md: change managed of recovery_disabled.
[pandora-kernel.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include <linux/ratelimit.h>
39 #include "md.h"
40 #include "raid1.h"
41 #include "bitmap.h"
42
43 #define DEBUG 0
44 #if DEBUG
45 #define PRINTK(x...) printk(x)
46 #else
47 #define PRINTK(x...)
48 #endif
49
50 /*
51  * Number of guaranteed r1bios in case of extreme VM load:
52  */
53 #define NR_RAID1_BIOS 256
54
55
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
58
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 {
61         struct pool_info *pi = data;
62         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
63
64         /* allocate a r1bio with room for raid_disks entries in the bios array */
65         return kzalloc(size, gfp_flags);
66 }
67
68 static void r1bio_pool_free(void *r1_bio, void *data)
69 {
70         kfree(r1_bio);
71 }
72
73 #define RESYNC_BLOCK_SIZE (64*1024)
74 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
75 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
76 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
77 #define RESYNC_WINDOW (2048*1024)
78
79 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
80 {
81         struct pool_info *pi = data;
82         struct page *page;
83         r1bio_t *r1_bio;
84         struct bio *bio;
85         int i, j;
86
87         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
88         if (!r1_bio)
89                 return NULL;
90
91         /*
92          * Allocate bios : 1 for reading, n-1 for writing
93          */
94         for (j = pi->raid_disks ; j-- ; ) {
95                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
96                 if (!bio)
97                         goto out_free_bio;
98                 r1_bio->bios[j] = bio;
99         }
100         /*
101          * Allocate RESYNC_PAGES data pages and attach them to
102          * the first bio.
103          * If this is a user-requested check/repair, allocate
104          * RESYNC_PAGES for each bio.
105          */
106         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
107                 j = pi->raid_disks;
108         else
109                 j = 1;
110         while(j--) {
111                 bio = r1_bio->bios[j];
112                 for (i = 0; i < RESYNC_PAGES; i++) {
113                         page = alloc_page(gfp_flags);
114                         if (unlikely(!page))
115                                 goto out_free_pages;
116
117                         bio->bi_io_vec[i].bv_page = page;
118                         bio->bi_vcnt = i+1;
119                 }
120         }
121         /* If not user-requests, copy the page pointers to all bios */
122         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
123                 for (i=0; i<RESYNC_PAGES ; i++)
124                         for (j=1; j<pi->raid_disks; j++)
125                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
126                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
127         }
128
129         r1_bio->master_bio = NULL;
130
131         return r1_bio;
132
133 out_free_pages:
134         for (j=0 ; j < pi->raid_disks; j++)
135                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
136                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
137         j = -1;
138 out_free_bio:
139         while ( ++j < pi->raid_disks )
140                 bio_put(r1_bio->bios[j]);
141         r1bio_pool_free(r1_bio, data);
142         return NULL;
143 }
144
145 static void r1buf_pool_free(void *__r1_bio, void *data)
146 {
147         struct pool_info *pi = data;
148         int i,j;
149         r1bio_t *r1bio = __r1_bio;
150
151         for (i = 0; i < RESYNC_PAGES; i++)
152                 for (j = pi->raid_disks; j-- ;) {
153                         if (j == 0 ||
154                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
155                             r1bio->bios[0]->bi_io_vec[i].bv_page)
156                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
157                 }
158         for (i=0 ; i < pi->raid_disks; i++)
159                 bio_put(r1bio->bios[i]);
160
161         r1bio_pool_free(r1bio, data);
162 }
163
164 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
165 {
166         int i;
167
168         for (i = 0; i < conf->raid_disks; i++) {
169                 struct bio **bio = r1_bio->bios + i;
170                 if (*bio && *bio != IO_BLOCKED)
171                         bio_put(*bio);
172                 *bio = NULL;
173         }
174 }
175
176 static void free_r1bio(r1bio_t *r1_bio)
177 {
178         conf_t *conf = r1_bio->mddev->private;
179
180         /*
181          * Wake up any possible resync thread that waits for the device
182          * to go idle.
183          */
184         allow_barrier(conf);
185
186         put_all_bios(conf, r1_bio);
187         mempool_free(r1_bio, conf->r1bio_pool);
188 }
189
190 static void put_buf(r1bio_t *r1_bio)
191 {
192         conf_t *conf = r1_bio->mddev->private;
193         int i;
194
195         for (i=0; i<conf->raid_disks; i++) {
196                 struct bio *bio = r1_bio->bios[i];
197                 if (bio->bi_end_io)
198                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
199         }
200
201         mempool_free(r1_bio, conf->r1buf_pool);
202
203         lower_barrier(conf);
204 }
205
206 static void reschedule_retry(r1bio_t *r1_bio)
207 {
208         unsigned long flags;
209         mddev_t *mddev = r1_bio->mddev;
210         conf_t *conf = mddev->private;
211
212         spin_lock_irqsave(&conf->device_lock, flags);
213         list_add(&r1_bio->retry_list, &conf->retry_list);
214         conf->nr_queued ++;
215         spin_unlock_irqrestore(&conf->device_lock, flags);
216
217         wake_up(&conf->wait_barrier);
218         md_wakeup_thread(mddev->thread);
219 }
220
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r1bio_t *r1_bio)
227 {
228         struct bio *bio = r1_bio->master_bio;
229
230         /* if nobody has done the final endio yet, do it now */
231         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
232                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
233                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
234                         (unsigned long long) bio->bi_sector,
235                         (unsigned long long) bio->bi_sector +
236                                 (bio->bi_size >> 9) - 1);
237
238                 bio_endio(bio,
239                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
240         }
241         free_r1bio(r1_bio);
242 }
243
244 /*
245  * Update disk head position estimator based on IRQ completion info.
246  */
247 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
248 {
249         conf_t *conf = r1_bio->mddev->private;
250
251         conf->mirrors[disk].head_position =
252                 r1_bio->sector + (r1_bio->sectors);
253 }
254
255 static void raid1_end_read_request(struct bio *bio, int error)
256 {
257         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
258         r1bio_t *r1_bio = bio->bi_private;
259         int mirror;
260         conf_t *conf = r1_bio->mddev->private;
261
262         mirror = r1_bio->read_disk;
263         /*
264          * this branch is our 'one mirror IO has finished' event handler:
265          */
266         update_head_pos(mirror, r1_bio);
267
268         if (uptodate)
269                 set_bit(R1BIO_Uptodate, &r1_bio->state);
270         else {
271                 /* If all other devices have failed, we want to return
272                  * the error upwards rather than fail the last device.
273                  * Here we redefine "uptodate" to mean "Don't want to retry"
274                  */
275                 unsigned long flags;
276                 spin_lock_irqsave(&conf->device_lock, flags);
277                 if (r1_bio->mddev->degraded == conf->raid_disks ||
278                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
279                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
280                         uptodate = 1;
281                 spin_unlock_irqrestore(&conf->device_lock, flags);
282         }
283
284         if (uptodate)
285                 raid_end_bio_io(r1_bio);
286         else {
287                 /*
288                  * oops, read error:
289                  */
290                 char b[BDEVNAME_SIZE];
291                 printk_ratelimited(
292                         KERN_ERR "md/raid1:%s: %s: "
293                         "rescheduling sector %llu\n",
294                         mdname(conf->mddev),
295                         bdevname(conf->mirrors[mirror].rdev->bdev,
296                                  b),
297                         (unsigned long long)r1_bio->sector);
298                 reschedule_retry(r1_bio);
299         }
300
301         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
302 }
303
304 static void r1_bio_write_done(r1bio_t *r1_bio)
305 {
306         if (atomic_dec_and_test(&r1_bio->remaining))
307         {
308                 /* it really is the end of this request */
309                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
310                         /* free extra copy of the data pages */
311                         int i = r1_bio->behind_page_count;
312                         while (i--)
313                                 safe_put_page(r1_bio->behind_pages[i]);
314                         kfree(r1_bio->behind_pages);
315                         r1_bio->behind_pages = NULL;
316                 }
317                 /* clear the bitmap if all writes complete successfully */
318                 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
319                                 r1_bio->sectors,
320                                 !test_bit(R1BIO_Degraded, &r1_bio->state),
321                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
322                 md_write_end(r1_bio->mddev);
323                 raid_end_bio_io(r1_bio);
324         }
325 }
326
327 static void raid1_end_write_request(struct bio *bio, int error)
328 {
329         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
330         r1bio_t *r1_bio = bio->bi_private;
331         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
332         conf_t *conf = r1_bio->mddev->private;
333         struct bio *to_put = NULL;
334
335
336         for (mirror = 0; mirror < conf->raid_disks; mirror++)
337                 if (r1_bio->bios[mirror] == bio)
338                         break;
339
340         /*
341          * 'one mirror IO has finished' event handler:
342          */
343         r1_bio->bios[mirror] = NULL;
344         to_put = bio;
345         if (!uptodate) {
346                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
347                 /* an I/O failed, we can't clear the bitmap */
348                 set_bit(R1BIO_Degraded, &r1_bio->state);
349         } else
350                 /*
351                  * Set R1BIO_Uptodate in our master bio, so that we
352                  * will return a good error code for to the higher
353                  * levels even if IO on some other mirrored buffer
354                  * fails.
355                  *
356                  * The 'master' represents the composite IO operation
357                  * to user-side. So if something waits for IO, then it
358                  * will wait for the 'master' bio.
359                  */
360                 set_bit(R1BIO_Uptodate, &r1_bio->state);
361
362         update_head_pos(mirror, r1_bio);
363
364         if (behind) {
365                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
366                         atomic_dec(&r1_bio->behind_remaining);
367
368                 /*
369                  * In behind mode, we ACK the master bio once the I/O
370                  * has safely reached all non-writemostly
371                  * disks. Setting the Returned bit ensures that this
372                  * gets done only once -- we don't ever want to return
373                  * -EIO here, instead we'll wait
374                  */
375                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
376                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
377                         /* Maybe we can return now */
378                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
379                                 struct bio *mbio = r1_bio->master_bio;
380                                 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
381                                        (unsigned long long) mbio->bi_sector,
382                                        (unsigned long long) mbio->bi_sector +
383                                        (mbio->bi_size >> 9) - 1);
384                                 bio_endio(mbio, 0);
385                         }
386                 }
387         }
388         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
389
390         /*
391          * Let's see if all mirrored write operations have finished
392          * already.
393          */
394         r1_bio_write_done(r1_bio);
395
396         if (to_put)
397                 bio_put(to_put);
398 }
399
400
401 /*
402  * This routine returns the disk from which the requested read should
403  * be done. There is a per-array 'next expected sequential IO' sector
404  * number - if this matches on the next IO then we use the last disk.
405  * There is also a per-disk 'last know head position' sector that is
406  * maintained from IRQ contexts, both the normal and the resync IO
407  * completion handlers update this position correctly. If there is no
408  * perfect sequential match then we pick the disk whose head is closest.
409  *
410  * If there are 2 mirrors in the same 2 devices, performance degrades
411  * because position is mirror, not device based.
412  *
413  * The rdev for the device selected will have nr_pending incremented.
414  */
415 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
416 {
417         const sector_t this_sector = r1_bio->sector;
418         const int sectors = r1_bio->sectors;
419         int start_disk;
420         int best_disk;
421         int i;
422         sector_t best_dist;
423         mdk_rdev_t *rdev;
424         int choose_first;
425
426         rcu_read_lock();
427         /*
428          * Check if we can balance. We can balance on the whole
429          * device if no resync is going on, or below the resync window.
430          * We take the first readable disk when above the resync window.
431          */
432  retry:
433         best_disk = -1;
434         best_dist = MaxSector;
435         if (conf->mddev->recovery_cp < MaxSector &&
436             (this_sector + sectors >= conf->next_resync)) {
437                 choose_first = 1;
438                 start_disk = 0;
439         } else {
440                 choose_first = 0;
441                 start_disk = conf->last_used;
442         }
443
444         for (i = 0 ; i < conf->raid_disks ; i++) {
445                 sector_t dist;
446                 int disk = start_disk + i;
447                 if (disk >= conf->raid_disks)
448                         disk -= conf->raid_disks;
449
450                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
451                 if (r1_bio->bios[disk] == IO_BLOCKED
452                     || rdev == NULL
453                     || test_bit(Faulty, &rdev->flags))
454                         continue;
455                 if (!test_bit(In_sync, &rdev->flags) &&
456                     rdev->recovery_offset < this_sector + sectors)
457                         continue;
458                 if (test_bit(WriteMostly, &rdev->flags)) {
459                         /* Don't balance among write-mostly, just
460                          * use the first as a last resort */
461                         if (best_disk < 0)
462                                 best_disk = disk;
463                         continue;
464                 }
465                 /* This is a reasonable device to use.  It might
466                  * even be best.
467                  */
468                 dist = abs(this_sector - conf->mirrors[disk].head_position);
469                 if (choose_first
470                     /* Don't change to another disk for sequential reads */
471                     || conf->next_seq_sect == this_sector
472                     || dist == 0
473                     /* If device is idle, use it */
474                     || atomic_read(&rdev->nr_pending) == 0) {
475                         best_disk = disk;
476                         break;
477                 }
478                 if (dist < best_dist) {
479                         best_dist = dist;
480                         best_disk = disk;
481                 }
482         }
483
484         if (best_disk >= 0) {
485                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
486                 if (!rdev)
487                         goto retry;
488                 atomic_inc(&rdev->nr_pending);
489                 if (test_bit(Faulty, &rdev->flags)) {
490                         /* cannot risk returning a device that failed
491                          * before we inc'ed nr_pending
492                          */
493                         rdev_dec_pending(rdev, conf->mddev);
494                         goto retry;
495                 }
496                 conf->next_seq_sect = this_sector + sectors;
497                 conf->last_used = best_disk;
498         }
499         rcu_read_unlock();
500
501         return best_disk;
502 }
503
504 int md_raid1_congested(mddev_t *mddev, int bits)
505 {
506         conf_t *conf = mddev->private;
507         int i, ret = 0;
508
509         rcu_read_lock();
510         for (i = 0; i < mddev->raid_disks; i++) {
511                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
512                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
513                         struct request_queue *q = bdev_get_queue(rdev->bdev);
514
515                         BUG_ON(!q);
516
517                         /* Note the '|| 1' - when read_balance prefers
518                          * non-congested targets, it can be removed
519                          */
520                         if ((bits & (1<<BDI_async_congested)) || 1)
521                                 ret |= bdi_congested(&q->backing_dev_info, bits);
522                         else
523                                 ret &= bdi_congested(&q->backing_dev_info, bits);
524                 }
525         }
526         rcu_read_unlock();
527         return ret;
528 }
529 EXPORT_SYMBOL_GPL(md_raid1_congested);
530
531 static int raid1_congested(void *data, int bits)
532 {
533         mddev_t *mddev = data;
534
535         return mddev_congested(mddev, bits) ||
536                 md_raid1_congested(mddev, bits);
537 }
538
539 static void flush_pending_writes(conf_t *conf)
540 {
541         /* Any writes that have been queued but are awaiting
542          * bitmap updates get flushed here.
543          */
544         spin_lock_irq(&conf->device_lock);
545
546         if (conf->pending_bio_list.head) {
547                 struct bio *bio;
548                 bio = bio_list_get(&conf->pending_bio_list);
549                 spin_unlock_irq(&conf->device_lock);
550                 /* flush any pending bitmap writes to
551                  * disk before proceeding w/ I/O */
552                 bitmap_unplug(conf->mddev->bitmap);
553
554                 while (bio) { /* submit pending writes */
555                         struct bio *next = bio->bi_next;
556                         bio->bi_next = NULL;
557                         generic_make_request(bio);
558                         bio = next;
559                 }
560         } else
561                 spin_unlock_irq(&conf->device_lock);
562 }
563
564 /* Barriers....
565  * Sometimes we need to suspend IO while we do something else,
566  * either some resync/recovery, or reconfigure the array.
567  * To do this we raise a 'barrier'.
568  * The 'barrier' is a counter that can be raised multiple times
569  * to count how many activities are happening which preclude
570  * normal IO.
571  * We can only raise the barrier if there is no pending IO.
572  * i.e. if nr_pending == 0.
573  * We choose only to raise the barrier if no-one is waiting for the
574  * barrier to go down.  This means that as soon as an IO request
575  * is ready, no other operations which require a barrier will start
576  * until the IO request has had a chance.
577  *
578  * So: regular IO calls 'wait_barrier'.  When that returns there
579  *    is no backgroup IO happening,  It must arrange to call
580  *    allow_barrier when it has finished its IO.
581  * backgroup IO calls must call raise_barrier.  Once that returns
582  *    there is no normal IO happeing.  It must arrange to call
583  *    lower_barrier when the particular background IO completes.
584  */
585 #define RESYNC_DEPTH 32
586
587 static void raise_barrier(conf_t *conf)
588 {
589         spin_lock_irq(&conf->resync_lock);
590
591         /* Wait until no block IO is waiting */
592         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
593                             conf->resync_lock, );
594
595         /* block any new IO from starting */
596         conf->barrier++;
597
598         /* Now wait for all pending IO to complete */
599         wait_event_lock_irq(conf->wait_barrier,
600                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
601                             conf->resync_lock, );
602
603         spin_unlock_irq(&conf->resync_lock);
604 }
605
606 static void lower_barrier(conf_t *conf)
607 {
608         unsigned long flags;
609         BUG_ON(conf->barrier <= 0);
610         spin_lock_irqsave(&conf->resync_lock, flags);
611         conf->barrier--;
612         spin_unlock_irqrestore(&conf->resync_lock, flags);
613         wake_up(&conf->wait_barrier);
614 }
615
616 static void wait_barrier(conf_t *conf)
617 {
618         spin_lock_irq(&conf->resync_lock);
619         if (conf->barrier) {
620                 conf->nr_waiting++;
621                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
622                                     conf->resync_lock,
623                                     );
624                 conf->nr_waiting--;
625         }
626         conf->nr_pending++;
627         spin_unlock_irq(&conf->resync_lock);
628 }
629
630 static void allow_barrier(conf_t *conf)
631 {
632         unsigned long flags;
633         spin_lock_irqsave(&conf->resync_lock, flags);
634         conf->nr_pending--;
635         spin_unlock_irqrestore(&conf->resync_lock, flags);
636         wake_up(&conf->wait_barrier);
637 }
638
639 static void freeze_array(conf_t *conf)
640 {
641         /* stop syncio and normal IO and wait for everything to
642          * go quite.
643          * We increment barrier and nr_waiting, and then
644          * wait until nr_pending match nr_queued+1
645          * This is called in the context of one normal IO request
646          * that has failed. Thus any sync request that might be pending
647          * will be blocked by nr_pending, and we need to wait for
648          * pending IO requests to complete or be queued for re-try.
649          * Thus the number queued (nr_queued) plus this request (1)
650          * must match the number of pending IOs (nr_pending) before
651          * we continue.
652          */
653         spin_lock_irq(&conf->resync_lock);
654         conf->barrier++;
655         conf->nr_waiting++;
656         wait_event_lock_irq(conf->wait_barrier,
657                             conf->nr_pending == conf->nr_queued+1,
658                             conf->resync_lock,
659                             flush_pending_writes(conf));
660         spin_unlock_irq(&conf->resync_lock);
661 }
662 static void unfreeze_array(conf_t *conf)
663 {
664         /* reverse the effect of the freeze */
665         spin_lock_irq(&conf->resync_lock);
666         conf->barrier--;
667         conf->nr_waiting--;
668         wake_up(&conf->wait_barrier);
669         spin_unlock_irq(&conf->resync_lock);
670 }
671
672
673 /* duplicate the data pages for behind I/O 
674  */
675 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
676 {
677         int i;
678         struct bio_vec *bvec;
679         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page*),
680                                         GFP_NOIO);
681         if (unlikely(!pages))
682                 return;
683
684         bio_for_each_segment(bvec, bio, i) {
685                 pages[i] = alloc_page(GFP_NOIO);
686                 if (unlikely(!pages[i]))
687                         goto do_sync_io;
688                 memcpy(kmap(pages[i]) + bvec->bv_offset,
689                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
690                 kunmap(pages[i]);
691                 kunmap(bvec->bv_page);
692         }
693         r1_bio->behind_pages = pages;
694         r1_bio->behind_page_count = bio->bi_vcnt;
695         set_bit(R1BIO_BehindIO, &r1_bio->state);
696         return;
697
698 do_sync_io:
699         for (i = 0; i < bio->bi_vcnt; i++)
700                 if (pages[i])
701                         put_page(pages[i]);
702         kfree(pages);
703         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
704 }
705
706 static int make_request(mddev_t *mddev, struct bio * bio)
707 {
708         conf_t *conf = mddev->private;
709         mirror_info_t *mirror;
710         r1bio_t *r1_bio;
711         struct bio *read_bio;
712         int i, targets = 0, disks;
713         struct bitmap *bitmap;
714         unsigned long flags;
715         const int rw = bio_data_dir(bio);
716         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
717         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
718         mdk_rdev_t *blocked_rdev;
719         int plugged;
720
721         /*
722          * Register the new request and wait if the reconstruction
723          * thread has put up a bar for new requests.
724          * Continue immediately if no resync is active currently.
725          */
726
727         md_write_start(mddev, bio); /* wait on superblock update early */
728
729         if (bio_data_dir(bio) == WRITE &&
730             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
731             bio->bi_sector < mddev->suspend_hi) {
732                 /* As the suspend_* range is controlled by
733                  * userspace, we want an interruptible
734                  * wait.
735                  */
736                 DEFINE_WAIT(w);
737                 for (;;) {
738                         flush_signals(current);
739                         prepare_to_wait(&conf->wait_barrier,
740                                         &w, TASK_INTERRUPTIBLE);
741                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
742                             bio->bi_sector >= mddev->suspend_hi)
743                                 break;
744                         schedule();
745                 }
746                 finish_wait(&conf->wait_barrier, &w);
747         }
748
749         wait_barrier(conf);
750
751         bitmap = mddev->bitmap;
752
753         /*
754          * make_request() can abort the operation when READA is being
755          * used and no empty request is available.
756          *
757          */
758         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
759
760         r1_bio->master_bio = bio;
761         r1_bio->sectors = bio->bi_size >> 9;
762         r1_bio->state = 0;
763         r1_bio->mddev = mddev;
764         r1_bio->sector = bio->bi_sector;
765
766         if (rw == READ) {
767                 /*
768                  * read balancing logic:
769                  */
770                 int rdisk = read_balance(conf, r1_bio);
771
772                 if (rdisk < 0) {
773                         /* couldn't find anywhere to read from */
774                         raid_end_bio_io(r1_bio);
775                         return 0;
776                 }
777                 mirror = conf->mirrors + rdisk;
778
779                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
780                     bitmap) {
781                         /* Reading from a write-mostly device must
782                          * take care not to over-take any writes
783                          * that are 'behind'
784                          */
785                         wait_event(bitmap->behind_wait,
786                                    atomic_read(&bitmap->behind_writes) == 0);
787                 }
788                 r1_bio->read_disk = rdisk;
789
790                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
791
792                 r1_bio->bios[rdisk] = read_bio;
793
794                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
795                 read_bio->bi_bdev = mirror->rdev->bdev;
796                 read_bio->bi_end_io = raid1_end_read_request;
797                 read_bio->bi_rw = READ | do_sync;
798                 read_bio->bi_private = r1_bio;
799
800                 generic_make_request(read_bio);
801                 return 0;
802         }
803
804         /*
805          * WRITE:
806          */
807         /* first select target devices under spinlock and
808          * inc refcount on their rdev.  Record them by setting
809          * bios[x] to bio
810          */
811         plugged = mddev_check_plugged(mddev);
812
813         disks = conf->raid_disks;
814  retry_write:
815         blocked_rdev = NULL;
816         rcu_read_lock();
817         for (i = 0;  i < disks; i++) {
818                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
819                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
820                         atomic_inc(&rdev->nr_pending);
821                         blocked_rdev = rdev;
822                         break;
823                 }
824                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
825                         atomic_inc(&rdev->nr_pending);
826                         if (test_bit(Faulty, &rdev->flags)) {
827                                 rdev_dec_pending(rdev, mddev);
828                                 r1_bio->bios[i] = NULL;
829                         } else {
830                                 r1_bio->bios[i] = bio;
831                                 targets++;
832                         }
833                 } else
834                         r1_bio->bios[i] = NULL;
835         }
836         rcu_read_unlock();
837
838         if (unlikely(blocked_rdev)) {
839                 /* Wait for this device to become unblocked */
840                 int j;
841
842                 for (j = 0; j < i; j++)
843                         if (r1_bio->bios[j])
844                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
845
846                 allow_barrier(conf);
847                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
848                 wait_barrier(conf);
849                 goto retry_write;
850         }
851
852         BUG_ON(targets == 0); /* we never fail the last device */
853
854         if (targets < conf->raid_disks) {
855                 /* array is degraded, we will not clear the bitmap
856                  * on I/O completion (see raid1_end_write_request) */
857                 set_bit(R1BIO_Degraded, &r1_bio->state);
858         }
859
860         /* do behind I/O ?
861          * Not if there are too many, or cannot allocate memory,
862          * or a reader on WriteMostly is waiting for behind writes 
863          * to flush */
864         if (bitmap &&
865             (atomic_read(&bitmap->behind_writes)
866              < mddev->bitmap_info.max_write_behind) &&
867             !waitqueue_active(&bitmap->behind_wait))
868                 alloc_behind_pages(bio, r1_bio);
869
870         atomic_set(&r1_bio->remaining, 1);
871         atomic_set(&r1_bio->behind_remaining, 0);
872
873         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
874                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
875         for (i = 0; i < disks; i++) {
876                 struct bio *mbio;
877                 if (!r1_bio->bios[i])
878                         continue;
879
880                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
881                 r1_bio->bios[i] = mbio;
882
883                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
884                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
885                 mbio->bi_end_io = raid1_end_write_request;
886                 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
887                 mbio->bi_private = r1_bio;
888
889                 if (r1_bio->behind_pages) {
890                         struct bio_vec *bvec;
891                         int j;
892
893                         /* Yes, I really want the '__' version so that
894                          * we clear any unused pointer in the io_vec, rather
895                          * than leave them unchanged.  This is important
896                          * because when we come to free the pages, we won't
897                          * know the original bi_idx, so we just free
898                          * them all
899                          */
900                         __bio_for_each_segment(bvec, mbio, j, 0)
901                                 bvec->bv_page = r1_bio->behind_pages[j];
902                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
903                                 atomic_inc(&r1_bio->behind_remaining);
904                 }
905
906                 atomic_inc(&r1_bio->remaining);
907                 spin_lock_irqsave(&conf->device_lock, flags);
908                 bio_list_add(&conf->pending_bio_list, mbio);
909                 spin_unlock_irqrestore(&conf->device_lock, flags);
910         }
911         r1_bio_write_done(r1_bio);
912
913         /* In case raid1d snuck in to freeze_array */
914         wake_up(&conf->wait_barrier);
915
916         if (do_sync || !bitmap || !plugged)
917                 md_wakeup_thread(mddev->thread);
918
919         return 0;
920 }
921
922 static void status(struct seq_file *seq, mddev_t *mddev)
923 {
924         conf_t *conf = mddev->private;
925         int i;
926
927         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
928                    conf->raid_disks - mddev->degraded);
929         rcu_read_lock();
930         for (i = 0; i < conf->raid_disks; i++) {
931                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
932                 seq_printf(seq, "%s",
933                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
934         }
935         rcu_read_unlock();
936         seq_printf(seq, "]");
937 }
938
939
940 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
941 {
942         char b[BDEVNAME_SIZE];
943         conf_t *conf = mddev->private;
944
945         /*
946          * If it is not operational, then we have already marked it as dead
947          * else if it is the last working disks, ignore the error, let the
948          * next level up know.
949          * else mark the drive as failed
950          */
951         if (test_bit(In_sync, &rdev->flags)
952             && (conf->raid_disks - mddev->degraded) == 1) {
953                 /*
954                  * Don't fail the drive, act as though we were just a
955                  * normal single drive.
956                  * However don't try a recovery from this drive as
957                  * it is very likely to fail.
958                  */
959                 conf->recovery_disabled = mddev->recovery_disabled;
960                 return;
961         }
962         if (test_and_clear_bit(In_sync, &rdev->flags)) {
963                 unsigned long flags;
964                 spin_lock_irqsave(&conf->device_lock, flags);
965                 mddev->degraded++;
966                 set_bit(Faulty, &rdev->flags);
967                 spin_unlock_irqrestore(&conf->device_lock, flags);
968                 /*
969                  * if recovery is running, make sure it aborts.
970                  */
971                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
972         } else
973                 set_bit(Faulty, &rdev->flags);
974         set_bit(MD_CHANGE_DEVS, &mddev->flags);
975         printk(KERN_ALERT
976                "md/raid1:%s: Disk failure on %s, disabling device.\n"
977                "md/raid1:%s: Operation continuing on %d devices.\n",
978                mdname(mddev), bdevname(rdev->bdev, b),
979                mdname(mddev), conf->raid_disks - mddev->degraded);
980 }
981
982 static void print_conf(conf_t *conf)
983 {
984         int i;
985
986         printk(KERN_DEBUG "RAID1 conf printout:\n");
987         if (!conf) {
988                 printk(KERN_DEBUG "(!conf)\n");
989                 return;
990         }
991         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
992                 conf->raid_disks);
993
994         rcu_read_lock();
995         for (i = 0; i < conf->raid_disks; i++) {
996                 char b[BDEVNAME_SIZE];
997                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
998                 if (rdev)
999                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1000                                i, !test_bit(In_sync, &rdev->flags),
1001                                !test_bit(Faulty, &rdev->flags),
1002                                bdevname(rdev->bdev,b));
1003         }
1004         rcu_read_unlock();
1005 }
1006
1007 static void close_sync(conf_t *conf)
1008 {
1009         wait_barrier(conf);
1010         allow_barrier(conf);
1011
1012         mempool_destroy(conf->r1buf_pool);
1013         conf->r1buf_pool = NULL;
1014 }
1015
1016 static int raid1_spare_active(mddev_t *mddev)
1017 {
1018         int i;
1019         conf_t *conf = mddev->private;
1020         int count = 0;
1021         unsigned long flags;
1022
1023         /*
1024          * Find all failed disks within the RAID1 configuration 
1025          * and mark them readable.
1026          * Called under mddev lock, so rcu protection not needed.
1027          */
1028         for (i = 0; i < conf->raid_disks; i++) {
1029                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1030                 if (rdev
1031                     && !test_bit(Faulty, &rdev->flags)
1032                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1033                         count++;
1034                         sysfs_notify_dirent(rdev->sysfs_state);
1035                 }
1036         }
1037         spin_lock_irqsave(&conf->device_lock, flags);
1038         mddev->degraded -= count;
1039         spin_unlock_irqrestore(&conf->device_lock, flags);
1040
1041         print_conf(conf);
1042         return count;
1043 }
1044
1045
1046 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1047 {
1048         conf_t *conf = mddev->private;
1049         int err = -EEXIST;
1050         int mirror = 0;
1051         mirror_info_t *p;
1052         int first = 0;
1053         int last = mddev->raid_disks - 1;
1054
1055         if (mddev->recovery_disabled == conf->recovery_disabled)
1056                 return -EBUSY;
1057
1058         if (rdev->raid_disk >= 0)
1059                 first = last = rdev->raid_disk;
1060
1061         for (mirror = first; mirror <= last; mirror++)
1062                 if ( !(p=conf->mirrors+mirror)->rdev) {
1063
1064                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1065                                           rdev->data_offset << 9);
1066                         /* as we don't honour merge_bvec_fn, we must
1067                          * never risk violating it, so limit
1068                          * ->max_segments to one lying with a single
1069                          * page, as a one page request is never in
1070                          * violation.
1071                          */
1072                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1073                                 blk_queue_max_segments(mddev->queue, 1);
1074                                 blk_queue_segment_boundary(mddev->queue,
1075                                                            PAGE_CACHE_SIZE - 1);
1076                         }
1077
1078                         p->head_position = 0;
1079                         rdev->raid_disk = mirror;
1080                         err = 0;
1081                         /* As all devices are equivalent, we don't need a full recovery
1082                          * if this was recently any drive of the array
1083                          */
1084                         if (rdev->saved_raid_disk < 0)
1085                                 conf->fullsync = 1;
1086                         rcu_assign_pointer(p->rdev, rdev);
1087                         break;
1088                 }
1089         md_integrity_add_rdev(rdev, mddev);
1090         print_conf(conf);
1091         return err;
1092 }
1093
1094 static int raid1_remove_disk(mddev_t *mddev, int number)
1095 {
1096         conf_t *conf = mddev->private;
1097         int err = 0;
1098         mdk_rdev_t *rdev;
1099         mirror_info_t *p = conf->mirrors+ number;
1100
1101         print_conf(conf);
1102         rdev = p->rdev;
1103         if (rdev) {
1104                 if (test_bit(In_sync, &rdev->flags) ||
1105                     atomic_read(&rdev->nr_pending)) {
1106                         err = -EBUSY;
1107                         goto abort;
1108                 }
1109                 /* Only remove non-faulty devices if recovery
1110                  * is not possible.
1111                  */
1112                 if (!test_bit(Faulty, &rdev->flags) &&
1113                     mddev->recovery_disabled != conf->recovery_disabled &&
1114                     mddev->degraded < conf->raid_disks) {
1115                         err = -EBUSY;
1116                         goto abort;
1117                 }
1118                 p->rdev = NULL;
1119                 synchronize_rcu();
1120                 if (atomic_read(&rdev->nr_pending)) {
1121                         /* lost the race, try later */
1122                         err = -EBUSY;
1123                         p->rdev = rdev;
1124                         goto abort;
1125                 }
1126                 err = md_integrity_register(mddev);
1127         }
1128 abort:
1129
1130         print_conf(conf);
1131         return err;
1132 }
1133
1134
1135 static void end_sync_read(struct bio *bio, int error)
1136 {
1137         r1bio_t *r1_bio = bio->bi_private;
1138         int i;
1139
1140         for (i=r1_bio->mddev->raid_disks; i--; )
1141                 if (r1_bio->bios[i] == bio)
1142                         break;
1143         BUG_ON(i < 0);
1144         update_head_pos(i, r1_bio);
1145         /*
1146          * we have read a block, now it needs to be re-written,
1147          * or re-read if the read failed.
1148          * We don't do much here, just schedule handling by raid1d
1149          */
1150         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1151                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1152
1153         if (atomic_dec_and_test(&r1_bio->remaining))
1154                 reschedule_retry(r1_bio);
1155 }
1156
1157 static void end_sync_write(struct bio *bio, int error)
1158 {
1159         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1160         r1bio_t *r1_bio = bio->bi_private;
1161         mddev_t *mddev = r1_bio->mddev;
1162         conf_t *conf = mddev->private;
1163         int i;
1164         int mirror=0;
1165
1166         for (i = 0; i < conf->raid_disks; i++)
1167                 if (r1_bio->bios[i] == bio) {
1168                         mirror = i;
1169                         break;
1170                 }
1171         if (!uptodate) {
1172                 sector_t sync_blocks = 0;
1173                 sector_t s = r1_bio->sector;
1174                 long sectors_to_go = r1_bio->sectors;
1175                 /* make sure these bits doesn't get cleared. */
1176                 do {
1177                         bitmap_end_sync(mddev->bitmap, s,
1178                                         &sync_blocks, 1);
1179                         s += sync_blocks;
1180                         sectors_to_go -= sync_blocks;
1181                 } while (sectors_to_go > 0);
1182                 md_error(mddev, conf->mirrors[mirror].rdev);
1183         }
1184
1185         update_head_pos(mirror, r1_bio);
1186
1187         if (atomic_dec_and_test(&r1_bio->remaining)) {
1188                 sector_t s = r1_bio->sectors;
1189                 put_buf(r1_bio);
1190                 md_done_sync(mddev, s, uptodate);
1191         }
1192 }
1193
1194 static int fix_sync_read_error(r1bio_t *r1_bio)
1195 {
1196         /* Try some synchronous reads of other devices to get
1197          * good data, much like with normal read errors.  Only
1198          * read into the pages we already have so we don't
1199          * need to re-issue the read request.
1200          * We don't need to freeze the array, because being in an
1201          * active sync request, there is no normal IO, and
1202          * no overlapping syncs.
1203          */
1204         mddev_t *mddev = r1_bio->mddev;
1205         conf_t *conf = mddev->private;
1206         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1207         sector_t sect = r1_bio->sector;
1208         int sectors = r1_bio->sectors;
1209         int idx = 0;
1210
1211         while(sectors) {
1212                 int s = sectors;
1213                 int d = r1_bio->read_disk;
1214                 int success = 0;
1215                 mdk_rdev_t *rdev;
1216                 int start;
1217
1218                 if (s > (PAGE_SIZE>>9))
1219                         s = PAGE_SIZE >> 9;
1220                 do {
1221                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1222                                 /* No rcu protection needed here devices
1223                                  * can only be removed when no resync is
1224                                  * active, and resync is currently active
1225                                  */
1226                                 rdev = conf->mirrors[d].rdev;
1227                                 if (sync_page_io(rdev,
1228                                                  sect,
1229                                                  s<<9,
1230                                                  bio->bi_io_vec[idx].bv_page,
1231                                                  READ, false)) {
1232                                         success = 1;
1233                                         break;
1234                                 }
1235                         }
1236                         d++;
1237                         if (d == conf->raid_disks)
1238                                 d = 0;
1239                 } while (!success && d != r1_bio->read_disk);
1240
1241                 if (!success) {
1242                         char b[BDEVNAME_SIZE];
1243                         /* Cannot read from anywhere, array is toast */
1244                         md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1245                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1246                                " for block %llu\n",
1247                                mdname(mddev),
1248                                bdevname(bio->bi_bdev, b),
1249                                (unsigned long long)r1_bio->sector);
1250                         md_done_sync(mddev, r1_bio->sectors, 0);
1251                         put_buf(r1_bio);
1252                         return 0;
1253                 }
1254
1255                 start = d;
1256                 /* write it back and re-read */
1257                 while (d != r1_bio->read_disk) {
1258                         if (d == 0)
1259                                 d = conf->raid_disks;
1260                         d--;
1261                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1262                                 continue;
1263                         rdev = conf->mirrors[d].rdev;
1264                         if (sync_page_io(rdev,
1265                                          sect,
1266                                          s<<9,
1267                                          bio->bi_io_vec[idx].bv_page,
1268                                          WRITE, false) == 0) {
1269                                 r1_bio->bios[d]->bi_end_io = NULL;
1270                                 rdev_dec_pending(rdev, mddev);
1271                                 md_error(mddev, rdev);
1272                         } else
1273                                 atomic_add(s, &rdev->corrected_errors);
1274                 }
1275                 d = start;
1276                 while (d != r1_bio->read_disk) {
1277                         if (d == 0)
1278                                 d = conf->raid_disks;
1279                         d--;
1280                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1281                                 continue;
1282                         rdev = conf->mirrors[d].rdev;
1283                         if (sync_page_io(rdev,
1284                                          sect,
1285                                          s<<9,
1286                                          bio->bi_io_vec[idx].bv_page,
1287                                          READ, false) == 0)
1288                                 md_error(mddev, rdev);
1289                 }
1290                 sectors -= s;
1291                 sect += s;
1292                 idx ++;
1293         }
1294         set_bit(R1BIO_Uptodate, &r1_bio->state);
1295         set_bit(BIO_UPTODATE, &bio->bi_flags);
1296         return 1;
1297 }
1298
1299 static int process_checks(r1bio_t *r1_bio)
1300 {
1301         /* We have read all readable devices.  If we haven't
1302          * got the block, then there is no hope left.
1303          * If we have, then we want to do a comparison
1304          * and skip the write if everything is the same.
1305          * If any blocks failed to read, then we need to
1306          * attempt an over-write
1307          */
1308         mddev_t *mddev = r1_bio->mddev;
1309         conf_t *conf = mddev->private;
1310         int primary;
1311         int i;
1312
1313         for (primary = 0; primary < conf->raid_disks; primary++)
1314                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1315                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1316                         r1_bio->bios[primary]->bi_end_io = NULL;
1317                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1318                         break;
1319                 }
1320         r1_bio->read_disk = primary;
1321         for (i = 0; i < conf->raid_disks; i++) {
1322                 int j;
1323                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1324                 struct bio *pbio = r1_bio->bios[primary];
1325                 struct bio *sbio = r1_bio->bios[i];
1326                 int size;
1327
1328                 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1329                         continue;
1330
1331                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1332                         for (j = vcnt; j-- ; ) {
1333                                 struct page *p, *s;
1334                                 p = pbio->bi_io_vec[j].bv_page;
1335                                 s = sbio->bi_io_vec[j].bv_page;
1336                                 if (memcmp(page_address(p),
1337                                            page_address(s),
1338                                            PAGE_SIZE))
1339                                         break;
1340                         }
1341                 } else
1342                         j = 0;
1343                 if (j >= 0)
1344                         mddev->resync_mismatches += r1_bio->sectors;
1345                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1346                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1347                         /* No need to write to this device. */
1348                         sbio->bi_end_io = NULL;
1349                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1350                         continue;
1351                 }
1352                 /* fixup the bio for reuse */
1353                 sbio->bi_vcnt = vcnt;
1354                 sbio->bi_size = r1_bio->sectors << 9;
1355                 sbio->bi_idx = 0;
1356                 sbio->bi_phys_segments = 0;
1357                 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1358                 sbio->bi_flags |= 1 << BIO_UPTODATE;
1359                 sbio->bi_next = NULL;
1360                 sbio->bi_sector = r1_bio->sector +
1361                         conf->mirrors[i].rdev->data_offset;
1362                 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1363                 size = sbio->bi_size;
1364                 for (j = 0; j < vcnt ; j++) {
1365                         struct bio_vec *bi;
1366                         bi = &sbio->bi_io_vec[j];
1367                         bi->bv_offset = 0;
1368                         if (size > PAGE_SIZE)
1369                                 bi->bv_len = PAGE_SIZE;
1370                         else
1371                                 bi->bv_len = size;
1372                         size -= PAGE_SIZE;
1373                         memcpy(page_address(bi->bv_page),
1374                                page_address(pbio->bi_io_vec[j].bv_page),
1375                                PAGE_SIZE);
1376                 }
1377         }
1378         return 0;
1379 }
1380
1381 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1382 {
1383         conf_t *conf = mddev->private;
1384         int i;
1385         int disks = conf->raid_disks;
1386         struct bio *bio, *wbio;
1387
1388         bio = r1_bio->bios[r1_bio->read_disk];
1389
1390         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1391                 /* ouch - failed to read all of that. */
1392                 if (!fix_sync_read_error(r1_bio))
1393                         return;
1394
1395         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1396                 if (process_checks(r1_bio) < 0)
1397                         return;
1398         /*
1399          * schedule writes
1400          */
1401         atomic_set(&r1_bio->remaining, 1);
1402         for (i = 0; i < disks ; i++) {
1403                 wbio = r1_bio->bios[i];
1404                 if (wbio->bi_end_io == NULL ||
1405                     (wbio->bi_end_io == end_sync_read &&
1406                      (i == r1_bio->read_disk ||
1407                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1408                         continue;
1409
1410                 wbio->bi_rw = WRITE;
1411                 wbio->bi_end_io = end_sync_write;
1412                 atomic_inc(&r1_bio->remaining);
1413                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1414
1415                 generic_make_request(wbio);
1416         }
1417
1418         if (atomic_dec_and_test(&r1_bio->remaining)) {
1419                 /* if we're here, all write(s) have completed, so clean up */
1420                 md_done_sync(mddev, r1_bio->sectors, 1);
1421                 put_buf(r1_bio);
1422         }
1423 }
1424
1425 /*
1426  * This is a kernel thread which:
1427  *
1428  *      1.      Retries failed read operations on working mirrors.
1429  *      2.      Updates the raid superblock when problems encounter.
1430  *      3.      Performs writes following reads for array syncronising.
1431  */
1432
1433 static void fix_read_error(conf_t *conf, int read_disk,
1434                            sector_t sect, int sectors)
1435 {
1436         mddev_t *mddev = conf->mddev;
1437         while(sectors) {
1438                 int s = sectors;
1439                 int d = read_disk;
1440                 int success = 0;
1441                 int start;
1442                 mdk_rdev_t *rdev;
1443
1444                 if (s > (PAGE_SIZE>>9))
1445                         s = PAGE_SIZE >> 9;
1446
1447                 do {
1448                         /* Note: no rcu protection needed here
1449                          * as this is synchronous in the raid1d thread
1450                          * which is the thread that might remove
1451                          * a device.  If raid1d ever becomes multi-threaded....
1452                          */
1453                         rdev = conf->mirrors[d].rdev;
1454                         if (rdev &&
1455                             test_bit(In_sync, &rdev->flags) &&
1456                             sync_page_io(rdev, sect, s<<9,
1457                                          conf->tmppage, READ, false))
1458                                 success = 1;
1459                         else {
1460                                 d++;
1461                                 if (d == conf->raid_disks)
1462                                         d = 0;
1463                         }
1464                 } while (!success && d != read_disk);
1465
1466                 if (!success) {
1467                         /* Cannot read from anywhere -- bye bye array */
1468                         md_error(mddev, conf->mirrors[read_disk].rdev);
1469                         break;
1470                 }
1471                 /* write it back and re-read */
1472                 start = d;
1473                 while (d != read_disk) {
1474                         if (d==0)
1475                                 d = conf->raid_disks;
1476                         d--;
1477                         rdev = conf->mirrors[d].rdev;
1478                         if (rdev &&
1479                             test_bit(In_sync, &rdev->flags)) {
1480                                 if (sync_page_io(rdev, sect, s<<9,
1481                                                  conf->tmppage, WRITE, false)
1482                                     == 0)
1483                                         /* Well, this device is dead */
1484                                         md_error(mddev, rdev);
1485                         }
1486                 }
1487                 d = start;
1488                 while (d != read_disk) {
1489                         char b[BDEVNAME_SIZE];
1490                         if (d==0)
1491                                 d = conf->raid_disks;
1492                         d--;
1493                         rdev = conf->mirrors[d].rdev;
1494                         if (rdev &&
1495                             test_bit(In_sync, &rdev->flags)) {
1496                                 if (sync_page_io(rdev, sect, s<<9,
1497                                                  conf->tmppage, READ, false)
1498                                     == 0)
1499                                         /* Well, this device is dead */
1500                                         md_error(mddev, rdev);
1501                                 else {
1502                                         atomic_add(s, &rdev->corrected_errors);
1503                                         printk(KERN_INFO
1504                                                "md/raid1:%s: read error corrected "
1505                                                "(%d sectors at %llu on %s)\n",
1506                                                mdname(mddev), s,
1507                                                (unsigned long long)(sect +
1508                                                    rdev->data_offset),
1509                                                bdevname(rdev->bdev, b));
1510                                 }
1511                         }
1512                 }
1513                 sectors -= s;
1514                 sect += s;
1515         }
1516 }
1517
1518 static void raid1d(mddev_t *mddev)
1519 {
1520         r1bio_t *r1_bio;
1521         struct bio *bio;
1522         unsigned long flags;
1523         conf_t *conf = mddev->private;
1524         struct list_head *head = &conf->retry_list;
1525         mdk_rdev_t *rdev;
1526         struct blk_plug plug;
1527
1528         md_check_recovery(mddev);
1529
1530         blk_start_plug(&plug);
1531         for (;;) {
1532                 char b[BDEVNAME_SIZE];
1533
1534                 if (atomic_read(&mddev->plug_cnt) == 0)
1535                         flush_pending_writes(conf);
1536
1537                 spin_lock_irqsave(&conf->device_lock, flags);
1538                 if (list_empty(head)) {
1539                         spin_unlock_irqrestore(&conf->device_lock, flags);
1540                         break;
1541                 }
1542                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1543                 list_del(head->prev);
1544                 conf->nr_queued--;
1545                 spin_unlock_irqrestore(&conf->device_lock, flags);
1546
1547                 mddev = r1_bio->mddev;
1548                 conf = mddev->private;
1549                 if (test_bit(R1BIO_IsSync, &r1_bio->state))
1550                         sync_request_write(mddev, r1_bio);
1551                 else {
1552                         int disk;
1553
1554                         /* we got a read error. Maybe the drive is bad.  Maybe just
1555                          * the block and we can fix it.
1556                          * We freeze all other IO, and try reading the block from
1557                          * other devices.  When we find one, we re-write
1558                          * and check it that fixes the read error.
1559                          * This is all done synchronously while the array is
1560                          * frozen
1561                          */
1562                         if (mddev->ro == 0) {
1563                                 freeze_array(conf);
1564                                 fix_read_error(conf, r1_bio->read_disk,
1565                                                r1_bio->sector,
1566                                                r1_bio->sectors);
1567                                 unfreeze_array(conf);
1568                         } else
1569                                 md_error(mddev,
1570                                          conf->mirrors[r1_bio->read_disk].rdev);
1571
1572                         bio = r1_bio->bios[r1_bio->read_disk];
1573                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1574                                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1575                                        " read error for block %llu\n",
1576                                        mdname(mddev),
1577                                        bdevname(bio->bi_bdev,b),
1578                                        (unsigned long long)r1_bio->sector);
1579                                 raid_end_bio_io(r1_bio);
1580                         } else {
1581                                 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1582                                 r1_bio->bios[r1_bio->read_disk] =
1583                                         mddev->ro ? IO_BLOCKED : NULL;
1584                                 r1_bio->read_disk = disk;
1585                                 bio_put(bio);
1586                                 bio = bio_clone_mddev(r1_bio->master_bio,
1587                                                       GFP_NOIO, mddev);
1588                                 r1_bio->bios[r1_bio->read_disk] = bio;
1589                                 rdev = conf->mirrors[disk].rdev;
1590                                 printk_ratelimited(
1591                                         KERN_ERR
1592                                         "md/raid1:%s: redirecting sector %llu"
1593                                         " to other mirror: %s\n",
1594                                         mdname(mddev),
1595                                         (unsigned long long)r1_bio->sector,
1596                                         bdevname(rdev->bdev, b));
1597                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1598                                 bio->bi_bdev = rdev->bdev;
1599                                 bio->bi_end_io = raid1_end_read_request;
1600                                 bio->bi_rw = READ | do_sync;
1601                                 bio->bi_private = r1_bio;
1602                                 generic_make_request(bio);
1603                         }
1604                 }
1605                 cond_resched();
1606         }
1607         blk_finish_plug(&plug);
1608 }
1609
1610
1611 static int init_resync(conf_t *conf)
1612 {
1613         int buffs;
1614
1615         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1616         BUG_ON(conf->r1buf_pool);
1617         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1618                                           conf->poolinfo);
1619         if (!conf->r1buf_pool)
1620                 return -ENOMEM;
1621         conf->next_resync = 0;
1622         return 0;
1623 }
1624
1625 /*
1626  * perform a "sync" on one "block"
1627  *
1628  * We need to make sure that no normal I/O request - particularly write
1629  * requests - conflict with active sync requests.
1630  *
1631  * This is achieved by tracking pending requests and a 'barrier' concept
1632  * that can be installed to exclude normal IO requests.
1633  */
1634
1635 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1636 {
1637         conf_t *conf = mddev->private;
1638         r1bio_t *r1_bio;
1639         struct bio *bio;
1640         sector_t max_sector, nr_sectors;
1641         int disk = -1;
1642         int i;
1643         int wonly = -1;
1644         int write_targets = 0, read_targets = 0;
1645         sector_t sync_blocks;
1646         int still_degraded = 0;
1647
1648         if (!conf->r1buf_pool)
1649                 if (init_resync(conf))
1650                         return 0;
1651
1652         max_sector = mddev->dev_sectors;
1653         if (sector_nr >= max_sector) {
1654                 /* If we aborted, we need to abort the
1655                  * sync on the 'current' bitmap chunk (there will
1656                  * only be one in raid1 resync.
1657                  * We can find the current addess in mddev->curr_resync
1658                  */
1659                 if (mddev->curr_resync < max_sector) /* aborted */
1660                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1661                                                 &sync_blocks, 1);
1662                 else /* completed sync */
1663                         conf->fullsync = 0;
1664
1665                 bitmap_close_sync(mddev->bitmap);
1666                 close_sync(conf);
1667                 return 0;
1668         }
1669
1670         if (mddev->bitmap == NULL &&
1671             mddev->recovery_cp == MaxSector &&
1672             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1673             conf->fullsync == 0) {
1674                 *skipped = 1;
1675                 return max_sector - sector_nr;
1676         }
1677         /* before building a request, check if we can skip these blocks..
1678          * This call the bitmap_start_sync doesn't actually record anything
1679          */
1680         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1681             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1682                 /* We can skip this block, and probably several more */
1683                 *skipped = 1;
1684                 return sync_blocks;
1685         }
1686         /*
1687          * If there is non-resync activity waiting for a turn,
1688          * and resync is going fast enough,
1689          * then let it though before starting on this new sync request.
1690          */
1691         if (!go_faster && conf->nr_waiting)
1692                 msleep_interruptible(1000);
1693
1694         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1695         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1696         raise_barrier(conf);
1697
1698         conf->next_resync = sector_nr;
1699
1700         rcu_read_lock();
1701         /*
1702          * If we get a correctably read error during resync or recovery,
1703          * we might want to read from a different device.  So we
1704          * flag all drives that could conceivably be read from for READ,
1705          * and any others (which will be non-In_sync devices) for WRITE.
1706          * If a read fails, we try reading from something else for which READ
1707          * is OK.
1708          */
1709
1710         r1_bio->mddev = mddev;
1711         r1_bio->sector = sector_nr;
1712         r1_bio->state = 0;
1713         set_bit(R1BIO_IsSync, &r1_bio->state);
1714
1715         for (i=0; i < conf->raid_disks; i++) {
1716                 mdk_rdev_t *rdev;
1717                 bio = r1_bio->bios[i];
1718
1719                 /* take from bio_init */
1720                 bio->bi_next = NULL;
1721                 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1722                 bio->bi_flags |= 1 << BIO_UPTODATE;
1723                 bio->bi_comp_cpu = -1;
1724                 bio->bi_rw = READ;
1725                 bio->bi_vcnt = 0;
1726                 bio->bi_idx = 0;
1727                 bio->bi_phys_segments = 0;
1728                 bio->bi_size = 0;
1729                 bio->bi_end_io = NULL;
1730                 bio->bi_private = NULL;
1731
1732                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1733                 if (rdev == NULL ||
1734                            test_bit(Faulty, &rdev->flags)) {
1735                         still_degraded = 1;
1736                         continue;
1737                 } else if (!test_bit(In_sync, &rdev->flags)) {
1738                         bio->bi_rw = WRITE;
1739                         bio->bi_end_io = end_sync_write;
1740                         write_targets ++;
1741                 } else {
1742                         /* may need to read from here */
1743                         bio->bi_rw = READ;
1744                         bio->bi_end_io = end_sync_read;
1745                         if (test_bit(WriteMostly, &rdev->flags)) {
1746                                 if (wonly < 0)
1747                                         wonly = i;
1748                         } else {
1749                                 if (disk < 0)
1750                                         disk = i;
1751                         }
1752                         read_targets++;
1753                 }
1754                 atomic_inc(&rdev->nr_pending);
1755                 bio->bi_sector = sector_nr + rdev->data_offset;
1756                 bio->bi_bdev = rdev->bdev;
1757                 bio->bi_private = r1_bio;
1758         }
1759         rcu_read_unlock();
1760         if (disk < 0)
1761                 disk = wonly;
1762         r1_bio->read_disk = disk;
1763
1764         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1765                 /* extra read targets are also write targets */
1766                 write_targets += read_targets-1;
1767
1768         if (write_targets == 0 || read_targets == 0) {
1769                 /* There is nowhere to write, so all non-sync
1770                  * drives must be failed - so we are finished
1771                  */
1772                 sector_t rv = max_sector - sector_nr;
1773                 *skipped = 1;
1774                 put_buf(r1_bio);
1775                 return rv;
1776         }
1777
1778         if (max_sector > mddev->resync_max)
1779                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1780         nr_sectors = 0;
1781         sync_blocks = 0;
1782         do {
1783                 struct page *page;
1784                 int len = PAGE_SIZE;
1785                 if (sector_nr + (len>>9) > max_sector)
1786                         len = (max_sector - sector_nr) << 9;
1787                 if (len == 0)
1788                         break;
1789                 if (sync_blocks == 0) {
1790                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1791                                                &sync_blocks, still_degraded) &&
1792                             !conf->fullsync &&
1793                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1794                                 break;
1795                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1796                         if ((len >> 9) > sync_blocks)
1797                                 len = sync_blocks<<9;
1798                 }
1799
1800                 for (i=0 ; i < conf->raid_disks; i++) {
1801                         bio = r1_bio->bios[i];
1802                         if (bio->bi_end_io) {
1803                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1804                                 if (bio_add_page(bio, page, len, 0) == 0) {
1805                                         /* stop here */
1806                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1807                                         while (i > 0) {
1808                                                 i--;
1809                                                 bio = r1_bio->bios[i];
1810                                                 if (bio->bi_end_io==NULL)
1811                                                         continue;
1812                                                 /* remove last page from this bio */
1813                                                 bio->bi_vcnt--;
1814                                                 bio->bi_size -= len;
1815                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1816                                         }
1817                                         goto bio_full;
1818                                 }
1819                         }
1820                 }
1821                 nr_sectors += len>>9;
1822                 sector_nr += len>>9;
1823                 sync_blocks -= (len>>9);
1824         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1825  bio_full:
1826         r1_bio->sectors = nr_sectors;
1827
1828         /* For a user-requested sync, we read all readable devices and do a
1829          * compare
1830          */
1831         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1832                 atomic_set(&r1_bio->remaining, read_targets);
1833                 for (i=0; i<conf->raid_disks; i++) {
1834                         bio = r1_bio->bios[i];
1835                         if (bio->bi_end_io == end_sync_read) {
1836                                 md_sync_acct(bio->bi_bdev, nr_sectors);
1837                                 generic_make_request(bio);
1838                         }
1839                 }
1840         } else {
1841                 atomic_set(&r1_bio->remaining, 1);
1842                 bio = r1_bio->bios[r1_bio->read_disk];
1843                 md_sync_acct(bio->bi_bdev, nr_sectors);
1844                 generic_make_request(bio);
1845
1846         }
1847         return nr_sectors;
1848 }
1849
1850 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1851 {
1852         if (sectors)
1853                 return sectors;
1854
1855         return mddev->dev_sectors;
1856 }
1857
1858 static conf_t *setup_conf(mddev_t *mddev)
1859 {
1860         conf_t *conf;
1861         int i;
1862         mirror_info_t *disk;
1863         mdk_rdev_t *rdev;
1864         int err = -ENOMEM;
1865
1866         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1867         if (!conf)
1868                 goto abort;
1869
1870         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1871                                  GFP_KERNEL);
1872         if (!conf->mirrors)
1873                 goto abort;
1874
1875         conf->tmppage = alloc_page(GFP_KERNEL);
1876         if (!conf->tmppage)
1877                 goto abort;
1878
1879         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1880         if (!conf->poolinfo)
1881                 goto abort;
1882         conf->poolinfo->raid_disks = mddev->raid_disks;
1883         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1884                                           r1bio_pool_free,
1885                                           conf->poolinfo);
1886         if (!conf->r1bio_pool)
1887                 goto abort;
1888
1889         conf->poolinfo->mddev = mddev;
1890
1891         spin_lock_init(&conf->device_lock);
1892         list_for_each_entry(rdev, &mddev->disks, same_set) {
1893                 int disk_idx = rdev->raid_disk;
1894                 if (disk_idx >= mddev->raid_disks
1895                     || disk_idx < 0)
1896                         continue;
1897                 disk = conf->mirrors + disk_idx;
1898
1899                 disk->rdev = rdev;
1900
1901                 disk->head_position = 0;
1902         }
1903         conf->raid_disks = mddev->raid_disks;
1904         conf->mddev = mddev;
1905         INIT_LIST_HEAD(&conf->retry_list);
1906
1907         spin_lock_init(&conf->resync_lock);
1908         init_waitqueue_head(&conf->wait_barrier);
1909
1910         bio_list_init(&conf->pending_bio_list);
1911
1912         conf->last_used = -1;
1913         for (i = 0; i < conf->raid_disks; i++) {
1914
1915                 disk = conf->mirrors + i;
1916
1917                 if (!disk->rdev ||
1918                     !test_bit(In_sync, &disk->rdev->flags)) {
1919                         disk->head_position = 0;
1920                         if (disk->rdev)
1921                                 conf->fullsync = 1;
1922                 } else if (conf->last_used < 0)
1923                         /*
1924                          * The first working device is used as a
1925                          * starting point to read balancing.
1926                          */
1927                         conf->last_used = i;
1928         }
1929
1930         err = -EIO;
1931         if (conf->last_used < 0) {
1932                 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1933                        mdname(mddev));
1934                 goto abort;
1935         }
1936         err = -ENOMEM;
1937         conf->thread = md_register_thread(raid1d, mddev, NULL);
1938         if (!conf->thread) {
1939                 printk(KERN_ERR
1940                        "md/raid1:%s: couldn't allocate thread\n",
1941                        mdname(mddev));
1942                 goto abort;
1943         }
1944
1945         return conf;
1946
1947  abort:
1948         if (conf) {
1949                 if (conf->r1bio_pool)
1950                         mempool_destroy(conf->r1bio_pool);
1951                 kfree(conf->mirrors);
1952                 safe_put_page(conf->tmppage);
1953                 kfree(conf->poolinfo);
1954                 kfree(conf);
1955         }
1956         return ERR_PTR(err);
1957 }
1958
1959 static int run(mddev_t *mddev)
1960 {
1961         conf_t *conf;
1962         int i;
1963         mdk_rdev_t *rdev;
1964
1965         if (mddev->level != 1) {
1966                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
1967                        mdname(mddev), mddev->level);
1968                 return -EIO;
1969         }
1970         if (mddev->reshape_position != MaxSector) {
1971                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
1972                        mdname(mddev));
1973                 return -EIO;
1974         }
1975         /*
1976          * copy the already verified devices into our private RAID1
1977          * bookkeeping area. [whatever we allocate in run(),
1978          * should be freed in stop()]
1979          */
1980         if (mddev->private == NULL)
1981                 conf = setup_conf(mddev);
1982         else
1983                 conf = mddev->private;
1984
1985         if (IS_ERR(conf))
1986                 return PTR_ERR(conf);
1987
1988         list_for_each_entry(rdev, &mddev->disks, same_set) {
1989                 if (!mddev->gendisk)
1990                         continue;
1991                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1992                                   rdev->data_offset << 9);
1993                 /* as we don't honour merge_bvec_fn, we must never risk
1994                  * violating it, so limit ->max_segments to 1 lying within
1995                  * a single page, as a one page request is never in violation.
1996                  */
1997                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1998                         blk_queue_max_segments(mddev->queue, 1);
1999                         blk_queue_segment_boundary(mddev->queue,
2000                                                    PAGE_CACHE_SIZE - 1);
2001                 }
2002         }
2003
2004         mddev->degraded = 0;
2005         for (i=0; i < conf->raid_disks; i++)
2006                 if (conf->mirrors[i].rdev == NULL ||
2007                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2008                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2009                         mddev->degraded++;
2010
2011         if (conf->raid_disks - mddev->degraded == 1)
2012                 mddev->recovery_cp = MaxSector;
2013
2014         if (mddev->recovery_cp != MaxSector)
2015                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2016                        " -- starting background reconstruction\n",
2017                        mdname(mddev));
2018         printk(KERN_INFO 
2019                 "md/raid1:%s: active with %d out of %d mirrors\n",
2020                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2021                 mddev->raid_disks);
2022
2023         /*
2024          * Ok, everything is just fine now
2025          */
2026         mddev->thread = conf->thread;
2027         conf->thread = NULL;
2028         mddev->private = conf;
2029
2030         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2031
2032         if (mddev->queue) {
2033                 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2034                 mddev->queue->backing_dev_info.congested_data = mddev;
2035         }
2036         return md_integrity_register(mddev);
2037 }
2038
2039 static int stop(mddev_t *mddev)
2040 {
2041         conf_t *conf = mddev->private;
2042         struct bitmap *bitmap = mddev->bitmap;
2043
2044         /* wait for behind writes to complete */
2045         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2046                 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2047                        mdname(mddev));
2048                 /* need to kick something here to make sure I/O goes? */
2049                 wait_event(bitmap->behind_wait,
2050                            atomic_read(&bitmap->behind_writes) == 0);
2051         }
2052
2053         raise_barrier(conf);
2054         lower_barrier(conf);
2055
2056         md_unregister_thread(mddev->thread);
2057         mddev->thread = NULL;
2058         if (conf->r1bio_pool)
2059                 mempool_destroy(conf->r1bio_pool);
2060         kfree(conf->mirrors);
2061         kfree(conf->poolinfo);
2062         kfree(conf);
2063         mddev->private = NULL;
2064         return 0;
2065 }
2066
2067 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2068 {
2069         /* no resync is happening, and there is enough space
2070          * on all devices, so we can resize.
2071          * We need to make sure resync covers any new space.
2072          * If the array is shrinking we should possibly wait until
2073          * any io in the removed space completes, but it hardly seems
2074          * worth it.
2075          */
2076         md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2077         if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2078                 return -EINVAL;
2079         set_capacity(mddev->gendisk, mddev->array_sectors);
2080         revalidate_disk(mddev->gendisk);
2081         if (sectors > mddev->dev_sectors &&
2082             mddev->recovery_cp > mddev->dev_sectors) {
2083                 mddev->recovery_cp = mddev->dev_sectors;
2084                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2085         }
2086         mddev->dev_sectors = sectors;
2087         mddev->resync_max_sectors = sectors;
2088         return 0;
2089 }
2090
2091 static int raid1_reshape(mddev_t *mddev)
2092 {
2093         /* We need to:
2094          * 1/ resize the r1bio_pool
2095          * 2/ resize conf->mirrors
2096          *
2097          * We allocate a new r1bio_pool if we can.
2098          * Then raise a device barrier and wait until all IO stops.
2099          * Then resize conf->mirrors and swap in the new r1bio pool.
2100          *
2101          * At the same time, we "pack" the devices so that all the missing
2102          * devices have the higher raid_disk numbers.
2103          */
2104         mempool_t *newpool, *oldpool;
2105         struct pool_info *newpoolinfo;
2106         mirror_info_t *newmirrors;
2107         conf_t *conf = mddev->private;
2108         int cnt, raid_disks;
2109         unsigned long flags;
2110         int d, d2, err;
2111
2112         /* Cannot change chunk_size, layout, or level */
2113         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2114             mddev->layout != mddev->new_layout ||
2115             mddev->level != mddev->new_level) {
2116                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2117                 mddev->new_layout = mddev->layout;
2118                 mddev->new_level = mddev->level;
2119                 return -EINVAL;
2120         }
2121
2122         err = md_allow_write(mddev);
2123         if (err)
2124                 return err;
2125
2126         raid_disks = mddev->raid_disks + mddev->delta_disks;
2127
2128         if (raid_disks < conf->raid_disks) {
2129                 cnt=0;
2130                 for (d= 0; d < conf->raid_disks; d++)
2131                         if (conf->mirrors[d].rdev)
2132                                 cnt++;
2133                 if (cnt > raid_disks)
2134                         return -EBUSY;
2135         }
2136
2137         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2138         if (!newpoolinfo)
2139                 return -ENOMEM;
2140         newpoolinfo->mddev = mddev;
2141         newpoolinfo->raid_disks = raid_disks;
2142
2143         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2144                                  r1bio_pool_free, newpoolinfo);
2145         if (!newpool) {
2146                 kfree(newpoolinfo);
2147                 return -ENOMEM;
2148         }
2149         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2150         if (!newmirrors) {
2151                 kfree(newpoolinfo);
2152                 mempool_destroy(newpool);
2153                 return -ENOMEM;
2154         }
2155
2156         raise_barrier(conf);
2157
2158         /* ok, everything is stopped */
2159         oldpool = conf->r1bio_pool;
2160         conf->r1bio_pool = newpool;
2161
2162         for (d = d2 = 0; d < conf->raid_disks; d++) {
2163                 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2164                 if (rdev && rdev->raid_disk != d2) {
2165                         sysfs_unlink_rdev(mddev, rdev);
2166                         rdev->raid_disk = d2;
2167                         sysfs_unlink_rdev(mddev, rdev);
2168                         if (sysfs_link_rdev(mddev, rdev))
2169                                 printk(KERN_WARNING
2170                                        "md/raid1:%s: cannot register rd%d\n",
2171                                        mdname(mddev), rdev->raid_disk);
2172                 }
2173                 if (rdev)
2174                         newmirrors[d2++].rdev = rdev;
2175         }
2176         kfree(conf->mirrors);
2177         conf->mirrors = newmirrors;
2178         kfree(conf->poolinfo);
2179         conf->poolinfo = newpoolinfo;
2180
2181         spin_lock_irqsave(&conf->device_lock, flags);
2182         mddev->degraded += (raid_disks - conf->raid_disks);
2183         spin_unlock_irqrestore(&conf->device_lock, flags);
2184         conf->raid_disks = mddev->raid_disks = raid_disks;
2185         mddev->delta_disks = 0;
2186
2187         conf->last_used = 0; /* just make sure it is in-range */
2188         lower_barrier(conf);
2189
2190         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2191         md_wakeup_thread(mddev->thread);
2192
2193         mempool_destroy(oldpool);
2194         return 0;
2195 }
2196
2197 static void raid1_quiesce(mddev_t *mddev, int state)
2198 {
2199         conf_t *conf = mddev->private;
2200
2201         switch(state) {
2202         case 2: /* wake for suspend */
2203                 wake_up(&conf->wait_barrier);
2204                 break;
2205         case 1:
2206                 raise_barrier(conf);
2207                 break;
2208         case 0:
2209                 lower_barrier(conf);
2210                 break;
2211         }
2212 }
2213
2214 static void *raid1_takeover(mddev_t *mddev)
2215 {
2216         /* raid1 can take over:
2217          *  raid5 with 2 devices, any layout or chunk size
2218          */
2219         if (mddev->level == 5 && mddev->raid_disks == 2) {
2220                 conf_t *conf;
2221                 mddev->new_level = 1;
2222                 mddev->new_layout = 0;
2223                 mddev->new_chunk_sectors = 0;
2224                 conf = setup_conf(mddev);
2225                 if (!IS_ERR(conf))
2226                         conf->barrier = 1;
2227                 return conf;
2228         }
2229         return ERR_PTR(-EINVAL);
2230 }
2231
2232 static struct mdk_personality raid1_personality =
2233 {
2234         .name           = "raid1",
2235         .level          = 1,
2236         .owner          = THIS_MODULE,
2237         .make_request   = make_request,
2238         .run            = run,
2239         .stop           = stop,
2240         .status         = status,
2241         .error_handler  = error,
2242         .hot_add_disk   = raid1_add_disk,
2243         .hot_remove_disk= raid1_remove_disk,
2244         .spare_active   = raid1_spare_active,
2245         .sync_request   = sync_request,
2246         .resize         = raid1_resize,
2247         .size           = raid1_size,
2248         .check_reshape  = raid1_reshape,
2249         .quiesce        = raid1_quiesce,
2250         .takeover       = raid1_takeover,
2251 };
2252
2253 static int __init raid_init(void)
2254 {
2255         return register_md_personality(&raid1_personality);
2256 }
2257
2258 static void raid_exit(void)
2259 {
2260         unregister_md_personality(&raid1_personality);
2261 }
2262
2263 module_init(raid_init);
2264 module_exit(raid_exit);
2265 MODULE_LICENSE("GPL");
2266 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2267 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2268 MODULE_ALIAS("md-raid1");
2269 MODULE_ALIAS("md-level-1");