blk: centralize non-request unplug handling.
[pandora-kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389         BUG_ON(mddev->suspended);
390         mddev->suspended = 1;
391         synchronize_rcu();
392         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393         mddev->pers->quiesce(mddev, 1);
394
395         del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(struct mddev *mddev)
400 {
401         mddev->suspended = 0;
402         wake_up(&mddev->sb_wait);
403         mddev->pers->quiesce(mddev, 0);
404
405         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
406         md_wakeup_thread(mddev->thread);
407         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413         return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418  * Generic flush handling for md
419  */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423         struct md_rdev *rdev = bio->bi_private;
424         struct mddev *mddev = rdev->mddev;
425
426         rdev_dec_pending(rdev, mddev);
427
428         if (atomic_dec_and_test(&mddev->flush_pending)) {
429                 /* The pre-request flush has finished */
430                 queue_work(md_wq, &mddev->flush_work);
431         }
432         bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct md_rdev *rdev;
441
442         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443         atomic_set(&mddev->flush_pending, 1);
444         rcu_read_lock();
445         rdev_for_each_rcu(rdev, mddev)
446                 if (rdev->raid_disk >= 0 &&
447                     !test_bit(Faulty, &rdev->flags)) {
448                         /* Take two references, one is dropped
449                          * when request finishes, one after
450                          * we reclaim rcu_read_lock
451                          */
452                         struct bio *bi;
453                         atomic_inc(&rdev->nr_pending);
454                         atomic_inc(&rdev->nr_pending);
455                         rcu_read_unlock();
456                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457                         bi->bi_end_io = md_end_flush;
458                         bi->bi_private = rdev;
459                         bi->bi_bdev = rdev->bdev;
460                         atomic_inc(&mddev->flush_pending);
461                         submit_bio(WRITE_FLUSH, bi);
462                         rcu_read_lock();
463                         rdev_dec_pending(rdev, mddev);
464                 }
465         rcu_read_unlock();
466         if (atomic_dec_and_test(&mddev->flush_pending))
467                 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473         struct bio *bio = mddev->flush_bio;
474
475         if (bio->bi_size == 0)
476                 /* an empty barrier - all done */
477                 bio_endio(bio, 0);
478         else {
479                 bio->bi_rw &= ~REQ_FLUSH;
480                 mddev->pers->make_request(mddev, bio);
481         }
482
483         mddev->flush_bio = NULL;
484         wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 {
489         spin_lock_irq(&mddev->write_lock);
490         wait_event_lock_irq(mddev->sb_wait,
491                             !mddev->flush_bio,
492                             mddev->write_lock, /*nothing*/);
493         mddev->flush_bio = bio;
494         spin_unlock_irq(&mddev->write_lock);
495
496         INIT_WORK(&mddev->flush_work, submit_flushes);
497         queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 void md_unplug(struct blk_plug_cb *cb)
502 {
503         struct mddev *mddev = cb->data;
504         md_wakeup_thread(mddev->thread);
505         kfree(cb);
506 }
507 EXPORT_SYMBOL(md_unplug);
508
509 static inline struct mddev *mddev_get(struct mddev *mddev)
510 {
511         atomic_inc(&mddev->active);
512         return mddev;
513 }
514
515 static void mddev_delayed_delete(struct work_struct *ws);
516
517 static void mddev_put(struct mddev *mddev)
518 {
519         struct bio_set *bs = NULL;
520
521         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
522                 return;
523         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
524             mddev->ctime == 0 && !mddev->hold_active) {
525                 /* Array is not configured at all, and not held active,
526                  * so destroy it */
527                 list_del_init(&mddev->all_mddevs);
528                 bs = mddev->bio_set;
529                 mddev->bio_set = NULL;
530                 if (mddev->gendisk) {
531                         /* We did a probe so need to clean up.  Call
532                          * queue_work inside the spinlock so that
533                          * flush_workqueue() after mddev_find will
534                          * succeed in waiting for the work to be done.
535                          */
536                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
537                         queue_work(md_misc_wq, &mddev->del_work);
538                 } else
539                         kfree(mddev);
540         }
541         spin_unlock(&all_mddevs_lock);
542         if (bs)
543                 bioset_free(bs);
544 }
545
546 void mddev_init(struct mddev *mddev)
547 {
548         mutex_init(&mddev->open_mutex);
549         mutex_init(&mddev->reconfig_mutex);
550         mutex_init(&mddev->bitmap_info.mutex);
551         INIT_LIST_HEAD(&mddev->disks);
552         INIT_LIST_HEAD(&mddev->all_mddevs);
553         init_timer(&mddev->safemode_timer);
554         atomic_set(&mddev->active, 1);
555         atomic_set(&mddev->openers, 0);
556         atomic_set(&mddev->active_io, 0);
557         spin_lock_init(&mddev->write_lock);
558         atomic_set(&mddev->flush_pending, 0);
559         init_waitqueue_head(&mddev->sb_wait);
560         init_waitqueue_head(&mddev->recovery_wait);
561         mddev->reshape_position = MaxSector;
562         mddev->reshape_backwards = 0;
563         mddev->resync_min = 0;
564         mddev->resync_max = MaxSector;
565         mddev->level = LEVEL_NONE;
566 }
567 EXPORT_SYMBOL_GPL(mddev_init);
568
569 static struct mddev * mddev_find(dev_t unit)
570 {
571         struct mddev *mddev, *new = NULL;
572
573         if (unit && MAJOR(unit) != MD_MAJOR)
574                 unit &= ~((1<<MdpMinorShift)-1);
575
576  retry:
577         spin_lock(&all_mddevs_lock);
578
579         if (unit) {
580                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581                         if (mddev->unit == unit) {
582                                 mddev_get(mddev);
583                                 spin_unlock(&all_mddevs_lock);
584                                 kfree(new);
585                                 return mddev;
586                         }
587
588                 if (new) {
589                         list_add(&new->all_mddevs, &all_mddevs);
590                         spin_unlock(&all_mddevs_lock);
591                         new->hold_active = UNTIL_IOCTL;
592                         return new;
593                 }
594         } else if (new) {
595                 /* find an unused unit number */
596                 static int next_minor = 512;
597                 int start = next_minor;
598                 int is_free = 0;
599                 int dev = 0;
600                 while (!is_free) {
601                         dev = MKDEV(MD_MAJOR, next_minor);
602                         next_minor++;
603                         if (next_minor > MINORMASK)
604                                 next_minor = 0;
605                         if (next_minor == start) {
606                                 /* Oh dear, all in use. */
607                                 spin_unlock(&all_mddevs_lock);
608                                 kfree(new);
609                                 return NULL;
610                         }
611                                 
612                         is_free = 1;
613                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
614                                 if (mddev->unit == dev) {
615                                         is_free = 0;
616                                         break;
617                                 }
618                 }
619                 new->unit = dev;
620                 new->md_minor = MINOR(dev);
621                 new->hold_active = UNTIL_STOP;
622                 list_add(&new->all_mddevs, &all_mddevs);
623                 spin_unlock(&all_mddevs_lock);
624                 return new;
625         }
626         spin_unlock(&all_mddevs_lock);
627
628         new = kzalloc(sizeof(*new), GFP_KERNEL);
629         if (!new)
630                 return NULL;
631
632         new->unit = unit;
633         if (MAJOR(unit) == MD_MAJOR)
634                 new->md_minor = MINOR(unit);
635         else
636                 new->md_minor = MINOR(unit) >> MdpMinorShift;
637
638         mddev_init(new);
639
640         goto retry;
641 }
642
643 static inline int mddev_lock(struct mddev * mddev)
644 {
645         return mutex_lock_interruptible(&mddev->reconfig_mutex);
646 }
647
648 static inline int mddev_is_locked(struct mddev *mddev)
649 {
650         return mutex_is_locked(&mddev->reconfig_mutex);
651 }
652
653 static inline int mddev_trylock(struct mddev * mddev)
654 {
655         return mutex_trylock(&mddev->reconfig_mutex);
656 }
657
658 static struct attribute_group md_redundancy_group;
659
660 static void mddev_unlock(struct mddev * mddev)
661 {
662         if (mddev->to_remove) {
663                 /* These cannot be removed under reconfig_mutex as
664                  * an access to the files will try to take reconfig_mutex
665                  * while holding the file unremovable, which leads to
666                  * a deadlock.
667                  * So hold set sysfs_active while the remove in happeing,
668                  * and anything else which might set ->to_remove or my
669                  * otherwise change the sysfs namespace will fail with
670                  * -EBUSY if sysfs_active is still set.
671                  * We set sysfs_active under reconfig_mutex and elsewhere
672                  * test it under the same mutex to ensure its correct value
673                  * is seen.
674                  */
675                 struct attribute_group *to_remove = mddev->to_remove;
676                 mddev->to_remove = NULL;
677                 mddev->sysfs_active = 1;
678                 mutex_unlock(&mddev->reconfig_mutex);
679
680                 if (mddev->kobj.sd) {
681                         if (to_remove != &md_redundancy_group)
682                                 sysfs_remove_group(&mddev->kobj, to_remove);
683                         if (mddev->pers == NULL ||
684                             mddev->pers->sync_request == NULL) {
685                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
686                                 if (mddev->sysfs_action)
687                                         sysfs_put(mddev->sysfs_action);
688                                 mddev->sysfs_action = NULL;
689                         }
690                 }
691                 mddev->sysfs_active = 0;
692         } else
693                 mutex_unlock(&mddev->reconfig_mutex);
694
695         /* As we've dropped the mutex we need a spinlock to
696          * make sure the thread doesn't disappear
697          */
698         spin_lock(&pers_lock);
699         md_wakeup_thread(mddev->thread);
700         spin_unlock(&pers_lock);
701 }
702
703 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
704 {
705         struct md_rdev *rdev;
706
707         rdev_for_each(rdev, mddev)
708                 if (rdev->desc_nr == nr)
709                         return rdev;
710
711         return NULL;
712 }
713
714 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
715 {
716         struct md_rdev *rdev;
717
718         rdev_for_each(rdev, mddev)
719                 if (rdev->bdev->bd_dev == dev)
720                         return rdev;
721
722         return NULL;
723 }
724
725 static struct md_personality *find_pers(int level, char *clevel)
726 {
727         struct md_personality *pers;
728         list_for_each_entry(pers, &pers_list, list) {
729                 if (level != LEVEL_NONE && pers->level == level)
730                         return pers;
731                 if (strcmp(pers->name, clevel)==0)
732                         return pers;
733         }
734         return NULL;
735 }
736
737 /* return the offset of the super block in 512byte sectors */
738 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
739 {
740         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
741         return MD_NEW_SIZE_SECTORS(num_sectors);
742 }
743
744 static int alloc_disk_sb(struct md_rdev * rdev)
745 {
746         if (rdev->sb_page)
747                 MD_BUG();
748
749         rdev->sb_page = alloc_page(GFP_KERNEL);
750         if (!rdev->sb_page) {
751                 printk(KERN_ALERT "md: out of memory.\n");
752                 return -ENOMEM;
753         }
754
755         return 0;
756 }
757
758 void md_rdev_clear(struct md_rdev *rdev)
759 {
760         if (rdev->sb_page) {
761                 put_page(rdev->sb_page);
762                 rdev->sb_loaded = 0;
763                 rdev->sb_page = NULL;
764                 rdev->sb_start = 0;
765                 rdev->sectors = 0;
766         }
767         if (rdev->bb_page) {
768                 put_page(rdev->bb_page);
769                 rdev->bb_page = NULL;
770         }
771         kfree(rdev->badblocks.page);
772         rdev->badblocks.page = NULL;
773 }
774 EXPORT_SYMBOL_GPL(md_rdev_clear);
775
776 static void super_written(struct bio *bio, int error)
777 {
778         struct md_rdev *rdev = bio->bi_private;
779         struct mddev *mddev = rdev->mddev;
780
781         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
782                 printk("md: super_written gets error=%d, uptodate=%d\n",
783                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
784                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
785                 md_error(mddev, rdev);
786         }
787
788         if (atomic_dec_and_test(&mddev->pending_writes))
789                 wake_up(&mddev->sb_wait);
790         bio_put(bio);
791 }
792
793 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
794                    sector_t sector, int size, struct page *page)
795 {
796         /* write first size bytes of page to sector of rdev
797          * Increment mddev->pending_writes before returning
798          * and decrement it on completion, waking up sb_wait
799          * if zero is reached.
800          * If an error occurred, call md_error
801          */
802         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
803
804         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
805         bio->bi_sector = sector;
806         bio_add_page(bio, page, size, 0);
807         bio->bi_private = rdev;
808         bio->bi_end_io = super_written;
809
810         atomic_inc(&mddev->pending_writes);
811         submit_bio(WRITE_FLUSH_FUA, bio);
812 }
813
814 void md_super_wait(struct mddev *mddev)
815 {
816         /* wait for all superblock writes that were scheduled to complete */
817         DEFINE_WAIT(wq);
818         for(;;) {
819                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
820                 if (atomic_read(&mddev->pending_writes)==0)
821                         break;
822                 schedule();
823         }
824         finish_wait(&mddev->sb_wait, &wq);
825 }
826
827 static void bi_complete(struct bio *bio, int error)
828 {
829         complete((struct completion*)bio->bi_private);
830 }
831
832 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
833                  struct page *page, int rw, bool metadata_op)
834 {
835         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
836         struct completion event;
837         int ret;
838
839         rw |= REQ_SYNC;
840
841         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
842                 rdev->meta_bdev : rdev->bdev;
843         if (metadata_op)
844                 bio->bi_sector = sector + rdev->sb_start;
845         else if (rdev->mddev->reshape_position != MaxSector &&
846                  (rdev->mddev->reshape_backwards ==
847                   (sector >= rdev->mddev->reshape_position)))
848                 bio->bi_sector = sector + rdev->new_data_offset;
849         else
850                 bio->bi_sector = sector + rdev->data_offset;
851         bio_add_page(bio, page, size, 0);
852         init_completion(&event);
853         bio->bi_private = &event;
854         bio->bi_end_io = bi_complete;
855         submit_bio(rw, bio);
856         wait_for_completion(&event);
857
858         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
859         bio_put(bio);
860         return ret;
861 }
862 EXPORT_SYMBOL_GPL(sync_page_io);
863
864 static int read_disk_sb(struct md_rdev * rdev, int size)
865 {
866         char b[BDEVNAME_SIZE];
867         if (!rdev->sb_page) {
868                 MD_BUG();
869                 return -EINVAL;
870         }
871         if (rdev->sb_loaded)
872                 return 0;
873
874
875         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
876                 goto fail;
877         rdev->sb_loaded = 1;
878         return 0;
879
880 fail:
881         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
882                 bdevname(rdev->bdev,b));
883         return -EINVAL;
884 }
885
886 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
887 {
888         return  sb1->set_uuid0 == sb2->set_uuid0 &&
889                 sb1->set_uuid1 == sb2->set_uuid1 &&
890                 sb1->set_uuid2 == sb2->set_uuid2 &&
891                 sb1->set_uuid3 == sb2->set_uuid3;
892 }
893
894 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
895 {
896         int ret;
897         mdp_super_t *tmp1, *tmp2;
898
899         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
900         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
901
902         if (!tmp1 || !tmp2) {
903                 ret = 0;
904                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
905                 goto abort;
906         }
907
908         *tmp1 = *sb1;
909         *tmp2 = *sb2;
910
911         /*
912          * nr_disks is not constant
913          */
914         tmp1->nr_disks = 0;
915         tmp2->nr_disks = 0;
916
917         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
918 abort:
919         kfree(tmp1);
920         kfree(tmp2);
921         return ret;
922 }
923
924
925 static u32 md_csum_fold(u32 csum)
926 {
927         csum = (csum & 0xffff) + (csum >> 16);
928         return (csum & 0xffff) + (csum >> 16);
929 }
930
931 static unsigned int calc_sb_csum(mdp_super_t * sb)
932 {
933         u64 newcsum = 0;
934         u32 *sb32 = (u32*)sb;
935         int i;
936         unsigned int disk_csum, csum;
937
938         disk_csum = sb->sb_csum;
939         sb->sb_csum = 0;
940
941         for (i = 0; i < MD_SB_BYTES/4 ; i++)
942                 newcsum += sb32[i];
943         csum = (newcsum & 0xffffffff) + (newcsum>>32);
944
945
946 #ifdef CONFIG_ALPHA
947         /* This used to use csum_partial, which was wrong for several
948          * reasons including that different results are returned on
949          * different architectures.  It isn't critical that we get exactly
950          * the same return value as before (we always csum_fold before
951          * testing, and that removes any differences).  However as we
952          * know that csum_partial always returned a 16bit value on
953          * alphas, do a fold to maximise conformity to previous behaviour.
954          */
955         sb->sb_csum = md_csum_fold(disk_csum);
956 #else
957         sb->sb_csum = disk_csum;
958 #endif
959         return csum;
960 }
961
962
963 /*
964  * Handle superblock details.
965  * We want to be able to handle multiple superblock formats
966  * so we have a common interface to them all, and an array of
967  * different handlers.
968  * We rely on user-space to write the initial superblock, and support
969  * reading and updating of superblocks.
970  * Interface methods are:
971  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
972  *      loads and validates a superblock on dev.
973  *      if refdev != NULL, compare superblocks on both devices
974  *    Return:
975  *      0 - dev has a superblock that is compatible with refdev
976  *      1 - dev has a superblock that is compatible and newer than refdev
977  *          so dev should be used as the refdev in future
978  *     -EINVAL superblock incompatible or invalid
979  *     -othererror e.g. -EIO
980  *
981  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
982  *      Verify that dev is acceptable into mddev.
983  *       The first time, mddev->raid_disks will be 0, and data from
984  *       dev should be merged in.  Subsequent calls check that dev
985  *       is new enough.  Return 0 or -EINVAL
986  *
987  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
988  *     Update the superblock for rdev with data in mddev
989  *     This does not write to disc.
990  *
991  */
992
993 struct super_type  {
994         char                *name;
995         struct module       *owner;
996         int                 (*load_super)(struct md_rdev *rdev,
997                                           struct md_rdev *refdev,
998                                           int minor_version);
999         int                 (*validate_super)(struct mddev *mddev,
1000                                               struct md_rdev *rdev);
1001         void                (*sync_super)(struct mddev *mddev,
1002                                           struct md_rdev *rdev);
1003         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1004                                                 sector_t num_sectors);
1005         int                 (*allow_new_offset)(struct md_rdev *rdev,
1006                                                 unsigned long long new_offset);
1007 };
1008
1009 /*
1010  * Check that the given mddev has no bitmap.
1011  *
1012  * This function is called from the run method of all personalities that do not
1013  * support bitmaps. It prints an error message and returns non-zero if mddev
1014  * has a bitmap. Otherwise, it returns 0.
1015  *
1016  */
1017 int md_check_no_bitmap(struct mddev *mddev)
1018 {
1019         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1020                 return 0;
1021         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1022                 mdname(mddev), mddev->pers->name);
1023         return 1;
1024 }
1025 EXPORT_SYMBOL(md_check_no_bitmap);
1026
1027 /*
1028  * load_super for 0.90.0 
1029  */
1030 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1031 {
1032         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1033         mdp_super_t *sb;
1034         int ret;
1035
1036         /*
1037          * Calculate the position of the superblock (512byte sectors),
1038          * it's at the end of the disk.
1039          *
1040          * It also happens to be a multiple of 4Kb.
1041          */
1042         rdev->sb_start = calc_dev_sboffset(rdev);
1043
1044         ret = read_disk_sb(rdev, MD_SB_BYTES);
1045         if (ret) return ret;
1046
1047         ret = -EINVAL;
1048
1049         bdevname(rdev->bdev, b);
1050         sb = page_address(rdev->sb_page);
1051
1052         if (sb->md_magic != MD_SB_MAGIC) {
1053                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1054                        b);
1055                 goto abort;
1056         }
1057
1058         if (sb->major_version != 0 ||
1059             sb->minor_version < 90 ||
1060             sb->minor_version > 91) {
1061                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1062                         sb->major_version, sb->minor_version,
1063                         b);
1064                 goto abort;
1065         }
1066
1067         if (sb->raid_disks <= 0)
1068                 goto abort;
1069
1070         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1071                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1072                         b);
1073                 goto abort;
1074         }
1075
1076         rdev->preferred_minor = sb->md_minor;
1077         rdev->data_offset = 0;
1078         rdev->new_data_offset = 0;
1079         rdev->sb_size = MD_SB_BYTES;
1080         rdev->badblocks.shift = -1;
1081
1082         if (sb->level == LEVEL_MULTIPATH)
1083                 rdev->desc_nr = -1;
1084         else
1085                 rdev->desc_nr = sb->this_disk.number;
1086
1087         if (!refdev) {
1088                 ret = 1;
1089         } else {
1090                 __u64 ev1, ev2;
1091                 mdp_super_t *refsb = page_address(refdev->sb_page);
1092                 if (!uuid_equal(refsb, sb)) {
1093                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1094                                 b, bdevname(refdev->bdev,b2));
1095                         goto abort;
1096                 }
1097                 if (!sb_equal(refsb, sb)) {
1098                         printk(KERN_WARNING "md: %s has same UUID"
1099                                " but different superblock to %s\n",
1100                                b, bdevname(refdev->bdev, b2));
1101                         goto abort;
1102                 }
1103                 ev1 = md_event(sb);
1104                 ev2 = md_event(refsb);
1105                 if (ev1 > ev2)
1106                         ret = 1;
1107                 else 
1108                         ret = 0;
1109         }
1110         rdev->sectors = rdev->sb_start;
1111         /* Limit to 4TB as metadata cannot record more than that */
1112         if (rdev->sectors >= (2ULL << 32))
1113                 rdev->sectors = (2ULL << 32) - 2;
1114
1115         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1116                 /* "this cannot possibly happen" ... */
1117                 ret = -EINVAL;
1118
1119  abort:
1120         return ret;
1121 }
1122
1123 /*
1124  * validate_super for 0.90.0
1125  */
1126 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1127 {
1128         mdp_disk_t *desc;
1129         mdp_super_t *sb = page_address(rdev->sb_page);
1130         __u64 ev1 = md_event(sb);
1131
1132         rdev->raid_disk = -1;
1133         clear_bit(Faulty, &rdev->flags);
1134         clear_bit(In_sync, &rdev->flags);
1135         clear_bit(WriteMostly, &rdev->flags);
1136
1137         if (mddev->raid_disks == 0) {
1138                 mddev->major_version = 0;
1139                 mddev->minor_version = sb->minor_version;
1140                 mddev->patch_version = sb->patch_version;
1141                 mddev->external = 0;
1142                 mddev->chunk_sectors = sb->chunk_size >> 9;
1143                 mddev->ctime = sb->ctime;
1144                 mddev->utime = sb->utime;
1145                 mddev->level = sb->level;
1146                 mddev->clevel[0] = 0;
1147                 mddev->layout = sb->layout;
1148                 mddev->raid_disks = sb->raid_disks;
1149                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1150                 mddev->events = ev1;
1151                 mddev->bitmap_info.offset = 0;
1152                 mddev->bitmap_info.space = 0;
1153                 /* bitmap can use 60 K after the 4K superblocks */
1154                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1155                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1156                 mddev->reshape_backwards = 0;
1157
1158                 if (mddev->minor_version >= 91) {
1159                         mddev->reshape_position = sb->reshape_position;
1160                         mddev->delta_disks = sb->delta_disks;
1161                         mddev->new_level = sb->new_level;
1162                         mddev->new_layout = sb->new_layout;
1163                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1164                         if (mddev->delta_disks < 0)
1165                                 mddev->reshape_backwards = 1;
1166                 } else {
1167                         mddev->reshape_position = MaxSector;
1168                         mddev->delta_disks = 0;
1169                         mddev->new_level = mddev->level;
1170                         mddev->new_layout = mddev->layout;
1171                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1172                 }
1173
1174                 if (sb->state & (1<<MD_SB_CLEAN))
1175                         mddev->recovery_cp = MaxSector;
1176                 else {
1177                         if (sb->events_hi == sb->cp_events_hi && 
1178                                 sb->events_lo == sb->cp_events_lo) {
1179                                 mddev->recovery_cp = sb->recovery_cp;
1180                         } else
1181                                 mddev->recovery_cp = 0;
1182                 }
1183
1184                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1185                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1186                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1187                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1188
1189                 mddev->max_disks = MD_SB_DISKS;
1190
1191                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1192                     mddev->bitmap_info.file == NULL) {
1193                         mddev->bitmap_info.offset =
1194                                 mddev->bitmap_info.default_offset;
1195                         mddev->bitmap_info.space =
1196                                 mddev->bitmap_info.space;
1197                 }
1198
1199         } else if (mddev->pers == NULL) {
1200                 /* Insist on good event counter while assembling, except
1201                  * for spares (which don't need an event count) */
1202                 ++ev1;
1203                 if (sb->disks[rdev->desc_nr].state & (
1204                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1205                         if (ev1 < mddev->events) 
1206                                 return -EINVAL;
1207         } else if (mddev->bitmap) {
1208                 /* if adding to array with a bitmap, then we can accept an
1209                  * older device ... but not too old.
1210                  */
1211                 if (ev1 < mddev->bitmap->events_cleared)
1212                         return 0;
1213         } else {
1214                 if (ev1 < mddev->events)
1215                         /* just a hot-add of a new device, leave raid_disk at -1 */
1216                         return 0;
1217         }
1218
1219         if (mddev->level != LEVEL_MULTIPATH) {
1220                 desc = sb->disks + rdev->desc_nr;
1221
1222                 if (desc->state & (1<<MD_DISK_FAULTY))
1223                         set_bit(Faulty, &rdev->flags);
1224                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1225                             desc->raid_disk < mddev->raid_disks */) {
1226                         set_bit(In_sync, &rdev->flags);
1227                         rdev->raid_disk = desc->raid_disk;
1228                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1229                         /* active but not in sync implies recovery up to
1230                          * reshape position.  We don't know exactly where
1231                          * that is, so set to zero for now */
1232                         if (mddev->minor_version >= 91) {
1233                                 rdev->recovery_offset = 0;
1234                                 rdev->raid_disk = desc->raid_disk;
1235                         }
1236                 }
1237                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1238                         set_bit(WriteMostly, &rdev->flags);
1239         } else /* MULTIPATH are always insync */
1240                 set_bit(In_sync, &rdev->flags);
1241         return 0;
1242 }
1243
1244 /*
1245  * sync_super for 0.90.0
1246  */
1247 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1248 {
1249         mdp_super_t *sb;
1250         struct md_rdev *rdev2;
1251         int next_spare = mddev->raid_disks;
1252
1253
1254         /* make rdev->sb match mddev data..
1255          *
1256          * 1/ zero out disks
1257          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1258          * 3/ any empty disks < next_spare become removed
1259          *
1260          * disks[0] gets initialised to REMOVED because
1261          * we cannot be sure from other fields if it has
1262          * been initialised or not.
1263          */
1264         int i;
1265         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1266
1267         rdev->sb_size = MD_SB_BYTES;
1268
1269         sb = page_address(rdev->sb_page);
1270
1271         memset(sb, 0, sizeof(*sb));
1272
1273         sb->md_magic = MD_SB_MAGIC;
1274         sb->major_version = mddev->major_version;
1275         sb->patch_version = mddev->patch_version;
1276         sb->gvalid_words  = 0; /* ignored */
1277         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1278         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1279         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1280         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1281
1282         sb->ctime = mddev->ctime;
1283         sb->level = mddev->level;
1284         sb->size = mddev->dev_sectors / 2;
1285         sb->raid_disks = mddev->raid_disks;
1286         sb->md_minor = mddev->md_minor;
1287         sb->not_persistent = 0;
1288         sb->utime = mddev->utime;
1289         sb->state = 0;
1290         sb->events_hi = (mddev->events>>32);
1291         sb->events_lo = (u32)mddev->events;
1292
1293         if (mddev->reshape_position == MaxSector)
1294                 sb->minor_version = 90;
1295         else {
1296                 sb->minor_version = 91;
1297                 sb->reshape_position = mddev->reshape_position;
1298                 sb->new_level = mddev->new_level;
1299                 sb->delta_disks = mddev->delta_disks;
1300                 sb->new_layout = mddev->new_layout;
1301                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1302         }
1303         mddev->minor_version = sb->minor_version;
1304         if (mddev->in_sync)
1305         {
1306                 sb->recovery_cp = mddev->recovery_cp;
1307                 sb->cp_events_hi = (mddev->events>>32);
1308                 sb->cp_events_lo = (u32)mddev->events;
1309                 if (mddev->recovery_cp == MaxSector)
1310                         sb->state = (1<< MD_SB_CLEAN);
1311         } else
1312                 sb->recovery_cp = 0;
1313
1314         sb->layout = mddev->layout;
1315         sb->chunk_size = mddev->chunk_sectors << 9;
1316
1317         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1318                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1319
1320         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1321         rdev_for_each(rdev2, mddev) {
1322                 mdp_disk_t *d;
1323                 int desc_nr;
1324                 int is_active = test_bit(In_sync, &rdev2->flags);
1325
1326                 if (rdev2->raid_disk >= 0 &&
1327                     sb->minor_version >= 91)
1328                         /* we have nowhere to store the recovery_offset,
1329                          * but if it is not below the reshape_position,
1330                          * we can piggy-back on that.
1331                          */
1332                         is_active = 1;
1333                 if (rdev2->raid_disk < 0 ||
1334                     test_bit(Faulty, &rdev2->flags))
1335                         is_active = 0;
1336                 if (is_active)
1337                         desc_nr = rdev2->raid_disk;
1338                 else
1339                         desc_nr = next_spare++;
1340                 rdev2->desc_nr = desc_nr;
1341                 d = &sb->disks[rdev2->desc_nr];
1342                 nr_disks++;
1343                 d->number = rdev2->desc_nr;
1344                 d->major = MAJOR(rdev2->bdev->bd_dev);
1345                 d->minor = MINOR(rdev2->bdev->bd_dev);
1346                 if (is_active)
1347                         d->raid_disk = rdev2->raid_disk;
1348                 else
1349                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1350                 if (test_bit(Faulty, &rdev2->flags))
1351                         d->state = (1<<MD_DISK_FAULTY);
1352                 else if (is_active) {
1353                         d->state = (1<<MD_DISK_ACTIVE);
1354                         if (test_bit(In_sync, &rdev2->flags))
1355                                 d->state |= (1<<MD_DISK_SYNC);
1356                         active++;
1357                         working++;
1358                 } else {
1359                         d->state = 0;
1360                         spare++;
1361                         working++;
1362                 }
1363                 if (test_bit(WriteMostly, &rdev2->flags))
1364                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1365         }
1366         /* now set the "removed" and "faulty" bits on any missing devices */
1367         for (i=0 ; i < mddev->raid_disks ; i++) {
1368                 mdp_disk_t *d = &sb->disks[i];
1369                 if (d->state == 0 && d->number == 0) {
1370                         d->number = i;
1371                         d->raid_disk = i;
1372                         d->state = (1<<MD_DISK_REMOVED);
1373                         d->state |= (1<<MD_DISK_FAULTY);
1374                         failed++;
1375                 }
1376         }
1377         sb->nr_disks = nr_disks;
1378         sb->active_disks = active;
1379         sb->working_disks = working;
1380         sb->failed_disks = failed;
1381         sb->spare_disks = spare;
1382
1383         sb->this_disk = sb->disks[rdev->desc_nr];
1384         sb->sb_csum = calc_sb_csum(sb);
1385 }
1386
1387 /*
1388  * rdev_size_change for 0.90.0
1389  */
1390 static unsigned long long
1391 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1392 {
1393         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1394                 return 0; /* component must fit device */
1395         if (rdev->mddev->bitmap_info.offset)
1396                 return 0; /* can't move bitmap */
1397         rdev->sb_start = calc_dev_sboffset(rdev);
1398         if (!num_sectors || num_sectors > rdev->sb_start)
1399                 num_sectors = rdev->sb_start;
1400         /* Limit to 4TB as metadata cannot record more than that.
1401          * 4TB == 2^32 KB, or 2*2^32 sectors.
1402          */
1403         if (num_sectors >= (2ULL << 32))
1404                 num_sectors = (2ULL << 32) - 2;
1405         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1406                        rdev->sb_page);
1407         md_super_wait(rdev->mddev);
1408         return num_sectors;
1409 }
1410
1411 static int
1412 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1413 {
1414         /* non-zero offset changes not possible with v0.90 */
1415         return new_offset == 0;
1416 }
1417
1418 /*
1419  * version 1 superblock
1420  */
1421
1422 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1423 {
1424         __le32 disk_csum;
1425         u32 csum;
1426         unsigned long long newcsum;
1427         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1428         __le32 *isuper = (__le32*)sb;
1429         int i;
1430
1431         disk_csum = sb->sb_csum;
1432         sb->sb_csum = 0;
1433         newcsum = 0;
1434         for (i=0; size>=4; size -= 4 )
1435                 newcsum += le32_to_cpu(*isuper++);
1436
1437         if (size == 2)
1438                 newcsum += le16_to_cpu(*(__le16*) isuper);
1439
1440         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1441         sb->sb_csum = disk_csum;
1442         return cpu_to_le32(csum);
1443 }
1444
1445 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1446                             int acknowledged);
1447 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1448 {
1449         struct mdp_superblock_1 *sb;
1450         int ret;
1451         sector_t sb_start;
1452         sector_t sectors;
1453         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1454         int bmask;
1455
1456         /*
1457          * Calculate the position of the superblock in 512byte sectors.
1458          * It is always aligned to a 4K boundary and
1459          * depeding on minor_version, it can be:
1460          * 0: At least 8K, but less than 12K, from end of device
1461          * 1: At start of device
1462          * 2: 4K from start of device.
1463          */
1464         switch(minor_version) {
1465         case 0:
1466                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1467                 sb_start -= 8*2;
1468                 sb_start &= ~(sector_t)(4*2-1);
1469                 break;
1470         case 1:
1471                 sb_start = 0;
1472                 break;
1473         case 2:
1474                 sb_start = 8;
1475                 break;
1476         default:
1477                 return -EINVAL;
1478         }
1479         rdev->sb_start = sb_start;
1480
1481         /* superblock is rarely larger than 1K, but it can be larger,
1482          * and it is safe to read 4k, so we do that
1483          */
1484         ret = read_disk_sb(rdev, 4096);
1485         if (ret) return ret;
1486
1487
1488         sb = page_address(rdev->sb_page);
1489
1490         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1491             sb->major_version != cpu_to_le32(1) ||
1492             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1493             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1494             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1495                 return -EINVAL;
1496
1497         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1498                 printk("md: invalid superblock checksum on %s\n",
1499                         bdevname(rdev->bdev,b));
1500                 return -EINVAL;
1501         }
1502         if (le64_to_cpu(sb->data_size) < 10) {
1503                 printk("md: data_size too small on %s\n",
1504                        bdevname(rdev->bdev,b));
1505                 return -EINVAL;
1506         }
1507         if (sb->pad0 ||
1508             sb->pad3[0] ||
1509             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1510                 /* Some padding is non-zero, might be a new feature */
1511                 return -EINVAL;
1512
1513         rdev->preferred_minor = 0xffff;
1514         rdev->data_offset = le64_to_cpu(sb->data_offset);
1515         rdev->new_data_offset = rdev->data_offset;
1516         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1517             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1518                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1519         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1520
1521         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1522         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1523         if (rdev->sb_size & bmask)
1524                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1525
1526         if (minor_version
1527             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1528                 return -EINVAL;
1529         if (minor_version
1530             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1531                 return -EINVAL;
1532
1533         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1534                 rdev->desc_nr = -1;
1535         else
1536                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1537
1538         if (!rdev->bb_page) {
1539                 rdev->bb_page = alloc_page(GFP_KERNEL);
1540                 if (!rdev->bb_page)
1541                         return -ENOMEM;
1542         }
1543         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1544             rdev->badblocks.count == 0) {
1545                 /* need to load the bad block list.
1546                  * Currently we limit it to one page.
1547                  */
1548                 s32 offset;
1549                 sector_t bb_sector;
1550                 u64 *bbp;
1551                 int i;
1552                 int sectors = le16_to_cpu(sb->bblog_size);
1553                 if (sectors > (PAGE_SIZE / 512))
1554                         return -EINVAL;
1555                 offset = le32_to_cpu(sb->bblog_offset);
1556                 if (offset == 0)
1557                         return -EINVAL;
1558                 bb_sector = (long long)offset;
1559                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1560                                   rdev->bb_page, READ, true))
1561                         return -EIO;
1562                 bbp = (u64 *)page_address(rdev->bb_page);
1563                 rdev->badblocks.shift = sb->bblog_shift;
1564                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1565                         u64 bb = le64_to_cpu(*bbp);
1566                         int count = bb & (0x3ff);
1567                         u64 sector = bb >> 10;
1568                         sector <<= sb->bblog_shift;
1569                         count <<= sb->bblog_shift;
1570                         if (bb + 1 == 0)
1571                                 break;
1572                         if (md_set_badblocks(&rdev->badblocks,
1573                                              sector, count, 1) == 0)
1574                                 return -EINVAL;
1575                 }
1576         } else if (sb->bblog_offset == 0)
1577                 rdev->badblocks.shift = -1;
1578
1579         if (!refdev) {
1580                 ret = 1;
1581         } else {
1582                 __u64 ev1, ev2;
1583                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1584
1585                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1586                     sb->level != refsb->level ||
1587                     sb->layout != refsb->layout ||
1588                     sb->chunksize != refsb->chunksize) {
1589                         printk(KERN_WARNING "md: %s has strangely different"
1590                                 " superblock to %s\n",
1591                                 bdevname(rdev->bdev,b),
1592                                 bdevname(refdev->bdev,b2));
1593                         return -EINVAL;
1594                 }
1595                 ev1 = le64_to_cpu(sb->events);
1596                 ev2 = le64_to_cpu(refsb->events);
1597
1598                 if (ev1 > ev2)
1599                         ret = 1;
1600                 else
1601                         ret = 0;
1602         }
1603         if (minor_version) {
1604                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1605                 sectors -= rdev->data_offset;
1606         } else
1607                 sectors = rdev->sb_start;
1608         if (sectors < le64_to_cpu(sb->data_size))
1609                 return -EINVAL;
1610         rdev->sectors = le64_to_cpu(sb->data_size);
1611         return ret;
1612 }
1613
1614 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1615 {
1616         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1617         __u64 ev1 = le64_to_cpu(sb->events);
1618
1619         rdev->raid_disk = -1;
1620         clear_bit(Faulty, &rdev->flags);
1621         clear_bit(In_sync, &rdev->flags);
1622         clear_bit(WriteMostly, &rdev->flags);
1623
1624         if (mddev->raid_disks == 0) {
1625                 mddev->major_version = 1;
1626                 mddev->patch_version = 0;
1627                 mddev->external = 0;
1628                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1629                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1630                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1631                 mddev->level = le32_to_cpu(sb->level);
1632                 mddev->clevel[0] = 0;
1633                 mddev->layout = le32_to_cpu(sb->layout);
1634                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1635                 mddev->dev_sectors = le64_to_cpu(sb->size);
1636                 mddev->events = ev1;
1637                 mddev->bitmap_info.offset = 0;
1638                 mddev->bitmap_info.space = 0;
1639                 /* Default location for bitmap is 1K after superblock
1640                  * using 3K - total of 4K
1641                  */
1642                 mddev->bitmap_info.default_offset = 1024 >> 9;
1643                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1644                 mddev->reshape_backwards = 0;
1645
1646                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1647                 memcpy(mddev->uuid, sb->set_uuid, 16);
1648
1649                 mddev->max_disks =  (4096-256)/2;
1650
1651                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1652                     mddev->bitmap_info.file == NULL) {
1653                         mddev->bitmap_info.offset =
1654                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1655                         /* Metadata doesn't record how much space is available.
1656                          * For 1.0, we assume we can use up to the superblock
1657                          * if before, else to 4K beyond superblock.
1658                          * For others, assume no change is possible.
1659                          */
1660                         if (mddev->minor_version > 0)
1661                                 mddev->bitmap_info.space = 0;
1662                         else if (mddev->bitmap_info.offset > 0)
1663                                 mddev->bitmap_info.space =
1664                                         8 - mddev->bitmap_info.offset;
1665                         else
1666                                 mddev->bitmap_info.space =
1667                                         -mddev->bitmap_info.offset;
1668                 }
1669
1670                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1671                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1672                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1673                         mddev->new_level = le32_to_cpu(sb->new_level);
1674                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1675                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1676                         if (mddev->delta_disks < 0 ||
1677                             (mddev->delta_disks == 0 &&
1678                              (le32_to_cpu(sb->feature_map)
1679                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1680                                 mddev->reshape_backwards = 1;
1681                 } else {
1682                         mddev->reshape_position = MaxSector;
1683                         mddev->delta_disks = 0;
1684                         mddev->new_level = mddev->level;
1685                         mddev->new_layout = mddev->layout;
1686                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1687                 }
1688
1689         } else if (mddev->pers == NULL) {
1690                 /* Insist of good event counter while assembling, except for
1691                  * spares (which don't need an event count) */
1692                 ++ev1;
1693                 if (rdev->desc_nr >= 0 &&
1694                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1695                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1696                         if (ev1 < mddev->events)
1697                                 return -EINVAL;
1698         } else if (mddev->bitmap) {
1699                 /* If adding to array with a bitmap, then we can accept an
1700                  * older device, but not too old.
1701                  */
1702                 if (ev1 < mddev->bitmap->events_cleared)
1703                         return 0;
1704         } else {
1705                 if (ev1 < mddev->events)
1706                         /* just a hot-add of a new device, leave raid_disk at -1 */
1707                         return 0;
1708         }
1709         if (mddev->level != LEVEL_MULTIPATH) {
1710                 int role;
1711                 if (rdev->desc_nr < 0 ||
1712                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1713                         role = 0xffff;
1714                         rdev->desc_nr = -1;
1715                 } else
1716                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1717                 switch(role) {
1718                 case 0xffff: /* spare */
1719                         break;
1720                 case 0xfffe: /* faulty */
1721                         set_bit(Faulty, &rdev->flags);
1722                         break;
1723                 default:
1724                         if ((le32_to_cpu(sb->feature_map) &
1725                              MD_FEATURE_RECOVERY_OFFSET))
1726                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1727                         else
1728                                 set_bit(In_sync, &rdev->flags);
1729                         rdev->raid_disk = role;
1730                         break;
1731                 }
1732                 if (sb->devflags & WriteMostly1)
1733                         set_bit(WriteMostly, &rdev->flags);
1734                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1735                         set_bit(Replacement, &rdev->flags);
1736         } else /* MULTIPATH are always insync */
1737                 set_bit(In_sync, &rdev->flags);
1738
1739         return 0;
1740 }
1741
1742 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1743 {
1744         struct mdp_superblock_1 *sb;
1745         struct md_rdev *rdev2;
1746         int max_dev, i;
1747         /* make rdev->sb match mddev and rdev data. */
1748
1749         sb = page_address(rdev->sb_page);
1750
1751         sb->feature_map = 0;
1752         sb->pad0 = 0;
1753         sb->recovery_offset = cpu_to_le64(0);
1754         memset(sb->pad3, 0, sizeof(sb->pad3));
1755
1756         sb->utime = cpu_to_le64((__u64)mddev->utime);
1757         sb->events = cpu_to_le64(mddev->events);
1758         if (mddev->in_sync)
1759                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1760         else
1761                 sb->resync_offset = cpu_to_le64(0);
1762
1763         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1764
1765         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1766         sb->size = cpu_to_le64(mddev->dev_sectors);
1767         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1768         sb->level = cpu_to_le32(mddev->level);
1769         sb->layout = cpu_to_le32(mddev->layout);
1770
1771         if (test_bit(WriteMostly, &rdev->flags))
1772                 sb->devflags |= WriteMostly1;
1773         else
1774                 sb->devflags &= ~WriteMostly1;
1775         sb->data_offset = cpu_to_le64(rdev->data_offset);
1776         sb->data_size = cpu_to_le64(rdev->sectors);
1777
1778         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1779                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1780                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1781         }
1782
1783         if (rdev->raid_disk >= 0 &&
1784             !test_bit(In_sync, &rdev->flags)) {
1785                 sb->feature_map |=
1786                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1787                 sb->recovery_offset =
1788                         cpu_to_le64(rdev->recovery_offset);
1789         }
1790         if (test_bit(Replacement, &rdev->flags))
1791                 sb->feature_map |=
1792                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1793
1794         if (mddev->reshape_position != MaxSector) {
1795                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1796                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1797                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1798                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1799                 sb->new_level = cpu_to_le32(mddev->new_level);
1800                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1801                 if (mddev->delta_disks == 0 &&
1802                     mddev->reshape_backwards)
1803                         sb->feature_map
1804                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1805                 if (rdev->new_data_offset != rdev->data_offset) {
1806                         sb->feature_map
1807                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1808                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1809                                                              - rdev->data_offset));
1810                 }
1811         }
1812
1813         if (rdev->badblocks.count == 0)
1814                 /* Nothing to do for bad blocks*/ ;
1815         else if (sb->bblog_offset == 0)
1816                 /* Cannot record bad blocks on this device */
1817                 md_error(mddev, rdev);
1818         else {
1819                 struct badblocks *bb = &rdev->badblocks;
1820                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1821                 u64 *p = bb->page;
1822                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1823                 if (bb->changed) {
1824                         unsigned seq;
1825
1826 retry:
1827                         seq = read_seqbegin(&bb->lock);
1828
1829                         memset(bbp, 0xff, PAGE_SIZE);
1830
1831                         for (i = 0 ; i < bb->count ; i++) {
1832                                 u64 internal_bb = *p++;
1833                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1834                                                 | BB_LEN(internal_bb));
1835                                 *bbp++ = cpu_to_le64(store_bb);
1836                         }
1837                         bb->changed = 0;
1838                         if (read_seqretry(&bb->lock, seq))
1839                                 goto retry;
1840
1841                         bb->sector = (rdev->sb_start +
1842                                       (int)le32_to_cpu(sb->bblog_offset));
1843                         bb->size = le16_to_cpu(sb->bblog_size);
1844                 }
1845         }
1846
1847         max_dev = 0;
1848         rdev_for_each(rdev2, mddev)
1849                 if (rdev2->desc_nr+1 > max_dev)
1850                         max_dev = rdev2->desc_nr+1;
1851
1852         if (max_dev > le32_to_cpu(sb->max_dev)) {
1853                 int bmask;
1854                 sb->max_dev = cpu_to_le32(max_dev);
1855                 rdev->sb_size = max_dev * 2 + 256;
1856                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1857                 if (rdev->sb_size & bmask)
1858                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1859         } else
1860                 max_dev = le32_to_cpu(sb->max_dev);
1861
1862         for (i=0; i<max_dev;i++)
1863                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1864         
1865         rdev_for_each(rdev2, mddev) {
1866                 i = rdev2->desc_nr;
1867                 if (test_bit(Faulty, &rdev2->flags))
1868                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1869                 else if (test_bit(In_sync, &rdev2->flags))
1870                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1871                 else if (rdev2->raid_disk >= 0)
1872                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1873                 else
1874                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1875         }
1876
1877         sb->sb_csum = calc_sb_1_csum(sb);
1878 }
1879
1880 static unsigned long long
1881 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1882 {
1883         struct mdp_superblock_1 *sb;
1884         sector_t max_sectors;
1885         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1886                 return 0; /* component must fit device */
1887         if (rdev->data_offset != rdev->new_data_offset)
1888                 return 0; /* too confusing */
1889         if (rdev->sb_start < rdev->data_offset) {
1890                 /* minor versions 1 and 2; superblock before data */
1891                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1892                 max_sectors -= rdev->data_offset;
1893                 if (!num_sectors || num_sectors > max_sectors)
1894                         num_sectors = max_sectors;
1895         } else if (rdev->mddev->bitmap_info.offset) {
1896                 /* minor version 0 with bitmap we can't move */
1897                 return 0;
1898         } else {
1899                 /* minor version 0; superblock after data */
1900                 sector_t sb_start;
1901                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1902                 sb_start &= ~(sector_t)(4*2 - 1);
1903                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1904                 if (!num_sectors || num_sectors > max_sectors)
1905                         num_sectors = max_sectors;
1906                 rdev->sb_start = sb_start;
1907         }
1908         sb = page_address(rdev->sb_page);
1909         sb->data_size = cpu_to_le64(num_sectors);
1910         sb->super_offset = rdev->sb_start;
1911         sb->sb_csum = calc_sb_1_csum(sb);
1912         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1913                        rdev->sb_page);
1914         md_super_wait(rdev->mddev);
1915         return num_sectors;
1916
1917 }
1918
1919 static int
1920 super_1_allow_new_offset(struct md_rdev *rdev,
1921                          unsigned long long new_offset)
1922 {
1923         /* All necessary checks on new >= old have been done */
1924         struct bitmap *bitmap;
1925         if (new_offset >= rdev->data_offset)
1926                 return 1;
1927
1928         /* with 1.0 metadata, there is no metadata to tread on
1929          * so we can always move back */
1930         if (rdev->mddev->minor_version == 0)
1931                 return 1;
1932
1933         /* otherwise we must be sure not to step on
1934          * any metadata, so stay:
1935          * 36K beyond start of superblock
1936          * beyond end of badblocks
1937          * beyond write-intent bitmap
1938          */
1939         if (rdev->sb_start + (32+4)*2 > new_offset)
1940                 return 0;
1941         bitmap = rdev->mddev->bitmap;
1942         if (bitmap && !rdev->mddev->bitmap_info.file &&
1943             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1944             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1945                 return 0;
1946         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1947                 return 0;
1948
1949         return 1;
1950 }
1951
1952 static struct super_type super_types[] = {
1953         [0] = {
1954                 .name   = "0.90.0",
1955                 .owner  = THIS_MODULE,
1956                 .load_super         = super_90_load,
1957                 .validate_super     = super_90_validate,
1958                 .sync_super         = super_90_sync,
1959                 .rdev_size_change   = super_90_rdev_size_change,
1960                 .allow_new_offset   = super_90_allow_new_offset,
1961         },
1962         [1] = {
1963                 .name   = "md-1",
1964                 .owner  = THIS_MODULE,
1965                 .load_super         = super_1_load,
1966                 .validate_super     = super_1_validate,
1967                 .sync_super         = super_1_sync,
1968                 .rdev_size_change   = super_1_rdev_size_change,
1969                 .allow_new_offset   = super_1_allow_new_offset,
1970         },
1971 };
1972
1973 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1974 {
1975         if (mddev->sync_super) {
1976                 mddev->sync_super(mddev, rdev);
1977                 return;
1978         }
1979
1980         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1981
1982         super_types[mddev->major_version].sync_super(mddev, rdev);
1983 }
1984
1985 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1986 {
1987         struct md_rdev *rdev, *rdev2;
1988
1989         rcu_read_lock();
1990         rdev_for_each_rcu(rdev, mddev1)
1991                 rdev_for_each_rcu(rdev2, mddev2)
1992                         if (rdev->bdev->bd_contains ==
1993                             rdev2->bdev->bd_contains) {
1994                                 rcu_read_unlock();
1995                                 return 1;
1996                         }
1997         rcu_read_unlock();
1998         return 0;
1999 }
2000
2001 static LIST_HEAD(pending_raid_disks);
2002
2003 /*
2004  * Try to register data integrity profile for an mddev
2005  *
2006  * This is called when an array is started and after a disk has been kicked
2007  * from the array. It only succeeds if all working and active component devices
2008  * are integrity capable with matching profiles.
2009  */
2010 int md_integrity_register(struct mddev *mddev)
2011 {
2012         struct md_rdev *rdev, *reference = NULL;
2013
2014         if (list_empty(&mddev->disks))
2015                 return 0; /* nothing to do */
2016         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2017                 return 0; /* shouldn't register, or already is */
2018         rdev_for_each(rdev, mddev) {
2019                 /* skip spares and non-functional disks */
2020                 if (test_bit(Faulty, &rdev->flags))
2021                         continue;
2022                 if (rdev->raid_disk < 0)
2023                         continue;
2024                 if (!reference) {
2025                         /* Use the first rdev as the reference */
2026                         reference = rdev;
2027                         continue;
2028                 }
2029                 /* does this rdev's profile match the reference profile? */
2030                 if (blk_integrity_compare(reference->bdev->bd_disk,
2031                                 rdev->bdev->bd_disk) < 0)
2032                         return -EINVAL;
2033         }
2034         if (!reference || !bdev_get_integrity(reference->bdev))
2035                 return 0;
2036         /*
2037          * All component devices are integrity capable and have matching
2038          * profiles, register the common profile for the md device.
2039          */
2040         if (blk_integrity_register(mddev->gendisk,
2041                         bdev_get_integrity(reference->bdev)) != 0) {
2042                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2043                         mdname(mddev));
2044                 return -EINVAL;
2045         }
2046         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2047         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2048                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2049                        mdname(mddev));
2050                 return -EINVAL;
2051         }
2052         return 0;
2053 }
2054 EXPORT_SYMBOL(md_integrity_register);
2055
2056 /* Disable data integrity if non-capable/non-matching disk is being added */
2057 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2058 {
2059         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2060         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2061
2062         if (!bi_mddev) /* nothing to do */
2063                 return;
2064         if (rdev->raid_disk < 0) /* skip spares */
2065                 return;
2066         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2067                                              rdev->bdev->bd_disk) >= 0)
2068                 return;
2069         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2070         blk_integrity_unregister(mddev->gendisk);
2071 }
2072 EXPORT_SYMBOL(md_integrity_add_rdev);
2073
2074 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2075 {
2076         char b[BDEVNAME_SIZE];
2077         struct kobject *ko;
2078         char *s;
2079         int err;
2080
2081         if (rdev->mddev) {
2082                 MD_BUG();
2083                 return -EINVAL;
2084         }
2085
2086         /* prevent duplicates */
2087         if (find_rdev(mddev, rdev->bdev->bd_dev))
2088                 return -EEXIST;
2089
2090         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2091         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2092                         rdev->sectors < mddev->dev_sectors)) {
2093                 if (mddev->pers) {
2094                         /* Cannot change size, so fail
2095                          * If mddev->level <= 0, then we don't care
2096                          * about aligning sizes (e.g. linear)
2097                          */
2098                         if (mddev->level > 0)
2099                                 return -ENOSPC;
2100                 } else
2101                         mddev->dev_sectors = rdev->sectors;
2102         }
2103
2104         /* Verify rdev->desc_nr is unique.
2105          * If it is -1, assign a free number, else
2106          * check number is not in use
2107          */
2108         if (rdev->desc_nr < 0) {
2109                 int choice = 0;
2110                 if (mddev->pers) choice = mddev->raid_disks;
2111                 while (find_rdev_nr(mddev, choice))
2112                         choice++;
2113                 rdev->desc_nr = choice;
2114         } else {
2115                 if (find_rdev_nr(mddev, rdev->desc_nr))
2116                         return -EBUSY;
2117         }
2118         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2119                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2120                        mdname(mddev), mddev->max_disks);
2121                 return -EBUSY;
2122         }
2123         bdevname(rdev->bdev,b);
2124         while ( (s=strchr(b, '/')) != NULL)
2125                 *s = '!';
2126
2127         rdev->mddev = mddev;
2128         printk(KERN_INFO "md: bind<%s>\n", b);
2129
2130         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2131                 goto fail;
2132
2133         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2134         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2135                 /* failure here is OK */;
2136         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2137
2138         list_add_rcu(&rdev->same_set, &mddev->disks);
2139         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2140
2141         /* May as well allow recovery to be retried once */
2142         mddev->recovery_disabled++;
2143
2144         return 0;
2145
2146  fail:
2147         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2148                b, mdname(mddev));
2149         return err;
2150 }
2151
2152 static void md_delayed_delete(struct work_struct *ws)
2153 {
2154         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2155         kobject_del(&rdev->kobj);
2156         kobject_put(&rdev->kobj);
2157 }
2158
2159 static void unbind_rdev_from_array(struct md_rdev * rdev)
2160 {
2161         char b[BDEVNAME_SIZE];
2162         if (!rdev->mddev) {
2163                 MD_BUG();
2164                 return;
2165         }
2166         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2167         list_del_rcu(&rdev->same_set);
2168         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2169         rdev->mddev = NULL;
2170         sysfs_remove_link(&rdev->kobj, "block");
2171         sysfs_put(rdev->sysfs_state);
2172         rdev->sysfs_state = NULL;
2173         rdev->badblocks.count = 0;
2174         /* We need to delay this, otherwise we can deadlock when
2175          * writing to 'remove' to "dev/state".  We also need
2176          * to delay it due to rcu usage.
2177          */
2178         synchronize_rcu();
2179         INIT_WORK(&rdev->del_work, md_delayed_delete);
2180         kobject_get(&rdev->kobj);
2181         queue_work(md_misc_wq, &rdev->del_work);
2182 }
2183
2184 /*
2185  * prevent the device from being mounted, repartitioned or
2186  * otherwise reused by a RAID array (or any other kernel
2187  * subsystem), by bd_claiming the device.
2188  */
2189 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2190 {
2191         int err = 0;
2192         struct block_device *bdev;
2193         char b[BDEVNAME_SIZE];
2194
2195         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2196                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2197         if (IS_ERR(bdev)) {
2198                 printk(KERN_ERR "md: could not open %s.\n",
2199                         __bdevname(dev, b));
2200                 return PTR_ERR(bdev);
2201         }
2202         rdev->bdev = bdev;
2203         return err;
2204 }
2205
2206 static void unlock_rdev(struct md_rdev *rdev)
2207 {
2208         struct block_device *bdev = rdev->bdev;
2209         rdev->bdev = NULL;
2210         if (!bdev)
2211                 MD_BUG();
2212         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2213 }
2214
2215 void md_autodetect_dev(dev_t dev);
2216
2217 static void export_rdev(struct md_rdev * rdev)
2218 {
2219         char b[BDEVNAME_SIZE];
2220         printk(KERN_INFO "md: export_rdev(%s)\n",
2221                 bdevname(rdev->bdev,b));
2222         if (rdev->mddev)
2223                 MD_BUG();
2224         md_rdev_clear(rdev);
2225 #ifndef MODULE
2226         if (test_bit(AutoDetected, &rdev->flags))
2227                 md_autodetect_dev(rdev->bdev->bd_dev);
2228 #endif
2229         unlock_rdev(rdev);
2230         kobject_put(&rdev->kobj);
2231 }
2232
2233 static void kick_rdev_from_array(struct md_rdev * rdev)
2234 {
2235         unbind_rdev_from_array(rdev);
2236         export_rdev(rdev);
2237 }
2238
2239 static void export_array(struct mddev *mddev)
2240 {
2241         struct md_rdev *rdev, *tmp;
2242
2243         rdev_for_each_safe(rdev, tmp, mddev) {
2244                 if (!rdev->mddev) {
2245                         MD_BUG();
2246                         continue;
2247                 }
2248                 kick_rdev_from_array(rdev);
2249         }
2250         if (!list_empty(&mddev->disks))
2251                 MD_BUG();
2252         mddev->raid_disks = 0;
2253         mddev->major_version = 0;
2254 }
2255
2256 static void print_desc(mdp_disk_t *desc)
2257 {
2258         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2259                 desc->major,desc->minor,desc->raid_disk,desc->state);
2260 }
2261
2262 static void print_sb_90(mdp_super_t *sb)
2263 {
2264         int i;
2265
2266         printk(KERN_INFO 
2267                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2268                 sb->major_version, sb->minor_version, sb->patch_version,
2269                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2270                 sb->ctime);
2271         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2272                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2273                 sb->md_minor, sb->layout, sb->chunk_size);
2274         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2275                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2276                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2277                 sb->failed_disks, sb->spare_disks,
2278                 sb->sb_csum, (unsigned long)sb->events_lo);
2279
2280         printk(KERN_INFO);
2281         for (i = 0; i < MD_SB_DISKS; i++) {
2282                 mdp_disk_t *desc;
2283
2284                 desc = sb->disks + i;
2285                 if (desc->number || desc->major || desc->minor ||
2286                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2287                         printk("     D %2d: ", i);
2288                         print_desc(desc);
2289                 }
2290         }
2291         printk(KERN_INFO "md:     THIS: ");
2292         print_desc(&sb->this_disk);
2293 }
2294
2295 static void print_sb_1(struct mdp_superblock_1 *sb)
2296 {
2297         __u8 *uuid;
2298
2299         uuid = sb->set_uuid;
2300         printk(KERN_INFO
2301                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2302                "md:    Name: \"%s\" CT:%llu\n",
2303                 le32_to_cpu(sb->major_version),
2304                 le32_to_cpu(sb->feature_map),
2305                 uuid,
2306                 sb->set_name,
2307                 (unsigned long long)le64_to_cpu(sb->ctime)
2308                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2309
2310         uuid = sb->device_uuid;
2311         printk(KERN_INFO
2312                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2313                         " RO:%llu\n"
2314                "md:     Dev:%08x UUID: %pU\n"
2315                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2316                "md:         (MaxDev:%u) \n",
2317                 le32_to_cpu(sb->level),
2318                 (unsigned long long)le64_to_cpu(sb->size),
2319                 le32_to_cpu(sb->raid_disks),
2320                 le32_to_cpu(sb->layout),
2321                 le32_to_cpu(sb->chunksize),
2322                 (unsigned long long)le64_to_cpu(sb->data_offset),
2323                 (unsigned long long)le64_to_cpu(sb->data_size),
2324                 (unsigned long long)le64_to_cpu(sb->super_offset),
2325                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2326                 le32_to_cpu(sb->dev_number),
2327                 uuid,
2328                 sb->devflags,
2329                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2330                 (unsigned long long)le64_to_cpu(sb->events),
2331                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2332                 le32_to_cpu(sb->sb_csum),
2333                 le32_to_cpu(sb->max_dev)
2334                 );
2335 }
2336
2337 static void print_rdev(struct md_rdev *rdev, int major_version)
2338 {
2339         char b[BDEVNAME_SIZE];
2340         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2341                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2342                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2343                 rdev->desc_nr);
2344         if (rdev->sb_loaded) {
2345                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2346                 switch (major_version) {
2347                 case 0:
2348                         print_sb_90(page_address(rdev->sb_page));
2349                         break;
2350                 case 1:
2351                         print_sb_1(page_address(rdev->sb_page));
2352                         break;
2353                 }
2354         } else
2355                 printk(KERN_INFO "md: no rdev superblock!\n");
2356 }
2357
2358 static void md_print_devices(void)
2359 {
2360         struct list_head *tmp;
2361         struct md_rdev *rdev;
2362         struct mddev *mddev;
2363         char b[BDEVNAME_SIZE];
2364
2365         printk("\n");
2366         printk("md:     **********************************\n");
2367         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2368         printk("md:     **********************************\n");
2369         for_each_mddev(mddev, tmp) {
2370
2371                 if (mddev->bitmap)
2372                         bitmap_print_sb(mddev->bitmap);
2373                 else
2374                         printk("%s: ", mdname(mddev));
2375                 rdev_for_each(rdev, mddev)
2376                         printk("<%s>", bdevname(rdev->bdev,b));
2377                 printk("\n");
2378
2379                 rdev_for_each(rdev, mddev)
2380                         print_rdev(rdev, mddev->major_version);
2381         }
2382         printk("md:     **********************************\n");
2383         printk("\n");
2384 }
2385
2386
2387 static void sync_sbs(struct mddev * mddev, int nospares)
2388 {
2389         /* Update each superblock (in-memory image), but
2390          * if we are allowed to, skip spares which already
2391          * have the right event counter, or have one earlier
2392          * (which would mean they aren't being marked as dirty
2393          * with the rest of the array)
2394          */
2395         struct md_rdev *rdev;
2396         rdev_for_each(rdev, mddev) {
2397                 if (rdev->sb_events == mddev->events ||
2398                     (nospares &&
2399                      rdev->raid_disk < 0 &&
2400                      rdev->sb_events+1 == mddev->events)) {
2401                         /* Don't update this superblock */
2402                         rdev->sb_loaded = 2;
2403                 } else {
2404                         sync_super(mddev, rdev);
2405                         rdev->sb_loaded = 1;
2406                 }
2407         }
2408 }
2409
2410 static void md_update_sb(struct mddev * mddev, int force_change)
2411 {
2412         struct md_rdev *rdev;
2413         int sync_req;
2414         int nospares = 0;
2415         int any_badblocks_changed = 0;
2416
2417 repeat:
2418         /* First make sure individual recovery_offsets are correct */
2419         rdev_for_each(rdev, mddev) {
2420                 if (rdev->raid_disk >= 0 &&
2421                     mddev->delta_disks >= 0 &&
2422                     !test_bit(In_sync, &rdev->flags) &&
2423                     mddev->curr_resync_completed > rdev->recovery_offset)
2424                                 rdev->recovery_offset = mddev->curr_resync_completed;
2425
2426         }       
2427         if (!mddev->persistent) {
2428                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2429                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2430                 if (!mddev->external) {
2431                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2432                         rdev_for_each(rdev, mddev) {
2433                                 if (rdev->badblocks.changed) {
2434                                         rdev->badblocks.changed = 0;
2435                                         md_ack_all_badblocks(&rdev->badblocks);
2436                                         md_error(mddev, rdev);
2437                                 }
2438                                 clear_bit(Blocked, &rdev->flags);
2439                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2440                                 wake_up(&rdev->blocked_wait);
2441                         }
2442                 }
2443                 wake_up(&mddev->sb_wait);
2444                 return;
2445         }
2446
2447         spin_lock_irq(&mddev->write_lock);
2448
2449         mddev->utime = get_seconds();
2450
2451         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2452                 force_change = 1;
2453         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2454                 /* just a clean<-> dirty transition, possibly leave spares alone,
2455                  * though if events isn't the right even/odd, we will have to do
2456                  * spares after all
2457                  */
2458                 nospares = 1;
2459         if (force_change)
2460                 nospares = 0;
2461         if (mddev->degraded)
2462                 /* If the array is degraded, then skipping spares is both
2463                  * dangerous and fairly pointless.
2464                  * Dangerous because a device that was removed from the array
2465                  * might have a event_count that still looks up-to-date,
2466                  * so it can be re-added without a resync.
2467                  * Pointless because if there are any spares to skip,
2468                  * then a recovery will happen and soon that array won't
2469                  * be degraded any more and the spare can go back to sleep then.
2470                  */
2471                 nospares = 0;
2472
2473         sync_req = mddev->in_sync;
2474
2475         /* If this is just a dirty<->clean transition, and the array is clean
2476          * and 'events' is odd, we can roll back to the previous clean state */
2477         if (nospares
2478             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2479             && mddev->can_decrease_events
2480             && mddev->events != 1) {
2481                 mddev->events--;
2482                 mddev->can_decrease_events = 0;
2483         } else {
2484                 /* otherwise we have to go forward and ... */
2485                 mddev->events ++;
2486                 mddev->can_decrease_events = nospares;
2487         }
2488
2489         if (!mddev->events) {
2490                 /*
2491                  * oops, this 64-bit counter should never wrap.
2492                  * Either we are in around ~1 trillion A.C., assuming
2493                  * 1 reboot per second, or we have a bug:
2494                  */
2495                 MD_BUG();
2496                 mddev->events --;
2497         }
2498
2499         rdev_for_each(rdev, mddev) {
2500                 if (rdev->badblocks.changed)
2501                         any_badblocks_changed++;
2502                 if (test_bit(Faulty, &rdev->flags))
2503                         set_bit(FaultRecorded, &rdev->flags);
2504         }
2505
2506         sync_sbs(mddev, nospares);
2507         spin_unlock_irq(&mddev->write_lock);
2508
2509         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2510                  mdname(mddev), mddev->in_sync);
2511
2512         bitmap_update_sb(mddev->bitmap);
2513         rdev_for_each(rdev, mddev) {
2514                 char b[BDEVNAME_SIZE];
2515
2516                 if (rdev->sb_loaded != 1)
2517                         continue; /* no noise on spare devices */
2518
2519                 if (!test_bit(Faulty, &rdev->flags) &&
2520                     rdev->saved_raid_disk == -1) {
2521                         md_super_write(mddev,rdev,
2522                                        rdev->sb_start, rdev->sb_size,
2523                                        rdev->sb_page);
2524                         pr_debug("md: (write) %s's sb offset: %llu\n",
2525                                  bdevname(rdev->bdev, b),
2526                                  (unsigned long long)rdev->sb_start);
2527                         rdev->sb_events = mddev->events;
2528                         if (rdev->badblocks.size) {
2529                                 md_super_write(mddev, rdev,
2530                                                rdev->badblocks.sector,
2531                                                rdev->badblocks.size << 9,
2532                                                rdev->bb_page);
2533                                 rdev->badblocks.size = 0;
2534                         }
2535
2536                 } else if (test_bit(Faulty, &rdev->flags))
2537                         pr_debug("md: %s (skipping faulty)\n",
2538                                  bdevname(rdev->bdev, b));
2539                 else
2540                         pr_debug("(skipping incremental s/r ");
2541
2542                 if (mddev->level == LEVEL_MULTIPATH)
2543                         /* only need to write one superblock... */
2544                         break;
2545         }
2546         md_super_wait(mddev);
2547         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2548
2549         spin_lock_irq(&mddev->write_lock);
2550         if (mddev->in_sync != sync_req ||
2551             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2552                 /* have to write it out again */
2553                 spin_unlock_irq(&mddev->write_lock);
2554                 goto repeat;
2555         }
2556         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2557         spin_unlock_irq(&mddev->write_lock);
2558         wake_up(&mddev->sb_wait);
2559         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2560                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2561
2562         rdev_for_each(rdev, mddev) {
2563                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2564                         clear_bit(Blocked, &rdev->flags);
2565
2566                 if (any_badblocks_changed)
2567                         md_ack_all_badblocks(&rdev->badblocks);
2568                 clear_bit(BlockedBadBlocks, &rdev->flags);
2569                 wake_up(&rdev->blocked_wait);
2570         }
2571 }
2572
2573 /* words written to sysfs files may, or may not, be \n terminated.
2574  * We want to accept with case. For this we use cmd_match.
2575  */
2576 static int cmd_match(const char *cmd, const char *str)
2577 {
2578         /* See if cmd, written into a sysfs file, matches
2579          * str.  They must either be the same, or cmd can
2580          * have a trailing newline
2581          */
2582         while (*cmd && *str && *cmd == *str) {
2583                 cmd++;
2584                 str++;
2585         }
2586         if (*cmd == '\n')
2587                 cmd++;
2588         if (*str || *cmd)
2589                 return 0;
2590         return 1;
2591 }
2592
2593 struct rdev_sysfs_entry {
2594         struct attribute attr;
2595         ssize_t (*show)(struct md_rdev *, char *);
2596         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2597 };
2598
2599 static ssize_t
2600 state_show(struct md_rdev *rdev, char *page)
2601 {
2602         char *sep = "";
2603         size_t len = 0;
2604
2605         if (test_bit(Faulty, &rdev->flags) ||
2606             rdev->badblocks.unacked_exist) {
2607                 len+= sprintf(page+len, "%sfaulty",sep);
2608                 sep = ",";
2609         }
2610         if (test_bit(In_sync, &rdev->flags)) {
2611                 len += sprintf(page+len, "%sin_sync",sep);
2612                 sep = ",";
2613         }
2614         if (test_bit(WriteMostly, &rdev->flags)) {
2615                 len += sprintf(page+len, "%swrite_mostly",sep);
2616                 sep = ",";
2617         }
2618         if (test_bit(Blocked, &rdev->flags) ||
2619             (rdev->badblocks.unacked_exist
2620              && !test_bit(Faulty, &rdev->flags))) {
2621                 len += sprintf(page+len, "%sblocked", sep);
2622                 sep = ",";
2623         }
2624         if (!test_bit(Faulty, &rdev->flags) &&
2625             !test_bit(In_sync, &rdev->flags)) {
2626                 len += sprintf(page+len, "%sspare", sep);
2627                 sep = ",";
2628         }
2629         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2630                 len += sprintf(page+len, "%swrite_error", sep);
2631                 sep = ",";
2632         }
2633         if (test_bit(WantReplacement, &rdev->flags)) {
2634                 len += sprintf(page+len, "%swant_replacement", sep);
2635                 sep = ",";
2636         }
2637         if (test_bit(Replacement, &rdev->flags)) {
2638                 len += sprintf(page+len, "%sreplacement", sep);
2639                 sep = ",";
2640         }
2641
2642         return len+sprintf(page+len, "\n");
2643 }
2644
2645 static ssize_t
2646 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2647 {
2648         /* can write
2649          *  faulty  - simulates an error
2650          *  remove  - disconnects the device
2651          *  writemostly - sets write_mostly
2652          *  -writemostly - clears write_mostly
2653          *  blocked - sets the Blocked flags
2654          *  -blocked - clears the Blocked and possibly simulates an error
2655          *  insync - sets Insync providing device isn't active
2656          *  write_error - sets WriteErrorSeen
2657          *  -write_error - clears WriteErrorSeen
2658          */
2659         int err = -EINVAL;
2660         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2661                 md_error(rdev->mddev, rdev);
2662                 if (test_bit(Faulty, &rdev->flags))
2663                         err = 0;
2664                 else
2665                         err = -EBUSY;
2666         } else if (cmd_match(buf, "remove")) {
2667                 if (rdev->raid_disk >= 0)
2668                         err = -EBUSY;
2669                 else {
2670                         struct mddev *mddev = rdev->mddev;
2671                         kick_rdev_from_array(rdev);
2672                         if (mddev->pers)
2673                                 md_update_sb(mddev, 1);
2674                         md_new_event(mddev);
2675                         err = 0;
2676                 }
2677         } else if (cmd_match(buf, "writemostly")) {
2678                 set_bit(WriteMostly, &rdev->flags);
2679                 err = 0;
2680         } else if (cmd_match(buf, "-writemostly")) {
2681                 clear_bit(WriteMostly, &rdev->flags);
2682                 err = 0;
2683         } else if (cmd_match(buf, "blocked")) {
2684                 set_bit(Blocked, &rdev->flags);
2685                 err = 0;
2686         } else if (cmd_match(buf, "-blocked")) {
2687                 if (!test_bit(Faulty, &rdev->flags) &&
2688                     rdev->badblocks.unacked_exist) {
2689                         /* metadata handler doesn't understand badblocks,
2690                          * so we need to fail the device
2691                          */
2692                         md_error(rdev->mddev, rdev);
2693                 }
2694                 clear_bit(Blocked, &rdev->flags);
2695                 clear_bit(BlockedBadBlocks, &rdev->flags);
2696                 wake_up(&rdev->blocked_wait);
2697                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2698                 md_wakeup_thread(rdev->mddev->thread);
2699
2700                 err = 0;
2701         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2702                 set_bit(In_sync, &rdev->flags);
2703                 err = 0;
2704         } else if (cmd_match(buf, "write_error")) {
2705                 set_bit(WriteErrorSeen, &rdev->flags);
2706                 err = 0;
2707         } else if (cmd_match(buf, "-write_error")) {
2708                 clear_bit(WriteErrorSeen, &rdev->flags);
2709                 err = 0;
2710         } else if (cmd_match(buf, "want_replacement")) {
2711                 /* Any non-spare device that is not a replacement can
2712                  * become want_replacement at any time, but we then need to
2713                  * check if recovery is needed.
2714                  */
2715                 if (rdev->raid_disk >= 0 &&
2716                     !test_bit(Replacement, &rdev->flags))
2717                         set_bit(WantReplacement, &rdev->flags);
2718                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2719                 md_wakeup_thread(rdev->mddev->thread);
2720                 err = 0;
2721         } else if (cmd_match(buf, "-want_replacement")) {
2722                 /* Clearing 'want_replacement' is always allowed.
2723                  * Once replacements starts it is too late though.
2724                  */
2725                 err = 0;
2726                 clear_bit(WantReplacement, &rdev->flags);
2727         } else if (cmd_match(buf, "replacement")) {
2728                 /* Can only set a device as a replacement when array has not
2729                  * yet been started.  Once running, replacement is automatic
2730                  * from spares, or by assigning 'slot'.
2731                  */
2732                 if (rdev->mddev->pers)
2733                         err = -EBUSY;
2734                 else {
2735                         set_bit(Replacement, &rdev->flags);
2736                         err = 0;
2737                 }
2738         } else if (cmd_match(buf, "-replacement")) {
2739                 /* Similarly, can only clear Replacement before start */
2740                 if (rdev->mddev->pers)
2741                         err = -EBUSY;
2742                 else {
2743                         clear_bit(Replacement, &rdev->flags);
2744                         err = 0;
2745                 }
2746         }
2747         if (!err)
2748                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2749         return err ? err : len;
2750 }
2751 static struct rdev_sysfs_entry rdev_state =
2752 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2753
2754 static ssize_t
2755 errors_show(struct md_rdev *rdev, char *page)
2756 {
2757         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2758 }
2759
2760 static ssize_t
2761 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2762 {
2763         char *e;
2764         unsigned long n = simple_strtoul(buf, &e, 10);
2765         if (*buf && (*e == 0 || *e == '\n')) {
2766                 atomic_set(&rdev->corrected_errors, n);
2767                 return len;
2768         }
2769         return -EINVAL;
2770 }
2771 static struct rdev_sysfs_entry rdev_errors =
2772 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2773
2774 static ssize_t
2775 slot_show(struct md_rdev *rdev, char *page)
2776 {
2777         if (rdev->raid_disk < 0)
2778                 return sprintf(page, "none\n");
2779         else
2780                 return sprintf(page, "%d\n", rdev->raid_disk);
2781 }
2782
2783 static ssize_t
2784 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2785 {
2786         char *e;
2787         int err;
2788         int slot = simple_strtoul(buf, &e, 10);
2789         if (strncmp(buf, "none", 4)==0)
2790                 slot = -1;
2791         else if (e==buf || (*e && *e!= '\n'))
2792                 return -EINVAL;
2793         if (rdev->mddev->pers && slot == -1) {
2794                 /* Setting 'slot' on an active array requires also
2795                  * updating the 'rd%d' link, and communicating
2796                  * with the personality with ->hot_*_disk.
2797                  * For now we only support removing
2798                  * failed/spare devices.  This normally happens automatically,
2799                  * but not when the metadata is externally managed.
2800                  */
2801                 if (rdev->raid_disk == -1)
2802                         return -EEXIST;
2803                 /* personality does all needed checks */
2804                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2805                         return -EINVAL;
2806                 err = rdev->mddev->pers->
2807                         hot_remove_disk(rdev->mddev, rdev);
2808                 if (err)
2809                         return err;
2810                 sysfs_unlink_rdev(rdev->mddev, rdev);
2811                 rdev->raid_disk = -1;
2812                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2813                 md_wakeup_thread(rdev->mddev->thread);
2814         } else if (rdev->mddev->pers) {
2815                 /* Activating a spare .. or possibly reactivating
2816                  * if we ever get bitmaps working here.
2817                  */
2818
2819                 if (rdev->raid_disk != -1)
2820                         return -EBUSY;
2821
2822                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2823                         return -EBUSY;
2824
2825                 if (rdev->mddev->pers->hot_add_disk == NULL)
2826                         return -EINVAL;
2827
2828                 if (slot >= rdev->mddev->raid_disks &&
2829                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2830                         return -ENOSPC;
2831
2832                 rdev->raid_disk = slot;
2833                 if (test_bit(In_sync, &rdev->flags))
2834                         rdev->saved_raid_disk = slot;
2835                 else
2836                         rdev->saved_raid_disk = -1;
2837                 clear_bit(In_sync, &rdev->flags);
2838                 err = rdev->mddev->pers->
2839                         hot_add_disk(rdev->mddev, rdev);
2840                 if (err) {
2841                         rdev->raid_disk = -1;
2842                         return err;
2843                 } else
2844                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2845                 if (sysfs_link_rdev(rdev->mddev, rdev))
2846                         /* failure here is OK */;
2847                 /* don't wakeup anyone, leave that to userspace. */
2848         } else {
2849                 if (slot >= rdev->mddev->raid_disks &&
2850                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2851                         return -ENOSPC;
2852                 rdev->raid_disk = slot;
2853                 /* assume it is working */
2854                 clear_bit(Faulty, &rdev->flags);
2855                 clear_bit(WriteMostly, &rdev->flags);
2856                 set_bit(In_sync, &rdev->flags);
2857                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2858         }
2859         return len;
2860 }
2861
2862
2863 static struct rdev_sysfs_entry rdev_slot =
2864 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2865
2866 static ssize_t
2867 offset_show(struct md_rdev *rdev, char *page)
2868 {
2869         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2870 }
2871
2872 static ssize_t
2873 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2874 {
2875         unsigned long long offset;
2876         if (strict_strtoull(buf, 10, &offset) < 0)
2877                 return -EINVAL;
2878         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2879                 return -EBUSY;
2880         if (rdev->sectors && rdev->mddev->external)
2881                 /* Must set offset before size, so overlap checks
2882                  * can be sane */
2883                 return -EBUSY;
2884         rdev->data_offset = offset;
2885         rdev->new_data_offset = offset;
2886         return len;
2887 }
2888
2889 static struct rdev_sysfs_entry rdev_offset =
2890 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2891
2892 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2893 {
2894         return sprintf(page, "%llu\n",
2895                        (unsigned long long)rdev->new_data_offset);
2896 }
2897
2898 static ssize_t new_offset_store(struct md_rdev *rdev,
2899                                 const char *buf, size_t len)
2900 {
2901         unsigned long long new_offset;
2902         struct mddev *mddev = rdev->mddev;
2903
2904         if (strict_strtoull(buf, 10, &new_offset) < 0)
2905                 return -EINVAL;
2906
2907         if (mddev->sync_thread)
2908                 return -EBUSY;
2909         if (new_offset == rdev->data_offset)
2910                 /* reset is always permitted */
2911                 ;
2912         else if (new_offset > rdev->data_offset) {
2913                 /* must not push array size beyond rdev_sectors */
2914                 if (new_offset - rdev->data_offset
2915                     + mddev->dev_sectors > rdev->sectors)
2916                                 return -E2BIG;
2917         }
2918         /* Metadata worries about other space details. */
2919
2920         /* decreasing the offset is inconsistent with a backwards
2921          * reshape.
2922          */
2923         if (new_offset < rdev->data_offset &&
2924             mddev->reshape_backwards)
2925                 return -EINVAL;
2926         /* Increasing offset is inconsistent with forwards
2927          * reshape.  reshape_direction should be set to
2928          * 'backwards' first.
2929          */
2930         if (new_offset > rdev->data_offset &&
2931             !mddev->reshape_backwards)
2932                 return -EINVAL;
2933
2934         if (mddev->pers && mddev->persistent &&
2935             !super_types[mddev->major_version]
2936             .allow_new_offset(rdev, new_offset))
2937                 return -E2BIG;
2938         rdev->new_data_offset = new_offset;
2939         if (new_offset > rdev->data_offset)
2940                 mddev->reshape_backwards = 1;
2941         else if (new_offset < rdev->data_offset)
2942                 mddev->reshape_backwards = 0;
2943
2944         return len;
2945 }
2946 static struct rdev_sysfs_entry rdev_new_offset =
2947 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2948
2949 static ssize_t
2950 rdev_size_show(struct md_rdev *rdev, char *page)
2951 {
2952         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2953 }
2954
2955 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2956 {
2957         /* check if two start/length pairs overlap */
2958         if (s1+l1 <= s2)
2959                 return 0;
2960         if (s2+l2 <= s1)
2961                 return 0;
2962         return 1;
2963 }
2964
2965 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2966 {
2967         unsigned long long blocks;
2968         sector_t new;
2969
2970         if (strict_strtoull(buf, 10, &blocks) < 0)
2971                 return -EINVAL;
2972
2973         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2974                 return -EINVAL; /* sector conversion overflow */
2975
2976         new = blocks * 2;
2977         if (new != blocks * 2)
2978                 return -EINVAL; /* unsigned long long to sector_t overflow */
2979
2980         *sectors = new;
2981         return 0;
2982 }
2983
2984 static ssize_t
2985 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2986 {
2987         struct mddev *my_mddev = rdev->mddev;
2988         sector_t oldsectors = rdev->sectors;
2989         sector_t sectors;
2990
2991         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2992                 return -EINVAL;
2993         if (rdev->data_offset != rdev->new_data_offset)
2994                 return -EINVAL; /* too confusing */
2995         if (my_mddev->pers && rdev->raid_disk >= 0) {
2996                 if (my_mddev->persistent) {
2997                         sectors = super_types[my_mddev->major_version].
2998                                 rdev_size_change(rdev, sectors);
2999                         if (!sectors)
3000                                 return -EBUSY;
3001                 } else if (!sectors)
3002                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3003                                 rdev->data_offset;
3004         }
3005         if (sectors < my_mddev->dev_sectors)
3006                 return -EINVAL; /* component must fit device */
3007
3008         rdev->sectors = sectors;
3009         if (sectors > oldsectors && my_mddev->external) {
3010                 /* need to check that all other rdevs with the same ->bdev
3011                  * do not overlap.  We need to unlock the mddev to avoid
3012                  * a deadlock.  We have already changed rdev->sectors, and if
3013                  * we have to change it back, we will have the lock again.
3014                  */
3015                 struct mddev *mddev;
3016                 int overlap = 0;
3017                 struct list_head *tmp;
3018
3019                 mddev_unlock(my_mddev);
3020                 for_each_mddev(mddev, tmp) {
3021                         struct md_rdev *rdev2;
3022
3023                         mddev_lock(mddev);
3024                         rdev_for_each(rdev2, mddev)
3025                                 if (rdev->bdev == rdev2->bdev &&
3026                                     rdev != rdev2 &&
3027                                     overlaps(rdev->data_offset, rdev->sectors,
3028                                              rdev2->data_offset,
3029                                              rdev2->sectors)) {
3030                                         overlap = 1;
3031                                         break;
3032                                 }
3033                         mddev_unlock(mddev);
3034                         if (overlap) {
3035                                 mddev_put(mddev);
3036                                 break;
3037                         }
3038                 }
3039                 mddev_lock(my_mddev);
3040                 if (overlap) {
3041                         /* Someone else could have slipped in a size
3042                          * change here, but doing so is just silly.
3043                          * We put oldsectors back because we *know* it is
3044                          * safe, and trust userspace not to race with
3045                          * itself
3046                          */
3047                         rdev->sectors = oldsectors;
3048                         return -EBUSY;
3049                 }
3050         }
3051         return len;
3052 }
3053
3054 static struct rdev_sysfs_entry rdev_size =
3055 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3056
3057
3058 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3059 {
3060         unsigned long long recovery_start = rdev->recovery_offset;
3061
3062         if (test_bit(In_sync, &rdev->flags) ||
3063             recovery_start == MaxSector)
3064                 return sprintf(page, "none\n");
3065
3066         return sprintf(page, "%llu\n", recovery_start);
3067 }
3068
3069 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3070 {
3071         unsigned long long recovery_start;
3072
3073         if (cmd_match(buf, "none"))
3074                 recovery_start = MaxSector;
3075         else if (strict_strtoull(buf, 10, &recovery_start))
3076                 return -EINVAL;
3077
3078         if (rdev->mddev->pers &&
3079             rdev->raid_disk >= 0)
3080                 return -EBUSY;
3081
3082         rdev->recovery_offset = recovery_start;
3083         if (recovery_start == MaxSector)
3084                 set_bit(In_sync, &rdev->flags);
3085         else
3086                 clear_bit(In_sync, &rdev->flags);
3087         return len;
3088 }
3089
3090 static struct rdev_sysfs_entry rdev_recovery_start =
3091 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3092
3093
3094 static ssize_t
3095 badblocks_show(struct badblocks *bb, char *page, int unack);
3096 static ssize_t
3097 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3098
3099 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3100 {
3101         return badblocks_show(&rdev->badblocks, page, 0);
3102 }
3103 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3104 {
3105         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3106         /* Maybe that ack was all we needed */
3107         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3108                 wake_up(&rdev->blocked_wait);
3109         return rv;
3110 }
3111 static struct rdev_sysfs_entry rdev_bad_blocks =
3112 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3113
3114
3115 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3116 {
3117         return badblocks_show(&rdev->badblocks, page, 1);
3118 }
3119 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3120 {
3121         return badblocks_store(&rdev->badblocks, page, len, 1);
3122 }
3123 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3124 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3125
3126 static struct attribute *rdev_default_attrs[] = {
3127         &rdev_state.attr,
3128         &rdev_errors.attr,
3129         &rdev_slot.attr,
3130         &rdev_offset.attr,
3131         &rdev_new_offset.attr,
3132         &rdev_size.attr,
3133         &rdev_recovery_start.attr,
3134         &rdev_bad_blocks.attr,
3135         &rdev_unack_bad_blocks.attr,
3136         NULL,
3137 };
3138 static ssize_t
3139 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3140 {
3141         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3142         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3143         struct mddev *mddev = rdev->mddev;
3144         ssize_t rv;
3145
3146         if (!entry->show)
3147                 return -EIO;
3148
3149         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3150         if (!rv) {
3151                 if (rdev->mddev == NULL)
3152                         rv = -EBUSY;
3153                 else
3154                         rv = entry->show(rdev, page);
3155                 mddev_unlock(mddev);
3156         }
3157         return rv;
3158 }
3159
3160 static ssize_t
3161 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3162               const char *page, size_t length)
3163 {
3164         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3165         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3166         ssize_t rv;
3167         struct mddev *mddev = rdev->mddev;
3168
3169         if (!entry->store)
3170                 return -EIO;
3171         if (!capable(CAP_SYS_ADMIN))
3172                 return -EACCES;
3173         rv = mddev ? mddev_lock(mddev): -EBUSY;
3174         if (!rv) {
3175                 if (rdev->mddev == NULL)
3176                         rv = -EBUSY;
3177                 else
3178                         rv = entry->store(rdev, page, length);
3179                 mddev_unlock(mddev);
3180         }
3181         return rv;
3182 }
3183
3184 static void rdev_free(struct kobject *ko)
3185 {
3186         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3187         kfree(rdev);
3188 }
3189 static const struct sysfs_ops rdev_sysfs_ops = {
3190         .show           = rdev_attr_show,
3191         .store          = rdev_attr_store,
3192 };
3193 static struct kobj_type rdev_ktype = {
3194         .release        = rdev_free,
3195         .sysfs_ops      = &rdev_sysfs_ops,
3196         .default_attrs  = rdev_default_attrs,
3197 };
3198
3199 int md_rdev_init(struct md_rdev *rdev)
3200 {
3201         rdev->desc_nr = -1;
3202         rdev->saved_raid_disk = -1;
3203         rdev->raid_disk = -1;
3204         rdev->flags = 0;
3205         rdev->data_offset = 0;
3206         rdev->new_data_offset = 0;
3207         rdev->sb_events = 0;
3208         rdev->last_read_error.tv_sec  = 0;
3209         rdev->last_read_error.tv_nsec = 0;
3210         rdev->sb_loaded = 0;
3211         rdev->bb_page = NULL;
3212         atomic_set(&rdev->nr_pending, 0);
3213         atomic_set(&rdev->read_errors, 0);
3214         atomic_set(&rdev->corrected_errors, 0);
3215
3216         INIT_LIST_HEAD(&rdev->same_set);
3217         init_waitqueue_head(&rdev->blocked_wait);
3218
3219         /* Add space to store bad block list.
3220          * This reserves the space even on arrays where it cannot
3221          * be used - I wonder if that matters
3222          */
3223         rdev->badblocks.count = 0;
3224         rdev->badblocks.shift = 0;
3225         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3226         seqlock_init(&rdev->badblocks.lock);
3227         if (rdev->badblocks.page == NULL)
3228                 return -ENOMEM;
3229
3230         return 0;
3231 }
3232 EXPORT_SYMBOL_GPL(md_rdev_init);
3233 /*
3234  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3235  *
3236  * mark the device faulty if:
3237  *
3238  *   - the device is nonexistent (zero size)
3239  *   - the device has no valid superblock
3240  *
3241  * a faulty rdev _never_ has rdev->sb set.
3242  */
3243 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3244 {
3245         char b[BDEVNAME_SIZE];
3246         int err;
3247         struct md_rdev *rdev;
3248         sector_t size;
3249
3250         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3251         if (!rdev) {
3252                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3253                 return ERR_PTR(-ENOMEM);
3254         }
3255
3256         err = md_rdev_init(rdev);
3257         if (err)
3258                 goto abort_free;
3259         err = alloc_disk_sb(rdev);
3260         if (err)
3261                 goto abort_free;
3262
3263         err = lock_rdev(rdev, newdev, super_format == -2);
3264         if (err)
3265                 goto abort_free;
3266
3267         kobject_init(&rdev->kobj, &rdev_ktype);
3268
3269         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3270         if (!size) {
3271                 printk(KERN_WARNING 
3272                         "md: %s has zero or unknown size, marking faulty!\n",
3273                         bdevname(rdev->bdev,b));
3274                 err = -EINVAL;
3275                 goto abort_free;
3276         }
3277
3278         if (super_format >= 0) {
3279                 err = super_types[super_format].
3280                         load_super(rdev, NULL, super_minor);
3281                 if (err == -EINVAL) {
3282                         printk(KERN_WARNING
3283                                 "md: %s does not have a valid v%d.%d "
3284                                "superblock, not importing!\n",
3285                                 bdevname(rdev->bdev,b),
3286                                super_format, super_minor);
3287                         goto abort_free;
3288                 }
3289                 if (err < 0) {
3290                         printk(KERN_WARNING 
3291                                 "md: could not read %s's sb, not importing!\n",
3292                                 bdevname(rdev->bdev,b));
3293                         goto abort_free;
3294                 }
3295         }
3296         if (super_format == -1)
3297                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3298                 rdev->badblocks.shift = -1;
3299
3300         return rdev;
3301
3302 abort_free:
3303         if (rdev->bdev)
3304                 unlock_rdev(rdev);
3305         md_rdev_clear(rdev);
3306         kfree(rdev);
3307         return ERR_PTR(err);
3308 }
3309
3310 /*
3311  * Check a full RAID array for plausibility
3312  */
3313
3314
3315 static void analyze_sbs(struct mddev * mddev)
3316 {
3317         int i;
3318         struct md_rdev *rdev, *freshest, *tmp;
3319         char b[BDEVNAME_SIZE];
3320
3321         freshest = NULL;
3322         rdev_for_each_safe(rdev, tmp, mddev)
3323                 switch (super_types[mddev->major_version].
3324                         load_super(rdev, freshest, mddev->minor_version)) {
3325                 case 1:
3326                         freshest = rdev;
3327                         break;
3328                 case 0:
3329                         break;
3330                 default:
3331                         printk( KERN_ERR \
3332                                 "md: fatal superblock inconsistency in %s"
3333                                 " -- removing from array\n", 
3334                                 bdevname(rdev->bdev,b));
3335                         kick_rdev_from_array(rdev);
3336                 }
3337
3338
3339         super_types[mddev->major_version].
3340                 validate_super(mddev, freshest);
3341
3342         i = 0;
3343         rdev_for_each_safe(rdev, tmp, mddev) {
3344                 if (mddev->max_disks &&
3345                     (rdev->desc_nr >= mddev->max_disks ||
3346                      i > mddev->max_disks)) {
3347                         printk(KERN_WARNING
3348                                "md: %s: %s: only %d devices permitted\n",
3349                                mdname(mddev), bdevname(rdev->bdev, b),
3350                                mddev->max_disks);
3351                         kick_rdev_from_array(rdev);
3352                         continue;
3353                 }
3354                 if (rdev != freshest)
3355                         if (super_types[mddev->major_version].
3356                             validate_super(mddev, rdev)) {
3357                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3358                                         " from array!\n",
3359                                         bdevname(rdev->bdev,b));
3360                                 kick_rdev_from_array(rdev);
3361                                 continue;
3362                         }
3363                 if (mddev->level == LEVEL_MULTIPATH) {
3364                         rdev->desc_nr = i++;
3365                         rdev->raid_disk = rdev->desc_nr;
3366                         set_bit(In_sync, &rdev->flags);
3367                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3368                         rdev->raid_disk = -1;
3369                         clear_bit(In_sync, &rdev->flags);
3370                 }
3371         }
3372 }
3373
3374 /* Read a fixed-point number.
3375  * Numbers in sysfs attributes should be in "standard" units where
3376  * possible, so time should be in seconds.
3377  * However we internally use a a much smaller unit such as 
3378  * milliseconds or jiffies.
3379  * This function takes a decimal number with a possible fractional
3380  * component, and produces an integer which is the result of
3381  * multiplying that number by 10^'scale'.
3382  * all without any floating-point arithmetic.
3383  */
3384 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3385 {
3386         unsigned long result = 0;
3387         long decimals = -1;
3388         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3389                 if (*cp == '.')
3390                         decimals = 0;
3391                 else if (decimals < scale) {
3392                         unsigned int value;
3393                         value = *cp - '0';
3394                         result = result * 10 + value;
3395                         if (decimals >= 0)
3396                                 decimals++;
3397                 }
3398                 cp++;
3399         }
3400         if (*cp == '\n')
3401                 cp++;
3402         if (*cp)
3403                 return -EINVAL;
3404         if (decimals < 0)
3405                 decimals = 0;
3406         while (decimals < scale) {
3407                 result *= 10;
3408                 decimals ++;
3409         }
3410         *res = result;
3411         return 0;
3412 }
3413
3414
3415 static void md_safemode_timeout(unsigned long data);
3416
3417 static ssize_t
3418 safe_delay_show(struct mddev *mddev, char *page)
3419 {
3420         int msec = (mddev->safemode_delay*1000)/HZ;
3421         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3422 }
3423 static ssize_t
3424 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3425 {
3426         unsigned long msec;
3427
3428         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3429                 return -EINVAL;
3430         if (msec == 0)
3431                 mddev->safemode_delay = 0;
3432         else {
3433                 unsigned long old_delay = mddev->safemode_delay;
3434                 mddev->safemode_delay = (msec*HZ)/1000;
3435                 if (mddev->safemode_delay == 0)
3436                         mddev->safemode_delay = 1;
3437                 if (mddev->safemode_delay < old_delay)
3438                         md_safemode_timeout((unsigned long)mddev);
3439         }
3440         return len;
3441 }
3442 static struct md_sysfs_entry md_safe_delay =
3443 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3444
3445 static ssize_t
3446 level_show(struct mddev *mddev, char *page)
3447 {
3448         struct md_personality *p = mddev->pers;
3449         if (p)
3450                 return sprintf(page, "%s\n", p->name);
3451         else if (mddev->clevel[0])
3452                 return sprintf(page, "%s\n", mddev->clevel);
3453         else if (mddev->level != LEVEL_NONE)
3454                 return sprintf(page, "%d\n", mddev->level);
3455         else
3456                 return 0;
3457 }
3458
3459 static ssize_t
3460 level_store(struct mddev *mddev, const char *buf, size_t len)
3461 {
3462         char clevel[16];
3463         ssize_t rv = len;
3464         struct md_personality *pers;
3465         long level;
3466         void *priv;
3467         struct md_rdev *rdev;
3468
3469         if (mddev->pers == NULL) {
3470                 if (len == 0)
3471                         return 0;
3472                 if (len >= sizeof(mddev->clevel))
3473                         return -ENOSPC;
3474                 strncpy(mddev->clevel, buf, len);
3475                 if (mddev->clevel[len-1] == '\n')
3476                         len--;
3477                 mddev->clevel[len] = 0;
3478                 mddev->level = LEVEL_NONE;
3479                 return rv;
3480         }
3481
3482         /* request to change the personality.  Need to ensure:
3483          *  - array is not engaged in resync/recovery/reshape
3484          *  - old personality can be suspended
3485          *  - new personality will access other array.
3486          */
3487
3488         if (mddev->sync_thread ||
3489             mddev->reshape_position != MaxSector ||
3490             mddev->sysfs_active)
3491                 return -EBUSY;
3492
3493         if (!mddev->pers->quiesce) {
3494                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3495                        mdname(mddev), mddev->pers->name);
3496                 return -EINVAL;
3497         }
3498
3499         /* Now find the new personality */
3500         if (len == 0 || len >= sizeof(clevel))
3501                 return -EINVAL;
3502         strncpy(clevel, buf, len);
3503         if (clevel[len-1] == '\n')
3504                 len--;
3505         clevel[len] = 0;
3506         if (strict_strtol(clevel, 10, &level))
3507                 level = LEVEL_NONE;
3508
3509         if (request_module("md-%s", clevel) != 0)
3510                 request_module("md-level-%s", clevel);
3511         spin_lock(&pers_lock);
3512         pers = find_pers(level, clevel);
3513         if (!pers || !try_module_get(pers->owner)) {
3514                 spin_unlock(&pers_lock);
3515                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3516                 return -EINVAL;
3517         }
3518         spin_unlock(&pers_lock);
3519
3520         if (pers == mddev->pers) {
3521                 /* Nothing to do! */
3522                 module_put(pers->owner);
3523                 return rv;
3524         }
3525         if (!pers->takeover) {
3526                 module_put(pers->owner);
3527                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3528                        mdname(mddev), clevel);
3529                 return -EINVAL;
3530         }
3531
3532         rdev_for_each(rdev, mddev)
3533                 rdev->new_raid_disk = rdev->raid_disk;
3534
3535         /* ->takeover must set new_* and/or delta_disks
3536          * if it succeeds, and may set them when it fails.
3537          */
3538         priv = pers->takeover(mddev);
3539         if (IS_ERR(priv)) {
3540                 mddev->new_level = mddev->level;
3541                 mddev->new_layout = mddev->layout;
3542                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3543                 mddev->raid_disks -= mddev->delta_disks;
3544                 mddev->delta_disks = 0;
3545                 mddev->reshape_backwards = 0;
3546                 module_put(pers->owner);
3547                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3548                        mdname(mddev), clevel);
3549                 return PTR_ERR(priv);
3550         }
3551
3552         /* Looks like we have a winner */
3553         mddev_suspend(mddev);
3554         mddev->pers->stop(mddev);
3555         
3556         if (mddev->pers->sync_request == NULL &&
3557             pers->sync_request != NULL) {
3558                 /* need to add the md_redundancy_group */
3559                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3560                         printk(KERN_WARNING
3561                                "md: cannot register extra attributes for %s\n",
3562                                mdname(mddev));
3563                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3564         }               
3565         if (mddev->pers->sync_request != NULL &&
3566             pers->sync_request == NULL) {
3567                 /* need to remove the md_redundancy_group */
3568                 if (mddev->to_remove == NULL)
3569                         mddev->to_remove = &md_redundancy_group;
3570         }
3571
3572         if (mddev->pers->sync_request == NULL &&
3573             mddev->external) {
3574                 /* We are converting from a no-redundancy array
3575                  * to a redundancy array and metadata is managed
3576                  * externally so we need to be sure that writes
3577                  * won't block due to a need to transition
3578                  *      clean->dirty
3579                  * until external management is started.
3580                  */
3581                 mddev->in_sync = 0;
3582                 mddev->safemode_delay = 0;
3583                 mddev->safemode = 0;
3584         }
3585
3586         rdev_for_each(rdev, mddev) {
3587                 if (rdev->raid_disk < 0)
3588                         continue;
3589                 if (rdev->new_raid_disk >= mddev->raid_disks)
3590                         rdev->new_raid_disk = -1;
3591                 if (rdev->new_raid_disk == rdev->raid_disk)
3592                         continue;
3593                 sysfs_unlink_rdev(mddev, rdev);
3594         }
3595         rdev_for_each(rdev, mddev) {
3596                 if (rdev->raid_disk < 0)
3597                         continue;
3598                 if (rdev->new_raid_disk == rdev->raid_disk)
3599                         continue;
3600                 rdev->raid_disk = rdev->new_raid_disk;
3601                 if (rdev->raid_disk < 0)
3602                         clear_bit(In_sync, &rdev->flags);
3603                 else {
3604                         if (sysfs_link_rdev(mddev, rdev))
3605                                 printk(KERN_WARNING "md: cannot register rd%d"
3606                                        " for %s after level change\n",
3607                                        rdev->raid_disk, mdname(mddev));
3608                 }
3609         }
3610
3611         module_put(mddev->pers->owner);
3612         mddev->pers = pers;
3613         mddev->private = priv;
3614         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3615         mddev->level = mddev->new_level;
3616         mddev->layout = mddev->new_layout;
3617         mddev->chunk_sectors = mddev->new_chunk_sectors;
3618         mddev->delta_disks = 0;
3619         mddev->reshape_backwards = 0;
3620         mddev->degraded = 0;
3621         if (mddev->pers->sync_request == NULL) {
3622                 /* this is now an array without redundancy, so
3623                  * it must always be in_sync
3624                  */
3625                 mddev->in_sync = 1;
3626                 del_timer_sync(&mddev->safemode_timer);
3627         }
3628         pers->run(mddev);
3629         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3630         mddev_resume(mddev);
3631         sysfs_notify(&mddev->kobj, NULL, "level");
3632         md_new_event(mddev);
3633         return rv;
3634 }
3635
3636 static struct md_sysfs_entry md_level =
3637 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3638
3639
3640 static ssize_t
3641 layout_show(struct mddev *mddev, char *page)
3642 {
3643         /* just a number, not meaningful for all levels */
3644         if (mddev->reshape_position != MaxSector &&
3645             mddev->layout != mddev->new_layout)
3646                 return sprintf(page, "%d (%d)\n",
3647                                mddev->new_layout, mddev->layout);
3648         return sprintf(page, "%d\n", mddev->layout);
3649 }
3650
3651 static ssize_t
3652 layout_store(struct mddev *mddev, const char *buf, size_t len)
3653 {
3654         char *e;
3655         unsigned long n = simple_strtoul(buf, &e, 10);
3656
3657         if (!*buf || (*e && *e != '\n'))
3658                 return -EINVAL;
3659
3660         if (mddev->pers) {
3661                 int err;
3662                 if (mddev->pers->check_reshape == NULL)
3663                         return -EBUSY;
3664                 mddev->new_layout = n;
3665                 err = mddev->pers->check_reshape(mddev);
3666                 if (err) {
3667                         mddev->new_layout = mddev->layout;
3668                         return err;
3669                 }
3670         } else {
3671                 mddev->new_layout = n;
3672                 if (mddev->reshape_position == MaxSector)
3673                         mddev->layout = n;
3674         }
3675         return len;
3676 }
3677 static struct md_sysfs_entry md_layout =
3678 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3679
3680
3681 static ssize_t
3682 raid_disks_show(struct mddev *mddev, char *page)
3683 {
3684         if (mddev->raid_disks == 0)
3685                 return 0;
3686         if (mddev->reshape_position != MaxSector &&
3687             mddev->delta_disks != 0)
3688                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3689                                mddev->raid_disks - mddev->delta_disks);
3690         return sprintf(page, "%d\n", mddev->raid_disks);
3691 }
3692
3693 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3694
3695 static ssize_t
3696 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3697 {
3698         char *e;
3699         int rv = 0;
3700         unsigned long n = simple_strtoul(buf, &e, 10);
3701
3702         if (!*buf || (*e && *e != '\n'))
3703                 return -EINVAL;
3704
3705         if (mddev->pers)
3706                 rv = update_raid_disks(mddev, n);
3707         else if (mddev->reshape_position != MaxSector) {
3708                 struct md_rdev *rdev;
3709                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3710
3711                 rdev_for_each(rdev, mddev) {
3712                         if (olddisks < n &&
3713                             rdev->data_offset < rdev->new_data_offset)
3714                                 return -EINVAL;
3715                         if (olddisks > n &&
3716                             rdev->data_offset > rdev->new_data_offset)
3717                                 return -EINVAL;
3718                 }
3719                 mddev->delta_disks = n - olddisks;
3720                 mddev->raid_disks = n;
3721                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3722         } else
3723                 mddev->raid_disks = n;
3724         return rv ? rv : len;
3725 }
3726 static struct md_sysfs_entry md_raid_disks =
3727 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3728
3729 static ssize_t
3730 chunk_size_show(struct mddev *mddev, char *page)
3731 {
3732         if (mddev->reshape_position != MaxSector &&
3733             mddev->chunk_sectors != mddev->new_chunk_sectors)
3734                 return sprintf(page, "%d (%d)\n",
3735                                mddev->new_chunk_sectors << 9,
3736                                mddev->chunk_sectors << 9);
3737         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3738 }
3739
3740 static ssize_t
3741 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3742 {
3743         char *e;
3744         unsigned long n = simple_strtoul(buf, &e, 10);
3745
3746         if (!*buf || (*e && *e != '\n'))
3747                 return -EINVAL;
3748
3749         if (mddev->pers) {
3750                 int err;
3751                 if (mddev->pers->check_reshape == NULL)
3752                         return -EBUSY;
3753                 mddev->new_chunk_sectors = n >> 9;
3754                 err = mddev->pers->check_reshape(mddev);
3755                 if (err) {
3756                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3757                         return err;
3758                 }
3759         } else {
3760                 mddev->new_chunk_sectors = n >> 9;
3761                 if (mddev->reshape_position == MaxSector)
3762                         mddev->chunk_sectors = n >> 9;
3763         }
3764         return len;
3765 }
3766 static struct md_sysfs_entry md_chunk_size =
3767 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3768
3769 static ssize_t
3770 resync_start_show(struct mddev *mddev, char *page)
3771 {
3772         if (mddev->recovery_cp == MaxSector)
3773                 return sprintf(page, "none\n");
3774         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3775 }
3776
3777 static ssize_t
3778 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3779 {
3780         char *e;
3781         unsigned long long n = simple_strtoull(buf, &e, 10);
3782
3783         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3784                 return -EBUSY;
3785         if (cmd_match(buf, "none"))
3786                 n = MaxSector;
3787         else if (!*buf || (*e && *e != '\n'))
3788                 return -EINVAL;
3789
3790         mddev->recovery_cp = n;
3791         return len;
3792 }
3793 static struct md_sysfs_entry md_resync_start =
3794 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3795
3796 /*
3797  * The array state can be:
3798  *
3799  * clear
3800  *     No devices, no size, no level
3801  *     Equivalent to STOP_ARRAY ioctl
3802  * inactive
3803  *     May have some settings, but array is not active
3804  *        all IO results in error
3805  *     When written, doesn't tear down array, but just stops it
3806  * suspended (not supported yet)
3807  *     All IO requests will block. The array can be reconfigured.
3808  *     Writing this, if accepted, will block until array is quiescent
3809  * readonly
3810  *     no resync can happen.  no superblocks get written.
3811  *     write requests fail
3812  * read-auto
3813  *     like readonly, but behaves like 'clean' on a write request.
3814  *
3815  * clean - no pending writes, but otherwise active.
3816  *     When written to inactive array, starts without resync
3817  *     If a write request arrives then
3818  *       if metadata is known, mark 'dirty' and switch to 'active'.
3819  *       if not known, block and switch to write-pending
3820  *     If written to an active array that has pending writes, then fails.
3821  * active
3822  *     fully active: IO and resync can be happening.
3823  *     When written to inactive array, starts with resync
3824  *
3825  * write-pending
3826  *     clean, but writes are blocked waiting for 'active' to be written.
3827  *
3828  * active-idle
3829  *     like active, but no writes have been seen for a while (100msec).
3830  *
3831  */
3832 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3833                    write_pending, active_idle, bad_word};
3834 static char *array_states[] = {
3835         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3836         "write-pending", "active-idle", NULL };
3837
3838 static int match_word(const char *word, char **list)
3839 {
3840         int n;
3841         for (n=0; list[n]; n++)
3842                 if (cmd_match(word, list[n]))
3843                         break;
3844         return n;
3845 }
3846
3847 static ssize_t
3848 array_state_show(struct mddev *mddev, char *page)
3849 {
3850         enum array_state st = inactive;
3851
3852         if (mddev->pers)
3853                 switch(mddev->ro) {
3854                 case 1:
3855                         st = readonly;
3856                         break;
3857                 case 2:
3858                         st = read_auto;
3859                         break;
3860                 case 0:
3861                         if (mddev->in_sync)
3862                                 st = clean;
3863                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3864                                 st = write_pending;
3865                         else if (mddev->safemode)
3866                                 st = active_idle;
3867                         else
3868                                 st = active;
3869                 }
3870         else {
3871                 if (list_empty(&mddev->disks) &&
3872                     mddev->raid_disks == 0 &&
3873                     mddev->dev_sectors == 0)
3874                         st = clear;
3875                 else
3876                         st = inactive;
3877         }
3878         return sprintf(page, "%s\n", array_states[st]);
3879 }
3880
3881 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3882 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3883 static int do_md_run(struct mddev * mddev);
3884 static int restart_array(struct mddev *mddev);
3885
3886 static ssize_t
3887 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3888 {
3889         int err = -EINVAL;
3890         enum array_state st = match_word(buf, array_states);
3891         switch(st) {
3892         case bad_word:
3893                 break;
3894         case clear:
3895                 /* stopping an active array */
3896                 if (atomic_read(&mddev->openers) > 0)
3897                         return -EBUSY;
3898                 err = do_md_stop(mddev, 0, NULL);
3899                 break;
3900         case inactive:
3901                 /* stopping an active array */
3902                 if (mddev->pers) {
3903                         if (atomic_read(&mddev->openers) > 0)
3904                                 return -EBUSY;
3905                         err = do_md_stop(mddev, 2, NULL);
3906                 } else
3907                         err = 0; /* already inactive */
3908                 break;
3909         case suspended:
3910                 break; /* not supported yet */
3911         case readonly:
3912                 if (mddev->pers)
3913                         err = md_set_readonly(mddev, NULL);
3914                 else {
3915                         mddev->ro = 1;
3916                         set_disk_ro(mddev->gendisk, 1);
3917                         err = do_md_run(mddev);
3918                 }
3919                 break;
3920         case read_auto:
3921                 if (mddev->pers) {
3922                         if (mddev->ro == 0)
3923                                 err = md_set_readonly(mddev, NULL);
3924                         else if (mddev->ro == 1)
3925                                 err = restart_array(mddev);
3926                         if (err == 0) {
3927                                 mddev->ro = 2;
3928                                 set_disk_ro(mddev->gendisk, 0);
3929                         }
3930                 } else {
3931                         mddev->ro = 2;
3932                         err = do_md_run(mddev);
3933                 }
3934                 break;
3935         case clean:
3936                 if (mddev->pers) {
3937                         restart_array(mddev);
3938                         spin_lock_irq(&mddev->write_lock);
3939                         if (atomic_read(&mddev->writes_pending) == 0) {
3940                                 if (mddev->in_sync == 0) {
3941                                         mddev->in_sync = 1;
3942                                         if (mddev->safemode == 1)
3943                                                 mddev->safemode = 0;
3944                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3945                                 }
3946                                 err = 0;
3947                         } else
3948                                 err = -EBUSY;
3949                         spin_unlock_irq(&mddev->write_lock);
3950                 } else
3951                         err = -EINVAL;
3952                 break;
3953         case active:
3954                 if (mddev->pers) {
3955                         restart_array(mddev);
3956                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3957                         wake_up(&mddev->sb_wait);
3958                         err = 0;
3959                 } else {
3960                         mddev->ro = 0;
3961                         set_disk_ro(mddev->gendisk, 0);
3962                         err = do_md_run(mddev);
3963                 }
3964                 break;
3965         case write_pending:
3966         case active_idle:
3967                 /* these cannot be set */
3968                 break;
3969         }
3970         if (err)
3971                 return err;
3972         else {
3973                 if (mddev->hold_active == UNTIL_IOCTL)
3974                         mddev->hold_active = 0;
3975                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3976                 return len;
3977         }
3978 }
3979 static struct md_sysfs_entry md_array_state =
3980 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3981
3982 static ssize_t
3983 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3984         return sprintf(page, "%d\n",
3985                        atomic_read(&mddev->max_corr_read_errors));
3986 }
3987
3988 static ssize_t
3989 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3990 {
3991         char *e;
3992         unsigned long n = simple_strtoul(buf, &e, 10);
3993
3994         if (*buf && (*e == 0 || *e == '\n')) {
3995                 atomic_set(&mddev->max_corr_read_errors, n);
3996                 return len;
3997         }
3998         return -EINVAL;
3999 }
4000
4001 static struct md_sysfs_entry max_corr_read_errors =
4002 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4003         max_corrected_read_errors_store);
4004
4005 static ssize_t
4006 null_show(struct mddev *mddev, char *page)
4007 {
4008         return -EINVAL;
4009 }
4010
4011 static ssize_t
4012 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4013 {
4014         /* buf must be %d:%d\n? giving major and minor numbers */
4015         /* The new device is added to the array.
4016          * If the array has a persistent superblock, we read the
4017          * superblock to initialise info and check validity.
4018          * Otherwise, only checking done is that in bind_rdev_to_array,
4019          * which mainly checks size.
4020          */
4021         char *e;
4022         int major = simple_strtoul(buf, &e, 10);
4023         int minor;
4024         dev_t dev;
4025         struct md_rdev *rdev;
4026         int err;
4027
4028         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4029                 return -EINVAL;
4030         minor = simple_strtoul(e+1, &e, 10);
4031         if (*e && *e != '\n')
4032                 return -EINVAL;
4033         dev = MKDEV(major, minor);
4034         if (major != MAJOR(dev) ||
4035             minor != MINOR(dev))
4036                 return -EOVERFLOW;
4037
4038
4039         if (mddev->persistent) {
4040                 rdev = md_import_device(dev, mddev->major_version,
4041                                         mddev->minor_version);
4042                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4043                         struct md_rdev *rdev0
4044                                 = list_entry(mddev->disks.next,
4045                                              struct md_rdev, same_set);
4046                         err = super_types[mddev->major_version]
4047                                 .load_super(rdev, rdev0, mddev->minor_version);
4048                         if (err < 0)
4049                                 goto out;
4050                 }
4051         } else if (mddev->external)
4052                 rdev = md_import_device(dev, -2, -1);
4053         else
4054                 rdev = md_import_device(dev, -1, -1);
4055
4056         if (IS_ERR(rdev))
4057                 return PTR_ERR(rdev);
4058         err = bind_rdev_to_array(rdev, mddev);
4059  out:
4060         if (err)
4061                 export_rdev(rdev);
4062         return err ? err : len;
4063 }
4064
4065 static struct md_sysfs_entry md_new_device =
4066 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4067
4068 static ssize_t
4069 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4070 {
4071         char *end;
4072         unsigned long chunk, end_chunk;
4073
4074         if (!mddev->bitmap)
4075                 goto out;
4076         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4077         while (*buf) {
4078                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4079                 if (buf == end) break;
4080                 if (*end == '-') { /* range */
4081                         buf = end + 1;
4082                         end_chunk = simple_strtoul(buf, &end, 0);
4083                         if (buf == end) break;
4084                 }
4085                 if (*end && !isspace(*end)) break;
4086                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4087                 buf = skip_spaces(end);
4088         }
4089         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4090 out:
4091         return len;
4092 }
4093
4094 static struct md_sysfs_entry md_bitmap =
4095 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4096
4097 static ssize_t
4098 size_show(struct mddev *mddev, char *page)
4099 {
4100         return sprintf(page, "%llu\n",
4101                 (unsigned long long)mddev->dev_sectors / 2);
4102 }
4103
4104 static int update_size(struct mddev *mddev, sector_t num_sectors);
4105
4106 static ssize_t
4107 size_store(struct mddev *mddev, const char *buf, size_t len)
4108 {
4109         /* If array is inactive, we can reduce the component size, but
4110          * not increase it (except from 0).
4111          * If array is active, we can try an on-line resize
4112          */
4113         sector_t sectors;
4114         int err = strict_blocks_to_sectors(buf, &sectors);
4115
4116         if (err < 0)
4117                 return err;
4118         if (mddev->pers) {
4119                 err = update_size(mddev, sectors);
4120                 md_update_sb(mddev, 1);
4121         } else {
4122                 if (mddev->dev_sectors == 0 ||
4123                     mddev->dev_sectors > sectors)
4124                         mddev->dev_sectors = sectors;
4125                 else
4126                         err = -ENOSPC;
4127         }
4128         return err ? err : len;
4129 }
4130
4131 static struct md_sysfs_entry md_size =
4132 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4133
4134
4135 /* Metdata version.
4136  * This is one of
4137  *   'none' for arrays with no metadata (good luck...)
4138  *   'external' for arrays with externally managed metadata,
4139  * or N.M for internally known formats
4140  */
4141 static ssize_t
4142 metadata_show(struct mddev *mddev, char *page)
4143 {
4144         if (mddev->persistent)
4145                 return sprintf(page, "%d.%d\n",
4146                                mddev->major_version, mddev->minor_version);
4147         else if (mddev->external)
4148                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4149         else
4150                 return sprintf(page, "none\n");
4151 }
4152
4153 static ssize_t
4154 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4155 {
4156         int major, minor;
4157         char *e;
4158         /* Changing the details of 'external' metadata is
4159          * always permitted.  Otherwise there must be
4160          * no devices attached to the array.
4161          */
4162         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4163                 ;
4164         else if (!list_empty(&mddev->disks))
4165                 return -EBUSY;
4166
4167         if (cmd_match(buf, "none")) {
4168                 mddev->persistent = 0;
4169                 mddev->external = 0;
4170                 mddev->major_version = 0;
4171                 mddev->minor_version = 90;
4172                 return len;
4173         }
4174         if (strncmp(buf, "external:", 9) == 0) {
4175                 size_t namelen = len-9;
4176                 if (namelen >= sizeof(mddev->metadata_type))
4177                         namelen = sizeof(mddev->metadata_type)-1;
4178                 strncpy(mddev->metadata_type, buf+9, namelen);
4179                 mddev->metadata_type[namelen] = 0;
4180                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4181                         mddev->metadata_type[--namelen] = 0;
4182                 mddev->persistent = 0;
4183                 mddev->external = 1;
4184                 mddev->major_version = 0;
4185                 mddev->minor_version = 90;
4186                 return len;
4187         }
4188         major = simple_strtoul(buf, &e, 10);
4189         if (e==buf || *e != '.')
4190                 return -EINVAL;
4191         buf = e+1;
4192         minor = simple_strtoul(buf, &e, 10);
4193         if (e==buf || (*e && *e != '\n') )
4194                 return -EINVAL;
4195         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4196                 return -ENOENT;
4197         mddev->major_version = major;
4198         mddev->minor_version = minor;
4199         mddev->persistent = 1;
4200         mddev->external = 0;
4201         return len;
4202 }
4203
4204 static struct md_sysfs_entry md_metadata =
4205 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4206
4207 static ssize_t
4208 action_show(struct mddev *mddev, char *page)
4209 {
4210         char *type = "idle";
4211         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4212                 type = "frozen";
4213         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4214             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4215                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4216                         type = "reshape";
4217                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4218                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4219                                 type = "resync";
4220                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4221                                 type = "check";
4222                         else
4223                                 type = "repair";
4224                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4225                         type = "recover";
4226         }
4227         return sprintf(page, "%s\n", type);
4228 }
4229
4230 static void reap_sync_thread(struct mddev *mddev);
4231
4232 static ssize_t
4233 action_store(struct mddev *mddev, const char *page, size_t len)
4234 {
4235         if (!mddev->pers || !mddev->pers->sync_request)
4236                 return -EINVAL;
4237
4238         if (cmd_match(page, "frozen"))
4239                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4240         else
4241                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4242
4243         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4244                 if (mddev->sync_thread) {
4245                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4246                         reap_sync_thread(mddev);
4247                 }
4248         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4249                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4250                 return -EBUSY;
4251         else if (cmd_match(page, "resync"))
4252                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4253         else if (cmd_match(page, "recover")) {
4254                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4255                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4256         } else if (cmd_match(page, "reshape")) {
4257                 int err;
4258                 if (mddev->pers->start_reshape == NULL)
4259                         return -EINVAL;
4260                 err = mddev->pers->start_reshape(mddev);
4261                 if (err)
4262                         return err;
4263                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4264         } else {
4265                 if (cmd_match(page, "check"))
4266                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4267                 else if (!cmd_match(page, "repair"))
4268                         return -EINVAL;
4269                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4270                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4271         }
4272         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4273         md_wakeup_thread(mddev->thread);
4274         sysfs_notify_dirent_safe(mddev->sysfs_action);
4275         return len;
4276 }
4277
4278 static ssize_t
4279 mismatch_cnt_show(struct mddev *mddev, char *page)
4280 {
4281         return sprintf(page, "%llu\n",
4282                        (unsigned long long) mddev->resync_mismatches);
4283 }
4284
4285 static struct md_sysfs_entry md_scan_mode =
4286 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4287
4288
4289 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4290
4291 static ssize_t
4292 sync_min_show(struct mddev *mddev, char *page)
4293 {
4294         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4295                        mddev->sync_speed_min ? "local": "system");
4296 }
4297
4298 static ssize_t
4299 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301         int min;
4302         char *e;
4303         if (strncmp(buf, "system", 6)==0) {
4304                 mddev->sync_speed_min = 0;
4305                 return len;
4306         }
4307         min = simple_strtoul(buf, &e, 10);
4308         if (buf == e || (*e && *e != '\n') || min <= 0)
4309                 return -EINVAL;
4310         mddev->sync_speed_min = min;
4311         return len;
4312 }
4313
4314 static struct md_sysfs_entry md_sync_min =
4315 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4316
4317 static ssize_t
4318 sync_max_show(struct mddev *mddev, char *page)
4319 {
4320         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4321                        mddev->sync_speed_max ? "local": "system");
4322 }
4323
4324 static ssize_t
4325 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4326 {
4327         int max;
4328         char *e;
4329         if (strncmp(buf, "system", 6)==0) {
4330                 mddev->sync_speed_max = 0;
4331                 return len;
4332         }
4333         max = simple_strtoul(buf, &e, 10);
4334         if (buf == e || (*e && *e != '\n') || max <= 0)
4335                 return -EINVAL;
4336         mddev->sync_speed_max = max;
4337         return len;
4338 }
4339
4340 static struct md_sysfs_entry md_sync_max =
4341 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4342
4343 static ssize_t
4344 degraded_show(struct mddev *mddev, char *page)
4345 {
4346         return sprintf(page, "%d\n", mddev->degraded);
4347 }
4348 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4349
4350 static ssize_t
4351 sync_force_parallel_show(struct mddev *mddev, char *page)
4352 {
4353         return sprintf(page, "%d\n", mddev->parallel_resync);
4354 }
4355
4356 static ssize_t
4357 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4358 {
4359         long n;
4360
4361         if (strict_strtol(buf, 10, &n))
4362                 return -EINVAL;
4363
4364         if (n != 0 && n != 1)
4365                 return -EINVAL;
4366
4367         mddev->parallel_resync = n;
4368
4369         if (mddev->sync_thread)
4370                 wake_up(&resync_wait);
4371
4372         return len;
4373 }
4374
4375 /* force parallel resync, even with shared block devices */
4376 static struct md_sysfs_entry md_sync_force_parallel =
4377 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4378        sync_force_parallel_show, sync_force_parallel_store);
4379
4380 static ssize_t
4381 sync_speed_show(struct mddev *mddev, char *page)
4382 {
4383         unsigned long resync, dt, db;
4384         if (mddev->curr_resync == 0)
4385                 return sprintf(page, "none\n");
4386         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4387         dt = (jiffies - mddev->resync_mark) / HZ;
4388         if (!dt) dt++;
4389         db = resync - mddev->resync_mark_cnt;
4390         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4391 }
4392
4393 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4394
4395 static ssize_t
4396 sync_completed_show(struct mddev *mddev, char *page)
4397 {
4398         unsigned long long max_sectors, resync;
4399
4400         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4401                 return sprintf(page, "none\n");
4402
4403         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4404             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4405                 max_sectors = mddev->resync_max_sectors;
4406         else
4407                 max_sectors = mddev->dev_sectors;
4408
4409         resync = mddev->curr_resync_completed;
4410         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4411 }
4412
4413 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4414
4415 static ssize_t
4416 min_sync_show(struct mddev *mddev, char *page)
4417 {
4418         return sprintf(page, "%llu\n",
4419                        (unsigned long long)mddev->resync_min);
4420 }
4421 static ssize_t
4422 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4423 {
4424         unsigned long long min;
4425         if (strict_strtoull(buf, 10, &min))
4426                 return -EINVAL;
4427         if (min > mddev->resync_max)
4428                 return -EINVAL;
4429         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4430                 return -EBUSY;
4431
4432         /* Must be a multiple of chunk_size */
4433         if (mddev->chunk_sectors) {
4434                 sector_t temp = min;
4435                 if (sector_div(temp, mddev->chunk_sectors))
4436                         return -EINVAL;
4437         }
4438         mddev->resync_min = min;
4439
4440         return len;
4441 }
4442
4443 static struct md_sysfs_entry md_min_sync =
4444 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4445
4446 static ssize_t
4447 max_sync_show(struct mddev *mddev, char *page)
4448 {
4449         if (mddev->resync_max == MaxSector)
4450                 return sprintf(page, "max\n");
4451         else
4452                 return sprintf(page, "%llu\n",
4453                                (unsigned long long)mddev->resync_max);
4454 }
4455 static ssize_t
4456 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4457 {
4458         if (strncmp(buf, "max", 3) == 0)
4459                 mddev->resync_max = MaxSector;
4460         else {
4461                 unsigned long long max;
4462                 if (strict_strtoull(buf, 10, &max))
4463                         return -EINVAL;
4464                 if (max < mddev->resync_min)
4465                         return -EINVAL;
4466                 if (max < mddev->resync_max &&
4467                     mddev->ro == 0 &&
4468                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4469                         return -EBUSY;
4470
4471                 /* Must be a multiple of chunk_size */
4472                 if (mddev->chunk_sectors) {
4473                         sector_t temp = max;
4474                         if (sector_div(temp, mddev->chunk_sectors))
4475                                 return -EINVAL;
4476                 }
4477                 mddev->resync_max = max;
4478         }
4479         wake_up(&mddev->recovery_wait);
4480         return len;
4481 }
4482
4483 static struct md_sysfs_entry md_max_sync =
4484 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4485
4486 static ssize_t
4487 suspend_lo_show(struct mddev *mddev, char *page)
4488 {
4489         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4490 }
4491
4492 static ssize_t
4493 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4494 {
4495         char *e;
4496         unsigned long long new = simple_strtoull(buf, &e, 10);
4497         unsigned long long old = mddev->suspend_lo;
4498
4499         if (mddev->pers == NULL || 
4500             mddev->pers->quiesce == NULL)
4501                 return -EINVAL;
4502         if (buf == e || (*e && *e != '\n'))
4503                 return -EINVAL;
4504
4505         mddev->suspend_lo = new;
4506         if (new >= old)
4507                 /* Shrinking suspended region */
4508                 mddev->pers->quiesce(mddev, 2);
4509         else {
4510                 /* Expanding suspended region - need to wait */
4511                 mddev->pers->quiesce(mddev, 1);
4512                 mddev->pers->quiesce(mddev, 0);
4513         }
4514         return len;
4515 }
4516 static struct md_sysfs_entry md_suspend_lo =
4517 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4518
4519
4520 static ssize_t
4521 suspend_hi_show(struct mddev *mddev, char *page)
4522 {
4523         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4524 }
4525
4526 static ssize_t
4527 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4528 {
4529         char *e;
4530         unsigned long long new = simple_strtoull(buf, &e, 10);
4531         unsigned long long old = mddev->suspend_hi;
4532
4533         if (mddev->pers == NULL ||
4534             mddev->pers->quiesce == NULL)
4535                 return -EINVAL;
4536         if (buf == e || (*e && *e != '\n'))
4537                 return -EINVAL;
4538
4539         mddev->suspend_hi = new;
4540         if (new <= old)
4541                 /* Shrinking suspended region */
4542                 mddev->pers->quiesce(mddev, 2);
4543         else {
4544                 /* Expanding suspended region - need to wait */
4545                 mddev->pers->quiesce(mddev, 1);
4546                 mddev->pers->quiesce(mddev, 0);
4547         }
4548         return len;
4549 }
4550 static struct md_sysfs_entry md_suspend_hi =
4551 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4552
4553 static ssize_t
4554 reshape_position_show(struct mddev *mddev, char *page)
4555 {
4556         if (mddev->reshape_position != MaxSector)
4557                 return sprintf(page, "%llu\n",
4558                                (unsigned long long)mddev->reshape_position);
4559         strcpy(page, "none\n");
4560         return 5;
4561 }
4562
4563 static ssize_t
4564 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4565 {
4566         struct md_rdev *rdev;
4567         char *e;
4568         unsigned long long new = simple_strtoull(buf, &e, 10);
4569         if (mddev->pers)
4570                 return -EBUSY;
4571         if (buf == e || (*e && *e != '\n'))
4572                 return -EINVAL;
4573         mddev->reshape_position = new;
4574         mddev->delta_disks = 0;
4575         mddev->reshape_backwards = 0;
4576         mddev->new_level = mddev->level;
4577         mddev->new_layout = mddev->layout;
4578         mddev->new_chunk_sectors = mddev->chunk_sectors;
4579         rdev_for_each(rdev, mddev)
4580                 rdev->new_data_offset = rdev->data_offset;
4581         return len;
4582 }
4583
4584 static struct md_sysfs_entry md_reshape_position =
4585 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4586        reshape_position_store);
4587
4588 static ssize_t
4589 reshape_direction_show(struct mddev *mddev, char *page)
4590 {
4591         return sprintf(page, "%s\n",
4592                        mddev->reshape_backwards ? "backwards" : "forwards");
4593 }
4594
4595 static ssize_t
4596 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4597 {
4598         int backwards = 0;
4599         if (cmd_match(buf, "forwards"))
4600                 backwards = 0;
4601         else if (cmd_match(buf, "backwards"))
4602                 backwards = 1;
4603         else
4604                 return -EINVAL;
4605         if (mddev->reshape_backwards == backwards)
4606                 return len;
4607
4608         /* check if we are allowed to change */
4609         if (mddev->delta_disks)
4610                 return -EBUSY;
4611
4612         if (mddev->persistent &&
4613             mddev->major_version == 0)
4614                 return -EINVAL;
4615
4616         mddev->reshape_backwards = backwards;
4617         return len;
4618 }
4619
4620 static struct md_sysfs_entry md_reshape_direction =
4621 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4622        reshape_direction_store);
4623
4624 static ssize_t
4625 array_size_show(struct mddev *mddev, char *page)
4626 {
4627         if (mddev->external_size)
4628                 return sprintf(page, "%llu\n",
4629                                (unsigned long long)mddev->array_sectors/2);
4630         else
4631                 return sprintf(page, "default\n");
4632 }
4633
4634 static ssize_t
4635 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4636 {
4637         sector_t sectors;
4638
4639         if (strncmp(buf, "default", 7) == 0) {
4640                 if (mddev->pers)
4641                         sectors = mddev->pers->size(mddev, 0, 0);
4642                 else
4643                         sectors = mddev->array_sectors;
4644
4645                 mddev->external_size = 0;
4646         } else {
4647                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4648                         return -EINVAL;
4649                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4650                         return -E2BIG;
4651
4652                 mddev->external_size = 1;
4653         }
4654
4655         mddev->array_sectors = sectors;
4656         if (mddev->pers) {
4657                 set_capacity(mddev->gendisk, mddev->array_sectors);
4658                 revalidate_disk(mddev->gendisk);
4659         }
4660         return len;
4661 }
4662
4663 static struct md_sysfs_entry md_array_size =
4664 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4665        array_size_store);
4666
4667 static struct attribute *md_default_attrs[] = {
4668         &md_level.attr,
4669         &md_layout.attr,
4670         &md_raid_disks.attr,
4671         &md_chunk_size.attr,
4672         &md_size.attr,
4673         &md_resync_start.attr,
4674         &md_metadata.attr,
4675         &md_new_device.attr,
4676         &md_safe_delay.attr,
4677         &md_array_state.attr,
4678         &md_reshape_position.attr,
4679         &md_reshape_direction.attr,
4680         &md_array_size.attr,
4681         &max_corr_read_errors.attr,
4682         NULL,
4683 };
4684
4685 static struct attribute *md_redundancy_attrs[] = {
4686         &md_scan_mode.attr,
4687         &md_mismatches.attr,
4688         &md_sync_min.attr,
4689         &md_sync_max.attr,
4690         &md_sync_speed.attr,
4691         &md_sync_force_parallel.attr,
4692         &md_sync_completed.attr,
4693         &md_min_sync.attr,
4694         &md_max_sync.attr,
4695         &md_suspend_lo.attr,
4696         &md_suspend_hi.attr,
4697         &md_bitmap.attr,
4698         &md_degraded.attr,
4699         NULL,
4700 };
4701 static struct attribute_group md_redundancy_group = {
4702         .name = NULL,
4703         .attrs = md_redundancy_attrs,
4704 };
4705
4706
4707 static ssize_t
4708 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4709 {
4710         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4711         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4712         ssize_t rv;
4713
4714         if (!entry->show)
4715                 return -EIO;
4716         spin_lock(&all_mddevs_lock);
4717         if (list_empty(&mddev->all_mddevs)) {
4718                 spin_unlock(&all_mddevs_lock);
4719                 return -EBUSY;
4720         }
4721         mddev_get(mddev);
4722         spin_unlock(&all_mddevs_lock);
4723
4724         rv = mddev_lock(mddev);
4725         if (!rv) {
4726                 rv = entry->show(mddev, page);
4727                 mddev_unlock(mddev);
4728         }
4729         mddev_put(mddev);
4730         return rv;
4731 }
4732
4733 static ssize_t
4734 md_attr_store(struct kobject *kobj, struct attribute *attr,
4735               const char *page, size_t length)
4736 {
4737         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4738         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4739         ssize_t rv;
4740
4741         if (!entry->store)
4742                 return -EIO;
4743         if (!capable(CAP_SYS_ADMIN))
4744                 return -EACCES;
4745         spin_lock(&all_mddevs_lock);
4746         if (list_empty(&mddev->all_mddevs)) {
4747                 spin_unlock(&all_mddevs_lock);
4748                 return -EBUSY;
4749         }
4750         mddev_get(mddev);
4751         spin_unlock(&all_mddevs_lock);
4752         rv = mddev_lock(mddev);
4753         if (!rv) {
4754                 rv = entry->store(mddev, page, length);
4755                 mddev_unlock(mddev);
4756         }
4757         mddev_put(mddev);
4758         return rv;
4759 }
4760
4761 static void md_free(struct kobject *ko)
4762 {
4763         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4764
4765         if (mddev->sysfs_state)
4766                 sysfs_put(mddev->sysfs_state);
4767
4768         if (mddev->gendisk) {
4769                 del_gendisk(mddev->gendisk);
4770                 put_disk(mddev->gendisk);
4771         }
4772         if (mddev->queue)
4773                 blk_cleanup_queue(mddev->queue);
4774
4775         kfree(mddev);
4776 }
4777
4778 static const struct sysfs_ops md_sysfs_ops = {
4779         .show   = md_attr_show,
4780         .store  = md_attr_store,
4781 };
4782 static struct kobj_type md_ktype = {
4783         .release        = md_free,
4784         .sysfs_ops      = &md_sysfs_ops,
4785         .default_attrs  = md_default_attrs,
4786 };
4787
4788 int mdp_major = 0;
4789
4790 static void mddev_delayed_delete(struct work_struct *ws)
4791 {
4792         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4793
4794         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4795         kobject_del(&mddev->kobj);
4796         kobject_put(&mddev->kobj);
4797 }
4798
4799 static int md_alloc(dev_t dev, char *name)
4800 {
4801         static DEFINE_MUTEX(disks_mutex);
4802         struct mddev *mddev = mddev_find(dev);
4803         struct gendisk *disk;
4804         int partitioned;
4805         int shift;
4806         int unit;
4807         int error;
4808
4809         if (!mddev)
4810                 return -ENODEV;
4811
4812         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4813         shift = partitioned ? MdpMinorShift : 0;
4814         unit = MINOR(mddev->unit) >> shift;
4815
4816         /* wait for any previous instance of this device to be
4817          * completely removed (mddev_delayed_delete).
4818          */
4819         flush_workqueue(md_misc_wq);
4820
4821         mutex_lock(&disks_mutex);
4822         error = -EEXIST;
4823         if (mddev->gendisk)
4824                 goto abort;
4825
4826         if (name) {
4827                 /* Need to ensure that 'name' is not a duplicate.
4828                  */
4829                 struct mddev *mddev2;
4830                 spin_lock(&all_mddevs_lock);
4831
4832                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4833                         if (mddev2->gendisk &&
4834                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4835                                 spin_unlock(&all_mddevs_lock);
4836                                 goto abort;
4837                         }
4838                 spin_unlock(&all_mddevs_lock);
4839         }
4840
4841         error = -ENOMEM;
4842         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4843         if (!mddev->queue)
4844                 goto abort;
4845         mddev->queue->queuedata = mddev;
4846
4847         blk_queue_make_request(mddev->queue, md_make_request);
4848         blk_set_stacking_limits(&mddev->queue->limits);
4849
4850         disk = alloc_disk(1 << shift);
4851         if (!disk) {
4852                 blk_cleanup_queue(mddev->queue);
4853                 mddev->queue = NULL;
4854                 goto abort;
4855         }
4856         disk->major = MAJOR(mddev->unit);
4857         disk->first_minor = unit << shift;
4858         if (name)
4859                 strcpy(disk->disk_name, name);
4860         else if (partitioned)
4861                 sprintf(disk->disk_name, "md_d%d", unit);
4862         else
4863                 sprintf(disk->disk_name, "md%d", unit);
4864         disk->fops = &md_fops;
4865         disk->private_data = mddev;
4866         disk->queue = mddev->queue;
4867         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4868         /* Allow extended partitions.  This makes the
4869          * 'mdp' device redundant, but we can't really
4870          * remove it now.
4871          */
4872         disk->flags |= GENHD_FL_EXT_DEVT;
4873         mddev->gendisk = disk;
4874         /* As soon as we call add_disk(), another thread could get
4875          * through to md_open, so make sure it doesn't get too far
4876          */
4877         mutex_lock(&mddev->open_mutex);
4878         add_disk(disk);
4879
4880         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4881                                      &disk_to_dev(disk)->kobj, "%s", "md");
4882         if (error) {
4883                 /* This isn't possible, but as kobject_init_and_add is marked
4884                  * __must_check, we must do something with the result
4885                  */
4886                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4887                        disk->disk_name);
4888                 error = 0;
4889         }
4890         if (mddev->kobj.sd &&
4891             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4892                 printk(KERN_DEBUG "pointless warning\n");
4893         mutex_unlock(&mddev->open_mutex);
4894  abort:
4895         mutex_unlock(&disks_mutex);
4896         if (!error && mddev->kobj.sd) {
4897                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4898                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4899         }
4900         mddev_put(mddev);
4901         return error;
4902 }
4903
4904 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4905 {
4906         md_alloc(dev, NULL);
4907         return NULL;
4908 }
4909
4910 static int add_named_array(const char *val, struct kernel_param *kp)
4911 {
4912         /* val must be "md_*" where * is not all digits.
4913          * We allocate an array with a large free minor number, and
4914          * set the name to val.  val must not already be an active name.
4915          */
4916         int len = strlen(val);
4917         char buf[DISK_NAME_LEN];
4918
4919         while (len && val[len-1] == '\n')
4920                 len--;
4921         if (len >= DISK_NAME_LEN)
4922                 return -E2BIG;
4923         strlcpy(buf, val, len+1);
4924         if (strncmp(buf, "md_", 3) != 0)
4925                 return -EINVAL;
4926         return md_alloc(0, buf);
4927 }
4928
4929 static void md_safemode_timeout(unsigned long data)
4930 {
4931         struct mddev *mddev = (struct mddev *) data;
4932
4933         if (!atomic_read(&mddev->writes_pending)) {
4934                 mddev->safemode = 1;
4935                 if (mddev->external)
4936                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4937         }
4938         md_wakeup_thread(mddev->thread);
4939 }
4940
4941 static int start_dirty_degraded;
4942
4943 int md_run(struct mddev *mddev)
4944 {
4945         int err;
4946         struct md_rdev *rdev;
4947         struct md_personality *pers;
4948
4949         if (list_empty(&mddev->disks))
4950                 /* cannot run an array with no devices.. */
4951                 return -EINVAL;
4952
4953         if (mddev->pers)
4954                 return -EBUSY;
4955         /* Cannot run until previous stop completes properly */
4956         if (mddev->sysfs_active)
4957                 return -EBUSY;
4958
4959         /*
4960          * Analyze all RAID superblock(s)
4961          */
4962         if (!mddev->raid_disks) {
4963                 if (!mddev->persistent)
4964                         return -EINVAL;
4965                 analyze_sbs(mddev);
4966         }
4967
4968         if (mddev->level != LEVEL_NONE)
4969                 request_module("md-level-%d", mddev->level);
4970         else if (mddev->clevel[0])
4971                 request_module("md-%s", mddev->clevel);
4972
4973         /*
4974          * Drop all container device buffers, from now on
4975          * the only valid external interface is through the md
4976          * device.
4977          */
4978         rdev_for_each(rdev, mddev) {
4979                 if (test_bit(Faulty, &rdev->flags))
4980                         continue;
4981                 sync_blockdev(rdev->bdev);
4982                 invalidate_bdev(rdev->bdev);
4983
4984                 /* perform some consistency tests on the device.
4985                  * We don't want the data to overlap the metadata,
4986                  * Internal Bitmap issues have been handled elsewhere.
4987                  */
4988                 if (rdev->meta_bdev) {
4989                         /* Nothing to check */;
4990                 } else if (rdev->data_offset < rdev->sb_start) {
4991                         if (mddev->dev_sectors &&
4992                             rdev->data_offset + mddev->dev_sectors
4993                             > rdev->sb_start) {
4994                                 printk("md: %s: data overlaps metadata\n",
4995                                        mdname(mddev));
4996                                 return -EINVAL;
4997                         }
4998                 } else {
4999                         if (rdev->sb_start + rdev->sb_size/512
5000                             > rdev->data_offset) {
5001                                 printk("md: %s: metadata overlaps data\n",
5002                                        mdname(mddev));
5003                                 return -EINVAL;
5004                         }
5005                 }
5006                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5007         }
5008
5009         if (mddev->bio_set == NULL)
5010                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5011                                                sizeof(struct mddev *));
5012
5013         spin_lock(&pers_lock);
5014         pers = find_pers(mddev->level, mddev->clevel);
5015         if (!pers || !try_module_get(pers->owner)) {
5016                 spin_unlock(&pers_lock);
5017                 if (mddev->level != LEVEL_NONE)
5018                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5019                                mddev->level);
5020                 else
5021                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5022                                mddev->clevel);
5023                 return -EINVAL;
5024         }
5025         mddev->pers = pers;
5026         spin_unlock(&pers_lock);
5027         if (mddev->level != pers->level) {
5028                 mddev->level = pers->level;
5029                 mddev->new_level = pers->level;
5030         }
5031         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5032
5033         if (mddev->reshape_position != MaxSector &&
5034             pers->start_reshape == NULL) {
5035                 /* This personality cannot handle reshaping... */
5036                 mddev->pers = NULL;
5037                 module_put(pers->owner);
5038                 return -EINVAL;
5039         }
5040
5041         if (pers->sync_request) {
5042                 /* Warn if this is a potentially silly
5043                  * configuration.
5044                  */
5045                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5046                 struct md_rdev *rdev2;
5047                 int warned = 0;
5048
5049                 rdev_for_each(rdev, mddev)
5050                         rdev_for_each(rdev2, mddev) {
5051                                 if (rdev < rdev2 &&
5052                                     rdev->bdev->bd_contains ==
5053                                     rdev2->bdev->bd_contains) {
5054                                         printk(KERN_WARNING
5055                                                "%s: WARNING: %s appears to be"
5056                                                " on the same physical disk as"
5057                                                " %s.\n",
5058                                                mdname(mddev),
5059                                                bdevname(rdev->bdev,b),
5060                                                bdevname(rdev2->bdev,b2));
5061                                         warned = 1;
5062                                 }
5063                         }
5064
5065                 if (warned)
5066                         printk(KERN_WARNING
5067                                "True protection against single-disk"
5068                                " failure might be compromised.\n");
5069         }
5070
5071         mddev->recovery = 0;
5072         /* may be over-ridden by personality */
5073         mddev->resync_max_sectors = mddev->dev_sectors;
5074
5075         mddev->ok_start_degraded = start_dirty_degraded;
5076
5077         if (start_readonly && mddev->ro == 0)
5078                 mddev->ro = 2; /* read-only, but switch on first write */
5079
5080         err = mddev->pers->run(mddev);
5081         if (err)
5082                 printk(KERN_ERR "md: pers->run() failed ...\n");
5083         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5084                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5085                           " but 'external_size' not in effect?\n", __func__);
5086                 printk(KERN_ERR
5087                        "md: invalid array_size %llu > default size %llu\n",
5088                        (unsigned long long)mddev->array_sectors / 2,
5089                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5090                 err = -EINVAL;
5091                 mddev->pers->stop(mddev);
5092         }
5093         if (err == 0 && mddev->pers->sync_request &&
5094             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5095                 err = bitmap_create(mddev);
5096                 if (err) {
5097                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5098                                mdname(mddev), err);
5099                         mddev->pers->stop(mddev);
5100                 }
5101         }
5102         if (err) {
5103                 module_put(mddev->pers->owner);
5104                 mddev->pers = NULL;
5105                 bitmap_destroy(mddev);
5106                 return err;
5107         }
5108         if (mddev->pers->sync_request) {
5109                 if (mddev->kobj.sd &&
5110                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5111                         printk(KERN_WARNING
5112                                "md: cannot register extra attributes for %s\n",
5113                                mdname(mddev));
5114                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5115         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5116                 mddev->ro = 0;
5117
5118         atomic_set(&mddev->writes_pending,0);
5119         atomic_set(&mddev->max_corr_read_errors,
5120                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5121         mddev->safemode = 0;
5122         mddev->safemode_timer.function = md_safemode_timeout;
5123         mddev->safemode_timer.data = (unsigned long) mddev;
5124         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5125         mddev->in_sync = 1;
5126         smp_wmb();
5127         mddev->ready = 1;
5128         rdev_for_each(rdev, mddev)
5129                 if (rdev->raid_disk >= 0)
5130                         if (sysfs_link_rdev(mddev, rdev))
5131                                 /* failure here is OK */;
5132         
5133         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5134         
5135         if (mddev->flags)
5136                 md_update_sb(mddev, 0);
5137
5138         md_new_event(mddev);
5139         sysfs_notify_dirent_safe(mddev->sysfs_state);
5140         sysfs_notify_dirent_safe(mddev->sysfs_action);
5141         sysfs_notify(&mddev->kobj, NULL, "degraded");
5142         return 0;
5143 }
5144 EXPORT_SYMBOL_GPL(md_run);
5145
5146 static int do_md_run(struct mddev *mddev)
5147 {
5148         int err;
5149
5150         err = md_run(mddev);
5151         if (err)
5152                 goto out;
5153         err = bitmap_load(mddev);
5154         if (err) {
5155                 bitmap_destroy(mddev);
5156                 goto out;
5157         }
5158
5159         md_wakeup_thread(mddev->thread);
5160         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5161
5162         set_capacity(mddev->gendisk, mddev->array_sectors);
5163         revalidate_disk(mddev->gendisk);
5164         mddev->changed = 1;
5165         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5166 out:
5167         return err;
5168 }
5169
5170 static int restart_array(struct mddev *mddev)
5171 {
5172         struct gendisk *disk = mddev->gendisk;
5173
5174         /* Complain if it has no devices */
5175         if (list_empty(&mddev->disks))
5176                 return -ENXIO;
5177         if (!mddev->pers)
5178                 return -EINVAL;
5179         if (!mddev->ro)
5180                 return -EBUSY;
5181         mddev->safemode = 0;
5182         mddev->ro = 0;
5183         set_disk_ro(disk, 0);
5184         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5185                 mdname(mddev));
5186         /* Kick recovery or resync if necessary */
5187         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5188         md_wakeup_thread(mddev->thread);
5189         md_wakeup_thread(mddev->sync_thread);
5190         sysfs_notify_dirent_safe(mddev->sysfs_state);
5191         return 0;
5192 }
5193
5194 /* similar to deny_write_access, but accounts for our holding a reference
5195  * to the file ourselves */
5196 static int deny_bitmap_write_access(struct file * file)
5197 {
5198         struct inode *inode = file->f_mapping->host;
5199
5200         spin_lock(&inode->i_lock);
5201         if (atomic_read(&inode->i_writecount) > 1) {
5202                 spin_unlock(&inode->i_lock);
5203                 return -ETXTBSY;
5204         }
5205         atomic_set(&inode->i_writecount, -1);
5206         spin_unlock(&inode->i_lock);
5207
5208         return 0;
5209 }
5210
5211 void restore_bitmap_write_access(struct file *file)
5212 {
5213         struct inode *inode = file->f_mapping->host;
5214
5215         spin_lock(&inode->i_lock);
5216         atomic_set(&inode->i_writecount, 1);
5217         spin_unlock(&inode->i_lock);
5218 }
5219
5220 static void md_clean(struct mddev *mddev)
5221 {
5222         mddev->array_sectors = 0;
5223         mddev->external_size = 0;
5224         mddev->dev_sectors = 0;
5225         mddev->raid_disks = 0;
5226         mddev->recovery_cp = 0;
5227         mddev->resync_min = 0;
5228         mddev->resync_max = MaxSector;
5229         mddev->reshape_position = MaxSector;
5230         mddev->external = 0;
5231         mddev->persistent = 0;
5232         mddev->level = LEVEL_NONE;
5233         mddev->clevel[0] = 0;
5234         mddev->flags = 0;
5235         mddev->ro = 0;
5236         mddev->metadata_type[0] = 0;
5237         mddev->chunk_sectors = 0;
5238         mddev->ctime = mddev->utime = 0;
5239         mddev->layout = 0;
5240         mddev->max_disks = 0;
5241         mddev->events = 0;
5242         mddev->can_decrease_events = 0;
5243         mddev->delta_disks = 0;
5244         mddev->reshape_backwards = 0;
5245         mddev->new_level = LEVEL_NONE;
5246         mddev->new_layout = 0;
5247         mddev->new_chunk_sectors = 0;
5248         mddev->curr_resync = 0;
5249         mddev->resync_mismatches = 0;
5250         mddev->suspend_lo = mddev->suspend_hi = 0;
5251         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5252         mddev->recovery = 0;
5253         mddev->in_sync = 0;
5254         mddev->changed = 0;
5255         mddev->degraded = 0;
5256         mddev->safemode = 0;
5257         mddev->merge_check_needed = 0;
5258         mddev->bitmap_info.offset = 0;
5259         mddev->bitmap_info.default_offset = 0;
5260         mddev->bitmap_info.default_space = 0;
5261         mddev->bitmap_info.chunksize = 0;
5262         mddev->bitmap_info.daemon_sleep = 0;
5263         mddev->bitmap_info.max_write_behind = 0;
5264 }
5265
5266 static void __md_stop_writes(struct mddev *mddev)
5267 {
5268         if (mddev->sync_thread) {
5269                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5270                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5271                 reap_sync_thread(mddev);
5272         }
5273
5274         del_timer_sync(&mddev->safemode_timer);
5275
5276         bitmap_flush(mddev);
5277         md_super_wait(mddev);
5278
5279         if (!mddev->in_sync || mddev->flags) {
5280                 /* mark array as shutdown cleanly */
5281                 mddev->in_sync = 1;
5282                 md_update_sb(mddev, 1);
5283         }
5284 }
5285
5286 void md_stop_writes(struct mddev *mddev)
5287 {
5288         mddev_lock(mddev);
5289         __md_stop_writes(mddev);
5290         mddev_unlock(mddev);
5291 }
5292 EXPORT_SYMBOL_GPL(md_stop_writes);
5293
5294 void md_stop(struct mddev *mddev)
5295 {
5296         mddev->ready = 0;
5297         mddev->pers->stop(mddev);
5298         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5299                 mddev->to_remove = &md_redundancy_group;
5300         module_put(mddev->pers->owner);
5301         mddev->pers = NULL;
5302         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5303 }
5304 EXPORT_SYMBOL_GPL(md_stop);
5305
5306 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5307 {
5308         int err = 0;
5309         mutex_lock(&mddev->open_mutex);
5310         if (atomic_read(&mddev->openers) > !!bdev) {
5311                 printk("md: %s still in use.\n",mdname(mddev));
5312                 err = -EBUSY;
5313                 goto out;
5314         }
5315         if (bdev)
5316                 sync_blockdev(bdev);
5317         if (mddev->pers) {
5318                 __md_stop_writes(mddev);
5319
5320                 err  = -ENXIO;
5321                 if (mddev->ro==1)
5322                         goto out;
5323                 mddev->ro = 1;
5324                 set_disk_ro(mddev->gendisk, 1);
5325                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5326                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5327                 err = 0;        
5328         }
5329 out:
5330         mutex_unlock(&mddev->open_mutex);
5331         return err;
5332 }
5333
5334 /* mode:
5335  *   0 - completely stop and dis-assemble array
5336  *   2 - stop but do not disassemble array
5337  */
5338 static int do_md_stop(struct mddev * mddev, int mode,
5339                       struct block_device *bdev)
5340 {
5341         struct gendisk *disk = mddev->gendisk;
5342         struct md_rdev *rdev;
5343
5344         mutex_lock(&mddev->open_mutex);
5345         if (atomic_read(&mddev->openers) > !!bdev ||
5346             mddev->sysfs_active) {
5347                 printk("md: %s still in use.\n",mdname(mddev));
5348                 mutex_unlock(&mddev->open_mutex);
5349                 return -EBUSY;
5350         }
5351         if (bdev)
5352                 /* It is possible IO was issued on some other
5353                  * open file which was closed before we took ->open_mutex.
5354                  * As that was not the last close __blkdev_put will not
5355                  * have called sync_blockdev, so we must.
5356                  */
5357                 sync_blockdev(bdev);
5358
5359         if (mddev->pers) {
5360                 if (mddev->ro)
5361                         set_disk_ro(disk, 0);
5362
5363                 __md_stop_writes(mddev);
5364                 md_stop(mddev);
5365                 mddev->queue->merge_bvec_fn = NULL;
5366                 mddev->queue->backing_dev_info.congested_fn = NULL;
5367
5368                 /* tell userspace to handle 'inactive' */
5369                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5370
5371                 rdev_for_each(rdev, mddev)
5372                         if (rdev->raid_disk >= 0)
5373                                 sysfs_unlink_rdev(mddev, rdev);
5374
5375                 set_capacity(disk, 0);
5376                 mutex_unlock(&mddev->open_mutex);
5377                 mddev->changed = 1;
5378                 revalidate_disk(disk);
5379
5380                 if (mddev->ro)
5381                         mddev->ro = 0;
5382         } else
5383                 mutex_unlock(&mddev->open_mutex);
5384         /*
5385          * Free resources if final stop
5386          */
5387         if (mode == 0) {
5388                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5389
5390                 bitmap_destroy(mddev);
5391                 if (mddev->bitmap_info.file) {
5392                         restore_bitmap_write_access(mddev->bitmap_info.file);
5393                         fput(mddev->bitmap_info.file);
5394                         mddev->bitmap_info.file = NULL;
5395                 }
5396                 mddev->bitmap_info.offset = 0;
5397
5398                 export_array(mddev);
5399
5400                 md_clean(mddev);
5401                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5402                 if (mddev->hold_active == UNTIL_STOP)
5403                         mddev->hold_active = 0;
5404         }
5405         blk_integrity_unregister(disk);
5406         md_new_event(mddev);
5407         sysfs_notify_dirent_safe(mddev->sysfs_state);
5408         return 0;
5409 }
5410
5411 #ifndef MODULE
5412 static void autorun_array(struct mddev *mddev)
5413 {
5414         struct md_rdev *rdev;
5415         int err;
5416
5417         if (list_empty(&mddev->disks))
5418                 return;
5419
5420         printk(KERN_INFO "md: running: ");
5421
5422         rdev_for_each(rdev, mddev) {
5423                 char b[BDEVNAME_SIZE];
5424                 printk("<%s>", bdevname(rdev->bdev,b));
5425         }
5426         printk("\n");
5427
5428         err = do_md_run(mddev);
5429         if (err) {
5430                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5431                 do_md_stop(mddev, 0, NULL);
5432         }
5433 }
5434
5435 /*
5436  * lets try to run arrays based on all disks that have arrived
5437  * until now. (those are in pending_raid_disks)
5438  *
5439  * the method: pick the first pending disk, collect all disks with
5440  * the same UUID, remove all from the pending list and put them into
5441  * the 'same_array' list. Then order this list based on superblock
5442  * update time (freshest comes first), kick out 'old' disks and
5443  * compare superblocks. If everything's fine then run it.
5444  *
5445  * If "unit" is allocated, then bump its reference count
5446  */
5447 static void autorun_devices(int part)
5448 {
5449         struct md_rdev *rdev0, *rdev, *tmp;
5450         struct mddev *mddev;
5451         char b[BDEVNAME_SIZE];
5452
5453         printk(KERN_INFO "md: autorun ...\n");
5454         while (!list_empty(&pending_raid_disks)) {
5455                 int unit;
5456                 dev_t dev;
5457                 LIST_HEAD(candidates);
5458                 rdev0 = list_entry(pending_raid_disks.next,
5459                                          struct md_rdev, same_set);
5460
5461                 printk(KERN_INFO "md: considering %s ...\n",
5462                         bdevname(rdev0->bdev,b));
5463                 INIT_LIST_HEAD(&candidates);
5464                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5465                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5466                                 printk(KERN_INFO "md:  adding %s ...\n",
5467                                         bdevname(rdev->bdev,b));
5468                                 list_move(&rdev->same_set, &candidates);
5469                         }
5470                 /*
5471                  * now we have a set of devices, with all of them having
5472                  * mostly sane superblocks. It's time to allocate the
5473                  * mddev.
5474                  */
5475                 if (part) {
5476                         dev = MKDEV(mdp_major,
5477                                     rdev0->preferred_minor << MdpMinorShift);
5478                         unit = MINOR(dev) >> MdpMinorShift;
5479                 } else {
5480                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5481                         unit = MINOR(dev);
5482                 }
5483                 if (rdev0->preferred_minor != unit) {
5484                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5485                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5486                         break;
5487                 }
5488
5489                 md_probe(dev, NULL, NULL);
5490                 mddev = mddev_find(dev);
5491                 if (!mddev || !mddev->gendisk) {
5492                         if (mddev)
5493                                 mddev_put(mddev);
5494                         printk(KERN_ERR
5495                                 "md: cannot allocate memory for md drive.\n");
5496                         break;
5497                 }
5498                 if (mddev_lock(mddev)) 
5499                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5500                                mdname(mddev));
5501                 else if (mddev->raid_disks || mddev->major_version
5502                          || !list_empty(&mddev->disks)) {
5503                         printk(KERN_WARNING 
5504                                 "md: %s already running, cannot run %s\n",
5505                                 mdname(mddev), bdevname(rdev0->bdev,b));
5506                         mddev_unlock(mddev);
5507                 } else {
5508                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5509                         mddev->persistent = 1;
5510                         rdev_for_each_list(rdev, tmp, &candidates) {
5511                                 list_del_init(&rdev->same_set);
5512                                 if (bind_rdev_to_array(rdev, mddev))
5513                                         export_rdev(rdev);
5514                         }
5515                         autorun_array(mddev);
5516                         mddev_unlock(mddev);
5517                 }
5518                 /* on success, candidates will be empty, on error
5519                  * it won't...
5520                  */
5521                 rdev_for_each_list(rdev, tmp, &candidates) {
5522                         list_del_init(&rdev->same_set);
5523                         export_rdev(rdev);
5524                 }
5525                 mddev_put(mddev);
5526         }
5527         printk(KERN_INFO "md: ... autorun DONE.\n");
5528 }
5529 #endif /* !MODULE */
5530
5531 static int get_version(void __user * arg)
5532 {
5533         mdu_version_t ver;
5534
5535         ver.major = MD_MAJOR_VERSION;
5536         ver.minor = MD_MINOR_VERSION;
5537         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5538
5539         if (copy_to_user(arg, &ver, sizeof(ver)))
5540                 return -EFAULT;
5541
5542         return 0;
5543 }
5544
5545 static int get_array_info(struct mddev * mddev, void __user * arg)
5546 {
5547         mdu_array_info_t info;
5548         int nr,working,insync,failed,spare;
5549         struct md_rdev *rdev;
5550
5551         nr=working=insync=failed=spare=0;
5552         rdev_for_each(rdev, mddev) {
5553                 nr++;
5554                 if (test_bit(Faulty, &rdev->flags))
5555                         failed++;
5556                 else {
5557                         working++;
5558                         if (test_bit(In_sync, &rdev->flags))
5559                                 insync++;       
5560                         else
5561                                 spare++;
5562                 }
5563         }
5564
5565         info.major_version = mddev->major_version;
5566         info.minor_version = mddev->minor_version;
5567         info.patch_version = MD_PATCHLEVEL_VERSION;
5568         info.ctime         = mddev->ctime;
5569         info.level         = mddev->level;
5570         info.size          = mddev->dev_sectors / 2;
5571         if (info.size != mddev->dev_sectors / 2) /* overflow */
5572                 info.size = -1;
5573         info.nr_disks      = nr;
5574         info.raid_disks    = mddev->raid_disks;
5575         info.md_minor      = mddev->md_minor;
5576         info.not_persistent= !mddev->persistent;
5577
5578         info.utime         = mddev->utime;
5579         info.state         = 0;
5580         if (mddev->in_sync)
5581                 info.state = (1<<MD_SB_CLEAN);
5582         if (mddev->bitmap && mddev->bitmap_info.offset)
5583                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5584         info.active_disks  = insync;
5585         info.working_disks = working;
5586         info.failed_disks  = failed;
5587         info.spare_disks   = spare;
5588
5589         info.layout        = mddev->layout;
5590         info.chunk_size    = mddev->chunk_sectors << 9;
5591
5592         if (copy_to_user(arg, &info, sizeof(info)))
5593                 return -EFAULT;
5594
5595         return 0;
5596 }
5597
5598 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5599 {
5600         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5601         char *ptr, *buf = NULL;
5602         int err = -ENOMEM;
5603
5604         if (md_allow_write(mddev))
5605                 file = kmalloc(sizeof(*file), GFP_NOIO);
5606         else
5607                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5608
5609         if (!file)
5610                 goto out;
5611
5612         /* bitmap disabled, zero the first byte and copy out */
5613         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5614                 file->pathname[0] = '\0';
5615                 goto copy_out;
5616         }
5617
5618         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5619         if (!buf)
5620                 goto out;
5621
5622         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5623                      buf, sizeof(file->pathname));
5624         if (IS_ERR(ptr))
5625                 goto out;
5626
5627         strcpy(file->pathname, ptr);
5628
5629 copy_out:
5630         err = 0;
5631         if (copy_to_user(arg, file, sizeof(*file)))
5632                 err = -EFAULT;
5633 out:
5634         kfree(buf);
5635         kfree(file);
5636         return err;
5637 }
5638
5639 static int get_disk_info(struct mddev * mddev, void __user * arg)
5640 {
5641         mdu_disk_info_t info;
5642         struct md_rdev *rdev;
5643
5644         if (copy_from_user(&info, arg, sizeof(info)))
5645                 return -EFAULT;
5646
5647         rdev = find_rdev_nr(mddev, info.number);
5648         if (rdev) {
5649                 info.major = MAJOR(rdev->bdev->bd_dev);
5650                 info.minor = MINOR(rdev->bdev->bd_dev);
5651                 info.raid_disk = rdev->raid_disk;
5652                 info.state = 0;
5653                 if (test_bit(Faulty, &rdev->flags))
5654                         info.state |= (1<<MD_DISK_FAULTY);
5655                 else if (test_bit(In_sync, &rdev->flags)) {
5656                         info.state |= (1<<MD_DISK_ACTIVE);
5657                         info.state |= (1<<MD_DISK_SYNC);
5658                 }
5659                 if (test_bit(WriteMostly, &rdev->flags))
5660                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5661         } else {
5662                 info.major = info.minor = 0;
5663                 info.raid_disk = -1;
5664                 info.state = (1<<MD_DISK_REMOVED);
5665         }
5666
5667         if (copy_to_user(arg, &info, sizeof(info)))
5668                 return -EFAULT;
5669
5670         return 0;
5671 }
5672
5673 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5674 {
5675         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5676         struct md_rdev *rdev;
5677         dev_t dev = MKDEV(info->major,info->minor);
5678
5679         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5680                 return -EOVERFLOW;
5681
5682         if (!mddev->raid_disks) {
5683                 int err;
5684                 /* expecting a device which has a superblock */
5685                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5686                 if (IS_ERR(rdev)) {
5687                         printk(KERN_WARNING 
5688                                 "md: md_import_device returned %ld\n",
5689                                 PTR_ERR(rdev));
5690                         return PTR_ERR(rdev);
5691                 }
5692                 if (!list_empty(&mddev->disks)) {
5693                         struct md_rdev *rdev0
5694                                 = list_entry(mddev->disks.next,
5695                                              struct md_rdev, same_set);
5696                         err = super_types[mddev->major_version]
5697                                 .load_super(rdev, rdev0, mddev->minor_version);
5698                         if (err < 0) {
5699                                 printk(KERN_WARNING 
5700                                         "md: %s has different UUID to %s\n",
5701                                         bdevname(rdev->bdev,b), 
5702                                         bdevname(rdev0->bdev,b2));
5703                                 export_rdev(rdev);
5704                                 return -EINVAL;
5705                         }
5706                 }
5707                 err = bind_rdev_to_array(rdev, mddev);
5708                 if (err)
5709                         export_rdev(rdev);
5710                 return err;
5711         }
5712
5713         /*
5714          * add_new_disk can be used once the array is assembled
5715          * to add "hot spares".  They must already have a superblock
5716          * written
5717          */
5718         if (mddev->pers) {
5719                 int err;
5720                 if (!mddev->pers->hot_add_disk) {
5721                         printk(KERN_WARNING 
5722                                 "%s: personality does not support diskops!\n",
5723                                mdname(mddev));
5724                         return -EINVAL;
5725                 }
5726                 if (mddev->persistent)
5727                         rdev = md_import_device(dev, mddev->major_version,
5728                                                 mddev->minor_version);
5729                 else
5730                         rdev = md_import_device(dev, -1, -1);
5731                 if (IS_ERR(rdev)) {
5732                         printk(KERN_WARNING 
5733                                 "md: md_import_device returned %ld\n",
5734                                 PTR_ERR(rdev));
5735                         return PTR_ERR(rdev);
5736                 }
5737                 /* set saved_raid_disk if appropriate */
5738                 if (!mddev->persistent) {
5739                         if (info->state & (1<<MD_DISK_SYNC)  &&
5740                             info->raid_disk < mddev->raid_disks) {
5741                                 rdev->raid_disk = info->raid_disk;
5742                                 set_bit(In_sync, &rdev->flags);
5743                         } else
5744                                 rdev->raid_disk = -1;
5745                 } else
5746                         super_types[mddev->major_version].
5747                                 validate_super(mddev, rdev);
5748                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5749                      rdev->raid_disk != info->raid_disk) {
5750                         /* This was a hot-add request, but events doesn't
5751                          * match, so reject it.
5752                          */
5753                         export_rdev(rdev);
5754                         return -EINVAL;
5755                 }
5756
5757                 if (test_bit(In_sync, &rdev->flags))
5758                         rdev->saved_raid_disk = rdev->raid_disk;
5759                 else
5760                         rdev->saved_raid_disk = -1;
5761
5762                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5763                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5764                         set_bit(WriteMostly, &rdev->flags);
5765                 else
5766                         clear_bit(WriteMostly, &rdev->flags);
5767
5768                 rdev->raid_disk = -1;
5769                 err = bind_rdev_to_array(rdev, mddev);
5770                 if (!err && !mddev->pers->hot_remove_disk) {
5771                         /* If there is hot_add_disk but no hot_remove_disk
5772                          * then added disks for geometry changes,
5773                          * and should be added immediately.
5774                          */
5775                         super_types[mddev->major_version].
5776                                 validate_super(mddev, rdev);
5777                         err = mddev->pers->hot_add_disk(mddev, rdev);
5778                         if (err)
5779                                 unbind_rdev_from_array(rdev);
5780                 }
5781                 if (err)
5782                         export_rdev(rdev);
5783                 else
5784                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5785
5786                 md_update_sb(mddev, 1);
5787                 if (mddev->degraded)
5788                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5789                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5790                 if (!err)
5791                         md_new_event(mddev);
5792                 md_wakeup_thread(mddev->thread);
5793                 return err;
5794         }
5795
5796         /* otherwise, add_new_disk is only allowed
5797          * for major_version==0 superblocks
5798          */
5799         if (mddev->major_version != 0) {
5800                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5801                        mdname(mddev));
5802                 return -EINVAL;
5803         }
5804
5805         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5806                 int err;
5807                 rdev = md_import_device(dev, -1, 0);
5808                 if (IS_ERR(rdev)) {
5809                         printk(KERN_WARNING 
5810                                 "md: error, md_import_device() returned %ld\n",
5811                                 PTR_ERR(rdev));
5812                         return PTR_ERR(rdev);
5813                 }
5814                 rdev->desc_nr = info->number;
5815                 if (info->raid_disk < mddev->raid_disks)
5816                         rdev->raid_disk = info->raid_disk;
5817                 else
5818                         rdev->raid_disk = -1;
5819
5820                 if (rdev->raid_disk < mddev->raid_disks)
5821                         if (info->state & (1<<MD_DISK_SYNC))
5822                                 set_bit(In_sync, &rdev->flags);
5823
5824                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5825                         set_bit(WriteMostly, &rdev->flags);
5826
5827                 if (!mddev->persistent) {
5828                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5829                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5830                 } else
5831                         rdev->sb_start = calc_dev_sboffset(rdev);
5832                 rdev->sectors = rdev->sb_start;
5833
5834                 err = bind_rdev_to_array(rdev, mddev);
5835                 if (err) {
5836                         export_rdev(rdev);
5837                         return err;
5838                 }
5839         }
5840
5841         return 0;
5842 }
5843
5844 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5845 {
5846         char b[BDEVNAME_SIZE];
5847         struct md_rdev *rdev;
5848
5849         rdev = find_rdev(mddev, dev);
5850         if (!rdev)
5851                 return -ENXIO;
5852
5853         if (rdev->raid_disk >= 0)
5854                 goto busy;
5855
5856         kick_rdev_from_array(rdev);
5857         md_update_sb(mddev, 1);
5858         md_new_event(mddev);
5859
5860         return 0;
5861 busy:
5862         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5863                 bdevname(rdev->bdev,b), mdname(mddev));
5864         return -EBUSY;
5865 }
5866
5867 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5868 {
5869         char b[BDEVNAME_SIZE];
5870         int err;
5871         struct md_rdev *rdev;
5872
5873         if (!mddev->pers)
5874                 return -ENODEV;
5875
5876         if (mddev->major_version != 0) {
5877                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5878                         " version-0 superblocks.\n",
5879                         mdname(mddev));
5880                 return -EINVAL;
5881         }
5882         if (!mddev->pers->hot_add_disk) {
5883                 printk(KERN_WARNING 
5884                         "%s: personality does not support diskops!\n",
5885                         mdname(mddev));
5886                 return -EINVAL;
5887         }
5888
5889         rdev = md_import_device(dev, -1, 0);
5890         if (IS_ERR(rdev)) {
5891                 printk(KERN_WARNING 
5892                         "md: error, md_import_device() returned %ld\n",
5893                         PTR_ERR(rdev));
5894                 return -EINVAL;
5895         }
5896
5897         if (mddev->persistent)
5898                 rdev->sb_start = calc_dev_sboffset(rdev);
5899         else
5900                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5901
5902         rdev->sectors = rdev->sb_start;
5903
5904         if (test_bit(Faulty, &rdev->flags)) {
5905                 printk(KERN_WARNING 
5906                         "md: can not hot-add faulty %s disk to %s!\n",
5907                         bdevname(rdev->bdev,b), mdname(mddev));
5908                 err = -EINVAL;
5909                 goto abort_export;
5910         }
5911         clear_bit(In_sync, &rdev->flags);
5912         rdev->desc_nr = -1;
5913         rdev->saved_raid_disk = -1;
5914         err = bind_rdev_to_array(rdev, mddev);
5915         if (err)
5916                 goto abort_export;
5917
5918         /*
5919          * The rest should better be atomic, we can have disk failures
5920          * noticed in interrupt contexts ...
5921          */
5922
5923         rdev->raid_disk = -1;
5924
5925         md_update_sb(mddev, 1);
5926
5927         /*
5928          * Kick recovery, maybe this spare has to be added to the
5929          * array immediately.
5930          */
5931         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5932         md_wakeup_thread(mddev->thread);
5933         md_new_event(mddev);
5934         return 0;
5935
5936 abort_export:
5937         export_rdev(rdev);
5938         return err;
5939 }
5940
5941 static int set_bitmap_file(struct mddev *mddev, int fd)
5942 {
5943         int err;
5944
5945         if (mddev->pers) {
5946                 if (!mddev->pers->quiesce)
5947                         return -EBUSY;
5948                 if (mddev->recovery || mddev->sync_thread)
5949                         return -EBUSY;
5950                 /* we should be able to change the bitmap.. */
5951         }
5952
5953
5954         if (fd >= 0) {
5955                 if (mddev->bitmap)
5956                         return -EEXIST; /* cannot add when bitmap is present */
5957                 mddev->bitmap_info.file = fget(fd);
5958
5959                 if (mddev->bitmap_info.file == NULL) {
5960                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5961                                mdname(mddev));
5962                         return -EBADF;
5963                 }
5964
5965                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5966                 if (err) {
5967                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5968                                mdname(mddev));
5969                         fput(mddev->bitmap_info.file);
5970                         mddev->bitmap_info.file = NULL;
5971                         return err;
5972                 }
5973                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5974         } else if (mddev->bitmap == NULL)
5975                 return -ENOENT; /* cannot remove what isn't there */
5976         err = 0;
5977         if (mddev->pers) {
5978                 mddev->pers->quiesce(mddev, 1);
5979                 if (fd >= 0) {
5980                         err = bitmap_create(mddev);
5981                         if (!err)
5982                                 err = bitmap_load(mddev);
5983                 }
5984                 if (fd < 0 || err) {
5985                         bitmap_destroy(mddev);
5986                         fd = -1; /* make sure to put the file */
5987                 }
5988                 mddev->pers->quiesce(mddev, 0);
5989         }
5990         if (fd < 0) {
5991                 if (mddev->bitmap_info.file) {
5992                         restore_bitmap_write_access(mddev->bitmap_info.file);
5993                         fput(mddev->bitmap_info.file);
5994                 }
5995                 mddev->bitmap_info.file = NULL;
5996         }
5997
5998         return err;
5999 }
6000
6001 /*
6002  * set_array_info is used two different ways
6003  * The original usage is when creating a new array.
6004  * In this usage, raid_disks is > 0 and it together with
6005  *  level, size, not_persistent,layout,chunksize determine the
6006  *  shape of the array.
6007  *  This will always create an array with a type-0.90.0 superblock.
6008  * The newer usage is when assembling an array.
6009  *  In this case raid_disks will be 0, and the major_version field is
6010  *  use to determine which style super-blocks are to be found on the devices.
6011  *  The minor and patch _version numbers are also kept incase the
6012  *  super_block handler wishes to interpret them.
6013  */
6014 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6015 {
6016
6017         if (info->raid_disks == 0) {
6018                 /* just setting version number for superblock loading */
6019                 if (info->major_version < 0 ||
6020                     info->major_version >= ARRAY_SIZE(super_types) ||
6021                     super_types[info->major_version].name == NULL) {
6022                         /* maybe try to auto-load a module? */
6023                         printk(KERN_INFO 
6024                                 "md: superblock version %d not known\n",
6025                                 info->major_version);
6026                         return -EINVAL;
6027                 }
6028                 mddev->major_version = info->major_version;
6029                 mddev->minor_version = info->minor_version;
6030                 mddev->patch_version = info->patch_version;
6031                 mddev->persistent = !info->not_persistent;
6032                 /* ensure mddev_put doesn't delete this now that there
6033                  * is some minimal configuration.
6034                  */
6035                 mddev->ctime         = get_seconds();
6036                 return 0;
6037         }
6038         mddev->major_version = MD_MAJOR_VERSION;
6039         mddev->minor_version = MD_MINOR_VERSION;
6040         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6041         mddev->ctime         = get_seconds();
6042
6043         mddev->level         = info->level;
6044         mddev->clevel[0]     = 0;
6045         mddev->dev_sectors   = 2 * (sector_t)info->size;
6046         mddev->raid_disks    = info->raid_disks;
6047         /* don't set md_minor, it is determined by which /dev/md* was
6048          * openned
6049          */
6050         if (info->state & (1<<MD_SB_CLEAN))
6051                 mddev->recovery_cp = MaxSector;
6052         else
6053                 mddev->recovery_cp = 0;
6054         mddev->persistent    = ! info->not_persistent;
6055         mddev->external      = 0;
6056
6057         mddev->layout        = info->layout;
6058         mddev->chunk_sectors = info->chunk_size >> 9;
6059
6060         mddev->max_disks     = MD_SB_DISKS;
6061
6062         if (mddev->persistent)
6063                 mddev->flags         = 0;
6064         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6065
6066         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6067         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6068         mddev->bitmap_info.offset = 0;
6069
6070         mddev->reshape_position = MaxSector;
6071
6072         /*
6073          * Generate a 128 bit UUID
6074          */
6075         get_random_bytes(mddev->uuid, 16);
6076
6077         mddev->new_level = mddev->level;
6078         mddev->new_chunk_sectors = mddev->chunk_sectors;
6079         mddev->new_layout = mddev->layout;
6080         mddev->delta_disks = 0;
6081         mddev->reshape_backwards = 0;
6082
6083         return 0;
6084 }
6085
6086 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6087 {
6088         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6089
6090         if (mddev->external_size)
6091                 return;
6092
6093         mddev->array_sectors = array_sectors;
6094 }
6095 EXPORT_SYMBOL(md_set_array_sectors);
6096
6097 static int update_size(struct mddev *mddev, sector_t num_sectors)
6098 {
6099         struct md_rdev *rdev;
6100         int rv;
6101         int fit = (num_sectors == 0);
6102
6103         if (mddev->pers->resize == NULL)
6104                 return -EINVAL;
6105         /* The "num_sectors" is the number of sectors of each device that
6106          * is used.  This can only make sense for arrays with redundancy.
6107          * linear and raid0 always use whatever space is available. We can only
6108          * consider changing this number if no resync or reconstruction is
6109          * happening, and if the new size is acceptable. It must fit before the
6110          * sb_start or, if that is <data_offset, it must fit before the size
6111          * of each device.  If num_sectors is zero, we find the largest size
6112          * that fits.
6113          */
6114         if (mddev->sync_thread)
6115                 return -EBUSY;
6116
6117         rdev_for_each(rdev, mddev) {
6118                 sector_t avail = rdev->sectors;
6119
6120                 if (fit && (num_sectors == 0 || num_sectors > avail))
6121                         num_sectors = avail;
6122                 if (avail < num_sectors)
6123                         return -ENOSPC;
6124         }
6125         rv = mddev->pers->resize(mddev, num_sectors);
6126         if (!rv)
6127                 revalidate_disk(mddev->gendisk);
6128         return rv;
6129 }
6130
6131 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6132 {
6133         int rv;
6134         struct md_rdev *rdev;
6135         /* change the number of raid disks */
6136         if (mddev->pers->check_reshape == NULL)
6137                 return -EINVAL;
6138         if (raid_disks <= 0 ||
6139             (mddev->max_disks && raid_disks >= mddev->max_disks))
6140                 return -EINVAL;
6141         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6142                 return -EBUSY;
6143
6144         rdev_for_each(rdev, mddev) {
6145                 if (mddev->raid_disks < raid_disks &&
6146                     rdev->data_offset < rdev->new_data_offset)
6147                         return -EINVAL;
6148                 if (mddev->raid_disks > raid_disks &&
6149                     rdev->data_offset > rdev->new_data_offset)
6150                         return -EINVAL;
6151         }
6152
6153         mddev->delta_disks = raid_disks - mddev->raid_disks;
6154         if (mddev->delta_disks < 0)
6155                 mddev->reshape_backwards = 1;
6156         else if (mddev->delta_disks > 0)
6157                 mddev->reshape_backwards = 0;
6158
6159         rv = mddev->pers->check_reshape(mddev);
6160         if (rv < 0) {
6161                 mddev->delta_disks = 0;
6162                 mddev->reshape_backwards = 0;
6163         }
6164         return rv;
6165 }
6166
6167
6168 /*
6169  * update_array_info is used to change the configuration of an
6170  * on-line array.
6171  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6172  * fields in the info are checked against the array.
6173  * Any differences that cannot be handled will cause an error.
6174  * Normally, only one change can be managed at a time.
6175  */
6176 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6177 {
6178         int rv = 0;
6179         int cnt = 0;
6180         int state = 0;
6181
6182         /* calculate expected state,ignoring low bits */
6183         if (mddev->bitmap && mddev->bitmap_info.offset)
6184                 state |= (1 << MD_SB_BITMAP_PRESENT);
6185
6186         if (mddev->major_version != info->major_version ||
6187             mddev->minor_version != info->minor_version ||
6188 /*          mddev->patch_version != info->patch_version || */
6189             mddev->ctime         != info->ctime         ||
6190             mddev->level         != info->level         ||
6191 /*          mddev->layout        != info->layout        || */
6192             !mddev->persistent   != info->not_persistent||
6193             mddev->chunk_sectors != info->chunk_size >> 9 ||
6194             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6195             ((state^info->state) & 0xfffffe00)
6196                 )
6197                 return -EINVAL;
6198         /* Check there is only one change */
6199         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6200                 cnt++;
6201         if (mddev->raid_disks != info->raid_disks)
6202                 cnt++;
6203         if (mddev->layout != info->layout)
6204                 cnt++;
6205         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6206                 cnt++;
6207         if (cnt == 0)
6208                 return 0;
6209         if (cnt > 1)
6210                 return -EINVAL;
6211
6212         if (mddev->layout != info->layout) {
6213                 /* Change layout
6214                  * we don't need to do anything at the md level, the
6215                  * personality will take care of it all.
6216                  */
6217                 if (mddev->pers->check_reshape == NULL)
6218                         return -EINVAL;
6219                 else {
6220                         mddev->new_layout = info->layout;
6221                         rv = mddev->pers->check_reshape(mddev);
6222                         if (rv)
6223                                 mddev->new_layout = mddev->layout;
6224                         return rv;
6225                 }
6226         }
6227         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6228                 rv = update_size(mddev, (sector_t)info->size * 2);
6229
6230         if (mddev->raid_disks    != info->raid_disks)
6231                 rv = update_raid_disks(mddev, info->raid_disks);
6232
6233         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6234                 if (mddev->pers->quiesce == NULL)
6235                         return -EINVAL;
6236                 if (mddev->recovery || mddev->sync_thread)
6237                         return -EBUSY;
6238                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6239                         /* add the bitmap */
6240                         if (mddev->bitmap)
6241                                 return -EEXIST;
6242                         if (mddev->bitmap_info.default_offset == 0)
6243                                 return -EINVAL;
6244                         mddev->bitmap_info.offset =
6245                                 mddev->bitmap_info.default_offset;
6246                         mddev->bitmap_info.space =
6247                                 mddev->bitmap_info.default_space;
6248                         mddev->pers->quiesce(mddev, 1);
6249                         rv = bitmap_create(mddev);
6250                         if (!rv)
6251                                 rv = bitmap_load(mddev);
6252                         if (rv)
6253                                 bitmap_destroy(mddev);
6254                         mddev->pers->quiesce(mddev, 0);
6255                 } else {
6256                         /* remove the bitmap */
6257                         if (!mddev->bitmap)
6258                                 return -ENOENT;
6259                         if (mddev->bitmap->storage.file)
6260                                 return -EINVAL;
6261                         mddev->pers->quiesce(mddev, 1);
6262                         bitmap_destroy(mddev);
6263                         mddev->pers->quiesce(mddev, 0);
6264                         mddev->bitmap_info.offset = 0;
6265                 }
6266         }
6267         md_update_sb(mddev, 1);
6268         return rv;
6269 }
6270
6271 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6272 {
6273         struct md_rdev *rdev;
6274
6275         if (mddev->pers == NULL)
6276                 return -ENODEV;
6277
6278         rdev = find_rdev(mddev, dev);
6279         if (!rdev)
6280                 return -ENODEV;
6281
6282         md_error(mddev, rdev);
6283         if (!test_bit(Faulty, &rdev->flags))
6284                 return -EBUSY;
6285         return 0;
6286 }
6287
6288 /*
6289  * We have a problem here : there is no easy way to give a CHS
6290  * virtual geometry. We currently pretend that we have a 2 heads
6291  * 4 sectors (with a BIG number of cylinders...). This drives
6292  * dosfs just mad... ;-)
6293  */
6294 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6295 {
6296         struct mddev *mddev = bdev->bd_disk->private_data;
6297
6298         geo->heads = 2;
6299         geo->sectors = 4;
6300         geo->cylinders = mddev->array_sectors / 8;
6301         return 0;
6302 }
6303
6304 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6305                         unsigned int cmd, unsigned long arg)
6306 {
6307         int err = 0;
6308         void __user *argp = (void __user *)arg;
6309         struct mddev *mddev = NULL;
6310         int ro;
6311
6312         switch (cmd) {
6313         case RAID_VERSION:
6314         case GET_ARRAY_INFO:
6315         case GET_DISK_INFO:
6316                 break;
6317         default:
6318                 if (!capable(CAP_SYS_ADMIN))
6319                         return -EACCES;
6320         }
6321
6322         /*
6323          * Commands dealing with the RAID driver but not any
6324          * particular array:
6325          */
6326         switch (cmd)
6327         {
6328                 case RAID_VERSION:
6329                         err = get_version(argp);
6330                         goto done;
6331
6332                 case PRINT_RAID_DEBUG:
6333                         err = 0;
6334                         md_print_devices();
6335                         goto done;
6336
6337 #ifndef MODULE
6338                 case RAID_AUTORUN:
6339                         err = 0;
6340                         autostart_arrays(arg);
6341                         goto done;
6342 #endif
6343                 default:;
6344         }
6345
6346         /*
6347          * Commands creating/starting a new array:
6348          */
6349
6350         mddev = bdev->bd_disk->private_data;
6351
6352         if (!mddev) {
6353                 BUG();
6354                 goto abort;
6355         }
6356
6357         err = mddev_lock(mddev);
6358         if (err) {
6359                 printk(KERN_INFO 
6360                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6361                         err, cmd);
6362                 goto abort;
6363         }
6364
6365         switch (cmd)
6366         {
6367                 case SET_ARRAY_INFO:
6368                         {
6369                                 mdu_array_info_t info;
6370                                 if (!arg)
6371                                         memset(&info, 0, sizeof(info));
6372                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6373                                         err = -EFAULT;
6374                                         goto abort_unlock;
6375                                 }
6376                                 if (mddev->pers) {
6377                                         err = update_array_info(mddev, &info);
6378                                         if (err) {
6379                                                 printk(KERN_WARNING "md: couldn't update"
6380                                                        " array info. %d\n", err);
6381                                                 goto abort_unlock;
6382                                         }
6383                                         goto done_unlock;
6384                                 }
6385                                 if (!list_empty(&mddev->disks)) {
6386                                         printk(KERN_WARNING
6387                                                "md: array %s already has disks!\n",
6388                                                mdname(mddev));
6389                                         err = -EBUSY;
6390                                         goto abort_unlock;
6391                                 }
6392                                 if (mddev->raid_disks) {
6393                                         printk(KERN_WARNING
6394                                                "md: array %s already initialised!\n",
6395                                                mdname(mddev));
6396                                         err = -EBUSY;
6397                                         goto abort_unlock;
6398                                 }
6399                                 err = set_array_info(mddev, &info);
6400                                 if (err) {
6401                                         printk(KERN_WARNING "md: couldn't set"
6402                                                " array info. %d\n", err);
6403                                         goto abort_unlock;
6404                                 }
6405                         }
6406                         goto done_unlock;
6407
6408                 default:;
6409         }
6410
6411         /*
6412          * Commands querying/configuring an existing array:
6413          */
6414         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6415          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6416         if ((!mddev->raid_disks && !mddev->external)
6417             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6418             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6419             && cmd != GET_BITMAP_FILE) {
6420                 err = -ENODEV;
6421                 goto abort_unlock;
6422         }
6423
6424         /*
6425          * Commands even a read-only array can execute:
6426          */
6427         switch (cmd)
6428         {
6429                 case GET_ARRAY_INFO:
6430                         err = get_array_info(mddev, argp);
6431                         goto done_unlock;
6432
6433                 case GET_BITMAP_FILE:
6434                         err = get_bitmap_file(mddev, argp);
6435                         goto done_unlock;
6436
6437                 case GET_DISK_INFO:
6438                         err = get_disk_info(mddev, argp);
6439                         goto done_unlock;
6440
6441                 case RESTART_ARRAY_RW:
6442                         err = restart_array(mddev);
6443                         goto done_unlock;
6444
6445                 case STOP_ARRAY:
6446                         err = do_md_stop(mddev, 0, bdev);
6447                         goto done_unlock;
6448
6449                 case STOP_ARRAY_RO:
6450                         err = md_set_readonly(mddev, bdev);
6451                         goto done_unlock;
6452
6453                 case BLKROSET:
6454                         if (get_user(ro, (int __user *)(arg))) {
6455                                 err = -EFAULT;
6456                                 goto done_unlock;
6457                         }
6458                         err = -EINVAL;
6459
6460                         /* if the bdev is going readonly the value of mddev->ro
6461                          * does not matter, no writes are coming
6462                          */
6463                         if (ro)
6464                                 goto done_unlock;
6465
6466                         /* are we are already prepared for writes? */
6467                         if (mddev->ro != 1)
6468                                 goto done_unlock;
6469
6470                         /* transitioning to readauto need only happen for
6471                          * arrays that call md_write_start
6472                          */
6473                         if (mddev->pers) {
6474                                 err = restart_array(mddev);
6475                                 if (err == 0) {
6476                                         mddev->ro = 2;
6477                                         set_disk_ro(mddev->gendisk, 0);
6478                                 }
6479                         }
6480                         goto done_unlock;
6481         }
6482
6483         /*
6484          * The remaining ioctls are changing the state of the
6485          * superblock, so we do not allow them on read-only arrays.
6486          * However non-MD ioctls (e.g. get-size) will still come through
6487          * here and hit the 'default' below, so only disallow
6488          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6489          */
6490         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6491                 if (mddev->ro == 2) {
6492                         mddev->ro = 0;
6493                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6494                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6495                         md_wakeup_thread(mddev->thread);
6496                 } else {
6497                         err = -EROFS;
6498                         goto abort_unlock;
6499                 }
6500         }
6501
6502         switch (cmd)
6503         {
6504                 case ADD_NEW_DISK:
6505                 {
6506                         mdu_disk_info_t info;
6507                         if (copy_from_user(&info, argp, sizeof(info)))
6508                                 err = -EFAULT;
6509                         else
6510                                 err = add_new_disk(mddev, &info);
6511                         goto done_unlock;
6512                 }
6513
6514                 case HOT_REMOVE_DISK:
6515                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6516                         goto done_unlock;
6517
6518                 case HOT_ADD_DISK:
6519                         err = hot_add_disk(mddev, new_decode_dev(arg));
6520                         goto done_unlock;
6521
6522                 case SET_DISK_FAULTY:
6523                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6524                         goto done_unlock;
6525
6526                 case RUN_ARRAY:
6527                         err = do_md_run(mddev);
6528                         goto done_unlock;
6529
6530                 case SET_BITMAP_FILE:
6531                         err = set_bitmap_file(mddev, (int)arg);
6532                         goto done_unlock;
6533
6534                 default:
6535                         err = -EINVAL;
6536                         goto abort_unlock;
6537         }
6538
6539 done_unlock:
6540 abort_unlock:
6541         if (mddev->hold_active == UNTIL_IOCTL &&
6542             err != -EINVAL)
6543                 mddev->hold_active = 0;
6544         mddev_unlock(mddev);
6545
6546         return err;
6547 done:
6548         if (err)
6549                 MD_BUG();
6550 abort:
6551         return err;
6552 }
6553 #ifdef CONFIG_COMPAT
6554 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6555                     unsigned int cmd, unsigned long arg)
6556 {
6557         switch (cmd) {
6558         case HOT_REMOVE_DISK:
6559         case HOT_ADD_DISK:
6560         case SET_DISK_FAULTY:
6561         case SET_BITMAP_FILE:
6562                 /* These take in integer arg, do not convert */
6563                 break;
6564         default:
6565                 arg = (unsigned long)compat_ptr(arg);
6566                 break;
6567         }
6568
6569         return md_ioctl(bdev, mode, cmd, arg);
6570 }
6571 #endif /* CONFIG_COMPAT */
6572
6573 static int md_open(struct block_device *bdev, fmode_t mode)
6574 {
6575         /*
6576          * Succeed if we can lock the mddev, which confirms that
6577          * it isn't being stopped right now.
6578          */
6579         struct mddev *mddev = mddev_find(bdev->bd_dev);
6580         int err;
6581
6582         if (!mddev)
6583                 return -ENODEV;
6584
6585         if (mddev->gendisk != bdev->bd_disk) {
6586                 /* we are racing with mddev_put which is discarding this
6587                  * bd_disk.
6588                  */
6589                 mddev_put(mddev);
6590                 /* Wait until bdev->bd_disk is definitely gone */
6591                 flush_workqueue(md_misc_wq);
6592                 /* Then retry the open from the top */
6593                 return -ERESTARTSYS;
6594         }
6595         BUG_ON(mddev != bdev->bd_disk->private_data);
6596
6597         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6598                 goto out;
6599
6600         err = 0;
6601         atomic_inc(&mddev->openers);
6602         mutex_unlock(&mddev->open_mutex);
6603
6604         check_disk_change(bdev);
6605  out:
6606         return err;
6607 }
6608
6609 static int md_release(struct gendisk *disk, fmode_t mode)
6610 {
6611         struct mddev *mddev = disk->private_data;
6612
6613         BUG_ON(!mddev);
6614         atomic_dec(&mddev->openers);
6615         mddev_put(mddev);
6616
6617         return 0;
6618 }
6619
6620 static int md_media_changed(struct gendisk *disk)
6621 {
6622         struct mddev *mddev = disk->private_data;
6623
6624         return mddev->changed;
6625 }
6626
6627 static int md_revalidate(struct gendisk *disk)
6628 {
6629         struct mddev *mddev = disk->private_data;
6630
6631         mddev->changed = 0;
6632         return 0;
6633 }
6634 static const struct block_device_operations md_fops =
6635 {
6636         .owner          = THIS_MODULE,
6637         .open           = md_open,
6638         .release        = md_release,
6639         .ioctl          = md_ioctl,
6640 #ifdef CONFIG_COMPAT
6641         .compat_ioctl   = md_compat_ioctl,
6642 #endif
6643         .getgeo         = md_getgeo,
6644         .media_changed  = md_media_changed,
6645         .revalidate_disk= md_revalidate,
6646 };
6647
6648 static int md_thread(void * arg)
6649 {
6650         struct md_thread *thread = arg;
6651
6652         /*
6653          * md_thread is a 'system-thread', it's priority should be very
6654          * high. We avoid resource deadlocks individually in each
6655          * raid personality. (RAID5 does preallocation) We also use RR and
6656          * the very same RT priority as kswapd, thus we will never get
6657          * into a priority inversion deadlock.
6658          *
6659          * we definitely have to have equal or higher priority than
6660          * bdflush, otherwise bdflush will deadlock if there are too
6661          * many dirty RAID5 blocks.
6662          */
6663
6664         allow_signal(SIGKILL);
6665         while (!kthread_should_stop()) {
6666
6667                 /* We need to wait INTERRUPTIBLE so that
6668                  * we don't add to the load-average.
6669                  * That means we need to be sure no signals are
6670                  * pending
6671                  */
6672                 if (signal_pending(current))
6673                         flush_signals(current);
6674
6675                 wait_event_interruptible_timeout
6676                         (thread->wqueue,
6677                          test_bit(THREAD_WAKEUP, &thread->flags)
6678                          || kthread_should_stop(),
6679                          thread->timeout);
6680
6681                 clear_bit(THREAD_WAKEUP, &thread->flags);
6682                 if (!kthread_should_stop())
6683                         thread->run(thread->mddev);
6684         }
6685
6686         return 0;
6687 }
6688
6689 void md_wakeup_thread(struct md_thread *thread)
6690 {
6691         if (thread) {
6692                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6693                 set_bit(THREAD_WAKEUP, &thread->flags);
6694                 wake_up(&thread->wqueue);
6695         }
6696 }
6697
6698 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6699                                  const char *name)
6700 {
6701         struct md_thread *thread;
6702
6703         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6704         if (!thread)
6705                 return NULL;
6706
6707         init_waitqueue_head(&thread->wqueue);
6708
6709         thread->run = run;
6710         thread->mddev = mddev;
6711         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6712         thread->tsk = kthread_run(md_thread, thread,
6713                                   "%s_%s",
6714                                   mdname(thread->mddev),
6715                                   name);
6716         if (IS_ERR(thread->tsk)) {
6717                 kfree(thread);
6718                 return NULL;
6719         }
6720         return thread;
6721 }
6722
6723 void md_unregister_thread(struct md_thread **threadp)
6724 {
6725         struct md_thread *thread = *threadp;
6726         if (!thread)
6727                 return;
6728         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6729         /* Locking ensures that mddev_unlock does not wake_up a
6730          * non-existent thread
6731          */
6732         spin_lock(&pers_lock);
6733         *threadp = NULL;
6734         spin_unlock(&pers_lock);
6735
6736         kthread_stop(thread->tsk);
6737         kfree(thread);
6738 }
6739
6740 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6741 {
6742         if (!mddev) {
6743                 MD_BUG();
6744                 return;
6745         }
6746
6747         if (!rdev || test_bit(Faulty, &rdev->flags))
6748                 return;
6749
6750         if (!mddev->pers || !mddev->pers->error_handler)
6751                 return;
6752         mddev->pers->error_handler(mddev,rdev);
6753         if (mddev->degraded)
6754                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6755         sysfs_notify_dirent_safe(rdev->sysfs_state);
6756         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6757         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6758         md_wakeup_thread(mddev->thread);
6759         if (mddev->event_work.func)
6760                 queue_work(md_misc_wq, &mddev->event_work);
6761         md_new_event_inintr(mddev);
6762 }
6763
6764 /* seq_file implementation /proc/mdstat */
6765
6766 static void status_unused(struct seq_file *seq)
6767 {
6768         int i = 0;
6769         struct md_rdev *rdev;
6770
6771         seq_printf(seq, "unused devices: ");
6772
6773         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6774                 char b[BDEVNAME_SIZE];
6775                 i++;
6776                 seq_printf(seq, "%s ",
6777                               bdevname(rdev->bdev,b));
6778         }
6779         if (!i)
6780                 seq_printf(seq, "<none>");
6781
6782         seq_printf(seq, "\n");
6783 }
6784
6785
6786 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6787 {
6788         sector_t max_sectors, resync, res;
6789         unsigned long dt, db;
6790         sector_t rt;
6791         int scale;
6792         unsigned int per_milli;
6793
6794         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6795
6796         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6797             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6798                 max_sectors = mddev->resync_max_sectors;
6799         else
6800                 max_sectors = mddev->dev_sectors;
6801
6802         /*
6803          * Should not happen.
6804          */
6805         if (!max_sectors) {
6806                 MD_BUG();
6807                 return;
6808         }
6809         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6810          * in a sector_t, and (max_sectors>>scale) will fit in a
6811          * u32, as those are the requirements for sector_div.
6812          * Thus 'scale' must be at least 10
6813          */
6814         scale = 10;
6815         if (sizeof(sector_t) > sizeof(unsigned long)) {
6816                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6817                         scale++;
6818         }
6819         res = (resync>>scale)*1000;
6820         sector_div(res, (u32)((max_sectors>>scale)+1));
6821
6822         per_milli = res;
6823         {
6824                 int i, x = per_milli/50, y = 20-x;
6825                 seq_printf(seq, "[");
6826                 for (i = 0; i < x; i++)
6827                         seq_printf(seq, "=");
6828                 seq_printf(seq, ">");
6829                 for (i = 0; i < y; i++)
6830                         seq_printf(seq, ".");
6831                 seq_printf(seq, "] ");
6832         }
6833         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6834                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6835                     "reshape" :
6836                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6837                      "check" :
6838                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6839                       "resync" : "recovery"))),
6840                    per_milli/10, per_milli % 10,
6841                    (unsigned long long) resync/2,
6842                    (unsigned long long) max_sectors/2);
6843
6844         /*
6845          * dt: time from mark until now
6846          * db: blocks written from mark until now
6847          * rt: remaining time
6848          *
6849          * rt is a sector_t, so could be 32bit or 64bit.
6850          * So we divide before multiply in case it is 32bit and close
6851          * to the limit.
6852          * We scale the divisor (db) by 32 to avoid losing precision
6853          * near the end of resync when the number of remaining sectors
6854          * is close to 'db'.
6855          * We then divide rt by 32 after multiplying by db to compensate.
6856          * The '+1' avoids division by zero if db is very small.
6857          */
6858         dt = ((jiffies - mddev->resync_mark) / HZ);
6859         if (!dt) dt++;
6860         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6861                 - mddev->resync_mark_cnt;
6862
6863         rt = max_sectors - resync;    /* number of remaining sectors */
6864         sector_div(rt, db/32+1);
6865         rt *= dt;
6866         rt >>= 5;
6867
6868         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6869                    ((unsigned long)rt % 60)/6);
6870
6871         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6872 }
6873
6874 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6875 {
6876         struct list_head *tmp;
6877         loff_t l = *pos;
6878         struct mddev *mddev;
6879
6880         if (l >= 0x10000)
6881                 return NULL;
6882         if (!l--)
6883                 /* header */
6884                 return (void*)1;
6885
6886         spin_lock(&all_mddevs_lock);
6887         list_for_each(tmp,&all_mddevs)
6888                 if (!l--) {
6889                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6890                         mddev_get(mddev);
6891                         spin_unlock(&all_mddevs_lock);
6892                         return mddev;
6893                 }
6894         spin_unlock(&all_mddevs_lock);
6895         if (!l--)
6896                 return (void*)2;/* tail */
6897         return NULL;
6898 }
6899
6900 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6901 {
6902         struct list_head *tmp;
6903         struct mddev *next_mddev, *mddev = v;
6904         
6905         ++*pos;
6906         if (v == (void*)2)
6907                 return NULL;
6908
6909         spin_lock(&all_mddevs_lock);
6910         if (v == (void*)1)
6911                 tmp = all_mddevs.next;
6912         else
6913                 tmp = mddev->all_mddevs.next;
6914         if (tmp != &all_mddevs)
6915                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6916         else {
6917                 next_mddev = (void*)2;
6918                 *pos = 0x10000;
6919         }               
6920         spin_unlock(&all_mddevs_lock);
6921
6922         if (v != (void*)1)
6923                 mddev_put(mddev);
6924         return next_mddev;
6925
6926 }
6927
6928 static void md_seq_stop(struct seq_file *seq, void *v)
6929 {
6930         struct mddev *mddev = v;
6931
6932         if (mddev && v != (void*)1 && v != (void*)2)
6933                 mddev_put(mddev);
6934 }
6935
6936 static int md_seq_show(struct seq_file *seq, void *v)
6937 {
6938         struct mddev *mddev = v;
6939         sector_t sectors;
6940         struct md_rdev *rdev;
6941
6942         if (v == (void*)1) {
6943                 struct md_personality *pers;
6944                 seq_printf(seq, "Personalities : ");
6945                 spin_lock(&pers_lock);
6946                 list_for_each_entry(pers, &pers_list, list)
6947                         seq_printf(seq, "[%s] ", pers->name);
6948
6949                 spin_unlock(&pers_lock);
6950                 seq_printf(seq, "\n");
6951                 seq->poll_event = atomic_read(&md_event_count);
6952                 return 0;
6953         }
6954         if (v == (void*)2) {
6955                 status_unused(seq);
6956                 return 0;
6957         }
6958
6959         if (mddev_lock(mddev) < 0)
6960                 return -EINTR;
6961
6962         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6963                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6964                                                 mddev->pers ? "" : "in");
6965                 if (mddev->pers) {
6966                         if (mddev->ro==1)
6967                                 seq_printf(seq, " (read-only)");
6968                         if (mddev->ro==2)
6969                                 seq_printf(seq, " (auto-read-only)");
6970                         seq_printf(seq, " %s", mddev->pers->name);
6971                 }
6972
6973                 sectors = 0;
6974                 rdev_for_each(rdev, mddev) {
6975                         char b[BDEVNAME_SIZE];
6976                         seq_printf(seq, " %s[%d]",
6977                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6978                         if (test_bit(WriteMostly, &rdev->flags))
6979                                 seq_printf(seq, "(W)");
6980                         if (test_bit(Faulty, &rdev->flags)) {
6981                                 seq_printf(seq, "(F)");
6982                                 continue;
6983                         }
6984                         if (rdev->raid_disk < 0)
6985                                 seq_printf(seq, "(S)"); /* spare */
6986                         if (test_bit(Replacement, &rdev->flags))
6987                                 seq_printf(seq, "(R)");
6988                         sectors += rdev->sectors;
6989                 }
6990
6991                 if (!list_empty(&mddev->disks)) {
6992                         if (mddev->pers)
6993                                 seq_printf(seq, "\n      %llu blocks",
6994                                            (unsigned long long)
6995                                            mddev->array_sectors / 2);
6996                         else
6997                                 seq_printf(seq, "\n      %llu blocks",
6998                                            (unsigned long long)sectors / 2);
6999                 }
7000                 if (mddev->persistent) {
7001                         if (mddev->major_version != 0 ||
7002                             mddev->minor_version != 90) {
7003                                 seq_printf(seq," super %d.%d",
7004                                            mddev->major_version,
7005                                            mddev->minor_version);
7006                         }
7007                 } else if (mddev->external)
7008                         seq_printf(seq, " super external:%s",
7009                                    mddev->metadata_type);
7010                 else
7011                         seq_printf(seq, " super non-persistent");
7012
7013                 if (mddev->pers) {
7014                         mddev->pers->status(seq, mddev);
7015                         seq_printf(seq, "\n      ");
7016                         if (mddev->pers->sync_request) {
7017                                 if (mddev->curr_resync > 2) {
7018                                         status_resync(seq, mddev);
7019                                         seq_printf(seq, "\n      ");
7020                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7021                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7022                                 else if (mddev->recovery_cp < MaxSector)
7023                                         seq_printf(seq, "\tresync=PENDING\n      ");
7024                         }
7025                 } else
7026                         seq_printf(seq, "\n       ");
7027
7028                 bitmap_status(seq, mddev->bitmap);
7029
7030                 seq_printf(seq, "\n");
7031         }
7032         mddev_unlock(mddev);
7033         
7034         return 0;
7035 }
7036
7037 static const struct seq_operations md_seq_ops = {
7038         .start  = md_seq_start,
7039         .next   = md_seq_next,
7040         .stop   = md_seq_stop,
7041         .show   = md_seq_show,
7042 };
7043
7044 static int md_seq_open(struct inode *inode, struct file *file)
7045 {
7046         struct seq_file *seq;
7047         int error;
7048
7049         error = seq_open(file, &md_seq_ops);
7050         if (error)
7051                 return error;
7052
7053         seq = file->private_data;
7054         seq->poll_event = atomic_read(&md_event_count);
7055         return error;
7056 }
7057
7058 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7059 {
7060         struct seq_file *seq = filp->private_data;
7061         int mask;
7062
7063         poll_wait(filp, &md_event_waiters, wait);
7064
7065         /* always allow read */
7066         mask = POLLIN | POLLRDNORM;
7067
7068         if (seq->poll_event != atomic_read(&md_event_count))
7069                 mask |= POLLERR | POLLPRI;
7070         return mask;
7071 }
7072
7073 static const struct file_operations md_seq_fops = {
7074         .owner          = THIS_MODULE,
7075         .open           = md_seq_open,
7076         .read           = seq_read,
7077         .llseek         = seq_lseek,
7078         .release        = seq_release_private,
7079         .poll           = mdstat_poll,
7080 };
7081
7082 int register_md_personality(struct md_personality *p)
7083 {
7084         spin_lock(&pers_lock);
7085         list_add_tail(&p->list, &pers_list);
7086         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7087         spin_unlock(&pers_lock);
7088         return 0;
7089 }
7090
7091 int unregister_md_personality(struct md_personality *p)
7092 {
7093         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7094         spin_lock(&pers_lock);
7095         list_del_init(&p->list);
7096         spin_unlock(&pers_lock);
7097         return 0;
7098 }
7099
7100 static int is_mddev_idle(struct mddev *mddev, int init)
7101 {
7102         struct md_rdev * rdev;
7103         int idle;
7104         int curr_events;
7105
7106         idle = 1;
7107         rcu_read_lock();
7108         rdev_for_each_rcu(rdev, mddev) {
7109                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7110                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7111                               (int)part_stat_read(&disk->part0, sectors[1]) -
7112                               atomic_read(&disk->sync_io);
7113                 /* sync IO will cause sync_io to increase before the disk_stats
7114                  * as sync_io is counted when a request starts, and
7115                  * disk_stats is counted when it completes.
7116                  * So resync activity will cause curr_events to be smaller than
7117                  * when there was no such activity.
7118                  * non-sync IO will cause disk_stat to increase without
7119                  * increasing sync_io so curr_events will (eventually)
7120                  * be larger than it was before.  Once it becomes
7121                  * substantially larger, the test below will cause
7122                  * the array to appear non-idle, and resync will slow
7123                  * down.
7124                  * If there is a lot of outstanding resync activity when
7125                  * we set last_event to curr_events, then all that activity
7126                  * completing might cause the array to appear non-idle
7127                  * and resync will be slowed down even though there might
7128                  * not have been non-resync activity.  This will only
7129                  * happen once though.  'last_events' will soon reflect
7130                  * the state where there is little or no outstanding
7131                  * resync requests, and further resync activity will
7132                  * always make curr_events less than last_events.
7133                  *
7134                  */
7135                 if (init || curr_events - rdev->last_events > 64) {
7136                         rdev->last_events = curr_events;
7137                         idle = 0;
7138                 }
7139         }
7140         rcu_read_unlock();
7141         return idle;
7142 }
7143
7144 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7145 {
7146         /* another "blocks" (512byte) blocks have been synced */
7147         atomic_sub(blocks, &mddev->recovery_active);
7148         wake_up(&mddev->recovery_wait);
7149         if (!ok) {
7150                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7151                 md_wakeup_thread(mddev->thread);
7152                 // stop recovery, signal do_sync ....
7153         }
7154 }
7155
7156
7157 /* md_write_start(mddev, bi)
7158  * If we need to update some array metadata (e.g. 'active' flag
7159  * in superblock) before writing, schedule a superblock update
7160  * and wait for it to complete.
7161  */
7162 void md_write_start(struct mddev *mddev, struct bio *bi)
7163 {
7164         int did_change = 0;
7165         if (bio_data_dir(bi) != WRITE)
7166                 return;
7167
7168         BUG_ON(mddev->ro == 1);
7169         if (mddev->ro == 2) {
7170                 /* need to switch to read/write */
7171                 mddev->ro = 0;
7172                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7173                 md_wakeup_thread(mddev->thread);
7174                 md_wakeup_thread(mddev->sync_thread);
7175                 did_change = 1;
7176         }
7177         atomic_inc(&mddev->writes_pending);
7178         if (mddev->safemode == 1)
7179                 mddev->safemode = 0;
7180         if (mddev->in_sync) {
7181                 spin_lock_irq(&mddev->write_lock);
7182                 if (mddev->in_sync) {
7183                         mddev->in_sync = 0;
7184                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7185                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7186                         md_wakeup_thread(mddev->thread);
7187                         did_change = 1;
7188                 }
7189                 spin_unlock_irq(&mddev->write_lock);
7190         }
7191         if (did_change)
7192                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7193         wait_event(mddev->sb_wait,
7194                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7195 }
7196
7197 void md_write_end(struct mddev *mddev)
7198 {
7199         if (atomic_dec_and_test(&mddev->writes_pending)) {
7200                 if (mddev->safemode == 2)
7201                         md_wakeup_thread(mddev->thread);
7202                 else if (mddev->safemode_delay)
7203                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7204         }
7205 }
7206
7207 /* md_allow_write(mddev)
7208  * Calling this ensures that the array is marked 'active' so that writes
7209  * may proceed without blocking.  It is important to call this before
7210  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7211  * Must be called with mddev_lock held.
7212  *
7213  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7214  * is dropped, so return -EAGAIN after notifying userspace.
7215  */
7216 int md_allow_write(struct mddev *mddev)
7217 {
7218         if (!mddev->pers)
7219                 return 0;
7220         if (mddev->ro)
7221                 return 0;
7222         if (!mddev->pers->sync_request)
7223                 return 0;
7224
7225         spin_lock_irq(&mddev->write_lock);
7226         if (mddev->in_sync) {
7227                 mddev->in_sync = 0;
7228                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7229                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7230                 if (mddev->safemode_delay &&
7231                     mddev->safemode == 0)
7232                         mddev->safemode = 1;
7233                 spin_unlock_irq(&mddev->write_lock);
7234                 md_update_sb(mddev, 0);
7235                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7236         } else
7237                 spin_unlock_irq(&mddev->write_lock);
7238
7239         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7240                 return -EAGAIN;
7241         else
7242                 return 0;
7243 }
7244 EXPORT_SYMBOL_GPL(md_allow_write);
7245
7246 #define SYNC_MARKS      10
7247 #define SYNC_MARK_STEP  (3*HZ)
7248 void md_do_sync(struct mddev *mddev)
7249 {
7250         struct mddev *mddev2;
7251         unsigned int currspeed = 0,
7252                  window;
7253         sector_t max_sectors,j, io_sectors;
7254         unsigned long mark[SYNC_MARKS];
7255         sector_t mark_cnt[SYNC_MARKS];
7256         int last_mark,m;
7257         struct list_head *tmp;
7258         sector_t last_check;
7259         int skipped = 0;
7260         struct md_rdev *rdev;
7261         char *desc;
7262         struct blk_plug plug;
7263
7264         /* just incase thread restarts... */
7265         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7266                 return;
7267         if (mddev->ro) /* never try to sync a read-only array */
7268                 return;
7269
7270         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7271                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7272                         desc = "data-check";
7273                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7274                         desc = "requested-resync";
7275                 else
7276                         desc = "resync";
7277         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7278                 desc = "reshape";
7279         else
7280                 desc = "recovery";
7281
7282         /* we overload curr_resync somewhat here.
7283          * 0 == not engaged in resync at all
7284          * 2 == checking that there is no conflict with another sync
7285          * 1 == like 2, but have yielded to allow conflicting resync to
7286          *              commense
7287          * other == active in resync - this many blocks
7288          *
7289          * Before starting a resync we must have set curr_resync to
7290          * 2, and then checked that every "conflicting" array has curr_resync
7291          * less than ours.  When we find one that is the same or higher
7292          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7293          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7294          * This will mean we have to start checking from the beginning again.
7295          *
7296          */
7297
7298         do {
7299                 mddev->curr_resync = 2;
7300
7301         try_again:
7302                 if (kthread_should_stop())
7303                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7304
7305                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7306                         goto skip;
7307                 for_each_mddev(mddev2, tmp) {
7308                         if (mddev2 == mddev)
7309                                 continue;
7310                         if (!mddev->parallel_resync
7311                         &&  mddev2->curr_resync
7312                         &&  match_mddev_units(mddev, mddev2)) {
7313                                 DEFINE_WAIT(wq);
7314                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7315                                         /* arbitrarily yield */
7316                                         mddev->curr_resync = 1;
7317                                         wake_up(&resync_wait);
7318                                 }
7319                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7320                                         /* no need to wait here, we can wait the next
7321                                          * time 'round when curr_resync == 2
7322                                          */
7323                                         continue;
7324                                 /* We need to wait 'interruptible' so as not to
7325                                  * contribute to the load average, and not to
7326                                  * be caught by 'softlockup'
7327                                  */
7328                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7329                                 if (!kthread_should_stop() &&
7330                                     mddev2->curr_resync >= mddev->curr_resync) {
7331                                         printk(KERN_INFO "md: delaying %s of %s"
7332                                                " until %s has finished (they"
7333                                                " share one or more physical units)\n",
7334                                                desc, mdname(mddev), mdname(mddev2));
7335                                         mddev_put(mddev2);
7336                                         if (signal_pending(current))
7337                                                 flush_signals(current);
7338                                         schedule();
7339                                         finish_wait(&resync_wait, &wq);
7340                                         goto try_again;
7341                                 }
7342                                 finish_wait(&resync_wait, &wq);
7343                         }
7344                 }
7345         } while (mddev->curr_resync < 2);
7346
7347         j = 0;
7348         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7349                 /* resync follows the size requested by the personality,
7350                  * which defaults to physical size, but can be virtual size
7351                  */
7352                 max_sectors = mddev->resync_max_sectors;
7353                 mddev->resync_mismatches = 0;
7354                 /* we don't use the checkpoint if there's a bitmap */
7355                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7356                         j = mddev->resync_min;
7357                 else if (!mddev->bitmap)
7358                         j = mddev->recovery_cp;
7359
7360         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7361                 max_sectors = mddev->resync_max_sectors;
7362         else {
7363                 /* recovery follows the physical size of devices */
7364                 max_sectors = mddev->dev_sectors;
7365                 j = MaxSector;
7366                 rcu_read_lock();
7367                 rdev_for_each_rcu(rdev, mddev)
7368                         if (rdev->raid_disk >= 0 &&
7369                             !test_bit(Faulty, &rdev->flags) &&
7370                             !test_bit(In_sync, &rdev->flags) &&
7371                             rdev->recovery_offset < j)
7372                                 j = rdev->recovery_offset;
7373                 rcu_read_unlock();
7374         }
7375
7376         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7377         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7378                 " %d KB/sec/disk.\n", speed_min(mddev));
7379         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7380                "(but not more than %d KB/sec) for %s.\n",
7381                speed_max(mddev), desc);
7382
7383         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7384
7385         io_sectors = 0;
7386         for (m = 0; m < SYNC_MARKS; m++) {
7387                 mark[m] = jiffies;
7388                 mark_cnt[m] = io_sectors;
7389         }
7390         last_mark = 0;
7391         mddev->resync_mark = mark[last_mark];
7392         mddev->resync_mark_cnt = mark_cnt[last_mark];
7393
7394         /*
7395          * Tune reconstruction:
7396          */
7397         window = 32*(PAGE_SIZE/512);
7398         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7399                 window/2, (unsigned long long)max_sectors/2);
7400
7401         atomic_set(&mddev->recovery_active, 0);
7402         last_check = 0;
7403
7404         if (j>2) {
7405                 printk(KERN_INFO 
7406                        "md: resuming %s of %s from checkpoint.\n",
7407                        desc, mdname(mddev));
7408                 mddev->curr_resync = j;
7409         }
7410         mddev->curr_resync_completed = j;
7411
7412         blk_start_plug(&plug);
7413         while (j < max_sectors) {
7414                 sector_t sectors;
7415
7416                 skipped = 0;
7417
7418                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7419                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7420                       (mddev->curr_resync - mddev->curr_resync_completed)
7421                       > (max_sectors >> 4)) ||
7422                      (j - mddev->curr_resync_completed)*2
7423                      >= mddev->resync_max - mddev->curr_resync_completed
7424                             )) {
7425                         /* time to update curr_resync_completed */
7426                         wait_event(mddev->recovery_wait,
7427                                    atomic_read(&mddev->recovery_active) == 0);
7428                         mddev->curr_resync_completed = j;
7429                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7430                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7431                 }
7432
7433                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7434                         /* As this condition is controlled by user-space,
7435                          * we can block indefinitely, so use '_interruptible'
7436                          * to avoid triggering warnings.
7437                          */
7438                         flush_signals(current); /* just in case */
7439                         wait_event_interruptible(mddev->recovery_wait,
7440                                                  mddev->resync_max > j
7441                                                  || kthread_should_stop());
7442                 }
7443
7444                 if (kthread_should_stop())
7445                         goto interrupted;
7446
7447                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7448                                                   currspeed < speed_min(mddev));
7449                 if (sectors == 0) {
7450                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7451                         goto out;
7452                 }
7453
7454                 if (!skipped) { /* actual IO requested */
7455                         io_sectors += sectors;
7456                         atomic_add(sectors, &mddev->recovery_active);
7457                 }
7458
7459                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7460                         break;
7461
7462                 j += sectors;
7463                 if (j>1) mddev->curr_resync = j;
7464                 mddev->curr_mark_cnt = io_sectors;
7465                 if (last_check == 0)
7466                         /* this is the earliest that rebuild will be
7467                          * visible in /proc/mdstat
7468                          */
7469                         md_new_event(mddev);
7470
7471                 if (last_check + window > io_sectors || j == max_sectors)
7472                         continue;
7473
7474                 last_check = io_sectors;
7475         repeat:
7476                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7477                         /* step marks */
7478                         int next = (last_mark+1) % SYNC_MARKS;
7479
7480                         mddev->resync_mark = mark[next];
7481                         mddev->resync_mark_cnt = mark_cnt[next];
7482                         mark[next] = jiffies;
7483                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7484                         last_mark = next;
7485                 }
7486
7487
7488                 if (kthread_should_stop())
7489                         goto interrupted;
7490
7491
7492                 /*
7493                  * this loop exits only if either when we are slower than
7494                  * the 'hard' speed limit, or the system was IO-idle for
7495                  * a jiffy.
7496                  * the system might be non-idle CPU-wise, but we only care
7497                  * about not overloading the IO subsystem. (things like an
7498                  * e2fsck being done on the RAID array should execute fast)
7499                  */
7500                 cond_resched();
7501
7502                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7503                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7504
7505                 if (currspeed > speed_min(mddev)) {
7506                         if ((currspeed > speed_max(mddev)) ||
7507                                         !is_mddev_idle(mddev, 0)) {
7508                                 msleep(500);
7509                                 goto repeat;
7510                         }
7511                 }
7512         }
7513         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7514         /*
7515          * this also signals 'finished resyncing' to md_stop
7516          */
7517  out:
7518         blk_finish_plug(&plug);
7519         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7520
7521         /* tell personality that we are finished */
7522         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7523
7524         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7525             mddev->curr_resync > 2) {
7526                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7527                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7528                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7529                                         printk(KERN_INFO
7530                                                "md: checkpointing %s of %s.\n",
7531                                                desc, mdname(mddev));
7532                                         mddev->recovery_cp =
7533                                                 mddev->curr_resync_completed;
7534                                 }
7535                         } else
7536                                 mddev->recovery_cp = MaxSector;
7537                 } else {
7538                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7539                                 mddev->curr_resync = MaxSector;
7540                         rcu_read_lock();
7541                         rdev_for_each_rcu(rdev, mddev)
7542                                 if (rdev->raid_disk >= 0 &&
7543                                     mddev->delta_disks >= 0 &&
7544                                     !test_bit(Faulty, &rdev->flags) &&
7545                                     !test_bit(In_sync, &rdev->flags) &&
7546                                     rdev->recovery_offset < mddev->curr_resync)
7547                                         rdev->recovery_offset = mddev->curr_resync;
7548                         rcu_read_unlock();
7549                 }
7550         }
7551  skip:
7552         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7553
7554         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7555                 /* We completed so min/max setting can be forgotten if used. */
7556                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7557                         mddev->resync_min = 0;
7558                 mddev->resync_max = MaxSector;
7559         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7560                 mddev->resync_min = mddev->curr_resync_completed;
7561         mddev->curr_resync = 0;
7562         wake_up(&resync_wait);
7563         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7564         md_wakeup_thread(mddev->thread);
7565         return;
7566
7567  interrupted:
7568         /*
7569          * got a signal, exit.
7570          */
7571         printk(KERN_INFO
7572                "md: md_do_sync() got signal ... exiting\n");
7573         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7574         goto out;
7575
7576 }
7577 EXPORT_SYMBOL_GPL(md_do_sync);
7578
7579 static int remove_and_add_spares(struct mddev *mddev)
7580 {
7581         struct md_rdev *rdev;
7582         int spares = 0;
7583         int removed = 0;
7584
7585         mddev->curr_resync_completed = 0;
7586
7587         rdev_for_each(rdev, mddev)
7588                 if (rdev->raid_disk >= 0 &&
7589                     !test_bit(Blocked, &rdev->flags) &&
7590                     (test_bit(Faulty, &rdev->flags) ||
7591                      ! test_bit(In_sync, &rdev->flags)) &&
7592                     atomic_read(&rdev->nr_pending)==0) {
7593                         if (mddev->pers->hot_remove_disk(
7594                                     mddev, rdev) == 0) {
7595                                 sysfs_unlink_rdev(mddev, rdev);
7596                                 rdev->raid_disk = -1;
7597                                 removed++;
7598                         }
7599                 }
7600         if (removed)
7601                 sysfs_notify(&mddev->kobj, NULL,
7602                              "degraded");
7603
7604
7605         rdev_for_each(rdev, mddev) {
7606                 if (rdev->raid_disk >= 0 &&
7607                     !test_bit(In_sync, &rdev->flags) &&
7608                     !test_bit(Faulty, &rdev->flags))
7609                         spares++;
7610                 if (rdev->raid_disk < 0
7611                     && !test_bit(Faulty, &rdev->flags)) {
7612                         rdev->recovery_offset = 0;
7613                         if (mddev->pers->
7614                             hot_add_disk(mddev, rdev) == 0) {
7615                                 if (sysfs_link_rdev(mddev, rdev))
7616                                         /* failure here is OK */;
7617                                 spares++;
7618                                 md_new_event(mddev);
7619                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7620                         }
7621                 }
7622         }
7623         return spares;
7624 }
7625
7626 static void reap_sync_thread(struct mddev *mddev)
7627 {
7628         struct md_rdev *rdev;
7629
7630         /* resync has finished, collect result */
7631         md_unregister_thread(&mddev->sync_thread);
7632         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7633             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7634                 /* success...*/
7635                 /* activate any spares */
7636                 if (mddev->pers->spare_active(mddev))
7637                         sysfs_notify(&mddev->kobj, NULL,
7638                                      "degraded");
7639         }
7640         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7641             mddev->pers->finish_reshape)
7642                 mddev->pers->finish_reshape(mddev);
7643
7644         /* If array is no-longer degraded, then any saved_raid_disk
7645          * information must be scrapped.  Also if any device is now
7646          * In_sync we must scrape the saved_raid_disk for that device
7647          * do the superblock for an incrementally recovered device
7648          * written out.
7649          */
7650         rdev_for_each(rdev, mddev)
7651                 if (!mddev->degraded ||
7652                     test_bit(In_sync, &rdev->flags))
7653                         rdev->saved_raid_disk = -1;
7654
7655         md_update_sb(mddev, 1);
7656         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7657         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7658         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7659         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7660         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7661         /* flag recovery needed just to double check */
7662         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7663         sysfs_notify_dirent_safe(mddev->sysfs_action);
7664         md_new_event(mddev);
7665         if (mddev->event_work.func)
7666                 queue_work(md_misc_wq, &mddev->event_work);
7667 }
7668
7669 /*
7670  * This routine is regularly called by all per-raid-array threads to
7671  * deal with generic issues like resync and super-block update.
7672  * Raid personalities that don't have a thread (linear/raid0) do not
7673  * need this as they never do any recovery or update the superblock.
7674  *
7675  * It does not do any resync itself, but rather "forks" off other threads
7676  * to do that as needed.
7677  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7678  * "->recovery" and create a thread at ->sync_thread.
7679  * When the thread finishes it sets MD_RECOVERY_DONE
7680  * and wakeups up this thread which will reap the thread and finish up.
7681  * This thread also removes any faulty devices (with nr_pending == 0).
7682  *
7683  * The overall approach is:
7684  *  1/ if the superblock needs updating, update it.
7685  *  2/ If a recovery thread is running, don't do anything else.
7686  *  3/ If recovery has finished, clean up, possibly marking spares active.
7687  *  4/ If there are any faulty devices, remove them.
7688  *  5/ If array is degraded, try to add spares devices
7689  *  6/ If array has spares or is not in-sync, start a resync thread.
7690  */
7691 void md_check_recovery(struct mddev *mddev)
7692 {
7693         if (mddev->suspended)
7694                 return;
7695
7696         if (mddev->bitmap)
7697                 bitmap_daemon_work(mddev);
7698
7699         if (signal_pending(current)) {
7700                 if (mddev->pers->sync_request && !mddev->external) {
7701                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7702                                mdname(mddev));
7703                         mddev->safemode = 2;
7704                 }
7705                 flush_signals(current);
7706         }
7707
7708         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7709                 return;
7710         if ( ! (
7711                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7712                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7713                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7714                 (mddev->external == 0 && mddev->safemode == 1) ||
7715                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7716                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7717                 ))
7718                 return;
7719
7720         if (mddev_trylock(mddev)) {
7721                 int spares = 0;
7722
7723                 if (mddev->ro) {
7724                         /* Only thing we do on a ro array is remove
7725                          * failed devices.
7726                          */
7727                         struct md_rdev *rdev;
7728                         rdev_for_each(rdev, mddev)
7729                                 if (rdev->raid_disk >= 0 &&
7730                                     !test_bit(Blocked, &rdev->flags) &&
7731                                     test_bit(Faulty, &rdev->flags) &&
7732                                     atomic_read(&rdev->nr_pending)==0) {
7733                                         if (mddev->pers->hot_remove_disk(
7734                                                     mddev, rdev) == 0) {
7735                                                 sysfs_unlink_rdev(mddev, rdev);
7736                                                 rdev->raid_disk = -1;
7737                                         }
7738                                 }
7739                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7740                         goto unlock;
7741                 }
7742
7743                 if (!mddev->external) {
7744                         int did_change = 0;
7745                         spin_lock_irq(&mddev->write_lock);
7746                         if (mddev->safemode &&
7747                             !atomic_read(&mddev->writes_pending) &&
7748                             !mddev->in_sync &&
7749                             mddev->recovery_cp == MaxSector) {
7750                                 mddev->in_sync = 1;
7751                                 did_change = 1;
7752                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7753                         }
7754                         if (mddev->safemode == 1)
7755                                 mddev->safemode = 0;
7756                         spin_unlock_irq(&mddev->write_lock);
7757                         if (did_change)
7758                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7759                 }
7760
7761                 if (mddev->flags)
7762                         md_update_sb(mddev, 0);
7763
7764                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7765                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7766                         /* resync/recovery still happening */
7767                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7768                         goto unlock;
7769                 }
7770                 if (mddev->sync_thread) {
7771                         reap_sync_thread(mddev);
7772                         goto unlock;
7773                 }
7774                 /* Set RUNNING before clearing NEEDED to avoid
7775                  * any transients in the value of "sync_action".
7776                  */
7777                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7778                 /* Clear some bits that don't mean anything, but
7779                  * might be left set
7780                  */
7781                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7782                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7783
7784                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7785                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7786                         goto unlock;
7787                 /* no recovery is running.
7788                  * remove any failed drives, then
7789                  * add spares if possible.
7790                  * Spare are also removed and re-added, to allow
7791                  * the personality to fail the re-add.
7792                  */
7793
7794                 if (mddev->reshape_position != MaxSector) {
7795                         if (mddev->pers->check_reshape == NULL ||
7796                             mddev->pers->check_reshape(mddev) != 0)
7797                                 /* Cannot proceed */
7798                                 goto unlock;
7799                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7800                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7801                 } else if ((spares = remove_and_add_spares(mddev))) {
7802                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7803                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7804                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7805                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7806                 } else if (mddev->recovery_cp < MaxSector) {
7807                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7808                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7809                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7810                         /* nothing to be done ... */
7811                         goto unlock;
7812
7813                 if (mddev->pers->sync_request) {
7814                         if (spares) {
7815                                 /* We are adding a device or devices to an array
7816                                  * which has the bitmap stored on all devices.
7817                                  * So make sure all bitmap pages get written
7818                                  */
7819                                 bitmap_write_all(mddev->bitmap);
7820                         }
7821                         mddev->sync_thread = md_register_thread(md_do_sync,
7822                                                                 mddev,
7823                                                                 "resync");
7824                         if (!mddev->sync_thread) {
7825                                 printk(KERN_ERR "%s: could not start resync"
7826                                         " thread...\n", 
7827                                         mdname(mddev));
7828                                 /* leave the spares where they are, it shouldn't hurt */
7829                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7830                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7831                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7832                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7833                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7834                         } else
7835                                 md_wakeup_thread(mddev->sync_thread);
7836                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7837                         md_new_event(mddev);
7838                 }
7839         unlock:
7840                 if (!mddev->sync_thread) {
7841                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7842                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7843                                                &mddev->recovery))
7844                                 if (mddev->sysfs_action)
7845                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7846                 }
7847                 mddev_unlock(mddev);
7848         }
7849 }
7850
7851 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7852 {
7853         sysfs_notify_dirent_safe(rdev->sysfs_state);
7854         wait_event_timeout(rdev->blocked_wait,
7855                            !test_bit(Blocked, &rdev->flags) &&
7856                            !test_bit(BlockedBadBlocks, &rdev->flags),
7857                            msecs_to_jiffies(5000));
7858         rdev_dec_pending(rdev, mddev);
7859 }
7860 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7861
7862 void md_finish_reshape(struct mddev *mddev)
7863 {
7864         /* called be personality module when reshape completes. */
7865         struct md_rdev *rdev;
7866
7867         rdev_for_each(rdev, mddev) {
7868                 if (rdev->data_offset > rdev->new_data_offset)
7869                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7870                 else
7871                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7872                 rdev->data_offset = rdev->new_data_offset;
7873         }
7874 }
7875 EXPORT_SYMBOL(md_finish_reshape);
7876
7877 /* Bad block management.
7878  * We can record which blocks on each device are 'bad' and so just
7879  * fail those blocks, or that stripe, rather than the whole device.
7880  * Entries in the bad-block table are 64bits wide.  This comprises:
7881  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7882  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7883  *  A 'shift' can be set so that larger blocks are tracked and
7884  *  consequently larger devices can be covered.
7885  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7886  *
7887  * Locking of the bad-block table uses a seqlock so md_is_badblock
7888  * might need to retry if it is very unlucky.
7889  * We will sometimes want to check for bad blocks in a bi_end_io function,
7890  * so we use the write_seqlock_irq variant.
7891  *
7892  * When looking for a bad block we specify a range and want to
7893  * know if any block in the range is bad.  So we binary-search
7894  * to the last range that starts at-or-before the given endpoint,
7895  * (or "before the sector after the target range")
7896  * then see if it ends after the given start.
7897  * We return
7898  *  0 if there are no known bad blocks in the range
7899  *  1 if there are known bad block which are all acknowledged
7900  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7901  * plus the start/length of the first bad section we overlap.
7902  */
7903 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7904                    sector_t *first_bad, int *bad_sectors)
7905 {
7906         int hi;
7907         int lo = 0;
7908         u64 *p = bb->page;
7909         int rv = 0;
7910         sector_t target = s + sectors;
7911         unsigned seq;
7912
7913         if (bb->shift > 0) {
7914                 /* round the start down, and the end up */
7915                 s >>= bb->shift;
7916                 target += (1<<bb->shift) - 1;
7917                 target >>= bb->shift;
7918                 sectors = target - s;
7919         }
7920         /* 'target' is now the first block after the bad range */
7921
7922 retry:
7923         seq = read_seqbegin(&bb->lock);
7924
7925         hi = bb->count;
7926
7927         /* Binary search between lo and hi for 'target'
7928          * i.e. for the last range that starts before 'target'
7929          */
7930         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7931          * are known not to be the last range before target.
7932          * VARIANT: hi-lo is the number of possible
7933          * ranges, and decreases until it reaches 1
7934          */
7935         while (hi - lo > 1) {
7936                 int mid = (lo + hi) / 2;
7937                 sector_t a = BB_OFFSET(p[mid]);
7938                 if (a < target)
7939                         /* This could still be the one, earlier ranges
7940                          * could not. */
7941                         lo = mid;
7942                 else
7943                         /* This and later ranges are definitely out. */
7944                         hi = mid;
7945         }
7946         /* 'lo' might be the last that started before target, but 'hi' isn't */
7947         if (hi > lo) {
7948                 /* need to check all range that end after 's' to see if
7949                  * any are unacknowledged.
7950                  */
7951                 while (lo >= 0 &&
7952                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7953                         if (BB_OFFSET(p[lo]) < target) {
7954                                 /* starts before the end, and finishes after
7955                                  * the start, so they must overlap
7956                                  */
7957                                 if (rv != -1 && BB_ACK(p[lo]))
7958                                         rv = 1;
7959                                 else
7960                                         rv = -1;
7961                                 *first_bad = BB_OFFSET(p[lo]);
7962                                 *bad_sectors = BB_LEN(p[lo]);
7963                         }
7964                         lo--;
7965                 }
7966         }
7967
7968         if (read_seqretry(&bb->lock, seq))
7969                 goto retry;
7970
7971         return rv;
7972 }
7973 EXPORT_SYMBOL_GPL(md_is_badblock);
7974
7975 /*
7976  * Add a range of bad blocks to the table.
7977  * This might extend the table, or might contract it
7978  * if two adjacent ranges can be merged.
7979  * We binary-search to find the 'insertion' point, then
7980  * decide how best to handle it.
7981  */
7982 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7983                             int acknowledged)
7984 {
7985         u64 *p;
7986         int lo, hi;
7987         int rv = 1;
7988
7989         if (bb->shift < 0)
7990                 /* badblocks are disabled */
7991                 return 0;
7992
7993         if (bb->shift) {
7994                 /* round the start down, and the end up */
7995                 sector_t next = s + sectors;
7996                 s >>= bb->shift;
7997                 next += (1<<bb->shift) - 1;
7998                 next >>= bb->shift;
7999                 sectors = next - s;
8000         }
8001
8002         write_seqlock_irq(&bb->lock);
8003
8004         p = bb->page;
8005         lo = 0;
8006         hi = bb->count;
8007         /* Find the last range that starts at-or-before 's' */
8008         while (hi - lo > 1) {
8009                 int mid = (lo + hi) / 2;
8010                 sector_t a = BB_OFFSET(p[mid]);
8011                 if (a <= s)
8012                         lo = mid;
8013                 else
8014                         hi = mid;
8015         }
8016         if (hi > lo && BB_OFFSET(p[lo]) > s)
8017                 hi = lo;
8018
8019         if (hi > lo) {
8020                 /* we found a range that might merge with the start
8021                  * of our new range
8022                  */
8023                 sector_t a = BB_OFFSET(p[lo]);
8024                 sector_t e = a + BB_LEN(p[lo]);
8025                 int ack = BB_ACK(p[lo]);
8026                 if (e >= s) {
8027                         /* Yes, we can merge with a previous range */
8028                         if (s == a && s + sectors >= e)
8029                                 /* new range covers old */
8030                                 ack = acknowledged;
8031                         else
8032                                 ack = ack && acknowledged;
8033
8034                         if (e < s + sectors)
8035                                 e = s + sectors;
8036                         if (e - a <= BB_MAX_LEN) {
8037                                 p[lo] = BB_MAKE(a, e-a, ack);
8038                                 s = e;
8039                         } else {
8040                                 /* does not all fit in one range,
8041                                  * make p[lo] maximal
8042                                  */
8043                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8044                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8045                                 s = a + BB_MAX_LEN;
8046                         }
8047                         sectors = e - s;
8048                 }
8049         }
8050         if (sectors && hi < bb->count) {
8051                 /* 'hi' points to the first range that starts after 's'.
8052                  * Maybe we can merge with the start of that range */
8053                 sector_t a = BB_OFFSET(p[hi]);
8054                 sector_t e = a + BB_LEN(p[hi]);
8055                 int ack = BB_ACK(p[hi]);
8056                 if (a <= s + sectors) {
8057                         /* merging is possible */
8058                         if (e <= s + sectors) {
8059                                 /* full overlap */
8060                                 e = s + sectors;
8061                                 ack = acknowledged;
8062                         } else
8063                                 ack = ack && acknowledged;
8064
8065                         a = s;
8066                         if (e - a <= BB_MAX_LEN) {
8067                                 p[hi] = BB_MAKE(a, e-a, ack);
8068                                 s = e;
8069                         } else {
8070                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8071                                 s = a + BB_MAX_LEN;
8072                         }
8073                         sectors = e - s;
8074                         lo = hi;
8075                         hi++;
8076                 }
8077         }
8078         if (sectors == 0 && hi < bb->count) {
8079                 /* we might be able to combine lo and hi */
8080                 /* Note: 's' is at the end of 'lo' */
8081                 sector_t a = BB_OFFSET(p[hi]);
8082                 int lolen = BB_LEN(p[lo]);
8083                 int hilen = BB_LEN(p[hi]);
8084                 int newlen = lolen + hilen - (s - a);
8085                 if (s >= a && newlen < BB_MAX_LEN) {
8086                         /* yes, we can combine them */
8087                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8088                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8089                         memmove(p + hi, p + hi + 1,
8090                                 (bb->count - hi - 1) * 8);
8091                         bb->count--;
8092                 }
8093         }
8094         while (sectors) {
8095                 /* didn't merge (it all).
8096                  * Need to add a range just before 'hi' */
8097                 if (bb->count >= MD_MAX_BADBLOCKS) {
8098                         /* No room for more */
8099                         rv = 0;
8100                         break;
8101                 } else {
8102                         int this_sectors = sectors;
8103                         memmove(p + hi + 1, p + hi,
8104                                 (bb->count - hi) * 8);
8105                         bb->count++;
8106
8107                         if (this_sectors > BB_MAX_LEN)
8108                                 this_sectors = BB_MAX_LEN;
8109                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8110                         sectors -= this_sectors;
8111                         s += this_sectors;
8112                 }
8113         }
8114
8115         bb->changed = 1;
8116         if (!acknowledged)
8117                 bb->unacked_exist = 1;
8118         write_sequnlock_irq(&bb->lock);
8119
8120         return rv;
8121 }
8122
8123 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8124                        int is_new)
8125 {
8126         int rv;
8127         if (is_new)
8128                 s += rdev->new_data_offset;
8129         else
8130                 s += rdev->data_offset;
8131         rv = md_set_badblocks(&rdev->badblocks,
8132                               s, sectors, 0);
8133         if (rv) {
8134                 /* Make sure they get written out promptly */
8135                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8136                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8137                 md_wakeup_thread(rdev->mddev->thread);
8138         }
8139         return rv;
8140 }
8141 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8142
8143 /*
8144  * Remove a range of bad blocks from the table.
8145  * This may involve extending the table if we spilt a region,
8146  * but it must not fail.  So if the table becomes full, we just
8147  * drop the remove request.
8148  */
8149 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8150 {
8151         u64 *p;
8152         int lo, hi;
8153         sector_t target = s + sectors;
8154         int rv = 0;
8155
8156         if (bb->shift > 0) {
8157                 /* When clearing we round the start up and the end down.
8158                  * This should not matter as the shift should align with
8159                  * the block size and no rounding should ever be needed.
8160                  * However it is better the think a block is bad when it
8161                  * isn't than to think a block is not bad when it is.
8162                  */
8163                 s += (1<<bb->shift) - 1;
8164                 s >>= bb->shift;
8165                 target >>= bb->shift;
8166                 sectors = target - s;
8167         }
8168
8169         write_seqlock_irq(&bb->lock);
8170
8171         p = bb->page;
8172         lo = 0;
8173         hi = bb->count;
8174         /* Find the last range that starts before 'target' */
8175         while (hi - lo > 1) {
8176                 int mid = (lo + hi) / 2;
8177                 sector_t a = BB_OFFSET(p[mid]);
8178                 if (a < target)
8179                         lo = mid;
8180                 else
8181                         hi = mid;
8182         }
8183         if (hi > lo) {
8184                 /* p[lo] is the last range that could overlap the
8185                  * current range.  Earlier ranges could also overlap,
8186                  * but only this one can overlap the end of the range.
8187                  */
8188                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8189                         /* Partial overlap, leave the tail of this range */
8190                         int ack = BB_ACK(p[lo]);
8191                         sector_t a = BB_OFFSET(p[lo]);
8192                         sector_t end = a + BB_LEN(p[lo]);
8193
8194                         if (a < s) {
8195                                 /* we need to split this range */
8196                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8197                                         rv = 0;
8198                                         goto out;
8199                                 }
8200                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8201                                 bb->count++;
8202                                 p[lo] = BB_MAKE(a, s-a, ack);
8203                                 lo++;
8204                         }
8205                         p[lo] = BB_MAKE(target, end - target, ack);
8206                         /* there is no longer an overlap */
8207                         hi = lo;
8208                         lo--;
8209                 }
8210                 while (lo >= 0 &&
8211                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8212                         /* This range does overlap */
8213                         if (BB_OFFSET(p[lo]) < s) {
8214                                 /* Keep the early parts of this range. */
8215                                 int ack = BB_ACK(p[lo]);
8216                                 sector_t start = BB_OFFSET(p[lo]);
8217                                 p[lo] = BB_MAKE(start, s - start, ack);
8218                                 /* now low doesn't overlap, so.. */
8219                                 break;
8220                         }
8221                         lo--;
8222                 }
8223                 /* 'lo' is strictly before, 'hi' is strictly after,
8224                  * anything between needs to be discarded
8225                  */
8226                 if (hi - lo > 1) {
8227                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8228                         bb->count -= (hi - lo - 1);
8229                 }
8230         }
8231
8232         bb->changed = 1;
8233 out:
8234         write_sequnlock_irq(&bb->lock);
8235         return rv;
8236 }
8237
8238 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8239                          int is_new)
8240 {
8241         if (is_new)
8242                 s += rdev->new_data_offset;
8243         else
8244                 s += rdev->data_offset;
8245         return md_clear_badblocks(&rdev->badblocks,
8246                                   s, sectors);
8247 }
8248 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8249
8250 /*
8251  * Acknowledge all bad blocks in a list.
8252  * This only succeeds if ->changed is clear.  It is used by
8253  * in-kernel metadata updates
8254  */
8255 void md_ack_all_badblocks(struct badblocks *bb)
8256 {
8257         if (bb->page == NULL || bb->changed)
8258                 /* no point even trying */
8259                 return;
8260         write_seqlock_irq(&bb->lock);
8261
8262         if (bb->changed == 0 && bb->unacked_exist) {
8263                 u64 *p = bb->page;
8264                 int i;
8265                 for (i = 0; i < bb->count ; i++) {
8266                         if (!BB_ACK(p[i])) {
8267                                 sector_t start = BB_OFFSET(p[i]);
8268                                 int len = BB_LEN(p[i]);
8269                                 p[i] = BB_MAKE(start, len, 1);
8270                         }
8271                 }
8272                 bb->unacked_exist = 0;
8273         }
8274         write_sequnlock_irq(&bb->lock);
8275 }
8276 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8277
8278 /* sysfs access to bad-blocks list.
8279  * We present two files.
8280  * 'bad-blocks' lists sector numbers and lengths of ranges that
8281  *    are recorded as bad.  The list is truncated to fit within
8282  *    the one-page limit of sysfs.
8283  *    Writing "sector length" to this file adds an acknowledged
8284  *    bad block list.
8285  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8286  *    been acknowledged.  Writing to this file adds bad blocks
8287  *    without acknowledging them.  This is largely for testing.
8288  */
8289
8290 static ssize_t
8291 badblocks_show(struct badblocks *bb, char *page, int unack)
8292 {
8293         size_t len;
8294         int i;
8295         u64 *p = bb->page;
8296         unsigned seq;
8297
8298         if (bb->shift < 0)
8299                 return 0;
8300
8301 retry:
8302         seq = read_seqbegin(&bb->lock);
8303
8304         len = 0;
8305         i = 0;
8306
8307         while (len < PAGE_SIZE && i < bb->count) {
8308                 sector_t s = BB_OFFSET(p[i]);
8309                 unsigned int length = BB_LEN(p[i]);
8310                 int ack = BB_ACK(p[i]);
8311                 i++;
8312
8313                 if (unack && ack)
8314                         continue;
8315
8316                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8317                                 (unsigned long long)s << bb->shift,
8318                                 length << bb->shift);
8319         }
8320         if (unack && len == 0)
8321                 bb->unacked_exist = 0;
8322
8323         if (read_seqretry(&bb->lock, seq))
8324                 goto retry;
8325
8326         return len;
8327 }
8328
8329 #define DO_DEBUG 1
8330
8331 static ssize_t
8332 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8333 {
8334         unsigned long long sector;
8335         int length;
8336         char newline;
8337 #ifdef DO_DEBUG
8338         /* Allow clearing via sysfs *only* for testing/debugging.
8339          * Normally only a successful write may clear a badblock
8340          */
8341         int clear = 0;
8342         if (page[0] == '-') {
8343                 clear = 1;
8344                 page++;
8345         }
8346 #endif /* DO_DEBUG */
8347
8348         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8349         case 3:
8350                 if (newline != '\n')
8351                         return -EINVAL;
8352         case 2:
8353                 if (length <= 0)
8354                         return -EINVAL;
8355                 break;
8356         default:
8357                 return -EINVAL;
8358         }
8359
8360 #ifdef DO_DEBUG
8361         if (clear) {
8362                 md_clear_badblocks(bb, sector, length);
8363                 return len;
8364         }
8365 #endif /* DO_DEBUG */
8366         if (md_set_badblocks(bb, sector, length, !unack))
8367                 return len;
8368         else
8369                 return -ENOSPC;
8370 }
8371
8372 static int md_notify_reboot(struct notifier_block *this,
8373                             unsigned long code, void *x)
8374 {
8375         struct list_head *tmp;
8376         struct mddev *mddev;
8377         int need_delay = 0;
8378
8379         for_each_mddev(mddev, tmp) {
8380                 if (mddev_trylock(mddev)) {
8381                         if (mddev->pers)
8382                                 __md_stop_writes(mddev);
8383                         mddev->safemode = 2;
8384                         mddev_unlock(mddev);
8385                 }
8386                 need_delay = 1;
8387         }
8388         /*
8389          * certain more exotic SCSI devices are known to be
8390          * volatile wrt too early system reboots. While the
8391          * right place to handle this issue is the given
8392          * driver, we do want to have a safe RAID driver ...
8393          */
8394         if (need_delay)
8395                 mdelay(1000*1);
8396
8397         return NOTIFY_DONE;
8398 }
8399
8400 static struct notifier_block md_notifier = {
8401         .notifier_call  = md_notify_reboot,
8402         .next           = NULL,
8403         .priority       = INT_MAX, /* before any real devices */
8404 };
8405
8406 static void md_geninit(void)
8407 {
8408         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8409
8410         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8411 }
8412
8413 static int __init md_init(void)
8414 {
8415         int ret = -ENOMEM;
8416
8417         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8418         if (!md_wq)
8419                 goto err_wq;
8420
8421         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8422         if (!md_misc_wq)
8423                 goto err_misc_wq;
8424
8425         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8426                 goto err_md;
8427
8428         if ((ret = register_blkdev(0, "mdp")) < 0)
8429                 goto err_mdp;
8430         mdp_major = ret;
8431
8432         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8433                             md_probe, NULL, NULL);
8434         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8435                             md_probe, NULL, NULL);
8436
8437         register_reboot_notifier(&md_notifier);
8438         raid_table_header = register_sysctl_table(raid_root_table);
8439
8440         md_geninit();
8441         return 0;
8442
8443 err_mdp:
8444         unregister_blkdev(MD_MAJOR, "md");
8445 err_md:
8446         destroy_workqueue(md_misc_wq);
8447 err_misc_wq:
8448         destroy_workqueue(md_wq);
8449 err_wq:
8450         return ret;
8451 }
8452
8453 #ifndef MODULE
8454
8455 /*
8456  * Searches all registered partitions for autorun RAID arrays
8457  * at boot time.
8458  */
8459
8460 static LIST_HEAD(all_detected_devices);
8461 struct detected_devices_node {
8462         struct list_head list;
8463         dev_t dev;
8464 };
8465
8466 void md_autodetect_dev(dev_t dev)
8467 {
8468         struct detected_devices_node *node_detected_dev;
8469
8470         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8471         if (node_detected_dev) {
8472                 node_detected_dev->dev = dev;
8473                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8474         } else {
8475                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8476                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8477         }
8478 }
8479
8480
8481 static void autostart_arrays(int part)
8482 {
8483         struct md_rdev *rdev;
8484         struct detected_devices_node *node_detected_dev;
8485         dev_t dev;
8486         int i_scanned, i_passed;
8487
8488         i_scanned = 0;
8489         i_passed = 0;
8490
8491         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8492
8493         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8494                 i_scanned++;
8495                 node_detected_dev = list_entry(all_detected_devices.next,
8496                                         struct detected_devices_node, list);
8497                 list_del(&node_detected_dev->list);
8498                 dev = node_detected_dev->dev;
8499                 kfree(node_detected_dev);
8500                 rdev = md_import_device(dev,0, 90);
8501                 if (IS_ERR(rdev))
8502                         continue;
8503
8504                 if (test_bit(Faulty, &rdev->flags)) {
8505                         MD_BUG();
8506                         continue;
8507                 }
8508                 set_bit(AutoDetected, &rdev->flags);
8509                 list_add(&rdev->same_set, &pending_raid_disks);
8510                 i_passed++;
8511         }
8512
8513         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8514                                                 i_scanned, i_passed);
8515
8516         autorun_devices(part);
8517 }
8518
8519 #endif /* !MODULE */
8520
8521 static __exit void md_exit(void)
8522 {
8523         struct mddev *mddev;
8524         struct list_head *tmp;
8525
8526         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8527         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8528
8529         unregister_blkdev(MD_MAJOR,"md");
8530         unregister_blkdev(mdp_major, "mdp");
8531         unregister_reboot_notifier(&md_notifier);
8532         unregister_sysctl_table(raid_table_header);
8533         remove_proc_entry("mdstat", NULL);
8534         for_each_mddev(mddev, tmp) {
8535                 export_array(mddev);
8536                 mddev->hold_active = 0;
8537         }
8538         destroy_workqueue(md_misc_wq);
8539         destroy_workqueue(md_wq);
8540 }
8541
8542 subsys_initcall(md_init);
8543 module_exit(md_exit)
8544
8545 static int get_ro(char *buffer, struct kernel_param *kp)
8546 {
8547         return sprintf(buffer, "%d", start_readonly);
8548 }
8549 static int set_ro(const char *val, struct kernel_param *kp)
8550 {
8551         char *e;
8552         int num = simple_strtoul(val, &e, 10);
8553         if (*val && (*e == '\0' || *e == '\n')) {
8554                 start_readonly = num;
8555                 return 0;
8556         }
8557         return -EINVAL;
8558 }
8559
8560 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8561 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8562
8563 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8564
8565 EXPORT_SYMBOL(register_md_personality);
8566 EXPORT_SYMBOL(unregister_md_personality);
8567 EXPORT_SYMBOL(md_error);
8568 EXPORT_SYMBOL(md_done_sync);
8569 EXPORT_SYMBOL(md_write_start);
8570 EXPORT_SYMBOL(md_write_end);
8571 EXPORT_SYMBOL(md_register_thread);
8572 EXPORT_SYMBOL(md_unregister_thread);
8573 EXPORT_SYMBOL(md_wakeup_thread);
8574 EXPORT_SYMBOL(md_check_recovery);
8575 MODULE_LICENSE("GPL");
8576 MODULE_DESCRIPTION("MD RAID framework");
8577 MODULE_ALIAS("md");
8578 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);