Add new disk to clustered array
[pandora-kernel.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259         if (done) {
260                 bio_endio(bio, 0);
261                 /*
262                  * Wake up any possible resync thread that waits for the device
263                  * to go idle.
264                  */
265                 allow_barrier(conf, start_next_window, bi_sector);
266         }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271         struct bio *bio = r1_bio->master_bio;
272
273         /* if nobody has done the final endio yet, do it now */
274         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
277                          (unsigned long long) bio->bi_iter.bi_sector,
278                          (unsigned long long) bio_end_sector(bio) - 1);
279
280                 call_bio_endio(r1_bio);
281         }
282         free_r1bio(r1_bio);
283 }
284
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290         struct r1conf *conf = r1_bio->mddev->private;
291
292         conf->mirrors[disk].head_position =
293                 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301         int mirror;
302         struct r1conf *conf = r1_bio->mddev->private;
303         int raid_disks = conf->raid_disks;
304
305         for (mirror = 0; mirror < raid_disks * 2; mirror++)
306                 if (r1_bio->bios[mirror] == bio)
307                         break;
308
309         BUG_ON(mirror == raid_disks * 2);
310         update_head_pos(mirror, r1_bio);
311
312         return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318         struct r1bio *r1_bio = bio->bi_private;
319         int mirror;
320         struct r1conf *conf = r1_bio->mddev->private;
321
322         mirror = r1_bio->read_disk;
323         /*
324          * this branch is our 'one mirror IO has finished' event handler:
325          */
326         update_head_pos(mirror, r1_bio);
327
328         if (uptodate)
329                 set_bit(R1BIO_Uptodate, &r1_bio->state);
330         else {
331                 /* If all other devices have failed, we want to return
332                  * the error upwards rather than fail the last device.
333                  * Here we redefine "uptodate" to mean "Don't want to retry"
334                  */
335                 unsigned long flags;
336                 spin_lock_irqsave(&conf->device_lock, flags);
337                 if (r1_bio->mddev->degraded == conf->raid_disks ||
338                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340                         uptodate = 1;
341                 spin_unlock_irqrestore(&conf->device_lock, flags);
342         }
343
344         if (uptodate) {
345                 raid_end_bio_io(r1_bio);
346                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347         } else {
348                 /*
349                  * oops, read error:
350                  */
351                 char b[BDEVNAME_SIZE];
352                 printk_ratelimited(
353                         KERN_ERR "md/raid1:%s: %s: "
354                         "rescheduling sector %llu\n",
355                         mdname(conf->mddev),
356                         bdevname(conf->mirrors[mirror].rdev->bdev,
357                                  b),
358                         (unsigned long long)r1_bio->sector);
359                 set_bit(R1BIO_ReadError, &r1_bio->state);
360                 reschedule_retry(r1_bio);
361                 /* don't drop the reference on read_disk yet */
362         }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367         /* it really is the end of this request */
368         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369                 /* free extra copy of the data pages */
370                 int i = r1_bio->behind_page_count;
371                 while (i--)
372                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373                 kfree(r1_bio->behind_bvecs);
374                 r1_bio->behind_bvecs = NULL;
375         }
376         /* clear the bitmap if all writes complete successfully */
377         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378                         r1_bio->sectors,
379                         !test_bit(R1BIO_Degraded, &r1_bio->state),
380                         test_bit(R1BIO_BehindIO, &r1_bio->state));
381         md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386         if (!atomic_dec_and_test(&r1_bio->remaining))
387                 return;
388
389         if (test_bit(R1BIO_WriteError, &r1_bio->state))
390                 reschedule_retry(r1_bio);
391         else {
392                 close_write(r1_bio);
393                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394                         reschedule_retry(r1_bio);
395                 else
396                         raid_end_bio_io(r1_bio);
397         }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (!uptodate) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543             (mddev_is_clustered(conf->mddev) &&
544             md_cluster_ops->area_resyncing(conf->mddev, this_sector,
545                     this_sector + sectors)))
546                 choose_first = 1;
547         else
548                 choose_first = 0;
549
550         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551                 sector_t dist;
552                 sector_t first_bad;
553                 int bad_sectors;
554                 unsigned int pending;
555                 bool nonrot;
556
557                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558                 if (r1_bio->bios[disk] == IO_BLOCKED
559                     || rdev == NULL
560                     || test_bit(Unmerged, &rdev->flags)
561                     || test_bit(Faulty, &rdev->flags))
562                         continue;
563                 if (!test_bit(In_sync, &rdev->flags) &&
564                     rdev->recovery_offset < this_sector + sectors)
565                         continue;
566                 if (test_bit(WriteMostly, &rdev->flags)) {
567                         /* Don't balance among write-mostly, just
568                          * use the first as a last resort */
569                         if (best_disk < 0) {
570                                 if (is_badblock(rdev, this_sector, sectors,
571                                                 &first_bad, &bad_sectors)) {
572                                         if (first_bad < this_sector)
573                                                 /* Cannot use this */
574                                                 continue;
575                                         best_good_sectors = first_bad - this_sector;
576                                 } else
577                                         best_good_sectors = sectors;
578                                 best_disk = disk;
579                         }
580                         continue;
581                 }
582                 /* This is a reasonable device to use.  It might
583                  * even be best.
584                  */
585                 if (is_badblock(rdev, this_sector, sectors,
586                                 &first_bad, &bad_sectors)) {
587                         if (best_dist < MaxSector)
588                                 /* already have a better device */
589                                 continue;
590                         if (first_bad <= this_sector) {
591                                 /* cannot read here. If this is the 'primary'
592                                  * device, then we must not read beyond
593                                  * bad_sectors from another device..
594                                  */
595                                 bad_sectors -= (this_sector - first_bad);
596                                 if (choose_first && sectors > bad_sectors)
597                                         sectors = bad_sectors;
598                                 if (best_good_sectors > sectors)
599                                         best_good_sectors = sectors;
600
601                         } else {
602                                 sector_t good_sectors = first_bad - this_sector;
603                                 if (good_sectors > best_good_sectors) {
604                                         best_good_sectors = good_sectors;
605                                         best_disk = disk;
606                                 }
607                                 if (choose_first)
608                                         break;
609                         }
610                         continue;
611                 } else
612                         best_good_sectors = sectors;
613
614                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615                 has_nonrot_disk |= nonrot;
616                 pending = atomic_read(&rdev->nr_pending);
617                 dist = abs(this_sector - conf->mirrors[disk].head_position);
618                 if (choose_first) {
619                         best_disk = disk;
620                         break;
621                 }
622                 /* Don't change to another disk for sequential reads */
623                 if (conf->mirrors[disk].next_seq_sect == this_sector
624                     || dist == 0) {
625                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626                         struct raid1_info *mirror = &conf->mirrors[disk];
627
628                         best_disk = disk;
629                         /*
630                          * If buffered sequential IO size exceeds optimal
631                          * iosize, check if there is idle disk. If yes, choose
632                          * the idle disk. read_balance could already choose an
633                          * idle disk before noticing it's a sequential IO in
634                          * this disk. This doesn't matter because this disk
635                          * will idle, next time it will be utilized after the
636                          * first disk has IO size exceeds optimal iosize. In
637                          * this way, iosize of the first disk will be optimal
638                          * iosize at least. iosize of the second disk might be
639                          * small, but not a big deal since when the second disk
640                          * starts IO, the first disk is likely still busy.
641                          */
642                         if (nonrot && opt_iosize > 0 &&
643                             mirror->seq_start != MaxSector &&
644                             mirror->next_seq_sect > opt_iosize &&
645                             mirror->next_seq_sect - opt_iosize >=
646                             mirror->seq_start) {
647                                 choose_next_idle = 1;
648                                 continue;
649                         }
650                         break;
651                 }
652                 /* If device is idle, use it */
653                 if (pending == 0) {
654                         best_disk = disk;
655                         break;
656                 }
657
658                 if (choose_next_idle)
659                         continue;
660
661                 if (min_pending > pending) {
662                         min_pending = pending;
663                         best_pending_disk = disk;
664                 }
665
666                 if (dist < best_dist) {
667                         best_dist = dist;
668                         best_dist_disk = disk;
669                 }
670         }
671
672         /*
673          * If all disks are rotational, choose the closest disk. If any disk is
674          * non-rotational, choose the disk with less pending request even the
675          * disk is rotational, which might/might not be optimal for raids with
676          * mixed ratation/non-rotational disks depending on workload.
677          */
678         if (best_disk == -1) {
679                 if (has_nonrot_disk)
680                         best_disk = best_pending_disk;
681                 else
682                         best_disk = best_dist_disk;
683         }
684
685         if (best_disk >= 0) {
686                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
687                 if (!rdev)
688                         goto retry;
689                 atomic_inc(&rdev->nr_pending);
690                 if (test_bit(Faulty, &rdev->flags)) {
691                         /* cannot risk returning a device that failed
692                          * before we inc'ed nr_pending
693                          */
694                         rdev_dec_pending(rdev, conf->mddev);
695                         goto retry;
696                 }
697                 sectors = best_good_sectors;
698
699                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700                         conf->mirrors[best_disk].seq_start = this_sector;
701
702                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
703         }
704         rcu_read_unlock();
705         *max_sectors = sectors;
706
707         return best_disk;
708 }
709
710 static int raid1_mergeable_bvec(struct mddev *mddev,
711                                 struct bvec_merge_data *bvm,
712                                 struct bio_vec *biovec)
713 {
714         struct r1conf *conf = mddev->private;
715         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
716         int max = biovec->bv_len;
717
718         if (mddev->merge_check_needed) {
719                 int disk;
720                 rcu_read_lock();
721                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
722                         struct md_rdev *rdev = rcu_dereference(
723                                 conf->mirrors[disk].rdev);
724                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
725                                 struct request_queue *q =
726                                         bdev_get_queue(rdev->bdev);
727                                 if (q->merge_bvec_fn) {
728                                         bvm->bi_sector = sector +
729                                                 rdev->data_offset;
730                                         bvm->bi_bdev = rdev->bdev;
731                                         max = min(max, q->merge_bvec_fn(
732                                                           q, bvm, biovec));
733                                 }
734                         }
735                 }
736                 rcu_read_unlock();
737         }
738         return max;
739
740 }
741
742 static int raid1_congested(struct mddev *mddev, int bits)
743 {
744         struct r1conf *conf = mddev->private;
745         int i, ret = 0;
746
747         if ((bits & (1 << BDI_async_congested)) &&
748             conf->pending_count >= max_queued_requests)
749                 return 1;
750
751         rcu_read_lock();
752         for (i = 0; i < conf->raid_disks * 2; i++) {
753                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
754                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
755                         struct request_queue *q = bdev_get_queue(rdev->bdev);
756
757                         BUG_ON(!q);
758
759                         /* Note the '|| 1' - when read_balance prefers
760                          * non-congested targets, it can be removed
761                          */
762                         if ((bits & (1<<BDI_async_congested)) || 1)
763                                 ret |= bdi_congested(&q->backing_dev_info, bits);
764                         else
765                                 ret &= bdi_congested(&q->backing_dev_info, bits);
766                 }
767         }
768         rcu_read_unlock();
769         return ret;
770 }
771
772 static void flush_pending_writes(struct r1conf *conf)
773 {
774         /* Any writes that have been queued but are awaiting
775          * bitmap updates get flushed here.
776          */
777         spin_lock_irq(&conf->device_lock);
778
779         if (conf->pending_bio_list.head) {
780                 struct bio *bio;
781                 bio = bio_list_get(&conf->pending_bio_list);
782                 conf->pending_count = 0;
783                 spin_unlock_irq(&conf->device_lock);
784                 /* flush any pending bitmap writes to
785                  * disk before proceeding w/ I/O */
786                 bitmap_unplug(conf->mddev->bitmap);
787                 wake_up(&conf->wait_barrier);
788
789                 while (bio) { /* submit pending writes */
790                         struct bio *next = bio->bi_next;
791                         bio->bi_next = NULL;
792                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794                                 /* Just ignore it */
795                                 bio_endio(bio, 0);
796                         else
797                                 generic_make_request(bio);
798                         bio = next;
799                 }
800         } else
801                 spin_unlock_irq(&conf->device_lock);
802 }
803
804 /* Barriers....
805  * Sometimes we need to suspend IO while we do something else,
806  * either some resync/recovery, or reconfigure the array.
807  * To do this we raise a 'barrier'.
808  * The 'barrier' is a counter that can be raised multiple times
809  * to count how many activities are happening which preclude
810  * normal IO.
811  * We can only raise the barrier if there is no pending IO.
812  * i.e. if nr_pending == 0.
813  * We choose only to raise the barrier if no-one is waiting for the
814  * barrier to go down.  This means that as soon as an IO request
815  * is ready, no other operations which require a barrier will start
816  * until the IO request has had a chance.
817  *
818  * So: regular IO calls 'wait_barrier'.  When that returns there
819  *    is no backgroup IO happening,  It must arrange to call
820  *    allow_barrier when it has finished its IO.
821  * backgroup IO calls must call raise_barrier.  Once that returns
822  *    there is no normal IO happeing.  It must arrange to call
823  *    lower_barrier when the particular background IO completes.
824  */
825 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
826 {
827         spin_lock_irq(&conf->resync_lock);
828
829         /* Wait until no block IO is waiting */
830         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
831                             conf->resync_lock);
832
833         /* block any new IO from starting */
834         conf->barrier++;
835         conf->next_resync = sector_nr;
836
837         /* For these conditions we must wait:
838          * A: while the array is in frozen state
839          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
840          *    the max count which allowed.
841          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
842          *    next resync will reach to the window which normal bios are
843          *    handling.
844          * D: while there are any active requests in the current window.
845          */
846         wait_event_lock_irq(conf->wait_barrier,
847                             !conf->array_frozen &&
848                             conf->barrier < RESYNC_DEPTH &&
849                             conf->current_window_requests == 0 &&
850                             (conf->start_next_window >=
851                              conf->next_resync + RESYNC_SECTORS),
852                             conf->resync_lock);
853
854         conf->nr_pending++;
855         spin_unlock_irq(&conf->resync_lock);
856 }
857
858 static void lower_barrier(struct r1conf *conf)
859 {
860         unsigned long flags;
861         BUG_ON(conf->barrier <= 0);
862         spin_lock_irqsave(&conf->resync_lock, flags);
863         conf->barrier--;
864         conf->nr_pending--;
865         spin_unlock_irqrestore(&conf->resync_lock, flags);
866         wake_up(&conf->wait_barrier);
867 }
868
869 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
870 {
871         bool wait = false;
872
873         if (conf->array_frozen || !bio)
874                 wait = true;
875         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
876                 if ((conf->mddev->curr_resync_completed
877                      >= bio_end_sector(bio)) ||
878                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
879                      <= bio->bi_iter.bi_sector))
880                         wait = false;
881                 else
882                         wait = true;
883         }
884
885         return wait;
886 }
887
888 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
889 {
890         sector_t sector = 0;
891
892         spin_lock_irq(&conf->resync_lock);
893         if (need_to_wait_for_sync(conf, bio)) {
894                 conf->nr_waiting++;
895                 /* Wait for the barrier to drop.
896                  * However if there are already pending
897                  * requests (preventing the barrier from
898                  * rising completely), and the
899                  * per-process bio queue isn't empty,
900                  * then don't wait, as we need to empty
901                  * that queue to allow conf->start_next_window
902                  * to increase.
903                  */
904                 wait_event_lock_irq(conf->wait_barrier,
905                                     !conf->array_frozen &&
906                                     (!conf->barrier ||
907                                      ((conf->start_next_window <
908                                        conf->next_resync + RESYNC_SECTORS) &&
909                                       current->bio_list &&
910                                       !bio_list_empty(current->bio_list))),
911                                     conf->resync_lock);
912                 conf->nr_waiting--;
913         }
914
915         if (bio && bio_data_dir(bio) == WRITE) {
916                 if (bio->bi_iter.bi_sector >=
917                     conf->mddev->curr_resync_completed) {
918                         if (conf->start_next_window == MaxSector)
919                                 conf->start_next_window =
920                                         conf->next_resync +
921                                         NEXT_NORMALIO_DISTANCE;
922
923                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
924                             <= bio->bi_iter.bi_sector)
925                                 conf->next_window_requests++;
926                         else
927                                 conf->current_window_requests++;
928                         sector = conf->start_next_window;
929                 }
930         }
931
932         conf->nr_pending++;
933         spin_unlock_irq(&conf->resync_lock);
934         return sector;
935 }
936
937 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
938                           sector_t bi_sector)
939 {
940         unsigned long flags;
941
942         spin_lock_irqsave(&conf->resync_lock, flags);
943         conf->nr_pending--;
944         if (start_next_window) {
945                 if (start_next_window == conf->start_next_window) {
946                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
947                             <= bi_sector)
948                                 conf->next_window_requests--;
949                         else
950                                 conf->current_window_requests--;
951                 } else
952                         conf->current_window_requests--;
953
954                 if (!conf->current_window_requests) {
955                         if (conf->next_window_requests) {
956                                 conf->current_window_requests =
957                                         conf->next_window_requests;
958                                 conf->next_window_requests = 0;
959                                 conf->start_next_window +=
960                                         NEXT_NORMALIO_DISTANCE;
961                         } else
962                                 conf->start_next_window = MaxSector;
963                 }
964         }
965         spin_unlock_irqrestore(&conf->resync_lock, flags);
966         wake_up(&conf->wait_barrier);
967 }
968
969 static void freeze_array(struct r1conf *conf, int extra)
970 {
971         /* stop syncio and normal IO and wait for everything to
972          * go quite.
973          * We wait until nr_pending match nr_queued+extra
974          * This is called in the context of one normal IO request
975          * that has failed. Thus any sync request that might be pending
976          * will be blocked by nr_pending, and we need to wait for
977          * pending IO requests to complete or be queued for re-try.
978          * Thus the number queued (nr_queued) plus this request (extra)
979          * must match the number of pending IOs (nr_pending) before
980          * we continue.
981          */
982         spin_lock_irq(&conf->resync_lock);
983         conf->array_frozen = 1;
984         wait_event_lock_irq_cmd(conf->wait_barrier,
985                                 conf->nr_pending == conf->nr_queued+extra,
986                                 conf->resync_lock,
987                                 flush_pending_writes(conf));
988         spin_unlock_irq(&conf->resync_lock);
989 }
990 static void unfreeze_array(struct r1conf *conf)
991 {
992         /* reverse the effect of the freeze */
993         spin_lock_irq(&conf->resync_lock);
994         conf->array_frozen = 0;
995         wake_up(&conf->wait_barrier);
996         spin_unlock_irq(&conf->resync_lock);
997 }
998
999 /* duplicate the data pages for behind I/O
1000  */
1001 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1002 {
1003         int i;
1004         struct bio_vec *bvec;
1005         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1006                                         GFP_NOIO);
1007         if (unlikely(!bvecs))
1008                 return;
1009
1010         bio_for_each_segment_all(bvec, bio, i) {
1011                 bvecs[i] = *bvec;
1012                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1013                 if (unlikely(!bvecs[i].bv_page))
1014                         goto do_sync_io;
1015                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1016                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1017                 kunmap(bvecs[i].bv_page);
1018                 kunmap(bvec->bv_page);
1019         }
1020         r1_bio->behind_bvecs = bvecs;
1021         r1_bio->behind_page_count = bio->bi_vcnt;
1022         set_bit(R1BIO_BehindIO, &r1_bio->state);
1023         return;
1024
1025 do_sync_io:
1026         for (i = 0; i < bio->bi_vcnt; i++)
1027                 if (bvecs[i].bv_page)
1028                         put_page(bvecs[i].bv_page);
1029         kfree(bvecs);
1030         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1031                  bio->bi_iter.bi_size);
1032 }
1033
1034 struct raid1_plug_cb {
1035         struct blk_plug_cb      cb;
1036         struct bio_list         pending;
1037         int                     pending_cnt;
1038 };
1039
1040 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1041 {
1042         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1043                                                   cb);
1044         struct mddev *mddev = plug->cb.data;
1045         struct r1conf *conf = mddev->private;
1046         struct bio *bio;
1047
1048         if (from_schedule || current->bio_list) {
1049                 spin_lock_irq(&conf->device_lock);
1050                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1051                 conf->pending_count += plug->pending_cnt;
1052                 spin_unlock_irq(&conf->device_lock);
1053                 wake_up(&conf->wait_barrier);
1054                 md_wakeup_thread(mddev->thread);
1055                 kfree(plug);
1056                 return;
1057         }
1058
1059         /* we aren't scheduling, so we can do the write-out directly. */
1060         bio = bio_list_get(&plug->pending);
1061         bitmap_unplug(mddev->bitmap);
1062         wake_up(&conf->wait_barrier);
1063
1064         while (bio) { /* submit pending writes */
1065                 struct bio *next = bio->bi_next;
1066                 bio->bi_next = NULL;
1067                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1068                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1069                         /* Just ignore it */
1070                         bio_endio(bio, 0);
1071                 else
1072                         generic_make_request(bio);
1073                 bio = next;
1074         }
1075         kfree(plug);
1076 }
1077
1078 static void make_request(struct mddev *mddev, struct bio * bio)
1079 {
1080         struct r1conf *conf = mddev->private;
1081         struct raid1_info *mirror;
1082         struct r1bio *r1_bio;
1083         struct bio *read_bio;
1084         int i, disks;
1085         struct bitmap *bitmap;
1086         unsigned long flags;
1087         const int rw = bio_data_dir(bio);
1088         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1089         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1090         const unsigned long do_discard = (bio->bi_rw
1091                                           & (REQ_DISCARD | REQ_SECURE));
1092         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1093         struct md_rdev *blocked_rdev;
1094         struct blk_plug_cb *cb;
1095         struct raid1_plug_cb *plug = NULL;
1096         int first_clone;
1097         int sectors_handled;
1098         int max_sectors;
1099         sector_t start_next_window;
1100
1101         /*
1102          * Register the new request and wait if the reconstruction
1103          * thread has put up a bar for new requests.
1104          * Continue immediately if no resync is active currently.
1105          */
1106
1107         md_write_start(mddev, bio); /* wait on superblock update early */
1108
1109         if (bio_data_dir(bio) == WRITE &&
1110             ((bio_end_sector(bio) > mddev->suspend_lo &&
1111             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1112             (mddev_is_clustered(mddev) &&
1113              md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1114                 /* As the suspend_* range is controlled by
1115                  * userspace, we want an interruptible
1116                  * wait.
1117                  */
1118                 DEFINE_WAIT(w);
1119                 for (;;) {
1120                         flush_signals(current);
1121                         prepare_to_wait(&conf->wait_barrier,
1122                                         &w, TASK_INTERRUPTIBLE);
1123                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1124                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1125                             (mddev_is_clustered(mddev) &&
1126                              !md_cluster_ops->area_resyncing(mddev,
1127                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1128                                 break;
1129                         schedule();
1130                 }
1131                 finish_wait(&conf->wait_barrier, &w);
1132         }
1133
1134         start_next_window = wait_barrier(conf, bio);
1135
1136         bitmap = mddev->bitmap;
1137
1138         /*
1139          * make_request() can abort the operation when READA is being
1140          * used and no empty request is available.
1141          *
1142          */
1143         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1144
1145         r1_bio->master_bio = bio;
1146         r1_bio->sectors = bio_sectors(bio);
1147         r1_bio->state = 0;
1148         r1_bio->mddev = mddev;
1149         r1_bio->sector = bio->bi_iter.bi_sector;
1150
1151         /* We might need to issue multiple reads to different
1152          * devices if there are bad blocks around, so we keep
1153          * track of the number of reads in bio->bi_phys_segments.
1154          * If this is 0, there is only one r1_bio and no locking
1155          * will be needed when requests complete.  If it is
1156          * non-zero, then it is the number of not-completed requests.
1157          */
1158         bio->bi_phys_segments = 0;
1159         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1160
1161         if (rw == READ) {
1162                 /*
1163                  * read balancing logic:
1164                  */
1165                 int rdisk;
1166
1167 read_again:
1168                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1169
1170                 if (rdisk < 0) {
1171                         /* couldn't find anywhere to read from */
1172                         raid_end_bio_io(r1_bio);
1173                         return;
1174                 }
1175                 mirror = conf->mirrors + rdisk;
1176
1177                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1178                     bitmap) {
1179                         /* Reading from a write-mostly device must
1180                          * take care not to over-take any writes
1181                          * that are 'behind'
1182                          */
1183                         wait_event(bitmap->behind_wait,
1184                                    atomic_read(&bitmap->behind_writes) == 0);
1185                 }
1186                 r1_bio->read_disk = rdisk;
1187                 r1_bio->start_next_window = 0;
1188
1189                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1190                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1191                          max_sectors);
1192
1193                 r1_bio->bios[rdisk] = read_bio;
1194
1195                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1196                         mirror->rdev->data_offset;
1197                 read_bio->bi_bdev = mirror->rdev->bdev;
1198                 read_bio->bi_end_io = raid1_end_read_request;
1199                 read_bio->bi_rw = READ | do_sync;
1200                 read_bio->bi_private = r1_bio;
1201
1202                 if (max_sectors < r1_bio->sectors) {
1203                         /* could not read all from this device, so we will
1204                          * need another r1_bio.
1205                          */
1206
1207                         sectors_handled = (r1_bio->sector + max_sectors
1208                                            - bio->bi_iter.bi_sector);
1209                         r1_bio->sectors = max_sectors;
1210                         spin_lock_irq(&conf->device_lock);
1211                         if (bio->bi_phys_segments == 0)
1212                                 bio->bi_phys_segments = 2;
1213                         else
1214                                 bio->bi_phys_segments++;
1215                         spin_unlock_irq(&conf->device_lock);
1216                         /* Cannot call generic_make_request directly
1217                          * as that will be queued in __make_request
1218                          * and subsequent mempool_alloc might block waiting
1219                          * for it.  So hand bio over to raid1d.
1220                          */
1221                         reschedule_retry(r1_bio);
1222
1223                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1224
1225                         r1_bio->master_bio = bio;
1226                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1227                         r1_bio->state = 0;
1228                         r1_bio->mddev = mddev;
1229                         r1_bio->sector = bio->bi_iter.bi_sector +
1230                                 sectors_handled;
1231                         goto read_again;
1232                 } else
1233                         generic_make_request(read_bio);
1234                 return;
1235         }
1236
1237         /*
1238          * WRITE:
1239          */
1240         if (conf->pending_count >= max_queued_requests) {
1241                 md_wakeup_thread(mddev->thread);
1242                 wait_event(conf->wait_barrier,
1243                            conf->pending_count < max_queued_requests);
1244         }
1245         /* first select target devices under rcu_lock and
1246          * inc refcount on their rdev.  Record them by setting
1247          * bios[x] to bio
1248          * If there are known/acknowledged bad blocks on any device on
1249          * which we have seen a write error, we want to avoid writing those
1250          * blocks.
1251          * This potentially requires several writes to write around
1252          * the bad blocks.  Each set of writes gets it's own r1bio
1253          * with a set of bios attached.
1254          */
1255
1256         disks = conf->raid_disks * 2;
1257  retry_write:
1258         r1_bio->start_next_window = start_next_window;
1259         blocked_rdev = NULL;
1260         rcu_read_lock();
1261         max_sectors = r1_bio->sectors;
1262         for (i = 0;  i < disks; i++) {
1263                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1264                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1265                         atomic_inc(&rdev->nr_pending);
1266                         blocked_rdev = rdev;
1267                         break;
1268                 }
1269                 r1_bio->bios[i] = NULL;
1270                 if (!rdev || test_bit(Faulty, &rdev->flags)
1271                     || test_bit(Unmerged, &rdev->flags)) {
1272                         if (i < conf->raid_disks)
1273                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1274                         continue;
1275                 }
1276
1277                 atomic_inc(&rdev->nr_pending);
1278                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1279                         sector_t first_bad;
1280                         int bad_sectors;
1281                         int is_bad;
1282
1283                         is_bad = is_badblock(rdev, r1_bio->sector,
1284                                              max_sectors,
1285                                              &first_bad, &bad_sectors);
1286                         if (is_bad < 0) {
1287                                 /* mustn't write here until the bad block is
1288                                  * acknowledged*/
1289                                 set_bit(BlockedBadBlocks, &rdev->flags);
1290                                 blocked_rdev = rdev;
1291                                 break;
1292                         }
1293                         if (is_bad && first_bad <= r1_bio->sector) {
1294                                 /* Cannot write here at all */
1295                                 bad_sectors -= (r1_bio->sector - first_bad);
1296                                 if (bad_sectors < max_sectors)
1297                                         /* mustn't write more than bad_sectors
1298                                          * to other devices yet
1299                                          */
1300                                         max_sectors = bad_sectors;
1301                                 rdev_dec_pending(rdev, mddev);
1302                                 /* We don't set R1BIO_Degraded as that
1303                                  * only applies if the disk is
1304                                  * missing, so it might be re-added,
1305                                  * and we want to know to recover this
1306                                  * chunk.
1307                                  * In this case the device is here,
1308                                  * and the fact that this chunk is not
1309                                  * in-sync is recorded in the bad
1310                                  * block log
1311                                  */
1312                                 continue;
1313                         }
1314                         if (is_bad) {
1315                                 int good_sectors = first_bad - r1_bio->sector;
1316                                 if (good_sectors < max_sectors)
1317                                         max_sectors = good_sectors;
1318                         }
1319                 }
1320                 r1_bio->bios[i] = bio;
1321         }
1322         rcu_read_unlock();
1323
1324         if (unlikely(blocked_rdev)) {
1325                 /* Wait for this device to become unblocked */
1326                 int j;
1327                 sector_t old = start_next_window;
1328
1329                 for (j = 0; j < i; j++)
1330                         if (r1_bio->bios[j])
1331                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1332                 r1_bio->state = 0;
1333                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1334                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1335                 start_next_window = wait_barrier(conf, bio);
1336                 /*
1337                  * We must make sure the multi r1bios of bio have
1338                  * the same value of bi_phys_segments
1339                  */
1340                 if (bio->bi_phys_segments && old &&
1341                     old != start_next_window)
1342                         /* Wait for the former r1bio(s) to complete */
1343                         wait_event(conf->wait_barrier,
1344                                    bio->bi_phys_segments == 1);
1345                 goto retry_write;
1346         }
1347
1348         if (max_sectors < r1_bio->sectors) {
1349                 /* We are splitting this write into multiple parts, so
1350                  * we need to prepare for allocating another r1_bio.
1351                  */
1352                 r1_bio->sectors = max_sectors;
1353                 spin_lock_irq(&conf->device_lock);
1354                 if (bio->bi_phys_segments == 0)
1355                         bio->bi_phys_segments = 2;
1356                 else
1357                         bio->bi_phys_segments++;
1358                 spin_unlock_irq(&conf->device_lock);
1359         }
1360         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1361
1362         atomic_set(&r1_bio->remaining, 1);
1363         atomic_set(&r1_bio->behind_remaining, 0);
1364
1365         first_clone = 1;
1366         for (i = 0; i < disks; i++) {
1367                 struct bio *mbio;
1368                 if (!r1_bio->bios[i])
1369                         continue;
1370
1371                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1372                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1373
1374                 if (first_clone) {
1375                         /* do behind I/O ?
1376                          * Not if there are too many, or cannot
1377                          * allocate memory, or a reader on WriteMostly
1378                          * is waiting for behind writes to flush */
1379                         if (bitmap &&
1380                             (atomic_read(&bitmap->behind_writes)
1381                              < mddev->bitmap_info.max_write_behind) &&
1382                             !waitqueue_active(&bitmap->behind_wait))
1383                                 alloc_behind_pages(mbio, r1_bio);
1384
1385                         bitmap_startwrite(bitmap, r1_bio->sector,
1386                                           r1_bio->sectors,
1387                                           test_bit(R1BIO_BehindIO,
1388                                                    &r1_bio->state));
1389                         first_clone = 0;
1390                 }
1391                 if (r1_bio->behind_bvecs) {
1392                         struct bio_vec *bvec;
1393                         int j;
1394
1395                         /*
1396                          * We trimmed the bio, so _all is legit
1397                          */
1398                         bio_for_each_segment_all(bvec, mbio, j)
1399                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1400                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1401                                 atomic_inc(&r1_bio->behind_remaining);
1402                 }
1403
1404                 r1_bio->bios[i] = mbio;
1405
1406                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1407                                    conf->mirrors[i].rdev->data_offset);
1408                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1409                 mbio->bi_end_io = raid1_end_write_request;
1410                 mbio->bi_rw =
1411                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1412                 mbio->bi_private = r1_bio;
1413
1414                 atomic_inc(&r1_bio->remaining);
1415
1416                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1417                 if (cb)
1418                         plug = container_of(cb, struct raid1_plug_cb, cb);
1419                 else
1420                         plug = NULL;
1421                 spin_lock_irqsave(&conf->device_lock, flags);
1422                 if (plug) {
1423                         bio_list_add(&plug->pending, mbio);
1424                         plug->pending_cnt++;
1425                 } else {
1426                         bio_list_add(&conf->pending_bio_list, mbio);
1427                         conf->pending_count++;
1428                 }
1429                 spin_unlock_irqrestore(&conf->device_lock, flags);
1430                 if (!plug)
1431                         md_wakeup_thread(mddev->thread);
1432         }
1433         /* Mustn't call r1_bio_write_done before this next test,
1434          * as it could result in the bio being freed.
1435          */
1436         if (sectors_handled < bio_sectors(bio)) {
1437                 r1_bio_write_done(r1_bio);
1438                 /* We need another r1_bio.  It has already been counted
1439                  * in bio->bi_phys_segments
1440                  */
1441                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1442                 r1_bio->master_bio = bio;
1443                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1444                 r1_bio->state = 0;
1445                 r1_bio->mddev = mddev;
1446                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1447                 goto retry_write;
1448         }
1449
1450         r1_bio_write_done(r1_bio);
1451
1452         /* In case raid1d snuck in to freeze_array */
1453         wake_up(&conf->wait_barrier);
1454 }
1455
1456 static void status(struct seq_file *seq, struct mddev *mddev)
1457 {
1458         struct r1conf *conf = mddev->private;
1459         int i;
1460
1461         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1462                    conf->raid_disks - mddev->degraded);
1463         rcu_read_lock();
1464         for (i = 0; i < conf->raid_disks; i++) {
1465                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1466                 seq_printf(seq, "%s",
1467                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1468         }
1469         rcu_read_unlock();
1470         seq_printf(seq, "]");
1471 }
1472
1473 static void error(struct mddev *mddev, struct md_rdev *rdev)
1474 {
1475         char b[BDEVNAME_SIZE];
1476         struct r1conf *conf = mddev->private;
1477
1478         /*
1479          * If it is not operational, then we have already marked it as dead
1480          * else if it is the last working disks, ignore the error, let the
1481          * next level up know.
1482          * else mark the drive as failed
1483          */
1484         if (test_bit(In_sync, &rdev->flags)
1485             && (conf->raid_disks - mddev->degraded) == 1) {
1486                 /*
1487                  * Don't fail the drive, act as though we were just a
1488                  * normal single drive.
1489                  * However don't try a recovery from this drive as
1490                  * it is very likely to fail.
1491                  */
1492                 conf->recovery_disabled = mddev->recovery_disabled;
1493                 return;
1494         }
1495         set_bit(Blocked, &rdev->flags);
1496         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1497                 unsigned long flags;
1498                 spin_lock_irqsave(&conf->device_lock, flags);
1499                 mddev->degraded++;
1500                 set_bit(Faulty, &rdev->flags);
1501                 spin_unlock_irqrestore(&conf->device_lock, flags);
1502         } else
1503                 set_bit(Faulty, &rdev->flags);
1504         /*
1505          * if recovery is running, make sure it aborts.
1506          */
1507         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1509         printk(KERN_ALERT
1510                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1511                "md/raid1:%s: Operation continuing on %d devices.\n",
1512                mdname(mddev), bdevname(rdev->bdev, b),
1513                mdname(mddev), conf->raid_disks - mddev->degraded);
1514 }
1515
1516 static void print_conf(struct r1conf *conf)
1517 {
1518         int i;
1519
1520         printk(KERN_DEBUG "RAID1 conf printout:\n");
1521         if (!conf) {
1522                 printk(KERN_DEBUG "(!conf)\n");
1523                 return;
1524         }
1525         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1526                 conf->raid_disks);
1527
1528         rcu_read_lock();
1529         for (i = 0; i < conf->raid_disks; i++) {
1530                 char b[BDEVNAME_SIZE];
1531                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1532                 if (rdev)
1533                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1534                                i, !test_bit(In_sync, &rdev->flags),
1535                                !test_bit(Faulty, &rdev->flags),
1536                                bdevname(rdev->bdev,b));
1537         }
1538         rcu_read_unlock();
1539 }
1540
1541 static void close_sync(struct r1conf *conf)
1542 {
1543         wait_barrier(conf, NULL);
1544         allow_barrier(conf, 0, 0);
1545
1546         mempool_destroy(conf->r1buf_pool);
1547         conf->r1buf_pool = NULL;
1548
1549         spin_lock_irq(&conf->resync_lock);
1550         conf->next_resync = 0;
1551         conf->start_next_window = MaxSector;
1552         conf->current_window_requests +=
1553                 conf->next_window_requests;
1554         conf->next_window_requests = 0;
1555         spin_unlock_irq(&conf->resync_lock);
1556 }
1557
1558 static int raid1_spare_active(struct mddev *mddev)
1559 {
1560         int i;
1561         struct r1conf *conf = mddev->private;
1562         int count = 0;
1563         unsigned long flags;
1564
1565         /*
1566          * Find all failed disks within the RAID1 configuration
1567          * and mark them readable.
1568          * Called under mddev lock, so rcu protection not needed.
1569          */
1570         for (i = 0; i < conf->raid_disks; i++) {
1571                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1572                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1573                 if (repl
1574                     && !test_bit(Candidate, &repl->flags)
1575                     && repl->recovery_offset == MaxSector
1576                     && !test_bit(Faulty, &repl->flags)
1577                     && !test_and_set_bit(In_sync, &repl->flags)) {
1578                         /* replacement has just become active */
1579                         if (!rdev ||
1580                             !test_and_clear_bit(In_sync, &rdev->flags))
1581                                 count++;
1582                         if (rdev) {
1583                                 /* Replaced device not technically
1584                                  * faulty, but we need to be sure
1585                                  * it gets removed and never re-added
1586                                  */
1587                                 set_bit(Faulty, &rdev->flags);
1588                                 sysfs_notify_dirent_safe(
1589                                         rdev->sysfs_state);
1590                         }
1591                 }
1592                 if (rdev
1593                     && rdev->recovery_offset == MaxSector
1594                     && !test_bit(Faulty, &rdev->flags)
1595                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1596                         count++;
1597                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1598                 }
1599         }
1600         spin_lock_irqsave(&conf->device_lock, flags);
1601         mddev->degraded -= count;
1602         spin_unlock_irqrestore(&conf->device_lock, flags);
1603
1604         print_conf(conf);
1605         return count;
1606 }
1607
1608 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1609 {
1610         struct r1conf *conf = mddev->private;
1611         int err = -EEXIST;
1612         int mirror = 0;
1613         struct raid1_info *p;
1614         int first = 0;
1615         int last = conf->raid_disks - 1;
1616         struct request_queue *q = bdev_get_queue(rdev->bdev);
1617
1618         if (mddev->recovery_disabled == conf->recovery_disabled)
1619                 return -EBUSY;
1620
1621         if (rdev->raid_disk >= 0)
1622                 first = last = rdev->raid_disk;
1623
1624         if (q->merge_bvec_fn) {
1625                 set_bit(Unmerged, &rdev->flags);
1626                 mddev->merge_check_needed = 1;
1627         }
1628
1629         for (mirror = first; mirror <= last; mirror++) {
1630                 p = conf->mirrors+mirror;
1631                 if (!p->rdev) {
1632
1633                         if (mddev->gendisk)
1634                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1635                                                   rdev->data_offset << 9);
1636
1637                         p->head_position = 0;
1638                         rdev->raid_disk = mirror;
1639                         err = 0;
1640                         /* As all devices are equivalent, we don't need a full recovery
1641                          * if this was recently any drive of the array
1642                          */
1643                         if (rdev->saved_raid_disk < 0)
1644                                 conf->fullsync = 1;
1645                         rcu_assign_pointer(p->rdev, rdev);
1646                         break;
1647                 }
1648                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1649                     p[conf->raid_disks].rdev == NULL) {
1650                         /* Add this device as a replacement */
1651                         clear_bit(In_sync, &rdev->flags);
1652                         set_bit(Replacement, &rdev->flags);
1653                         rdev->raid_disk = mirror;
1654                         err = 0;
1655                         conf->fullsync = 1;
1656                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1657                         break;
1658                 }
1659         }
1660         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1661                 /* Some requests might not have seen this new
1662                  * merge_bvec_fn.  We must wait for them to complete
1663                  * before merging the device fully.
1664                  * First we make sure any code which has tested
1665                  * our function has submitted the request, then
1666                  * we wait for all outstanding requests to complete.
1667                  */
1668                 synchronize_sched();
1669                 freeze_array(conf, 0);
1670                 unfreeze_array(conf);
1671                 clear_bit(Unmerged, &rdev->flags);
1672         }
1673         md_integrity_add_rdev(rdev, mddev);
1674         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1675                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1676         print_conf(conf);
1677         return err;
1678 }
1679
1680 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682         struct r1conf *conf = mddev->private;
1683         int err = 0;
1684         int number = rdev->raid_disk;
1685         struct raid1_info *p = conf->mirrors + number;
1686
1687         if (rdev != p->rdev)
1688                 p = conf->mirrors + conf->raid_disks + number;
1689
1690         print_conf(conf);
1691         if (rdev == p->rdev) {
1692                 if (test_bit(In_sync, &rdev->flags) ||
1693                     atomic_read(&rdev->nr_pending)) {
1694                         err = -EBUSY;
1695                         goto abort;
1696                 }
1697                 /* Only remove non-faulty devices if recovery
1698                  * is not possible.
1699                  */
1700                 if (!test_bit(Faulty, &rdev->flags) &&
1701                     mddev->recovery_disabled != conf->recovery_disabled &&
1702                     mddev->degraded < conf->raid_disks) {
1703                         err = -EBUSY;
1704                         goto abort;
1705                 }
1706                 p->rdev = NULL;
1707                 synchronize_rcu();
1708                 if (atomic_read(&rdev->nr_pending)) {
1709                         /* lost the race, try later */
1710                         err = -EBUSY;
1711                         p->rdev = rdev;
1712                         goto abort;
1713                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1714                         /* We just removed a device that is being replaced.
1715                          * Move down the replacement.  We drain all IO before
1716                          * doing this to avoid confusion.
1717                          */
1718                         struct md_rdev *repl =
1719                                 conf->mirrors[conf->raid_disks + number].rdev;
1720                         freeze_array(conf, 0);
1721                         clear_bit(Replacement, &repl->flags);
1722                         p->rdev = repl;
1723                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1724                         unfreeze_array(conf);
1725                         clear_bit(WantReplacement, &rdev->flags);
1726                 } else
1727                         clear_bit(WantReplacement, &rdev->flags);
1728                 err = md_integrity_register(mddev);
1729         }
1730 abort:
1731
1732         print_conf(conf);
1733         return err;
1734 }
1735
1736 static void end_sync_read(struct bio *bio, int error)
1737 {
1738         struct r1bio *r1_bio = bio->bi_private;
1739
1740         update_head_pos(r1_bio->read_disk, r1_bio);
1741
1742         /*
1743          * we have read a block, now it needs to be re-written,
1744          * or re-read if the read failed.
1745          * We don't do much here, just schedule handling by raid1d
1746          */
1747         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1748                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1749
1750         if (atomic_dec_and_test(&r1_bio->remaining))
1751                 reschedule_retry(r1_bio);
1752 }
1753
1754 static void end_sync_write(struct bio *bio, int error)
1755 {
1756         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1757         struct r1bio *r1_bio = bio->bi_private;
1758         struct mddev *mddev = r1_bio->mddev;
1759         struct r1conf *conf = mddev->private;
1760         int mirror=0;
1761         sector_t first_bad;
1762         int bad_sectors;
1763
1764         mirror = find_bio_disk(r1_bio, bio);
1765
1766         if (!uptodate) {
1767                 sector_t sync_blocks = 0;
1768                 sector_t s = r1_bio->sector;
1769                 long sectors_to_go = r1_bio->sectors;
1770                 /* make sure these bits doesn't get cleared. */
1771                 do {
1772                         bitmap_end_sync(mddev->bitmap, s,
1773                                         &sync_blocks, 1);
1774                         s += sync_blocks;
1775                         sectors_to_go -= sync_blocks;
1776                 } while (sectors_to_go > 0);
1777                 set_bit(WriteErrorSeen,
1778                         &conf->mirrors[mirror].rdev->flags);
1779                 if (!test_and_set_bit(WantReplacement,
1780                                       &conf->mirrors[mirror].rdev->flags))
1781                         set_bit(MD_RECOVERY_NEEDED, &
1782                                 mddev->recovery);
1783                 set_bit(R1BIO_WriteError, &r1_bio->state);
1784         } else if (is_badblock(conf->mirrors[mirror].rdev,
1785                                r1_bio->sector,
1786                                r1_bio->sectors,
1787                                &first_bad, &bad_sectors) &&
1788                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1789                                 r1_bio->sector,
1790                                 r1_bio->sectors,
1791                                 &first_bad, &bad_sectors)
1792                 )
1793                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1794
1795         if (atomic_dec_and_test(&r1_bio->remaining)) {
1796                 int s = r1_bio->sectors;
1797                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1798                     test_bit(R1BIO_WriteError, &r1_bio->state))
1799                         reschedule_retry(r1_bio);
1800                 else {
1801                         put_buf(r1_bio);
1802                         md_done_sync(mddev, s, uptodate);
1803                 }
1804         }
1805 }
1806
1807 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1808                             int sectors, struct page *page, int rw)
1809 {
1810         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1811                 /* success */
1812                 return 1;
1813         if (rw == WRITE) {
1814                 set_bit(WriteErrorSeen, &rdev->flags);
1815                 if (!test_and_set_bit(WantReplacement,
1816                                       &rdev->flags))
1817                         set_bit(MD_RECOVERY_NEEDED, &
1818                                 rdev->mddev->recovery);
1819         }
1820         /* need to record an error - either for the block or the device */
1821         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1822                 md_error(rdev->mddev, rdev);
1823         return 0;
1824 }
1825
1826 static int fix_sync_read_error(struct r1bio *r1_bio)
1827 {
1828         /* Try some synchronous reads of other devices to get
1829          * good data, much like with normal read errors.  Only
1830          * read into the pages we already have so we don't
1831          * need to re-issue the read request.
1832          * We don't need to freeze the array, because being in an
1833          * active sync request, there is no normal IO, and
1834          * no overlapping syncs.
1835          * We don't need to check is_badblock() again as we
1836          * made sure that anything with a bad block in range
1837          * will have bi_end_io clear.
1838          */
1839         struct mddev *mddev = r1_bio->mddev;
1840         struct r1conf *conf = mddev->private;
1841         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1842         sector_t sect = r1_bio->sector;
1843         int sectors = r1_bio->sectors;
1844         int idx = 0;
1845
1846         while(sectors) {
1847                 int s = sectors;
1848                 int d = r1_bio->read_disk;
1849                 int success = 0;
1850                 struct md_rdev *rdev;
1851                 int start;
1852
1853                 if (s > (PAGE_SIZE>>9))
1854                         s = PAGE_SIZE >> 9;
1855                 do {
1856                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1857                                 /* No rcu protection needed here devices
1858                                  * can only be removed when no resync is
1859                                  * active, and resync is currently active
1860                                  */
1861                                 rdev = conf->mirrors[d].rdev;
1862                                 if (sync_page_io(rdev, sect, s<<9,
1863                                                  bio->bi_io_vec[idx].bv_page,
1864                                                  READ, false)) {
1865                                         success = 1;
1866                                         break;
1867                                 }
1868                         }
1869                         d++;
1870                         if (d == conf->raid_disks * 2)
1871                                 d = 0;
1872                 } while (!success && d != r1_bio->read_disk);
1873
1874                 if (!success) {
1875                         char b[BDEVNAME_SIZE];
1876                         int abort = 0;
1877                         /* Cannot read from anywhere, this block is lost.
1878                          * Record a bad block on each device.  If that doesn't
1879                          * work just disable and interrupt the recovery.
1880                          * Don't fail devices as that won't really help.
1881                          */
1882                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1883                                " for block %llu\n",
1884                                mdname(mddev),
1885                                bdevname(bio->bi_bdev, b),
1886                                (unsigned long long)r1_bio->sector);
1887                         for (d = 0; d < conf->raid_disks * 2; d++) {
1888                                 rdev = conf->mirrors[d].rdev;
1889                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1890                                         continue;
1891                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1892                                         abort = 1;
1893                         }
1894                         if (abort) {
1895                                 conf->recovery_disabled =
1896                                         mddev->recovery_disabled;
1897                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1898                                 md_done_sync(mddev, r1_bio->sectors, 0);
1899                                 put_buf(r1_bio);
1900                                 return 0;
1901                         }
1902                         /* Try next page */
1903                         sectors -= s;
1904                         sect += s;
1905                         idx++;
1906                         continue;
1907                 }
1908
1909                 start = d;
1910                 /* write it back and re-read */
1911                 while (d != r1_bio->read_disk) {
1912                         if (d == 0)
1913                                 d = conf->raid_disks * 2;
1914                         d--;
1915                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1916                                 continue;
1917                         rdev = conf->mirrors[d].rdev;
1918                         if (r1_sync_page_io(rdev, sect, s,
1919                                             bio->bi_io_vec[idx].bv_page,
1920                                             WRITE) == 0) {
1921                                 r1_bio->bios[d]->bi_end_io = NULL;
1922                                 rdev_dec_pending(rdev, mddev);
1923                         }
1924                 }
1925                 d = start;
1926                 while (d != r1_bio->read_disk) {
1927                         if (d == 0)
1928                                 d = conf->raid_disks * 2;
1929                         d--;
1930                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1931                                 continue;
1932                         rdev = conf->mirrors[d].rdev;
1933                         if (r1_sync_page_io(rdev, sect, s,
1934                                             bio->bi_io_vec[idx].bv_page,
1935                                             READ) != 0)
1936                                 atomic_add(s, &rdev->corrected_errors);
1937                 }
1938                 sectors -= s;
1939                 sect += s;
1940                 idx ++;
1941         }
1942         set_bit(R1BIO_Uptodate, &r1_bio->state);
1943         set_bit(BIO_UPTODATE, &bio->bi_flags);
1944         return 1;
1945 }
1946
1947 static void process_checks(struct r1bio *r1_bio)
1948 {
1949         /* We have read all readable devices.  If we haven't
1950          * got the block, then there is no hope left.
1951          * If we have, then we want to do a comparison
1952          * and skip the write if everything is the same.
1953          * If any blocks failed to read, then we need to
1954          * attempt an over-write
1955          */
1956         struct mddev *mddev = r1_bio->mddev;
1957         struct r1conf *conf = mddev->private;
1958         int primary;
1959         int i;
1960         int vcnt;
1961
1962         /* Fix variable parts of all bios */
1963         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1964         for (i = 0; i < conf->raid_disks * 2; i++) {
1965                 int j;
1966                 int size;
1967                 int uptodate;
1968                 struct bio *b = r1_bio->bios[i];
1969                 if (b->bi_end_io != end_sync_read)
1970                         continue;
1971                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1972                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1973                 bio_reset(b);
1974                 if (!uptodate)
1975                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1976                 b->bi_vcnt = vcnt;
1977                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1978                 b->bi_iter.bi_sector = r1_bio->sector +
1979                         conf->mirrors[i].rdev->data_offset;
1980                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1981                 b->bi_end_io = end_sync_read;
1982                 b->bi_private = r1_bio;
1983
1984                 size = b->bi_iter.bi_size;
1985                 for (j = 0; j < vcnt ; j++) {
1986                         struct bio_vec *bi;
1987                         bi = &b->bi_io_vec[j];
1988                         bi->bv_offset = 0;
1989                         if (size > PAGE_SIZE)
1990                                 bi->bv_len = PAGE_SIZE;
1991                         else
1992                                 bi->bv_len = size;
1993                         size -= PAGE_SIZE;
1994                 }
1995         }
1996         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1997                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1998                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1999                         r1_bio->bios[primary]->bi_end_io = NULL;
2000                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2001                         break;
2002                 }
2003         r1_bio->read_disk = primary;
2004         for (i = 0; i < conf->raid_disks * 2; i++) {
2005                 int j;
2006                 struct bio *pbio = r1_bio->bios[primary];
2007                 struct bio *sbio = r1_bio->bios[i];
2008                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2009
2010                 if (sbio->bi_end_io != end_sync_read)
2011                         continue;
2012                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2013                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2014
2015                 if (uptodate) {
2016                         for (j = vcnt; j-- ; ) {
2017                                 struct page *p, *s;
2018                                 p = pbio->bi_io_vec[j].bv_page;
2019                                 s = sbio->bi_io_vec[j].bv_page;
2020                                 if (memcmp(page_address(p),
2021                                            page_address(s),
2022                                            sbio->bi_io_vec[j].bv_len))
2023                                         break;
2024                         }
2025                 } else
2026                         j = 0;
2027                 if (j >= 0)
2028                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2029                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2030                               && uptodate)) {
2031                         /* No need to write to this device. */
2032                         sbio->bi_end_io = NULL;
2033                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2034                         continue;
2035                 }
2036
2037                 bio_copy_data(sbio, pbio);
2038         }
2039 }
2040
2041 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2042 {
2043         struct r1conf *conf = mddev->private;
2044         int i;
2045         int disks = conf->raid_disks * 2;
2046         struct bio *bio, *wbio;
2047
2048         bio = r1_bio->bios[r1_bio->read_disk];
2049
2050         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2051                 /* ouch - failed to read all of that. */
2052                 if (!fix_sync_read_error(r1_bio))
2053                         return;
2054
2055         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2056                 process_checks(r1_bio);
2057
2058         /*
2059          * schedule writes
2060          */
2061         atomic_set(&r1_bio->remaining, 1);
2062         for (i = 0; i < disks ; i++) {
2063                 wbio = r1_bio->bios[i];
2064                 if (wbio->bi_end_io == NULL ||
2065                     (wbio->bi_end_io == end_sync_read &&
2066                      (i == r1_bio->read_disk ||
2067                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2068                         continue;
2069
2070                 wbio->bi_rw = WRITE;
2071                 wbio->bi_end_io = end_sync_write;
2072                 atomic_inc(&r1_bio->remaining);
2073                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2074
2075                 generic_make_request(wbio);
2076         }
2077
2078         if (atomic_dec_and_test(&r1_bio->remaining)) {
2079                 /* if we're here, all write(s) have completed, so clean up */
2080                 int s = r1_bio->sectors;
2081                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2082                     test_bit(R1BIO_WriteError, &r1_bio->state))
2083                         reschedule_retry(r1_bio);
2084                 else {
2085                         put_buf(r1_bio);
2086                         md_done_sync(mddev, s, 1);
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * This is a kernel thread which:
2093  *
2094  *      1.      Retries failed read operations on working mirrors.
2095  *      2.      Updates the raid superblock when problems encounter.
2096  *      3.      Performs writes following reads for array synchronising.
2097  */
2098
2099 static void fix_read_error(struct r1conf *conf, int read_disk,
2100                            sector_t sect, int sectors)
2101 {
2102         struct mddev *mddev = conf->mddev;
2103         while(sectors) {
2104                 int s = sectors;
2105                 int d = read_disk;
2106                 int success = 0;
2107                 int start;
2108                 struct md_rdev *rdev;
2109
2110                 if (s > (PAGE_SIZE>>9))
2111                         s = PAGE_SIZE >> 9;
2112
2113                 do {
2114                         /* Note: no rcu protection needed here
2115                          * as this is synchronous in the raid1d thread
2116                          * which is the thread that might remove
2117                          * a device.  If raid1d ever becomes multi-threaded....
2118                          */
2119                         sector_t first_bad;
2120                         int bad_sectors;
2121
2122                         rdev = conf->mirrors[d].rdev;
2123                         if (rdev &&
2124                             (test_bit(In_sync, &rdev->flags) ||
2125                              (!test_bit(Faulty, &rdev->flags) &&
2126                               rdev->recovery_offset >= sect + s)) &&
2127                             is_badblock(rdev, sect, s,
2128                                         &first_bad, &bad_sectors) == 0 &&
2129                             sync_page_io(rdev, sect, s<<9,
2130                                          conf->tmppage, READ, false))
2131                                 success = 1;
2132                         else {
2133                                 d++;
2134                                 if (d == conf->raid_disks * 2)
2135                                         d = 0;
2136                         }
2137                 } while (!success && d != read_disk);
2138
2139                 if (!success) {
2140                         /* Cannot read from anywhere - mark it bad */
2141                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2142                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2143                                 md_error(mddev, rdev);
2144                         break;
2145                 }
2146                 /* write it back and re-read */
2147                 start = d;
2148                 while (d != read_disk) {
2149                         if (d==0)
2150                                 d = conf->raid_disks * 2;
2151                         d--;
2152                         rdev = conf->mirrors[d].rdev;
2153                         if (rdev &&
2154                             !test_bit(Faulty, &rdev->flags))
2155                                 r1_sync_page_io(rdev, sect, s,
2156                                                 conf->tmppage, WRITE);
2157                 }
2158                 d = start;
2159                 while (d != read_disk) {
2160                         char b[BDEVNAME_SIZE];
2161                         if (d==0)
2162                                 d = conf->raid_disks * 2;
2163                         d--;
2164                         rdev = conf->mirrors[d].rdev;
2165                         if (rdev &&
2166                             !test_bit(Faulty, &rdev->flags)) {
2167                                 if (r1_sync_page_io(rdev, sect, s,
2168                                                     conf->tmppage, READ)) {
2169                                         atomic_add(s, &rdev->corrected_errors);
2170                                         printk(KERN_INFO
2171                                                "md/raid1:%s: read error corrected "
2172                                                "(%d sectors at %llu on %s)\n",
2173                                                mdname(mddev), s,
2174                                                (unsigned long long)(sect +
2175                                                    rdev->data_offset),
2176                                                bdevname(rdev->bdev, b));
2177                                 }
2178                         }
2179                 }
2180                 sectors -= s;
2181                 sect += s;
2182         }
2183 }
2184
2185 static int narrow_write_error(struct r1bio *r1_bio, int i)
2186 {
2187         struct mddev *mddev = r1_bio->mddev;
2188         struct r1conf *conf = mddev->private;
2189         struct md_rdev *rdev = conf->mirrors[i].rdev;
2190
2191         /* bio has the data to be written to device 'i' where
2192          * we just recently had a write error.
2193          * We repeatedly clone the bio and trim down to one block,
2194          * then try the write.  Where the write fails we record
2195          * a bad block.
2196          * It is conceivable that the bio doesn't exactly align with
2197          * blocks.  We must handle this somehow.
2198          *
2199          * We currently own a reference on the rdev.
2200          */
2201
2202         int block_sectors;
2203         sector_t sector;
2204         int sectors;
2205         int sect_to_write = r1_bio->sectors;
2206         int ok = 1;
2207
2208         if (rdev->badblocks.shift < 0)
2209                 return 0;
2210
2211         block_sectors = roundup(1 << rdev->badblocks.shift,
2212                                 bdev_logical_block_size(rdev->bdev) >> 9);
2213         sector = r1_bio->sector;
2214         sectors = ((sector + block_sectors)
2215                    & ~(sector_t)(block_sectors - 1))
2216                 - sector;
2217
2218         while (sect_to_write) {
2219                 struct bio *wbio;
2220                 if (sectors > sect_to_write)
2221                         sectors = sect_to_write;
2222                 /* Write at 'sector' for 'sectors'*/
2223
2224                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2225                         unsigned vcnt = r1_bio->behind_page_count;
2226                         struct bio_vec *vec = r1_bio->behind_bvecs;
2227
2228                         while (!vec->bv_page) {
2229                                 vec++;
2230                                 vcnt--;
2231                         }
2232
2233                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2234                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2235
2236                         wbio->bi_vcnt = vcnt;
2237                 } else {
2238                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2239                 }
2240
2241                 wbio->bi_rw = WRITE;
2242                 wbio->bi_iter.bi_sector = r1_bio->sector;
2243                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2244
2245                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2246                 wbio->bi_iter.bi_sector += rdev->data_offset;
2247                 wbio->bi_bdev = rdev->bdev;
2248                 if (submit_bio_wait(WRITE, wbio) == 0)
2249                         /* failure! */
2250                         ok = rdev_set_badblocks(rdev, sector,
2251                                                 sectors, 0)
2252                                 && ok;
2253
2254                 bio_put(wbio);
2255                 sect_to_write -= sectors;
2256                 sector += sectors;
2257                 sectors = block_sectors;
2258         }
2259         return ok;
2260 }
2261
2262 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2263 {
2264         int m;
2265         int s = r1_bio->sectors;
2266         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2267                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2268                 struct bio *bio = r1_bio->bios[m];
2269                 if (bio->bi_end_io == NULL)
2270                         continue;
2271                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2272                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2273                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2274                 }
2275                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2276                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2277                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2278                                 md_error(conf->mddev, rdev);
2279                 }
2280         }
2281         put_buf(r1_bio);
2282         md_done_sync(conf->mddev, s, 1);
2283 }
2284
2285 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2286 {
2287         int m;
2288         for (m = 0; m < conf->raid_disks * 2 ; m++)
2289                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2290                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2291                         rdev_clear_badblocks(rdev,
2292                                              r1_bio->sector,
2293                                              r1_bio->sectors, 0);
2294                         rdev_dec_pending(rdev, conf->mddev);
2295                 } else if (r1_bio->bios[m] != NULL) {
2296                         /* This drive got a write error.  We need to
2297                          * narrow down and record precise write
2298                          * errors.
2299                          */
2300                         if (!narrow_write_error(r1_bio, m)) {
2301                                 md_error(conf->mddev,
2302                                          conf->mirrors[m].rdev);
2303                                 /* an I/O failed, we can't clear the bitmap */
2304                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2305                         }
2306                         rdev_dec_pending(conf->mirrors[m].rdev,
2307                                          conf->mddev);
2308                 }
2309         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2310                 close_write(r1_bio);
2311         raid_end_bio_io(r1_bio);
2312 }
2313
2314 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2315 {
2316         int disk;
2317         int max_sectors;
2318         struct mddev *mddev = conf->mddev;
2319         struct bio *bio;
2320         char b[BDEVNAME_SIZE];
2321         struct md_rdev *rdev;
2322
2323         clear_bit(R1BIO_ReadError, &r1_bio->state);
2324         /* we got a read error. Maybe the drive is bad.  Maybe just
2325          * the block and we can fix it.
2326          * We freeze all other IO, and try reading the block from
2327          * other devices.  When we find one, we re-write
2328          * and check it that fixes the read error.
2329          * This is all done synchronously while the array is
2330          * frozen
2331          */
2332         if (mddev->ro == 0) {
2333                 freeze_array(conf, 1);
2334                 fix_read_error(conf, r1_bio->read_disk,
2335                                r1_bio->sector, r1_bio->sectors);
2336                 unfreeze_array(conf);
2337         } else
2338                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2339         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2340
2341         bio = r1_bio->bios[r1_bio->read_disk];
2342         bdevname(bio->bi_bdev, b);
2343 read_more:
2344         disk = read_balance(conf, r1_bio, &max_sectors);
2345         if (disk == -1) {
2346                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2347                        " read error for block %llu\n",
2348                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2349                 raid_end_bio_io(r1_bio);
2350         } else {
2351                 const unsigned long do_sync
2352                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2353                 if (bio) {
2354                         r1_bio->bios[r1_bio->read_disk] =
2355                                 mddev->ro ? IO_BLOCKED : NULL;
2356                         bio_put(bio);
2357                 }
2358                 r1_bio->read_disk = disk;
2359                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2360                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2361                          max_sectors);
2362                 r1_bio->bios[r1_bio->read_disk] = bio;
2363                 rdev = conf->mirrors[disk].rdev;
2364                 printk_ratelimited(KERN_ERR
2365                                    "md/raid1:%s: redirecting sector %llu"
2366                                    " to other mirror: %s\n",
2367                                    mdname(mddev),
2368                                    (unsigned long long)r1_bio->sector,
2369                                    bdevname(rdev->bdev, b));
2370                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2371                 bio->bi_bdev = rdev->bdev;
2372                 bio->bi_end_io = raid1_end_read_request;
2373                 bio->bi_rw = READ | do_sync;
2374                 bio->bi_private = r1_bio;
2375                 if (max_sectors < r1_bio->sectors) {
2376                         /* Drat - have to split this up more */
2377                         struct bio *mbio = r1_bio->master_bio;
2378                         int sectors_handled = (r1_bio->sector + max_sectors
2379                                                - mbio->bi_iter.bi_sector);
2380                         r1_bio->sectors = max_sectors;
2381                         spin_lock_irq(&conf->device_lock);
2382                         if (mbio->bi_phys_segments == 0)
2383                                 mbio->bi_phys_segments = 2;
2384                         else
2385                                 mbio->bi_phys_segments++;
2386                         spin_unlock_irq(&conf->device_lock);
2387                         generic_make_request(bio);
2388                         bio = NULL;
2389
2390                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2391
2392                         r1_bio->master_bio = mbio;
2393                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2394                         r1_bio->state = 0;
2395                         set_bit(R1BIO_ReadError, &r1_bio->state);
2396                         r1_bio->mddev = mddev;
2397                         r1_bio->sector = mbio->bi_iter.bi_sector +
2398                                 sectors_handled;
2399
2400                         goto read_more;
2401                 } else
2402                         generic_make_request(bio);
2403         }
2404 }
2405
2406 static void raid1d(struct md_thread *thread)
2407 {
2408         struct mddev *mddev = thread->mddev;
2409         struct r1bio *r1_bio;
2410         unsigned long flags;
2411         struct r1conf *conf = mddev->private;
2412         struct list_head *head = &conf->retry_list;
2413         struct blk_plug plug;
2414
2415         md_check_recovery(mddev);
2416
2417         blk_start_plug(&plug);
2418         for (;;) {
2419
2420                 flush_pending_writes(conf);
2421
2422                 spin_lock_irqsave(&conf->device_lock, flags);
2423                 if (list_empty(head)) {
2424                         spin_unlock_irqrestore(&conf->device_lock, flags);
2425                         break;
2426                 }
2427                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2428                 list_del(head->prev);
2429                 conf->nr_queued--;
2430                 spin_unlock_irqrestore(&conf->device_lock, flags);
2431
2432                 mddev = r1_bio->mddev;
2433                 conf = mddev->private;
2434                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2435                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2436                             test_bit(R1BIO_WriteError, &r1_bio->state))
2437                                 handle_sync_write_finished(conf, r1_bio);
2438                         else
2439                                 sync_request_write(mddev, r1_bio);
2440                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2441                            test_bit(R1BIO_WriteError, &r1_bio->state))
2442                         handle_write_finished(conf, r1_bio);
2443                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2444                         handle_read_error(conf, r1_bio);
2445                 else
2446                         /* just a partial read to be scheduled from separate
2447                          * context
2448                          */
2449                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2450
2451                 cond_resched();
2452                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2453                         md_check_recovery(mddev);
2454         }
2455         blk_finish_plug(&plug);
2456 }
2457
2458 static int init_resync(struct r1conf *conf)
2459 {
2460         int buffs;
2461
2462         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2463         BUG_ON(conf->r1buf_pool);
2464         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2465                                           conf->poolinfo);
2466         if (!conf->r1buf_pool)
2467                 return -ENOMEM;
2468         conf->next_resync = 0;
2469         return 0;
2470 }
2471
2472 /*
2473  * perform a "sync" on one "block"
2474  *
2475  * We need to make sure that no normal I/O request - particularly write
2476  * requests - conflict with active sync requests.
2477  *
2478  * This is achieved by tracking pending requests and a 'barrier' concept
2479  * that can be installed to exclude normal IO requests.
2480  */
2481
2482 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2483 {
2484         struct r1conf *conf = mddev->private;
2485         struct r1bio *r1_bio;
2486         struct bio *bio;
2487         sector_t max_sector, nr_sectors;
2488         int disk = -1;
2489         int i;
2490         int wonly = -1;
2491         int write_targets = 0, read_targets = 0;
2492         sector_t sync_blocks;
2493         int still_degraded = 0;
2494         int good_sectors = RESYNC_SECTORS;
2495         int min_bad = 0; /* number of sectors that are bad in all devices */
2496
2497         if (!conf->r1buf_pool)
2498                 if (init_resync(conf))
2499                         return 0;
2500
2501         max_sector = mddev->dev_sectors;
2502         if (sector_nr >= max_sector) {
2503                 /* If we aborted, we need to abort the
2504                  * sync on the 'current' bitmap chunk (there will
2505                  * only be one in raid1 resync.
2506                  * We can find the current addess in mddev->curr_resync
2507                  */
2508                 if (mddev->curr_resync < max_sector) /* aborted */
2509                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2510                                                 &sync_blocks, 1);
2511                 else /* completed sync */
2512                         conf->fullsync = 0;
2513
2514                 bitmap_close_sync(mddev->bitmap);
2515                 close_sync(conf);
2516                 return 0;
2517         }
2518
2519         if (mddev->bitmap == NULL &&
2520             mddev->recovery_cp == MaxSector &&
2521             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2522             conf->fullsync == 0) {
2523                 *skipped = 1;
2524                 return max_sector - sector_nr;
2525         }
2526         /* before building a request, check if we can skip these blocks..
2527          * This call the bitmap_start_sync doesn't actually record anything
2528          */
2529         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2530             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2531                 /* We can skip this block, and probably several more */
2532                 *skipped = 1;
2533                 return sync_blocks;
2534         }
2535         /*
2536          * If there is non-resync activity waiting for a turn,
2537          * and resync is going fast enough,
2538          * then let it though before starting on this new sync request.
2539          */
2540         if (!go_faster && conf->nr_waiting)
2541                 msleep_interruptible(1000);
2542
2543         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2544         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2545
2546         raise_barrier(conf, sector_nr);
2547
2548         rcu_read_lock();
2549         /*
2550          * If we get a correctably read error during resync or recovery,
2551          * we might want to read from a different device.  So we
2552          * flag all drives that could conceivably be read from for READ,
2553          * and any others (which will be non-In_sync devices) for WRITE.
2554          * If a read fails, we try reading from something else for which READ
2555          * is OK.
2556          */
2557
2558         r1_bio->mddev = mddev;
2559         r1_bio->sector = sector_nr;
2560         r1_bio->state = 0;
2561         set_bit(R1BIO_IsSync, &r1_bio->state);
2562
2563         for (i = 0; i < conf->raid_disks * 2; i++) {
2564                 struct md_rdev *rdev;
2565                 bio = r1_bio->bios[i];
2566                 bio_reset(bio);
2567
2568                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2569                 if (rdev == NULL ||
2570                     test_bit(Faulty, &rdev->flags)) {
2571                         if (i < conf->raid_disks)
2572                                 still_degraded = 1;
2573                 } else if (!test_bit(In_sync, &rdev->flags)) {
2574                         bio->bi_rw = WRITE;
2575                         bio->bi_end_io = end_sync_write;
2576                         write_targets ++;
2577                 } else {
2578                         /* may need to read from here */
2579                         sector_t first_bad = MaxSector;
2580                         int bad_sectors;
2581
2582                         if (is_badblock(rdev, sector_nr, good_sectors,
2583                                         &first_bad, &bad_sectors)) {
2584                                 if (first_bad > sector_nr)
2585                                         good_sectors = first_bad - sector_nr;
2586                                 else {
2587                                         bad_sectors -= (sector_nr - first_bad);
2588                                         if (min_bad == 0 ||
2589                                             min_bad > bad_sectors)
2590                                                 min_bad = bad_sectors;
2591                                 }
2592                         }
2593                         if (sector_nr < first_bad) {
2594                                 if (test_bit(WriteMostly, &rdev->flags)) {
2595                                         if (wonly < 0)
2596                                                 wonly = i;
2597                                 } else {
2598                                         if (disk < 0)
2599                                                 disk = i;
2600                                 }
2601                                 bio->bi_rw = READ;
2602                                 bio->bi_end_io = end_sync_read;
2603                                 read_targets++;
2604                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607                                 /*
2608                                  * The device is suitable for reading (InSync),
2609                                  * but has bad block(s) here. Let's try to correct them,
2610                                  * if we are doing resync or repair. Otherwise, leave
2611                                  * this device alone for this sync request.
2612                                  */
2613                                 bio->bi_rw = WRITE;
2614                                 bio->bi_end_io = end_sync_write;
2615                                 write_targets++;
2616                         }
2617                 }
2618                 if (bio->bi_end_io) {
2619                         atomic_inc(&rdev->nr_pending);
2620                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621                         bio->bi_bdev = rdev->bdev;
2622                         bio->bi_private = r1_bio;
2623                 }
2624         }
2625         rcu_read_unlock();
2626         if (disk < 0)
2627                 disk = wonly;
2628         r1_bio->read_disk = disk;
2629
2630         if (read_targets == 0 && min_bad > 0) {
2631                 /* These sectors are bad on all InSync devices, so we
2632                  * need to mark them bad on all write targets
2633                  */
2634                 int ok = 1;
2635                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2638                                 ok = rdev_set_badblocks(rdev, sector_nr,
2639                                                         min_bad, 0
2640                                         ) && ok;
2641                         }
2642                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643                 *skipped = 1;
2644                 put_buf(r1_bio);
2645
2646                 if (!ok) {
2647                         /* Cannot record the badblocks, so need to
2648                          * abort the resync.
2649                          * If there are multiple read targets, could just
2650                          * fail the really bad ones ???
2651                          */
2652                         conf->recovery_disabled = mddev->recovery_disabled;
2653                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654                         return 0;
2655                 } else
2656                         return min_bad;
2657
2658         }
2659         if (min_bad > 0 && min_bad < good_sectors) {
2660                 /* only resync enough to reach the next bad->good
2661                  * transition */
2662                 good_sectors = min_bad;
2663         }
2664
2665         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666                 /* extra read targets are also write targets */
2667                 write_targets += read_targets-1;
2668
2669         if (write_targets == 0 || read_targets == 0) {
2670                 /* There is nowhere to write, so all non-sync
2671                  * drives must be failed - so we are finished
2672                  */
2673                 sector_t rv;
2674                 if (min_bad > 0)
2675                         max_sector = sector_nr + min_bad;
2676                 rv = max_sector - sector_nr;
2677                 *skipped = 1;
2678                 put_buf(r1_bio);
2679                 return rv;
2680         }
2681
2682         if (max_sector > mddev->resync_max)
2683                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684         if (max_sector > sector_nr + good_sectors)
2685                 max_sector = sector_nr + good_sectors;
2686         nr_sectors = 0;
2687         sync_blocks = 0;
2688         do {
2689                 struct page *page;
2690                 int len = PAGE_SIZE;
2691                 if (sector_nr + (len>>9) > max_sector)
2692                         len = (max_sector - sector_nr) << 9;
2693                 if (len == 0)
2694                         break;
2695                 if (sync_blocks == 0) {
2696                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697                                                &sync_blocks, still_degraded) &&
2698                             !conf->fullsync &&
2699                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700                                 break;
2701                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2702                         if ((len >> 9) > sync_blocks)
2703                                 len = sync_blocks<<9;
2704                 }
2705
2706                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2707                         bio = r1_bio->bios[i];
2708                         if (bio->bi_end_io) {
2709                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710                                 if (bio_add_page(bio, page, len, 0) == 0) {
2711                                         /* stop here */
2712                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2713                                         while (i > 0) {
2714                                                 i--;
2715                                                 bio = r1_bio->bios[i];
2716                                                 if (bio->bi_end_io==NULL)
2717                                                         continue;
2718                                                 /* remove last page from this bio */
2719                                                 bio->bi_vcnt--;
2720                                                 bio->bi_iter.bi_size -= len;
2721                                                 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2722                                         }
2723                                         goto bio_full;
2724                                 }
2725                         }
2726                 }
2727                 nr_sectors += len>>9;
2728                 sector_nr += len>>9;
2729                 sync_blocks -= (len>>9);
2730         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2731  bio_full:
2732         r1_bio->sectors = nr_sectors;
2733
2734         /* For a user-requested sync, we read all readable devices and do a
2735          * compare
2736          */
2737         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2738                 atomic_set(&r1_bio->remaining, read_targets);
2739                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2740                         bio = r1_bio->bios[i];
2741                         if (bio->bi_end_io == end_sync_read) {
2742                                 read_targets--;
2743                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2744                                 generic_make_request(bio);
2745                         }
2746                 }
2747         } else {
2748                 atomic_set(&r1_bio->remaining, 1);
2749                 bio = r1_bio->bios[r1_bio->read_disk];
2750                 md_sync_acct(bio->bi_bdev, nr_sectors);
2751                 generic_make_request(bio);
2752
2753         }
2754         return nr_sectors;
2755 }
2756
2757 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2758 {
2759         if (sectors)
2760                 return sectors;
2761
2762         return mddev->dev_sectors;
2763 }
2764
2765 static struct r1conf *setup_conf(struct mddev *mddev)
2766 {
2767         struct r1conf *conf;
2768         int i;
2769         struct raid1_info *disk;
2770         struct md_rdev *rdev;
2771         int err = -ENOMEM;
2772
2773         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774         if (!conf)
2775                 goto abort;
2776
2777         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2778                                 * mddev->raid_disks * 2,
2779                                  GFP_KERNEL);
2780         if (!conf->mirrors)
2781                 goto abort;
2782
2783         conf->tmppage = alloc_page(GFP_KERNEL);
2784         if (!conf->tmppage)
2785                 goto abort;
2786
2787         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2788         if (!conf->poolinfo)
2789                 goto abort;
2790         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2791         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2792                                           r1bio_pool_free,
2793                                           conf->poolinfo);
2794         if (!conf->r1bio_pool)
2795                 goto abort;
2796
2797         conf->poolinfo->mddev = mddev;
2798
2799         err = -EINVAL;
2800         spin_lock_init(&conf->device_lock);
2801         rdev_for_each(rdev, mddev) {
2802                 struct request_queue *q;
2803                 int disk_idx = rdev->raid_disk;
2804                 if (disk_idx >= mddev->raid_disks
2805                     || disk_idx < 0)
2806                         continue;
2807                 if (test_bit(Replacement, &rdev->flags))
2808                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2809                 else
2810                         disk = conf->mirrors + disk_idx;
2811
2812                 if (disk->rdev)
2813                         goto abort;
2814                 disk->rdev = rdev;
2815                 q = bdev_get_queue(rdev->bdev);
2816                 if (q->merge_bvec_fn)
2817                         mddev->merge_check_needed = 1;
2818
2819                 disk->head_position = 0;
2820                 disk->seq_start = MaxSector;
2821         }
2822         conf->raid_disks = mddev->raid_disks;
2823         conf->mddev = mddev;
2824         INIT_LIST_HEAD(&conf->retry_list);
2825
2826         spin_lock_init(&conf->resync_lock);
2827         init_waitqueue_head(&conf->wait_barrier);
2828
2829         bio_list_init(&conf->pending_bio_list);
2830         conf->pending_count = 0;
2831         conf->recovery_disabled = mddev->recovery_disabled - 1;
2832
2833         conf->start_next_window = MaxSector;
2834         conf->current_window_requests = conf->next_window_requests = 0;
2835
2836         err = -EIO;
2837         for (i = 0; i < conf->raid_disks * 2; i++) {
2838
2839                 disk = conf->mirrors + i;
2840
2841                 if (i < conf->raid_disks &&
2842                     disk[conf->raid_disks].rdev) {
2843                         /* This slot has a replacement. */
2844                         if (!disk->rdev) {
2845                                 /* No original, just make the replacement
2846                                  * a recovering spare
2847                                  */
2848                                 disk->rdev =
2849                                         disk[conf->raid_disks].rdev;
2850                                 disk[conf->raid_disks].rdev = NULL;
2851                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2852                                 /* Original is not in_sync - bad */
2853                                 goto abort;
2854                 }
2855
2856                 if (!disk->rdev ||
2857                     !test_bit(In_sync, &disk->rdev->flags)) {
2858                         disk->head_position = 0;
2859                         if (disk->rdev &&
2860                             (disk->rdev->saved_raid_disk < 0))
2861                                 conf->fullsync = 1;
2862                 }
2863         }
2864
2865         err = -ENOMEM;
2866         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2867         if (!conf->thread) {
2868                 printk(KERN_ERR
2869                        "md/raid1:%s: couldn't allocate thread\n",
2870                        mdname(mddev));
2871                 goto abort;
2872         }
2873
2874         return conf;
2875
2876  abort:
2877         if (conf) {
2878                 if (conf->r1bio_pool)
2879                         mempool_destroy(conf->r1bio_pool);
2880                 kfree(conf->mirrors);
2881                 safe_put_page(conf->tmppage);
2882                 kfree(conf->poolinfo);
2883                 kfree(conf);
2884         }
2885         return ERR_PTR(err);
2886 }
2887
2888 static void raid1_free(struct mddev *mddev, void *priv);
2889 static int run(struct mddev *mddev)
2890 {
2891         struct r1conf *conf;
2892         int i;
2893         struct md_rdev *rdev;
2894         int ret;
2895         bool discard_supported = false;
2896
2897         if (mddev->level != 1) {
2898                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2899                        mdname(mddev), mddev->level);
2900                 return -EIO;
2901         }
2902         if (mddev->reshape_position != MaxSector) {
2903                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2904                        mdname(mddev));
2905                 return -EIO;
2906         }
2907         /*
2908          * copy the already verified devices into our private RAID1
2909          * bookkeeping area. [whatever we allocate in run(),
2910          * should be freed in raid1_free()]
2911          */
2912         if (mddev->private == NULL)
2913                 conf = setup_conf(mddev);
2914         else
2915                 conf = mddev->private;
2916
2917         if (IS_ERR(conf))
2918                 return PTR_ERR(conf);
2919
2920         if (mddev->queue)
2921                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2922
2923         rdev_for_each(rdev, mddev) {
2924                 if (!mddev->gendisk)
2925                         continue;
2926                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2927                                   rdev->data_offset << 9);
2928                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2929                         discard_supported = true;
2930         }
2931
2932         mddev->degraded = 0;
2933         for (i=0; i < conf->raid_disks; i++)
2934                 if (conf->mirrors[i].rdev == NULL ||
2935                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2936                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2937                         mddev->degraded++;
2938
2939         if (conf->raid_disks - mddev->degraded == 1)
2940                 mddev->recovery_cp = MaxSector;
2941
2942         if (mddev->recovery_cp != MaxSector)
2943                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2944                        " -- starting background reconstruction\n",
2945                        mdname(mddev));
2946         printk(KERN_INFO
2947                 "md/raid1:%s: active with %d out of %d mirrors\n",
2948                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2949                 mddev->raid_disks);
2950
2951         /*
2952          * Ok, everything is just fine now
2953          */
2954         mddev->thread = conf->thread;
2955         conf->thread = NULL;
2956         mddev->private = conf;
2957
2958         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2959
2960         if (mddev->queue) {
2961                 if (discard_supported)
2962                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2963                                                 mddev->queue);
2964                 else
2965                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2966                                                   mddev->queue);
2967         }
2968
2969         ret =  md_integrity_register(mddev);
2970         if (ret) {
2971                 md_unregister_thread(&mddev->thread);
2972                 raid1_free(mddev, conf);
2973         }
2974         return ret;
2975 }
2976
2977 static void raid1_free(struct mddev *mddev, void *priv)
2978 {
2979         struct r1conf *conf = priv;
2980
2981         if (conf->r1bio_pool)
2982                 mempool_destroy(conf->r1bio_pool);
2983         kfree(conf->mirrors);
2984         safe_put_page(conf->tmppage);
2985         kfree(conf->poolinfo);
2986         kfree(conf);
2987 }
2988
2989 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2990 {
2991         /* no resync is happening, and there is enough space
2992          * on all devices, so we can resize.
2993          * We need to make sure resync covers any new space.
2994          * If the array is shrinking we should possibly wait until
2995          * any io in the removed space completes, but it hardly seems
2996          * worth it.
2997          */
2998         sector_t newsize = raid1_size(mddev, sectors, 0);
2999         if (mddev->external_size &&
3000             mddev->array_sectors > newsize)
3001                 return -EINVAL;
3002         if (mddev->bitmap) {
3003                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3004                 if (ret)
3005                         return ret;
3006         }
3007         md_set_array_sectors(mddev, newsize);
3008         set_capacity(mddev->gendisk, mddev->array_sectors);
3009         revalidate_disk(mddev->gendisk);
3010         if (sectors > mddev->dev_sectors &&
3011             mddev->recovery_cp > mddev->dev_sectors) {
3012                 mddev->recovery_cp = mddev->dev_sectors;
3013                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3014         }
3015         mddev->dev_sectors = sectors;
3016         mddev->resync_max_sectors = sectors;
3017         return 0;
3018 }
3019
3020 static int raid1_reshape(struct mddev *mddev)
3021 {
3022         /* We need to:
3023          * 1/ resize the r1bio_pool
3024          * 2/ resize conf->mirrors
3025          *
3026          * We allocate a new r1bio_pool if we can.
3027          * Then raise a device barrier and wait until all IO stops.
3028          * Then resize conf->mirrors and swap in the new r1bio pool.
3029          *
3030          * At the same time, we "pack" the devices so that all the missing
3031          * devices have the higher raid_disk numbers.
3032          */
3033         mempool_t *newpool, *oldpool;
3034         struct pool_info *newpoolinfo;
3035         struct raid1_info *newmirrors;
3036         struct r1conf *conf = mddev->private;
3037         int cnt, raid_disks;
3038         unsigned long flags;
3039         int d, d2, err;
3040
3041         /* Cannot change chunk_size, layout, or level */
3042         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3043             mddev->layout != mddev->new_layout ||
3044             mddev->level != mddev->new_level) {
3045                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3046                 mddev->new_layout = mddev->layout;
3047                 mddev->new_level = mddev->level;
3048                 return -EINVAL;
3049         }
3050
3051         err = md_allow_write(mddev);
3052         if (err)
3053                 return err;
3054
3055         raid_disks = mddev->raid_disks + mddev->delta_disks;
3056
3057         if (raid_disks < conf->raid_disks) {
3058                 cnt=0;
3059                 for (d= 0; d < conf->raid_disks; d++)
3060                         if (conf->mirrors[d].rdev)
3061                                 cnt++;
3062                 if (cnt > raid_disks)
3063                         return -EBUSY;
3064         }
3065
3066         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3067         if (!newpoolinfo)
3068                 return -ENOMEM;
3069         newpoolinfo->mddev = mddev;
3070         newpoolinfo->raid_disks = raid_disks * 2;
3071
3072         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3073                                  r1bio_pool_free, newpoolinfo);
3074         if (!newpool) {
3075                 kfree(newpoolinfo);
3076                 return -ENOMEM;
3077         }
3078         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3079                              GFP_KERNEL);
3080         if (!newmirrors) {
3081                 kfree(newpoolinfo);
3082                 mempool_destroy(newpool);
3083                 return -ENOMEM;
3084         }
3085
3086         freeze_array(conf, 0);
3087
3088         /* ok, everything is stopped */
3089         oldpool = conf->r1bio_pool;
3090         conf->r1bio_pool = newpool;
3091
3092         for (d = d2 = 0; d < conf->raid_disks; d++) {
3093                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3094                 if (rdev && rdev->raid_disk != d2) {
3095                         sysfs_unlink_rdev(mddev, rdev);
3096                         rdev->raid_disk = d2;
3097                         sysfs_unlink_rdev(mddev, rdev);
3098                         if (sysfs_link_rdev(mddev, rdev))
3099                                 printk(KERN_WARNING
3100                                        "md/raid1:%s: cannot register rd%d\n",
3101                                        mdname(mddev), rdev->raid_disk);
3102                 }
3103                 if (rdev)
3104                         newmirrors[d2++].rdev = rdev;
3105         }
3106         kfree(conf->mirrors);
3107         conf->mirrors = newmirrors;
3108         kfree(conf->poolinfo);
3109         conf->poolinfo = newpoolinfo;
3110
3111         spin_lock_irqsave(&conf->device_lock, flags);
3112         mddev->degraded += (raid_disks - conf->raid_disks);
3113         spin_unlock_irqrestore(&conf->device_lock, flags);
3114         conf->raid_disks = mddev->raid_disks = raid_disks;
3115         mddev->delta_disks = 0;
3116
3117         unfreeze_array(conf);
3118
3119         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3120         md_wakeup_thread(mddev->thread);
3121
3122         mempool_destroy(oldpool);
3123         return 0;
3124 }
3125
3126 static void raid1_quiesce(struct mddev *mddev, int state)
3127 {
3128         struct r1conf *conf = mddev->private;
3129
3130         switch(state) {
3131         case 2: /* wake for suspend */
3132                 wake_up(&conf->wait_barrier);
3133                 break;
3134         case 1:
3135                 freeze_array(conf, 0);
3136                 break;
3137         case 0:
3138                 unfreeze_array(conf);
3139                 break;
3140         }
3141 }
3142
3143 static void *raid1_takeover(struct mddev *mddev)
3144 {
3145         /* raid1 can take over:
3146          *  raid5 with 2 devices, any layout or chunk size
3147          */
3148         if (mddev->level == 5 && mddev->raid_disks == 2) {
3149                 struct r1conf *conf;
3150                 mddev->new_level = 1;
3151                 mddev->new_layout = 0;
3152                 mddev->new_chunk_sectors = 0;
3153                 conf = setup_conf(mddev);
3154                 if (!IS_ERR(conf))
3155                         /* Array must appear to be quiesced */
3156                         conf->array_frozen = 1;
3157                 return conf;
3158         }
3159         return ERR_PTR(-EINVAL);
3160 }
3161
3162 static struct md_personality raid1_personality =
3163 {
3164         .name           = "raid1",
3165         .level          = 1,
3166         .owner          = THIS_MODULE,
3167         .make_request   = make_request,
3168         .run            = run,
3169         .free           = raid1_free,
3170         .status         = status,
3171         .error_handler  = error,
3172         .hot_add_disk   = raid1_add_disk,
3173         .hot_remove_disk= raid1_remove_disk,
3174         .spare_active   = raid1_spare_active,
3175         .sync_request   = sync_request,
3176         .resize         = raid1_resize,
3177         .size           = raid1_size,
3178         .check_reshape  = raid1_reshape,
3179         .quiesce        = raid1_quiesce,
3180         .takeover       = raid1_takeover,
3181         .congested      = raid1_congested,
3182         .mergeable_bvec = raid1_mergeable_bvec,
3183 };
3184
3185 static int __init raid_init(void)
3186 {
3187         return register_md_personality(&raid1_personality);
3188 }
3189
3190 static void raid_exit(void)
3191 {
3192         unregister_md_personality(&raid1_personality);
3193 }
3194
3195 module_init(raid_init);
3196 module_exit(raid_exit);
3197 MODULE_LICENSE("GPL");
3198 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3199 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3200 MODULE_ALIAS("md-raid1");
3201 MODULE_ALIAS("md-level-1");
3202
3203 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);