md/bitmap: add new 'space' attribute for bitmaps.
[pandora-kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389         BUG_ON(mddev->suspended);
390         mddev->suspended = 1;
391         synchronize_rcu();
392         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393         mddev->pers->quiesce(mddev, 1);
394
395         del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(struct mddev *mddev)
400 {
401         mddev->suspended = 0;
402         wake_up(&mddev->sb_wait);
403         mddev->pers->quiesce(mddev, 0);
404
405         md_wakeup_thread(mddev->thread);
406         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 }
408 EXPORT_SYMBOL_GPL(mddev_resume);
409
410 int mddev_congested(struct mddev *mddev, int bits)
411 {
412         return mddev->suspended;
413 }
414 EXPORT_SYMBOL(mddev_congested);
415
416 /*
417  * Generic flush handling for md
418  */
419
420 static void md_end_flush(struct bio *bio, int err)
421 {
422         struct md_rdev *rdev = bio->bi_private;
423         struct mddev *mddev = rdev->mddev;
424
425         rdev_dec_pending(rdev, mddev);
426
427         if (atomic_dec_and_test(&mddev->flush_pending)) {
428                 /* The pre-request flush has finished */
429                 queue_work(md_wq, &mddev->flush_work);
430         }
431         bio_put(bio);
432 }
433
434 static void md_submit_flush_data(struct work_struct *ws);
435
436 static void submit_flushes(struct work_struct *ws)
437 {
438         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
439         struct md_rdev *rdev;
440
441         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
442         atomic_set(&mddev->flush_pending, 1);
443         rcu_read_lock();
444         rdev_for_each_rcu(rdev, mddev)
445                 if (rdev->raid_disk >= 0 &&
446                     !test_bit(Faulty, &rdev->flags)) {
447                         /* Take two references, one is dropped
448                          * when request finishes, one after
449                          * we reclaim rcu_read_lock
450                          */
451                         struct bio *bi;
452                         atomic_inc(&rdev->nr_pending);
453                         atomic_inc(&rdev->nr_pending);
454                         rcu_read_unlock();
455                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
456                         bi->bi_end_io = md_end_flush;
457                         bi->bi_private = rdev;
458                         bi->bi_bdev = rdev->bdev;
459                         atomic_inc(&mddev->flush_pending);
460                         submit_bio(WRITE_FLUSH, bi);
461                         rcu_read_lock();
462                         rdev_dec_pending(rdev, mddev);
463                 }
464         rcu_read_unlock();
465         if (atomic_dec_and_test(&mddev->flush_pending))
466                 queue_work(md_wq, &mddev->flush_work);
467 }
468
469 static void md_submit_flush_data(struct work_struct *ws)
470 {
471         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
472         struct bio *bio = mddev->flush_bio;
473
474         if (bio->bi_size == 0)
475                 /* an empty barrier - all done */
476                 bio_endio(bio, 0);
477         else {
478                 bio->bi_rw &= ~REQ_FLUSH;
479                 mddev->pers->make_request(mddev, bio);
480         }
481
482         mddev->flush_bio = NULL;
483         wake_up(&mddev->sb_wait);
484 }
485
486 void md_flush_request(struct mddev *mddev, struct bio *bio)
487 {
488         spin_lock_irq(&mddev->write_lock);
489         wait_event_lock_irq(mddev->sb_wait,
490                             !mddev->flush_bio,
491                             mddev->write_lock, /*nothing*/);
492         mddev->flush_bio = bio;
493         spin_unlock_irq(&mddev->write_lock);
494
495         INIT_WORK(&mddev->flush_work, submit_flushes);
496         queue_work(md_wq, &mddev->flush_work);
497 }
498 EXPORT_SYMBOL(md_flush_request);
499
500 /* Support for plugging.
501  * This mirrors the plugging support in request_queue, but does not
502  * require having a whole queue or request structures.
503  * We allocate an md_plug_cb for each md device and each thread it gets
504  * plugged on.  This links tot the private plug_handle structure in the
505  * personality data where we keep a count of the number of outstanding
506  * plugs so other code can see if a plug is active.
507  */
508 struct md_plug_cb {
509         struct blk_plug_cb cb;
510         struct mddev *mddev;
511 };
512
513 static void plugger_unplug(struct blk_plug_cb *cb)
514 {
515         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
516         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
517                 md_wakeup_thread(mdcb->mddev->thread);
518         kfree(mdcb);
519 }
520
521 /* Check that an unplug wakeup will come shortly.
522  * If not, wakeup the md thread immediately
523  */
524 int mddev_check_plugged(struct mddev *mddev)
525 {
526         struct blk_plug *plug = current->plug;
527         struct md_plug_cb *mdcb;
528
529         if (!plug)
530                 return 0;
531
532         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
533                 if (mdcb->cb.callback == plugger_unplug &&
534                     mdcb->mddev == mddev) {
535                         /* Already on the list, move to top */
536                         if (mdcb != list_first_entry(&plug->cb_list,
537                                                     struct md_plug_cb,
538                                                     cb.list))
539                                 list_move(&mdcb->cb.list, &plug->cb_list);
540                         return 1;
541                 }
542         }
543         /* Not currently on the callback list */
544         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
545         if (!mdcb)
546                 return 0;
547
548         mdcb->mddev = mddev;
549         mdcb->cb.callback = plugger_unplug;
550         atomic_inc(&mddev->plug_cnt);
551         list_add(&mdcb->cb.list, &plug->cb_list);
552         return 1;
553 }
554 EXPORT_SYMBOL_GPL(mddev_check_plugged);
555
556 static inline struct mddev *mddev_get(struct mddev *mddev)
557 {
558         atomic_inc(&mddev->active);
559         return mddev;
560 }
561
562 static void mddev_delayed_delete(struct work_struct *ws);
563
564 static void mddev_put(struct mddev *mddev)
565 {
566         struct bio_set *bs = NULL;
567
568         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569                 return;
570         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
571             mddev->ctime == 0 && !mddev->hold_active) {
572                 /* Array is not configured at all, and not held active,
573                  * so destroy it */
574                 list_del_init(&mddev->all_mddevs);
575                 bs = mddev->bio_set;
576                 mddev->bio_set = NULL;
577                 if (mddev->gendisk) {
578                         /* We did a probe so need to clean up.  Call
579                          * queue_work inside the spinlock so that
580                          * flush_workqueue() after mddev_find will
581                          * succeed in waiting for the work to be done.
582                          */
583                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
584                         queue_work(md_misc_wq, &mddev->del_work);
585                 } else
586                         kfree(mddev);
587         }
588         spin_unlock(&all_mddevs_lock);
589         if (bs)
590                 bioset_free(bs);
591 }
592
593 void mddev_init(struct mddev *mddev)
594 {
595         mutex_init(&mddev->open_mutex);
596         mutex_init(&mddev->reconfig_mutex);
597         mutex_init(&mddev->bitmap_info.mutex);
598         INIT_LIST_HEAD(&mddev->disks);
599         INIT_LIST_HEAD(&mddev->all_mddevs);
600         init_timer(&mddev->safemode_timer);
601         atomic_set(&mddev->active, 1);
602         atomic_set(&mddev->openers, 0);
603         atomic_set(&mddev->active_io, 0);
604         atomic_set(&mddev->plug_cnt, 0);
605         spin_lock_init(&mddev->write_lock);
606         atomic_set(&mddev->flush_pending, 0);
607         init_waitqueue_head(&mddev->sb_wait);
608         init_waitqueue_head(&mddev->recovery_wait);
609         mddev->reshape_position = MaxSector;
610         mddev->reshape_backwards = 0;
611         mddev->resync_min = 0;
612         mddev->resync_max = MaxSector;
613         mddev->level = LEVEL_NONE;
614 }
615 EXPORT_SYMBOL_GPL(mddev_init);
616
617 static struct mddev * mddev_find(dev_t unit)
618 {
619         struct mddev *mddev, *new = NULL;
620
621         if (unit && MAJOR(unit) != MD_MAJOR)
622                 unit &= ~((1<<MdpMinorShift)-1);
623
624  retry:
625         spin_lock(&all_mddevs_lock);
626
627         if (unit) {
628                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
629                         if (mddev->unit == unit) {
630                                 mddev_get(mddev);
631                                 spin_unlock(&all_mddevs_lock);
632                                 kfree(new);
633                                 return mddev;
634                         }
635
636                 if (new) {
637                         list_add(&new->all_mddevs, &all_mddevs);
638                         spin_unlock(&all_mddevs_lock);
639                         new->hold_active = UNTIL_IOCTL;
640                         return new;
641                 }
642         } else if (new) {
643                 /* find an unused unit number */
644                 static int next_minor = 512;
645                 int start = next_minor;
646                 int is_free = 0;
647                 int dev = 0;
648                 while (!is_free) {
649                         dev = MKDEV(MD_MAJOR, next_minor);
650                         next_minor++;
651                         if (next_minor > MINORMASK)
652                                 next_minor = 0;
653                         if (next_minor == start) {
654                                 /* Oh dear, all in use. */
655                                 spin_unlock(&all_mddevs_lock);
656                                 kfree(new);
657                                 return NULL;
658                         }
659                                 
660                         is_free = 1;
661                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
662                                 if (mddev->unit == dev) {
663                                         is_free = 0;
664                                         break;
665                                 }
666                 }
667                 new->unit = dev;
668                 new->md_minor = MINOR(dev);
669                 new->hold_active = UNTIL_STOP;
670                 list_add(&new->all_mddevs, &all_mddevs);
671                 spin_unlock(&all_mddevs_lock);
672                 return new;
673         }
674         spin_unlock(&all_mddevs_lock);
675
676         new = kzalloc(sizeof(*new), GFP_KERNEL);
677         if (!new)
678                 return NULL;
679
680         new->unit = unit;
681         if (MAJOR(unit) == MD_MAJOR)
682                 new->md_minor = MINOR(unit);
683         else
684                 new->md_minor = MINOR(unit) >> MdpMinorShift;
685
686         mddev_init(new);
687
688         goto retry;
689 }
690
691 static inline int mddev_lock(struct mddev * mddev)
692 {
693         return mutex_lock_interruptible(&mddev->reconfig_mutex);
694 }
695
696 static inline int mddev_is_locked(struct mddev *mddev)
697 {
698         return mutex_is_locked(&mddev->reconfig_mutex);
699 }
700
701 static inline int mddev_trylock(struct mddev * mddev)
702 {
703         return mutex_trylock(&mddev->reconfig_mutex);
704 }
705
706 static struct attribute_group md_redundancy_group;
707
708 static void mddev_unlock(struct mddev * mddev)
709 {
710         if (mddev->to_remove) {
711                 /* These cannot be removed under reconfig_mutex as
712                  * an access to the files will try to take reconfig_mutex
713                  * while holding the file unremovable, which leads to
714                  * a deadlock.
715                  * So hold set sysfs_active while the remove in happeing,
716                  * and anything else which might set ->to_remove or my
717                  * otherwise change the sysfs namespace will fail with
718                  * -EBUSY if sysfs_active is still set.
719                  * We set sysfs_active under reconfig_mutex and elsewhere
720                  * test it under the same mutex to ensure its correct value
721                  * is seen.
722                  */
723                 struct attribute_group *to_remove = mddev->to_remove;
724                 mddev->to_remove = NULL;
725                 mddev->sysfs_active = 1;
726                 mutex_unlock(&mddev->reconfig_mutex);
727
728                 if (mddev->kobj.sd) {
729                         if (to_remove != &md_redundancy_group)
730                                 sysfs_remove_group(&mddev->kobj, to_remove);
731                         if (mddev->pers == NULL ||
732                             mddev->pers->sync_request == NULL) {
733                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
734                                 if (mddev->sysfs_action)
735                                         sysfs_put(mddev->sysfs_action);
736                                 mddev->sysfs_action = NULL;
737                         }
738                 }
739                 mddev->sysfs_active = 0;
740         } else
741                 mutex_unlock(&mddev->reconfig_mutex);
742
743         /* As we've dropped the mutex we need a spinlock to
744          * make sure the thread doesn't disappear
745          */
746         spin_lock(&pers_lock);
747         md_wakeup_thread(mddev->thread);
748         spin_unlock(&pers_lock);
749 }
750
751 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
752 {
753         struct md_rdev *rdev;
754
755         rdev_for_each(rdev, mddev)
756                 if (rdev->desc_nr == nr)
757                         return rdev;
758
759         return NULL;
760 }
761
762 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
763 {
764         struct md_rdev *rdev;
765
766         rdev_for_each(rdev, mddev)
767                 if (rdev->bdev->bd_dev == dev)
768                         return rdev;
769
770         return NULL;
771 }
772
773 static struct md_personality *find_pers(int level, char *clevel)
774 {
775         struct md_personality *pers;
776         list_for_each_entry(pers, &pers_list, list) {
777                 if (level != LEVEL_NONE && pers->level == level)
778                         return pers;
779                 if (strcmp(pers->name, clevel)==0)
780                         return pers;
781         }
782         return NULL;
783 }
784
785 /* return the offset of the super block in 512byte sectors */
786 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
787 {
788         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
789         return MD_NEW_SIZE_SECTORS(num_sectors);
790 }
791
792 static int alloc_disk_sb(struct md_rdev * rdev)
793 {
794         if (rdev->sb_page)
795                 MD_BUG();
796
797         rdev->sb_page = alloc_page(GFP_KERNEL);
798         if (!rdev->sb_page) {
799                 printk(KERN_ALERT "md: out of memory.\n");
800                 return -ENOMEM;
801         }
802
803         return 0;
804 }
805
806 void md_rdev_clear(struct md_rdev *rdev)
807 {
808         if (rdev->sb_page) {
809                 put_page(rdev->sb_page);
810                 rdev->sb_loaded = 0;
811                 rdev->sb_page = NULL;
812                 rdev->sb_start = 0;
813                 rdev->sectors = 0;
814         }
815         if (rdev->bb_page) {
816                 put_page(rdev->bb_page);
817                 rdev->bb_page = NULL;
818         }
819         kfree(rdev->badblocks.page);
820         rdev->badblocks.page = NULL;
821 }
822 EXPORT_SYMBOL_GPL(md_rdev_clear);
823
824 static void super_written(struct bio *bio, int error)
825 {
826         struct md_rdev *rdev = bio->bi_private;
827         struct mddev *mddev = rdev->mddev;
828
829         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
830                 printk("md: super_written gets error=%d, uptodate=%d\n",
831                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
832                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
833                 md_error(mddev, rdev);
834         }
835
836         if (atomic_dec_and_test(&mddev->pending_writes))
837                 wake_up(&mddev->sb_wait);
838         bio_put(bio);
839 }
840
841 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
842                    sector_t sector, int size, struct page *page)
843 {
844         /* write first size bytes of page to sector of rdev
845          * Increment mddev->pending_writes before returning
846          * and decrement it on completion, waking up sb_wait
847          * if zero is reached.
848          * If an error occurred, call md_error
849          */
850         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
851
852         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
853         bio->bi_sector = sector;
854         bio_add_page(bio, page, size, 0);
855         bio->bi_private = rdev;
856         bio->bi_end_io = super_written;
857
858         atomic_inc(&mddev->pending_writes);
859         submit_bio(WRITE_FLUSH_FUA, bio);
860 }
861
862 void md_super_wait(struct mddev *mddev)
863 {
864         /* wait for all superblock writes that were scheduled to complete */
865         DEFINE_WAIT(wq);
866         for(;;) {
867                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
868                 if (atomic_read(&mddev->pending_writes)==0)
869                         break;
870                 schedule();
871         }
872         finish_wait(&mddev->sb_wait, &wq);
873 }
874
875 static void bi_complete(struct bio *bio, int error)
876 {
877         complete((struct completion*)bio->bi_private);
878 }
879
880 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
881                  struct page *page, int rw, bool metadata_op)
882 {
883         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
884         struct completion event;
885         int ret;
886
887         rw |= REQ_SYNC;
888
889         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
890                 rdev->meta_bdev : rdev->bdev;
891         if (metadata_op)
892                 bio->bi_sector = sector + rdev->sb_start;
893         else if (rdev->mddev->reshape_position != MaxSector &&
894                  (rdev->mddev->reshape_backwards ==
895                   (sector >= rdev->mddev->reshape_position)))
896                 bio->bi_sector = sector + rdev->new_data_offset;
897         else
898                 bio->bi_sector = sector + rdev->data_offset;
899         bio_add_page(bio, page, size, 0);
900         init_completion(&event);
901         bio->bi_private = &event;
902         bio->bi_end_io = bi_complete;
903         submit_bio(rw, bio);
904         wait_for_completion(&event);
905
906         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
907         bio_put(bio);
908         return ret;
909 }
910 EXPORT_SYMBOL_GPL(sync_page_io);
911
912 static int read_disk_sb(struct md_rdev * rdev, int size)
913 {
914         char b[BDEVNAME_SIZE];
915         if (!rdev->sb_page) {
916                 MD_BUG();
917                 return -EINVAL;
918         }
919         if (rdev->sb_loaded)
920                 return 0;
921
922
923         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
924                 goto fail;
925         rdev->sb_loaded = 1;
926         return 0;
927
928 fail:
929         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
930                 bdevname(rdev->bdev,b));
931         return -EINVAL;
932 }
933
934 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 {
936         return  sb1->set_uuid0 == sb2->set_uuid0 &&
937                 sb1->set_uuid1 == sb2->set_uuid1 &&
938                 sb1->set_uuid2 == sb2->set_uuid2 &&
939                 sb1->set_uuid3 == sb2->set_uuid3;
940 }
941
942 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
943 {
944         int ret;
945         mdp_super_t *tmp1, *tmp2;
946
947         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
948         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
949
950         if (!tmp1 || !tmp2) {
951                 ret = 0;
952                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
953                 goto abort;
954         }
955
956         *tmp1 = *sb1;
957         *tmp2 = *sb2;
958
959         /*
960          * nr_disks is not constant
961          */
962         tmp1->nr_disks = 0;
963         tmp2->nr_disks = 0;
964
965         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
966 abort:
967         kfree(tmp1);
968         kfree(tmp2);
969         return ret;
970 }
971
972
973 static u32 md_csum_fold(u32 csum)
974 {
975         csum = (csum & 0xffff) + (csum >> 16);
976         return (csum & 0xffff) + (csum >> 16);
977 }
978
979 static unsigned int calc_sb_csum(mdp_super_t * sb)
980 {
981         u64 newcsum = 0;
982         u32 *sb32 = (u32*)sb;
983         int i;
984         unsigned int disk_csum, csum;
985
986         disk_csum = sb->sb_csum;
987         sb->sb_csum = 0;
988
989         for (i = 0; i < MD_SB_BYTES/4 ; i++)
990                 newcsum += sb32[i];
991         csum = (newcsum & 0xffffffff) + (newcsum>>32);
992
993
994 #ifdef CONFIG_ALPHA
995         /* This used to use csum_partial, which was wrong for several
996          * reasons including that different results are returned on
997          * different architectures.  It isn't critical that we get exactly
998          * the same return value as before (we always csum_fold before
999          * testing, and that removes any differences).  However as we
1000          * know that csum_partial always returned a 16bit value on
1001          * alphas, do a fold to maximise conformity to previous behaviour.
1002          */
1003         sb->sb_csum = md_csum_fold(disk_csum);
1004 #else
1005         sb->sb_csum = disk_csum;
1006 #endif
1007         return csum;
1008 }
1009
1010
1011 /*
1012  * Handle superblock details.
1013  * We want to be able to handle multiple superblock formats
1014  * so we have a common interface to them all, and an array of
1015  * different handlers.
1016  * We rely on user-space to write the initial superblock, and support
1017  * reading and updating of superblocks.
1018  * Interface methods are:
1019  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1020  *      loads and validates a superblock on dev.
1021  *      if refdev != NULL, compare superblocks on both devices
1022  *    Return:
1023  *      0 - dev has a superblock that is compatible with refdev
1024  *      1 - dev has a superblock that is compatible and newer than refdev
1025  *          so dev should be used as the refdev in future
1026  *     -EINVAL superblock incompatible or invalid
1027  *     -othererror e.g. -EIO
1028  *
1029  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1030  *      Verify that dev is acceptable into mddev.
1031  *       The first time, mddev->raid_disks will be 0, and data from
1032  *       dev should be merged in.  Subsequent calls check that dev
1033  *       is new enough.  Return 0 or -EINVAL
1034  *
1035  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1036  *     Update the superblock for rdev with data in mddev
1037  *     This does not write to disc.
1038  *
1039  */
1040
1041 struct super_type  {
1042         char                *name;
1043         struct module       *owner;
1044         int                 (*load_super)(struct md_rdev *rdev,
1045                                           struct md_rdev *refdev,
1046                                           int minor_version);
1047         int                 (*validate_super)(struct mddev *mddev,
1048                                               struct md_rdev *rdev);
1049         void                (*sync_super)(struct mddev *mddev,
1050                                           struct md_rdev *rdev);
1051         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1052                                                 sector_t num_sectors);
1053         int                 (*allow_new_offset)(struct md_rdev *rdev,
1054                                                 unsigned long long new_offset);
1055 };
1056
1057 /*
1058  * Check that the given mddev has no bitmap.
1059  *
1060  * This function is called from the run method of all personalities that do not
1061  * support bitmaps. It prints an error message and returns non-zero if mddev
1062  * has a bitmap. Otherwise, it returns 0.
1063  *
1064  */
1065 int md_check_no_bitmap(struct mddev *mddev)
1066 {
1067         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1068                 return 0;
1069         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1070                 mdname(mddev), mddev->pers->name);
1071         return 1;
1072 }
1073 EXPORT_SYMBOL(md_check_no_bitmap);
1074
1075 /*
1076  * load_super for 0.90.0 
1077  */
1078 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1079 {
1080         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1081         mdp_super_t *sb;
1082         int ret;
1083
1084         /*
1085          * Calculate the position of the superblock (512byte sectors),
1086          * it's at the end of the disk.
1087          *
1088          * It also happens to be a multiple of 4Kb.
1089          */
1090         rdev->sb_start = calc_dev_sboffset(rdev);
1091
1092         ret = read_disk_sb(rdev, MD_SB_BYTES);
1093         if (ret) return ret;
1094
1095         ret = -EINVAL;
1096
1097         bdevname(rdev->bdev, b);
1098         sb = page_address(rdev->sb_page);
1099
1100         if (sb->md_magic != MD_SB_MAGIC) {
1101                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1102                        b);
1103                 goto abort;
1104         }
1105
1106         if (sb->major_version != 0 ||
1107             sb->minor_version < 90 ||
1108             sb->minor_version > 91) {
1109                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1110                         sb->major_version, sb->minor_version,
1111                         b);
1112                 goto abort;
1113         }
1114
1115         if (sb->raid_disks <= 0)
1116                 goto abort;
1117
1118         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1119                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1120                         b);
1121                 goto abort;
1122         }
1123
1124         rdev->preferred_minor = sb->md_minor;
1125         rdev->data_offset = 0;
1126         rdev->new_data_offset = 0;
1127         rdev->sb_size = MD_SB_BYTES;
1128         rdev->badblocks.shift = -1;
1129
1130         if (sb->level == LEVEL_MULTIPATH)
1131                 rdev->desc_nr = -1;
1132         else
1133                 rdev->desc_nr = sb->this_disk.number;
1134
1135         if (!refdev) {
1136                 ret = 1;
1137         } else {
1138                 __u64 ev1, ev2;
1139                 mdp_super_t *refsb = page_address(refdev->sb_page);
1140                 if (!uuid_equal(refsb, sb)) {
1141                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1142                                 b, bdevname(refdev->bdev,b2));
1143                         goto abort;
1144                 }
1145                 if (!sb_equal(refsb, sb)) {
1146                         printk(KERN_WARNING "md: %s has same UUID"
1147                                " but different superblock to %s\n",
1148                                b, bdevname(refdev->bdev, b2));
1149                         goto abort;
1150                 }
1151                 ev1 = md_event(sb);
1152                 ev2 = md_event(refsb);
1153                 if (ev1 > ev2)
1154                         ret = 1;
1155                 else 
1156                         ret = 0;
1157         }
1158         rdev->sectors = rdev->sb_start;
1159         /* Limit to 4TB as metadata cannot record more than that */
1160         if (rdev->sectors >= (2ULL << 32))
1161                 rdev->sectors = (2ULL << 32) - 2;
1162
1163         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1164                 /* "this cannot possibly happen" ... */
1165                 ret = -EINVAL;
1166
1167  abort:
1168         return ret;
1169 }
1170
1171 /*
1172  * validate_super for 0.90.0
1173  */
1174 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1175 {
1176         mdp_disk_t *desc;
1177         mdp_super_t *sb = page_address(rdev->sb_page);
1178         __u64 ev1 = md_event(sb);
1179
1180         rdev->raid_disk = -1;
1181         clear_bit(Faulty, &rdev->flags);
1182         clear_bit(In_sync, &rdev->flags);
1183         clear_bit(WriteMostly, &rdev->flags);
1184
1185         if (mddev->raid_disks == 0) {
1186                 mddev->major_version = 0;
1187                 mddev->minor_version = sb->minor_version;
1188                 mddev->patch_version = sb->patch_version;
1189                 mddev->external = 0;
1190                 mddev->chunk_sectors = sb->chunk_size >> 9;
1191                 mddev->ctime = sb->ctime;
1192                 mddev->utime = sb->utime;
1193                 mddev->level = sb->level;
1194                 mddev->clevel[0] = 0;
1195                 mddev->layout = sb->layout;
1196                 mddev->raid_disks = sb->raid_disks;
1197                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1198                 mddev->events = ev1;
1199                 mddev->bitmap_info.offset = 0;
1200                 mddev->bitmap_info.space = 0;
1201                 /* bitmap can use 60 K after the 4K superblocks */
1202                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1203                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1204                 mddev->reshape_backwards = 0;
1205
1206                 if (mddev->minor_version >= 91) {
1207                         mddev->reshape_position = sb->reshape_position;
1208                         mddev->delta_disks = sb->delta_disks;
1209                         mddev->new_level = sb->new_level;
1210                         mddev->new_layout = sb->new_layout;
1211                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1212                         if (mddev->delta_disks < 0)
1213                                 mddev->reshape_backwards = 1;
1214                 } else {
1215                         mddev->reshape_position = MaxSector;
1216                         mddev->delta_disks = 0;
1217                         mddev->new_level = mddev->level;
1218                         mddev->new_layout = mddev->layout;
1219                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1220                 }
1221
1222                 if (sb->state & (1<<MD_SB_CLEAN))
1223                         mddev->recovery_cp = MaxSector;
1224                 else {
1225                         if (sb->events_hi == sb->cp_events_hi && 
1226                                 sb->events_lo == sb->cp_events_lo) {
1227                                 mddev->recovery_cp = sb->recovery_cp;
1228                         } else
1229                                 mddev->recovery_cp = 0;
1230                 }
1231
1232                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1233                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1234                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1235                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1236
1237                 mddev->max_disks = MD_SB_DISKS;
1238
1239                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1240                     mddev->bitmap_info.file == NULL) {
1241                         mddev->bitmap_info.offset =
1242                                 mddev->bitmap_info.default_offset;
1243                         mddev->bitmap_info.space =
1244                                 mddev->bitmap_info.space;
1245                 }
1246
1247         } else if (mddev->pers == NULL) {
1248                 /* Insist on good event counter while assembling, except
1249                  * for spares (which don't need an event count) */
1250                 ++ev1;
1251                 if (sb->disks[rdev->desc_nr].state & (
1252                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1253                         if (ev1 < mddev->events) 
1254                                 return -EINVAL;
1255         } else if (mddev->bitmap) {
1256                 /* if adding to array with a bitmap, then we can accept an
1257                  * older device ... but not too old.
1258                  */
1259                 if (ev1 < mddev->bitmap->events_cleared)
1260                         return 0;
1261         } else {
1262                 if (ev1 < mddev->events)
1263                         /* just a hot-add of a new device, leave raid_disk at -1 */
1264                         return 0;
1265         }
1266
1267         if (mddev->level != LEVEL_MULTIPATH) {
1268                 desc = sb->disks + rdev->desc_nr;
1269
1270                 if (desc->state & (1<<MD_DISK_FAULTY))
1271                         set_bit(Faulty, &rdev->flags);
1272                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1273                             desc->raid_disk < mddev->raid_disks */) {
1274                         set_bit(In_sync, &rdev->flags);
1275                         rdev->raid_disk = desc->raid_disk;
1276                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1277                         /* active but not in sync implies recovery up to
1278                          * reshape position.  We don't know exactly where
1279                          * that is, so set to zero for now */
1280                         if (mddev->minor_version >= 91) {
1281                                 rdev->recovery_offset = 0;
1282                                 rdev->raid_disk = desc->raid_disk;
1283                         }
1284                 }
1285                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1286                         set_bit(WriteMostly, &rdev->flags);
1287         } else /* MULTIPATH are always insync */
1288                 set_bit(In_sync, &rdev->flags);
1289         return 0;
1290 }
1291
1292 /*
1293  * sync_super for 0.90.0
1294  */
1295 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1296 {
1297         mdp_super_t *sb;
1298         struct md_rdev *rdev2;
1299         int next_spare = mddev->raid_disks;
1300
1301
1302         /* make rdev->sb match mddev data..
1303          *
1304          * 1/ zero out disks
1305          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1306          * 3/ any empty disks < next_spare become removed
1307          *
1308          * disks[0] gets initialised to REMOVED because
1309          * we cannot be sure from other fields if it has
1310          * been initialised or not.
1311          */
1312         int i;
1313         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1314
1315         rdev->sb_size = MD_SB_BYTES;
1316
1317         sb = page_address(rdev->sb_page);
1318
1319         memset(sb, 0, sizeof(*sb));
1320
1321         sb->md_magic = MD_SB_MAGIC;
1322         sb->major_version = mddev->major_version;
1323         sb->patch_version = mddev->patch_version;
1324         sb->gvalid_words  = 0; /* ignored */
1325         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1326         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1327         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1328         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1329
1330         sb->ctime = mddev->ctime;
1331         sb->level = mddev->level;
1332         sb->size = mddev->dev_sectors / 2;
1333         sb->raid_disks = mddev->raid_disks;
1334         sb->md_minor = mddev->md_minor;
1335         sb->not_persistent = 0;
1336         sb->utime = mddev->utime;
1337         sb->state = 0;
1338         sb->events_hi = (mddev->events>>32);
1339         sb->events_lo = (u32)mddev->events;
1340
1341         if (mddev->reshape_position == MaxSector)
1342                 sb->minor_version = 90;
1343         else {
1344                 sb->minor_version = 91;
1345                 sb->reshape_position = mddev->reshape_position;
1346                 sb->new_level = mddev->new_level;
1347                 sb->delta_disks = mddev->delta_disks;
1348                 sb->new_layout = mddev->new_layout;
1349                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1350         }
1351         mddev->minor_version = sb->minor_version;
1352         if (mddev->in_sync)
1353         {
1354                 sb->recovery_cp = mddev->recovery_cp;
1355                 sb->cp_events_hi = (mddev->events>>32);
1356                 sb->cp_events_lo = (u32)mddev->events;
1357                 if (mddev->recovery_cp == MaxSector)
1358                         sb->state = (1<< MD_SB_CLEAN);
1359         } else
1360                 sb->recovery_cp = 0;
1361
1362         sb->layout = mddev->layout;
1363         sb->chunk_size = mddev->chunk_sectors << 9;
1364
1365         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1366                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1367
1368         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1369         rdev_for_each(rdev2, mddev) {
1370                 mdp_disk_t *d;
1371                 int desc_nr;
1372                 int is_active = test_bit(In_sync, &rdev2->flags);
1373
1374                 if (rdev2->raid_disk >= 0 &&
1375                     sb->minor_version >= 91)
1376                         /* we have nowhere to store the recovery_offset,
1377                          * but if it is not below the reshape_position,
1378                          * we can piggy-back on that.
1379                          */
1380                         is_active = 1;
1381                 if (rdev2->raid_disk < 0 ||
1382                     test_bit(Faulty, &rdev2->flags))
1383                         is_active = 0;
1384                 if (is_active)
1385                         desc_nr = rdev2->raid_disk;
1386                 else
1387                         desc_nr = next_spare++;
1388                 rdev2->desc_nr = desc_nr;
1389                 d = &sb->disks[rdev2->desc_nr];
1390                 nr_disks++;
1391                 d->number = rdev2->desc_nr;
1392                 d->major = MAJOR(rdev2->bdev->bd_dev);
1393                 d->minor = MINOR(rdev2->bdev->bd_dev);
1394                 if (is_active)
1395                         d->raid_disk = rdev2->raid_disk;
1396                 else
1397                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1398                 if (test_bit(Faulty, &rdev2->flags))
1399                         d->state = (1<<MD_DISK_FAULTY);
1400                 else if (is_active) {
1401                         d->state = (1<<MD_DISK_ACTIVE);
1402                         if (test_bit(In_sync, &rdev2->flags))
1403                                 d->state |= (1<<MD_DISK_SYNC);
1404                         active++;
1405                         working++;
1406                 } else {
1407                         d->state = 0;
1408                         spare++;
1409                         working++;
1410                 }
1411                 if (test_bit(WriteMostly, &rdev2->flags))
1412                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1413         }
1414         /* now set the "removed" and "faulty" bits on any missing devices */
1415         for (i=0 ; i < mddev->raid_disks ; i++) {
1416                 mdp_disk_t *d = &sb->disks[i];
1417                 if (d->state == 0 && d->number == 0) {
1418                         d->number = i;
1419                         d->raid_disk = i;
1420                         d->state = (1<<MD_DISK_REMOVED);
1421                         d->state |= (1<<MD_DISK_FAULTY);
1422                         failed++;
1423                 }
1424         }
1425         sb->nr_disks = nr_disks;
1426         sb->active_disks = active;
1427         sb->working_disks = working;
1428         sb->failed_disks = failed;
1429         sb->spare_disks = spare;
1430
1431         sb->this_disk = sb->disks[rdev->desc_nr];
1432         sb->sb_csum = calc_sb_csum(sb);
1433 }
1434
1435 /*
1436  * rdev_size_change for 0.90.0
1437  */
1438 static unsigned long long
1439 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1440 {
1441         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1442                 return 0; /* component must fit device */
1443         if (rdev->mddev->bitmap_info.offset)
1444                 return 0; /* can't move bitmap */
1445         rdev->sb_start = calc_dev_sboffset(rdev);
1446         if (!num_sectors || num_sectors > rdev->sb_start)
1447                 num_sectors = rdev->sb_start;
1448         /* Limit to 4TB as metadata cannot record more than that.
1449          * 4TB == 2^32 KB, or 2*2^32 sectors.
1450          */
1451         if (num_sectors >= (2ULL << 32))
1452                 num_sectors = (2ULL << 32) - 2;
1453         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1454                        rdev->sb_page);
1455         md_super_wait(rdev->mddev);
1456         return num_sectors;
1457 }
1458
1459 static int
1460 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1461 {
1462         /* non-zero offset changes not possible with v0.90 */
1463         return new_offset == 0;
1464 }
1465
1466 /*
1467  * version 1 superblock
1468  */
1469
1470 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1471 {
1472         __le32 disk_csum;
1473         u32 csum;
1474         unsigned long long newcsum;
1475         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1476         __le32 *isuper = (__le32*)sb;
1477         int i;
1478
1479         disk_csum = sb->sb_csum;
1480         sb->sb_csum = 0;
1481         newcsum = 0;
1482         for (i=0; size>=4; size -= 4 )
1483                 newcsum += le32_to_cpu(*isuper++);
1484
1485         if (size == 2)
1486                 newcsum += le16_to_cpu(*(__le16*) isuper);
1487
1488         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1489         sb->sb_csum = disk_csum;
1490         return cpu_to_le32(csum);
1491 }
1492
1493 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1494                             int acknowledged);
1495 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1496 {
1497         struct mdp_superblock_1 *sb;
1498         int ret;
1499         sector_t sb_start;
1500         sector_t sectors;
1501         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1502         int bmask;
1503
1504         /*
1505          * Calculate the position of the superblock in 512byte sectors.
1506          * It is always aligned to a 4K boundary and
1507          * depeding on minor_version, it can be:
1508          * 0: At least 8K, but less than 12K, from end of device
1509          * 1: At start of device
1510          * 2: 4K from start of device.
1511          */
1512         switch(minor_version) {
1513         case 0:
1514                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1515                 sb_start -= 8*2;
1516                 sb_start &= ~(sector_t)(4*2-1);
1517                 break;
1518         case 1:
1519                 sb_start = 0;
1520                 break;
1521         case 2:
1522                 sb_start = 8;
1523                 break;
1524         default:
1525                 return -EINVAL;
1526         }
1527         rdev->sb_start = sb_start;
1528
1529         /* superblock is rarely larger than 1K, but it can be larger,
1530          * and it is safe to read 4k, so we do that
1531          */
1532         ret = read_disk_sb(rdev, 4096);
1533         if (ret) return ret;
1534
1535
1536         sb = page_address(rdev->sb_page);
1537
1538         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1539             sb->major_version != cpu_to_le32(1) ||
1540             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1541             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1542             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1543                 return -EINVAL;
1544
1545         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1546                 printk("md: invalid superblock checksum on %s\n",
1547                         bdevname(rdev->bdev,b));
1548                 return -EINVAL;
1549         }
1550         if (le64_to_cpu(sb->data_size) < 10) {
1551                 printk("md: data_size too small on %s\n",
1552                        bdevname(rdev->bdev,b));
1553                 return -EINVAL;
1554         }
1555         if (sb->pad0 ||
1556             sb->pad3[0] ||
1557             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1558                 /* Some padding is non-zero, might be a new feature */
1559                 return -EINVAL;
1560
1561         rdev->preferred_minor = 0xffff;
1562         rdev->data_offset = le64_to_cpu(sb->data_offset);
1563         rdev->new_data_offset = rdev->data_offset;
1564         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1565             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1566                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1567         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1568
1569         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1570         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1571         if (rdev->sb_size & bmask)
1572                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1573
1574         if (minor_version
1575             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1576                 return -EINVAL;
1577         if (minor_version
1578             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1579                 return -EINVAL;
1580
1581         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1582                 rdev->desc_nr = -1;
1583         else
1584                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1585
1586         if (!rdev->bb_page) {
1587                 rdev->bb_page = alloc_page(GFP_KERNEL);
1588                 if (!rdev->bb_page)
1589                         return -ENOMEM;
1590         }
1591         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1592             rdev->badblocks.count == 0) {
1593                 /* need to load the bad block list.
1594                  * Currently we limit it to one page.
1595                  */
1596                 s32 offset;
1597                 sector_t bb_sector;
1598                 u64 *bbp;
1599                 int i;
1600                 int sectors = le16_to_cpu(sb->bblog_size);
1601                 if (sectors > (PAGE_SIZE / 512))
1602                         return -EINVAL;
1603                 offset = le32_to_cpu(sb->bblog_offset);
1604                 if (offset == 0)
1605                         return -EINVAL;
1606                 bb_sector = (long long)offset;
1607                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1608                                   rdev->bb_page, READ, true))
1609                         return -EIO;
1610                 bbp = (u64 *)page_address(rdev->bb_page);
1611                 rdev->badblocks.shift = sb->bblog_shift;
1612                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1613                         u64 bb = le64_to_cpu(*bbp);
1614                         int count = bb & (0x3ff);
1615                         u64 sector = bb >> 10;
1616                         sector <<= sb->bblog_shift;
1617                         count <<= sb->bblog_shift;
1618                         if (bb + 1 == 0)
1619                                 break;
1620                         if (md_set_badblocks(&rdev->badblocks,
1621                                              sector, count, 1) == 0)
1622                                 return -EINVAL;
1623                 }
1624         } else if (sb->bblog_offset == 0)
1625                 rdev->badblocks.shift = -1;
1626
1627         if (!refdev) {
1628                 ret = 1;
1629         } else {
1630                 __u64 ev1, ev2;
1631                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1632
1633                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1634                     sb->level != refsb->level ||
1635                     sb->layout != refsb->layout ||
1636                     sb->chunksize != refsb->chunksize) {
1637                         printk(KERN_WARNING "md: %s has strangely different"
1638                                 " superblock to %s\n",
1639                                 bdevname(rdev->bdev,b),
1640                                 bdevname(refdev->bdev,b2));
1641                         return -EINVAL;
1642                 }
1643                 ev1 = le64_to_cpu(sb->events);
1644                 ev2 = le64_to_cpu(refsb->events);
1645
1646                 if (ev1 > ev2)
1647                         ret = 1;
1648                 else
1649                         ret = 0;
1650         }
1651         if (minor_version) {
1652                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1653                 sectors -= rdev->data_offset;
1654         } else
1655                 sectors = rdev->sb_start;
1656         if (sectors < le64_to_cpu(sb->data_size))
1657                 return -EINVAL;
1658         rdev->sectors = le64_to_cpu(sb->data_size);
1659         return ret;
1660 }
1661
1662 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1663 {
1664         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1665         __u64 ev1 = le64_to_cpu(sb->events);
1666
1667         rdev->raid_disk = -1;
1668         clear_bit(Faulty, &rdev->flags);
1669         clear_bit(In_sync, &rdev->flags);
1670         clear_bit(WriteMostly, &rdev->flags);
1671
1672         if (mddev->raid_disks == 0) {
1673                 mddev->major_version = 1;
1674                 mddev->patch_version = 0;
1675                 mddev->external = 0;
1676                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1677                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1678                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1679                 mddev->level = le32_to_cpu(sb->level);
1680                 mddev->clevel[0] = 0;
1681                 mddev->layout = le32_to_cpu(sb->layout);
1682                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1683                 mddev->dev_sectors = le64_to_cpu(sb->size);
1684                 mddev->events = ev1;
1685                 mddev->bitmap_info.offset = 0;
1686                 mddev->bitmap_info.space = 0;
1687                 /* Default location for bitmap is 1K after superblock
1688                  * using 3K - total of 4K
1689                  */
1690                 mddev->bitmap_info.default_offset = 1024 >> 9;
1691                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1692                 mddev->reshape_backwards = 0;
1693
1694                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1695                 memcpy(mddev->uuid, sb->set_uuid, 16);
1696
1697                 mddev->max_disks =  (4096-256)/2;
1698
1699                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1700                     mddev->bitmap_info.file == NULL) {
1701                         mddev->bitmap_info.offset =
1702                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1703                         /* Metadata doesn't record how much space is available.
1704                          * For 1.0, we assume we can use up to the superblock
1705                          * if before, else to 4K beyond superblock.
1706                          * For others, assume no change is possible.
1707                          */
1708                         if (mddev->minor_version > 0)
1709                                 mddev->bitmap_info.space = 0;
1710                         else if (mddev->bitmap_info.offset > 0)
1711                                 mddev->bitmap_info.space =
1712                                         8 - mddev->bitmap_info.offset;
1713                         else
1714                                 mddev->bitmap_info.space =
1715                                         -mddev->bitmap_info.offset;
1716                 }
1717
1718                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1719                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1720                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1721                         mddev->new_level = le32_to_cpu(sb->new_level);
1722                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1723                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1724                         if (mddev->delta_disks < 0 ||
1725                             (mddev->delta_disks == 0 &&
1726                              (le32_to_cpu(sb->feature_map)
1727                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1728                                 mddev->reshape_backwards = 1;
1729                 } else {
1730                         mddev->reshape_position = MaxSector;
1731                         mddev->delta_disks = 0;
1732                         mddev->new_level = mddev->level;
1733                         mddev->new_layout = mddev->layout;
1734                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1735                 }
1736
1737         } else if (mddev->pers == NULL) {
1738                 /* Insist of good event counter while assembling, except for
1739                  * spares (which don't need an event count) */
1740                 ++ev1;
1741                 if (rdev->desc_nr >= 0 &&
1742                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1743                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1744                         if (ev1 < mddev->events)
1745                                 return -EINVAL;
1746         } else if (mddev->bitmap) {
1747                 /* If adding to array with a bitmap, then we can accept an
1748                  * older device, but not too old.
1749                  */
1750                 if (ev1 < mddev->bitmap->events_cleared)
1751                         return 0;
1752         } else {
1753                 if (ev1 < mddev->events)
1754                         /* just a hot-add of a new device, leave raid_disk at -1 */
1755                         return 0;
1756         }
1757         if (mddev->level != LEVEL_MULTIPATH) {
1758                 int role;
1759                 if (rdev->desc_nr < 0 ||
1760                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1761                         role = 0xffff;
1762                         rdev->desc_nr = -1;
1763                 } else
1764                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1765                 switch(role) {
1766                 case 0xffff: /* spare */
1767                         break;
1768                 case 0xfffe: /* faulty */
1769                         set_bit(Faulty, &rdev->flags);
1770                         break;
1771                 default:
1772                         if ((le32_to_cpu(sb->feature_map) &
1773                              MD_FEATURE_RECOVERY_OFFSET))
1774                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1775                         else
1776                                 set_bit(In_sync, &rdev->flags);
1777                         rdev->raid_disk = role;
1778                         break;
1779                 }
1780                 if (sb->devflags & WriteMostly1)
1781                         set_bit(WriteMostly, &rdev->flags);
1782                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1783                         set_bit(Replacement, &rdev->flags);
1784         } else /* MULTIPATH are always insync */
1785                 set_bit(In_sync, &rdev->flags);
1786
1787         return 0;
1788 }
1789
1790 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1791 {
1792         struct mdp_superblock_1 *sb;
1793         struct md_rdev *rdev2;
1794         int max_dev, i;
1795         /* make rdev->sb match mddev and rdev data. */
1796
1797         sb = page_address(rdev->sb_page);
1798
1799         sb->feature_map = 0;
1800         sb->pad0 = 0;
1801         sb->recovery_offset = cpu_to_le64(0);
1802         memset(sb->pad3, 0, sizeof(sb->pad3));
1803
1804         sb->utime = cpu_to_le64((__u64)mddev->utime);
1805         sb->events = cpu_to_le64(mddev->events);
1806         if (mddev->in_sync)
1807                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1808         else
1809                 sb->resync_offset = cpu_to_le64(0);
1810
1811         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1812
1813         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1814         sb->size = cpu_to_le64(mddev->dev_sectors);
1815         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1816         sb->level = cpu_to_le32(mddev->level);
1817         sb->layout = cpu_to_le32(mddev->layout);
1818
1819         if (test_bit(WriteMostly, &rdev->flags))
1820                 sb->devflags |= WriteMostly1;
1821         else
1822                 sb->devflags &= ~WriteMostly1;
1823         sb->data_offset = cpu_to_le64(rdev->data_offset);
1824         sb->data_size = cpu_to_le64(rdev->sectors);
1825
1826         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1827                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1828                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1829         }
1830
1831         if (rdev->raid_disk >= 0 &&
1832             !test_bit(In_sync, &rdev->flags)) {
1833                 sb->feature_map |=
1834                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1835                 sb->recovery_offset =
1836                         cpu_to_le64(rdev->recovery_offset);
1837         }
1838         if (test_bit(Replacement, &rdev->flags))
1839                 sb->feature_map |=
1840                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1841
1842         if (mddev->reshape_position != MaxSector) {
1843                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1844                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1845                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1846                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1847                 sb->new_level = cpu_to_le32(mddev->new_level);
1848                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1849                 if (mddev->delta_disks == 0 &&
1850                     mddev->reshape_backwards)
1851                         sb->feature_map
1852                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1853                 if (rdev->new_data_offset != rdev->data_offset) {
1854                         sb->feature_map
1855                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1856                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1857                                                              - rdev->data_offset));
1858                 }
1859         }
1860
1861         if (rdev->badblocks.count == 0)
1862                 /* Nothing to do for bad blocks*/ ;
1863         else if (sb->bblog_offset == 0)
1864                 /* Cannot record bad blocks on this device */
1865                 md_error(mddev, rdev);
1866         else {
1867                 struct badblocks *bb = &rdev->badblocks;
1868                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1869                 u64 *p = bb->page;
1870                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1871                 if (bb->changed) {
1872                         unsigned seq;
1873
1874 retry:
1875                         seq = read_seqbegin(&bb->lock);
1876
1877                         memset(bbp, 0xff, PAGE_SIZE);
1878
1879                         for (i = 0 ; i < bb->count ; i++) {
1880                                 u64 internal_bb = *p++;
1881                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1882                                                 | BB_LEN(internal_bb));
1883                                 *bbp++ = cpu_to_le64(store_bb);
1884                         }
1885                         bb->changed = 0;
1886                         if (read_seqretry(&bb->lock, seq))
1887                                 goto retry;
1888
1889                         bb->sector = (rdev->sb_start +
1890                                       (int)le32_to_cpu(sb->bblog_offset));
1891                         bb->size = le16_to_cpu(sb->bblog_size);
1892                 }
1893         }
1894
1895         max_dev = 0;
1896         rdev_for_each(rdev2, mddev)
1897                 if (rdev2->desc_nr+1 > max_dev)
1898                         max_dev = rdev2->desc_nr+1;
1899
1900         if (max_dev > le32_to_cpu(sb->max_dev)) {
1901                 int bmask;
1902                 sb->max_dev = cpu_to_le32(max_dev);
1903                 rdev->sb_size = max_dev * 2 + 256;
1904                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1905                 if (rdev->sb_size & bmask)
1906                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1907         } else
1908                 max_dev = le32_to_cpu(sb->max_dev);
1909
1910         for (i=0; i<max_dev;i++)
1911                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1912         
1913         rdev_for_each(rdev2, mddev) {
1914                 i = rdev2->desc_nr;
1915                 if (test_bit(Faulty, &rdev2->flags))
1916                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1917                 else if (test_bit(In_sync, &rdev2->flags))
1918                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1919                 else if (rdev2->raid_disk >= 0)
1920                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1921                 else
1922                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1923         }
1924
1925         sb->sb_csum = calc_sb_1_csum(sb);
1926 }
1927
1928 static unsigned long long
1929 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1930 {
1931         struct mdp_superblock_1 *sb;
1932         sector_t max_sectors;
1933         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1934                 return 0; /* component must fit device */
1935         if (rdev->data_offset != rdev->new_data_offset)
1936                 return 0; /* too confusing */
1937         if (rdev->sb_start < rdev->data_offset) {
1938                 /* minor versions 1 and 2; superblock before data */
1939                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1940                 max_sectors -= rdev->data_offset;
1941                 if (!num_sectors || num_sectors > max_sectors)
1942                         num_sectors = max_sectors;
1943         } else if (rdev->mddev->bitmap_info.offset) {
1944                 /* minor version 0 with bitmap we can't move */
1945                 return 0;
1946         } else {
1947                 /* minor version 0; superblock after data */
1948                 sector_t sb_start;
1949                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1950                 sb_start &= ~(sector_t)(4*2 - 1);
1951                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1952                 if (!num_sectors || num_sectors > max_sectors)
1953                         num_sectors = max_sectors;
1954                 rdev->sb_start = sb_start;
1955         }
1956         sb = page_address(rdev->sb_page);
1957         sb->data_size = cpu_to_le64(num_sectors);
1958         sb->super_offset = rdev->sb_start;
1959         sb->sb_csum = calc_sb_1_csum(sb);
1960         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1961                        rdev->sb_page);
1962         md_super_wait(rdev->mddev);
1963         return num_sectors;
1964
1965 }
1966
1967 static int
1968 super_1_allow_new_offset(struct md_rdev *rdev,
1969                          unsigned long long new_offset)
1970 {
1971         /* All necessary checks on new >= old have been done */
1972         struct bitmap *bitmap;
1973         if (new_offset >= rdev->data_offset)
1974                 return 1;
1975
1976         /* with 1.0 metadata, there is no metadata to tread on
1977          * so we can always move back */
1978         if (rdev->mddev->minor_version == 0)
1979                 return 1;
1980
1981         /* otherwise we must be sure not to step on
1982          * any metadata, so stay:
1983          * 36K beyond start of superblock
1984          * beyond end of badblocks
1985          * beyond write-intent bitmap
1986          */
1987         if (rdev->sb_start + (32+4)*2 > new_offset)
1988                 return 0;
1989         bitmap = rdev->mddev->bitmap;
1990         if (bitmap && !rdev->mddev->bitmap_info.file &&
1991             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1992             bitmap->file_pages * (PAGE_SIZE>>9) > new_offset)
1993                 return 0;
1994         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1995                 return 0;
1996
1997         return 1;
1998 }
1999
2000 static struct super_type super_types[] = {
2001         [0] = {
2002                 .name   = "0.90.0",
2003                 .owner  = THIS_MODULE,
2004                 .load_super         = super_90_load,
2005                 .validate_super     = super_90_validate,
2006                 .sync_super         = super_90_sync,
2007                 .rdev_size_change   = super_90_rdev_size_change,
2008                 .allow_new_offset   = super_90_allow_new_offset,
2009         },
2010         [1] = {
2011                 .name   = "md-1",
2012                 .owner  = THIS_MODULE,
2013                 .load_super         = super_1_load,
2014                 .validate_super     = super_1_validate,
2015                 .sync_super         = super_1_sync,
2016                 .rdev_size_change   = super_1_rdev_size_change,
2017                 .allow_new_offset   = super_1_allow_new_offset,
2018         },
2019 };
2020
2021 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2022 {
2023         if (mddev->sync_super) {
2024                 mddev->sync_super(mddev, rdev);
2025                 return;
2026         }
2027
2028         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2029
2030         super_types[mddev->major_version].sync_super(mddev, rdev);
2031 }
2032
2033 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2034 {
2035         struct md_rdev *rdev, *rdev2;
2036
2037         rcu_read_lock();
2038         rdev_for_each_rcu(rdev, mddev1)
2039                 rdev_for_each_rcu(rdev2, mddev2)
2040                         if (rdev->bdev->bd_contains ==
2041                             rdev2->bdev->bd_contains) {
2042                                 rcu_read_unlock();
2043                                 return 1;
2044                         }
2045         rcu_read_unlock();
2046         return 0;
2047 }
2048
2049 static LIST_HEAD(pending_raid_disks);
2050
2051 /*
2052  * Try to register data integrity profile for an mddev
2053  *
2054  * This is called when an array is started and after a disk has been kicked
2055  * from the array. It only succeeds if all working and active component devices
2056  * are integrity capable with matching profiles.
2057  */
2058 int md_integrity_register(struct mddev *mddev)
2059 {
2060         struct md_rdev *rdev, *reference = NULL;
2061
2062         if (list_empty(&mddev->disks))
2063                 return 0; /* nothing to do */
2064         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2065                 return 0; /* shouldn't register, or already is */
2066         rdev_for_each(rdev, mddev) {
2067                 /* skip spares and non-functional disks */
2068                 if (test_bit(Faulty, &rdev->flags))
2069                         continue;
2070                 if (rdev->raid_disk < 0)
2071                         continue;
2072                 if (!reference) {
2073                         /* Use the first rdev as the reference */
2074                         reference = rdev;
2075                         continue;
2076                 }
2077                 /* does this rdev's profile match the reference profile? */
2078                 if (blk_integrity_compare(reference->bdev->bd_disk,
2079                                 rdev->bdev->bd_disk) < 0)
2080                         return -EINVAL;
2081         }
2082         if (!reference || !bdev_get_integrity(reference->bdev))
2083                 return 0;
2084         /*
2085          * All component devices are integrity capable and have matching
2086          * profiles, register the common profile for the md device.
2087          */
2088         if (blk_integrity_register(mddev->gendisk,
2089                         bdev_get_integrity(reference->bdev)) != 0) {
2090                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2091                         mdname(mddev));
2092                 return -EINVAL;
2093         }
2094         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2095         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2096                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2097                        mdname(mddev));
2098                 return -EINVAL;
2099         }
2100         return 0;
2101 }
2102 EXPORT_SYMBOL(md_integrity_register);
2103
2104 /* Disable data integrity if non-capable/non-matching disk is being added */
2105 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2106 {
2107         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2108         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2109
2110         if (!bi_mddev) /* nothing to do */
2111                 return;
2112         if (rdev->raid_disk < 0) /* skip spares */
2113                 return;
2114         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2115                                              rdev->bdev->bd_disk) >= 0)
2116                 return;
2117         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2118         blk_integrity_unregister(mddev->gendisk);
2119 }
2120 EXPORT_SYMBOL(md_integrity_add_rdev);
2121
2122 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2123 {
2124         char b[BDEVNAME_SIZE];
2125         struct kobject *ko;
2126         char *s;
2127         int err;
2128
2129         if (rdev->mddev) {
2130                 MD_BUG();
2131                 return -EINVAL;
2132         }
2133
2134         /* prevent duplicates */
2135         if (find_rdev(mddev, rdev->bdev->bd_dev))
2136                 return -EEXIST;
2137
2138         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2139         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2140                         rdev->sectors < mddev->dev_sectors)) {
2141                 if (mddev->pers) {
2142                         /* Cannot change size, so fail
2143                          * If mddev->level <= 0, then we don't care
2144                          * about aligning sizes (e.g. linear)
2145                          */
2146                         if (mddev->level > 0)
2147                                 return -ENOSPC;
2148                 } else
2149                         mddev->dev_sectors = rdev->sectors;
2150         }
2151
2152         /* Verify rdev->desc_nr is unique.
2153          * If it is -1, assign a free number, else
2154          * check number is not in use
2155          */
2156         if (rdev->desc_nr < 0) {
2157                 int choice = 0;
2158                 if (mddev->pers) choice = mddev->raid_disks;
2159                 while (find_rdev_nr(mddev, choice))
2160                         choice++;
2161                 rdev->desc_nr = choice;
2162         } else {
2163                 if (find_rdev_nr(mddev, rdev->desc_nr))
2164                         return -EBUSY;
2165         }
2166         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2167                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2168                        mdname(mddev), mddev->max_disks);
2169                 return -EBUSY;
2170         }
2171         bdevname(rdev->bdev,b);
2172         while ( (s=strchr(b, '/')) != NULL)
2173                 *s = '!';
2174
2175         rdev->mddev = mddev;
2176         printk(KERN_INFO "md: bind<%s>\n", b);
2177
2178         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2179                 goto fail;
2180
2181         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2182         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2183                 /* failure here is OK */;
2184         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2185
2186         list_add_rcu(&rdev->same_set, &mddev->disks);
2187         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2188
2189         /* May as well allow recovery to be retried once */
2190         mddev->recovery_disabled++;
2191
2192         return 0;
2193
2194  fail:
2195         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2196                b, mdname(mddev));
2197         return err;
2198 }
2199
2200 static void md_delayed_delete(struct work_struct *ws)
2201 {
2202         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2203         kobject_del(&rdev->kobj);
2204         kobject_put(&rdev->kobj);
2205 }
2206
2207 static void unbind_rdev_from_array(struct md_rdev * rdev)
2208 {
2209         char b[BDEVNAME_SIZE];
2210         if (!rdev->mddev) {
2211                 MD_BUG();
2212                 return;
2213         }
2214         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2215         list_del_rcu(&rdev->same_set);
2216         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2217         rdev->mddev = NULL;
2218         sysfs_remove_link(&rdev->kobj, "block");
2219         sysfs_put(rdev->sysfs_state);
2220         rdev->sysfs_state = NULL;
2221         rdev->badblocks.count = 0;
2222         /* We need to delay this, otherwise we can deadlock when
2223          * writing to 'remove' to "dev/state".  We also need
2224          * to delay it due to rcu usage.
2225          */
2226         synchronize_rcu();
2227         INIT_WORK(&rdev->del_work, md_delayed_delete);
2228         kobject_get(&rdev->kobj);
2229         queue_work(md_misc_wq, &rdev->del_work);
2230 }
2231
2232 /*
2233  * prevent the device from being mounted, repartitioned or
2234  * otherwise reused by a RAID array (or any other kernel
2235  * subsystem), by bd_claiming the device.
2236  */
2237 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2238 {
2239         int err = 0;
2240         struct block_device *bdev;
2241         char b[BDEVNAME_SIZE];
2242
2243         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2244                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2245         if (IS_ERR(bdev)) {
2246                 printk(KERN_ERR "md: could not open %s.\n",
2247                         __bdevname(dev, b));
2248                 return PTR_ERR(bdev);
2249         }
2250         rdev->bdev = bdev;
2251         return err;
2252 }
2253
2254 static void unlock_rdev(struct md_rdev *rdev)
2255 {
2256         struct block_device *bdev = rdev->bdev;
2257         rdev->bdev = NULL;
2258         if (!bdev)
2259                 MD_BUG();
2260         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2261 }
2262
2263 void md_autodetect_dev(dev_t dev);
2264
2265 static void export_rdev(struct md_rdev * rdev)
2266 {
2267         char b[BDEVNAME_SIZE];
2268         printk(KERN_INFO "md: export_rdev(%s)\n",
2269                 bdevname(rdev->bdev,b));
2270         if (rdev->mddev)
2271                 MD_BUG();
2272         md_rdev_clear(rdev);
2273 #ifndef MODULE
2274         if (test_bit(AutoDetected, &rdev->flags))
2275                 md_autodetect_dev(rdev->bdev->bd_dev);
2276 #endif
2277         unlock_rdev(rdev);
2278         kobject_put(&rdev->kobj);
2279 }
2280
2281 static void kick_rdev_from_array(struct md_rdev * rdev)
2282 {
2283         unbind_rdev_from_array(rdev);
2284         export_rdev(rdev);
2285 }
2286
2287 static void export_array(struct mddev *mddev)
2288 {
2289         struct md_rdev *rdev, *tmp;
2290
2291         rdev_for_each_safe(rdev, tmp, mddev) {
2292                 if (!rdev->mddev) {
2293                         MD_BUG();
2294                         continue;
2295                 }
2296                 kick_rdev_from_array(rdev);
2297         }
2298         if (!list_empty(&mddev->disks))
2299                 MD_BUG();
2300         mddev->raid_disks = 0;
2301         mddev->major_version = 0;
2302 }
2303
2304 static void print_desc(mdp_disk_t *desc)
2305 {
2306         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2307                 desc->major,desc->minor,desc->raid_disk,desc->state);
2308 }
2309
2310 static void print_sb_90(mdp_super_t *sb)
2311 {
2312         int i;
2313
2314         printk(KERN_INFO 
2315                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2316                 sb->major_version, sb->minor_version, sb->patch_version,
2317                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2318                 sb->ctime);
2319         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2320                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2321                 sb->md_minor, sb->layout, sb->chunk_size);
2322         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2323                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2324                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2325                 sb->failed_disks, sb->spare_disks,
2326                 sb->sb_csum, (unsigned long)sb->events_lo);
2327
2328         printk(KERN_INFO);
2329         for (i = 0; i < MD_SB_DISKS; i++) {
2330                 mdp_disk_t *desc;
2331
2332                 desc = sb->disks + i;
2333                 if (desc->number || desc->major || desc->minor ||
2334                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2335                         printk("     D %2d: ", i);
2336                         print_desc(desc);
2337                 }
2338         }
2339         printk(KERN_INFO "md:     THIS: ");
2340         print_desc(&sb->this_disk);
2341 }
2342
2343 static void print_sb_1(struct mdp_superblock_1 *sb)
2344 {
2345         __u8 *uuid;
2346
2347         uuid = sb->set_uuid;
2348         printk(KERN_INFO
2349                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2350                "md:    Name: \"%s\" CT:%llu\n",
2351                 le32_to_cpu(sb->major_version),
2352                 le32_to_cpu(sb->feature_map),
2353                 uuid,
2354                 sb->set_name,
2355                 (unsigned long long)le64_to_cpu(sb->ctime)
2356                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2357
2358         uuid = sb->device_uuid;
2359         printk(KERN_INFO
2360                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2361                         " RO:%llu\n"
2362                "md:     Dev:%08x UUID: %pU\n"
2363                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2364                "md:         (MaxDev:%u) \n",
2365                 le32_to_cpu(sb->level),
2366                 (unsigned long long)le64_to_cpu(sb->size),
2367                 le32_to_cpu(sb->raid_disks),
2368                 le32_to_cpu(sb->layout),
2369                 le32_to_cpu(sb->chunksize),
2370                 (unsigned long long)le64_to_cpu(sb->data_offset),
2371                 (unsigned long long)le64_to_cpu(sb->data_size),
2372                 (unsigned long long)le64_to_cpu(sb->super_offset),
2373                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2374                 le32_to_cpu(sb->dev_number),
2375                 uuid,
2376                 sb->devflags,
2377                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2378                 (unsigned long long)le64_to_cpu(sb->events),
2379                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2380                 le32_to_cpu(sb->sb_csum),
2381                 le32_to_cpu(sb->max_dev)
2382                 );
2383 }
2384
2385 static void print_rdev(struct md_rdev *rdev, int major_version)
2386 {
2387         char b[BDEVNAME_SIZE];
2388         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2389                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2390                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2391                 rdev->desc_nr);
2392         if (rdev->sb_loaded) {
2393                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2394                 switch (major_version) {
2395                 case 0:
2396                         print_sb_90(page_address(rdev->sb_page));
2397                         break;
2398                 case 1:
2399                         print_sb_1(page_address(rdev->sb_page));
2400                         break;
2401                 }
2402         } else
2403                 printk(KERN_INFO "md: no rdev superblock!\n");
2404 }
2405
2406 static void md_print_devices(void)
2407 {
2408         struct list_head *tmp;
2409         struct md_rdev *rdev;
2410         struct mddev *mddev;
2411         char b[BDEVNAME_SIZE];
2412
2413         printk("\n");
2414         printk("md:     **********************************\n");
2415         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2416         printk("md:     **********************************\n");
2417         for_each_mddev(mddev, tmp) {
2418
2419                 if (mddev->bitmap)
2420                         bitmap_print_sb(mddev->bitmap);
2421                 else
2422                         printk("%s: ", mdname(mddev));
2423                 rdev_for_each(rdev, mddev)
2424                         printk("<%s>", bdevname(rdev->bdev,b));
2425                 printk("\n");
2426
2427                 rdev_for_each(rdev, mddev)
2428                         print_rdev(rdev, mddev->major_version);
2429         }
2430         printk("md:     **********************************\n");
2431         printk("\n");
2432 }
2433
2434
2435 static void sync_sbs(struct mddev * mddev, int nospares)
2436 {
2437         /* Update each superblock (in-memory image), but
2438          * if we are allowed to, skip spares which already
2439          * have the right event counter, or have one earlier
2440          * (which would mean they aren't being marked as dirty
2441          * with the rest of the array)
2442          */
2443         struct md_rdev *rdev;
2444         rdev_for_each(rdev, mddev) {
2445                 if (rdev->sb_events == mddev->events ||
2446                     (nospares &&
2447                      rdev->raid_disk < 0 &&
2448                      rdev->sb_events+1 == mddev->events)) {
2449                         /* Don't update this superblock */
2450                         rdev->sb_loaded = 2;
2451                 } else {
2452                         sync_super(mddev, rdev);
2453                         rdev->sb_loaded = 1;
2454                 }
2455         }
2456 }
2457
2458 static void md_update_sb(struct mddev * mddev, int force_change)
2459 {
2460         struct md_rdev *rdev;
2461         int sync_req;
2462         int nospares = 0;
2463         int any_badblocks_changed = 0;
2464
2465 repeat:
2466         /* First make sure individual recovery_offsets are correct */
2467         rdev_for_each(rdev, mddev) {
2468                 if (rdev->raid_disk >= 0 &&
2469                     mddev->delta_disks >= 0 &&
2470                     !test_bit(In_sync, &rdev->flags) &&
2471                     mddev->curr_resync_completed > rdev->recovery_offset)
2472                                 rdev->recovery_offset = mddev->curr_resync_completed;
2473
2474         }       
2475         if (!mddev->persistent) {
2476                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2477                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2478                 if (!mddev->external) {
2479                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2480                         rdev_for_each(rdev, mddev) {
2481                                 if (rdev->badblocks.changed) {
2482                                         rdev->badblocks.changed = 0;
2483                                         md_ack_all_badblocks(&rdev->badblocks);
2484                                         md_error(mddev, rdev);
2485                                 }
2486                                 clear_bit(Blocked, &rdev->flags);
2487                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2488                                 wake_up(&rdev->blocked_wait);
2489                         }
2490                 }
2491                 wake_up(&mddev->sb_wait);
2492                 return;
2493         }
2494
2495         spin_lock_irq(&mddev->write_lock);
2496
2497         mddev->utime = get_seconds();
2498
2499         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2500                 force_change = 1;
2501         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2502                 /* just a clean<-> dirty transition, possibly leave spares alone,
2503                  * though if events isn't the right even/odd, we will have to do
2504                  * spares after all
2505                  */
2506                 nospares = 1;
2507         if (force_change)
2508                 nospares = 0;
2509         if (mddev->degraded)
2510                 /* If the array is degraded, then skipping spares is both
2511                  * dangerous and fairly pointless.
2512                  * Dangerous because a device that was removed from the array
2513                  * might have a event_count that still looks up-to-date,
2514                  * so it can be re-added without a resync.
2515                  * Pointless because if there are any spares to skip,
2516                  * then a recovery will happen and soon that array won't
2517                  * be degraded any more and the spare can go back to sleep then.
2518                  */
2519                 nospares = 0;
2520
2521         sync_req = mddev->in_sync;
2522
2523         /* If this is just a dirty<->clean transition, and the array is clean
2524          * and 'events' is odd, we can roll back to the previous clean state */
2525         if (nospares
2526             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2527             && mddev->can_decrease_events
2528             && mddev->events != 1) {
2529                 mddev->events--;
2530                 mddev->can_decrease_events = 0;
2531         } else {
2532                 /* otherwise we have to go forward and ... */
2533                 mddev->events ++;
2534                 mddev->can_decrease_events = nospares;
2535         }
2536
2537         if (!mddev->events) {
2538                 /*
2539                  * oops, this 64-bit counter should never wrap.
2540                  * Either we are in around ~1 trillion A.C., assuming
2541                  * 1 reboot per second, or we have a bug:
2542                  */
2543                 MD_BUG();
2544                 mddev->events --;
2545         }
2546
2547         rdev_for_each(rdev, mddev) {
2548                 if (rdev->badblocks.changed)
2549                         any_badblocks_changed++;
2550                 if (test_bit(Faulty, &rdev->flags))
2551                         set_bit(FaultRecorded, &rdev->flags);
2552         }
2553
2554         sync_sbs(mddev, nospares);
2555         spin_unlock_irq(&mddev->write_lock);
2556
2557         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2558                  mdname(mddev), mddev->in_sync);
2559
2560         bitmap_update_sb(mddev->bitmap);
2561         rdev_for_each(rdev, mddev) {
2562                 char b[BDEVNAME_SIZE];
2563
2564                 if (rdev->sb_loaded != 1)
2565                         continue; /* no noise on spare devices */
2566
2567                 if (!test_bit(Faulty, &rdev->flags) &&
2568                     rdev->saved_raid_disk == -1) {
2569                         md_super_write(mddev,rdev,
2570                                        rdev->sb_start, rdev->sb_size,
2571                                        rdev->sb_page);
2572                         pr_debug("md: (write) %s's sb offset: %llu\n",
2573                                  bdevname(rdev->bdev, b),
2574                                  (unsigned long long)rdev->sb_start);
2575                         rdev->sb_events = mddev->events;
2576                         if (rdev->badblocks.size) {
2577                                 md_super_write(mddev, rdev,
2578                                                rdev->badblocks.sector,
2579                                                rdev->badblocks.size << 9,
2580                                                rdev->bb_page);
2581                                 rdev->badblocks.size = 0;
2582                         }
2583
2584                 } else if (test_bit(Faulty, &rdev->flags))
2585                         pr_debug("md: %s (skipping faulty)\n",
2586                                  bdevname(rdev->bdev, b));
2587                 else
2588                         pr_debug("(skipping incremental s/r ");
2589
2590                 if (mddev->level == LEVEL_MULTIPATH)
2591                         /* only need to write one superblock... */
2592                         break;
2593         }
2594         md_super_wait(mddev);
2595         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2596
2597         spin_lock_irq(&mddev->write_lock);
2598         if (mddev->in_sync != sync_req ||
2599             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2600                 /* have to write it out again */
2601                 spin_unlock_irq(&mddev->write_lock);
2602                 goto repeat;
2603         }
2604         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2605         spin_unlock_irq(&mddev->write_lock);
2606         wake_up(&mddev->sb_wait);
2607         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2608                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2609
2610         rdev_for_each(rdev, mddev) {
2611                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2612                         clear_bit(Blocked, &rdev->flags);
2613
2614                 if (any_badblocks_changed)
2615                         md_ack_all_badblocks(&rdev->badblocks);
2616                 clear_bit(BlockedBadBlocks, &rdev->flags);
2617                 wake_up(&rdev->blocked_wait);
2618         }
2619 }
2620
2621 /* words written to sysfs files may, or may not, be \n terminated.
2622  * We want to accept with case. For this we use cmd_match.
2623  */
2624 static int cmd_match(const char *cmd, const char *str)
2625 {
2626         /* See if cmd, written into a sysfs file, matches
2627          * str.  They must either be the same, or cmd can
2628          * have a trailing newline
2629          */
2630         while (*cmd && *str && *cmd == *str) {
2631                 cmd++;
2632                 str++;
2633         }
2634         if (*cmd == '\n')
2635                 cmd++;
2636         if (*str || *cmd)
2637                 return 0;
2638         return 1;
2639 }
2640
2641 struct rdev_sysfs_entry {
2642         struct attribute attr;
2643         ssize_t (*show)(struct md_rdev *, char *);
2644         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2645 };
2646
2647 static ssize_t
2648 state_show(struct md_rdev *rdev, char *page)
2649 {
2650         char *sep = "";
2651         size_t len = 0;
2652
2653         if (test_bit(Faulty, &rdev->flags) ||
2654             rdev->badblocks.unacked_exist) {
2655                 len+= sprintf(page+len, "%sfaulty",sep);
2656                 sep = ",";
2657         }
2658         if (test_bit(In_sync, &rdev->flags)) {
2659                 len += sprintf(page+len, "%sin_sync",sep);
2660                 sep = ",";
2661         }
2662         if (test_bit(WriteMostly, &rdev->flags)) {
2663                 len += sprintf(page+len, "%swrite_mostly",sep);
2664                 sep = ",";
2665         }
2666         if (test_bit(Blocked, &rdev->flags) ||
2667             (rdev->badblocks.unacked_exist
2668              && !test_bit(Faulty, &rdev->flags))) {
2669                 len += sprintf(page+len, "%sblocked", sep);
2670                 sep = ",";
2671         }
2672         if (!test_bit(Faulty, &rdev->flags) &&
2673             !test_bit(In_sync, &rdev->flags)) {
2674                 len += sprintf(page+len, "%sspare", sep);
2675                 sep = ",";
2676         }
2677         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2678                 len += sprintf(page+len, "%swrite_error", sep);
2679                 sep = ",";
2680         }
2681         if (test_bit(WantReplacement, &rdev->flags)) {
2682                 len += sprintf(page+len, "%swant_replacement", sep);
2683                 sep = ",";
2684         }
2685         if (test_bit(Replacement, &rdev->flags)) {
2686                 len += sprintf(page+len, "%sreplacement", sep);
2687                 sep = ",";
2688         }
2689
2690         return len+sprintf(page+len, "\n");
2691 }
2692
2693 static ssize_t
2694 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2695 {
2696         /* can write
2697          *  faulty  - simulates an error
2698          *  remove  - disconnects the device
2699          *  writemostly - sets write_mostly
2700          *  -writemostly - clears write_mostly
2701          *  blocked - sets the Blocked flags
2702          *  -blocked - clears the Blocked and possibly simulates an error
2703          *  insync - sets Insync providing device isn't active
2704          *  write_error - sets WriteErrorSeen
2705          *  -write_error - clears WriteErrorSeen
2706          */
2707         int err = -EINVAL;
2708         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2709                 md_error(rdev->mddev, rdev);
2710                 if (test_bit(Faulty, &rdev->flags))
2711                         err = 0;
2712                 else
2713                         err = -EBUSY;
2714         } else if (cmd_match(buf, "remove")) {
2715                 if (rdev->raid_disk >= 0)
2716                         err = -EBUSY;
2717                 else {
2718                         struct mddev *mddev = rdev->mddev;
2719                         kick_rdev_from_array(rdev);
2720                         if (mddev->pers)
2721                                 md_update_sb(mddev, 1);
2722                         md_new_event(mddev);
2723                         err = 0;
2724                 }
2725         } else if (cmd_match(buf, "writemostly")) {
2726                 set_bit(WriteMostly, &rdev->flags);
2727                 err = 0;
2728         } else if (cmd_match(buf, "-writemostly")) {
2729                 clear_bit(WriteMostly, &rdev->flags);
2730                 err = 0;
2731         } else if (cmd_match(buf, "blocked")) {
2732                 set_bit(Blocked, &rdev->flags);
2733                 err = 0;
2734         } else if (cmd_match(buf, "-blocked")) {
2735                 if (!test_bit(Faulty, &rdev->flags) &&
2736                     rdev->badblocks.unacked_exist) {
2737                         /* metadata handler doesn't understand badblocks,
2738                          * so we need to fail the device
2739                          */
2740                         md_error(rdev->mddev, rdev);
2741                 }
2742                 clear_bit(Blocked, &rdev->flags);
2743                 clear_bit(BlockedBadBlocks, &rdev->flags);
2744                 wake_up(&rdev->blocked_wait);
2745                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2746                 md_wakeup_thread(rdev->mddev->thread);
2747
2748                 err = 0;
2749         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2750                 set_bit(In_sync, &rdev->flags);
2751                 err = 0;
2752         } else if (cmd_match(buf, "write_error")) {
2753                 set_bit(WriteErrorSeen, &rdev->flags);
2754                 err = 0;
2755         } else if (cmd_match(buf, "-write_error")) {
2756                 clear_bit(WriteErrorSeen, &rdev->flags);
2757                 err = 0;
2758         } else if (cmd_match(buf, "want_replacement")) {
2759                 /* Any non-spare device that is not a replacement can
2760                  * become want_replacement at any time, but we then need to
2761                  * check if recovery is needed.
2762                  */
2763                 if (rdev->raid_disk >= 0 &&
2764                     !test_bit(Replacement, &rdev->flags))
2765                         set_bit(WantReplacement, &rdev->flags);
2766                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2767                 md_wakeup_thread(rdev->mddev->thread);
2768                 err = 0;
2769         } else if (cmd_match(buf, "-want_replacement")) {
2770                 /* Clearing 'want_replacement' is always allowed.
2771                  * Once replacements starts it is too late though.
2772                  */
2773                 err = 0;
2774                 clear_bit(WantReplacement, &rdev->flags);
2775         } else if (cmd_match(buf, "replacement")) {
2776                 /* Can only set a device as a replacement when array has not
2777                  * yet been started.  Once running, replacement is automatic
2778                  * from spares, or by assigning 'slot'.
2779                  */
2780                 if (rdev->mddev->pers)
2781                         err = -EBUSY;
2782                 else {
2783                         set_bit(Replacement, &rdev->flags);
2784                         err = 0;
2785                 }
2786         } else if (cmd_match(buf, "-replacement")) {
2787                 /* Similarly, can only clear Replacement before start */
2788                 if (rdev->mddev->pers)
2789                         err = -EBUSY;
2790                 else {
2791                         clear_bit(Replacement, &rdev->flags);
2792                         err = 0;
2793                 }
2794         }
2795         if (!err)
2796                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2797         return err ? err : len;
2798 }
2799 static struct rdev_sysfs_entry rdev_state =
2800 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2801
2802 static ssize_t
2803 errors_show(struct md_rdev *rdev, char *page)
2804 {
2805         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2806 }
2807
2808 static ssize_t
2809 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2810 {
2811         char *e;
2812         unsigned long n = simple_strtoul(buf, &e, 10);
2813         if (*buf && (*e == 0 || *e == '\n')) {
2814                 atomic_set(&rdev->corrected_errors, n);
2815                 return len;
2816         }
2817         return -EINVAL;
2818 }
2819 static struct rdev_sysfs_entry rdev_errors =
2820 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2821
2822 static ssize_t
2823 slot_show(struct md_rdev *rdev, char *page)
2824 {
2825         if (rdev->raid_disk < 0)
2826                 return sprintf(page, "none\n");
2827         else
2828                 return sprintf(page, "%d\n", rdev->raid_disk);
2829 }
2830
2831 static ssize_t
2832 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2833 {
2834         char *e;
2835         int err;
2836         int slot = simple_strtoul(buf, &e, 10);
2837         if (strncmp(buf, "none", 4)==0)
2838                 slot = -1;
2839         else if (e==buf || (*e && *e!= '\n'))
2840                 return -EINVAL;
2841         if (rdev->mddev->pers && slot == -1) {
2842                 /* Setting 'slot' on an active array requires also
2843                  * updating the 'rd%d' link, and communicating
2844                  * with the personality with ->hot_*_disk.
2845                  * For now we only support removing
2846                  * failed/spare devices.  This normally happens automatically,
2847                  * but not when the metadata is externally managed.
2848                  */
2849                 if (rdev->raid_disk == -1)
2850                         return -EEXIST;
2851                 /* personality does all needed checks */
2852                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2853                         return -EINVAL;
2854                 err = rdev->mddev->pers->
2855                         hot_remove_disk(rdev->mddev, rdev);
2856                 if (err)
2857                         return err;
2858                 sysfs_unlink_rdev(rdev->mddev, rdev);
2859                 rdev->raid_disk = -1;
2860                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2861                 md_wakeup_thread(rdev->mddev->thread);
2862         } else if (rdev->mddev->pers) {
2863                 /* Activating a spare .. or possibly reactivating
2864                  * if we ever get bitmaps working here.
2865                  */
2866
2867                 if (rdev->raid_disk != -1)
2868                         return -EBUSY;
2869
2870                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2871                         return -EBUSY;
2872
2873                 if (rdev->mddev->pers->hot_add_disk == NULL)
2874                         return -EINVAL;
2875
2876                 if (slot >= rdev->mddev->raid_disks &&
2877                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2878                         return -ENOSPC;
2879
2880                 rdev->raid_disk = slot;
2881                 if (test_bit(In_sync, &rdev->flags))
2882                         rdev->saved_raid_disk = slot;
2883                 else
2884                         rdev->saved_raid_disk = -1;
2885                 clear_bit(In_sync, &rdev->flags);
2886                 err = rdev->mddev->pers->
2887                         hot_add_disk(rdev->mddev, rdev);
2888                 if (err) {
2889                         rdev->raid_disk = -1;
2890                         return err;
2891                 } else
2892                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2893                 if (sysfs_link_rdev(rdev->mddev, rdev))
2894                         /* failure here is OK */;
2895                 /* don't wakeup anyone, leave that to userspace. */
2896         } else {
2897                 if (slot >= rdev->mddev->raid_disks &&
2898                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2899                         return -ENOSPC;
2900                 rdev->raid_disk = slot;
2901                 /* assume it is working */
2902                 clear_bit(Faulty, &rdev->flags);
2903                 clear_bit(WriteMostly, &rdev->flags);
2904                 set_bit(In_sync, &rdev->flags);
2905                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2906         }
2907         return len;
2908 }
2909
2910
2911 static struct rdev_sysfs_entry rdev_slot =
2912 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2913
2914 static ssize_t
2915 offset_show(struct md_rdev *rdev, char *page)
2916 {
2917         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2918 }
2919
2920 static ssize_t
2921 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2922 {
2923         unsigned long long offset;
2924         if (strict_strtoull(buf, 10, &offset) < 0)
2925                 return -EINVAL;
2926         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2927                 return -EBUSY;
2928         if (rdev->sectors && rdev->mddev->external)
2929                 /* Must set offset before size, so overlap checks
2930                  * can be sane */
2931                 return -EBUSY;
2932         rdev->data_offset = offset;
2933         return len;
2934 }
2935
2936 static struct rdev_sysfs_entry rdev_offset =
2937 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2938
2939 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2940 {
2941         return sprintf(page, "%llu\n",
2942                        (unsigned long long)rdev->new_data_offset);
2943 }
2944
2945 static ssize_t new_offset_store(struct md_rdev *rdev,
2946                                 const char *buf, size_t len)
2947 {
2948         unsigned long long new_offset;
2949         struct mddev *mddev = rdev->mddev;
2950
2951         if (strict_strtoull(buf, 10, &new_offset) < 0)
2952                 return -EINVAL;
2953
2954         if (mddev->sync_thread)
2955                 return -EBUSY;
2956         if (new_offset == rdev->data_offset)
2957                 /* reset is always permitted */
2958                 ;
2959         else if (new_offset > rdev->data_offset) {
2960                 /* must not push array size beyond rdev_sectors */
2961                 if (new_offset - rdev->data_offset
2962                     + mddev->dev_sectors > rdev->sectors)
2963                                 return -E2BIG;
2964         }
2965         /* Metadata worries about other space details. */
2966
2967         /* decreasing the offset is inconsistent with a backwards
2968          * reshape.
2969          */
2970         if (new_offset < rdev->data_offset &&
2971             mddev->reshape_backwards)
2972                 return -EINVAL;
2973         /* Increasing offset is inconsistent with forwards
2974          * reshape.  reshape_direction should be set to
2975          * 'backwards' first.
2976          */
2977         if (new_offset > rdev->data_offset &&
2978             !mddev->reshape_backwards)
2979                 return -EINVAL;
2980
2981         if (mddev->pers && mddev->persistent &&
2982             !super_types[mddev->major_version]
2983             .allow_new_offset(rdev, new_offset))
2984                 return -E2BIG;
2985         rdev->new_data_offset = new_offset;
2986         if (new_offset > rdev->data_offset)
2987                 mddev->reshape_backwards = 1;
2988         else if (new_offset < rdev->data_offset)
2989                 mddev->reshape_backwards = 0;
2990
2991         return len;
2992 }
2993 static struct rdev_sysfs_entry rdev_new_offset =
2994 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2995
2996 static ssize_t
2997 rdev_size_show(struct md_rdev *rdev, char *page)
2998 {
2999         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3000 }
3001
3002 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3003 {
3004         /* check if two start/length pairs overlap */
3005         if (s1+l1 <= s2)
3006                 return 0;
3007         if (s2+l2 <= s1)
3008                 return 0;
3009         return 1;
3010 }
3011
3012 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3013 {
3014         unsigned long long blocks;
3015         sector_t new;
3016
3017         if (strict_strtoull(buf, 10, &blocks) < 0)
3018                 return -EINVAL;
3019
3020         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3021                 return -EINVAL; /* sector conversion overflow */
3022
3023         new = blocks * 2;
3024         if (new != blocks * 2)
3025                 return -EINVAL; /* unsigned long long to sector_t overflow */
3026
3027         *sectors = new;
3028         return 0;
3029 }
3030
3031 static ssize_t
3032 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3033 {
3034         struct mddev *my_mddev = rdev->mddev;
3035         sector_t oldsectors = rdev->sectors;
3036         sector_t sectors;
3037
3038         if (strict_blocks_to_sectors(buf, &sectors) < 0)
3039                 return -EINVAL;
3040         if (rdev->data_offset != rdev->new_data_offset)
3041                 return -EINVAL; /* too confusing */
3042         if (my_mddev->pers && rdev->raid_disk >= 0) {
3043                 if (my_mddev->persistent) {
3044                         sectors = super_types[my_mddev->major_version].
3045                                 rdev_size_change(rdev, sectors);
3046                         if (!sectors)
3047                                 return -EBUSY;
3048                 } else if (!sectors)
3049                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3050                                 rdev->data_offset;
3051         }
3052         if (sectors < my_mddev->dev_sectors)
3053                 return -EINVAL; /* component must fit device */
3054
3055         rdev->sectors = sectors;
3056         if (sectors > oldsectors && my_mddev->external) {
3057                 /* need to check that all other rdevs with the same ->bdev
3058                  * do not overlap.  We need to unlock the mddev to avoid
3059                  * a deadlock.  We have already changed rdev->sectors, and if
3060                  * we have to change it back, we will have the lock again.
3061                  */
3062                 struct mddev *mddev;
3063                 int overlap = 0;
3064                 struct list_head *tmp;
3065
3066                 mddev_unlock(my_mddev);
3067                 for_each_mddev(mddev, tmp) {
3068                         struct md_rdev *rdev2;
3069
3070                         mddev_lock(mddev);
3071                         rdev_for_each(rdev2, mddev)
3072                                 if (rdev->bdev == rdev2->bdev &&
3073                                     rdev != rdev2 &&
3074                                     overlaps(rdev->data_offset, rdev->sectors,
3075                                              rdev2->data_offset,
3076                                              rdev2->sectors)) {
3077                                         overlap = 1;
3078                                         break;
3079                                 }
3080                         mddev_unlock(mddev);
3081                         if (overlap) {
3082                                 mddev_put(mddev);
3083                                 break;
3084                         }
3085                 }
3086                 mddev_lock(my_mddev);
3087                 if (overlap) {
3088                         /* Someone else could have slipped in a size
3089                          * change here, but doing so is just silly.
3090                          * We put oldsectors back because we *know* it is
3091                          * safe, and trust userspace not to race with
3092                          * itself
3093                          */
3094                         rdev->sectors = oldsectors;
3095                         return -EBUSY;
3096                 }
3097         }
3098         return len;
3099 }
3100
3101 static struct rdev_sysfs_entry rdev_size =
3102 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3103
3104
3105 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3106 {
3107         unsigned long long recovery_start = rdev->recovery_offset;
3108
3109         if (test_bit(In_sync, &rdev->flags) ||
3110             recovery_start == MaxSector)
3111                 return sprintf(page, "none\n");
3112
3113         return sprintf(page, "%llu\n", recovery_start);
3114 }
3115
3116 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3117 {
3118         unsigned long long recovery_start;
3119
3120         if (cmd_match(buf, "none"))
3121                 recovery_start = MaxSector;
3122         else if (strict_strtoull(buf, 10, &recovery_start))
3123                 return -EINVAL;
3124
3125         if (rdev->mddev->pers &&
3126             rdev->raid_disk >= 0)
3127                 return -EBUSY;
3128
3129         rdev->recovery_offset = recovery_start;
3130         if (recovery_start == MaxSector)
3131                 set_bit(In_sync, &rdev->flags);
3132         else
3133                 clear_bit(In_sync, &rdev->flags);
3134         return len;
3135 }
3136
3137 static struct rdev_sysfs_entry rdev_recovery_start =
3138 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3139
3140
3141 static ssize_t
3142 badblocks_show(struct badblocks *bb, char *page, int unack);
3143 static ssize_t
3144 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3145
3146 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3147 {
3148         return badblocks_show(&rdev->badblocks, page, 0);
3149 }
3150 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3151 {
3152         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3153         /* Maybe that ack was all we needed */
3154         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3155                 wake_up(&rdev->blocked_wait);
3156         return rv;
3157 }
3158 static struct rdev_sysfs_entry rdev_bad_blocks =
3159 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3160
3161
3162 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3163 {
3164         return badblocks_show(&rdev->badblocks, page, 1);
3165 }
3166 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3167 {
3168         return badblocks_store(&rdev->badblocks, page, len, 1);
3169 }
3170 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3171 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3172
3173 static struct attribute *rdev_default_attrs[] = {
3174         &rdev_state.attr,
3175         &rdev_errors.attr,
3176         &rdev_slot.attr,
3177         &rdev_offset.attr,
3178         &rdev_new_offset.attr,
3179         &rdev_size.attr,
3180         &rdev_recovery_start.attr,
3181         &rdev_bad_blocks.attr,
3182         &rdev_unack_bad_blocks.attr,
3183         NULL,
3184 };
3185 static ssize_t
3186 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3187 {
3188         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3189         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3190         struct mddev *mddev = rdev->mddev;
3191         ssize_t rv;
3192
3193         if (!entry->show)
3194                 return -EIO;
3195
3196         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3197         if (!rv) {
3198                 if (rdev->mddev == NULL)
3199                         rv = -EBUSY;
3200                 else
3201                         rv = entry->show(rdev, page);
3202                 mddev_unlock(mddev);
3203         }
3204         return rv;
3205 }
3206
3207 static ssize_t
3208 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3209               const char *page, size_t length)
3210 {
3211         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3212         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3213         ssize_t rv;
3214         struct mddev *mddev = rdev->mddev;
3215
3216         if (!entry->store)
3217                 return -EIO;
3218         if (!capable(CAP_SYS_ADMIN))
3219                 return -EACCES;
3220         rv = mddev ? mddev_lock(mddev): -EBUSY;
3221         if (!rv) {
3222                 if (rdev->mddev == NULL)
3223                         rv = -EBUSY;
3224                 else
3225                         rv = entry->store(rdev, page, length);
3226                 mddev_unlock(mddev);
3227         }
3228         return rv;
3229 }
3230
3231 static void rdev_free(struct kobject *ko)
3232 {
3233         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3234         kfree(rdev);
3235 }
3236 static const struct sysfs_ops rdev_sysfs_ops = {
3237         .show           = rdev_attr_show,
3238         .store          = rdev_attr_store,
3239 };
3240 static struct kobj_type rdev_ktype = {
3241         .release        = rdev_free,
3242         .sysfs_ops      = &rdev_sysfs_ops,
3243         .default_attrs  = rdev_default_attrs,
3244 };
3245
3246 int md_rdev_init(struct md_rdev *rdev)
3247 {
3248         rdev->desc_nr = -1;
3249         rdev->saved_raid_disk = -1;
3250         rdev->raid_disk = -1;
3251         rdev->flags = 0;
3252         rdev->data_offset = 0;
3253         rdev->new_data_offset = 0;
3254         rdev->sb_events = 0;
3255         rdev->last_read_error.tv_sec  = 0;
3256         rdev->last_read_error.tv_nsec = 0;
3257         rdev->sb_loaded = 0;
3258         rdev->bb_page = NULL;
3259         atomic_set(&rdev->nr_pending, 0);
3260         atomic_set(&rdev->read_errors, 0);
3261         atomic_set(&rdev->corrected_errors, 0);
3262
3263         INIT_LIST_HEAD(&rdev->same_set);
3264         init_waitqueue_head(&rdev->blocked_wait);
3265
3266         /* Add space to store bad block list.
3267          * This reserves the space even on arrays where it cannot
3268          * be used - I wonder if that matters
3269          */
3270         rdev->badblocks.count = 0;
3271         rdev->badblocks.shift = 0;
3272         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3273         seqlock_init(&rdev->badblocks.lock);
3274         if (rdev->badblocks.page == NULL)
3275                 return -ENOMEM;
3276
3277         return 0;
3278 }
3279 EXPORT_SYMBOL_GPL(md_rdev_init);
3280 /*
3281  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3282  *
3283  * mark the device faulty if:
3284  *
3285  *   - the device is nonexistent (zero size)
3286  *   - the device has no valid superblock
3287  *
3288  * a faulty rdev _never_ has rdev->sb set.
3289  */
3290 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3291 {
3292         char b[BDEVNAME_SIZE];
3293         int err;
3294         struct md_rdev *rdev;
3295         sector_t size;
3296
3297         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3298         if (!rdev) {
3299                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3300                 return ERR_PTR(-ENOMEM);
3301         }
3302
3303         err = md_rdev_init(rdev);
3304         if (err)
3305                 goto abort_free;
3306         err = alloc_disk_sb(rdev);
3307         if (err)
3308                 goto abort_free;
3309
3310         err = lock_rdev(rdev, newdev, super_format == -2);
3311         if (err)
3312                 goto abort_free;
3313
3314         kobject_init(&rdev->kobj, &rdev_ktype);
3315
3316         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3317         if (!size) {
3318                 printk(KERN_WARNING 
3319                         "md: %s has zero or unknown size, marking faulty!\n",
3320                         bdevname(rdev->bdev,b));
3321                 err = -EINVAL;
3322                 goto abort_free;
3323         }
3324
3325         if (super_format >= 0) {
3326                 err = super_types[super_format].
3327                         load_super(rdev, NULL, super_minor);
3328                 if (err == -EINVAL) {
3329                         printk(KERN_WARNING
3330                                 "md: %s does not have a valid v%d.%d "
3331                                "superblock, not importing!\n",
3332                                 bdevname(rdev->bdev,b),
3333                                super_format, super_minor);
3334                         goto abort_free;
3335                 }
3336                 if (err < 0) {
3337                         printk(KERN_WARNING 
3338                                 "md: could not read %s's sb, not importing!\n",
3339                                 bdevname(rdev->bdev,b));
3340                         goto abort_free;
3341                 }
3342         }
3343         if (super_format == -1)
3344                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3345                 rdev->badblocks.shift = -1;
3346
3347         return rdev;
3348
3349 abort_free:
3350         if (rdev->bdev)
3351                 unlock_rdev(rdev);
3352         md_rdev_clear(rdev);
3353         kfree(rdev);
3354         return ERR_PTR(err);
3355 }
3356
3357 /*
3358  * Check a full RAID array for plausibility
3359  */
3360
3361
3362 static void analyze_sbs(struct mddev * mddev)
3363 {
3364         int i;
3365         struct md_rdev *rdev, *freshest, *tmp;
3366         char b[BDEVNAME_SIZE];
3367
3368         freshest = NULL;
3369         rdev_for_each_safe(rdev, tmp, mddev)
3370                 switch (super_types[mddev->major_version].
3371                         load_super(rdev, freshest, mddev->minor_version)) {
3372                 case 1:
3373                         freshest = rdev;
3374                         break;
3375                 case 0:
3376                         break;
3377                 default:
3378                         printk( KERN_ERR \
3379                                 "md: fatal superblock inconsistency in %s"
3380                                 " -- removing from array\n", 
3381                                 bdevname(rdev->bdev,b));
3382                         kick_rdev_from_array(rdev);
3383                 }
3384
3385
3386         super_types[mddev->major_version].
3387                 validate_super(mddev, freshest);
3388
3389         i = 0;
3390         rdev_for_each_safe(rdev, tmp, mddev) {
3391                 if (mddev->max_disks &&
3392                     (rdev->desc_nr >= mddev->max_disks ||
3393                      i > mddev->max_disks)) {
3394                         printk(KERN_WARNING
3395                                "md: %s: %s: only %d devices permitted\n",
3396                                mdname(mddev), bdevname(rdev->bdev, b),
3397                                mddev->max_disks);
3398                         kick_rdev_from_array(rdev);
3399                         continue;
3400                 }
3401                 if (rdev != freshest)
3402                         if (super_types[mddev->major_version].
3403                             validate_super(mddev, rdev)) {
3404                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3405                                         " from array!\n",
3406                                         bdevname(rdev->bdev,b));
3407                                 kick_rdev_from_array(rdev);
3408                                 continue;
3409                         }
3410                 if (mddev->level == LEVEL_MULTIPATH) {
3411                         rdev->desc_nr = i++;
3412                         rdev->raid_disk = rdev->desc_nr;
3413                         set_bit(In_sync, &rdev->flags);
3414                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3415                         rdev->raid_disk = -1;
3416                         clear_bit(In_sync, &rdev->flags);
3417                 }
3418         }
3419 }
3420
3421 /* Read a fixed-point number.
3422  * Numbers in sysfs attributes should be in "standard" units where
3423  * possible, so time should be in seconds.
3424  * However we internally use a a much smaller unit such as 
3425  * milliseconds or jiffies.
3426  * This function takes a decimal number with a possible fractional
3427  * component, and produces an integer which is the result of
3428  * multiplying that number by 10^'scale'.
3429  * all without any floating-point arithmetic.
3430  */
3431 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3432 {
3433         unsigned long result = 0;
3434         long decimals = -1;
3435         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3436                 if (*cp == '.')
3437                         decimals = 0;
3438                 else if (decimals < scale) {
3439                         unsigned int value;
3440                         value = *cp - '0';
3441                         result = result * 10 + value;
3442                         if (decimals >= 0)
3443                                 decimals++;
3444                 }
3445                 cp++;
3446         }
3447         if (*cp == '\n')
3448                 cp++;
3449         if (*cp)
3450                 return -EINVAL;
3451         if (decimals < 0)
3452                 decimals = 0;
3453         while (decimals < scale) {
3454                 result *= 10;
3455                 decimals ++;
3456         }
3457         *res = result;
3458         return 0;
3459 }
3460
3461
3462 static void md_safemode_timeout(unsigned long data);
3463
3464 static ssize_t
3465 safe_delay_show(struct mddev *mddev, char *page)
3466 {
3467         int msec = (mddev->safemode_delay*1000)/HZ;
3468         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3469 }
3470 static ssize_t
3471 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3472 {
3473         unsigned long msec;
3474
3475         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3476                 return -EINVAL;
3477         if (msec == 0)
3478                 mddev->safemode_delay = 0;
3479         else {
3480                 unsigned long old_delay = mddev->safemode_delay;
3481                 mddev->safemode_delay = (msec*HZ)/1000;
3482                 if (mddev->safemode_delay == 0)
3483                         mddev->safemode_delay = 1;
3484                 if (mddev->safemode_delay < old_delay)
3485                         md_safemode_timeout((unsigned long)mddev);
3486         }
3487         return len;
3488 }
3489 static struct md_sysfs_entry md_safe_delay =
3490 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3491
3492 static ssize_t
3493 level_show(struct mddev *mddev, char *page)
3494 {
3495         struct md_personality *p = mddev->pers;
3496         if (p)
3497                 return sprintf(page, "%s\n", p->name);
3498         else if (mddev->clevel[0])
3499                 return sprintf(page, "%s\n", mddev->clevel);
3500         else if (mddev->level != LEVEL_NONE)
3501                 return sprintf(page, "%d\n", mddev->level);
3502         else
3503                 return 0;
3504 }
3505
3506 static ssize_t
3507 level_store(struct mddev *mddev, const char *buf, size_t len)
3508 {
3509         char clevel[16];
3510         ssize_t rv = len;
3511         struct md_personality *pers;
3512         long level;
3513         void *priv;
3514         struct md_rdev *rdev;
3515
3516         if (mddev->pers == NULL) {
3517                 if (len == 0)
3518                         return 0;
3519                 if (len >= sizeof(mddev->clevel))
3520                         return -ENOSPC;
3521                 strncpy(mddev->clevel, buf, len);
3522                 if (mddev->clevel[len-1] == '\n')
3523                         len--;
3524                 mddev->clevel[len] = 0;
3525                 mddev->level = LEVEL_NONE;
3526                 return rv;
3527         }
3528
3529         /* request to change the personality.  Need to ensure:
3530          *  - array is not engaged in resync/recovery/reshape
3531          *  - old personality can be suspended
3532          *  - new personality will access other array.
3533          */
3534
3535         if (mddev->sync_thread ||
3536             mddev->reshape_position != MaxSector ||
3537             mddev->sysfs_active)
3538                 return -EBUSY;
3539
3540         if (!mddev->pers->quiesce) {
3541                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3542                        mdname(mddev), mddev->pers->name);
3543                 return -EINVAL;
3544         }
3545
3546         /* Now find the new personality */
3547         if (len == 0 || len >= sizeof(clevel))
3548                 return -EINVAL;
3549         strncpy(clevel, buf, len);
3550         if (clevel[len-1] == '\n')
3551                 len--;
3552         clevel[len] = 0;
3553         if (strict_strtol(clevel, 10, &level))
3554                 level = LEVEL_NONE;
3555
3556         if (request_module("md-%s", clevel) != 0)
3557                 request_module("md-level-%s", clevel);
3558         spin_lock(&pers_lock);
3559         pers = find_pers(level, clevel);
3560         if (!pers || !try_module_get(pers->owner)) {
3561                 spin_unlock(&pers_lock);
3562                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3563                 return -EINVAL;
3564         }
3565         spin_unlock(&pers_lock);
3566
3567         if (pers == mddev->pers) {
3568                 /* Nothing to do! */
3569                 module_put(pers->owner);
3570                 return rv;
3571         }
3572         if (!pers->takeover) {
3573                 module_put(pers->owner);
3574                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3575                        mdname(mddev), clevel);
3576                 return -EINVAL;
3577         }
3578
3579         rdev_for_each(rdev, mddev)
3580                 rdev->new_raid_disk = rdev->raid_disk;
3581
3582         /* ->takeover must set new_* and/or delta_disks
3583          * if it succeeds, and may set them when it fails.
3584          */
3585         priv = pers->takeover(mddev);
3586         if (IS_ERR(priv)) {
3587                 mddev->new_level = mddev->level;
3588                 mddev->new_layout = mddev->layout;
3589                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3590                 mddev->raid_disks -= mddev->delta_disks;
3591                 mddev->delta_disks = 0;
3592                 mddev->reshape_backwards = 0;
3593                 module_put(pers->owner);
3594                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3595                        mdname(mddev), clevel);
3596                 return PTR_ERR(priv);
3597         }
3598
3599         /* Looks like we have a winner */
3600         mddev_suspend(mddev);
3601         mddev->pers->stop(mddev);
3602         
3603         if (mddev->pers->sync_request == NULL &&
3604             pers->sync_request != NULL) {
3605                 /* need to add the md_redundancy_group */
3606                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3607                         printk(KERN_WARNING
3608                                "md: cannot register extra attributes for %s\n",
3609                                mdname(mddev));
3610                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3611         }               
3612         if (mddev->pers->sync_request != NULL &&
3613             pers->sync_request == NULL) {
3614                 /* need to remove the md_redundancy_group */
3615                 if (mddev->to_remove == NULL)
3616                         mddev->to_remove = &md_redundancy_group;
3617         }
3618
3619         if (mddev->pers->sync_request == NULL &&
3620             mddev->external) {
3621                 /* We are converting from a no-redundancy array
3622                  * to a redundancy array and metadata is managed
3623                  * externally so we need to be sure that writes
3624                  * won't block due to a need to transition
3625                  *      clean->dirty
3626                  * until external management is started.
3627                  */
3628                 mddev->in_sync = 0;
3629                 mddev->safemode_delay = 0;
3630                 mddev->safemode = 0;
3631         }
3632
3633         rdev_for_each(rdev, mddev) {
3634                 if (rdev->raid_disk < 0)
3635                         continue;
3636                 if (rdev->new_raid_disk >= mddev->raid_disks)
3637                         rdev->new_raid_disk = -1;
3638                 if (rdev->new_raid_disk == rdev->raid_disk)
3639                         continue;
3640                 sysfs_unlink_rdev(mddev, rdev);
3641         }
3642         rdev_for_each(rdev, mddev) {
3643                 if (rdev->raid_disk < 0)
3644                         continue;
3645                 if (rdev->new_raid_disk == rdev->raid_disk)
3646                         continue;
3647                 rdev->raid_disk = rdev->new_raid_disk;
3648                 if (rdev->raid_disk < 0)
3649                         clear_bit(In_sync, &rdev->flags);
3650                 else {
3651                         if (sysfs_link_rdev(mddev, rdev))
3652                                 printk(KERN_WARNING "md: cannot register rd%d"
3653                                        " for %s after level change\n",
3654                                        rdev->raid_disk, mdname(mddev));
3655                 }
3656         }
3657
3658         module_put(mddev->pers->owner);
3659         mddev->pers = pers;
3660         mddev->private = priv;
3661         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3662         mddev->level = mddev->new_level;
3663         mddev->layout = mddev->new_layout;
3664         mddev->chunk_sectors = mddev->new_chunk_sectors;
3665         mddev->delta_disks = 0;
3666         mddev->reshape_backwards = 0;
3667         mddev->degraded = 0;
3668         if (mddev->pers->sync_request == NULL) {
3669                 /* this is now an array without redundancy, so
3670                  * it must always be in_sync
3671                  */
3672                 mddev->in_sync = 1;
3673                 del_timer_sync(&mddev->safemode_timer);
3674         }
3675         pers->run(mddev);
3676         mddev_resume(mddev);
3677         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3678         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3679         md_wakeup_thread(mddev->thread);
3680         sysfs_notify(&mddev->kobj, NULL, "level");
3681         md_new_event(mddev);
3682         return rv;
3683 }
3684
3685 static struct md_sysfs_entry md_level =
3686 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3687
3688
3689 static ssize_t
3690 layout_show(struct mddev *mddev, char *page)
3691 {
3692         /* just a number, not meaningful for all levels */
3693         if (mddev->reshape_position != MaxSector &&
3694             mddev->layout != mddev->new_layout)
3695                 return sprintf(page, "%d (%d)\n",
3696                                mddev->new_layout, mddev->layout);
3697         return sprintf(page, "%d\n", mddev->layout);
3698 }
3699
3700 static ssize_t
3701 layout_store(struct mddev *mddev, const char *buf, size_t len)
3702 {
3703         char *e;
3704         unsigned long n = simple_strtoul(buf, &e, 10);
3705
3706         if (!*buf || (*e && *e != '\n'))
3707                 return -EINVAL;
3708
3709         if (mddev->pers) {
3710                 int err;
3711                 if (mddev->pers->check_reshape == NULL)
3712                         return -EBUSY;
3713                 mddev->new_layout = n;
3714                 err = mddev->pers->check_reshape(mddev);
3715                 if (err) {
3716                         mddev->new_layout = mddev->layout;
3717                         return err;
3718                 }
3719         } else {
3720                 mddev->new_layout = n;
3721                 if (mddev->reshape_position == MaxSector)
3722                         mddev->layout = n;
3723         }
3724         return len;
3725 }
3726 static struct md_sysfs_entry md_layout =
3727 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3728
3729
3730 static ssize_t
3731 raid_disks_show(struct mddev *mddev, char *page)
3732 {
3733         if (mddev->raid_disks == 0)
3734                 return 0;
3735         if (mddev->reshape_position != MaxSector &&
3736             mddev->delta_disks != 0)
3737                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3738                                mddev->raid_disks - mddev->delta_disks);
3739         return sprintf(page, "%d\n", mddev->raid_disks);
3740 }
3741
3742 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3743
3744 static ssize_t
3745 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3746 {
3747         char *e;
3748         int rv = 0;
3749         unsigned long n = simple_strtoul(buf, &e, 10);
3750
3751         if (!*buf || (*e && *e != '\n'))
3752                 return -EINVAL;
3753
3754         if (mddev->pers)
3755                 rv = update_raid_disks(mddev, n);
3756         else if (mddev->reshape_position != MaxSector) {
3757                 struct md_rdev *rdev;
3758                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3759
3760                 rdev_for_each(rdev, mddev) {
3761                         if (olddisks < n &&
3762                             rdev->data_offset < rdev->new_data_offset)
3763                                 return -EINVAL;
3764                         if (olddisks > n &&
3765                             rdev->data_offset > rdev->new_data_offset)
3766                                 return -EINVAL;
3767                 }
3768                 mddev->delta_disks = n - olddisks;
3769                 mddev->raid_disks = n;
3770                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3771         } else
3772                 mddev->raid_disks = n;
3773         return rv ? rv : len;
3774 }
3775 static struct md_sysfs_entry md_raid_disks =
3776 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3777
3778 static ssize_t
3779 chunk_size_show(struct mddev *mddev, char *page)
3780 {
3781         if (mddev->reshape_position != MaxSector &&
3782             mddev->chunk_sectors != mddev->new_chunk_sectors)
3783                 return sprintf(page, "%d (%d)\n",
3784                                mddev->new_chunk_sectors << 9,
3785                                mddev->chunk_sectors << 9);
3786         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3787 }
3788
3789 static ssize_t
3790 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3791 {
3792         char *e;
3793         unsigned long n = simple_strtoul(buf, &e, 10);
3794
3795         if (!*buf || (*e && *e != '\n'))
3796                 return -EINVAL;
3797
3798         if (mddev->pers) {
3799                 int err;
3800                 if (mddev->pers->check_reshape == NULL)
3801                         return -EBUSY;
3802                 mddev->new_chunk_sectors = n >> 9;
3803                 err = mddev->pers->check_reshape(mddev);
3804                 if (err) {
3805                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3806                         return err;
3807                 }
3808         } else {
3809                 mddev->new_chunk_sectors = n >> 9;
3810                 if (mddev->reshape_position == MaxSector)
3811                         mddev->chunk_sectors = n >> 9;
3812         }
3813         return len;
3814 }
3815 static struct md_sysfs_entry md_chunk_size =
3816 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3817
3818 static ssize_t
3819 resync_start_show(struct mddev *mddev, char *page)
3820 {
3821         if (mddev->recovery_cp == MaxSector)
3822                 return sprintf(page, "none\n");
3823         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3824 }
3825
3826 static ssize_t
3827 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3828 {
3829         char *e;
3830         unsigned long long n = simple_strtoull(buf, &e, 10);
3831
3832         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3833                 return -EBUSY;
3834         if (cmd_match(buf, "none"))
3835                 n = MaxSector;
3836         else if (!*buf || (*e && *e != '\n'))
3837                 return -EINVAL;
3838
3839         mddev->recovery_cp = n;
3840         return len;
3841 }
3842 static struct md_sysfs_entry md_resync_start =
3843 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3844
3845 /*
3846  * The array state can be:
3847  *
3848  * clear
3849  *     No devices, no size, no level
3850  *     Equivalent to STOP_ARRAY ioctl
3851  * inactive
3852  *     May have some settings, but array is not active
3853  *        all IO results in error
3854  *     When written, doesn't tear down array, but just stops it
3855  * suspended (not supported yet)
3856  *     All IO requests will block. The array can be reconfigured.
3857  *     Writing this, if accepted, will block until array is quiescent
3858  * readonly
3859  *     no resync can happen.  no superblocks get written.
3860  *     write requests fail
3861  * read-auto
3862  *     like readonly, but behaves like 'clean' on a write request.
3863  *
3864  * clean - no pending writes, but otherwise active.
3865  *     When written to inactive array, starts without resync
3866  *     If a write request arrives then
3867  *       if metadata is known, mark 'dirty' and switch to 'active'.
3868  *       if not known, block and switch to write-pending
3869  *     If written to an active array that has pending writes, then fails.
3870  * active
3871  *     fully active: IO and resync can be happening.
3872  *     When written to inactive array, starts with resync
3873  *
3874  * write-pending
3875  *     clean, but writes are blocked waiting for 'active' to be written.
3876  *
3877  * active-idle
3878  *     like active, but no writes have been seen for a while (100msec).
3879  *
3880  */
3881 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3882                    write_pending, active_idle, bad_word};
3883 static char *array_states[] = {
3884         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3885         "write-pending", "active-idle", NULL };
3886
3887 static int match_word(const char *word, char **list)
3888 {
3889         int n;
3890         for (n=0; list[n]; n++)
3891                 if (cmd_match(word, list[n]))
3892                         break;
3893         return n;
3894 }
3895
3896 static ssize_t
3897 array_state_show(struct mddev *mddev, char *page)
3898 {
3899         enum array_state st = inactive;
3900
3901         if (mddev->pers)
3902                 switch(mddev->ro) {
3903                 case 1:
3904                         st = readonly;
3905                         break;
3906                 case 2:
3907                         st = read_auto;
3908                         break;
3909                 case 0:
3910                         if (mddev->in_sync)
3911                                 st = clean;
3912                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3913                                 st = write_pending;
3914                         else if (mddev->safemode)
3915                                 st = active_idle;
3916                         else
3917                                 st = active;
3918                 }
3919         else {
3920                 if (list_empty(&mddev->disks) &&
3921                     mddev->raid_disks == 0 &&
3922                     mddev->dev_sectors == 0)
3923                         st = clear;
3924                 else
3925                         st = inactive;
3926         }
3927         return sprintf(page, "%s\n", array_states[st]);
3928 }
3929
3930 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3931 static int md_set_readonly(struct mddev * mddev, int is_open);
3932 static int do_md_run(struct mddev * mddev);
3933 static int restart_array(struct mddev *mddev);
3934
3935 static ssize_t
3936 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3937 {
3938         int err = -EINVAL;
3939         enum array_state st = match_word(buf, array_states);
3940         switch(st) {
3941         case bad_word:
3942                 break;
3943         case clear:
3944                 /* stopping an active array */
3945                 if (atomic_read(&mddev->openers) > 0)
3946                         return -EBUSY;
3947                 err = do_md_stop(mddev, 0, 0);
3948                 break;
3949         case inactive:
3950                 /* stopping an active array */
3951                 if (mddev->pers) {
3952                         if (atomic_read(&mddev->openers) > 0)
3953                                 return -EBUSY;
3954                         err = do_md_stop(mddev, 2, 0);
3955                 } else
3956                         err = 0; /* already inactive */
3957                 break;
3958         case suspended:
3959                 break; /* not supported yet */
3960         case readonly:
3961                 if (mddev->pers)
3962                         err = md_set_readonly(mddev, 0);
3963                 else {
3964                         mddev->ro = 1;
3965                         set_disk_ro(mddev->gendisk, 1);
3966                         err = do_md_run(mddev);
3967                 }
3968                 break;
3969         case read_auto:
3970                 if (mddev->pers) {
3971                         if (mddev->ro == 0)
3972                                 err = md_set_readonly(mddev, 0);
3973                         else if (mddev->ro == 1)
3974                                 err = restart_array(mddev);
3975                         if (err == 0) {
3976                                 mddev->ro = 2;
3977                                 set_disk_ro(mddev->gendisk, 0);
3978                         }
3979                 } else {
3980                         mddev->ro = 2;
3981                         err = do_md_run(mddev);
3982                 }
3983                 break;
3984         case clean:
3985                 if (mddev->pers) {
3986                         restart_array(mddev);
3987                         spin_lock_irq(&mddev->write_lock);
3988                         if (atomic_read(&mddev->writes_pending) == 0) {
3989                                 if (mddev->in_sync == 0) {
3990                                         mddev->in_sync = 1;
3991                                         if (mddev->safemode == 1)
3992                                                 mddev->safemode = 0;
3993                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3994                                 }
3995                                 err = 0;
3996                         } else
3997                                 err = -EBUSY;
3998                         spin_unlock_irq(&mddev->write_lock);
3999                 } else
4000                         err = -EINVAL;
4001                 break;
4002         case active:
4003                 if (mddev->pers) {
4004                         restart_array(mddev);
4005                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4006                         wake_up(&mddev->sb_wait);
4007                         err = 0;
4008                 } else {
4009                         mddev->ro = 0;
4010                         set_disk_ro(mddev->gendisk, 0);
4011                         err = do_md_run(mddev);
4012                 }
4013                 break;
4014         case write_pending:
4015         case active_idle:
4016                 /* these cannot be set */
4017                 break;
4018         }
4019         if (err)
4020                 return err;
4021         else {
4022                 if (mddev->hold_active == UNTIL_IOCTL)
4023                         mddev->hold_active = 0;
4024                 sysfs_notify_dirent_safe(mddev->sysfs_state);
4025                 return len;
4026         }
4027 }
4028 static struct md_sysfs_entry md_array_state =
4029 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4030
4031 static ssize_t
4032 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4033         return sprintf(page, "%d\n",
4034                        atomic_read(&mddev->max_corr_read_errors));
4035 }
4036
4037 static ssize_t
4038 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4039 {
4040         char *e;
4041         unsigned long n = simple_strtoul(buf, &e, 10);
4042
4043         if (*buf && (*e == 0 || *e == '\n')) {
4044                 atomic_set(&mddev->max_corr_read_errors, n);
4045                 return len;
4046         }
4047         return -EINVAL;
4048 }
4049
4050 static struct md_sysfs_entry max_corr_read_errors =
4051 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4052         max_corrected_read_errors_store);
4053
4054 static ssize_t
4055 null_show(struct mddev *mddev, char *page)
4056 {
4057         return -EINVAL;
4058 }
4059
4060 static ssize_t
4061 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063         /* buf must be %d:%d\n? giving major and minor numbers */
4064         /* The new device is added to the array.
4065          * If the array has a persistent superblock, we read the
4066          * superblock to initialise info and check validity.
4067          * Otherwise, only checking done is that in bind_rdev_to_array,
4068          * which mainly checks size.
4069          */
4070         char *e;
4071         int major = simple_strtoul(buf, &e, 10);
4072         int minor;
4073         dev_t dev;
4074         struct md_rdev *rdev;
4075         int err;
4076
4077         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4078                 return -EINVAL;
4079         minor = simple_strtoul(e+1, &e, 10);
4080         if (*e && *e != '\n')
4081                 return -EINVAL;
4082         dev = MKDEV(major, minor);
4083         if (major != MAJOR(dev) ||
4084             minor != MINOR(dev))
4085                 return -EOVERFLOW;
4086
4087
4088         if (mddev->persistent) {
4089                 rdev = md_import_device(dev, mddev->major_version,
4090                                         mddev->minor_version);
4091                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4092                         struct md_rdev *rdev0
4093                                 = list_entry(mddev->disks.next,
4094                                              struct md_rdev, same_set);
4095                         err = super_types[mddev->major_version]
4096                                 .load_super(rdev, rdev0, mddev->minor_version);
4097                         if (err < 0)
4098                                 goto out;
4099                 }
4100         } else if (mddev->external)
4101                 rdev = md_import_device(dev, -2, -1);
4102         else
4103                 rdev = md_import_device(dev, -1, -1);
4104
4105         if (IS_ERR(rdev))
4106                 return PTR_ERR(rdev);
4107         err = bind_rdev_to_array(rdev, mddev);
4108  out:
4109         if (err)
4110                 export_rdev(rdev);
4111         return err ? err : len;
4112 }
4113
4114 static struct md_sysfs_entry md_new_device =
4115 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4116
4117 static ssize_t
4118 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4119 {
4120         char *end;
4121         unsigned long chunk, end_chunk;
4122
4123         if (!mddev->bitmap)
4124                 goto out;
4125         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4126         while (*buf) {
4127                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4128                 if (buf == end) break;
4129                 if (*end == '-') { /* range */
4130                         buf = end + 1;
4131                         end_chunk = simple_strtoul(buf, &end, 0);
4132                         if (buf == end) break;
4133                 }
4134                 if (*end && !isspace(*end)) break;
4135                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4136                 buf = skip_spaces(end);
4137         }
4138         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4139 out:
4140         return len;
4141 }
4142
4143 static struct md_sysfs_entry md_bitmap =
4144 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4145
4146 static ssize_t
4147 size_show(struct mddev *mddev, char *page)
4148 {
4149         return sprintf(page, "%llu\n",
4150                 (unsigned long long)mddev->dev_sectors / 2);
4151 }
4152
4153 static int update_size(struct mddev *mddev, sector_t num_sectors);
4154
4155 static ssize_t
4156 size_store(struct mddev *mddev, const char *buf, size_t len)
4157 {
4158         /* If array is inactive, we can reduce the component size, but
4159          * not increase it (except from 0).
4160          * If array is active, we can try an on-line resize
4161          */
4162         sector_t sectors;
4163         int err = strict_blocks_to_sectors(buf, &sectors);
4164
4165         if (err < 0)
4166                 return err;
4167         if (mddev->pers) {
4168                 err = update_size(mddev, sectors);
4169                 md_update_sb(mddev, 1);
4170         } else {
4171                 if (mddev->dev_sectors == 0 ||
4172                     mddev->dev_sectors > sectors)
4173                         mddev->dev_sectors = sectors;
4174                 else
4175                         err = -ENOSPC;
4176         }
4177         return err ? err : len;
4178 }
4179
4180 static struct md_sysfs_entry md_size =
4181 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4182
4183
4184 /* Metdata version.
4185  * This is one of
4186  *   'none' for arrays with no metadata (good luck...)
4187  *   'external' for arrays with externally managed metadata,
4188  * or N.M for internally known formats
4189  */
4190 static ssize_t
4191 metadata_show(struct mddev *mddev, char *page)
4192 {
4193         if (mddev->persistent)
4194                 return sprintf(page, "%d.%d\n",
4195                                mddev->major_version, mddev->minor_version);
4196         else if (mddev->external)
4197                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4198         else
4199                 return sprintf(page, "none\n");
4200 }
4201
4202 static ssize_t
4203 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4204 {
4205         int major, minor;
4206         char *e;
4207         /* Changing the details of 'external' metadata is
4208          * always permitted.  Otherwise there must be
4209          * no devices attached to the array.
4210          */
4211         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4212                 ;
4213         else if (!list_empty(&mddev->disks))
4214                 return -EBUSY;
4215
4216         if (cmd_match(buf, "none")) {
4217                 mddev->persistent = 0;
4218                 mddev->external = 0;
4219                 mddev->major_version = 0;
4220                 mddev->minor_version = 90;
4221                 return len;
4222         }
4223         if (strncmp(buf, "external:", 9) == 0) {
4224                 size_t namelen = len-9;
4225                 if (namelen >= sizeof(mddev->metadata_type))
4226                         namelen = sizeof(mddev->metadata_type)-1;
4227                 strncpy(mddev->metadata_type, buf+9, namelen);
4228                 mddev->metadata_type[namelen] = 0;
4229                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4230                         mddev->metadata_type[--namelen] = 0;
4231                 mddev->persistent = 0;
4232                 mddev->external = 1;
4233                 mddev->major_version = 0;
4234                 mddev->minor_version = 90;
4235                 return len;
4236         }
4237         major = simple_strtoul(buf, &e, 10);
4238         if (e==buf || *e != '.')
4239                 return -EINVAL;
4240         buf = e+1;
4241         minor = simple_strtoul(buf, &e, 10);
4242         if (e==buf || (*e && *e != '\n') )
4243                 return -EINVAL;
4244         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4245                 return -ENOENT;
4246         mddev->major_version = major;
4247         mddev->minor_version = minor;
4248         mddev->persistent = 1;
4249         mddev->external = 0;
4250         return len;
4251 }
4252
4253 static struct md_sysfs_entry md_metadata =
4254 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4255
4256 static ssize_t
4257 action_show(struct mddev *mddev, char *page)
4258 {
4259         char *type = "idle";
4260         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4261                 type = "frozen";
4262         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4263             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4264                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4265                         type = "reshape";
4266                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4267                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4268                                 type = "resync";
4269                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4270                                 type = "check";
4271                         else
4272                                 type = "repair";
4273                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4274                         type = "recover";
4275         }
4276         return sprintf(page, "%s\n", type);
4277 }
4278
4279 static void reap_sync_thread(struct mddev *mddev);
4280
4281 static ssize_t
4282 action_store(struct mddev *mddev, const char *page, size_t len)
4283 {
4284         if (!mddev->pers || !mddev->pers->sync_request)
4285                 return -EINVAL;
4286
4287         if (cmd_match(page, "frozen"))
4288                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4289         else
4290                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4291
4292         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4293                 if (mddev->sync_thread) {
4294                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4295                         reap_sync_thread(mddev);
4296                 }
4297         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4298                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4299                 return -EBUSY;
4300         else if (cmd_match(page, "resync"))
4301                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4302         else if (cmd_match(page, "recover")) {
4303                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4304                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4305         } else if (cmd_match(page, "reshape")) {
4306                 int err;
4307                 if (mddev->pers->start_reshape == NULL)
4308                         return -EINVAL;
4309                 err = mddev->pers->start_reshape(mddev);
4310                 if (err)
4311                         return err;
4312                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4313         } else {
4314                 if (cmd_match(page, "check"))
4315                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4316                 else if (!cmd_match(page, "repair"))
4317                         return -EINVAL;
4318                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4319                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4320         }
4321         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4322         md_wakeup_thread(mddev->thread);
4323         sysfs_notify_dirent_safe(mddev->sysfs_action);
4324         return len;
4325 }
4326
4327 static ssize_t
4328 mismatch_cnt_show(struct mddev *mddev, char *page)
4329 {
4330         return sprintf(page, "%llu\n",
4331                        (unsigned long long) mddev->resync_mismatches);
4332 }
4333
4334 static struct md_sysfs_entry md_scan_mode =
4335 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4336
4337
4338 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4339
4340 static ssize_t
4341 sync_min_show(struct mddev *mddev, char *page)
4342 {
4343         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4344                        mddev->sync_speed_min ? "local": "system");
4345 }
4346
4347 static ssize_t
4348 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4349 {
4350         int min;
4351         char *e;
4352         if (strncmp(buf, "system", 6)==0) {
4353                 mddev->sync_speed_min = 0;
4354                 return len;
4355         }
4356         min = simple_strtoul(buf, &e, 10);
4357         if (buf == e || (*e && *e != '\n') || min <= 0)
4358                 return -EINVAL;
4359         mddev->sync_speed_min = min;
4360         return len;
4361 }
4362
4363 static struct md_sysfs_entry md_sync_min =
4364 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4365
4366 static ssize_t
4367 sync_max_show(struct mddev *mddev, char *page)
4368 {
4369         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4370                        mddev->sync_speed_max ? "local": "system");
4371 }
4372
4373 static ssize_t
4374 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4375 {
4376         int max;
4377         char *e;
4378         if (strncmp(buf, "system", 6)==0) {
4379                 mddev->sync_speed_max = 0;
4380                 return len;
4381         }
4382         max = simple_strtoul(buf, &e, 10);
4383         if (buf == e || (*e && *e != '\n') || max <= 0)
4384                 return -EINVAL;
4385         mddev->sync_speed_max = max;
4386         return len;
4387 }
4388
4389 static struct md_sysfs_entry md_sync_max =
4390 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4391
4392 static ssize_t
4393 degraded_show(struct mddev *mddev, char *page)
4394 {
4395         return sprintf(page, "%d\n", mddev->degraded);
4396 }
4397 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4398
4399 static ssize_t
4400 sync_force_parallel_show(struct mddev *mddev, char *page)
4401 {
4402         return sprintf(page, "%d\n", mddev->parallel_resync);
4403 }
4404
4405 static ssize_t
4406 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4407 {
4408         long n;
4409
4410         if (strict_strtol(buf, 10, &n))
4411                 return -EINVAL;
4412
4413         if (n != 0 && n != 1)
4414                 return -EINVAL;
4415
4416         mddev->parallel_resync = n;
4417
4418         if (mddev->sync_thread)
4419                 wake_up(&resync_wait);
4420
4421         return len;
4422 }
4423
4424 /* force parallel resync, even with shared block devices */
4425 static struct md_sysfs_entry md_sync_force_parallel =
4426 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4427        sync_force_parallel_show, sync_force_parallel_store);
4428
4429 static ssize_t
4430 sync_speed_show(struct mddev *mddev, char *page)
4431 {
4432         unsigned long resync, dt, db;
4433         if (mddev->curr_resync == 0)
4434                 return sprintf(page, "none\n");
4435         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4436         dt = (jiffies - mddev->resync_mark) / HZ;
4437         if (!dt) dt++;
4438         db = resync - mddev->resync_mark_cnt;
4439         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4440 }
4441
4442 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4443
4444 static ssize_t
4445 sync_completed_show(struct mddev *mddev, char *page)
4446 {
4447         unsigned long long max_sectors, resync;
4448
4449         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4450                 return sprintf(page, "none\n");
4451
4452         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4453             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4454                 max_sectors = mddev->resync_max_sectors;
4455         else
4456                 max_sectors = mddev->dev_sectors;
4457
4458         resync = mddev->curr_resync_completed;
4459         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4460 }
4461
4462 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4463
4464 static ssize_t
4465 min_sync_show(struct mddev *mddev, char *page)
4466 {
4467         return sprintf(page, "%llu\n",
4468                        (unsigned long long)mddev->resync_min);
4469 }
4470 static ssize_t
4471 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4472 {
4473         unsigned long long min;
4474         if (strict_strtoull(buf, 10, &min))
4475                 return -EINVAL;
4476         if (min > mddev->resync_max)
4477                 return -EINVAL;
4478         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479                 return -EBUSY;
4480
4481         /* Must be a multiple of chunk_size */
4482         if (mddev->chunk_sectors) {
4483                 sector_t temp = min;
4484                 if (sector_div(temp, mddev->chunk_sectors))
4485                         return -EINVAL;
4486         }
4487         mddev->resync_min = min;
4488
4489         return len;
4490 }
4491
4492 static struct md_sysfs_entry md_min_sync =
4493 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4494
4495 static ssize_t
4496 max_sync_show(struct mddev *mddev, char *page)
4497 {
4498         if (mddev->resync_max == MaxSector)
4499                 return sprintf(page, "max\n");
4500         else
4501                 return sprintf(page, "%llu\n",
4502                                (unsigned long long)mddev->resync_max);
4503 }
4504 static ssize_t
4505 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4506 {
4507         if (strncmp(buf, "max", 3) == 0)
4508                 mddev->resync_max = MaxSector;
4509         else {
4510                 unsigned long long max;
4511                 if (strict_strtoull(buf, 10, &max))
4512                         return -EINVAL;
4513                 if (max < mddev->resync_min)
4514                         return -EINVAL;
4515                 if (max < mddev->resync_max &&
4516                     mddev->ro == 0 &&
4517                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4518                         return -EBUSY;
4519
4520                 /* Must be a multiple of chunk_size */
4521                 if (mddev->chunk_sectors) {
4522                         sector_t temp = max;
4523                         if (sector_div(temp, mddev->chunk_sectors))
4524                                 return -EINVAL;
4525                 }
4526                 mddev->resync_max = max;
4527         }
4528         wake_up(&mddev->recovery_wait);
4529         return len;
4530 }
4531
4532 static struct md_sysfs_entry md_max_sync =
4533 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4534
4535 static ssize_t
4536 suspend_lo_show(struct mddev *mddev, char *page)
4537 {
4538         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4539 }
4540
4541 static ssize_t
4542 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4543 {
4544         char *e;
4545         unsigned long long new = simple_strtoull(buf, &e, 10);
4546         unsigned long long old = mddev->suspend_lo;
4547
4548         if (mddev->pers == NULL || 
4549             mddev->pers->quiesce == NULL)
4550                 return -EINVAL;
4551         if (buf == e || (*e && *e != '\n'))
4552                 return -EINVAL;
4553
4554         mddev->suspend_lo = new;
4555         if (new >= old)
4556                 /* Shrinking suspended region */
4557                 mddev->pers->quiesce(mddev, 2);
4558         else {
4559                 /* Expanding suspended region - need to wait */
4560                 mddev->pers->quiesce(mddev, 1);
4561                 mddev->pers->quiesce(mddev, 0);
4562         }
4563         return len;
4564 }
4565 static struct md_sysfs_entry md_suspend_lo =
4566 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4567
4568
4569 static ssize_t
4570 suspend_hi_show(struct mddev *mddev, char *page)
4571 {
4572         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4573 }
4574
4575 static ssize_t
4576 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4577 {
4578         char *e;
4579         unsigned long long new = simple_strtoull(buf, &e, 10);
4580         unsigned long long old = mddev->suspend_hi;
4581
4582         if (mddev->pers == NULL ||
4583             mddev->pers->quiesce == NULL)
4584                 return -EINVAL;
4585         if (buf == e || (*e && *e != '\n'))
4586                 return -EINVAL;
4587
4588         mddev->suspend_hi = new;
4589         if (new <= old)
4590                 /* Shrinking suspended region */
4591                 mddev->pers->quiesce(mddev, 2);
4592         else {
4593                 /* Expanding suspended region - need to wait */
4594                 mddev->pers->quiesce(mddev, 1);
4595                 mddev->pers->quiesce(mddev, 0);
4596         }
4597         return len;
4598 }
4599 static struct md_sysfs_entry md_suspend_hi =
4600 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4601
4602 static ssize_t
4603 reshape_position_show(struct mddev *mddev, char *page)
4604 {
4605         if (mddev->reshape_position != MaxSector)
4606                 return sprintf(page, "%llu\n",
4607                                (unsigned long long)mddev->reshape_position);
4608         strcpy(page, "none\n");
4609         return 5;
4610 }
4611
4612 static ssize_t
4613 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4614 {
4615         struct md_rdev *rdev;
4616         char *e;
4617         unsigned long long new = simple_strtoull(buf, &e, 10);
4618         if (mddev->pers)
4619                 return -EBUSY;
4620         if (buf == e || (*e && *e != '\n'))
4621                 return -EINVAL;
4622         mddev->reshape_position = new;
4623         mddev->delta_disks = 0;
4624         mddev->reshape_backwards = 0;
4625         mddev->new_level = mddev->level;
4626         mddev->new_layout = mddev->layout;
4627         mddev->new_chunk_sectors = mddev->chunk_sectors;
4628         rdev_for_each(rdev, mddev)
4629                 rdev->new_data_offset = rdev->data_offset;
4630         return len;
4631 }
4632
4633 static struct md_sysfs_entry md_reshape_position =
4634 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4635        reshape_position_store);
4636
4637 static ssize_t
4638 reshape_direction_show(struct mddev *mddev, char *page)
4639 {
4640         return sprintf(page, "%s\n",
4641                        mddev->reshape_backwards ? "backwards" : "forwards");
4642 }
4643
4644 static ssize_t
4645 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647         int backwards = 0;
4648         if (cmd_match(buf, "forwards"))
4649                 backwards = 0;
4650         else if (cmd_match(buf, "backwards"))
4651                 backwards = 1;
4652         else
4653                 return -EINVAL;
4654         if (mddev->reshape_backwards == backwards)
4655                 return len;
4656
4657         /* check if we are allowed to change */
4658         if (mddev->delta_disks)
4659                 return -EBUSY;
4660
4661         if (mddev->persistent &&
4662             mddev->major_version == 0)
4663                 return -EINVAL;
4664
4665         mddev->reshape_backwards = backwards;
4666         return len;
4667 }
4668
4669 static struct md_sysfs_entry md_reshape_direction =
4670 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4671        reshape_direction_store);
4672
4673 static ssize_t
4674 array_size_show(struct mddev *mddev, char *page)
4675 {
4676         if (mddev->external_size)
4677                 return sprintf(page, "%llu\n",
4678                                (unsigned long long)mddev->array_sectors/2);
4679         else
4680                 return sprintf(page, "default\n");
4681 }
4682
4683 static ssize_t
4684 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4685 {
4686         sector_t sectors;
4687
4688         if (strncmp(buf, "default", 7) == 0) {
4689                 if (mddev->pers)
4690                         sectors = mddev->pers->size(mddev, 0, 0);
4691                 else
4692                         sectors = mddev->array_sectors;
4693
4694                 mddev->external_size = 0;
4695         } else {
4696                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4697                         return -EINVAL;
4698                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4699                         return -E2BIG;
4700
4701                 mddev->external_size = 1;
4702         }
4703
4704         mddev->array_sectors = sectors;
4705         if (mddev->pers) {
4706                 set_capacity(mddev->gendisk, mddev->array_sectors);
4707                 revalidate_disk(mddev->gendisk);
4708         }
4709         return len;
4710 }
4711
4712 static struct md_sysfs_entry md_array_size =
4713 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4714        array_size_store);
4715
4716 static struct attribute *md_default_attrs[] = {
4717         &md_level.attr,
4718         &md_layout.attr,
4719         &md_raid_disks.attr,
4720         &md_chunk_size.attr,
4721         &md_size.attr,
4722         &md_resync_start.attr,
4723         &md_metadata.attr,
4724         &md_new_device.attr,
4725         &md_safe_delay.attr,
4726         &md_array_state.attr,
4727         &md_reshape_position.attr,
4728         &md_reshape_direction.attr,
4729         &md_array_size.attr,
4730         &max_corr_read_errors.attr,
4731         NULL,
4732 };
4733
4734 static struct attribute *md_redundancy_attrs[] = {
4735         &md_scan_mode.attr,
4736         &md_mismatches.attr,
4737         &md_sync_min.attr,
4738         &md_sync_max.attr,
4739         &md_sync_speed.attr,
4740         &md_sync_force_parallel.attr,
4741         &md_sync_completed.attr,
4742         &md_min_sync.attr,
4743         &md_max_sync.attr,
4744         &md_suspend_lo.attr,
4745         &md_suspend_hi.attr,
4746         &md_bitmap.attr,
4747         &md_degraded.attr,
4748         NULL,
4749 };
4750 static struct attribute_group md_redundancy_group = {
4751         .name = NULL,
4752         .attrs = md_redundancy_attrs,
4753 };
4754
4755
4756 static ssize_t
4757 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4758 {
4759         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4760         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4761         ssize_t rv;
4762
4763         if (!entry->show)
4764                 return -EIO;
4765         spin_lock(&all_mddevs_lock);
4766         if (list_empty(&mddev->all_mddevs)) {
4767                 spin_unlock(&all_mddevs_lock);
4768                 return -EBUSY;
4769         }
4770         mddev_get(mddev);
4771         spin_unlock(&all_mddevs_lock);
4772
4773         rv = mddev_lock(mddev);
4774         if (!rv) {
4775                 rv = entry->show(mddev, page);
4776                 mddev_unlock(mddev);
4777         }
4778         mddev_put(mddev);
4779         return rv;
4780 }
4781
4782 static ssize_t
4783 md_attr_store(struct kobject *kobj, struct attribute *attr,
4784               const char *page, size_t length)
4785 {
4786         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4787         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4788         ssize_t rv;
4789
4790         if (!entry->store)
4791                 return -EIO;
4792         if (!capable(CAP_SYS_ADMIN))
4793                 return -EACCES;
4794         spin_lock(&all_mddevs_lock);
4795         if (list_empty(&mddev->all_mddevs)) {
4796                 spin_unlock(&all_mddevs_lock);
4797                 return -EBUSY;
4798         }
4799         mddev_get(mddev);
4800         spin_unlock(&all_mddevs_lock);
4801         rv = mddev_lock(mddev);
4802         if (!rv) {
4803                 rv = entry->store(mddev, page, length);
4804                 mddev_unlock(mddev);
4805         }
4806         mddev_put(mddev);
4807         return rv;
4808 }
4809
4810 static void md_free(struct kobject *ko)
4811 {
4812         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4813
4814         if (mddev->sysfs_state)
4815                 sysfs_put(mddev->sysfs_state);
4816
4817         if (mddev->gendisk) {
4818                 del_gendisk(mddev->gendisk);
4819                 put_disk(mddev->gendisk);
4820         }
4821         if (mddev->queue)
4822                 blk_cleanup_queue(mddev->queue);
4823
4824         kfree(mddev);
4825 }
4826
4827 static const struct sysfs_ops md_sysfs_ops = {
4828         .show   = md_attr_show,
4829         .store  = md_attr_store,
4830 };
4831 static struct kobj_type md_ktype = {
4832         .release        = md_free,
4833         .sysfs_ops      = &md_sysfs_ops,
4834         .default_attrs  = md_default_attrs,
4835 };
4836
4837 int mdp_major = 0;
4838
4839 static void mddev_delayed_delete(struct work_struct *ws)
4840 {
4841         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4842
4843         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4844         kobject_del(&mddev->kobj);
4845         kobject_put(&mddev->kobj);
4846 }
4847
4848 static int md_alloc(dev_t dev, char *name)
4849 {
4850         static DEFINE_MUTEX(disks_mutex);
4851         struct mddev *mddev = mddev_find(dev);
4852         struct gendisk *disk;
4853         int partitioned;
4854         int shift;
4855         int unit;
4856         int error;
4857
4858         if (!mddev)
4859                 return -ENODEV;
4860
4861         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4862         shift = partitioned ? MdpMinorShift : 0;
4863         unit = MINOR(mddev->unit) >> shift;
4864
4865         /* wait for any previous instance of this device to be
4866          * completely removed (mddev_delayed_delete).
4867          */
4868         flush_workqueue(md_misc_wq);
4869
4870         mutex_lock(&disks_mutex);
4871         error = -EEXIST;
4872         if (mddev->gendisk)
4873                 goto abort;
4874
4875         if (name) {
4876                 /* Need to ensure that 'name' is not a duplicate.
4877                  */
4878                 struct mddev *mddev2;
4879                 spin_lock(&all_mddevs_lock);
4880
4881                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4882                         if (mddev2->gendisk &&
4883                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4884                                 spin_unlock(&all_mddevs_lock);
4885                                 goto abort;
4886                         }
4887                 spin_unlock(&all_mddevs_lock);
4888         }
4889
4890         error = -ENOMEM;
4891         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4892         if (!mddev->queue)
4893                 goto abort;
4894         mddev->queue->queuedata = mddev;
4895
4896         blk_queue_make_request(mddev->queue, md_make_request);
4897         blk_set_stacking_limits(&mddev->queue->limits);
4898
4899         disk = alloc_disk(1 << shift);
4900         if (!disk) {
4901                 blk_cleanup_queue(mddev->queue);
4902                 mddev->queue = NULL;
4903                 goto abort;
4904         }
4905         disk->major = MAJOR(mddev->unit);
4906         disk->first_minor = unit << shift;
4907         if (name)
4908                 strcpy(disk->disk_name, name);
4909         else if (partitioned)
4910                 sprintf(disk->disk_name, "md_d%d", unit);
4911         else
4912                 sprintf(disk->disk_name, "md%d", unit);
4913         disk->fops = &md_fops;
4914         disk->private_data = mddev;
4915         disk->queue = mddev->queue;
4916         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4917         /* Allow extended partitions.  This makes the
4918          * 'mdp' device redundant, but we can't really
4919          * remove it now.
4920          */
4921         disk->flags |= GENHD_FL_EXT_DEVT;
4922         mddev->gendisk = disk;
4923         /* As soon as we call add_disk(), another thread could get
4924          * through to md_open, so make sure it doesn't get too far
4925          */
4926         mutex_lock(&mddev->open_mutex);
4927         add_disk(disk);
4928
4929         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4930                                      &disk_to_dev(disk)->kobj, "%s", "md");
4931         if (error) {
4932                 /* This isn't possible, but as kobject_init_and_add is marked
4933                  * __must_check, we must do something with the result
4934                  */
4935                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4936                        disk->disk_name);
4937                 error = 0;
4938         }
4939         if (mddev->kobj.sd &&
4940             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4941                 printk(KERN_DEBUG "pointless warning\n");
4942         mutex_unlock(&mddev->open_mutex);
4943  abort:
4944         mutex_unlock(&disks_mutex);
4945         if (!error && mddev->kobj.sd) {
4946                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4947                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4948         }
4949         mddev_put(mddev);
4950         return error;
4951 }
4952
4953 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4954 {
4955         md_alloc(dev, NULL);
4956         return NULL;
4957 }
4958
4959 static int add_named_array(const char *val, struct kernel_param *kp)
4960 {
4961         /* val must be "md_*" where * is not all digits.
4962          * We allocate an array with a large free minor number, and
4963          * set the name to val.  val must not already be an active name.
4964          */
4965         int len = strlen(val);
4966         char buf[DISK_NAME_LEN];
4967
4968         while (len && val[len-1] == '\n')
4969                 len--;
4970         if (len >= DISK_NAME_LEN)
4971                 return -E2BIG;
4972         strlcpy(buf, val, len+1);
4973         if (strncmp(buf, "md_", 3) != 0)
4974                 return -EINVAL;
4975         return md_alloc(0, buf);
4976 }
4977
4978 static void md_safemode_timeout(unsigned long data)
4979 {
4980         struct mddev *mddev = (struct mddev *) data;
4981
4982         if (!atomic_read(&mddev->writes_pending)) {
4983                 mddev->safemode = 1;
4984                 if (mddev->external)
4985                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4986         }
4987         md_wakeup_thread(mddev->thread);
4988 }
4989
4990 static int start_dirty_degraded;
4991
4992 int md_run(struct mddev *mddev)
4993 {
4994         int err;
4995         struct md_rdev *rdev;
4996         struct md_personality *pers;
4997
4998         if (list_empty(&mddev->disks))
4999                 /* cannot run an array with no devices.. */
5000                 return -EINVAL;
5001
5002         if (mddev->pers)
5003                 return -EBUSY;
5004         /* Cannot run until previous stop completes properly */
5005         if (mddev->sysfs_active)
5006                 return -EBUSY;
5007
5008         /*
5009          * Analyze all RAID superblock(s)
5010          */
5011         if (!mddev->raid_disks) {
5012                 if (!mddev->persistent)
5013                         return -EINVAL;
5014                 analyze_sbs(mddev);
5015         }
5016
5017         if (mddev->level != LEVEL_NONE)
5018                 request_module("md-level-%d", mddev->level);
5019         else if (mddev->clevel[0])
5020                 request_module("md-%s", mddev->clevel);
5021
5022         /*
5023          * Drop all container device buffers, from now on
5024          * the only valid external interface is through the md
5025          * device.
5026          */
5027         rdev_for_each(rdev, mddev) {
5028                 if (test_bit(Faulty, &rdev->flags))
5029                         continue;
5030                 sync_blockdev(rdev->bdev);
5031                 invalidate_bdev(rdev->bdev);
5032
5033                 /* perform some consistency tests on the device.
5034                  * We don't want the data to overlap the metadata,
5035                  * Internal Bitmap issues have been handled elsewhere.
5036                  */
5037                 if (rdev->meta_bdev) {
5038                         /* Nothing to check */;
5039                 } else if (rdev->data_offset < rdev->sb_start) {
5040                         if (mddev->dev_sectors &&
5041                             rdev->data_offset + mddev->dev_sectors
5042                             > rdev->sb_start) {
5043                                 printk("md: %s: data overlaps metadata\n",
5044                                        mdname(mddev));
5045                                 return -EINVAL;
5046                         }
5047                 } else {
5048                         if (rdev->sb_start + rdev->sb_size/512
5049                             > rdev->data_offset) {
5050                                 printk("md: %s: metadata overlaps data\n",
5051                                        mdname(mddev));
5052                                 return -EINVAL;
5053                         }
5054                 }
5055                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5056         }
5057
5058         if (mddev->bio_set == NULL)
5059                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5060                                                sizeof(struct mddev *));
5061
5062         spin_lock(&pers_lock);
5063         pers = find_pers(mddev->level, mddev->clevel);
5064         if (!pers || !try_module_get(pers->owner)) {
5065                 spin_unlock(&pers_lock);
5066                 if (mddev->level != LEVEL_NONE)
5067                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5068                                mddev->level);
5069                 else
5070                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5071                                mddev->clevel);
5072                 return -EINVAL;
5073         }
5074         mddev->pers = pers;
5075         spin_unlock(&pers_lock);
5076         if (mddev->level != pers->level) {
5077                 mddev->level = pers->level;
5078                 mddev->new_level = pers->level;
5079         }
5080         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5081
5082         if (mddev->reshape_position != MaxSector &&
5083             pers->start_reshape == NULL) {
5084                 /* This personality cannot handle reshaping... */
5085                 mddev->pers = NULL;
5086                 module_put(pers->owner);
5087                 return -EINVAL;
5088         }
5089
5090         if (pers->sync_request) {
5091                 /* Warn if this is a potentially silly
5092                  * configuration.
5093                  */
5094                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5095                 struct md_rdev *rdev2;
5096                 int warned = 0;
5097
5098                 rdev_for_each(rdev, mddev)
5099                         rdev_for_each(rdev2, mddev) {
5100                                 if (rdev < rdev2 &&
5101                                     rdev->bdev->bd_contains ==
5102                                     rdev2->bdev->bd_contains) {
5103                                         printk(KERN_WARNING
5104                                                "%s: WARNING: %s appears to be"
5105                                                " on the same physical disk as"
5106                                                " %s.\n",
5107                                                mdname(mddev),
5108                                                bdevname(rdev->bdev,b),
5109                                                bdevname(rdev2->bdev,b2));
5110                                         warned = 1;
5111                                 }
5112                         }
5113
5114                 if (warned)
5115                         printk(KERN_WARNING
5116                                "True protection against single-disk"
5117                                " failure might be compromised.\n");
5118         }
5119
5120         mddev->recovery = 0;
5121         /* may be over-ridden by personality */
5122         mddev->resync_max_sectors = mddev->dev_sectors;
5123
5124         mddev->ok_start_degraded = start_dirty_degraded;
5125
5126         if (start_readonly && mddev->ro == 0)
5127                 mddev->ro = 2; /* read-only, but switch on first write */
5128
5129         err = mddev->pers->run(mddev);
5130         if (err)
5131                 printk(KERN_ERR "md: pers->run() failed ...\n");
5132         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5133                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5134                           " but 'external_size' not in effect?\n", __func__);
5135                 printk(KERN_ERR
5136                        "md: invalid array_size %llu > default size %llu\n",
5137                        (unsigned long long)mddev->array_sectors / 2,
5138                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5139                 err = -EINVAL;
5140                 mddev->pers->stop(mddev);
5141         }
5142         if (err == 0 && mddev->pers->sync_request) {
5143                 err = bitmap_create(mddev);
5144                 if (err) {
5145                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5146                                mdname(mddev), err);
5147                         mddev->pers->stop(mddev);
5148                 }
5149         }
5150         if (err) {
5151                 module_put(mddev->pers->owner);
5152                 mddev->pers = NULL;
5153                 bitmap_destroy(mddev);
5154                 return err;
5155         }
5156         if (mddev->pers->sync_request) {
5157                 if (mddev->kobj.sd &&
5158                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5159                         printk(KERN_WARNING
5160                                "md: cannot register extra attributes for %s\n",
5161                                mdname(mddev));
5162                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5163         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5164                 mddev->ro = 0;
5165
5166         atomic_set(&mddev->writes_pending,0);
5167         atomic_set(&mddev->max_corr_read_errors,
5168                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5169         mddev->safemode = 0;
5170         mddev->safemode_timer.function = md_safemode_timeout;
5171         mddev->safemode_timer.data = (unsigned long) mddev;
5172         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5173         mddev->in_sync = 1;
5174         smp_wmb();
5175         mddev->ready = 1;
5176         rdev_for_each(rdev, mddev)
5177                 if (rdev->raid_disk >= 0)
5178                         if (sysfs_link_rdev(mddev, rdev))
5179                                 /* failure here is OK */;
5180         
5181         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5182         
5183         if (mddev->flags)
5184                 md_update_sb(mddev, 0);
5185
5186         md_new_event(mddev);
5187         sysfs_notify_dirent_safe(mddev->sysfs_state);
5188         sysfs_notify_dirent_safe(mddev->sysfs_action);
5189         sysfs_notify(&mddev->kobj, NULL, "degraded");
5190         return 0;
5191 }
5192 EXPORT_SYMBOL_GPL(md_run);
5193
5194 static int do_md_run(struct mddev *mddev)
5195 {
5196         int err;
5197
5198         err = md_run(mddev);
5199         if (err)
5200                 goto out;
5201         err = bitmap_load(mddev);
5202         if (err) {
5203                 bitmap_destroy(mddev);
5204                 goto out;
5205         }
5206
5207         md_wakeup_thread(mddev->thread);
5208         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5209
5210         set_capacity(mddev->gendisk, mddev->array_sectors);
5211         revalidate_disk(mddev->gendisk);
5212         mddev->changed = 1;
5213         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5214 out:
5215         return err;
5216 }
5217
5218 static int restart_array(struct mddev *mddev)
5219 {
5220         struct gendisk *disk = mddev->gendisk;
5221
5222         /* Complain if it has no devices */
5223         if (list_empty(&mddev->disks))
5224                 return -ENXIO;
5225         if (!mddev->pers)
5226                 return -EINVAL;
5227         if (!mddev->ro)
5228                 return -EBUSY;
5229         mddev->safemode = 0;
5230         mddev->ro = 0;
5231         set_disk_ro(disk, 0);
5232         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5233                 mdname(mddev));
5234         /* Kick recovery or resync if necessary */
5235         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5236         md_wakeup_thread(mddev->thread);
5237         md_wakeup_thread(mddev->sync_thread);
5238         sysfs_notify_dirent_safe(mddev->sysfs_state);
5239         return 0;
5240 }
5241
5242 /* similar to deny_write_access, but accounts for our holding a reference
5243  * to the file ourselves */
5244 static int deny_bitmap_write_access(struct file * file)
5245 {
5246         struct inode *inode = file->f_mapping->host;
5247
5248         spin_lock(&inode->i_lock);
5249         if (atomic_read(&inode->i_writecount) > 1) {
5250                 spin_unlock(&inode->i_lock);
5251                 return -ETXTBSY;
5252         }
5253         atomic_set(&inode->i_writecount, -1);
5254         spin_unlock(&inode->i_lock);
5255
5256         return 0;
5257 }
5258
5259 void restore_bitmap_write_access(struct file *file)
5260 {
5261         struct inode *inode = file->f_mapping->host;
5262
5263         spin_lock(&inode->i_lock);
5264         atomic_set(&inode->i_writecount, 1);
5265         spin_unlock(&inode->i_lock);
5266 }
5267
5268 static void md_clean(struct mddev *mddev)
5269 {
5270         mddev->array_sectors = 0;
5271         mddev->external_size = 0;
5272         mddev->dev_sectors = 0;
5273         mddev->raid_disks = 0;
5274         mddev->recovery_cp = 0;
5275         mddev->resync_min = 0;
5276         mddev->resync_max = MaxSector;
5277         mddev->reshape_position = MaxSector;
5278         mddev->external = 0;
5279         mddev->persistent = 0;
5280         mddev->level = LEVEL_NONE;
5281         mddev->clevel[0] = 0;
5282         mddev->flags = 0;
5283         mddev->ro = 0;
5284         mddev->metadata_type[0] = 0;
5285         mddev->chunk_sectors = 0;
5286         mddev->ctime = mddev->utime = 0;
5287         mddev->layout = 0;
5288         mddev->max_disks = 0;
5289         mddev->events = 0;
5290         mddev->can_decrease_events = 0;
5291         mddev->delta_disks = 0;
5292         mddev->reshape_backwards = 0;
5293         mddev->new_level = LEVEL_NONE;
5294         mddev->new_layout = 0;
5295         mddev->new_chunk_sectors = 0;
5296         mddev->curr_resync = 0;
5297         mddev->resync_mismatches = 0;
5298         mddev->suspend_lo = mddev->suspend_hi = 0;
5299         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5300         mddev->recovery = 0;
5301         mddev->in_sync = 0;
5302         mddev->changed = 0;
5303         mddev->degraded = 0;
5304         mddev->safemode = 0;
5305         mddev->merge_check_needed = 0;
5306         mddev->bitmap_info.offset = 0;
5307         mddev->bitmap_info.default_offset = 0;
5308         mddev->bitmap_info.default_space = 0;
5309         mddev->bitmap_info.chunksize = 0;
5310         mddev->bitmap_info.daemon_sleep = 0;
5311         mddev->bitmap_info.max_write_behind = 0;
5312 }
5313
5314 static void __md_stop_writes(struct mddev *mddev)
5315 {
5316         if (mddev->sync_thread) {
5317                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5318                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5319                 reap_sync_thread(mddev);
5320         }
5321
5322         del_timer_sync(&mddev->safemode_timer);
5323
5324         bitmap_flush(mddev);
5325         md_super_wait(mddev);
5326
5327         if (!mddev->in_sync || mddev->flags) {
5328                 /* mark array as shutdown cleanly */
5329                 mddev->in_sync = 1;
5330                 md_update_sb(mddev, 1);
5331         }
5332 }
5333
5334 void md_stop_writes(struct mddev *mddev)
5335 {
5336         mddev_lock(mddev);
5337         __md_stop_writes(mddev);
5338         mddev_unlock(mddev);
5339 }
5340 EXPORT_SYMBOL_GPL(md_stop_writes);
5341
5342 void md_stop(struct mddev *mddev)
5343 {
5344         mddev->ready = 0;
5345         mddev->pers->stop(mddev);
5346         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5347                 mddev->to_remove = &md_redundancy_group;
5348         module_put(mddev->pers->owner);
5349         mddev->pers = NULL;
5350         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5351 }
5352 EXPORT_SYMBOL_GPL(md_stop);
5353
5354 static int md_set_readonly(struct mddev *mddev, int is_open)
5355 {
5356         int err = 0;
5357         mutex_lock(&mddev->open_mutex);
5358         if (atomic_read(&mddev->openers) > is_open) {
5359                 printk("md: %s still in use.\n",mdname(mddev));
5360                 err = -EBUSY;
5361                 goto out;
5362         }
5363         if (mddev->pers) {
5364                 __md_stop_writes(mddev);
5365
5366                 err  = -ENXIO;
5367                 if (mddev->ro==1)
5368                         goto out;
5369                 mddev->ro = 1;
5370                 set_disk_ro(mddev->gendisk, 1);
5371                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5372                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5373                 err = 0;        
5374         }
5375 out:
5376         mutex_unlock(&mddev->open_mutex);
5377         return err;
5378 }
5379
5380 /* mode:
5381  *   0 - completely stop and dis-assemble array
5382  *   2 - stop but do not disassemble array
5383  */
5384 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5385 {
5386         struct gendisk *disk = mddev->gendisk;
5387         struct md_rdev *rdev;
5388
5389         mutex_lock(&mddev->open_mutex);
5390         if (atomic_read(&mddev->openers) > is_open ||
5391             mddev->sysfs_active) {
5392                 printk("md: %s still in use.\n",mdname(mddev));
5393                 mutex_unlock(&mddev->open_mutex);
5394                 return -EBUSY;
5395         }
5396
5397         if (mddev->pers) {
5398                 if (mddev->ro)
5399                         set_disk_ro(disk, 0);
5400
5401                 __md_stop_writes(mddev);
5402                 md_stop(mddev);
5403                 mddev->queue->merge_bvec_fn = NULL;
5404                 mddev->queue->backing_dev_info.congested_fn = NULL;
5405
5406                 /* tell userspace to handle 'inactive' */
5407                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5408
5409                 rdev_for_each(rdev, mddev)
5410                         if (rdev->raid_disk >= 0)
5411                                 sysfs_unlink_rdev(mddev, rdev);
5412
5413                 set_capacity(disk, 0);
5414                 mutex_unlock(&mddev->open_mutex);
5415                 mddev->changed = 1;
5416                 revalidate_disk(disk);
5417
5418                 if (mddev->ro)
5419                         mddev->ro = 0;
5420         } else
5421                 mutex_unlock(&mddev->open_mutex);
5422         /*
5423          * Free resources if final stop
5424          */
5425         if (mode == 0) {
5426                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5427
5428                 bitmap_destroy(mddev);
5429                 if (mddev->bitmap_info.file) {
5430                         restore_bitmap_write_access(mddev->bitmap_info.file);
5431                         fput(mddev->bitmap_info.file);
5432                         mddev->bitmap_info.file = NULL;
5433                 }
5434                 mddev->bitmap_info.offset = 0;
5435
5436                 export_array(mddev);
5437
5438                 md_clean(mddev);
5439                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5440                 if (mddev->hold_active == UNTIL_STOP)
5441                         mddev->hold_active = 0;
5442         }
5443         blk_integrity_unregister(disk);
5444         md_new_event(mddev);
5445         sysfs_notify_dirent_safe(mddev->sysfs_state);
5446         return 0;
5447 }
5448
5449 #ifndef MODULE
5450 static void autorun_array(struct mddev *mddev)
5451 {
5452         struct md_rdev *rdev;
5453         int err;
5454
5455         if (list_empty(&mddev->disks))
5456                 return;
5457
5458         printk(KERN_INFO "md: running: ");
5459
5460         rdev_for_each(rdev, mddev) {
5461                 char b[BDEVNAME_SIZE];
5462                 printk("<%s>", bdevname(rdev->bdev,b));
5463         }
5464         printk("\n");
5465
5466         err = do_md_run(mddev);
5467         if (err) {
5468                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5469                 do_md_stop(mddev, 0, 0);
5470         }
5471 }
5472
5473 /*
5474  * lets try to run arrays based on all disks that have arrived
5475  * until now. (those are in pending_raid_disks)
5476  *
5477  * the method: pick the first pending disk, collect all disks with
5478  * the same UUID, remove all from the pending list and put them into
5479  * the 'same_array' list. Then order this list based on superblock
5480  * update time (freshest comes first), kick out 'old' disks and
5481  * compare superblocks. If everything's fine then run it.
5482  *
5483  * If "unit" is allocated, then bump its reference count
5484  */
5485 static void autorun_devices(int part)
5486 {
5487         struct md_rdev *rdev0, *rdev, *tmp;
5488         struct mddev *mddev;
5489         char b[BDEVNAME_SIZE];
5490
5491         printk(KERN_INFO "md: autorun ...\n");
5492         while (!list_empty(&pending_raid_disks)) {
5493                 int unit;
5494                 dev_t dev;
5495                 LIST_HEAD(candidates);
5496                 rdev0 = list_entry(pending_raid_disks.next,
5497                                          struct md_rdev, same_set);
5498
5499                 printk(KERN_INFO "md: considering %s ...\n",
5500                         bdevname(rdev0->bdev,b));
5501                 INIT_LIST_HEAD(&candidates);
5502                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5503                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5504                                 printk(KERN_INFO "md:  adding %s ...\n",
5505                                         bdevname(rdev->bdev,b));
5506                                 list_move(&rdev->same_set, &candidates);
5507                         }
5508                 /*
5509                  * now we have a set of devices, with all of them having
5510                  * mostly sane superblocks. It's time to allocate the
5511                  * mddev.
5512                  */
5513                 if (part) {
5514                         dev = MKDEV(mdp_major,
5515                                     rdev0->preferred_minor << MdpMinorShift);
5516                         unit = MINOR(dev) >> MdpMinorShift;
5517                 } else {
5518                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5519                         unit = MINOR(dev);
5520                 }
5521                 if (rdev0->preferred_minor != unit) {
5522                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5523                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5524                         break;
5525                 }
5526
5527                 md_probe(dev, NULL, NULL);
5528                 mddev = mddev_find(dev);
5529                 if (!mddev || !mddev->gendisk) {
5530                         if (mddev)
5531                                 mddev_put(mddev);
5532                         printk(KERN_ERR
5533                                 "md: cannot allocate memory for md drive.\n");
5534                         break;
5535                 }
5536                 if (mddev_lock(mddev)) 
5537                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5538                                mdname(mddev));
5539                 else if (mddev->raid_disks || mddev->major_version
5540                          || !list_empty(&mddev->disks)) {
5541                         printk(KERN_WARNING 
5542                                 "md: %s already running, cannot run %s\n",
5543                                 mdname(mddev), bdevname(rdev0->bdev,b));
5544                         mddev_unlock(mddev);
5545                 } else {
5546                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5547                         mddev->persistent = 1;
5548                         rdev_for_each_list(rdev, tmp, &candidates) {
5549                                 list_del_init(&rdev->same_set);
5550                                 if (bind_rdev_to_array(rdev, mddev))
5551                                         export_rdev(rdev);
5552                         }
5553                         autorun_array(mddev);
5554                         mddev_unlock(mddev);
5555                 }
5556                 /* on success, candidates will be empty, on error
5557                  * it won't...
5558                  */
5559                 rdev_for_each_list(rdev, tmp, &candidates) {
5560                         list_del_init(&rdev->same_set);
5561                         export_rdev(rdev);
5562                 }
5563                 mddev_put(mddev);
5564         }
5565         printk(KERN_INFO "md: ... autorun DONE.\n");
5566 }
5567 #endif /* !MODULE */
5568
5569 static int get_version(void __user * arg)
5570 {
5571         mdu_version_t ver;
5572
5573         ver.major = MD_MAJOR_VERSION;
5574         ver.minor = MD_MINOR_VERSION;
5575         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5576
5577         if (copy_to_user(arg, &ver, sizeof(ver)))
5578                 return -EFAULT;
5579
5580         return 0;
5581 }
5582
5583 static int get_array_info(struct mddev * mddev, void __user * arg)
5584 {
5585         mdu_array_info_t info;
5586         int nr,working,insync,failed,spare;
5587         struct md_rdev *rdev;
5588
5589         nr=working=insync=failed=spare=0;
5590         rdev_for_each(rdev, mddev) {
5591                 nr++;
5592                 if (test_bit(Faulty, &rdev->flags))
5593                         failed++;
5594                 else {
5595                         working++;
5596                         if (test_bit(In_sync, &rdev->flags))
5597                                 insync++;       
5598                         else
5599                                 spare++;
5600                 }
5601         }
5602
5603         info.major_version = mddev->major_version;
5604         info.minor_version = mddev->minor_version;
5605         info.patch_version = MD_PATCHLEVEL_VERSION;
5606         info.ctime         = mddev->ctime;
5607         info.level         = mddev->level;
5608         info.size          = mddev->dev_sectors / 2;
5609         if (info.size != mddev->dev_sectors / 2) /* overflow */
5610                 info.size = -1;
5611         info.nr_disks      = nr;
5612         info.raid_disks    = mddev->raid_disks;
5613         info.md_minor      = mddev->md_minor;
5614         info.not_persistent= !mddev->persistent;
5615
5616         info.utime         = mddev->utime;
5617         info.state         = 0;
5618         if (mddev->in_sync)
5619                 info.state = (1<<MD_SB_CLEAN);
5620         if (mddev->bitmap && mddev->bitmap_info.offset)
5621                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5622         info.active_disks  = insync;
5623         info.working_disks = working;
5624         info.failed_disks  = failed;
5625         info.spare_disks   = spare;
5626
5627         info.layout        = mddev->layout;
5628         info.chunk_size    = mddev->chunk_sectors << 9;
5629
5630         if (copy_to_user(arg, &info, sizeof(info)))
5631                 return -EFAULT;
5632
5633         return 0;
5634 }
5635
5636 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5637 {
5638         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5639         char *ptr, *buf = NULL;
5640         int err = -ENOMEM;
5641
5642         if (md_allow_write(mddev))
5643                 file = kmalloc(sizeof(*file), GFP_NOIO);
5644         else
5645                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5646
5647         if (!file)
5648                 goto out;
5649
5650         /* bitmap disabled, zero the first byte and copy out */
5651         if (!mddev->bitmap || !mddev->bitmap->file) {
5652                 file->pathname[0] = '\0';
5653                 goto copy_out;
5654         }
5655
5656         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5657         if (!buf)
5658                 goto out;
5659
5660         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5661         if (IS_ERR(ptr))
5662                 goto out;
5663
5664         strcpy(file->pathname, ptr);
5665
5666 copy_out:
5667         err = 0;
5668         if (copy_to_user(arg, file, sizeof(*file)))
5669                 err = -EFAULT;
5670 out:
5671         kfree(buf);
5672         kfree(file);
5673         return err;
5674 }
5675
5676 static int get_disk_info(struct mddev * mddev, void __user * arg)
5677 {
5678         mdu_disk_info_t info;
5679         struct md_rdev *rdev;
5680
5681         if (copy_from_user(&info, arg, sizeof(info)))
5682                 return -EFAULT;
5683
5684         rdev = find_rdev_nr(mddev, info.number);
5685         if (rdev) {
5686                 info.major = MAJOR(rdev->bdev->bd_dev);
5687                 info.minor = MINOR(rdev->bdev->bd_dev);
5688                 info.raid_disk = rdev->raid_disk;
5689                 info.state = 0;
5690                 if (test_bit(Faulty, &rdev->flags))
5691                         info.state |= (1<<MD_DISK_FAULTY);
5692                 else if (test_bit(In_sync, &rdev->flags)) {
5693                         info.state |= (1<<MD_DISK_ACTIVE);
5694                         info.state |= (1<<MD_DISK_SYNC);
5695                 }
5696                 if (test_bit(WriteMostly, &rdev->flags))
5697                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5698         } else {
5699                 info.major = info.minor = 0;
5700                 info.raid_disk = -1;
5701                 info.state = (1<<MD_DISK_REMOVED);
5702         }
5703
5704         if (copy_to_user(arg, &info, sizeof(info)))
5705                 return -EFAULT;
5706
5707         return 0;
5708 }
5709
5710 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5711 {
5712         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5713         struct md_rdev *rdev;
5714         dev_t dev = MKDEV(info->major,info->minor);
5715
5716         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5717                 return -EOVERFLOW;
5718
5719         if (!mddev->raid_disks) {
5720                 int err;
5721                 /* expecting a device which has a superblock */
5722                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5723                 if (IS_ERR(rdev)) {
5724                         printk(KERN_WARNING 
5725                                 "md: md_import_device returned %ld\n",
5726                                 PTR_ERR(rdev));
5727                         return PTR_ERR(rdev);
5728                 }
5729                 if (!list_empty(&mddev->disks)) {
5730                         struct md_rdev *rdev0
5731                                 = list_entry(mddev->disks.next,
5732                                              struct md_rdev, same_set);
5733                         err = super_types[mddev->major_version]
5734                                 .load_super(rdev, rdev0, mddev->minor_version);
5735                         if (err < 0) {
5736                                 printk(KERN_WARNING 
5737                                         "md: %s has different UUID to %s\n",
5738                                         bdevname(rdev->bdev,b), 
5739                                         bdevname(rdev0->bdev,b2));
5740                                 export_rdev(rdev);
5741                                 return -EINVAL;
5742                         }
5743                 }
5744                 err = bind_rdev_to_array(rdev, mddev);
5745                 if (err)
5746                         export_rdev(rdev);
5747                 return err;
5748         }
5749
5750         /*
5751          * add_new_disk can be used once the array is assembled
5752          * to add "hot spares".  They must already have a superblock
5753          * written
5754          */
5755         if (mddev->pers) {
5756                 int err;
5757                 if (!mddev->pers->hot_add_disk) {
5758                         printk(KERN_WARNING 
5759                                 "%s: personality does not support diskops!\n",
5760                                mdname(mddev));
5761                         return -EINVAL;
5762                 }
5763                 if (mddev->persistent)
5764                         rdev = md_import_device(dev, mddev->major_version,
5765                                                 mddev->minor_version);
5766                 else
5767                         rdev = md_import_device(dev, -1, -1);
5768                 if (IS_ERR(rdev)) {
5769                         printk(KERN_WARNING 
5770                                 "md: md_import_device returned %ld\n",
5771                                 PTR_ERR(rdev));
5772                         return PTR_ERR(rdev);
5773                 }
5774                 /* set saved_raid_disk if appropriate */
5775                 if (!mddev->persistent) {
5776                         if (info->state & (1<<MD_DISK_SYNC)  &&
5777                             info->raid_disk < mddev->raid_disks) {
5778                                 rdev->raid_disk = info->raid_disk;
5779                                 set_bit(In_sync, &rdev->flags);
5780                         } else
5781                                 rdev->raid_disk = -1;
5782                 } else
5783                         super_types[mddev->major_version].
5784                                 validate_super(mddev, rdev);
5785                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5786                     (!test_bit(In_sync, &rdev->flags) ||
5787                      rdev->raid_disk != info->raid_disk)) {
5788                         /* This was a hot-add request, but events doesn't
5789                          * match, so reject it.
5790                          */
5791                         export_rdev(rdev);
5792                         return -EINVAL;
5793                 }
5794
5795                 if (test_bit(In_sync, &rdev->flags))
5796                         rdev->saved_raid_disk = rdev->raid_disk;
5797                 else
5798                         rdev->saved_raid_disk = -1;
5799
5800                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5801                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5802                         set_bit(WriteMostly, &rdev->flags);
5803                 else
5804                         clear_bit(WriteMostly, &rdev->flags);
5805
5806                 rdev->raid_disk = -1;
5807                 err = bind_rdev_to_array(rdev, mddev);
5808                 if (!err && !mddev->pers->hot_remove_disk) {
5809                         /* If there is hot_add_disk but no hot_remove_disk
5810                          * then added disks for geometry changes,
5811                          * and should be added immediately.
5812                          */
5813                         super_types[mddev->major_version].
5814                                 validate_super(mddev, rdev);
5815                         err = mddev->pers->hot_add_disk(mddev, rdev);
5816                         if (err)
5817                                 unbind_rdev_from_array(rdev);
5818                 }
5819                 if (err)
5820                         export_rdev(rdev);
5821                 else
5822                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5823
5824                 md_update_sb(mddev, 1);
5825                 if (mddev->degraded)
5826                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5827                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5828                 if (!err)
5829                         md_new_event(mddev);
5830                 md_wakeup_thread(mddev->thread);
5831                 return err;
5832         }
5833
5834         /* otherwise, add_new_disk is only allowed
5835          * for major_version==0 superblocks
5836          */
5837         if (mddev->major_version != 0) {
5838                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5839                        mdname(mddev));
5840                 return -EINVAL;
5841         }
5842
5843         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5844                 int err;
5845                 rdev = md_import_device(dev, -1, 0);
5846                 if (IS_ERR(rdev)) {
5847                         printk(KERN_WARNING 
5848                                 "md: error, md_import_device() returned %ld\n",
5849                                 PTR_ERR(rdev));
5850                         return PTR_ERR(rdev);
5851                 }
5852                 rdev->desc_nr = info->number;
5853                 if (info->raid_disk < mddev->raid_disks)
5854                         rdev->raid_disk = info->raid_disk;
5855                 else
5856                         rdev->raid_disk = -1;
5857
5858                 if (rdev->raid_disk < mddev->raid_disks)
5859                         if (info->state & (1<<MD_DISK_SYNC))
5860                                 set_bit(In_sync, &rdev->flags);
5861
5862                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5863                         set_bit(WriteMostly, &rdev->flags);
5864
5865                 if (!mddev->persistent) {
5866                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5867                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5868                 } else
5869                         rdev->sb_start = calc_dev_sboffset(rdev);
5870                 rdev->sectors = rdev->sb_start;
5871
5872                 err = bind_rdev_to_array(rdev, mddev);
5873                 if (err) {
5874                         export_rdev(rdev);
5875                         return err;
5876                 }
5877         }
5878
5879         return 0;
5880 }
5881
5882 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5883 {
5884         char b[BDEVNAME_SIZE];
5885         struct md_rdev *rdev;
5886
5887         rdev = find_rdev(mddev, dev);
5888         if (!rdev)
5889                 return -ENXIO;
5890
5891         if (rdev->raid_disk >= 0)
5892                 goto busy;
5893
5894         kick_rdev_from_array(rdev);
5895         md_update_sb(mddev, 1);
5896         md_new_event(mddev);
5897
5898         return 0;
5899 busy:
5900         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5901                 bdevname(rdev->bdev,b), mdname(mddev));
5902         return -EBUSY;
5903 }
5904
5905 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5906 {
5907         char b[BDEVNAME_SIZE];
5908         int err;
5909         struct md_rdev *rdev;
5910
5911         if (!mddev->pers)
5912                 return -ENODEV;
5913
5914         if (mddev->major_version != 0) {
5915                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5916                         " version-0 superblocks.\n",
5917                         mdname(mddev));
5918                 return -EINVAL;
5919         }
5920         if (!mddev->pers->hot_add_disk) {
5921                 printk(KERN_WARNING 
5922                         "%s: personality does not support diskops!\n",
5923                         mdname(mddev));
5924                 return -EINVAL;
5925         }
5926
5927         rdev = md_import_device(dev, -1, 0);
5928         if (IS_ERR(rdev)) {
5929                 printk(KERN_WARNING 
5930                         "md: error, md_import_device() returned %ld\n",
5931                         PTR_ERR(rdev));
5932                 return -EINVAL;
5933         }
5934
5935         if (mddev->persistent)
5936                 rdev->sb_start = calc_dev_sboffset(rdev);
5937         else
5938                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5939
5940         rdev->sectors = rdev->sb_start;
5941
5942         if (test_bit(Faulty, &rdev->flags)) {
5943                 printk(KERN_WARNING 
5944                         "md: can not hot-add faulty %s disk to %s!\n",
5945                         bdevname(rdev->bdev,b), mdname(mddev));
5946                 err = -EINVAL;
5947                 goto abort_export;
5948         }
5949         clear_bit(In_sync, &rdev->flags);
5950         rdev->desc_nr = -1;
5951         rdev->saved_raid_disk = -1;
5952         err = bind_rdev_to_array(rdev, mddev);
5953         if (err)
5954                 goto abort_export;
5955
5956         /*
5957          * The rest should better be atomic, we can have disk failures
5958          * noticed in interrupt contexts ...
5959          */
5960
5961         rdev->raid_disk = -1;
5962
5963         md_update_sb(mddev, 1);
5964
5965         /*
5966          * Kick recovery, maybe this spare has to be added to the
5967          * array immediately.
5968          */
5969         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5970         md_wakeup_thread(mddev->thread);
5971         md_new_event(mddev);
5972         return 0;
5973
5974 abort_export:
5975         export_rdev(rdev);
5976         return err;
5977 }
5978
5979 static int set_bitmap_file(struct mddev *mddev, int fd)
5980 {
5981         int err;
5982
5983         if (mddev->pers) {
5984                 if (!mddev->pers->quiesce)
5985                         return -EBUSY;
5986                 if (mddev->recovery || mddev->sync_thread)
5987                         return -EBUSY;
5988                 /* we should be able to change the bitmap.. */
5989         }
5990
5991
5992         if (fd >= 0) {
5993                 if (mddev->bitmap)
5994                         return -EEXIST; /* cannot add when bitmap is present */
5995                 mddev->bitmap_info.file = fget(fd);
5996
5997                 if (mddev->bitmap_info.file == NULL) {
5998                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5999                                mdname(mddev));
6000                         return -EBADF;
6001                 }
6002
6003                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6004                 if (err) {
6005                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6006                                mdname(mddev));
6007                         fput(mddev->bitmap_info.file);
6008                         mddev->bitmap_info.file = NULL;
6009                         return err;
6010                 }
6011                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6012         } else if (mddev->bitmap == NULL)
6013                 return -ENOENT; /* cannot remove what isn't there */
6014         err = 0;
6015         if (mddev->pers) {
6016                 mddev->pers->quiesce(mddev, 1);
6017                 if (fd >= 0) {
6018                         err = bitmap_create(mddev);
6019                         if (!err)
6020                                 err = bitmap_load(mddev);
6021                 }
6022                 if (fd < 0 || err) {
6023                         bitmap_destroy(mddev);
6024                         fd = -1; /* make sure to put the file */
6025                 }
6026                 mddev->pers->quiesce(mddev, 0);
6027         }
6028         if (fd < 0) {
6029                 if (mddev->bitmap_info.file) {
6030                         restore_bitmap_write_access(mddev->bitmap_info.file);
6031                         fput(mddev->bitmap_info.file);
6032                 }
6033                 mddev->bitmap_info.file = NULL;
6034         }
6035
6036         return err;
6037 }
6038
6039 /*
6040  * set_array_info is used two different ways
6041  * The original usage is when creating a new array.
6042  * In this usage, raid_disks is > 0 and it together with
6043  *  level, size, not_persistent,layout,chunksize determine the
6044  *  shape of the array.
6045  *  This will always create an array with a type-0.90.0 superblock.
6046  * The newer usage is when assembling an array.
6047  *  In this case raid_disks will be 0, and the major_version field is
6048  *  use to determine which style super-blocks are to be found on the devices.
6049  *  The minor and patch _version numbers are also kept incase the
6050  *  super_block handler wishes to interpret them.
6051  */
6052 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6053 {
6054
6055         if (info->raid_disks == 0) {
6056                 /* just setting version number for superblock loading */
6057                 if (info->major_version < 0 ||
6058                     info->major_version >= ARRAY_SIZE(super_types) ||
6059                     super_types[info->major_version].name == NULL) {
6060                         /* maybe try to auto-load a module? */
6061                         printk(KERN_INFO 
6062                                 "md: superblock version %d not known\n",
6063                                 info->major_version);
6064                         return -EINVAL;
6065                 }
6066                 mddev->major_version = info->major_version;
6067                 mddev->minor_version = info->minor_version;
6068                 mddev->patch_version = info->patch_version;
6069                 mddev->persistent = !info->not_persistent;
6070                 /* ensure mddev_put doesn't delete this now that there
6071                  * is some minimal configuration.
6072                  */
6073                 mddev->ctime         = get_seconds();
6074                 return 0;
6075         }
6076         mddev->major_version = MD_MAJOR_VERSION;
6077         mddev->minor_version = MD_MINOR_VERSION;
6078         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6079         mddev->ctime         = get_seconds();
6080
6081         mddev->level         = info->level;
6082         mddev->clevel[0]     = 0;
6083         mddev->dev_sectors   = 2 * (sector_t)info->size;
6084         mddev->raid_disks    = info->raid_disks;
6085         /* don't set md_minor, it is determined by which /dev/md* was
6086          * openned
6087          */
6088         if (info->state & (1<<MD_SB_CLEAN))
6089                 mddev->recovery_cp = MaxSector;
6090         else
6091                 mddev->recovery_cp = 0;
6092         mddev->persistent    = ! info->not_persistent;
6093         mddev->external      = 0;
6094
6095         mddev->layout        = info->layout;
6096         mddev->chunk_sectors = info->chunk_size >> 9;
6097
6098         mddev->max_disks     = MD_SB_DISKS;
6099
6100         if (mddev->persistent)
6101                 mddev->flags         = 0;
6102         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6103
6104         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6105         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6106         mddev->bitmap_info.offset = 0;
6107
6108         mddev->reshape_position = MaxSector;
6109
6110         /*
6111          * Generate a 128 bit UUID
6112          */
6113         get_random_bytes(mddev->uuid, 16);
6114
6115         mddev->new_level = mddev->level;
6116         mddev->new_chunk_sectors = mddev->chunk_sectors;
6117         mddev->new_layout = mddev->layout;
6118         mddev->delta_disks = 0;
6119         mddev->reshape_backwards = 0;
6120
6121         return 0;
6122 }
6123
6124 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6125 {
6126         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6127
6128         if (mddev->external_size)
6129                 return;
6130
6131         mddev->array_sectors = array_sectors;
6132 }
6133 EXPORT_SYMBOL(md_set_array_sectors);
6134
6135 static int update_size(struct mddev *mddev, sector_t num_sectors)
6136 {
6137         struct md_rdev *rdev;
6138         int rv;
6139         int fit = (num_sectors == 0);
6140
6141         if (mddev->pers->resize == NULL)
6142                 return -EINVAL;
6143         /* The "num_sectors" is the number of sectors of each device that
6144          * is used.  This can only make sense for arrays with redundancy.
6145          * linear and raid0 always use whatever space is available. We can only
6146          * consider changing this number if no resync or reconstruction is
6147          * happening, and if the new size is acceptable. It must fit before the
6148          * sb_start or, if that is <data_offset, it must fit before the size
6149          * of each device.  If num_sectors is zero, we find the largest size
6150          * that fits.
6151          */
6152         if (mddev->sync_thread)
6153                 return -EBUSY;
6154         if (mddev->bitmap)
6155                 /* Sorry, cannot grow a bitmap yet, just remove it,
6156                  * grow, and re-add.
6157                  */
6158                 return -EBUSY;
6159         rdev_for_each(rdev, mddev) {
6160                 sector_t avail = rdev->sectors;
6161
6162                 if (fit && (num_sectors == 0 || num_sectors > avail))
6163                         num_sectors = avail;
6164                 if (avail < num_sectors)
6165                         return -ENOSPC;
6166         }
6167         rv = mddev->pers->resize(mddev, num_sectors);
6168         if (!rv)
6169                 revalidate_disk(mddev->gendisk);
6170         return rv;
6171 }
6172
6173 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6174 {
6175         int rv;
6176         struct md_rdev *rdev;
6177         /* change the number of raid disks */
6178         if (mddev->pers->check_reshape == NULL)
6179                 return -EINVAL;
6180         if (raid_disks <= 0 ||
6181             (mddev->max_disks && raid_disks >= mddev->max_disks))
6182                 return -EINVAL;
6183         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6184                 return -EBUSY;
6185
6186         rdev_for_each(rdev, mddev) {
6187                 if (mddev->raid_disks < raid_disks &&
6188                     rdev->data_offset < rdev->new_data_offset)
6189                         return -EINVAL;
6190                 if (mddev->raid_disks > raid_disks &&
6191                     rdev->data_offset > rdev->new_data_offset)
6192                         return -EINVAL;
6193         }
6194
6195         mddev->delta_disks = raid_disks - mddev->raid_disks;
6196         if (mddev->delta_disks < 0)
6197                 mddev->reshape_backwards = 1;
6198         else if (mddev->delta_disks > 0)
6199                 mddev->reshape_backwards = 0;
6200
6201         rv = mddev->pers->check_reshape(mddev);
6202         if (rv < 0) {
6203                 mddev->delta_disks = 0;
6204                 mddev->reshape_backwards = 0;
6205         }
6206         return rv;
6207 }
6208
6209
6210 /*
6211  * update_array_info is used to change the configuration of an
6212  * on-line array.
6213  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6214  * fields in the info are checked against the array.
6215  * Any differences that cannot be handled will cause an error.
6216  * Normally, only one change can be managed at a time.
6217  */
6218 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6219 {
6220         int rv = 0;
6221         int cnt = 0;
6222         int state = 0;
6223
6224         /* calculate expected state,ignoring low bits */
6225         if (mddev->bitmap && mddev->bitmap_info.offset)
6226                 state |= (1 << MD_SB_BITMAP_PRESENT);
6227
6228         if (mddev->major_version != info->major_version ||
6229             mddev->minor_version != info->minor_version ||
6230 /*          mddev->patch_version != info->patch_version || */
6231             mddev->ctime         != info->ctime         ||
6232             mddev->level         != info->level         ||
6233 /*          mddev->layout        != info->layout        || */
6234             !mddev->persistent   != info->not_persistent||
6235             mddev->chunk_sectors != info->chunk_size >> 9 ||
6236             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6237             ((state^info->state) & 0xfffffe00)
6238                 )
6239                 return -EINVAL;
6240         /* Check there is only one change */
6241         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6242                 cnt++;
6243         if (mddev->raid_disks != info->raid_disks)
6244                 cnt++;
6245         if (mddev->layout != info->layout)
6246                 cnt++;
6247         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6248                 cnt++;
6249         if (cnt == 0)
6250                 return 0;
6251         if (cnt > 1)
6252                 return -EINVAL;
6253
6254         if (mddev->layout != info->layout) {
6255                 /* Change layout
6256                  * we don't need to do anything at the md level, the
6257                  * personality will take care of it all.
6258                  */
6259                 if (mddev->pers->check_reshape == NULL)
6260                         return -EINVAL;
6261                 else {
6262                         mddev->new_layout = info->layout;
6263                         rv = mddev->pers->check_reshape(mddev);
6264                         if (rv)
6265                                 mddev->new_layout = mddev->layout;
6266                         return rv;
6267                 }
6268         }
6269         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6270                 rv = update_size(mddev, (sector_t)info->size * 2);
6271
6272         if (mddev->raid_disks    != info->raid_disks)
6273                 rv = update_raid_disks(mddev, info->raid_disks);
6274
6275         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6276                 if (mddev->pers->quiesce == NULL)
6277                         return -EINVAL;
6278                 if (mddev->recovery || mddev->sync_thread)
6279                         return -EBUSY;
6280                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6281                         /* add the bitmap */
6282                         if (mddev->bitmap)
6283                                 return -EEXIST;
6284                         if (mddev->bitmap_info.default_offset == 0)
6285                                 return -EINVAL;
6286                         mddev->bitmap_info.offset =
6287                                 mddev->bitmap_info.default_offset;
6288                         mddev->bitmap_info.space =
6289                                 mddev->bitmap_info.default_space;
6290                         mddev->pers->quiesce(mddev, 1);
6291                         rv = bitmap_create(mddev);
6292                         if (!rv)
6293                                 rv = bitmap_load(mddev);
6294                         if (rv)
6295                                 bitmap_destroy(mddev);
6296                         mddev->pers->quiesce(mddev, 0);
6297                 } else {
6298                         /* remove the bitmap */
6299                         if (!mddev->bitmap)
6300                                 return -ENOENT;
6301                         if (mddev->bitmap->file)
6302                                 return -EINVAL;
6303                         mddev->pers->quiesce(mddev, 1);
6304                         bitmap_destroy(mddev);
6305                         mddev->pers->quiesce(mddev, 0);
6306                         mddev->bitmap_info.offset = 0;
6307                 }
6308         }
6309         md_update_sb(mddev, 1);
6310         return rv;
6311 }
6312
6313 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6314 {
6315         struct md_rdev *rdev;
6316
6317         if (mddev->pers == NULL)
6318                 return -ENODEV;
6319
6320         rdev = find_rdev(mddev, dev);
6321         if (!rdev)
6322                 return -ENODEV;
6323
6324         md_error(mddev, rdev);
6325         if (!test_bit(Faulty, &rdev->flags))
6326                 return -EBUSY;
6327         return 0;
6328 }
6329
6330 /*
6331  * We have a problem here : there is no easy way to give a CHS
6332  * virtual geometry. We currently pretend that we have a 2 heads
6333  * 4 sectors (with a BIG number of cylinders...). This drives
6334  * dosfs just mad... ;-)
6335  */
6336 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6337 {
6338         struct mddev *mddev = bdev->bd_disk->private_data;
6339
6340         geo->heads = 2;
6341         geo->sectors = 4;
6342         geo->cylinders = mddev->array_sectors / 8;
6343         return 0;
6344 }
6345
6346 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6347                         unsigned int cmd, unsigned long arg)
6348 {
6349         int err = 0;
6350         void __user *argp = (void __user *)arg;
6351         struct mddev *mddev = NULL;
6352         int ro;
6353
6354         switch (cmd) {
6355         case RAID_VERSION:
6356         case GET_ARRAY_INFO:
6357         case GET_DISK_INFO:
6358                 break;
6359         default:
6360                 if (!capable(CAP_SYS_ADMIN))
6361                         return -EACCES;
6362         }
6363
6364         /*
6365          * Commands dealing with the RAID driver but not any
6366          * particular array:
6367          */
6368         switch (cmd)
6369         {
6370                 case RAID_VERSION:
6371                         err = get_version(argp);
6372                         goto done;
6373
6374                 case PRINT_RAID_DEBUG:
6375                         err = 0;
6376                         md_print_devices();
6377                         goto done;
6378
6379 #ifndef MODULE
6380                 case RAID_AUTORUN:
6381                         err = 0;
6382                         autostart_arrays(arg);
6383                         goto done;
6384 #endif
6385                 default:;
6386         }
6387
6388         /*
6389          * Commands creating/starting a new array:
6390          */
6391
6392         mddev = bdev->bd_disk->private_data;
6393
6394         if (!mddev) {
6395                 BUG();
6396                 goto abort;
6397         }
6398
6399         err = mddev_lock(mddev);
6400         if (err) {
6401                 printk(KERN_INFO 
6402                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6403                         err, cmd);
6404                 goto abort;
6405         }
6406
6407         switch (cmd)
6408         {
6409                 case SET_ARRAY_INFO:
6410                         {
6411                                 mdu_array_info_t info;
6412                                 if (!arg)
6413                                         memset(&info, 0, sizeof(info));
6414                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6415                                         err = -EFAULT;
6416                                         goto abort_unlock;
6417                                 }
6418                                 if (mddev->pers) {
6419                                         err = update_array_info(mddev, &info);
6420                                         if (err) {
6421                                                 printk(KERN_WARNING "md: couldn't update"
6422                                                        " array info. %d\n", err);
6423                                                 goto abort_unlock;
6424                                         }
6425                                         goto done_unlock;
6426                                 }
6427                                 if (!list_empty(&mddev->disks)) {
6428                                         printk(KERN_WARNING
6429                                                "md: array %s already has disks!\n",
6430                                                mdname(mddev));
6431                                         err = -EBUSY;
6432                                         goto abort_unlock;
6433                                 }
6434                                 if (mddev->raid_disks) {
6435                                         printk(KERN_WARNING
6436                                                "md: array %s already initialised!\n",
6437                                                mdname(mddev));
6438                                         err = -EBUSY;
6439                                         goto abort_unlock;
6440                                 }
6441                                 err = set_array_info(mddev, &info);
6442                                 if (err) {
6443                                         printk(KERN_WARNING "md: couldn't set"
6444                                                " array info. %d\n", err);
6445                                         goto abort_unlock;
6446                                 }
6447                         }
6448                         goto done_unlock;
6449
6450                 default:;
6451         }
6452
6453         /*
6454          * Commands querying/configuring an existing array:
6455          */
6456         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6457          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6458         if ((!mddev->raid_disks && !mddev->external)
6459             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6460             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6461             && cmd != GET_BITMAP_FILE) {
6462                 err = -ENODEV;
6463                 goto abort_unlock;
6464         }
6465
6466         /*
6467          * Commands even a read-only array can execute:
6468          */
6469         switch (cmd)
6470         {
6471                 case GET_ARRAY_INFO:
6472                         err = get_array_info(mddev, argp);
6473                         goto done_unlock;
6474
6475                 case GET_BITMAP_FILE:
6476                         err = get_bitmap_file(mddev, argp);
6477                         goto done_unlock;
6478
6479                 case GET_DISK_INFO:
6480                         err = get_disk_info(mddev, argp);
6481                         goto done_unlock;
6482
6483                 case RESTART_ARRAY_RW:
6484                         err = restart_array(mddev);
6485                         goto done_unlock;
6486
6487                 case STOP_ARRAY:
6488                         err = do_md_stop(mddev, 0, 1);
6489                         goto done_unlock;
6490
6491                 case STOP_ARRAY_RO:
6492                         err = md_set_readonly(mddev, 1);
6493                         goto done_unlock;
6494
6495                 case BLKROSET:
6496                         if (get_user(ro, (int __user *)(arg))) {
6497                                 err = -EFAULT;
6498                                 goto done_unlock;
6499                         }
6500                         err = -EINVAL;
6501
6502                         /* if the bdev is going readonly the value of mddev->ro
6503                          * does not matter, no writes are coming
6504                          */
6505                         if (ro)
6506                                 goto done_unlock;
6507
6508                         /* are we are already prepared for writes? */
6509                         if (mddev->ro != 1)
6510                                 goto done_unlock;
6511
6512                         /* transitioning to readauto need only happen for
6513                          * arrays that call md_write_start
6514                          */
6515                         if (mddev->pers) {
6516                                 err = restart_array(mddev);
6517                                 if (err == 0) {
6518                                         mddev->ro = 2;
6519                                         set_disk_ro(mddev->gendisk, 0);
6520                                 }
6521                         }
6522                         goto done_unlock;
6523         }
6524
6525         /*
6526          * The remaining ioctls are changing the state of the
6527          * superblock, so we do not allow them on read-only arrays.
6528          * However non-MD ioctls (e.g. get-size) will still come through
6529          * here and hit the 'default' below, so only disallow
6530          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6531          */
6532         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6533                 if (mddev->ro == 2) {
6534                         mddev->ro = 0;
6535                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6536                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6537                         md_wakeup_thread(mddev->thread);
6538                 } else {
6539                         err = -EROFS;
6540                         goto abort_unlock;
6541                 }
6542         }
6543
6544         switch (cmd)
6545         {
6546                 case ADD_NEW_DISK:
6547                 {
6548                         mdu_disk_info_t info;
6549                         if (copy_from_user(&info, argp, sizeof(info)))
6550                                 err = -EFAULT;
6551                         else
6552                                 err = add_new_disk(mddev, &info);
6553                         goto done_unlock;
6554                 }
6555
6556                 case HOT_REMOVE_DISK:
6557                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6558                         goto done_unlock;
6559
6560                 case HOT_ADD_DISK:
6561                         err = hot_add_disk(mddev, new_decode_dev(arg));
6562                         goto done_unlock;
6563
6564                 case SET_DISK_FAULTY:
6565                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6566                         goto done_unlock;
6567
6568                 case RUN_ARRAY:
6569                         err = do_md_run(mddev);
6570                         goto done_unlock;
6571
6572                 case SET_BITMAP_FILE:
6573                         err = set_bitmap_file(mddev, (int)arg);
6574                         goto done_unlock;
6575
6576                 default:
6577                         err = -EINVAL;
6578                         goto abort_unlock;
6579         }
6580
6581 done_unlock:
6582 abort_unlock:
6583         if (mddev->hold_active == UNTIL_IOCTL &&
6584             err != -EINVAL)
6585                 mddev->hold_active = 0;
6586         mddev_unlock(mddev);
6587
6588         return err;
6589 done:
6590         if (err)
6591                 MD_BUG();
6592 abort:
6593         return err;
6594 }
6595 #ifdef CONFIG_COMPAT
6596 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6597                     unsigned int cmd, unsigned long arg)
6598 {
6599         switch (cmd) {
6600         case HOT_REMOVE_DISK:
6601         case HOT_ADD_DISK:
6602         case SET_DISK_FAULTY:
6603         case SET_BITMAP_FILE:
6604                 /* These take in integer arg, do not convert */
6605                 break;
6606         default:
6607                 arg = (unsigned long)compat_ptr(arg);
6608                 break;
6609         }
6610
6611         return md_ioctl(bdev, mode, cmd, arg);
6612 }
6613 #endif /* CONFIG_COMPAT */
6614
6615 static int md_open(struct block_device *bdev, fmode_t mode)
6616 {
6617         /*
6618          * Succeed if we can lock the mddev, which confirms that
6619          * it isn't being stopped right now.
6620          */
6621         struct mddev *mddev = mddev_find(bdev->bd_dev);
6622         int err;
6623
6624         if (mddev->gendisk != bdev->bd_disk) {
6625                 /* we are racing with mddev_put which is discarding this
6626                  * bd_disk.
6627                  */
6628                 mddev_put(mddev);
6629                 /* Wait until bdev->bd_disk is definitely gone */
6630                 flush_workqueue(md_misc_wq);
6631                 /* Then retry the open from the top */
6632                 return -ERESTARTSYS;
6633         }
6634         BUG_ON(mddev != bdev->bd_disk->private_data);
6635
6636         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6637                 goto out;
6638
6639         err = 0;
6640         atomic_inc(&mddev->openers);
6641         mutex_unlock(&mddev->open_mutex);
6642
6643         check_disk_change(bdev);
6644  out:
6645         return err;
6646 }
6647
6648 static int md_release(struct gendisk *disk, fmode_t mode)
6649 {
6650         struct mddev *mddev = disk->private_data;
6651
6652         BUG_ON(!mddev);
6653         atomic_dec(&mddev->openers);
6654         mddev_put(mddev);
6655
6656         return 0;
6657 }
6658
6659 static int md_media_changed(struct gendisk *disk)
6660 {
6661         struct mddev *mddev = disk->private_data;
6662
6663         return mddev->changed;
6664 }
6665
6666 static int md_revalidate(struct gendisk *disk)
6667 {
6668         struct mddev *mddev = disk->private_data;
6669
6670         mddev->changed = 0;
6671         return 0;
6672 }
6673 static const struct block_device_operations md_fops =
6674 {
6675         .owner          = THIS_MODULE,
6676         .open           = md_open,
6677         .release        = md_release,
6678         .ioctl          = md_ioctl,
6679 #ifdef CONFIG_COMPAT
6680         .compat_ioctl   = md_compat_ioctl,
6681 #endif
6682         .getgeo         = md_getgeo,
6683         .media_changed  = md_media_changed,
6684         .revalidate_disk= md_revalidate,
6685 };
6686
6687 static int md_thread(void * arg)
6688 {
6689         struct md_thread *thread = arg;
6690
6691         /*
6692          * md_thread is a 'system-thread', it's priority should be very
6693          * high. We avoid resource deadlocks individually in each
6694          * raid personality. (RAID5 does preallocation) We also use RR and
6695          * the very same RT priority as kswapd, thus we will never get
6696          * into a priority inversion deadlock.
6697          *
6698          * we definitely have to have equal or higher priority than
6699          * bdflush, otherwise bdflush will deadlock if there are too
6700          * many dirty RAID5 blocks.
6701          */
6702
6703         allow_signal(SIGKILL);
6704         while (!kthread_should_stop()) {
6705
6706                 /* We need to wait INTERRUPTIBLE so that
6707                  * we don't add to the load-average.
6708                  * That means we need to be sure no signals are
6709                  * pending
6710                  */
6711                 if (signal_pending(current))
6712                         flush_signals(current);
6713
6714                 wait_event_interruptible_timeout
6715                         (thread->wqueue,
6716                          test_bit(THREAD_WAKEUP, &thread->flags)
6717                          || kthread_should_stop(),
6718                          thread->timeout);
6719
6720                 clear_bit(THREAD_WAKEUP, &thread->flags);
6721                 if (!kthread_should_stop())
6722                         thread->run(thread->mddev);
6723         }
6724
6725         return 0;
6726 }
6727
6728 void md_wakeup_thread(struct md_thread *thread)
6729 {
6730         if (thread) {
6731                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6732                 set_bit(THREAD_WAKEUP, &thread->flags);
6733                 wake_up(&thread->wqueue);
6734         }
6735 }
6736
6737 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6738                                  const char *name)
6739 {
6740         struct md_thread *thread;
6741
6742         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6743         if (!thread)
6744                 return NULL;
6745
6746         init_waitqueue_head(&thread->wqueue);
6747
6748         thread->run = run;
6749         thread->mddev = mddev;
6750         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6751         thread->tsk = kthread_run(md_thread, thread,
6752                                   "%s_%s",
6753                                   mdname(thread->mddev),
6754                                   name ?: mddev->pers->name);
6755         if (IS_ERR(thread->tsk)) {
6756                 kfree(thread);
6757                 return NULL;
6758         }
6759         return thread;
6760 }
6761
6762 void md_unregister_thread(struct md_thread **threadp)
6763 {
6764         struct md_thread *thread = *threadp;
6765         if (!thread)
6766                 return;
6767         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6768         /* Locking ensures that mddev_unlock does not wake_up a
6769          * non-existent thread
6770          */
6771         spin_lock(&pers_lock);
6772         *threadp = NULL;
6773         spin_unlock(&pers_lock);
6774
6775         kthread_stop(thread->tsk);
6776         kfree(thread);
6777 }
6778
6779 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6780 {
6781         if (!mddev) {
6782                 MD_BUG();
6783                 return;
6784         }
6785
6786         if (!rdev || test_bit(Faulty, &rdev->flags))
6787                 return;
6788
6789         if (!mddev->pers || !mddev->pers->error_handler)
6790                 return;
6791         mddev->pers->error_handler(mddev,rdev);
6792         if (mddev->degraded)
6793                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6794         sysfs_notify_dirent_safe(rdev->sysfs_state);
6795         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6796         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6797         md_wakeup_thread(mddev->thread);
6798         if (mddev->event_work.func)
6799                 queue_work(md_misc_wq, &mddev->event_work);
6800         md_new_event_inintr(mddev);
6801 }
6802
6803 /* seq_file implementation /proc/mdstat */
6804
6805 static void status_unused(struct seq_file *seq)
6806 {
6807         int i = 0;
6808         struct md_rdev *rdev;
6809
6810         seq_printf(seq, "unused devices: ");
6811
6812         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6813                 char b[BDEVNAME_SIZE];
6814                 i++;
6815                 seq_printf(seq, "%s ",
6816                               bdevname(rdev->bdev,b));
6817         }
6818         if (!i)
6819                 seq_printf(seq, "<none>");
6820
6821         seq_printf(seq, "\n");
6822 }
6823
6824
6825 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6826 {
6827         sector_t max_sectors, resync, res;
6828         unsigned long dt, db;
6829         sector_t rt;
6830         int scale;
6831         unsigned int per_milli;
6832
6833         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6834
6835         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6836             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6837                 max_sectors = mddev->resync_max_sectors;
6838         else
6839                 max_sectors = mddev->dev_sectors;
6840
6841         /*
6842          * Should not happen.
6843          */
6844         if (!max_sectors) {
6845                 MD_BUG();
6846                 return;
6847         }
6848         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6849          * in a sector_t, and (max_sectors>>scale) will fit in a
6850          * u32, as those are the requirements for sector_div.
6851          * Thus 'scale' must be at least 10
6852          */
6853         scale = 10;
6854         if (sizeof(sector_t) > sizeof(unsigned long)) {
6855                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6856                         scale++;
6857         }
6858         res = (resync>>scale)*1000;
6859         sector_div(res, (u32)((max_sectors>>scale)+1));
6860
6861         per_milli = res;
6862         {
6863                 int i, x = per_milli/50, y = 20-x;
6864                 seq_printf(seq, "[");
6865                 for (i = 0; i < x; i++)
6866                         seq_printf(seq, "=");
6867                 seq_printf(seq, ">");
6868                 for (i = 0; i < y; i++)
6869                         seq_printf(seq, ".");
6870                 seq_printf(seq, "] ");
6871         }
6872         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6873                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6874                     "reshape" :
6875                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6876                      "check" :
6877                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6878                       "resync" : "recovery"))),
6879                    per_milli/10, per_milli % 10,
6880                    (unsigned long long) resync/2,
6881                    (unsigned long long) max_sectors/2);
6882
6883         /*
6884          * dt: time from mark until now
6885          * db: blocks written from mark until now
6886          * rt: remaining time
6887          *
6888          * rt is a sector_t, so could be 32bit or 64bit.
6889          * So we divide before multiply in case it is 32bit and close
6890          * to the limit.
6891          * We scale the divisor (db) by 32 to avoid losing precision
6892          * near the end of resync when the number of remaining sectors
6893          * is close to 'db'.
6894          * We then divide rt by 32 after multiplying by db to compensate.
6895          * The '+1' avoids division by zero if db is very small.
6896          */
6897         dt = ((jiffies - mddev->resync_mark) / HZ);
6898         if (!dt) dt++;
6899         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6900                 - mddev->resync_mark_cnt;
6901
6902         rt = max_sectors - resync;    /* number of remaining sectors */
6903         sector_div(rt, db/32+1);
6904         rt *= dt;
6905         rt >>= 5;
6906
6907         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6908                    ((unsigned long)rt % 60)/6);
6909
6910         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6911 }
6912
6913 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6914 {
6915         struct list_head *tmp;
6916         loff_t l = *pos;
6917         struct mddev *mddev;
6918
6919         if (l >= 0x10000)
6920                 return NULL;
6921         if (!l--)
6922                 /* header */
6923                 return (void*)1;
6924
6925         spin_lock(&all_mddevs_lock);
6926         list_for_each(tmp,&all_mddevs)
6927                 if (!l--) {
6928                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6929                         mddev_get(mddev);
6930                         spin_unlock(&all_mddevs_lock);
6931                         return mddev;
6932                 }
6933         spin_unlock(&all_mddevs_lock);
6934         if (!l--)
6935                 return (void*)2;/* tail */
6936         return NULL;
6937 }
6938
6939 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6940 {
6941         struct list_head *tmp;
6942         struct mddev *next_mddev, *mddev = v;
6943         
6944         ++*pos;
6945         if (v == (void*)2)
6946                 return NULL;
6947
6948         spin_lock(&all_mddevs_lock);
6949         if (v == (void*)1)
6950                 tmp = all_mddevs.next;
6951         else
6952                 tmp = mddev->all_mddevs.next;
6953         if (tmp != &all_mddevs)
6954                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6955         else {
6956                 next_mddev = (void*)2;
6957                 *pos = 0x10000;
6958         }               
6959         spin_unlock(&all_mddevs_lock);
6960
6961         if (v != (void*)1)
6962                 mddev_put(mddev);
6963         return next_mddev;
6964
6965 }
6966
6967 static void md_seq_stop(struct seq_file *seq, void *v)
6968 {
6969         struct mddev *mddev = v;
6970
6971         if (mddev && v != (void*)1 && v != (void*)2)
6972                 mddev_put(mddev);
6973 }
6974
6975 static int md_seq_show(struct seq_file *seq, void *v)
6976 {
6977         struct mddev *mddev = v;
6978         sector_t sectors;
6979         struct md_rdev *rdev;
6980
6981         if (v == (void*)1) {
6982                 struct md_personality *pers;
6983                 seq_printf(seq, "Personalities : ");
6984                 spin_lock(&pers_lock);
6985                 list_for_each_entry(pers, &pers_list, list)
6986                         seq_printf(seq, "[%s] ", pers->name);
6987
6988                 spin_unlock(&pers_lock);
6989                 seq_printf(seq, "\n");
6990                 seq->poll_event = atomic_read(&md_event_count);
6991                 return 0;
6992         }
6993         if (v == (void*)2) {
6994                 status_unused(seq);
6995                 return 0;
6996         }
6997
6998         if (mddev_lock(mddev) < 0)
6999                 return -EINTR;
7000
7001         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7002                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7003                                                 mddev->pers ? "" : "in");
7004                 if (mddev->pers) {
7005                         if (mddev->ro==1)
7006                                 seq_printf(seq, " (read-only)");
7007                         if (mddev->ro==2)
7008                                 seq_printf(seq, " (auto-read-only)");
7009                         seq_printf(seq, " %s", mddev->pers->name);
7010                 }
7011
7012                 sectors = 0;
7013                 rdev_for_each(rdev, mddev) {
7014                         char b[BDEVNAME_SIZE];
7015                         seq_printf(seq, " %s[%d]",
7016                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7017                         if (test_bit(WriteMostly, &rdev->flags))
7018                                 seq_printf(seq, "(W)");
7019                         if (test_bit(Faulty, &rdev->flags)) {
7020                                 seq_printf(seq, "(F)");
7021                                 continue;
7022                         }
7023                         if (rdev->raid_disk < 0)
7024                                 seq_printf(seq, "(S)"); /* spare */
7025                         if (test_bit(Replacement, &rdev->flags))
7026                                 seq_printf(seq, "(R)");
7027                         sectors += rdev->sectors;
7028                 }
7029
7030                 if (!list_empty(&mddev->disks)) {
7031                         if (mddev->pers)
7032                                 seq_printf(seq, "\n      %llu blocks",
7033                                            (unsigned long long)
7034                                            mddev->array_sectors / 2);
7035                         else
7036                                 seq_printf(seq, "\n      %llu blocks",
7037                                            (unsigned long long)sectors / 2);
7038                 }
7039                 if (mddev->persistent) {
7040                         if (mddev->major_version != 0 ||
7041                             mddev->minor_version != 90) {
7042                                 seq_printf(seq," super %d.%d",
7043                                            mddev->major_version,
7044                                            mddev->minor_version);
7045                         }
7046                 } else if (mddev->external)
7047                         seq_printf(seq, " super external:%s",
7048                                    mddev->metadata_type);
7049                 else
7050                         seq_printf(seq, " super non-persistent");
7051
7052                 if (mddev->pers) {
7053                         mddev->pers->status(seq, mddev);
7054                         seq_printf(seq, "\n      ");
7055                         if (mddev->pers->sync_request) {
7056                                 if (mddev->curr_resync > 2) {
7057                                         status_resync(seq, mddev);
7058                                         seq_printf(seq, "\n      ");
7059                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7060                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7061                                 else if (mddev->recovery_cp < MaxSector)
7062                                         seq_printf(seq, "\tresync=PENDING\n      ");
7063                         }
7064                 } else
7065                         seq_printf(seq, "\n       ");
7066
7067                 bitmap_status(seq, mddev->bitmap);
7068
7069                 seq_printf(seq, "\n");
7070         }
7071         mddev_unlock(mddev);
7072         
7073         return 0;
7074 }
7075
7076 static const struct seq_operations md_seq_ops = {
7077         .start  = md_seq_start,
7078         .next   = md_seq_next,
7079         .stop   = md_seq_stop,
7080         .show   = md_seq_show,
7081 };
7082
7083 static int md_seq_open(struct inode *inode, struct file *file)
7084 {
7085         struct seq_file *seq;
7086         int error;
7087
7088         error = seq_open(file, &md_seq_ops);
7089         if (error)
7090                 return error;
7091
7092         seq = file->private_data;
7093         seq->poll_event = atomic_read(&md_event_count);
7094         return error;
7095 }
7096
7097 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7098 {
7099         struct seq_file *seq = filp->private_data;
7100         int mask;
7101
7102         poll_wait(filp, &md_event_waiters, wait);
7103
7104         /* always allow read */
7105         mask = POLLIN | POLLRDNORM;
7106
7107         if (seq->poll_event != atomic_read(&md_event_count))
7108                 mask |= POLLERR | POLLPRI;
7109         return mask;
7110 }
7111
7112 static const struct file_operations md_seq_fops = {
7113         .owner          = THIS_MODULE,
7114         .open           = md_seq_open,
7115         .read           = seq_read,
7116         .llseek         = seq_lseek,
7117         .release        = seq_release_private,
7118         .poll           = mdstat_poll,
7119 };
7120
7121 int register_md_personality(struct md_personality *p)
7122 {
7123         spin_lock(&pers_lock);
7124         list_add_tail(&p->list, &pers_list);
7125         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7126         spin_unlock(&pers_lock);
7127         return 0;
7128 }
7129
7130 int unregister_md_personality(struct md_personality *p)
7131 {
7132         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7133         spin_lock(&pers_lock);
7134         list_del_init(&p->list);
7135         spin_unlock(&pers_lock);
7136         return 0;
7137 }
7138
7139 static int is_mddev_idle(struct mddev *mddev, int init)
7140 {
7141         struct md_rdev * rdev;
7142         int idle;
7143         int curr_events;
7144
7145         idle = 1;
7146         rcu_read_lock();
7147         rdev_for_each_rcu(rdev, mddev) {
7148                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7149                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7150                               (int)part_stat_read(&disk->part0, sectors[1]) -
7151                               atomic_read(&disk->sync_io);
7152                 /* sync IO will cause sync_io to increase before the disk_stats
7153                  * as sync_io is counted when a request starts, and
7154                  * disk_stats is counted when it completes.
7155                  * So resync activity will cause curr_events to be smaller than
7156                  * when there was no such activity.
7157                  * non-sync IO will cause disk_stat to increase without
7158                  * increasing sync_io so curr_events will (eventually)
7159                  * be larger than it was before.  Once it becomes
7160                  * substantially larger, the test below will cause
7161                  * the array to appear non-idle, and resync will slow
7162                  * down.
7163                  * If there is a lot of outstanding resync activity when
7164                  * we set last_event to curr_events, then all that activity
7165                  * completing might cause the array to appear non-idle
7166                  * and resync will be slowed down even though there might
7167                  * not have been non-resync activity.  This will only
7168                  * happen once though.  'last_events' will soon reflect
7169                  * the state where there is little or no outstanding
7170                  * resync requests, and further resync activity will
7171                  * always make curr_events less than last_events.
7172                  *
7173                  */
7174                 if (init || curr_events - rdev->last_events > 64) {
7175                         rdev->last_events = curr_events;
7176                         idle = 0;
7177                 }
7178         }
7179         rcu_read_unlock();
7180         return idle;
7181 }
7182
7183 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7184 {
7185         /* another "blocks" (512byte) blocks have been synced */
7186         atomic_sub(blocks, &mddev->recovery_active);
7187         wake_up(&mddev->recovery_wait);
7188         if (!ok) {
7189                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7190                 md_wakeup_thread(mddev->thread);
7191                 // stop recovery, signal do_sync ....
7192         }
7193 }
7194
7195
7196 /* md_write_start(mddev, bi)
7197  * If we need to update some array metadata (e.g. 'active' flag
7198  * in superblock) before writing, schedule a superblock update
7199  * and wait for it to complete.
7200  */
7201 void md_write_start(struct mddev *mddev, struct bio *bi)
7202 {
7203         int did_change = 0;
7204         if (bio_data_dir(bi) != WRITE)
7205                 return;
7206
7207         BUG_ON(mddev->ro == 1);
7208         if (mddev->ro == 2) {
7209                 /* need to switch to read/write */
7210                 mddev->ro = 0;
7211                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7212                 md_wakeup_thread(mddev->thread);
7213                 md_wakeup_thread(mddev->sync_thread);
7214                 did_change = 1;
7215         }
7216         atomic_inc(&mddev->writes_pending);
7217         if (mddev->safemode == 1)
7218                 mddev->safemode = 0;
7219         if (mddev->in_sync) {
7220                 spin_lock_irq(&mddev->write_lock);
7221                 if (mddev->in_sync) {
7222                         mddev->in_sync = 0;
7223                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7224                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7225                         md_wakeup_thread(mddev->thread);
7226                         did_change = 1;
7227                 }
7228                 spin_unlock_irq(&mddev->write_lock);
7229         }
7230         if (did_change)
7231                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7232         wait_event(mddev->sb_wait,
7233                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7234 }
7235
7236 void md_write_end(struct mddev *mddev)
7237 {
7238         if (atomic_dec_and_test(&mddev->writes_pending)) {
7239                 if (mddev->safemode == 2)
7240                         md_wakeup_thread(mddev->thread);
7241                 else if (mddev->safemode_delay)
7242                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7243         }
7244 }
7245
7246 /* md_allow_write(mddev)
7247  * Calling this ensures that the array is marked 'active' so that writes
7248  * may proceed without blocking.  It is important to call this before
7249  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7250  * Must be called with mddev_lock held.
7251  *
7252  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7253  * is dropped, so return -EAGAIN after notifying userspace.
7254  */
7255 int md_allow_write(struct mddev *mddev)
7256 {
7257         if (!mddev->pers)
7258                 return 0;
7259         if (mddev->ro)
7260                 return 0;
7261         if (!mddev->pers->sync_request)
7262                 return 0;
7263
7264         spin_lock_irq(&mddev->write_lock);
7265         if (mddev->in_sync) {
7266                 mddev->in_sync = 0;
7267                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7268                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7269                 if (mddev->safemode_delay &&
7270                     mddev->safemode == 0)
7271                         mddev->safemode = 1;
7272                 spin_unlock_irq(&mddev->write_lock);
7273                 md_update_sb(mddev, 0);
7274                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7275         } else
7276                 spin_unlock_irq(&mddev->write_lock);
7277
7278         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7279                 return -EAGAIN;
7280         else
7281                 return 0;
7282 }
7283 EXPORT_SYMBOL_GPL(md_allow_write);
7284
7285 #define SYNC_MARKS      10
7286 #define SYNC_MARK_STEP  (3*HZ)
7287 void md_do_sync(struct mddev *mddev)
7288 {
7289         struct mddev *mddev2;
7290         unsigned int currspeed = 0,
7291                  window;
7292         sector_t max_sectors,j, io_sectors;
7293         unsigned long mark[SYNC_MARKS];
7294         sector_t mark_cnt[SYNC_MARKS];
7295         int last_mark,m;
7296         struct list_head *tmp;
7297         sector_t last_check;
7298         int skipped = 0;
7299         struct md_rdev *rdev;
7300         char *desc;
7301
7302         /* just incase thread restarts... */
7303         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7304                 return;
7305         if (mddev->ro) /* never try to sync a read-only array */
7306                 return;
7307
7308         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7309                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7310                         desc = "data-check";
7311                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7312                         desc = "requested-resync";
7313                 else
7314                         desc = "resync";
7315         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7316                 desc = "reshape";
7317         else
7318                 desc = "recovery";
7319
7320         /* we overload curr_resync somewhat here.
7321          * 0 == not engaged in resync at all
7322          * 2 == checking that there is no conflict with another sync
7323          * 1 == like 2, but have yielded to allow conflicting resync to
7324          *              commense
7325          * other == active in resync - this many blocks
7326          *
7327          * Before starting a resync we must have set curr_resync to
7328          * 2, and then checked that every "conflicting" array has curr_resync
7329          * less than ours.  When we find one that is the same or higher
7330          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7331          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7332          * This will mean we have to start checking from the beginning again.
7333          *
7334          */
7335
7336         do {
7337                 mddev->curr_resync = 2;
7338
7339         try_again:
7340                 if (kthread_should_stop())
7341                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7342
7343                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7344                         goto skip;
7345                 for_each_mddev(mddev2, tmp) {
7346                         if (mddev2 == mddev)
7347                                 continue;
7348                         if (!mddev->parallel_resync
7349                         &&  mddev2->curr_resync
7350                         &&  match_mddev_units(mddev, mddev2)) {
7351                                 DEFINE_WAIT(wq);
7352                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7353                                         /* arbitrarily yield */
7354                                         mddev->curr_resync = 1;
7355                                         wake_up(&resync_wait);
7356                                 }
7357                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7358                                         /* no need to wait here, we can wait the next
7359                                          * time 'round when curr_resync == 2
7360                                          */
7361                                         continue;
7362                                 /* We need to wait 'interruptible' so as not to
7363                                  * contribute to the load average, and not to
7364                                  * be caught by 'softlockup'
7365                                  */
7366                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7367                                 if (!kthread_should_stop() &&
7368                                     mddev2->curr_resync >= mddev->curr_resync) {
7369                                         printk(KERN_INFO "md: delaying %s of %s"
7370                                                " until %s has finished (they"
7371                                                " share one or more physical units)\n",
7372                                                desc, mdname(mddev), mdname(mddev2));
7373                                         mddev_put(mddev2);
7374                                         if (signal_pending(current))
7375                                                 flush_signals(current);
7376                                         schedule();
7377                                         finish_wait(&resync_wait, &wq);
7378                                         goto try_again;
7379                                 }
7380                                 finish_wait(&resync_wait, &wq);
7381                         }
7382                 }
7383         } while (mddev->curr_resync < 2);
7384
7385         j = 0;
7386         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7387                 /* resync follows the size requested by the personality,
7388                  * which defaults to physical size, but can be virtual size
7389                  */
7390                 max_sectors = mddev->resync_max_sectors;
7391                 mddev->resync_mismatches = 0;
7392                 /* we don't use the checkpoint if there's a bitmap */
7393                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7394                         j = mddev->resync_min;
7395                 else if (!mddev->bitmap)
7396                         j = mddev->recovery_cp;
7397
7398         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7399                 max_sectors = mddev->resync_max_sectors;
7400         else {
7401                 /* recovery follows the physical size of devices */
7402                 max_sectors = mddev->dev_sectors;
7403                 j = MaxSector;
7404                 rcu_read_lock();
7405                 rdev_for_each_rcu(rdev, mddev)
7406                         if (rdev->raid_disk >= 0 &&
7407                             !test_bit(Faulty, &rdev->flags) &&
7408                             !test_bit(In_sync, &rdev->flags) &&
7409                             rdev->recovery_offset < j)
7410                                 j = rdev->recovery_offset;
7411                 rcu_read_unlock();
7412         }
7413
7414         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7415         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7416                 " %d KB/sec/disk.\n", speed_min(mddev));
7417         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7418                "(but not more than %d KB/sec) for %s.\n",
7419                speed_max(mddev), desc);
7420
7421         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7422
7423         io_sectors = 0;
7424         for (m = 0; m < SYNC_MARKS; m++) {
7425                 mark[m] = jiffies;
7426                 mark_cnt[m] = io_sectors;
7427         }
7428         last_mark = 0;
7429         mddev->resync_mark = mark[last_mark];
7430         mddev->resync_mark_cnt = mark_cnt[last_mark];
7431
7432         /*
7433          * Tune reconstruction:
7434          */
7435         window = 32*(PAGE_SIZE/512);
7436         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7437                 window/2, (unsigned long long)max_sectors/2);
7438
7439         atomic_set(&mddev->recovery_active, 0);
7440         last_check = 0;
7441
7442         if (j>2) {
7443                 printk(KERN_INFO 
7444                        "md: resuming %s of %s from checkpoint.\n",
7445                        desc, mdname(mddev));
7446                 mddev->curr_resync = j;
7447         }
7448         mddev->curr_resync_completed = j;
7449
7450         while (j < max_sectors) {
7451                 sector_t sectors;
7452
7453                 skipped = 0;
7454
7455                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7456                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7457                       (mddev->curr_resync - mddev->curr_resync_completed)
7458                       > (max_sectors >> 4)) ||
7459                      (j - mddev->curr_resync_completed)*2
7460                      >= mddev->resync_max - mddev->curr_resync_completed
7461                             )) {
7462                         /* time to update curr_resync_completed */
7463                         wait_event(mddev->recovery_wait,
7464                                    atomic_read(&mddev->recovery_active) == 0);
7465                         mddev->curr_resync_completed = j;
7466                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7467                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7468                 }
7469
7470                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7471                         /* As this condition is controlled by user-space,
7472                          * we can block indefinitely, so use '_interruptible'
7473                          * to avoid triggering warnings.
7474                          */
7475                         flush_signals(current); /* just in case */
7476                         wait_event_interruptible(mddev->recovery_wait,
7477                                                  mddev->resync_max > j
7478                                                  || kthread_should_stop());
7479                 }
7480
7481                 if (kthread_should_stop())
7482                         goto interrupted;
7483
7484                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7485                                                   currspeed < speed_min(mddev));
7486                 if (sectors == 0) {
7487                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7488                         goto out;
7489                 }
7490
7491                 if (!skipped) { /* actual IO requested */
7492                         io_sectors += sectors;
7493                         atomic_add(sectors, &mddev->recovery_active);
7494                 }
7495
7496                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7497                         break;
7498
7499                 j += sectors;
7500                 if (j>1) mddev->curr_resync = j;
7501                 mddev->curr_mark_cnt = io_sectors;
7502                 if (last_check == 0)
7503                         /* this is the earliest that rebuild will be
7504                          * visible in /proc/mdstat
7505                          */
7506                         md_new_event(mddev);
7507
7508                 if (last_check + window > io_sectors || j == max_sectors)
7509                         continue;
7510
7511                 last_check = io_sectors;
7512         repeat:
7513                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7514                         /* step marks */
7515                         int next = (last_mark+1) % SYNC_MARKS;
7516
7517                         mddev->resync_mark = mark[next];
7518                         mddev->resync_mark_cnt = mark_cnt[next];
7519                         mark[next] = jiffies;
7520                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7521                         last_mark = next;
7522                 }
7523
7524
7525                 if (kthread_should_stop())
7526                         goto interrupted;
7527
7528
7529                 /*
7530                  * this loop exits only if either when we are slower than
7531                  * the 'hard' speed limit, or the system was IO-idle for
7532                  * a jiffy.
7533                  * the system might be non-idle CPU-wise, but we only care
7534                  * about not overloading the IO subsystem. (things like an
7535                  * e2fsck being done on the RAID array should execute fast)
7536                  */
7537                 cond_resched();
7538
7539                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7540                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7541
7542                 if (currspeed > speed_min(mddev)) {
7543                         if ((currspeed > speed_max(mddev)) ||
7544                                         !is_mddev_idle(mddev, 0)) {
7545                                 msleep(500);
7546                                 goto repeat;
7547                         }
7548                 }
7549         }
7550         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7551         /*
7552          * this also signals 'finished resyncing' to md_stop
7553          */
7554  out:
7555         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7556
7557         /* tell personality that we are finished */
7558         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7559
7560         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7561             mddev->curr_resync > 2) {
7562                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7563                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7564                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7565                                         printk(KERN_INFO
7566                                                "md: checkpointing %s of %s.\n",
7567                                                desc, mdname(mddev));
7568                                         mddev->recovery_cp =
7569                                                 mddev->curr_resync_completed;
7570                                 }
7571                         } else
7572                                 mddev->recovery_cp = MaxSector;
7573                 } else {
7574                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7575                                 mddev->curr_resync = MaxSector;
7576                         rcu_read_lock();
7577                         rdev_for_each_rcu(rdev, mddev)
7578                                 if (rdev->raid_disk >= 0 &&
7579                                     mddev->delta_disks >= 0 &&
7580                                     !test_bit(Faulty, &rdev->flags) &&
7581                                     !test_bit(In_sync, &rdev->flags) &&
7582                                     rdev->recovery_offset < mddev->curr_resync)
7583                                         rdev->recovery_offset = mddev->curr_resync;
7584                         rcu_read_unlock();
7585                 }
7586         }
7587  skip:
7588         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7589
7590         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7591                 /* We completed so min/max setting can be forgotten if used. */
7592                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7593                         mddev->resync_min = 0;
7594                 mddev->resync_max = MaxSector;
7595         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7596                 mddev->resync_min = mddev->curr_resync_completed;
7597         mddev->curr_resync = 0;
7598         wake_up(&resync_wait);
7599         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7600         md_wakeup_thread(mddev->thread);
7601         return;
7602
7603  interrupted:
7604         /*
7605          * got a signal, exit.
7606          */
7607         printk(KERN_INFO
7608                "md: md_do_sync() got signal ... exiting\n");
7609         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7610         goto out;
7611
7612 }
7613 EXPORT_SYMBOL_GPL(md_do_sync);
7614
7615 static int remove_and_add_spares(struct mddev *mddev)
7616 {
7617         struct md_rdev *rdev;
7618         int spares = 0;
7619         int removed = 0;
7620
7621         mddev->curr_resync_completed = 0;
7622
7623         rdev_for_each(rdev, mddev)
7624                 if (rdev->raid_disk >= 0 &&
7625                     !test_bit(Blocked, &rdev->flags) &&
7626                     (test_bit(Faulty, &rdev->flags) ||
7627                      ! test_bit(In_sync, &rdev->flags)) &&
7628                     atomic_read(&rdev->nr_pending)==0) {
7629                         if (mddev->pers->hot_remove_disk(
7630                                     mddev, rdev) == 0) {
7631                                 sysfs_unlink_rdev(mddev, rdev);
7632                                 rdev->raid_disk = -1;
7633                                 removed++;
7634                         }
7635                 }
7636         if (removed)
7637                 sysfs_notify(&mddev->kobj, NULL,
7638                              "degraded");
7639
7640
7641         rdev_for_each(rdev, mddev) {
7642                 if (rdev->raid_disk >= 0 &&
7643                     !test_bit(In_sync, &rdev->flags) &&
7644                     !test_bit(Faulty, &rdev->flags))
7645                         spares++;
7646                 if (rdev->raid_disk < 0
7647                     && !test_bit(Faulty, &rdev->flags)) {
7648                         rdev->recovery_offset = 0;
7649                         if (mddev->pers->
7650                             hot_add_disk(mddev, rdev) == 0) {
7651                                 if (sysfs_link_rdev(mddev, rdev))
7652                                         /* failure here is OK */;
7653                                 spares++;
7654                                 md_new_event(mddev);
7655                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7656                         }
7657                 }
7658         }
7659         return spares;
7660 }
7661
7662 static void reap_sync_thread(struct mddev *mddev)
7663 {
7664         struct md_rdev *rdev;
7665
7666         /* resync has finished, collect result */
7667         md_unregister_thread(&mddev->sync_thread);
7668         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7669             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7670                 /* success...*/
7671                 /* activate any spares */
7672                 if (mddev->pers->spare_active(mddev))
7673                         sysfs_notify(&mddev->kobj, NULL,
7674                                      "degraded");
7675         }
7676         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7677             mddev->pers->finish_reshape)
7678                 mddev->pers->finish_reshape(mddev);
7679
7680         /* If array is no-longer degraded, then any saved_raid_disk
7681          * information must be scrapped.  Also if any device is now
7682          * In_sync we must scrape the saved_raid_disk for that device
7683          * do the superblock for an incrementally recovered device
7684          * written out.
7685          */
7686         rdev_for_each(rdev, mddev)
7687                 if (!mddev->degraded ||
7688                     test_bit(In_sync, &rdev->flags))
7689                         rdev->saved_raid_disk = -1;
7690
7691         md_update_sb(mddev, 1);
7692         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7693         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7694         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7695         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7696         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7697         /* flag recovery needed just to double check */
7698         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7699         sysfs_notify_dirent_safe(mddev->sysfs_action);
7700         md_new_event(mddev);
7701         if (mddev->event_work.func)
7702                 queue_work(md_misc_wq, &mddev->event_work);
7703 }
7704
7705 /*
7706  * This routine is regularly called by all per-raid-array threads to
7707  * deal with generic issues like resync and super-block update.
7708  * Raid personalities that don't have a thread (linear/raid0) do not
7709  * need this as they never do any recovery or update the superblock.
7710  *
7711  * It does not do any resync itself, but rather "forks" off other threads
7712  * to do that as needed.
7713  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7714  * "->recovery" and create a thread at ->sync_thread.
7715  * When the thread finishes it sets MD_RECOVERY_DONE
7716  * and wakeups up this thread which will reap the thread and finish up.
7717  * This thread also removes any faulty devices (with nr_pending == 0).
7718  *
7719  * The overall approach is:
7720  *  1/ if the superblock needs updating, update it.
7721  *  2/ If a recovery thread is running, don't do anything else.
7722  *  3/ If recovery has finished, clean up, possibly marking spares active.
7723  *  4/ If there are any faulty devices, remove them.
7724  *  5/ If array is degraded, try to add spares devices
7725  *  6/ If array has spares or is not in-sync, start a resync thread.
7726  */
7727 void md_check_recovery(struct mddev *mddev)
7728 {
7729         if (mddev->suspended)
7730                 return;
7731
7732         if (mddev->bitmap)
7733                 bitmap_daemon_work(mddev);
7734
7735         if (signal_pending(current)) {
7736                 if (mddev->pers->sync_request && !mddev->external) {
7737                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7738                                mdname(mddev));
7739                         mddev->safemode = 2;
7740                 }
7741                 flush_signals(current);
7742         }
7743
7744         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7745                 return;
7746         if ( ! (
7747                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7748                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7749                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7750                 (mddev->external == 0 && mddev->safemode == 1) ||
7751                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7752                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7753                 ))
7754                 return;
7755
7756         if (mddev_trylock(mddev)) {
7757                 int spares = 0;
7758
7759                 if (mddev->ro) {
7760                         /* Only thing we do on a ro array is remove
7761                          * failed devices.
7762                          */
7763                         struct md_rdev *rdev;
7764                         rdev_for_each(rdev, mddev)
7765                                 if (rdev->raid_disk >= 0 &&
7766                                     !test_bit(Blocked, &rdev->flags) &&
7767                                     test_bit(Faulty, &rdev->flags) &&
7768                                     atomic_read(&rdev->nr_pending)==0) {
7769                                         if (mddev->pers->hot_remove_disk(
7770                                                     mddev, rdev) == 0) {
7771                                                 sysfs_unlink_rdev(mddev, rdev);
7772                                                 rdev->raid_disk = -1;
7773                                         }
7774                                 }
7775                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7776                         goto unlock;
7777                 }
7778
7779                 if (!mddev->external) {
7780                         int did_change = 0;
7781                         spin_lock_irq(&mddev->write_lock);
7782                         if (mddev->safemode &&
7783                             !atomic_read(&mddev->writes_pending) &&
7784                             !mddev->in_sync &&
7785                             mddev->recovery_cp == MaxSector) {
7786                                 mddev->in_sync = 1;
7787                                 did_change = 1;
7788                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7789                         }
7790                         if (mddev->safemode == 1)
7791                                 mddev->safemode = 0;
7792                         spin_unlock_irq(&mddev->write_lock);
7793                         if (did_change)
7794                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7795                 }
7796
7797                 if (mddev->flags)
7798                         md_update_sb(mddev, 0);
7799
7800                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7801                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7802                         /* resync/recovery still happening */
7803                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7804                         goto unlock;
7805                 }
7806                 if (mddev->sync_thread) {
7807                         reap_sync_thread(mddev);
7808                         goto unlock;
7809                 }
7810                 /* Set RUNNING before clearing NEEDED to avoid
7811                  * any transients in the value of "sync_action".
7812                  */
7813                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7814                 /* Clear some bits that don't mean anything, but
7815                  * might be left set
7816                  */
7817                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7818                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7819
7820                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7821                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7822                         goto unlock;
7823                 /* no recovery is running.
7824                  * remove any failed drives, then
7825                  * add spares if possible.
7826                  * Spare are also removed and re-added, to allow
7827                  * the personality to fail the re-add.
7828                  */
7829
7830                 if (mddev->reshape_position != MaxSector) {
7831                         if (mddev->pers->check_reshape == NULL ||
7832                             mddev->pers->check_reshape(mddev) != 0)
7833                                 /* Cannot proceed */
7834                                 goto unlock;
7835                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7836                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7837                 } else if ((spares = remove_and_add_spares(mddev))) {
7838                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7839                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7840                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7841                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7842                 } else if (mddev->recovery_cp < MaxSector) {
7843                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7844                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7845                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7846                         /* nothing to be done ... */
7847                         goto unlock;
7848
7849                 if (mddev->pers->sync_request) {
7850                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7851                                 /* We are adding a device or devices to an array
7852                                  * which has the bitmap stored on all devices.
7853                                  * So make sure all bitmap pages get written
7854                                  */
7855                                 bitmap_write_all(mddev->bitmap);
7856                         }
7857                         mddev->sync_thread = md_register_thread(md_do_sync,
7858                                                                 mddev,
7859                                                                 "resync");
7860                         if (!mddev->sync_thread) {
7861                                 printk(KERN_ERR "%s: could not start resync"
7862                                         " thread...\n", 
7863                                         mdname(mddev));
7864                                 /* leave the spares where they are, it shouldn't hurt */
7865                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7866                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7867                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7868                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7869                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7870                         } else
7871                                 md_wakeup_thread(mddev->sync_thread);
7872                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7873                         md_new_event(mddev);
7874                 }
7875         unlock:
7876                 if (!mddev->sync_thread) {
7877                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7878                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7879                                                &mddev->recovery))
7880                                 if (mddev->sysfs_action)
7881                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7882                 }
7883                 mddev_unlock(mddev);
7884         }
7885 }
7886
7887 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7888 {
7889         sysfs_notify_dirent_safe(rdev->sysfs_state);
7890         wait_event_timeout(rdev->blocked_wait,
7891                            !test_bit(Blocked, &rdev->flags) &&
7892                            !test_bit(BlockedBadBlocks, &rdev->flags),
7893                            msecs_to_jiffies(5000));
7894         rdev_dec_pending(rdev, mddev);
7895 }
7896 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7897
7898 void md_finish_reshape(struct mddev *mddev)
7899 {
7900         /* called be personality module when reshape completes. */
7901         struct md_rdev *rdev;
7902
7903         rdev_for_each(rdev, mddev) {
7904                 if (rdev->data_offset > rdev->new_data_offset)
7905                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7906                 else
7907                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7908                 rdev->data_offset = rdev->new_data_offset;
7909         }
7910 }
7911 EXPORT_SYMBOL(md_finish_reshape);
7912
7913 /* Bad block management.
7914  * We can record which blocks on each device are 'bad' and so just
7915  * fail those blocks, or that stripe, rather than the whole device.
7916  * Entries in the bad-block table are 64bits wide.  This comprises:
7917  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7918  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7919  *  A 'shift' can be set so that larger blocks are tracked and
7920  *  consequently larger devices can be covered.
7921  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7922  *
7923  * Locking of the bad-block table uses a seqlock so md_is_badblock
7924  * might need to retry if it is very unlucky.
7925  * We will sometimes want to check for bad blocks in a bi_end_io function,
7926  * so we use the write_seqlock_irq variant.
7927  *
7928  * When looking for a bad block we specify a range and want to
7929  * know if any block in the range is bad.  So we binary-search
7930  * to the last range that starts at-or-before the given endpoint,
7931  * (or "before the sector after the target range")
7932  * then see if it ends after the given start.
7933  * We return
7934  *  0 if there are no known bad blocks in the range
7935  *  1 if there are known bad block which are all acknowledged
7936  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7937  * plus the start/length of the first bad section we overlap.
7938  */
7939 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7940                    sector_t *first_bad, int *bad_sectors)
7941 {
7942         int hi;
7943         int lo = 0;
7944         u64 *p = bb->page;
7945         int rv = 0;
7946         sector_t target = s + sectors;
7947         unsigned seq;
7948
7949         if (bb->shift > 0) {
7950                 /* round the start down, and the end up */
7951                 s >>= bb->shift;
7952                 target += (1<<bb->shift) - 1;
7953                 target >>= bb->shift;
7954                 sectors = target - s;
7955         }
7956         /* 'target' is now the first block after the bad range */
7957
7958 retry:
7959         seq = read_seqbegin(&bb->lock);
7960
7961         hi = bb->count;
7962
7963         /* Binary search between lo and hi for 'target'
7964          * i.e. for the last range that starts before 'target'
7965          */
7966         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7967          * are known not to be the last range before target.
7968          * VARIANT: hi-lo is the number of possible
7969          * ranges, and decreases until it reaches 1
7970          */
7971         while (hi - lo > 1) {
7972                 int mid = (lo + hi) / 2;
7973                 sector_t a = BB_OFFSET(p[mid]);
7974                 if (a < target)
7975                         /* This could still be the one, earlier ranges
7976                          * could not. */
7977                         lo = mid;
7978                 else
7979                         /* This and later ranges are definitely out. */
7980                         hi = mid;
7981         }
7982         /* 'lo' might be the last that started before target, but 'hi' isn't */
7983         if (hi > lo) {
7984                 /* need to check all range that end after 's' to see if
7985                  * any are unacknowledged.
7986                  */
7987                 while (lo >= 0 &&
7988                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7989                         if (BB_OFFSET(p[lo]) < target) {
7990                                 /* starts before the end, and finishes after
7991                                  * the start, so they must overlap
7992                                  */
7993                                 if (rv != -1 && BB_ACK(p[lo]))
7994                                         rv = 1;
7995                                 else
7996                                         rv = -1;
7997                                 *first_bad = BB_OFFSET(p[lo]);
7998                                 *bad_sectors = BB_LEN(p[lo]);
7999                         }
8000                         lo--;
8001                 }
8002         }
8003
8004         if (read_seqretry(&bb->lock, seq))
8005                 goto retry;
8006
8007         return rv;
8008 }
8009 EXPORT_SYMBOL_GPL(md_is_badblock);
8010
8011 /*
8012  * Add a range of bad blocks to the table.
8013  * This might extend the table, or might contract it
8014  * if two adjacent ranges can be merged.
8015  * We binary-search to find the 'insertion' point, then
8016  * decide how best to handle it.
8017  */
8018 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8019                             int acknowledged)
8020 {
8021         u64 *p;
8022         int lo, hi;
8023         int rv = 1;
8024
8025         if (bb->shift < 0)
8026                 /* badblocks are disabled */
8027                 return 0;
8028
8029         if (bb->shift) {
8030                 /* round the start down, and the end up */
8031                 sector_t next = s + sectors;
8032                 s >>= bb->shift;
8033                 next += (1<<bb->shift) - 1;
8034                 next >>= bb->shift;
8035                 sectors = next - s;
8036         }
8037
8038         write_seqlock_irq(&bb->lock);
8039
8040         p = bb->page;
8041         lo = 0;
8042         hi = bb->count;
8043         /* Find the last range that starts at-or-before 's' */
8044         while (hi - lo > 1) {
8045                 int mid = (lo + hi) / 2;
8046                 sector_t a = BB_OFFSET(p[mid]);
8047                 if (a <= s)
8048                         lo = mid;
8049                 else
8050                         hi = mid;
8051         }
8052         if (hi > lo && BB_OFFSET(p[lo]) > s)
8053                 hi = lo;
8054
8055         if (hi > lo) {
8056                 /* we found a range that might merge with the start
8057                  * of our new range
8058                  */
8059                 sector_t a = BB_OFFSET(p[lo]);
8060                 sector_t e = a + BB_LEN(p[lo]);
8061                 int ack = BB_ACK(p[lo]);
8062                 if (e >= s) {
8063                         /* Yes, we can merge with a previous range */
8064                         if (s == a && s + sectors >= e)
8065                                 /* new range covers old */
8066                                 ack = acknowledged;
8067                         else
8068                                 ack = ack && acknowledged;
8069
8070                         if (e < s + sectors)
8071                                 e = s + sectors;
8072                         if (e - a <= BB_MAX_LEN) {
8073                                 p[lo] = BB_MAKE(a, e-a, ack);
8074                                 s = e;
8075                         } else {
8076                                 /* does not all fit in one range,
8077                                  * make p[lo] maximal
8078                                  */
8079                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8080                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8081                                 s = a + BB_MAX_LEN;
8082                         }
8083                         sectors = e - s;
8084                 }
8085         }
8086         if (sectors && hi < bb->count) {
8087                 /* 'hi' points to the first range that starts after 's'.
8088                  * Maybe we can merge with the start of that range */
8089                 sector_t a = BB_OFFSET(p[hi]);
8090                 sector_t e = a + BB_LEN(p[hi]);
8091                 int ack = BB_ACK(p[hi]);
8092                 if (a <= s + sectors) {
8093                         /* merging is possible */
8094                         if (e <= s + sectors) {
8095                                 /* full overlap */
8096                                 e = s + sectors;
8097                                 ack = acknowledged;
8098                         } else
8099                                 ack = ack && acknowledged;
8100
8101                         a = s;
8102                         if (e - a <= BB_MAX_LEN) {
8103                                 p[hi] = BB_MAKE(a, e-a, ack);
8104                                 s = e;
8105                         } else {
8106                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8107                                 s = a + BB_MAX_LEN;
8108                         }
8109                         sectors = e - s;
8110                         lo = hi;
8111                         hi++;
8112                 }
8113         }
8114         if (sectors == 0 && hi < bb->count) {
8115                 /* we might be able to combine lo and hi */
8116                 /* Note: 's' is at the end of 'lo' */
8117                 sector_t a = BB_OFFSET(p[hi]);
8118                 int lolen = BB_LEN(p[lo]);
8119                 int hilen = BB_LEN(p[hi]);
8120                 int newlen = lolen + hilen - (s - a);
8121                 if (s >= a && newlen < BB_MAX_LEN) {
8122                         /* yes, we can combine them */
8123                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8124                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8125                         memmove(p + hi, p + hi + 1,
8126                                 (bb->count - hi - 1) * 8);
8127                         bb->count--;
8128                 }
8129         }
8130         while (sectors) {
8131                 /* didn't merge (it all).
8132                  * Need to add a range just before 'hi' */
8133                 if (bb->count >= MD_MAX_BADBLOCKS) {
8134                         /* No room for more */
8135                         rv = 0;
8136                         break;
8137                 } else {
8138                         int this_sectors = sectors;
8139                         memmove(p + hi + 1, p + hi,
8140                                 (bb->count - hi) * 8);
8141                         bb->count++;
8142
8143                         if (this_sectors > BB_MAX_LEN)
8144                                 this_sectors = BB_MAX_LEN;
8145                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8146                         sectors -= this_sectors;
8147                         s += this_sectors;
8148                 }
8149         }
8150
8151         bb->changed = 1;
8152         if (!acknowledged)
8153                 bb->unacked_exist = 1;
8154         write_sequnlock_irq(&bb->lock);
8155
8156         return rv;
8157 }
8158
8159 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8160                        int is_new)
8161 {
8162         int rv;
8163         if (is_new)
8164                 s += rdev->new_data_offset;
8165         else
8166                 s += rdev->data_offset;
8167         rv = md_set_badblocks(&rdev->badblocks,
8168                               s, sectors, 0);
8169         if (rv) {
8170                 /* Make sure they get written out promptly */
8171                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8172                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8173                 md_wakeup_thread(rdev->mddev->thread);
8174         }
8175         return rv;
8176 }
8177 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8178
8179 /*
8180  * Remove a range of bad blocks from the table.
8181  * This may involve extending the table if we spilt a region,
8182  * but it must not fail.  So if the table becomes full, we just
8183  * drop the remove request.
8184  */
8185 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8186 {
8187         u64 *p;
8188         int lo, hi;
8189         sector_t target = s + sectors;
8190         int rv = 0;
8191
8192         if (bb->shift > 0) {
8193                 /* When clearing we round the start up and the end down.
8194                  * This should not matter as the shift should align with
8195                  * the block size and no rounding should ever be needed.
8196                  * However it is better the think a block is bad when it
8197                  * isn't than to think a block is not bad when it is.
8198                  */
8199                 s += (1<<bb->shift) - 1;
8200                 s >>= bb->shift;
8201                 target >>= bb->shift;
8202                 sectors = target - s;
8203         }
8204
8205         write_seqlock_irq(&bb->lock);
8206
8207         p = bb->page;
8208         lo = 0;
8209         hi = bb->count;
8210         /* Find the last range that starts before 'target' */
8211         while (hi - lo > 1) {
8212                 int mid = (lo + hi) / 2;
8213                 sector_t a = BB_OFFSET(p[mid]);
8214                 if (a < target)
8215                         lo = mid;
8216                 else
8217                         hi = mid;
8218         }
8219         if (hi > lo) {
8220                 /* p[lo] is the last range that could overlap the
8221                  * current range.  Earlier ranges could also overlap,
8222                  * but only this one can overlap the end of the range.
8223                  */
8224                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8225                         /* Partial overlap, leave the tail of this range */
8226                         int ack = BB_ACK(p[lo]);
8227                         sector_t a = BB_OFFSET(p[lo]);
8228                         sector_t end = a + BB_LEN(p[lo]);
8229
8230                         if (a < s) {
8231                                 /* we need to split this range */
8232                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8233                                         rv = 0;
8234                                         goto out;
8235                                 }
8236                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8237                                 bb->count++;
8238                                 p[lo] = BB_MAKE(a, s-a, ack);
8239                                 lo++;
8240                         }
8241                         p[lo] = BB_MAKE(target, end - target, ack);
8242                         /* there is no longer an overlap */
8243                         hi = lo;
8244                         lo--;
8245                 }
8246                 while (lo >= 0 &&
8247                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8248                         /* This range does overlap */
8249                         if (BB_OFFSET(p[lo]) < s) {
8250                                 /* Keep the early parts of this range. */
8251                                 int ack = BB_ACK(p[lo]);
8252                                 sector_t start = BB_OFFSET(p[lo]);
8253                                 p[lo] = BB_MAKE(start, s - start, ack);
8254                                 /* now low doesn't overlap, so.. */
8255                                 break;
8256                         }
8257                         lo--;
8258                 }
8259                 /* 'lo' is strictly before, 'hi' is strictly after,
8260                  * anything between needs to be discarded
8261                  */
8262                 if (hi - lo > 1) {
8263                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8264                         bb->count -= (hi - lo - 1);
8265                 }
8266         }
8267
8268         bb->changed = 1;
8269 out:
8270         write_sequnlock_irq(&bb->lock);
8271         return rv;
8272 }
8273
8274 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8275                          int is_new)
8276 {
8277         if (is_new)
8278                 s += rdev->new_data_offset;
8279         else
8280                 s += rdev->data_offset;
8281         return md_clear_badblocks(&rdev->badblocks,
8282                                   s, sectors);
8283 }
8284 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8285
8286 /*
8287  * Acknowledge all bad blocks in a list.
8288  * This only succeeds if ->changed is clear.  It is used by
8289  * in-kernel metadata updates
8290  */
8291 void md_ack_all_badblocks(struct badblocks *bb)
8292 {
8293         if (bb->page == NULL || bb->changed)
8294                 /* no point even trying */
8295                 return;
8296         write_seqlock_irq(&bb->lock);
8297
8298         if (bb->changed == 0 && bb->unacked_exist) {
8299                 u64 *p = bb->page;
8300                 int i;
8301                 for (i = 0; i < bb->count ; i++) {
8302                         if (!BB_ACK(p[i])) {
8303                                 sector_t start = BB_OFFSET(p[i]);
8304                                 int len = BB_LEN(p[i]);
8305                                 p[i] = BB_MAKE(start, len, 1);
8306                         }
8307                 }
8308                 bb->unacked_exist = 0;
8309         }
8310         write_sequnlock_irq(&bb->lock);
8311 }
8312 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8313
8314 /* sysfs access to bad-blocks list.
8315  * We present two files.
8316  * 'bad-blocks' lists sector numbers and lengths of ranges that
8317  *    are recorded as bad.  The list is truncated to fit within
8318  *    the one-page limit of sysfs.
8319  *    Writing "sector length" to this file adds an acknowledged
8320  *    bad block list.
8321  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8322  *    been acknowledged.  Writing to this file adds bad blocks
8323  *    without acknowledging them.  This is largely for testing.
8324  */
8325
8326 static ssize_t
8327 badblocks_show(struct badblocks *bb, char *page, int unack)
8328 {
8329         size_t len;
8330         int i;
8331         u64 *p = bb->page;
8332         unsigned seq;
8333
8334         if (bb->shift < 0)
8335                 return 0;
8336
8337 retry:
8338         seq = read_seqbegin(&bb->lock);
8339
8340         len = 0;
8341         i = 0;
8342
8343         while (len < PAGE_SIZE && i < bb->count) {
8344                 sector_t s = BB_OFFSET(p[i]);
8345                 unsigned int length = BB_LEN(p[i]);
8346                 int ack = BB_ACK(p[i]);
8347                 i++;
8348
8349                 if (unack && ack)
8350                         continue;
8351
8352                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8353                                 (unsigned long long)s << bb->shift,
8354                                 length << bb->shift);
8355         }
8356         if (unack && len == 0)
8357                 bb->unacked_exist = 0;
8358
8359         if (read_seqretry(&bb->lock, seq))
8360                 goto retry;
8361
8362         return len;
8363 }
8364
8365 #define DO_DEBUG 1
8366
8367 static ssize_t
8368 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8369 {
8370         unsigned long long sector;
8371         int length;
8372         char newline;
8373 #ifdef DO_DEBUG
8374         /* Allow clearing via sysfs *only* for testing/debugging.
8375          * Normally only a successful write may clear a badblock
8376          */
8377         int clear = 0;
8378         if (page[0] == '-') {
8379                 clear = 1;
8380                 page++;
8381         }
8382 #endif /* DO_DEBUG */
8383
8384         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8385         case 3:
8386                 if (newline != '\n')
8387                         return -EINVAL;
8388         case 2:
8389                 if (length <= 0)
8390                         return -EINVAL;
8391                 break;
8392         default:
8393                 return -EINVAL;
8394         }
8395
8396 #ifdef DO_DEBUG
8397         if (clear) {
8398                 md_clear_badblocks(bb, sector, length);
8399                 return len;
8400         }
8401 #endif /* DO_DEBUG */
8402         if (md_set_badblocks(bb, sector, length, !unack))
8403                 return len;
8404         else
8405                 return -ENOSPC;
8406 }
8407
8408 static int md_notify_reboot(struct notifier_block *this,
8409                             unsigned long code, void *x)
8410 {
8411         struct list_head *tmp;
8412         struct mddev *mddev;
8413         int need_delay = 0;
8414
8415         for_each_mddev(mddev, tmp) {
8416                 if (mddev_trylock(mddev)) {
8417                         if (mddev->pers)
8418                                 __md_stop_writes(mddev);
8419                         mddev->safemode = 2;
8420                         mddev_unlock(mddev);
8421                 }
8422                 need_delay = 1;
8423         }
8424         /*
8425          * certain more exotic SCSI devices are known to be
8426          * volatile wrt too early system reboots. While the
8427          * right place to handle this issue is the given
8428          * driver, we do want to have a safe RAID driver ...
8429          */
8430         if (need_delay)
8431                 mdelay(1000*1);
8432
8433         return NOTIFY_DONE;
8434 }
8435
8436 static struct notifier_block md_notifier = {
8437         .notifier_call  = md_notify_reboot,
8438         .next           = NULL,
8439         .priority       = INT_MAX, /* before any real devices */
8440 };
8441
8442 static void md_geninit(void)
8443 {
8444         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8445
8446         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8447 }
8448
8449 static int __init md_init(void)
8450 {
8451         int ret = -ENOMEM;
8452
8453         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8454         if (!md_wq)
8455                 goto err_wq;
8456
8457         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8458         if (!md_misc_wq)
8459                 goto err_misc_wq;
8460
8461         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8462                 goto err_md;
8463
8464         if ((ret = register_blkdev(0, "mdp")) < 0)
8465                 goto err_mdp;
8466         mdp_major = ret;
8467
8468         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8469                             md_probe, NULL, NULL);
8470         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8471                             md_probe, NULL, NULL);
8472
8473         register_reboot_notifier(&md_notifier);
8474         raid_table_header = register_sysctl_table(raid_root_table);
8475
8476         md_geninit();
8477         return 0;
8478
8479 err_mdp:
8480         unregister_blkdev(MD_MAJOR, "md");
8481 err_md:
8482         destroy_workqueue(md_misc_wq);
8483 err_misc_wq:
8484         destroy_workqueue(md_wq);
8485 err_wq:
8486         return ret;
8487 }
8488
8489 #ifndef MODULE
8490
8491 /*
8492  * Searches all registered partitions for autorun RAID arrays
8493  * at boot time.
8494  */
8495
8496 static LIST_HEAD(all_detected_devices);
8497 struct detected_devices_node {
8498         struct list_head list;
8499         dev_t dev;
8500 };
8501
8502 void md_autodetect_dev(dev_t dev)
8503 {
8504         struct detected_devices_node *node_detected_dev;
8505
8506         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8507         if (node_detected_dev) {
8508                 node_detected_dev->dev = dev;
8509                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8510         } else {
8511                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8512                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8513         }
8514 }
8515
8516
8517 static void autostart_arrays(int part)
8518 {
8519         struct md_rdev *rdev;
8520         struct detected_devices_node *node_detected_dev;
8521         dev_t dev;
8522         int i_scanned, i_passed;
8523
8524         i_scanned = 0;
8525         i_passed = 0;
8526
8527         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8528
8529         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8530                 i_scanned++;
8531                 node_detected_dev = list_entry(all_detected_devices.next,
8532                                         struct detected_devices_node, list);
8533                 list_del(&node_detected_dev->list);
8534                 dev = node_detected_dev->dev;
8535                 kfree(node_detected_dev);
8536                 rdev = md_import_device(dev,0, 90);
8537                 if (IS_ERR(rdev))
8538                         continue;
8539
8540                 if (test_bit(Faulty, &rdev->flags)) {
8541                         MD_BUG();
8542                         continue;
8543                 }
8544                 set_bit(AutoDetected, &rdev->flags);
8545                 list_add(&rdev->same_set, &pending_raid_disks);
8546                 i_passed++;
8547         }
8548
8549         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8550                                                 i_scanned, i_passed);
8551
8552         autorun_devices(part);
8553 }
8554
8555 #endif /* !MODULE */
8556
8557 static __exit void md_exit(void)
8558 {
8559         struct mddev *mddev;
8560         struct list_head *tmp;
8561
8562         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8563         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8564
8565         unregister_blkdev(MD_MAJOR,"md");
8566         unregister_blkdev(mdp_major, "mdp");
8567         unregister_reboot_notifier(&md_notifier);
8568         unregister_sysctl_table(raid_table_header);
8569         remove_proc_entry("mdstat", NULL);
8570         for_each_mddev(mddev, tmp) {
8571                 export_array(mddev);
8572                 mddev->hold_active = 0;
8573         }
8574         destroy_workqueue(md_misc_wq);
8575         destroy_workqueue(md_wq);
8576 }
8577
8578 subsys_initcall(md_init);
8579 module_exit(md_exit)
8580
8581 static int get_ro(char *buffer, struct kernel_param *kp)
8582 {
8583         return sprintf(buffer, "%d", start_readonly);
8584 }
8585 static int set_ro(const char *val, struct kernel_param *kp)
8586 {
8587         char *e;
8588         int num = simple_strtoul(val, &e, 10);
8589         if (*val && (*e == '\0' || *e == '\n')) {
8590                 start_readonly = num;
8591                 return 0;
8592         }
8593         return -EINVAL;
8594 }
8595
8596 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8597 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8598
8599 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8600
8601 EXPORT_SYMBOL(register_md_personality);
8602 EXPORT_SYMBOL(unregister_md_personality);
8603 EXPORT_SYMBOL(md_error);
8604 EXPORT_SYMBOL(md_done_sync);
8605 EXPORT_SYMBOL(md_write_start);
8606 EXPORT_SYMBOL(md_write_end);
8607 EXPORT_SYMBOL(md_register_thread);
8608 EXPORT_SYMBOL(md_unregister_thread);
8609 EXPORT_SYMBOL(md_wakeup_thread);
8610 EXPORT_SYMBOL(md_check_recovery);
8611 MODULE_LICENSE("GPL");
8612 MODULE_DESCRIPTION("MD RAID framework");
8613 MODULE_ALIAS("md");
8614 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);