,
825 flush_pending_writes(conf));
826 spin_unlock_irq(&conf->resync_lock);
828 static void unfreeze_array(struct r1conf *conf)
830 /* reverse the effect of the freeze */
831 spin_lock_irq(&conf->resync_lock);
834 wake_up(&conf->wait_barrier);
835 spin_unlock_irq(&conf->resync_lock);
839 /* duplicate the data pages for behind I/O
841 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
844 struct bio_vec *bvec;
845 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
847 if (unlikely(!bvecs))
850 bio_for_each_segment(bvec, bio, i) {
852 bvecs[i].bv_page = alloc_page(GFP_NOIO);
853 if (unlikely(!bvecs[i].bv_page))
855 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
856 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
857 kunmap(bvecs[i].bv_page);
858 kunmap(bvec->bv_page);
860 r1_bio->behind_bvecs = bvecs;
861 r1_bio->behind_page_count = bio->bi_vcnt;
862 set_bit(R1BIO_BehindIO, &r1_bio->state);
866 for (i = 0; i < bio->bi_vcnt; i++)
867 if (bvecs[i].bv_page)
868 put_page(bvecs[i].bv_page);
870 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
873 static void make_request(struct mddev *mddev, struct bio * bio)
875 struct r1conf *conf = mddev->private;
876 struct mirror_info *mirror;
877 struct r1bio *r1_bio;
878 struct bio *read_bio;
880 struct bitmap *bitmap;
882 const int rw = bio_data_dir(bio);
883 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
884 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
885 struct md_rdev *blocked_rdev;
892 * Register the new request and wait if the reconstruction
893 * thread has put up a bar for new requests.
894 * Continue immediately if no resync is active currently.
897 md_write_start(mddev, bio); /* wait on superblock update early */
899 if (bio_data_dir(bio) == WRITE &&
900 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
901 bio->bi_sector < mddev->suspend_hi) {
902 /* As the suspend_* range is controlled by
903 * userspace, we want an interruptible
908 flush_signals(current);
909 prepare_to_wait(&conf->wait_barrier,
910 &w, TASK_INTERRUPTIBLE);
911 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
912 bio->bi_sector >= mddev->suspend_hi)
916 finish_wait(&conf->wait_barrier, &w);
921 bitmap = mddev->bitmap;
924 * make_request() can abort the operation when READA is being
925 * used and no empty request is available.
928 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
930 r1_bio->master_bio = bio;
931 r1_bio->sectors = bio->bi_size >> 9;
933 r1_bio->mddev = mddev;
934 r1_bio->sector = bio->bi_sector;
936 /* We might need to issue multiple reads to different
937 * devices if there are bad blocks around, so we keep
938 * track of the number of reads in bio->bi_phys_segments.
939 * If this is 0, there is only one r1_bio and no locking
940 * will be needed when requests complete. If it is
941 * non-zero, then it is the number of not-completed requests.
943 bio->bi_phys_segments = 0;
944 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
948 * read balancing logic:
953 rdisk = read_balance(conf, r1_bio, &max_sectors);
956 /* couldn't find anywhere to read from */
957 raid_end_bio_io(r1_bio);
960 mirror = conf->mirrors + rdisk;
962 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
964 /* Reading from a write-mostly device must
965 * take care not to over-take any writes
968 wait_event(bitmap->behind_wait,
969 atomic_read(&bitmap->behind_writes) == 0);
971 r1_bio->read_disk = rdisk;
973 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
974 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
977 r1_bio->bios[rdisk] = read_bio;
979 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
980 read_bio->bi_bdev = mirror->rdev->bdev;
981 read_bio->bi_end_io = raid1_end_read_request;
982 read_bio->bi_rw = READ | do_sync;
983 read_bio->bi_private = r1_bio;
985 if (max_sectors < r1_bio->sectors) {
986 /* could not read all from this device, so we will
987 * need another r1_bio.
990 sectors_handled = (r1_bio->sector + max_sectors
992 r1_bio->sectors = max_sectors;
993 spin_lock_irq(&conf->device_lock);
994 if (bio->bi_phys_segments == 0)
995 bio->bi_phys_segments = 2;
997 bio->bi_phys_segments++;
998 spin_unlock_irq(&conf->device_lock);
999 /* Cannot call generic_make_request directly
1000 * as that will be queued in __make_request
1001 * and subsequent mempool_alloc might block waiting
1002 * for it. So hand bio over to raid1d.
1004 reschedule_retry(r1_bio);
1006 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1008 r1_bio->master_bio = bio;
1009 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1011 r1_bio->mddev = mddev;
1012 r1_bio->sector = bio->bi_sector + sectors_handled;
1015 generic_make_request(read_bio);
1022 if (conf->pending_count >= max_queued_requests) {
1023 md_wakeup_thread(mddev->thread);
1024 wait_event(conf->wait_barrier,
1025 conf->pending_count < max_queued_requests);
1027 /* first select target devices under rcu_lock and
1028 * inc refcount on their rdev. Record them by setting
1030 * If there are known/acknowledged bad blocks on any device on
1031 * which we have seen a write error, we want to avoid writing those
1033 * This potentially requires several writes to write around
1034 * the bad blocks. Each set of writes gets it's own r1bio
1035 * with a set of bios attached.
1037 plugged = mddev_check_plugged(mddev);
1039 disks = conf->raid_disks * 2;
1041 blocked_rdev = NULL;
1043 max_sectors = r1_bio->sectors;
1044 for (i = 0; i < disks; i++) {
1045 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1046 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1047 atomic_inc(&rdev->nr_pending);
1048 blocked_rdev = rdev;
1051 r1_bio->bios[i] = NULL;
1052 if (!rdev || test_bit(Faulty, &rdev->flags)
1053 || test_bit(Unmerged, &rdev->flags)) {
1054 if (i < conf->raid_disks)
1055 set_bit(R1BIO_Degraded, &r1_bio->state);
1059 atomic_inc(&rdev->nr_pending);
1060 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1065 is_bad = is_badblock(rdev, r1_bio->sector,
1067 &first_bad, &bad_sectors);
1069 /* mustn't write here until the bad block is
1071 set_bit(BlockedBadBlocks, &rdev->flags);
1072 blocked_rdev = rdev;
1075 if (is_bad && first_bad <= r1_bio->sector) {
1076 /* Cannot write here at all */
1077 bad_sectors -= (r1_bio->sector - first_bad);
1078 if (bad_sectors < max_sectors)
1079 /* mustn't write more than bad_sectors
1080 * to other devices yet
1082 max_sectors = bad_sectors;
1083 rdev_dec_pending(rdev, mddev);
1084 /* We don't set R1BIO_Degraded as that
1085 * only applies if the disk is
1086 * missing, so it might be re-added,
1087 * and we want to know to recover this
1089 * In this case the device is here,
1090 * and the fact that this chunk is not
1091 * in-sync is recorded in the bad
1097 int good_sectors = first_bad - r1_bio->sector;
1098 if (good_sectors < max_sectors)
1099 max_sectors = good_sectors;
1102 r1_bio->bios[i] = bio;
1106 if (unlikely(blocked_rdev)) {
1107 /* Wait for this device to become unblocked */
1110 for (j = 0; j < i; j++)
1111 if (r1_bio->bios[j])
1112 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1114 allow_barrier(conf);
1115 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1120 if (max_sectors < r1_bio->sectors) {
1121 /* We are splitting this write into multiple parts, so
1122 * we need to prepare for allocating another r1_bio.
1124 r1_bio->sectors = max_sectors;
1125 spin_lock_irq(&conf->device_lock);
1126 if (bio->bi_phys_segments == 0)
1127 bio->bi_phys_segments = 2;
1129 bio->bi_phys_segments++;
1130 spin_unlock_irq(&conf->device_lock);
1132 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1134 atomic_set(&r1_bio->remaining, 1);
1135 atomic_set(&r1_bio->behind_remaining, 0);
1138 for (i = 0; i < disks; i++) {
1140 if (!r1_bio->bios[i])
1143 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1144 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1148 * Not if there are too many, or cannot
1149 * allocate memory, or a reader on WriteMostly
1150 * is waiting for behind writes to flush */
1152 (atomic_read(&bitmap->behind_writes)
1153 < mddev->bitmap_info.max_write_behind) &&
1154 !waitqueue_active(&bitmap->behind_wait))
1155 alloc_behind_pages(mbio, r1_bio);
1157 bitmap_startwrite(bitmap, r1_bio->sector,
1159 test_bit(R1BIO_BehindIO,
1163 if (r1_bio->behind_bvecs) {
1164 struct bio_vec *bvec;
1167 /* Yes, I really want the '__' version so that
1168 * we clear any unused pointer in the io_vec, rather
1169 * than leave them unchanged. This is important
1170 * because when we come to free the pages, we won't
1171 * know the original bi_idx, so we just free
1174 __bio_for_each_segment(bvec, mbio, j, 0)
1175 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1176 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1177 atomic_inc(&r1_bio->behind_remaining);
1180 r1_bio->bios[i] = mbio;
1182 mbio->bi_sector = (r1_bio->sector +
1183 conf->mirrors[i].rdev->data_offset);
1184 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1185 mbio->bi_end_io = raid1_end_write_request;
1186 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1187 mbio->bi_private = r1_bio;
1189 atomic_inc(&r1_bio->remaining);
1190 spin_lock_irqsave(&conf->device_lock, flags);
1191 bio_list_add(&conf->pending_bio_list, mbio);
1192 conf->pending_count++;
1193 spin_unlock_irqrestore(&conf->device_lock, flags);
1195 /* Mustn't call r1_bio_write_done before this next test,
1196 * as it could result in the bio being freed.
1198 if (sectors_handled < (bio->bi_size >> 9)) {
1199 r1_bio_write_done(r1_bio);
1200 /* We need another r1_bio. It has already been counted
1201 * in bio->bi_phys_segments
1203 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1204 r1_bio->master_bio = bio;
1205 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1207 r1_bio->mddev = mddev;
1208 r1_bio->sector = bio->bi_sector + sectors_handled;
1212 r1_bio_write_done(r1_bio);
1214 /* In case raid1d snuck in to freeze_array */
1215 wake_up(&conf->wait_barrier);
1217 if (do_sync || !bitmap || !plugged)
1218 md_wakeup_thread(mddev->thread);
1221 static void status(struct seq_file *seq, struct mddev *mddev)
1223 struct r1conf *conf = mddev->private;
1226 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1227 conf->raid_disks - mddev->degraded);
1229 for (i = 0; i < conf->raid_disks; i++) {
1230 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1231 seq_printf(seq, "%s",
1232 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1235 seq_printf(seq, "]");
1239 static void error(struct mddev *mddev, struct md_rdev *rdev)
1241 char b[BDEVNAME_SIZE];
1242 struct r1conf *conf = mddev->private;
1245 * If it is not operational, then we have already marked it as dead
1246 * else if it is the last working disks, ignore the error, let the
1247 * next level up know.
1248 * else mark the drive as failed
1250 if (test_bit(In_sync, &rdev->flags)
1251 && (conf->raid_disks - mddev->degraded) == 1) {
1253 * Don't fail the drive, act as though we were just a
1254 * normal single drive.
1255 * However don't try a recovery from this drive as
1256 * it is very likely to fail.
1258 conf->recovery_disabled = mddev->recovery_disabled;
1261 set_bit(Blocked, &rdev->flags);
1262 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1263 unsigned long flags;
1264 spin_lock_irqsave(&conf->device_lock, flags);
1266 set_bit(Faulty, &rdev->flags);
1267 spin_unlock_irqrestore(&conf->device_lock, flags);
1269 * if recovery is running, make sure it aborts.
1271 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1273 set_bit(Faulty, &rdev->flags);
1274 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1276 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1277 "md/raid1:%s: Operation continuing on %d devices.\n",
1278 mdname(mddev), bdevname(rdev->bdev, b),
1279 mdname(mddev), conf->raid_disks - mddev->degraded);
1282 static void print_conf(struct r1conf *conf)
1286 printk(KERN_DEBUG "RAID1 conf printout:\n");
1288 printk(KERN_DEBUG "(!conf)\n");
1291 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1295 for (i = 0; i < conf->raid_disks; i++) {
1296 char b[BDEVNAME_SIZE];
1297 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1299 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1300 i, !test_bit(In_sync, &rdev->flags),
1301 !test_bit(Faulty, &rdev->flags),
1302 bdevname(rdev->bdev,b));
1307 static void close_sync(struct r1conf *conf)
1310 allow_barrier(conf);
1312 mempool_destroy(conf->r1buf_pool);
1313 conf->r1buf_pool = NULL;
1316 static int raid1_spare_active(struct mddev *mddev)
1319 struct r1conf *conf = mddev->private;
1321 unsigned long flags;
1324 * Find all failed disks within the RAID1 configuration
1325 * and mark them readable.
1326 * Called under mddev lock, so rcu protection not needed.
1328 for (i = 0; i < conf->raid_disks; i++) {
1329 struct md_rdev *rdev = conf->mirrors[i].rdev;
1330 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1332 && repl->recovery_offset == MaxSector
1333 && !test_bit(Faulty, &repl->flags)
1334 && !test_and_set_bit(In_sync, &repl->flags)) {
1335 /* replacement has just become active */
1337 !test_and_clear_bit(In_sync, &rdev->flags))
1340 /* Replaced device not technically
1341 * faulty, but we need to be sure
1342 * it gets removed and never re-added
1344 set_bit(Faulty, &rdev->flags);
1345 sysfs_notify_dirent_safe(
1350 && !test_bit(Faulty, &rdev->flags)
1351 && !test_and_set_bit(In_sync, &rdev->flags)) {
1353 sysfs_notify_dirent_safe(rdev->sysfs_state);
1356 spin_lock_irqsave(&conf->device_lock, flags);
1357 mddev->degraded -= count;
1358 spin_unlock_irqrestore(&conf->device_lock, flags);
1365 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1367 struct r1conf *conf = mddev->private;
1370 struct mirror_info *p;
1372 int last = conf->raid_disks - 1;
1373 struct request_queue *q = bdev_get_queue(rdev->bdev);
1375 if (mddev->recovery_disabled == conf->recovery_disabled)
1378 if (rdev->raid_disk >= 0)
1379 first = last = rdev->raid_disk;
1381 if (q->merge_bvec_fn) {
1382 set_bit(Unmerged, &rdev->flags);
1383 mddev->merge_check_needed = 1;
1386 for (mirror = first; mirror <= last; mirror++) {
1387 p = conf->mirrors+mirror;
1390 disk_stack_limits(mddev->gendisk, rdev->bdev,
1391 rdev->data_offset << 9);
1393 p->head_position = 0;
1394 rdev->raid_disk = mirror;
1396 /* As all devices are equivalent, we don't need a full recovery
1397 * if this was recently any drive of the array
1399 if (rdev->saved_raid_disk < 0)
1401 rcu_assign_pointer(p->rdev, rdev);
1404 if (test_bit(WantReplacement, &p->rdev->flags) &&
1405 p[conf->raid_disks].rdev == NULL) {
1406 /* Add this device as a replacement */
1407 clear_bit(In_sync, &rdev->flags);
1408 set_bit(Replacement, &rdev->flags);
1409 rdev->raid_disk = mirror;
1412 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1416 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1417 /* Some requests might not have seen this new
1418 * merge_bvec_fn. We must wait for them to complete
1419 * before merging the device fully.
1420 * First we make sure any code which has tested
1421 * our function has submitted the request, then
1422 * we wait for all outstanding requests to complete.
1424 synchronize_sched();
1425 raise_barrier(conf);
1426 lower_barrier(conf);
1427 clear_bit(Unmerged, &rdev->flags);
1429 md_integrity_add_rdev(rdev, mddev);
1434 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1436 struct r1conf *conf = mddev->private;
1438 int number = rdev->raid_disk;
1439 struct mirror_info *p = conf->mirrors+ number;
1441 if (rdev != p->rdev)
1442 p = conf->mirrors + conf->raid_disks + number;
1445 if (rdev == p->rdev) {
1446 if (test_bit(In_sync, &rdev->flags) ||
1447 atomic_read(&rdev->nr_pending)) {
1451 /* Only remove non-faulty devices if recovery
1454 if (!test_bit(Faulty, &rdev->flags) &&
1455 mddev->recovery_disabled != conf->recovery_disabled &&
1456 mddev->degraded < conf->raid_disks) {
1462 if (atomic_read(&rdev->nr_pending)) {
1463 /* lost the race, try later */
1467 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1468 /* We just removed a device that is being replaced.
1469 * Move down the replacement. We drain all IO before
1470 * doing this to avoid confusion.
1472 struct md_rdev *repl =
1473 conf->mirrors[conf->raid_disks + number].rdev;
1474 raise_barrier(conf);
1475 clear_bit(Replacement, &repl->flags);
1477 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1478 lower_barrier(conf);
1479 clear_bit(WantReplacement, &rdev->flags);
1481 clear_bit(WantReplacement, &rdev->flags);
1482 err = md_integrity_register(mddev);
1491 static void end_sync_read(struct bio *bio, int error)
1493 struct r1bio *r1_bio = bio->bi_private;
1495 update_head_pos(r1_bio->read_disk, r1_bio);
1498 * we have read a block, now it needs to be re-written,
1499 * or re-read if the read failed.
1500 * We don't do much here, just schedule handling by raid1d
1502 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1503 set_bit(R1BIO_Uptodate, &r1_bio->state);
1505 if (atomic_dec_and_test(&r1_bio->remaining))
1506 reschedule_retry(r1_bio);
1509 static void end_sync_write(struct bio *bio, int error)
1511 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1512 struct r1bio *r1_bio = bio->bi_private;
1513 struct mddev *mddev = r1_bio->mddev;
1514 struct r1conf *conf = mddev->private;
1519 mirror = find_bio_disk(r1_bio, bio);
1522 sector_t sync_blocks = 0;
1523 sector_t s = r1_bio->sector;
1524 long sectors_to_go = r1_bio->sectors;
1525 /* make sure these bits doesn't get cleared. */
1527 bitmap_end_sync(mddev->bitmap, s,
1530 sectors_to_go -= sync_blocks;
1531 } while (sectors_to_go > 0);
1532 set_bit(WriteErrorSeen,
1533 &conf->mirrors[mirror].rdev->flags);
1534 if (!test_and_set_bit(WantReplacement,
1535 &conf->mirrors[mirror].rdev->flags))
1536 set_bit(MD_RECOVERY_NEEDED, &
1538 set_bit(R1BIO_WriteError, &r1_bio->state);
1539 } else if (is_badblock(conf->mirrors[mirror].rdev,
1542 &first_bad, &bad_sectors) &&
1543 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1546 &first_bad, &bad_sectors)
1548 set_bit(R1BIO_MadeGood, &r1_bio->state);
1550 if (atomic_dec_and_test(&r1_bio->remaining)) {
1551 int s = r1_bio->sectors;
1552 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1553 test_bit(R1BIO_WriteError, &r1_bio->state))
1554 reschedule_retry(r1_bio);
1557 md_done_sync(mddev, s, uptodate);
1562 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1563 int sectors, struct page *page, int rw)
1565 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1569 set_bit(WriteErrorSeen, &rdev->flags);
1570 if (!test_and_set_bit(WantReplacement,
1572 set_bit(MD_RECOVERY_NEEDED, &
1573 rdev->mddev->recovery);
1575 /* need to record an error - either for the block or the device */
1576 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1577 md_error(rdev->mddev, rdev);
1581 static int fix_sync_read_error(struct r1bio *r1_bio)
1583 /* Try some synchronous reads of other devices to get
1584 * good data, much like with normal read errors. Only
1585 * read into the pages we already have so we don't
1586 * need to re-issue the read request.
1587 * We don't need to freeze the array, because being in an
1588 * active sync request, there is no normal IO, and
1589 * no overlapping syncs.
1590 * We don't need to check is_badblock() again as we
1591 * made sure that anything with a bad block in range
1592 * will have bi_end_io clear.
1594 struct mddev *mddev = r1_bio->mddev;
1595 struct r1conf *conf = mddev->private;
1596 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1597 sector_t sect = r1_bio->sector;
1598 int sectors = r1_bio->sectors;
1603 int d = r1_bio->read_disk;
1605 struct md_rdev *rdev;
1608 if (s > (PAGE_SIZE>>9))
1611 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1612 /* No rcu protection needed here devices
1613 * can only be removed when no resync is
1614 * active, and resync is currently active
1616 rdev = conf->mirrors[d].rdev;
1617 if (sync_page_io(rdev, sect, s<<9,
1618 bio->bi_io_vec[idx].bv_page,
1625 if (d == conf->raid_disks * 2)
1627 } while (!success && d != r1_bio->read_disk);
1630 char b[BDEVNAME_SIZE];
1632 /* Cannot read from anywhere, this block is lost.
1633 * Record a bad block on each device. If that doesn't
1634 * work just disable and interrupt the recovery.
1635 * Don't fail devices as that won't really help.
1637 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1638 " for block %llu\n",
1640 bdevname(bio->bi_bdev, b),
1641 (unsigned long long)r1_bio->sector);
1642 for (d = 0; d < conf->raid_disks * 2; d++) {
1643 rdev = conf->mirrors[d].rdev;
1644 if (!rdev || test_bit(Faulty, &rdev->flags))
1646 if (!rdev_set_badblocks(rdev, sect, s, 0))
1650 conf->recovery_disabled =
1651 mddev->recovery_disabled;
1652 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1653 md_done_sync(mddev, r1_bio->sectors, 0);
1665 /* write it back and re-read */
1666 while (d != r1_bio->read_disk) {
1668 d = conf->raid_disks * 2;
1670 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1672 rdev = conf->mirrors[d].rdev;
1673 if (r1_sync_page_io(rdev, sect, s,
1674 bio->bi_io_vec[idx].bv_page,
1676 r1_bio->bios[d]->bi_end_io = NULL;
1677 rdev_dec_pending(rdev, mddev);
1681 while (d != r1_bio->read_disk) {
1683 d = conf->raid_disks * 2;
1685 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1687 rdev = conf->mirrors[d].rdev;
1688 if (r1_sync_page_io(rdev, sect, s,
1689 bio->bi_io_vec[idx].bv_page,
1691 atomic_add(s, &rdev->corrected_errors);
1697 set_bit(R1BIO_Uptodate, &r1_bio->state);
1698 set_bit(BIO_UPTODATE, &bio->bi_flags);
1702 static int process_checks(struct r1bio *r1_bio)
1704 /* We have read all readable devices. If we haven't
1705 * got the block, then there is no hope left.
1706 * If we have, then we want to do a comparison
1707 * and skip the write if everything is the same.
1708 * If any blocks failed to read, then we need to
1709 * attempt an over-write
1711 struct mddev *mddev = r1_bio->mddev;
1712 struct r1conf *conf = mddev->private;
1717 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1718 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1719 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1720 r1_bio->bios[primary]->bi_end_io = NULL;
1721 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1724 r1_bio->read_disk = primary;
1725 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1726 for (i = 0; i < conf->raid_disks * 2; i++) {
1728 struct bio *pbio = r1_bio->bios[primary];
1729 struct bio *sbio = r1_bio->bios[i];
1732 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1735 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1736 for (j = vcnt; j-- ; ) {
1738 p = pbio->bi_io_vec[j].bv_page;
1739 s = sbio->bi_io_vec[j].bv_page;
1740 if (memcmp(page_address(p),
1742 sbio->bi_io_vec[j].bv_len))
1748 mddev->resync_mismatches += r1_bio->sectors;
1749 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1750 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1751 /* No need to write to this device. */
1752 sbio->bi_end_io = NULL;
1753 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1756 /* fixup the bio for reuse */
1757 sbio->bi_vcnt = vcnt;
1758 sbio->bi_size = r1_bio->sectors << 9;
1760 sbio->bi_phys_segments = 0;
1761 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1762 sbio->bi_flags |= 1 << BIO_UPTODATE;
1763 sbio->bi_next = NULL;
1764 sbio->bi_sector = r1_bio->sector +
1765 conf->mirrors[i].rdev->data_offset;
1766 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1767 size = sbio->bi_size;
1768 for (j = 0; j < vcnt ; j++) {
1770 bi = &sbio->bi_io_vec[j];
1772 if (size > PAGE_SIZE)
1773 bi->bv_len = PAGE_SIZE;
1777 memcpy(page_address(bi->bv_page),
1778 page_address(pbio->bi_io_vec[j].bv_page),
1785 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1787 struct r1conf *conf = mddev->private;
1789 int disks = conf->raid_disks * 2;
1790 struct bio *bio, *wbio;
1792 bio = r1_bio->bios[r1_bio->read_disk];
1794 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1795 /* ouch - failed to read all of that. */
1796 if (!fix_sync_read_error(r1_bio))
1799 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1800 if (process_checks(r1_bio) < 0)
1805 atomic_set(&r1_bio->remaining, 1);
1806 for (i = 0; i < disks ; i++) {
1807 wbio = r1_bio->bios[i];
1808 if (wbio->bi_end_io == NULL ||
1809 (wbio->bi_end_io == end_sync_read &&
1810 (i == r1_bio->read_disk ||
1811 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1814 wbio->bi_rw = WRITE;
1815 wbio->bi_end_io = end_sync_write;
1816 atomic_inc(&r1_bio->remaining);
1817 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1819 generic_make_request(wbio);
1822 if (atomic_dec_and_test(&r1_bio->remaining)) {
1823 /* if we're here, all write(s) have completed, so clean up */
1824 md_done_sync(mddev, r1_bio->sectors, 1);
1830 * This is a kernel thread which:
1832 * 1. Retries failed read operations on working mirrors.
1833 * 2. Updates the raid superblock when problems encounter.
1834 * 3. Performs writes following reads for array synchronising.
1837 static void fix_read_error(struct r1conf *conf, int read_disk,
1838 sector_t sect, int sectors)
1840 struct mddev *mddev = conf->mddev;
1846 struct md_rdev *rdev;
1848 if (s > (PAGE_SIZE>>9))
1852 /* Note: no rcu protection needed here
1853 * as this is synchronous in the raid1d thread
1854 * which is the thread that might remove
1855 * a device. If raid1d ever becomes multi-threaded....
1860 rdev = conf->mirrors[d].rdev;
1862 test_bit(In_sync, &rdev->flags) &&
1863 is_badblock(rdev, sect, s,
1864 &first_bad, &bad_sectors) == 0 &&
1865 sync_page_io(rdev, sect, s<<9,
1866 conf->tmppage, READ, false))
1870 if (d == conf->raid_disks * 2)
1873 } while (!success && d != read_disk);
1876 /* Cannot read from anywhere - mark it bad */
1877 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1878 if (!rdev_set_badblocks(rdev, sect, s, 0))
1879 md_error(mddev, rdev);
1882 /* write it back and re-read */
1884 while (d != read_disk) {
1886 d = conf->raid_disks * 2;
1888 rdev = conf->mirrors[d].rdev;
1890 test_bit(In_sync, &rdev->flags))
1891 r1_sync_page_io(rdev, sect, s,
1892 conf->tmppage, WRITE);
1895 while (d != read_disk) {
1896 char b[BDEVNAME_SIZE];
1898 d = conf->raid_disks * 2;
1900 rdev = conf->mirrors[d].rdev;
1902 test_bit(In_sync, &rdev->flags)) {
1903 if (r1_sync_page_io(rdev, sect, s,
1904 conf->tmppage, READ)) {
1905 atomic_add(s, &rdev->corrected_errors);
1907 "md/raid1:%s: read error corrected "
1908 "(%d sectors at %llu on %s)\n",
1910 (unsigned long long)(sect +
1912 bdevname(rdev->bdev, b));
1921 static void bi_complete(struct bio *bio, int error)
1923 complete((struct completion *)bio->bi_private);
1926 static int submit_bio_wait(int rw, struct bio *bio)
1928 struct completion event;
1931 init_completion(&event);
1932 bio->bi_private = &event;
1933 bio->bi_end_io = bi_complete;
1934 submit_bio(rw, bio);
1935 wait_for_completion(&event);
1937 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1940 static int narrow_write_error(struct r1bio *r1_bio, int i)
1942 struct mddev *mddev = r1_bio->mddev;
1943 struct r1conf *conf = mddev->private;
1944 struct md_rdev *rdev = conf->mirrors[i].rdev;
1946 struct bio_vec *vec;
1948 /* bio has the data to be written to device 'i' where
1949 * we just recently had a write error.
1950 * We repeatedly clone the bio and trim down to one block,
1951 * then try the write. Where the write fails we record
1953 * It is conceivable that the bio doesn't exactly align with
1954 * blocks. We must handle this somehow.
1956 * We currently own a reference on the rdev.
1962 int sect_to_write = r1_bio->sectors;
1965 if (rdev->badblocks.shift < 0)
1968 block_sectors = 1 << rdev->badblocks.shift;
1969 sector = r1_bio->sector;
1970 sectors = ((sector + block_sectors)
1971 & ~(sector_t)(block_sectors - 1))
1974 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1975 vcnt = r1_bio->behind_page_count;
1976 vec = r1_bio->behind_bvecs;
1978 while (vec[idx].bv_page == NULL)
1981 vcnt = r1_bio->master_bio->bi_vcnt;
1982 vec = r1_bio->master_bio->bi_io_vec;
1983 idx = r1_bio->master_bio->bi_idx;
1985 while (sect_to_write) {
1987 if (sectors > sect_to_write)
1988 sectors = sect_to_write;
1989 /* Write at 'sector' for 'sectors'*/
1991 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1992 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1993 wbio->bi_sector = r1_bio->sector;
1994 wbio->bi_rw = WRITE;
1995 wbio->bi_vcnt = vcnt;
1996 wbio->bi_size = r1_bio->sectors << 9;
1999 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2000 wbio->bi_sector += rdev->data_offset;
2001 wbio->bi_bdev = rdev->bdev;
2002 if (submit_bio_wait(WRITE, wbio) == 0)
2004 ok = rdev_set_badblocks(rdev, sector,
2009 sect_to_write -= sectors;
2011 sectors = block_sectors;
2016 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2019 int s = r1_bio->sectors;
2020 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2021 struct md_rdev *rdev = conf->mirrors[m].rdev;
2022 struct bio *bio = r1_bio->bios[m];
2023 if (bio->bi_end_io == NULL)
2025 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2026 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2027 rdev_clear_badblocks(rdev, r1_bio->sector, s);
2029 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2030 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2031 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2032 md_error(conf->mddev, rdev);
2036 md_done_sync(conf->mddev, s, 1);
2039 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2042 for (m = 0; m < conf->raid_disks * 2 ; m++)
2043 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2044 struct md_rdev *rdev = conf->mirrors[m].rdev;
2045 rdev_clear_badblocks(rdev,
2048 rdev_dec_pending(rdev, conf->mddev);
2049 } else if (r1_bio->bios[m] != NULL) {
2050 /* This drive got a write error. We need to
2051 * narrow down and record precise write
2054 if (!narrow_write_error(r1_bio, m)) {
2055 md_error(conf->mddev,
2056 conf->mirrors[m].rdev);
2057 /* an I/O failed, we can't clear the bitmap */
2058 set_bit(R1BIO_Degraded, &r1_bio->state);
2060 rdev_dec_pending(conf->mirrors[m].rdev,
2063 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2064 close_write(r1_bio);
2065 raid_end_bio_io(r1_bio);
2068 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2072 struct mddev *mddev = conf->mddev;
2074 char b[BDEVNAME_SIZE];
2075 struct md_rdev *rdev;
2077 clear_bit(R1BIO_ReadError, &r1_bio->state);
2078 /* we got a read error. Maybe the drive is bad. Maybe just
2079 * the block and we can fix it.
2080 * We freeze all other IO, and try reading the block from
2081 * other devices. When we find one, we re-write
2082 * and check it that fixes the read error.
2083 * This is all done synchronously while the array is
2086 if (mddev->ro == 0) {
2088 fix_read_error(conf, r1_bio->read_disk,
2089 r1_bio->sector, r1_bio->sectors);
2090 unfreeze_array(conf);
2092 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2094 bio = r1_bio->bios[r1_bio->read_disk];
2095 bdevname(bio->bi_bdev, b);
2097 disk = read_balance(conf, r1_bio, &max_sectors);
2099 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2100 " read error for block %llu\n",
2101 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2102 raid_end_bio_io(r1_bio);
2104 const unsigned long do_sync
2105 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2107 r1_bio->bios[r1_bio->read_disk] =
2108 mddev->ro ? IO_BLOCKED : NULL;
2111 r1_bio->read_disk = disk;
2112 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2113 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2114 r1_bio->bios[r1_bio->read_disk] = bio;
2115 rdev = conf->mirrors[disk].rdev;
2116 printk_ratelimited(KERN_ERR
2117 "md/raid1:%s: redirecting sector %llu"
2118 " to other mirror: %s\n",
2120 (unsigned long long)r1_bio->sector,
2121 bdevname(rdev->bdev, b));
2122 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2123 bio->bi_bdev = rdev->bdev;
2124 bio->bi_end_io = raid1_end_read_request;
2125 bio->bi_rw = READ | do_sync;
2126 bio->bi_private = r1_bio;
2127 if (max_sectors < r1_bio->sectors) {
2128 /* Drat - have to split this up more */
2129 struct bio *mbio = r1_bio->master_bio;
2130 int sectors_handled = (r1_bio->sector + max_sectors
2132 r1_bio->sectors = max_sectors;
2133 spin_lock_irq(&conf->device_lock);
2134 if (mbio->bi_phys_segments == 0)
2135 mbio->bi_phys_segments = 2;
2137 mbio->bi_phys_segments++;
2138 spin_unlock_irq(&conf->device_lock);
2139 generic_make_request(bio);
2142 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2144 r1_bio->master_bio = mbio;
2145 r1_bio->sectors = (mbio->bi_size >> 9)
2148 set_bit(R1BIO_ReadError, &r1_bio->state);
2149 r1_bio->mddev = mddev;
2150 r1_bio->sector = mbio->bi_sector + sectors_handled;
2154 generic_make_request(bio);
2158 static void raid1d(struct mddev *mddev)
2160 struct r1bio *r1_bio;
2161 unsigned long flags;
2162 struct r1conf *conf = mddev->private;
2163 struct list_head *head = &conf->retry_list;
2164 struct blk_plug plug;
2166 md_check_recovery(mddev);
2168 blk_start_plug(&plug);
2171 if (atomic_read(&mddev->plug_cnt) == 0)
2172 flush_pending_writes(conf);
2174 spin_lock_irqsave(&conf->device_lock, flags);
2175 if (list_empty(head)) {
2176 spin_unlock_irqrestore(&conf->device_lock, flags);
2179 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2180 list_del(head->prev);
2182 spin_unlock_irqrestore(&conf->device_lock, flags);
2184 mddev = r1_bio->mddev;
2185 conf = mddev->private;
2186 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2187 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2188 test_bit(R1BIO_WriteError, &r1_bio->state))
2189 handle_sync_write_finished(conf, r1_bio);
2191 sync_request_write(mddev, r1_bio);
2192 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2193 test_bit(R1BIO_WriteError, &r1_bio->state))
2194 handle_write_finished(conf, r1_bio);
2195 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2196 handle_read_error(conf, r1_bio);
2198 /* just a partial read to be scheduled from separate
2201 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2204 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2205 md_check_recovery(mddev);
2207 blk_finish_plug(&plug);
2211 static int init_resync(struct r1conf *conf)
2215 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2216 BUG_ON(conf->r1buf_pool);
2217 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2219 if (!conf->r1buf_pool)
2221 conf->next_resync = 0;
2226 * perform a "sync" on one "block"
2228 * We need to make sure that no normal I/O request - particularly write
2229 * requests - conflict with active sync requests.
2231 * This is achieved by tracking pending requests and a 'barrier' concept
2232 * that can be installed to exclude normal IO requests.
2235 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2237 struct r1conf *conf = mddev->private;
2238 struct r1bio *r1_bio;
2240 sector_t max_sector, nr_sectors;
2244 int write_targets = 0, read_targets = 0;
2245 sector_t sync_blocks;
2246 int still_degraded = 0;
2247 int good_sectors = RESYNC_SECTORS;
2248 int min_bad = 0; /* number of sectors that are bad in all devices */
2250 if (!conf->r1buf_pool)
2251 if (init_resync(conf))
2254 max_sector = mddev->dev_sectors;
2255 if (sector_nr >= max_sector) {
2256 /* If we aborted, we need to abort the
2257 * sync on the 'current' bitmap chunk (there will
2258 * only be one in raid1 resync.
2259 * We can find the current addess in mddev->curr_resync
2261 if (mddev->curr_resync < max_sector) /* aborted */
2262 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2264 else /* completed sync */
2267 bitmap_close_sync(mddev->bitmap);
2272 if (mddev->bitmap == NULL &&
2273 mddev->recovery_cp == MaxSector &&
2274 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2275 conf->fullsync == 0) {
2277 return max_sector - sector_nr;
2279 /* before building a request, check if we can skip these blocks..
2280 * This call the bitmap_start_sync doesn't actually record anything
2282 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2283 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2284 /* We can skip this block, and probably several more */
2289 * If there is non-resync activity waiting for a turn,
2290 * and resync is going fast enough,
2291 * then let it though before starting on this new sync request.
2293 if (!go_faster && conf->nr_waiting)
2294 msleep_interruptible(1000);
2296 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2297 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2298 raise_barrier(conf);
2300 conf->next_resync = sector_nr;
2304 * If we get a correctably read error during resync or recovery,
2305 * we might want to read from a different device. So we
2306 * flag all drives that could conceivably be read from for READ,
2307 * and any others (which will be non-In_sync devices) for WRITE.
2308 * If a read fails, we try reading from something else for which READ
2312 r1_bio->mddev = mddev;
2313 r1_bio->sector = sector_nr;
2315 set_bit(R1BIO_IsSync, &r1_bio->state);
2317 for (i = 0; i < conf->raid_disks * 2; i++) {
2318 struct md_rdev *rdev;
2319 bio = r1_bio->bios[i];
2321 /* take from bio_init */
2322 bio->bi_next = NULL;
2323 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2324 bio->bi_flags |= 1 << BIO_UPTODATE;
2328 bio->bi_phys_segments = 0;
2330 bio->bi_end_io = NULL;
2331 bio->bi_private = NULL;
2333 rdev = rcu_dereference(conf->mirrors[i].rdev);
2335 test_bit(Faulty, &rdev->flags)) {
2336 if (i < conf->raid_disks)
2338 } else if (!test_bit(In_sync, &rdev->flags)) {
2340 bio->bi_end_io = end_sync_write;
2343 /* may need to read from here */
2344 sector_t first_bad = MaxSector;
2347 if (is_badblock(rdev, sector_nr, good_sectors,
2348 &first_bad, &bad_sectors)) {
2349 if (first_bad > sector_nr)
2350 good_sectors = first_bad - sector_nr;
2352 bad_sectors -= (sector_nr - first_bad);
2354 min_bad > bad_sectors)
2355 min_bad = bad_sectors;
2358 if (sector_nr < first_bad) {
2359 if (test_bit(WriteMostly, &rdev->flags)) {
2367 bio->bi_end_io = end_sync_read;
2371 if (bio->bi_end_io) {
2372 atomic_inc(&rdev->nr_pending);
2373 bio->bi_sector = sector_nr + rdev->data_offset;
2374 bio->bi_bdev = rdev->bdev;
2375 bio->bi_private = r1_bio;
2381 r1_bio->read_disk = disk;
2383 if (read_targets == 0 && min_bad > 0) {
2384 /* These sectors are bad on all InSync devices, so we
2385 * need to mark them bad on all write targets
2388 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2389 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2390 struct md_rdev *rdev = conf->mirrors[i].rdev;
2391 ok = rdev_set_badblocks(rdev, sector_nr,
2395 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2400 /* Cannot record the badblocks, so need to
2402 * If there are multiple read targets, could just
2403 * fail the really bad ones ???
2405 conf->recovery_disabled = mddev->recovery_disabled;
2406 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2412 if (min_bad > 0 && min_bad < good_sectors) {
2413 /* only resync enough to reach the next bad->good
2415 good_sectors = min_bad;
2418 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2419 /* extra read targets are also write targets */
2420 write_targets += read_targets-1;
2422 if (write_targets == 0 || read_targets == 0) {
2423 /* There is nowhere to write, so all non-sync
2424 * drives must be failed - so we are finished
2426 sector_t rv = max_sector - sector_nr;
2432 if (max_sector > mddev->resync_max)
2433 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2434 if (max_sector > sector_nr + good_sectors)
2435 max_sector = sector_nr + good_sectors;
2440 int len = PAGE_SIZE;
2441 if (sector_nr + (len>>9) > max_sector)
2442 len = (max_sector - sector_nr) << 9;
2445 if (sync_blocks == 0) {
2446 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2447 &sync_blocks, still_degraded) &&
2449 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2451 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2452 if ((len >> 9) > sync_blocks)
2453 len = sync_blocks<<9;
2456 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2457 bio = r1_bio->bios[i];
2458 if (bio->bi_end_io) {
2459 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2460 if (bio_add_page(bio, page, len, 0) == 0) {
2462 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2465 bio = r1_bio->bios[i];
2466 if (bio->bi_end_io==NULL)
2468 /* remove last page from this bio */
2470 bio->bi_size -= len;
2471 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2477 nr_sectors += len>>9;
2478 sector_nr += len>>9;
2479 sync_blocks -= (len>>9);
2480 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2482 r1_bio->sectors = nr_sectors;
2484 /* For a user-requested sync, we read all readable devices and do a
2487 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2488 atomic_set(&r1_bio->remaining, read_targets);
2489 for (i = 0; i < conf->raid_disks * 2; i++) {
2490 bio = r1_bio->bios[i];
2491 if (bio->bi_end_io == end_sync_read) {
2492 md_sync_acct(bio->bi_bdev, nr_sectors);
2493 generic_make_request(bio);
2497 atomic_set(&r1_bio->remaining, 1);
2498 bio = r1_bio->bios[r1_bio->read_disk];
2499 md_sync_acct(bio->bi_bdev, nr_sectors);
2500 generic_make_request(bio);
2506 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2511 return mddev->dev_sectors;
2514 static struct r1conf *setup_conf(struct mddev *mddev)
2516 struct r1conf *conf;
2518 struct mirror_info *disk;
2519 struct md_rdev *rdev;
2522 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2526 conf->mirrors = kzalloc(sizeof(struct mirror_info)
2527 * mddev->raid_disks * 2,
2532 conf->tmppage = alloc_page(GFP_KERNEL);
2536 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2537 if (!conf->poolinfo)
2539 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2540 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2543 if (!conf->r1bio_pool)
2546 conf->poolinfo->mddev = mddev;
2549 spin_lock_init(&conf->device_lock);
2550 rdev_for_each(rdev, mddev) {
2551 int disk_idx = rdev->raid_disk;
2552 if (disk_idx >= mddev->raid_disks
2555 if (test_bit(Replacement, &rdev->flags))
2556 disk = conf->mirrors + conf->raid_disks + disk_idx;
2558 disk = conf->mirrors + disk_idx;
2564 disk->head_position = 0;
2566 conf->raid_disks = mddev->raid_disks;
2567 conf->mddev = mddev;
2568 INIT_LIST_HEAD(&conf->retry_list);
2570 spin_lock_init(&conf->resync_lock);
2571 init_waitqueue_head(&conf->wait_barrier);
2573 bio_list_init(&conf->pending_bio_list);
2574 conf->pending_count = 0;
2575 conf->recovery_disabled = mddev->recovery_disabled - 1;
2578 conf->last_used = -1;
2579 for (i = 0; i < conf->raid_disks * 2; i++) {
2581 disk = conf->mirrors + i;
2583 if (i < conf->raid_disks &&
2584 disk[conf->raid_disks].rdev) {
2585 /* This slot has a replacement. */
2587 /* No original, just make the replacement
2588 * a recovering spare
2591 disk[conf->raid_disks].rdev;
2592 disk[conf->raid_disks].rdev = NULL;
2593 } else if (!test_bit(In_sync, &disk->rdev->flags))
2594 /* Original is not in_sync - bad */
2599 !test_bit(In_sync, &disk->rdev->flags)) {
2600 disk->head_position = 0;
2603 } else if (conf->last_used < 0)
2605 * The first working device is used as a
2606 * starting point to read balancing.
2608 conf->last_used = i;
2611 if (conf->last_used < 0) {
2612 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2617 conf->thread = md_register_thread(raid1d, mddev, NULL);
2618 if (!conf->thread) {
2620 "md/raid1:%s: couldn't allocate thread\n",
2629 if (conf->r1bio_pool)
2630 mempool_destroy(conf->r1bio_pool);
2631 kfree(conf->mirrors);
2632 safe_put_page(conf->tmppage);
2633 kfree(conf->poolinfo);
2636 return ERR_PTR(err);
2639 static int stop(struct mddev *mddev);
2640 static int run(struct mddev *mddev)
2642 struct r1conf *conf;
2644 struct md_rdev *rdev;
2647 if (mddev->level != 1) {
2648 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2649 mdname(mddev), mddev->level);
2652 if (mddev->reshape_position != MaxSector) {
2653 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2658 * copy the already verified devices into our private RAID1
2659 * bookkeeping area. [whatever we allocate in run(),
2660 * should be freed in stop()]
2662 if (mddev->private == NULL)
2663 conf = setup_conf(mddev);
2665 conf = mddev->private;
2668 return PTR_ERR(conf);
2670 rdev_for_each(rdev, mddev) {
2671 if (!mddev->gendisk)
2673 disk_stack_limits(mddev->gendisk, rdev->bdev,
2674 rdev->data_offset << 9);
2677 mddev->degraded = 0;
2678 for (i=0; i < conf->raid_disks; i++)
2679 if (conf->mirrors[i].rdev == NULL ||
2680 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2681 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2684 if (conf->raid_disks - mddev->degraded == 1)
2685 mddev->recovery_cp = MaxSector;
2687 if (mddev->recovery_cp != MaxSector)
2688 printk(KERN_NOTICE "md/raid1:%s: not clean"
2689 " -- starting background reconstruction\n",
2692 "md/raid1:%s: active with %d out of %d mirrors\n",
2693 mdname(mddev), mddev->raid_disks - mddev->degraded,
2697 * Ok, everything is just fine now
2699 mddev->thread = conf->thread;
2700 conf->thread = NULL;
2701 mddev->private = conf;
2703 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2706 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2707 mddev->queue->backing_dev_info.congested_data = mddev;
2708 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2711 ret = md_integrity_register(mddev);
2717 static int stop(struct mddev *mddev)
2719 struct r1conf *conf = mddev->private;
2720 struct bitmap *bitmap = mddev->bitmap;
2722 /* wait for behind writes to complete */
2723 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2724 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2726 /* need to kick something here to make sure I/O goes? */
2727 wait_event(bitmap->behind_wait,
2728 atomic_read(&bitmap->behind_writes) == 0);
2731 raise_barrier(conf);
2732 lower_barrier(conf);
2734 md_unregister_thread(&mddev->thread);
2735 if (conf->r1bio_pool)
2736 mempool_destroy(conf->r1bio_pool);
2737 kfree(conf->mirrors);
2738 kfree(conf->poolinfo);
2740 mddev->private = NULL;
2744 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2746 /* no resync is happening, and there is enough space
2747 * on all devices, so we can resize.
2748 * We need to make sure resync covers any new space.
2749 * If the array is shrinking we should possibly wait until
2750 * any io in the removed space completes, but it hardly seems
2753 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2754 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2756 set_capacity(mddev->gendisk, mddev->array_sectors);
2757 revalidate_disk(mddev->gendisk);
2758 if (sectors > mddev->dev_sectors &&
2759 mddev->recovery_cp > mddev->dev_sectors) {
2760 mddev->recovery_cp = mddev->dev_sectors;
2761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2763 mddev->dev_sectors = sectors;
2764 mddev->resync_max_sectors = sectors;
2768 static int raid1_reshape(struct mddev *mddev)
2771 * 1/ resize the r1bio_pool
2772 * 2/ resize conf->mirrors
2774 * We allocate a new r1bio_pool if we can.
2775 * Then raise a device barrier and wait until all IO stops.
2776 * Then resize conf->mirrors and swap in the new r1bio pool.
2778 * At the same time, we "pack" the devices so that all the missing
2779 * devices have the higher raid_disk numbers.
2781 mempool_t *newpool, *oldpool;
2782 struct pool_info *newpoolinfo;
2783 struct mirror_info *newmirrors;
2784 struct r1conf *conf = mddev->private;
2785 int cnt, raid_disks;
2786 unsigned long flags;
2789 /* Cannot change chunk_size, layout, or level */
2790 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2791 mddev->layout != mddev->new_layout ||
2792 mddev->level != mddev->new_level) {
2793 mddev->new_chunk_sectors = mddev->chunk_sectors;
2794 mddev->new_layout = mddev->layout;
2795 mddev->new_level = mddev->level;
2799 err = md_allow_write(mddev);
2803 raid_disks = mddev->raid_disks + mddev->delta_disks;
2805 if (raid_disks < conf->raid_disks) {
2807 for (d= 0; d < conf->raid_disks; d++)
2808 if (conf->mirrors[d].rdev)
2810 if (cnt > raid_disks)
2814 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2817 newpoolinfo->mddev = mddev;
2818 newpoolinfo->raid_disks = raid_disks * 2;
2820 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2821 r1bio_pool_free, newpoolinfo);
2826 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2830 mempool_destroy(newpool);
2834 raise_barrier(conf);
2836 /* ok, everything is stopped */
2837 oldpool = conf->r1bio_pool;
2838 conf->r1bio_pool = newpool;
2840 for (d = d2 = 0; d < conf->raid_disks; d++) {
2841 struct md_rdev *rdev = conf->mirrors[d].rdev;
2842 if (rdev && rdev->raid_disk != d2) {
2843 sysfs_unlink_rdev(mddev, rdev);
2844 rdev->raid_disk = d2;
2845 sysfs_unlink_rdev(mddev, rdev);
2846 if (sysfs_link_rdev(mddev, rdev))
2848 "md/raid1:%s: cannot register rd%d\n",
2849 mdname(mddev), rdev->raid_disk);
2852 newmirrors[d2++].rdev = rdev;
2854 kfree(conf->mirrors);
2855 conf->mirrors = newmirrors;
2856 kfree(conf->poolinfo);
2857 conf->poolinfo = newpoolinfo;
2859 spin_lock_irqsave(&conf->device_lock, flags);
2860 mddev->degraded += (raid_disks - conf->raid_disks);
2861 spin_unlock_irqrestore(&conf->device_lock, flags);
2862 conf->raid_disks = mddev->raid_disks = raid_disks;
2863 mddev->delta_disks = 0;
2865 conf->last_used = 0; /* just make sure it is in-range */
2866 lower_barrier(conf);
2868 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2869 md_wakeup_thread(mddev->thread);
2871 mempool_destroy(oldpool);
2875 static void raid1_quiesce(struct mddev *mddev, int state)
2877 struct r1conf *conf = mddev->private;
2880 case 2: /* wake for suspend */
2881 wake_up(&conf->wait_barrier);
2884 raise_barrier(conf);
2887 lower_barrier(conf);
2892 static void *raid1_takeover(struct mddev *mddev)
2894 /* raid1 can take over:
2895 * raid5 with 2 devices, any layout or chunk size
2897 if (mddev->level == 5 && mddev->raid_disks == 2) {
2898 struct r1conf *conf;
2899 mddev->new_level = 1;
2900 mddev->new_layout = 0;
2901 mddev->new_chunk_sectors = 0;
2902 conf = setup_conf(mddev);
2907 return ERR_PTR(-EINVAL);
2910 static struct md_personality raid1_personality =
2914 .owner = THIS_MODULE,
2915 .make_request = make_request,
2919 .error_handler = error,
2920 .hot_add_disk = raid1_add_disk,
2921 .hot_remove_disk= raid1_remove_disk,
2922 .spare_active = raid1_spare_active,
2923 .sync_request = sync_request,
2924 .resize = raid1_resize,
2926 .check_reshape = raid1_reshape,
2927 .quiesce = raid1_quiesce,
2928 .takeover = raid1_takeover,
2931 static int __init raid_init(void)
2933 return register_md_personality(&raid1_personality);
2936 static void raid_exit(void)
2938 unregister_md_personality(&raid1_personality);
2941 module_init(raid_init);
2942 module_exit(raid_exit);
2943 MODULE_LICENSE("GPL");
2944 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2945 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2946 MODULE_ALIAS("md-raid1");
2947 MODULE_ALIAS("md-level-1");
2949 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);