x86: Remove stale pmtimer_64.c
[pandora-kernel.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define NR_RAID1_BIOS 256
53
54
55 static void unplug_slaves(mddev_t *mddev);
56
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62         struct pool_info *pi = data;
63         r1bio_t *r1_bio;
64         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65
66         /* allocate a r1bio with room for raid_disks entries in the bios array */
67         r1_bio = kzalloc(size, gfp_flags);
68         if (!r1_bio && pi->mddev)
69                 unplug_slaves(pi->mddev);
70
71         return r1_bio;
72 }
73
74 static void r1bio_pool_free(void *r1_bio, void *data)
75 {
76         kfree(r1_bio);
77 }
78
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 {
87         struct pool_info *pi = data;
88         struct page *page;
89         r1bio_t *r1_bio;
90         struct bio *bio;
91         int i, j;
92
93         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94         if (!r1_bio) {
95                 unplug_slaves(pi->mddev);
96                 return NULL;
97         }
98
99         /*
100          * Allocate bios : 1 for reading, n-1 for writing
101          */
102         for (j = pi->raid_disks ; j-- ; ) {
103                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
104                 if (!bio)
105                         goto out_free_bio;
106                 r1_bio->bios[j] = bio;
107         }
108         /*
109          * Allocate RESYNC_PAGES data pages and attach them to
110          * the first bio.
111          * If this is a user-requested check/repair, allocate
112          * RESYNC_PAGES for each bio.
113          */
114         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115                 j = pi->raid_disks;
116         else
117                 j = 1;
118         while(j--) {
119                 bio = r1_bio->bios[j];
120                 for (i = 0; i < RESYNC_PAGES; i++) {
121                         page = alloc_page(gfp_flags);
122                         if (unlikely(!page))
123                                 goto out_free_pages;
124
125                         bio->bi_io_vec[i].bv_page = page;
126                         bio->bi_vcnt = i+1;
127                 }
128         }
129         /* If not user-requests, copy the page pointers to all bios */
130         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131                 for (i=0; i<RESYNC_PAGES ; i++)
132                         for (j=1; j<pi->raid_disks; j++)
133                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
135         }
136
137         r1_bio->master_bio = NULL;
138
139         return r1_bio;
140
141 out_free_pages:
142         for (j=0 ; j < pi->raid_disks; j++)
143                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145         j = -1;
146 out_free_bio:
147         while ( ++j < pi->raid_disks )
148                 bio_put(r1_bio->bios[j]);
149         r1bio_pool_free(r1_bio, data);
150         return NULL;
151 }
152
153 static void r1buf_pool_free(void *__r1_bio, void *data)
154 {
155         struct pool_info *pi = data;
156         int i,j;
157         r1bio_t *r1bio = __r1_bio;
158
159         for (i = 0; i < RESYNC_PAGES; i++)
160                 for (j = pi->raid_disks; j-- ;) {
161                         if (j == 0 ||
162                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
163                             r1bio->bios[0]->bi_io_vec[i].bv_page)
164                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165                 }
166         for (i=0 ; i < pi->raid_disks; i++)
167                 bio_put(r1bio->bios[i]);
168
169         r1bio_pool_free(r1bio, data);
170 }
171
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 {
174         int i;
175
176         for (i = 0; i < conf->raid_disks; i++) {
177                 struct bio **bio = r1_bio->bios + i;
178                 if (*bio && *bio != IO_BLOCKED)
179                         bio_put(*bio);
180                 *bio = NULL;
181         }
182 }
183
184 static void free_r1bio(r1bio_t *r1_bio)
185 {
186         conf_t *conf = r1_bio->mddev->private;
187
188         /*
189          * Wake up any possible resync thread that waits for the device
190          * to go idle.
191          */
192         allow_barrier(conf);
193
194         put_all_bios(conf, r1_bio);
195         mempool_free(r1_bio, conf->r1bio_pool);
196 }
197
198 static void put_buf(r1bio_t *r1_bio)
199 {
200         conf_t *conf = r1_bio->mddev->private;
201         int i;
202
203         for (i=0; i<conf->raid_disks; i++) {
204                 struct bio *bio = r1_bio->bios[i];
205                 if (bio->bi_end_io)
206                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207         }
208
209         mempool_free(r1_bio, conf->r1buf_pool);
210
211         lower_barrier(conf);
212 }
213
214 static void reschedule_retry(r1bio_t *r1_bio)
215 {
216         unsigned long flags;
217         mddev_t *mddev = r1_bio->mddev;
218         conf_t *conf = mddev->private;
219
220         spin_lock_irqsave(&conf->device_lock, flags);
221         list_add(&r1_bio->retry_list, &conf->retry_list);
222         conf->nr_queued ++;
223         spin_unlock_irqrestore(&conf->device_lock, flags);
224
225         wake_up(&conf->wait_barrier);
226         md_wakeup_thread(mddev->thread);
227 }
228
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r1bio_t *r1_bio)
235 {
236         struct bio *bio = r1_bio->master_bio;
237
238         /* if nobody has done the final endio yet, do it now */
239         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
242                         (unsigned long long) bio->bi_sector,
243                         (unsigned long long) bio->bi_sector +
244                                 (bio->bi_size >> 9) - 1);
245
246                 bio_endio(bio,
247                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248         }
249         free_r1bio(r1_bio);
250 }
251
252 /*
253  * Update disk head position estimator based on IRQ completion info.
254  */
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 {
257         conf_t *conf = r1_bio->mddev->private;
258
259         conf->mirrors[disk].head_position =
260                 r1_bio->sector + (r1_bio->sectors);
261 }
262
263 static void raid1_end_read_request(struct bio *bio, int error)
264 {
265         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266         r1bio_t *r1_bio = bio->bi_private;
267         int mirror;
268         conf_t *conf = r1_bio->mddev->private;
269
270         mirror = r1_bio->read_disk;
271         /*
272          * this branch is our 'one mirror IO has finished' event handler:
273          */
274         update_head_pos(mirror, r1_bio);
275
276         if (uptodate)
277                 set_bit(R1BIO_Uptodate, &r1_bio->state);
278         else {
279                 /* If all other devices have failed, we want to return
280                  * the error upwards rather than fail the last device.
281                  * Here we redefine "uptodate" to mean "Don't want to retry"
282                  */
283                 unsigned long flags;
284                 spin_lock_irqsave(&conf->device_lock, flags);
285                 if (r1_bio->mddev->degraded == conf->raid_disks ||
286                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288                         uptodate = 1;
289                 spin_unlock_irqrestore(&conf->device_lock, flags);
290         }
291
292         if (uptodate)
293                 raid_end_bio_io(r1_bio);
294         else {
295                 /*
296                  * oops, read error:
297                  */
298                 char b[BDEVNAME_SIZE];
299                 if (printk_ratelimit())
300                         printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301                                mdname(conf->mddev),
302                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303                 reschedule_retry(r1_bio);
304         }
305
306         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
307 }
308
309 static void raid1_end_write_request(struct bio *bio, int error)
310 {
311         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
312         r1bio_t *r1_bio = bio->bi_private;
313         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
314         conf_t *conf = r1_bio->mddev->private;
315         struct bio *to_put = NULL;
316
317
318         for (mirror = 0; mirror < conf->raid_disks; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
323                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
324                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
325                 r1_bio->mddev->barriers_work = 0;
326                 /* Don't rdev_dec_pending in this branch - keep it for the retry */
327         } else {
328                 /*
329                  * this branch is our 'one mirror IO has finished' event handler:
330                  */
331                 r1_bio->bios[mirror] = NULL;
332                 to_put = bio;
333                 if (!uptodate) {
334                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
335                         /* an I/O failed, we can't clear the bitmap */
336                         set_bit(R1BIO_Degraded, &r1_bio->state);
337                 } else
338                         /*
339                          * Set R1BIO_Uptodate in our master bio, so that
340                          * we will return a good error code for to the higher
341                          * levels even if IO on some other mirrored buffer fails.
342                          *
343                          * The 'master' represents the composite IO operation to
344                          * user-side. So if something waits for IO, then it will
345                          * wait for the 'master' bio.
346                          */
347                         set_bit(R1BIO_Uptodate, &r1_bio->state);
348
349                 update_head_pos(mirror, r1_bio);
350
351                 if (behind) {
352                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
353                                 atomic_dec(&r1_bio->behind_remaining);
354
355                         /* In behind mode, we ACK the master bio once the I/O has safely
356                          * reached all non-writemostly disks. Setting the Returned bit
357                          * ensures that this gets done only once -- we don't ever want to
358                          * return -EIO here, instead we'll wait */
359
360                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
361                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
362                                 /* Maybe we can return now */
363                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
364                                         struct bio *mbio = r1_bio->master_bio;
365                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
366                                                (unsigned long long) mbio->bi_sector,
367                                                (unsigned long long) mbio->bi_sector +
368                                                (mbio->bi_size >> 9) - 1);
369                                         bio_endio(mbio, 0);
370                                 }
371                         }
372                 }
373                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
374         }
375         /*
376          *
377          * Let's see if all mirrored write operations have finished
378          * already.
379          */
380         if (atomic_dec_and_test(&r1_bio->remaining)) {
381                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
382                         reschedule_retry(r1_bio);
383                 else {
384                         /* it really is the end of this request */
385                         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
386                                 /* free extra copy of the data pages */
387                                 int i = bio->bi_vcnt;
388                                 while (i--)
389                                         safe_put_page(bio->bi_io_vec[i].bv_page);
390                         }
391                         /* clear the bitmap if all writes complete successfully */
392                         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
393                                         r1_bio->sectors,
394                                         !test_bit(R1BIO_Degraded, &r1_bio->state),
395                                         behind);
396                         md_write_end(r1_bio->mddev);
397                         raid_end_bio_io(r1_bio);
398                 }
399         }
400
401         if (to_put)
402                 bio_put(to_put);
403 }
404
405
406 /*
407  * This routine returns the disk from which the requested read should
408  * be done. There is a per-array 'next expected sequential IO' sector
409  * number - if this matches on the next IO then we use the last disk.
410  * There is also a per-disk 'last know head position' sector that is
411  * maintained from IRQ contexts, both the normal and the resync IO
412  * completion handlers update this position correctly. If there is no
413  * perfect sequential match then we pick the disk whose head is closest.
414  *
415  * If there are 2 mirrors in the same 2 devices, performance degrades
416  * because position is mirror, not device based.
417  *
418  * The rdev for the device selected will have nr_pending incremented.
419  */
420 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
421 {
422         const sector_t this_sector = r1_bio->sector;
423         int new_disk = conf->last_used, disk = new_disk;
424         int wonly_disk = -1;
425         const int sectors = r1_bio->sectors;
426         sector_t new_distance, current_distance;
427         mdk_rdev_t *rdev;
428
429         rcu_read_lock();
430         /*
431          * Check if we can balance. We can balance on the whole
432          * device if no resync is going on, or below the resync window.
433          * We take the first readable disk when above the resync window.
434          */
435  retry:
436         if (conf->mddev->recovery_cp < MaxSector &&
437             (this_sector + sectors >= conf->next_resync)) {
438                 /* Choose the first operational device, for consistancy */
439                 new_disk = 0;
440
441                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
442                      r1_bio->bios[new_disk] == IO_BLOCKED ||
443                      !rdev || !test_bit(In_sync, &rdev->flags)
444                              || test_bit(WriteMostly, &rdev->flags);
445                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
446
447                         if (rdev && test_bit(In_sync, &rdev->flags) &&
448                                 r1_bio->bios[new_disk] != IO_BLOCKED)
449                                 wonly_disk = new_disk;
450
451                         if (new_disk == conf->raid_disks - 1) {
452                                 new_disk = wonly_disk;
453                                 break;
454                         }
455                 }
456                 goto rb_out;
457         }
458
459
460         /* make sure the disk is operational */
461         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
462              r1_bio->bios[new_disk] == IO_BLOCKED ||
463              !rdev || !test_bit(In_sync, &rdev->flags) ||
464                      test_bit(WriteMostly, &rdev->flags);
465              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
466
467                 if (rdev && test_bit(In_sync, &rdev->flags) &&
468                     r1_bio->bios[new_disk] != IO_BLOCKED)
469                         wonly_disk = new_disk;
470
471                 if (new_disk <= 0)
472                         new_disk = conf->raid_disks;
473                 new_disk--;
474                 if (new_disk == disk) {
475                         new_disk = wonly_disk;
476                         break;
477                 }
478         }
479
480         if (new_disk < 0)
481                 goto rb_out;
482
483         disk = new_disk;
484         /* now disk == new_disk == starting point for search */
485
486         /*
487          * Don't change to another disk for sequential reads:
488          */
489         if (conf->next_seq_sect == this_sector)
490                 goto rb_out;
491         if (this_sector == conf->mirrors[new_disk].head_position)
492                 goto rb_out;
493
494         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
495
496         /* Find the disk whose head is closest */
497
498         do {
499                 if (disk <= 0)
500                         disk = conf->raid_disks;
501                 disk--;
502
503                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
504
505                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
506                     !test_bit(In_sync, &rdev->flags) ||
507                     test_bit(WriteMostly, &rdev->flags))
508                         continue;
509
510                 if (!atomic_read(&rdev->nr_pending)) {
511                         new_disk = disk;
512                         break;
513                 }
514                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
515                 if (new_distance < current_distance) {
516                         current_distance = new_distance;
517                         new_disk = disk;
518                 }
519         } while (disk != conf->last_used);
520
521  rb_out:
522
523
524         if (new_disk >= 0) {
525                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
526                 if (!rdev)
527                         goto retry;
528                 atomic_inc(&rdev->nr_pending);
529                 if (!test_bit(In_sync, &rdev->flags)) {
530                         /* cannot risk returning a device that failed
531                          * before we inc'ed nr_pending
532                          */
533                         rdev_dec_pending(rdev, conf->mddev);
534                         goto retry;
535                 }
536                 conf->next_seq_sect = this_sector + sectors;
537                 conf->last_used = new_disk;
538         }
539         rcu_read_unlock();
540
541         return new_disk;
542 }
543
544 static void unplug_slaves(mddev_t *mddev)
545 {
546         conf_t *conf = mddev->private;
547         int i;
548
549         rcu_read_lock();
550         for (i=0; i<mddev->raid_disks; i++) {
551                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
552                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
553                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
554
555                         atomic_inc(&rdev->nr_pending);
556                         rcu_read_unlock();
557
558                         blk_unplug(r_queue);
559
560                         rdev_dec_pending(rdev, mddev);
561                         rcu_read_lock();
562                 }
563         }
564         rcu_read_unlock();
565 }
566
567 static void raid1_unplug(struct request_queue *q)
568 {
569         mddev_t *mddev = q->queuedata;
570
571         unplug_slaves(mddev);
572         md_wakeup_thread(mddev->thread);
573 }
574
575 static int raid1_congested(void *data, int bits)
576 {
577         mddev_t *mddev = data;
578         conf_t *conf = mddev->private;
579         int i, ret = 0;
580
581         if (mddev_congested(mddev, bits))
582                 return 1;
583
584         rcu_read_lock();
585         for (i = 0; i < mddev->raid_disks; i++) {
586                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
587                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
588                         struct request_queue *q = bdev_get_queue(rdev->bdev);
589
590                         /* Note the '|| 1' - when read_balance prefers
591                          * non-congested targets, it can be removed
592                          */
593                         if ((bits & (1<<BDI_async_congested)) || 1)
594                                 ret |= bdi_congested(&q->backing_dev_info, bits);
595                         else
596                                 ret &= bdi_congested(&q->backing_dev_info, bits);
597                 }
598         }
599         rcu_read_unlock();
600         return ret;
601 }
602
603
604 static int flush_pending_writes(conf_t *conf)
605 {
606         /* Any writes that have been queued but are awaiting
607          * bitmap updates get flushed here.
608          * We return 1 if any requests were actually submitted.
609          */
610         int rv = 0;
611
612         spin_lock_irq(&conf->device_lock);
613
614         if (conf->pending_bio_list.head) {
615                 struct bio *bio;
616                 bio = bio_list_get(&conf->pending_bio_list);
617                 blk_remove_plug(conf->mddev->queue);
618                 spin_unlock_irq(&conf->device_lock);
619                 /* flush any pending bitmap writes to
620                  * disk before proceeding w/ I/O */
621                 bitmap_unplug(conf->mddev->bitmap);
622
623                 while (bio) { /* submit pending writes */
624                         struct bio *next = bio->bi_next;
625                         bio->bi_next = NULL;
626                         generic_make_request(bio);
627                         bio = next;
628                 }
629                 rv = 1;
630         } else
631                 spin_unlock_irq(&conf->device_lock);
632         return rv;
633 }
634
635 /* Barriers....
636  * Sometimes we need to suspend IO while we do something else,
637  * either some resync/recovery, or reconfigure the array.
638  * To do this we raise a 'barrier'.
639  * The 'barrier' is a counter that can be raised multiple times
640  * to count how many activities are happening which preclude
641  * normal IO.
642  * We can only raise the barrier if there is no pending IO.
643  * i.e. if nr_pending == 0.
644  * We choose only to raise the barrier if no-one is waiting for the
645  * barrier to go down.  This means that as soon as an IO request
646  * is ready, no other operations which require a barrier will start
647  * until the IO request has had a chance.
648  *
649  * So: regular IO calls 'wait_barrier'.  When that returns there
650  *    is no backgroup IO happening,  It must arrange to call
651  *    allow_barrier when it has finished its IO.
652  * backgroup IO calls must call raise_barrier.  Once that returns
653  *    there is no normal IO happeing.  It must arrange to call
654  *    lower_barrier when the particular background IO completes.
655  */
656 #define RESYNC_DEPTH 32
657
658 static void raise_barrier(conf_t *conf)
659 {
660         spin_lock_irq(&conf->resync_lock);
661
662         /* Wait until no block IO is waiting */
663         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
664                             conf->resync_lock,
665                             raid1_unplug(conf->mddev->queue));
666
667         /* block any new IO from starting */
668         conf->barrier++;
669
670         /* No wait for all pending IO to complete */
671         wait_event_lock_irq(conf->wait_barrier,
672                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
673                             conf->resync_lock,
674                             raid1_unplug(conf->mddev->queue));
675
676         spin_unlock_irq(&conf->resync_lock);
677 }
678
679 static void lower_barrier(conf_t *conf)
680 {
681         unsigned long flags;
682         BUG_ON(conf->barrier <= 0);
683         spin_lock_irqsave(&conf->resync_lock, flags);
684         conf->barrier--;
685         spin_unlock_irqrestore(&conf->resync_lock, flags);
686         wake_up(&conf->wait_barrier);
687 }
688
689 static void wait_barrier(conf_t *conf)
690 {
691         spin_lock_irq(&conf->resync_lock);
692         if (conf->barrier) {
693                 conf->nr_waiting++;
694                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
695                                     conf->resync_lock,
696                                     raid1_unplug(conf->mddev->queue));
697                 conf->nr_waiting--;
698         }
699         conf->nr_pending++;
700         spin_unlock_irq(&conf->resync_lock);
701 }
702
703 static void allow_barrier(conf_t *conf)
704 {
705         unsigned long flags;
706         spin_lock_irqsave(&conf->resync_lock, flags);
707         conf->nr_pending--;
708         spin_unlock_irqrestore(&conf->resync_lock, flags);
709         wake_up(&conf->wait_barrier);
710 }
711
712 static void freeze_array(conf_t *conf)
713 {
714         /* stop syncio and normal IO and wait for everything to
715          * go quite.
716          * We increment barrier and nr_waiting, and then
717          * wait until nr_pending match nr_queued+1
718          * This is called in the context of one normal IO request
719          * that has failed. Thus any sync request that might be pending
720          * will be blocked by nr_pending, and we need to wait for
721          * pending IO requests to complete or be queued for re-try.
722          * Thus the number queued (nr_queued) plus this request (1)
723          * must match the number of pending IOs (nr_pending) before
724          * we continue.
725          */
726         spin_lock_irq(&conf->resync_lock);
727         conf->barrier++;
728         conf->nr_waiting++;
729         wait_event_lock_irq(conf->wait_barrier,
730                             conf->nr_pending == conf->nr_queued+1,
731                             conf->resync_lock,
732                             ({ flush_pending_writes(conf);
733                                raid1_unplug(conf->mddev->queue); }));
734         spin_unlock_irq(&conf->resync_lock);
735 }
736 static void unfreeze_array(conf_t *conf)
737 {
738         /* reverse the effect of the freeze */
739         spin_lock_irq(&conf->resync_lock);
740         conf->barrier--;
741         conf->nr_waiting--;
742         wake_up(&conf->wait_barrier);
743         spin_unlock_irq(&conf->resync_lock);
744 }
745
746
747 /* duplicate the data pages for behind I/O */
748 static struct page **alloc_behind_pages(struct bio *bio)
749 {
750         int i;
751         struct bio_vec *bvec;
752         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
753                                         GFP_NOIO);
754         if (unlikely(!pages))
755                 goto do_sync_io;
756
757         bio_for_each_segment(bvec, bio, i) {
758                 pages[i] = alloc_page(GFP_NOIO);
759                 if (unlikely(!pages[i]))
760                         goto do_sync_io;
761                 memcpy(kmap(pages[i]) + bvec->bv_offset,
762                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
763                 kunmap(pages[i]);
764                 kunmap(bvec->bv_page);
765         }
766
767         return pages;
768
769 do_sync_io:
770         if (pages)
771                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
772                         put_page(pages[i]);
773         kfree(pages);
774         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
775         return NULL;
776 }
777
778 static int make_request(mddev_t *mddev, struct bio * bio)
779 {
780         conf_t *conf = mddev->private;
781         mirror_info_t *mirror;
782         r1bio_t *r1_bio;
783         struct bio *read_bio;
784         int i, targets = 0, disks;
785         struct bitmap *bitmap;
786         unsigned long flags;
787         struct bio_list bl;
788         struct page **behind_pages = NULL;
789         const int rw = bio_data_dir(bio);
790         const bool do_sync = (bio->bi_rw & REQ_SYNC);
791         bool do_barriers;
792         mdk_rdev_t *blocked_rdev;
793
794         /*
795          * Register the new request and wait if the reconstruction
796          * thread has put up a bar for new requests.
797          * Continue immediately if no resync is active currently.
798          * We test barriers_work *after* md_write_start as md_write_start
799          * may cause the first superblock write, and that will check out
800          * if barriers work.
801          */
802
803         md_write_start(mddev, bio); /* wait on superblock update early */
804
805         if (bio_data_dir(bio) == WRITE &&
806             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807             bio->bi_sector < mddev->suspend_hi) {
808                 /* As the suspend_* range is controlled by
809                  * userspace, we want an interruptible
810                  * wait.
811                  */
812                 DEFINE_WAIT(w);
813                 for (;;) {
814                         flush_signals(current);
815                         prepare_to_wait(&conf->wait_barrier,
816                                         &w, TASK_INTERRUPTIBLE);
817                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818                             bio->bi_sector >= mddev->suspend_hi)
819                                 break;
820                         schedule();
821                 }
822                 finish_wait(&conf->wait_barrier, &w);
823         }
824         if (unlikely(!mddev->barriers_work &&
825                      (bio->bi_rw & REQ_HARDBARRIER))) {
826                 if (rw == WRITE)
827                         md_write_end(mddev);
828                 bio_endio(bio, -EOPNOTSUPP);
829                 return 0;
830         }
831
832         wait_barrier(conf);
833
834         bitmap = mddev->bitmap;
835
836         /*
837          * make_request() can abort the operation when READA is being
838          * used and no empty request is available.
839          *
840          */
841         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
842
843         r1_bio->master_bio = bio;
844         r1_bio->sectors = bio->bi_size >> 9;
845         r1_bio->state = 0;
846         r1_bio->mddev = mddev;
847         r1_bio->sector = bio->bi_sector;
848
849         if (rw == READ) {
850                 /*
851                  * read balancing logic:
852                  */
853                 int rdisk = read_balance(conf, r1_bio);
854
855                 if (rdisk < 0) {
856                         /* couldn't find anywhere to read from */
857                         raid_end_bio_io(r1_bio);
858                         return 0;
859                 }
860                 mirror = conf->mirrors + rdisk;
861
862                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
863                     bitmap) {
864                         /* Reading from a write-mostly device must
865                          * take care not to over-take any writes
866                          * that are 'behind'
867                          */
868                         wait_event(bitmap->behind_wait,
869                                    atomic_read(&bitmap->behind_writes) == 0);
870                 }
871                 r1_bio->read_disk = rdisk;
872
873                 read_bio = bio_clone(bio, GFP_NOIO);
874
875                 r1_bio->bios[rdisk] = read_bio;
876
877                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
878                 read_bio->bi_bdev = mirror->rdev->bdev;
879                 read_bio->bi_end_io = raid1_end_read_request;
880                 read_bio->bi_rw = READ | do_sync;
881                 read_bio->bi_private = r1_bio;
882
883                 generic_make_request(read_bio);
884                 return 0;
885         }
886
887         /*
888          * WRITE:
889          */
890         /* first select target devices under spinlock and
891          * inc refcount on their rdev.  Record them by setting
892          * bios[x] to bio
893          */
894         disks = conf->raid_disks;
895 #if 0
896         { static int first=1;
897         if (first) printk("First Write sector %llu disks %d\n",
898                           (unsigned long long)r1_bio->sector, disks);
899         first = 0;
900         }
901 #endif
902  retry_write:
903         blocked_rdev = NULL;
904         rcu_read_lock();
905         for (i = 0;  i < disks; i++) {
906                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
907                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
908                         atomic_inc(&rdev->nr_pending);
909                         blocked_rdev = rdev;
910                         break;
911                 }
912                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
913                         atomic_inc(&rdev->nr_pending);
914                         if (test_bit(Faulty, &rdev->flags)) {
915                                 rdev_dec_pending(rdev, mddev);
916                                 r1_bio->bios[i] = NULL;
917                         } else {
918                                 r1_bio->bios[i] = bio;
919                                 targets++;
920                         }
921                 } else
922                         r1_bio->bios[i] = NULL;
923         }
924         rcu_read_unlock();
925
926         if (unlikely(blocked_rdev)) {
927                 /* Wait for this device to become unblocked */
928                 int j;
929
930                 for (j = 0; j < i; j++)
931                         if (r1_bio->bios[j])
932                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
933
934                 allow_barrier(conf);
935                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
936                 wait_barrier(conf);
937                 goto retry_write;
938         }
939
940         BUG_ON(targets == 0); /* we never fail the last device */
941
942         if (targets < conf->raid_disks) {
943                 /* array is degraded, we will not clear the bitmap
944                  * on I/O completion (see raid1_end_write_request) */
945                 set_bit(R1BIO_Degraded, &r1_bio->state);
946         }
947
948         /* do behind I/O ?
949          * Not if there are too many, or cannot allocate memory,
950          * or a reader on WriteMostly is waiting for behind writes 
951          * to flush */
952         if (bitmap &&
953             (atomic_read(&bitmap->behind_writes)
954              < mddev->bitmap_info.max_write_behind) &&
955             !waitqueue_active(&bitmap->behind_wait) &&
956             (behind_pages = alloc_behind_pages(bio)) != NULL)
957                 set_bit(R1BIO_BehindIO, &r1_bio->state);
958
959         atomic_set(&r1_bio->remaining, 0);
960         atomic_set(&r1_bio->behind_remaining, 0);
961
962         do_barriers = bio->bi_rw & REQ_HARDBARRIER;
963         if (do_barriers)
964                 set_bit(R1BIO_Barrier, &r1_bio->state);
965
966         bio_list_init(&bl);
967         for (i = 0; i < disks; i++) {
968                 struct bio *mbio;
969                 if (!r1_bio->bios[i])
970                         continue;
971
972                 mbio = bio_clone(bio, GFP_NOIO);
973                 r1_bio->bios[i] = mbio;
974
975                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
976                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
977                 mbio->bi_end_io = raid1_end_write_request;
978                 mbio->bi_rw = WRITE | do_barriers | do_sync;
979                 mbio->bi_private = r1_bio;
980
981                 if (behind_pages) {
982                         struct bio_vec *bvec;
983                         int j;
984
985                         /* Yes, I really want the '__' version so that
986                          * we clear any unused pointer in the io_vec, rather
987                          * than leave them unchanged.  This is important
988                          * because when we come to free the pages, we won't
989                          * know the originial bi_idx, so we just free
990                          * them all
991                          */
992                         __bio_for_each_segment(bvec, mbio, j, 0)
993                                 bvec->bv_page = behind_pages[j];
994                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
995                                 atomic_inc(&r1_bio->behind_remaining);
996                 }
997
998                 atomic_inc(&r1_bio->remaining);
999
1000                 bio_list_add(&bl, mbio);
1001         }
1002         kfree(behind_pages); /* the behind pages are attached to the bios now */
1003
1004         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
1005                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
1006         spin_lock_irqsave(&conf->device_lock, flags);
1007         bio_list_merge(&conf->pending_bio_list, &bl);
1008         bio_list_init(&bl);
1009
1010         blk_plug_device(mddev->queue);
1011         spin_unlock_irqrestore(&conf->device_lock, flags);
1012
1013         /* In case raid1d snuck into freeze_array */
1014         wake_up(&conf->wait_barrier);
1015
1016         if (do_sync)
1017                 md_wakeup_thread(mddev->thread);
1018 #if 0
1019         while ((bio = bio_list_pop(&bl)) != NULL)
1020                 generic_make_request(bio);
1021 #endif
1022
1023         return 0;
1024 }
1025
1026 static void status(struct seq_file *seq, mddev_t *mddev)
1027 {
1028         conf_t *conf = mddev->private;
1029         int i;
1030
1031         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1032                    conf->raid_disks - mddev->degraded);
1033         rcu_read_lock();
1034         for (i = 0; i < conf->raid_disks; i++) {
1035                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1036                 seq_printf(seq, "%s",
1037                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1038         }
1039         rcu_read_unlock();
1040         seq_printf(seq, "]");
1041 }
1042
1043
1044 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1045 {
1046         char b[BDEVNAME_SIZE];
1047         conf_t *conf = mddev->private;
1048
1049         /*
1050          * If it is not operational, then we have already marked it as dead
1051          * else if it is the last working disks, ignore the error, let the
1052          * next level up know.
1053          * else mark the drive as failed
1054          */
1055         if (test_bit(In_sync, &rdev->flags)
1056             && (conf->raid_disks - mddev->degraded) == 1) {
1057                 /*
1058                  * Don't fail the drive, act as though we were just a
1059                  * normal single drive.
1060                  * However don't try a recovery from this drive as
1061                  * it is very likely to fail.
1062                  */
1063                 mddev->recovery_disabled = 1;
1064                 return;
1065         }
1066         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1067                 unsigned long flags;
1068                 spin_lock_irqsave(&conf->device_lock, flags);
1069                 mddev->degraded++;
1070                 set_bit(Faulty, &rdev->flags);
1071                 spin_unlock_irqrestore(&conf->device_lock, flags);
1072                 /*
1073                  * if recovery is running, make sure it aborts.
1074                  */
1075                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1076         } else
1077                 set_bit(Faulty, &rdev->flags);
1078         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1079         printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n"
1080                KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n",
1081                mdname(mddev), bdevname(rdev->bdev, b),
1082                mdname(mddev), conf->raid_disks - mddev->degraded);
1083 }
1084
1085 static void print_conf(conf_t *conf)
1086 {
1087         int i;
1088
1089         printk(KERN_DEBUG "RAID1 conf printout:\n");
1090         if (!conf) {
1091                 printk(KERN_DEBUG "(!conf)\n");
1092                 return;
1093         }
1094         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1095                 conf->raid_disks);
1096
1097         rcu_read_lock();
1098         for (i = 0; i < conf->raid_disks; i++) {
1099                 char b[BDEVNAME_SIZE];
1100                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1101                 if (rdev)
1102                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1103                                i, !test_bit(In_sync, &rdev->flags),
1104                                !test_bit(Faulty, &rdev->flags),
1105                                bdevname(rdev->bdev,b));
1106         }
1107         rcu_read_unlock();
1108 }
1109
1110 static void close_sync(conf_t *conf)
1111 {
1112         wait_barrier(conf);
1113         allow_barrier(conf);
1114
1115         mempool_destroy(conf->r1buf_pool);
1116         conf->r1buf_pool = NULL;
1117 }
1118
1119 static int raid1_spare_active(mddev_t *mddev)
1120 {
1121         int i;
1122         conf_t *conf = mddev->private;
1123
1124         /*
1125          * Find all failed disks within the RAID1 configuration 
1126          * and mark them readable.
1127          * Called under mddev lock, so rcu protection not needed.
1128          */
1129         for (i = 0; i < conf->raid_disks; i++) {
1130                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1131                 if (rdev
1132                     && !test_bit(Faulty, &rdev->flags)
1133                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1134                         unsigned long flags;
1135                         spin_lock_irqsave(&conf->device_lock, flags);
1136                         mddev->degraded--;
1137                         spin_unlock_irqrestore(&conf->device_lock, flags);
1138                 }
1139         }
1140
1141         print_conf(conf);
1142         return 0;
1143 }
1144
1145
1146 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1147 {
1148         conf_t *conf = mddev->private;
1149         int err = -EEXIST;
1150         int mirror = 0;
1151         mirror_info_t *p;
1152         int first = 0;
1153         int last = mddev->raid_disks - 1;
1154
1155         if (rdev->raid_disk >= 0)
1156                 first = last = rdev->raid_disk;
1157
1158         for (mirror = first; mirror <= last; mirror++)
1159                 if ( !(p=conf->mirrors+mirror)->rdev) {
1160
1161                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1162                                           rdev->data_offset << 9);
1163                         /* as we don't honour merge_bvec_fn, we must
1164                          * never risk violating it, so limit
1165                          * ->max_segments to one lying with a single
1166                          * page, as a one page request is never in
1167                          * violation.
1168                          */
1169                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1170                                 blk_queue_max_segments(mddev->queue, 1);
1171                                 blk_queue_segment_boundary(mddev->queue,
1172                                                            PAGE_CACHE_SIZE - 1);
1173                         }
1174
1175                         p->head_position = 0;
1176                         rdev->raid_disk = mirror;
1177                         err = 0;
1178                         /* As all devices are equivalent, we don't need a full recovery
1179                          * if this was recently any drive of the array
1180                          */
1181                         if (rdev->saved_raid_disk < 0)
1182                                 conf->fullsync = 1;
1183                         rcu_assign_pointer(p->rdev, rdev);
1184                         break;
1185                 }
1186         md_integrity_add_rdev(rdev, mddev);
1187         print_conf(conf);
1188         return err;
1189 }
1190
1191 static int raid1_remove_disk(mddev_t *mddev, int number)
1192 {
1193         conf_t *conf = mddev->private;
1194         int err = 0;
1195         mdk_rdev_t *rdev;
1196         mirror_info_t *p = conf->mirrors+ number;
1197
1198         print_conf(conf);
1199         rdev = p->rdev;
1200         if (rdev) {
1201                 if (test_bit(In_sync, &rdev->flags) ||
1202                     atomic_read(&rdev->nr_pending)) {
1203                         err = -EBUSY;
1204                         goto abort;
1205                 }
1206                 /* Only remove non-faulty devices is recovery
1207                  * is not possible.
1208                  */
1209                 if (!test_bit(Faulty, &rdev->flags) &&
1210                     mddev->degraded < conf->raid_disks) {
1211                         err = -EBUSY;
1212                         goto abort;
1213                 }
1214                 p->rdev = NULL;
1215                 synchronize_rcu();
1216                 if (atomic_read(&rdev->nr_pending)) {
1217                         /* lost the race, try later */
1218                         err = -EBUSY;
1219                         p->rdev = rdev;
1220                         goto abort;
1221                 }
1222                 md_integrity_register(mddev);
1223         }
1224 abort:
1225
1226         print_conf(conf);
1227         return err;
1228 }
1229
1230
1231 static void end_sync_read(struct bio *bio, int error)
1232 {
1233         r1bio_t *r1_bio = bio->bi_private;
1234         int i;
1235
1236         for (i=r1_bio->mddev->raid_disks; i--; )
1237                 if (r1_bio->bios[i] == bio)
1238                         break;
1239         BUG_ON(i < 0);
1240         update_head_pos(i, r1_bio);
1241         /*
1242          * we have read a block, now it needs to be re-written,
1243          * or re-read if the read failed.
1244          * We don't do much here, just schedule handling by raid1d
1245          */
1246         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1247                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1248
1249         if (atomic_dec_and_test(&r1_bio->remaining))
1250                 reschedule_retry(r1_bio);
1251 }
1252
1253 static void end_sync_write(struct bio *bio, int error)
1254 {
1255         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1256         r1bio_t *r1_bio = bio->bi_private;
1257         mddev_t *mddev = r1_bio->mddev;
1258         conf_t *conf = mddev->private;
1259         int i;
1260         int mirror=0;
1261
1262         for (i = 0; i < conf->raid_disks; i++)
1263                 if (r1_bio->bios[i] == bio) {
1264                         mirror = i;
1265                         break;
1266                 }
1267         if (!uptodate) {
1268                 int sync_blocks = 0;
1269                 sector_t s = r1_bio->sector;
1270                 long sectors_to_go = r1_bio->sectors;
1271                 /* make sure these bits doesn't get cleared. */
1272                 do {
1273                         bitmap_end_sync(mddev->bitmap, s,
1274                                         &sync_blocks, 1);
1275                         s += sync_blocks;
1276                         sectors_to_go -= sync_blocks;
1277                 } while (sectors_to_go > 0);
1278                 md_error(mddev, conf->mirrors[mirror].rdev);
1279         }
1280
1281         update_head_pos(mirror, r1_bio);
1282
1283         if (atomic_dec_and_test(&r1_bio->remaining)) {
1284                 sector_t s = r1_bio->sectors;
1285                 put_buf(r1_bio);
1286                 md_done_sync(mddev, s, uptodate);
1287         }
1288 }
1289
1290 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1291 {
1292         conf_t *conf = mddev->private;
1293         int i;
1294         int disks = conf->raid_disks;
1295         struct bio *bio, *wbio;
1296
1297         bio = r1_bio->bios[r1_bio->read_disk];
1298
1299
1300         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1301                 /* We have read all readable devices.  If we haven't
1302                  * got the block, then there is no hope left.
1303                  * If we have, then we want to do a comparison
1304                  * and skip the write if everything is the same.
1305                  * If any blocks failed to read, then we need to
1306                  * attempt an over-write
1307                  */
1308                 int primary;
1309                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1310                         for (i=0; i<mddev->raid_disks; i++)
1311                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1312                                         md_error(mddev, conf->mirrors[i].rdev);
1313
1314                         md_done_sync(mddev, r1_bio->sectors, 1);
1315                         put_buf(r1_bio);
1316                         return;
1317                 }
1318                 for (primary=0; primary<mddev->raid_disks; primary++)
1319                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1320                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1321                                 r1_bio->bios[primary]->bi_end_io = NULL;
1322                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1323                                 break;
1324                         }
1325                 r1_bio->read_disk = primary;
1326                 for (i=0; i<mddev->raid_disks; i++)
1327                         if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1328                                 int j;
1329                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1330                                 struct bio *pbio = r1_bio->bios[primary];
1331                                 struct bio *sbio = r1_bio->bios[i];
1332
1333                                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1334                                         for (j = vcnt; j-- ; ) {
1335                                                 struct page *p, *s;
1336                                                 p = pbio->bi_io_vec[j].bv_page;
1337                                                 s = sbio->bi_io_vec[j].bv_page;
1338                                                 if (memcmp(page_address(p),
1339                                                            page_address(s),
1340                                                            PAGE_SIZE))
1341                                                         break;
1342                                         }
1343                                 } else
1344                                         j = 0;
1345                                 if (j >= 0)
1346                                         mddev->resync_mismatches += r1_bio->sectors;
1347                                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1348                                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1349                                         sbio->bi_end_io = NULL;
1350                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1351                                 } else {
1352                                         /* fixup the bio for reuse */
1353                                         int size;
1354                                         sbio->bi_vcnt = vcnt;
1355                                         sbio->bi_size = r1_bio->sectors << 9;
1356                                         sbio->bi_idx = 0;
1357                                         sbio->bi_phys_segments = 0;
1358                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1359                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1360                                         sbio->bi_next = NULL;
1361                                         sbio->bi_sector = r1_bio->sector +
1362                                                 conf->mirrors[i].rdev->data_offset;
1363                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1364                                         size = sbio->bi_size;
1365                                         for (j = 0; j < vcnt ; j++) {
1366                                                 struct bio_vec *bi;
1367                                                 bi = &sbio->bi_io_vec[j];
1368                                                 bi->bv_offset = 0;
1369                                                 if (size > PAGE_SIZE)
1370                                                         bi->bv_len = PAGE_SIZE;
1371                                                 else
1372                                                         bi->bv_len = size;
1373                                                 size -= PAGE_SIZE;
1374                                                 memcpy(page_address(bi->bv_page),
1375                                                        page_address(pbio->bi_io_vec[j].bv_page),
1376                                                        PAGE_SIZE);
1377                                         }
1378
1379                                 }
1380                         }
1381         }
1382         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1383                 /* ouch - failed to read all of that.
1384                  * Try some synchronous reads of other devices to get
1385                  * good data, much like with normal read errors.  Only
1386                  * read into the pages we already have so we don't
1387                  * need to re-issue the read request.
1388                  * We don't need to freeze the array, because being in an
1389                  * active sync request, there is no normal IO, and
1390                  * no overlapping syncs.
1391                  */
1392                 sector_t sect = r1_bio->sector;
1393                 int sectors = r1_bio->sectors;
1394                 int idx = 0;
1395
1396                 while(sectors) {
1397                         int s = sectors;
1398                         int d = r1_bio->read_disk;
1399                         int success = 0;
1400                         mdk_rdev_t *rdev;
1401
1402                         if (s > (PAGE_SIZE>>9))
1403                                 s = PAGE_SIZE >> 9;
1404                         do {
1405                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1406                                         /* No rcu protection needed here devices
1407                                          * can only be removed when no resync is
1408                                          * active, and resync is currently active
1409                                          */
1410                                         rdev = conf->mirrors[d].rdev;
1411                                         if (sync_page_io(rdev->bdev,
1412                                                          sect + rdev->data_offset,
1413                                                          s<<9,
1414                                                          bio->bi_io_vec[idx].bv_page,
1415                                                          READ)) {
1416                                                 success = 1;
1417                                                 break;
1418                                         }
1419                                 }
1420                                 d++;
1421                                 if (d == conf->raid_disks)
1422                                         d = 0;
1423                         } while (!success && d != r1_bio->read_disk);
1424
1425                         if (success) {
1426                                 int start = d;
1427                                 /* write it back and re-read */
1428                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1429                                 while (d != r1_bio->read_disk) {
1430                                         if (d == 0)
1431                                                 d = conf->raid_disks;
1432                                         d--;
1433                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1434                                                 continue;
1435                                         rdev = conf->mirrors[d].rdev;
1436                                         atomic_add(s, &rdev->corrected_errors);
1437                                         if (sync_page_io(rdev->bdev,
1438                                                          sect + rdev->data_offset,
1439                                                          s<<9,
1440                                                          bio->bi_io_vec[idx].bv_page,
1441                                                          WRITE) == 0)
1442                                                 md_error(mddev, rdev);
1443                                 }
1444                                 d = start;
1445                                 while (d != r1_bio->read_disk) {
1446                                         if (d == 0)
1447                                                 d = conf->raid_disks;
1448                                         d--;
1449                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1450                                                 continue;
1451                                         rdev = conf->mirrors[d].rdev;
1452                                         if (sync_page_io(rdev->bdev,
1453                                                          sect + rdev->data_offset,
1454                                                          s<<9,
1455                                                          bio->bi_io_vec[idx].bv_page,
1456                                                          READ) == 0)
1457                                                 md_error(mddev, rdev);
1458                                 }
1459                         } else {
1460                                 char b[BDEVNAME_SIZE];
1461                                 /* Cannot read from anywhere, array is toast */
1462                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1463                                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1464                                        " for block %llu\n",
1465                                        mdname(mddev),
1466                                        bdevname(bio->bi_bdev, b),
1467                                        (unsigned long long)r1_bio->sector);
1468                                 md_done_sync(mddev, r1_bio->sectors, 0);
1469                                 put_buf(r1_bio);
1470                                 return;
1471                         }
1472                         sectors -= s;
1473                         sect += s;
1474                         idx ++;
1475                 }
1476         }
1477
1478         /*
1479          * schedule writes
1480          */
1481         atomic_set(&r1_bio->remaining, 1);
1482         for (i = 0; i < disks ; i++) {
1483                 wbio = r1_bio->bios[i];
1484                 if (wbio->bi_end_io == NULL ||
1485                     (wbio->bi_end_io == end_sync_read &&
1486                      (i == r1_bio->read_disk ||
1487                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1488                         continue;
1489
1490                 wbio->bi_rw = WRITE;
1491                 wbio->bi_end_io = end_sync_write;
1492                 atomic_inc(&r1_bio->remaining);
1493                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1494
1495                 generic_make_request(wbio);
1496         }
1497
1498         if (atomic_dec_and_test(&r1_bio->remaining)) {
1499                 /* if we're here, all write(s) have completed, so clean up */
1500                 md_done_sync(mddev, r1_bio->sectors, 1);
1501                 put_buf(r1_bio);
1502         }
1503 }
1504
1505 /*
1506  * This is a kernel thread which:
1507  *
1508  *      1.      Retries failed read operations on working mirrors.
1509  *      2.      Updates the raid superblock when problems encounter.
1510  *      3.      Performs writes following reads for array syncronising.
1511  */
1512
1513 static void fix_read_error(conf_t *conf, int read_disk,
1514                            sector_t sect, int sectors)
1515 {
1516         mddev_t *mddev = conf->mddev;
1517         while(sectors) {
1518                 int s = sectors;
1519                 int d = read_disk;
1520                 int success = 0;
1521                 int start;
1522                 mdk_rdev_t *rdev;
1523
1524                 if (s > (PAGE_SIZE>>9))
1525                         s = PAGE_SIZE >> 9;
1526
1527                 do {
1528                         /* Note: no rcu protection needed here
1529                          * as this is synchronous in the raid1d thread
1530                          * which is the thread that might remove
1531                          * a device.  If raid1d ever becomes multi-threaded....
1532                          */
1533                         rdev = conf->mirrors[d].rdev;
1534                         if (rdev &&
1535                             test_bit(In_sync, &rdev->flags) &&
1536                             sync_page_io(rdev->bdev,
1537                                          sect + rdev->data_offset,
1538                                          s<<9,
1539                                          conf->tmppage, READ))
1540                                 success = 1;
1541                         else {
1542                                 d++;
1543                                 if (d == conf->raid_disks)
1544                                         d = 0;
1545                         }
1546                 } while (!success && d != read_disk);
1547
1548                 if (!success) {
1549                         /* Cannot read from anywhere -- bye bye array */
1550                         md_error(mddev, conf->mirrors[read_disk].rdev);
1551                         break;
1552                 }
1553                 /* write it back and re-read */
1554                 start = d;
1555                 while (d != read_disk) {
1556                         if (d==0)
1557                                 d = conf->raid_disks;
1558                         d--;
1559                         rdev = conf->mirrors[d].rdev;
1560                         if (rdev &&
1561                             test_bit(In_sync, &rdev->flags)) {
1562                                 if (sync_page_io(rdev->bdev,
1563                                                  sect + rdev->data_offset,
1564                                                  s<<9, conf->tmppage, WRITE)
1565                                     == 0)
1566                                         /* Well, this device is dead */
1567                                         md_error(mddev, rdev);
1568                         }
1569                 }
1570                 d = start;
1571                 while (d != read_disk) {
1572                         char b[BDEVNAME_SIZE];
1573                         if (d==0)
1574                                 d = conf->raid_disks;
1575                         d--;
1576                         rdev = conf->mirrors[d].rdev;
1577                         if (rdev &&
1578                             test_bit(In_sync, &rdev->flags)) {
1579                                 if (sync_page_io(rdev->bdev,
1580                                                  sect + rdev->data_offset,
1581                                                  s<<9, conf->tmppage, READ)
1582                                     == 0)
1583                                         /* Well, this device is dead */
1584                                         md_error(mddev, rdev);
1585                                 else {
1586                                         atomic_add(s, &rdev->corrected_errors);
1587                                         printk(KERN_INFO
1588                                                "md/raid1:%s: read error corrected "
1589                                                "(%d sectors at %llu on %s)\n",
1590                                                mdname(mddev), s,
1591                                                (unsigned long long)(sect +
1592                                                    rdev->data_offset),
1593                                                bdevname(rdev->bdev, b));
1594                                 }
1595                         }
1596                 }
1597                 sectors -= s;
1598                 sect += s;
1599         }
1600 }
1601
1602 static void raid1d(mddev_t *mddev)
1603 {
1604         r1bio_t *r1_bio;
1605         struct bio *bio;
1606         unsigned long flags;
1607         conf_t *conf = mddev->private;
1608         struct list_head *head = &conf->retry_list;
1609         int unplug=0;
1610         mdk_rdev_t *rdev;
1611
1612         md_check_recovery(mddev);
1613         
1614         for (;;) {
1615                 char b[BDEVNAME_SIZE];
1616
1617                 unplug += flush_pending_writes(conf);
1618
1619                 spin_lock_irqsave(&conf->device_lock, flags);
1620                 if (list_empty(head)) {
1621                         spin_unlock_irqrestore(&conf->device_lock, flags);
1622                         break;
1623                 }
1624                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1625                 list_del(head->prev);
1626                 conf->nr_queued--;
1627                 spin_unlock_irqrestore(&conf->device_lock, flags);
1628
1629                 mddev = r1_bio->mddev;
1630                 conf = mddev->private;
1631                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1632                         sync_request_write(mddev, r1_bio);
1633                         unplug = 1;
1634                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1635                         /* some requests in the r1bio were REQ_HARDBARRIER
1636                          * requests which failed with -EOPNOTSUPP.  Hohumm..
1637                          * Better resubmit without the barrier.
1638                          * We know which devices to resubmit for, because
1639                          * all others have had their bios[] entry cleared.
1640                          * We already have a nr_pending reference on these rdevs.
1641                          */
1642                         int i;
1643                         const bool do_sync = (r1_bio->master_bio->bi_rw & REQ_SYNC);
1644                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1645                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1646                         for (i=0; i < conf->raid_disks; i++)
1647                                 if (r1_bio->bios[i])
1648                                         atomic_inc(&r1_bio->remaining);
1649                         for (i=0; i < conf->raid_disks; i++)
1650                                 if (r1_bio->bios[i]) {
1651                                         struct bio_vec *bvec;
1652                                         int j;
1653
1654                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1655                                         /* copy pages from the failed bio, as
1656                                          * this might be a write-behind device */
1657                                         __bio_for_each_segment(bvec, bio, j, 0)
1658                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1659                                         bio_put(r1_bio->bios[i]);
1660                                         bio->bi_sector = r1_bio->sector +
1661                                                 conf->mirrors[i].rdev->data_offset;
1662                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1663                                         bio->bi_end_io = raid1_end_write_request;
1664                                         bio->bi_rw = WRITE | do_sync;
1665                                         bio->bi_private = r1_bio;
1666                                         r1_bio->bios[i] = bio;
1667                                         generic_make_request(bio);
1668                                 }
1669                 } else {
1670                         int disk;
1671
1672                         /* we got a read error. Maybe the drive is bad.  Maybe just
1673                          * the block and we can fix it.
1674                          * We freeze all other IO, and try reading the block from
1675                          * other devices.  When we find one, we re-write
1676                          * and check it that fixes the read error.
1677                          * This is all done synchronously while the array is
1678                          * frozen
1679                          */
1680                         if (mddev->ro == 0) {
1681                                 freeze_array(conf);
1682                                 fix_read_error(conf, r1_bio->read_disk,
1683                                                r1_bio->sector,
1684                                                r1_bio->sectors);
1685                                 unfreeze_array(conf);
1686                         } else
1687                                 md_error(mddev,
1688                                          conf->mirrors[r1_bio->read_disk].rdev);
1689
1690                         bio = r1_bio->bios[r1_bio->read_disk];
1691                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1692                                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1693                                        " read error for block %llu\n",
1694                                        mdname(mddev),
1695                                        bdevname(bio->bi_bdev,b),
1696                                        (unsigned long long)r1_bio->sector);
1697                                 raid_end_bio_io(r1_bio);
1698                         } else {
1699                                 const bool do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1700                                 r1_bio->bios[r1_bio->read_disk] =
1701                                         mddev->ro ? IO_BLOCKED : NULL;
1702                                 r1_bio->read_disk = disk;
1703                                 bio_put(bio);
1704                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1705                                 r1_bio->bios[r1_bio->read_disk] = bio;
1706                                 rdev = conf->mirrors[disk].rdev;
1707                                 if (printk_ratelimit())
1708                                         printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1709                                                " other mirror: %s\n",
1710                                                mdname(mddev),
1711                                                (unsigned long long)r1_bio->sector,
1712                                                bdevname(rdev->bdev,b));
1713                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1714                                 bio->bi_bdev = rdev->bdev;
1715                                 bio->bi_end_io = raid1_end_read_request;
1716                                 bio->bi_rw = READ | do_sync;
1717                                 bio->bi_private = r1_bio;
1718                                 unplug = 1;
1719                                 generic_make_request(bio);
1720                         }
1721                 }
1722                 cond_resched();
1723         }
1724         if (unplug)
1725                 unplug_slaves(mddev);
1726 }
1727
1728
1729 static int init_resync(conf_t *conf)
1730 {
1731         int buffs;
1732
1733         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1734         BUG_ON(conf->r1buf_pool);
1735         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1736                                           conf->poolinfo);
1737         if (!conf->r1buf_pool)
1738                 return -ENOMEM;
1739         conf->next_resync = 0;
1740         return 0;
1741 }
1742
1743 /*
1744  * perform a "sync" on one "block"
1745  *
1746  * We need to make sure that no normal I/O request - particularly write
1747  * requests - conflict with active sync requests.
1748  *
1749  * This is achieved by tracking pending requests and a 'barrier' concept
1750  * that can be installed to exclude normal IO requests.
1751  */
1752
1753 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1754 {
1755         conf_t *conf = mddev->private;
1756         r1bio_t *r1_bio;
1757         struct bio *bio;
1758         sector_t max_sector, nr_sectors;
1759         int disk = -1;
1760         int i;
1761         int wonly = -1;
1762         int write_targets = 0, read_targets = 0;
1763         int sync_blocks;
1764         int still_degraded = 0;
1765
1766         if (!conf->r1buf_pool)
1767                 if (init_resync(conf))
1768                         return 0;
1769
1770         max_sector = mddev->dev_sectors;
1771         if (sector_nr >= max_sector) {
1772                 /* If we aborted, we need to abort the
1773                  * sync on the 'current' bitmap chunk (there will
1774                  * only be one in raid1 resync.
1775                  * We can find the current addess in mddev->curr_resync
1776                  */
1777                 if (mddev->curr_resync < max_sector) /* aborted */
1778                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1779                                                 &sync_blocks, 1);
1780                 else /* completed sync */
1781                         conf->fullsync = 0;
1782
1783                 bitmap_close_sync(mddev->bitmap);
1784                 close_sync(conf);
1785                 return 0;
1786         }
1787
1788         if (mddev->bitmap == NULL &&
1789             mddev->recovery_cp == MaxSector &&
1790             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1791             conf->fullsync == 0) {
1792                 *skipped = 1;
1793                 return max_sector - sector_nr;
1794         }
1795         /* before building a request, check if we can skip these blocks..
1796          * This call the bitmap_start_sync doesn't actually record anything
1797          */
1798         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1799             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1800                 /* We can skip this block, and probably several more */
1801                 *skipped = 1;
1802                 return sync_blocks;
1803         }
1804         /*
1805          * If there is non-resync activity waiting for a turn,
1806          * and resync is going fast enough,
1807          * then let it though before starting on this new sync request.
1808          */
1809         if (!go_faster && conf->nr_waiting)
1810                 msleep_interruptible(1000);
1811
1812         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1813         raise_barrier(conf);
1814
1815         conf->next_resync = sector_nr;
1816
1817         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1818         rcu_read_lock();
1819         /*
1820          * If we get a correctably read error during resync or recovery,
1821          * we might want to read from a different device.  So we
1822          * flag all drives that could conceivably be read from for READ,
1823          * and any others (which will be non-In_sync devices) for WRITE.
1824          * If a read fails, we try reading from something else for which READ
1825          * is OK.
1826          */
1827
1828         r1_bio->mddev = mddev;
1829         r1_bio->sector = sector_nr;
1830         r1_bio->state = 0;
1831         set_bit(R1BIO_IsSync, &r1_bio->state);
1832
1833         for (i=0; i < conf->raid_disks; i++) {
1834                 mdk_rdev_t *rdev;
1835                 bio = r1_bio->bios[i];
1836
1837                 /* take from bio_init */
1838                 bio->bi_next = NULL;
1839                 bio->bi_flags |= 1 << BIO_UPTODATE;
1840                 bio->bi_rw = READ;
1841                 bio->bi_vcnt = 0;
1842                 bio->bi_idx = 0;
1843                 bio->bi_phys_segments = 0;
1844                 bio->bi_size = 0;
1845                 bio->bi_end_io = NULL;
1846                 bio->bi_private = NULL;
1847
1848                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1849                 if (rdev == NULL ||
1850                            test_bit(Faulty, &rdev->flags)) {
1851                         still_degraded = 1;
1852                         continue;
1853                 } else if (!test_bit(In_sync, &rdev->flags)) {
1854                         bio->bi_rw = WRITE;
1855                         bio->bi_end_io = end_sync_write;
1856                         write_targets ++;
1857                 } else {
1858                         /* may need to read from here */
1859                         bio->bi_rw = READ;
1860                         bio->bi_end_io = end_sync_read;
1861                         if (test_bit(WriteMostly, &rdev->flags)) {
1862                                 if (wonly < 0)
1863                                         wonly = i;
1864                         } else {
1865                                 if (disk < 0)
1866                                         disk = i;
1867                         }
1868                         read_targets++;
1869                 }
1870                 atomic_inc(&rdev->nr_pending);
1871                 bio->bi_sector = sector_nr + rdev->data_offset;
1872                 bio->bi_bdev = rdev->bdev;
1873                 bio->bi_private = r1_bio;
1874         }
1875         rcu_read_unlock();
1876         if (disk < 0)
1877                 disk = wonly;
1878         r1_bio->read_disk = disk;
1879
1880         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1881                 /* extra read targets are also write targets */
1882                 write_targets += read_targets-1;
1883
1884         if (write_targets == 0 || read_targets == 0) {
1885                 /* There is nowhere to write, so all non-sync
1886                  * drives must be failed - so we are finished
1887                  */
1888                 sector_t rv = max_sector - sector_nr;
1889                 *skipped = 1;
1890                 put_buf(r1_bio);
1891                 return rv;
1892         }
1893
1894         if (max_sector > mddev->resync_max)
1895                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1896         nr_sectors = 0;
1897         sync_blocks = 0;
1898         do {
1899                 struct page *page;
1900                 int len = PAGE_SIZE;
1901                 if (sector_nr + (len>>9) > max_sector)
1902                         len = (max_sector - sector_nr) << 9;
1903                 if (len == 0)
1904                         break;
1905                 if (sync_blocks == 0) {
1906                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1907                                                &sync_blocks, still_degraded) &&
1908                             !conf->fullsync &&
1909                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1910                                 break;
1911                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1912                         if (len > (sync_blocks<<9))
1913                                 len = sync_blocks<<9;
1914                 }
1915
1916                 for (i=0 ; i < conf->raid_disks; i++) {
1917                         bio = r1_bio->bios[i];
1918                         if (bio->bi_end_io) {
1919                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1920                                 if (bio_add_page(bio, page, len, 0) == 0) {
1921                                         /* stop here */
1922                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1923                                         while (i > 0) {
1924                                                 i--;
1925                                                 bio = r1_bio->bios[i];
1926                                                 if (bio->bi_end_io==NULL)
1927                                                         continue;
1928                                                 /* remove last page from this bio */
1929                                                 bio->bi_vcnt--;
1930                                                 bio->bi_size -= len;
1931                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1932                                         }
1933                                         goto bio_full;
1934                                 }
1935                         }
1936                 }
1937                 nr_sectors += len>>9;
1938                 sector_nr += len>>9;
1939                 sync_blocks -= (len>>9);
1940         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1941  bio_full:
1942         r1_bio->sectors = nr_sectors;
1943
1944         /* For a user-requested sync, we read all readable devices and do a
1945          * compare
1946          */
1947         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1948                 atomic_set(&r1_bio->remaining, read_targets);
1949                 for (i=0; i<conf->raid_disks; i++) {
1950                         bio = r1_bio->bios[i];
1951                         if (bio->bi_end_io == end_sync_read) {
1952                                 md_sync_acct(bio->bi_bdev, nr_sectors);
1953                                 generic_make_request(bio);
1954                         }
1955                 }
1956         } else {
1957                 atomic_set(&r1_bio->remaining, 1);
1958                 bio = r1_bio->bios[r1_bio->read_disk];
1959                 md_sync_acct(bio->bi_bdev, nr_sectors);
1960                 generic_make_request(bio);
1961
1962         }
1963         return nr_sectors;
1964 }
1965
1966 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1967 {
1968         if (sectors)
1969                 return sectors;
1970
1971         return mddev->dev_sectors;
1972 }
1973
1974 static conf_t *setup_conf(mddev_t *mddev)
1975 {
1976         conf_t *conf;
1977         int i;
1978         mirror_info_t *disk;
1979         mdk_rdev_t *rdev;
1980         int err = -ENOMEM;
1981
1982         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1983         if (!conf)
1984                 goto abort;
1985
1986         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1987                                  GFP_KERNEL);
1988         if (!conf->mirrors)
1989                 goto abort;
1990
1991         conf->tmppage = alloc_page(GFP_KERNEL);
1992         if (!conf->tmppage)
1993                 goto abort;
1994
1995         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1996         if (!conf->poolinfo)
1997                 goto abort;
1998         conf->poolinfo->raid_disks = mddev->raid_disks;
1999         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2000                                           r1bio_pool_free,
2001                                           conf->poolinfo);
2002         if (!conf->r1bio_pool)
2003                 goto abort;
2004
2005         conf->poolinfo->mddev = mddev;
2006
2007         spin_lock_init(&conf->device_lock);
2008         list_for_each_entry(rdev, &mddev->disks, same_set) {
2009                 int disk_idx = rdev->raid_disk;
2010                 if (disk_idx >= mddev->raid_disks
2011                     || disk_idx < 0)
2012                         continue;
2013                 disk = conf->mirrors + disk_idx;
2014
2015                 disk->rdev = rdev;
2016
2017                 disk->head_position = 0;
2018         }
2019         conf->raid_disks = mddev->raid_disks;
2020         conf->mddev = mddev;
2021         INIT_LIST_HEAD(&conf->retry_list);
2022
2023         spin_lock_init(&conf->resync_lock);
2024         init_waitqueue_head(&conf->wait_barrier);
2025
2026         bio_list_init(&conf->pending_bio_list);
2027         bio_list_init(&conf->flushing_bio_list);
2028
2029         conf->last_used = -1;
2030         for (i = 0; i < conf->raid_disks; i++) {
2031
2032                 disk = conf->mirrors + i;
2033
2034                 if (!disk->rdev ||
2035                     !test_bit(In_sync, &disk->rdev->flags)) {
2036                         disk->head_position = 0;
2037                         if (disk->rdev)
2038                                 conf->fullsync = 1;
2039                 } else if (conf->last_used < 0)
2040                         /*
2041                          * The first working device is used as a
2042                          * starting point to read balancing.
2043                          */
2044                         conf->last_used = i;
2045         }
2046
2047         err = -EIO;
2048         if (conf->last_used < 0) {
2049                 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2050                        mdname(mddev));
2051                 goto abort;
2052         }
2053         err = -ENOMEM;
2054         conf->thread = md_register_thread(raid1d, mddev, NULL);
2055         if (!conf->thread) {
2056                 printk(KERN_ERR
2057                        "md/raid1:%s: couldn't allocate thread\n",
2058                        mdname(mddev));
2059                 goto abort;
2060         }
2061
2062         return conf;
2063
2064  abort:
2065         if (conf) {
2066                 if (conf->r1bio_pool)
2067                         mempool_destroy(conf->r1bio_pool);
2068                 kfree(conf->mirrors);
2069                 safe_put_page(conf->tmppage);
2070                 kfree(conf->poolinfo);
2071                 kfree(conf);
2072         }
2073         return ERR_PTR(err);
2074 }
2075
2076 static int run(mddev_t *mddev)
2077 {
2078         conf_t *conf;
2079         int i;
2080         mdk_rdev_t *rdev;
2081
2082         if (mddev->level != 1) {
2083                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2084                        mdname(mddev), mddev->level);
2085                 return -EIO;
2086         }
2087         if (mddev->reshape_position != MaxSector) {
2088                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2089                        mdname(mddev));
2090                 return -EIO;
2091         }
2092         /*
2093          * copy the already verified devices into our private RAID1
2094          * bookkeeping area. [whatever we allocate in run(),
2095          * should be freed in stop()]
2096          */
2097         if (mddev->private == NULL)
2098                 conf = setup_conf(mddev);
2099         else
2100                 conf = mddev->private;
2101
2102         if (IS_ERR(conf))
2103                 return PTR_ERR(conf);
2104
2105         mddev->queue->queue_lock = &conf->device_lock;
2106         list_for_each_entry(rdev, &mddev->disks, same_set) {
2107                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2108                                   rdev->data_offset << 9);
2109                 /* as we don't honour merge_bvec_fn, we must never risk
2110                  * violating it, so limit ->max_segments to 1 lying within
2111                  * a single page, as a one page request is never in violation.
2112                  */
2113                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2114                         blk_queue_max_segments(mddev->queue, 1);
2115                         blk_queue_segment_boundary(mddev->queue,
2116                                                    PAGE_CACHE_SIZE - 1);
2117                 }
2118         }
2119
2120         mddev->degraded = 0;
2121         for (i=0; i < conf->raid_disks; i++)
2122                 if (conf->mirrors[i].rdev == NULL ||
2123                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2124                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2125                         mddev->degraded++;
2126
2127         if (conf->raid_disks - mddev->degraded == 1)
2128                 mddev->recovery_cp = MaxSector;
2129
2130         if (mddev->recovery_cp != MaxSector)
2131                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2132                        " -- starting background reconstruction\n",
2133                        mdname(mddev));
2134         printk(KERN_INFO 
2135                 "md/raid1:%s: active with %d out of %d mirrors\n",
2136                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2137                 mddev->raid_disks);
2138
2139         /*
2140          * Ok, everything is just fine now
2141          */
2142         mddev->thread = conf->thread;
2143         conf->thread = NULL;
2144         mddev->private = conf;
2145
2146         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2147
2148         mddev->queue->unplug_fn = raid1_unplug;
2149         mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2150         mddev->queue->backing_dev_info.congested_data = mddev;
2151         md_integrity_register(mddev);
2152         return 0;
2153 }
2154
2155 static int stop(mddev_t *mddev)
2156 {
2157         conf_t *conf = mddev->private;
2158         struct bitmap *bitmap = mddev->bitmap;
2159
2160         /* wait for behind writes to complete */
2161         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2162                 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2163                        mdname(mddev));
2164                 /* need to kick something here to make sure I/O goes? */
2165                 wait_event(bitmap->behind_wait,
2166                            atomic_read(&bitmap->behind_writes) == 0);
2167         }
2168
2169         raise_barrier(conf);
2170         lower_barrier(conf);
2171
2172         md_unregister_thread(mddev->thread);
2173         mddev->thread = NULL;
2174         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2175         if (conf->r1bio_pool)
2176                 mempool_destroy(conf->r1bio_pool);
2177         kfree(conf->mirrors);
2178         kfree(conf->poolinfo);
2179         kfree(conf);
2180         mddev->private = NULL;
2181         return 0;
2182 }
2183
2184 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2185 {
2186         /* no resync is happening, and there is enough space
2187          * on all devices, so we can resize.
2188          * We need to make sure resync covers any new space.
2189          * If the array is shrinking we should possibly wait until
2190          * any io in the removed space completes, but it hardly seems
2191          * worth it.
2192          */
2193         md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2194         if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2195                 return -EINVAL;
2196         set_capacity(mddev->gendisk, mddev->array_sectors);
2197         revalidate_disk(mddev->gendisk);
2198         if (sectors > mddev->dev_sectors &&
2199             mddev->recovery_cp == MaxSector) {
2200                 mddev->recovery_cp = mddev->dev_sectors;
2201                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2202         }
2203         mddev->dev_sectors = sectors;
2204         mddev->resync_max_sectors = sectors;
2205         return 0;
2206 }
2207
2208 static int raid1_reshape(mddev_t *mddev)
2209 {
2210         /* We need to:
2211          * 1/ resize the r1bio_pool
2212          * 2/ resize conf->mirrors
2213          *
2214          * We allocate a new r1bio_pool if we can.
2215          * Then raise a device barrier and wait until all IO stops.
2216          * Then resize conf->mirrors and swap in the new r1bio pool.
2217          *
2218          * At the same time, we "pack" the devices so that all the missing
2219          * devices have the higher raid_disk numbers.
2220          */
2221         mempool_t *newpool, *oldpool;
2222         struct pool_info *newpoolinfo;
2223         mirror_info_t *newmirrors;
2224         conf_t *conf = mddev->private;
2225         int cnt, raid_disks;
2226         unsigned long flags;
2227         int d, d2, err;
2228
2229         /* Cannot change chunk_size, layout, or level */
2230         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2231             mddev->layout != mddev->new_layout ||
2232             mddev->level != mddev->new_level) {
2233                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2234                 mddev->new_layout = mddev->layout;
2235                 mddev->new_level = mddev->level;
2236                 return -EINVAL;
2237         }
2238
2239         err = md_allow_write(mddev);
2240         if (err)
2241                 return err;
2242
2243         raid_disks = mddev->raid_disks + mddev->delta_disks;
2244
2245         if (raid_disks < conf->raid_disks) {
2246                 cnt=0;
2247                 for (d= 0; d < conf->raid_disks; d++)
2248                         if (conf->mirrors[d].rdev)
2249                                 cnt++;
2250                 if (cnt > raid_disks)
2251                         return -EBUSY;
2252         }
2253
2254         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2255         if (!newpoolinfo)
2256                 return -ENOMEM;
2257         newpoolinfo->mddev = mddev;
2258         newpoolinfo->raid_disks = raid_disks;
2259
2260         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2261                                  r1bio_pool_free, newpoolinfo);
2262         if (!newpool) {
2263                 kfree(newpoolinfo);
2264                 return -ENOMEM;
2265         }
2266         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2267         if (!newmirrors) {
2268                 kfree(newpoolinfo);
2269                 mempool_destroy(newpool);
2270                 return -ENOMEM;
2271         }
2272
2273         raise_barrier(conf);
2274
2275         /* ok, everything is stopped */
2276         oldpool = conf->r1bio_pool;
2277         conf->r1bio_pool = newpool;
2278
2279         for (d = d2 = 0; d < conf->raid_disks; d++) {
2280                 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2281                 if (rdev && rdev->raid_disk != d2) {
2282                         char nm[20];
2283                         sprintf(nm, "rd%d", rdev->raid_disk);
2284                         sysfs_remove_link(&mddev->kobj, nm);
2285                         rdev->raid_disk = d2;
2286                         sprintf(nm, "rd%d", rdev->raid_disk);
2287                         sysfs_remove_link(&mddev->kobj, nm);
2288                         if (sysfs_create_link(&mddev->kobj,
2289                                               &rdev->kobj, nm))
2290                                 printk(KERN_WARNING
2291                                        "md/raid1:%s: cannot register "
2292                                        "%s\n",
2293                                        mdname(mddev), nm);
2294                 }
2295                 if (rdev)
2296                         newmirrors[d2++].rdev = rdev;
2297         }
2298         kfree(conf->mirrors);
2299         conf->mirrors = newmirrors;
2300         kfree(conf->poolinfo);
2301         conf->poolinfo = newpoolinfo;
2302
2303         spin_lock_irqsave(&conf->device_lock, flags);
2304         mddev->degraded += (raid_disks - conf->raid_disks);
2305         spin_unlock_irqrestore(&conf->device_lock, flags);
2306         conf->raid_disks = mddev->raid_disks = raid_disks;
2307         mddev->delta_disks = 0;
2308
2309         conf->last_used = 0; /* just make sure it is in-range */
2310         lower_barrier(conf);
2311
2312         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2313         md_wakeup_thread(mddev->thread);
2314
2315         mempool_destroy(oldpool);
2316         return 0;
2317 }
2318
2319 static void raid1_quiesce(mddev_t *mddev, int state)
2320 {
2321         conf_t *conf = mddev->private;
2322
2323         switch(state) {
2324         case 2: /* wake for suspend */
2325                 wake_up(&conf->wait_barrier);
2326                 break;
2327         case 1:
2328                 raise_barrier(conf);
2329                 break;
2330         case 0:
2331                 lower_barrier(conf);
2332                 break;
2333         }
2334 }
2335
2336 static void *raid1_takeover(mddev_t *mddev)
2337 {
2338         /* raid1 can take over:
2339          *  raid5 with 2 devices, any layout or chunk size
2340          */
2341         if (mddev->level == 5 && mddev->raid_disks == 2) {
2342                 conf_t *conf;
2343                 mddev->new_level = 1;
2344                 mddev->new_layout = 0;
2345                 mddev->new_chunk_sectors = 0;
2346                 conf = setup_conf(mddev);
2347                 if (!IS_ERR(conf))
2348                         conf->barrier = 1;
2349                 return conf;
2350         }
2351         return ERR_PTR(-EINVAL);
2352 }
2353
2354 static struct mdk_personality raid1_personality =
2355 {
2356         .name           = "raid1",
2357         .level          = 1,
2358         .owner          = THIS_MODULE,
2359         .make_request   = make_request,
2360         .run            = run,
2361         .stop           = stop,
2362         .status         = status,
2363         .error_handler  = error,
2364         .hot_add_disk   = raid1_add_disk,
2365         .hot_remove_disk= raid1_remove_disk,
2366         .spare_active   = raid1_spare_active,
2367         .sync_request   = sync_request,
2368         .resize         = raid1_resize,
2369         .size           = raid1_size,
2370         .check_reshape  = raid1_reshape,
2371         .quiesce        = raid1_quiesce,
2372         .takeover       = raid1_takeover,
2373 };
2374
2375 static int __init raid_init(void)
2376 {
2377         return register_md_personality(&raid1_personality);
2378 }
2379
2380 static void raid_exit(void)
2381 {
2382         unregister_md_personality(&raid1_personality);
2383 }
2384
2385 module_init(raid_init);
2386 module_exit(raid_exit);
2387 MODULE_LICENSE("GPL");
2388 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2389 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2390 MODULE_ALIAS("md-raid1");
2391 MODULE_ALIAS("md-level-1");