brcmsmac: rework of mac80211 .flush() callback operation
[pandora-kernel.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20
21 /*
22  * The following flags are used by dm-raid.c to set up the array state.
23  * They must be cleared before md_run is called.
24  */
25 #define FirstUse 10             /* rdev flag */
26
27 struct raid_dev {
28         /*
29          * Two DM devices, one to hold metadata and one to hold the
30          * actual data/parity.  The reason for this is to not confuse
31          * ti->len and give more flexibility in altering size and
32          * characteristics.
33          *
34          * While it is possible for this device to be associated
35          * with a different physical device than the data_dev, it
36          * is intended for it to be the same.
37          *    |--------- Physical Device ---------|
38          *    |- meta_dev -|------ data_dev ------|
39          */
40         struct dm_dev *meta_dev;
41         struct dm_dev *data_dev;
42         struct md_rdev rdev;
43 };
44
45 /*
46  * Flags for rs->print_flags field.
47  */
48 #define DMPF_SYNC              0x1
49 #define DMPF_NOSYNC            0x2
50 #define DMPF_REBUILD           0x4
51 #define DMPF_DAEMON_SLEEP      0x8
52 #define DMPF_MIN_RECOVERY_RATE 0x10
53 #define DMPF_MAX_RECOVERY_RATE 0x20
54 #define DMPF_MAX_WRITE_BEHIND  0x40
55 #define DMPF_STRIPE_CACHE      0x80
56 #define DMPF_REGION_SIZE       0x100
57 #define DMPF_RAID10_COPIES     0x200
58 #define DMPF_RAID10_FORMAT     0x400
59
60 struct raid_set {
61         struct dm_target *ti;
62
63         uint32_t bitmap_loaded;
64         uint32_t print_flags;
65
66         struct mddev md;
67         struct raid_type *raid_type;
68         struct dm_target_callbacks callbacks;
69
70         struct raid_dev dev[0];
71 };
72
73 /* Supported raid types and properties. */
74 static struct raid_type {
75         const char *name;               /* RAID algorithm. */
76         const char *descr;              /* Descriptor text for logging. */
77         const unsigned parity_devs;     /* # of parity devices. */
78         const unsigned minimal_devs;    /* minimal # of devices in set. */
79         const unsigned level;           /* RAID level. */
80         const unsigned algorithm;       /* RAID algorithm. */
81 } raid_types[] = {
82         {"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
83         {"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
84         {"raid4",    "RAID4 (dedicated parity disk)",   1, 2, 5, ALGORITHM_PARITY_0},
85         {"raid5_la", "RAID5 (left asymmetric)",         1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
86         {"raid5_ra", "RAID5 (right asymmetric)",        1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
87         {"raid5_ls", "RAID5 (left symmetric)",          1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
88         {"raid5_rs", "RAID5 (right symmetric)",         1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
89         {"raid6_zr", "RAID6 (zero restart)",            2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
90         {"raid6_nr", "RAID6 (N restart)",               2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
91         {"raid6_nc", "RAID6 (N continue)",              2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
92 };
93
94 static unsigned raid10_md_layout_to_copies(int layout)
95 {
96         return layout & 0xFF;
97 }
98
99 static int raid10_format_to_md_layout(char *format, unsigned copies)
100 {
101         /* 1 "far" copy, and 'copies' "near" copies */
102         return (1 << 8) | (copies & 0xFF);
103 }
104
105 static struct raid_type *get_raid_type(char *name)
106 {
107         int i;
108
109         for (i = 0; i < ARRAY_SIZE(raid_types); i++)
110                 if (!strcmp(raid_types[i].name, name))
111                         return &raid_types[i];
112
113         return NULL;
114 }
115
116 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
117 {
118         unsigned i;
119         struct raid_set *rs;
120
121         if (raid_devs <= raid_type->parity_devs) {
122                 ti->error = "Insufficient number of devices";
123                 return ERR_PTR(-EINVAL);
124         }
125
126         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
127         if (!rs) {
128                 ti->error = "Cannot allocate raid context";
129                 return ERR_PTR(-ENOMEM);
130         }
131
132         mddev_init(&rs->md);
133
134         rs->ti = ti;
135         rs->raid_type = raid_type;
136         rs->md.raid_disks = raid_devs;
137         rs->md.level = raid_type->level;
138         rs->md.new_level = rs->md.level;
139         rs->md.layout = raid_type->algorithm;
140         rs->md.new_layout = rs->md.layout;
141         rs->md.delta_disks = 0;
142         rs->md.recovery_cp = 0;
143
144         for (i = 0; i < raid_devs; i++)
145                 md_rdev_init(&rs->dev[i].rdev);
146
147         /*
148          * Remaining items to be initialized by further RAID params:
149          *  rs->md.persistent
150          *  rs->md.external
151          *  rs->md.chunk_sectors
152          *  rs->md.new_chunk_sectors
153          *  rs->md.dev_sectors
154          */
155
156         return rs;
157 }
158
159 static void context_free(struct raid_set *rs)
160 {
161         int i;
162
163         for (i = 0; i < rs->md.raid_disks; i++) {
164                 if (rs->dev[i].meta_dev)
165                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
166                 md_rdev_clear(&rs->dev[i].rdev);
167                 if (rs->dev[i].data_dev)
168                         dm_put_device(rs->ti, rs->dev[i].data_dev);
169         }
170
171         kfree(rs);
172 }
173
174 /*
175  * For every device we have two words
176  *  <meta_dev>: meta device name or '-' if missing
177  *  <data_dev>: data device name or '-' if missing
178  *
179  * The following are permitted:
180  *    - -
181  *    - <data_dev>
182  *    <meta_dev> <data_dev>
183  *
184  * The following is not allowed:
185  *    <meta_dev> -
186  *
187  * This code parses those words.  If there is a failure,
188  * the caller must use context_free to unwind the operations.
189  */
190 static int dev_parms(struct raid_set *rs, char **argv)
191 {
192         int i;
193         int rebuild = 0;
194         int metadata_available = 0;
195         int ret = 0;
196
197         for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
198                 rs->dev[i].rdev.raid_disk = i;
199
200                 rs->dev[i].meta_dev = NULL;
201                 rs->dev[i].data_dev = NULL;
202
203                 /*
204                  * There are no offsets, since there is a separate device
205                  * for data and metadata.
206                  */
207                 rs->dev[i].rdev.data_offset = 0;
208                 rs->dev[i].rdev.mddev = &rs->md;
209
210                 if (strcmp(argv[0], "-")) {
211                         ret = dm_get_device(rs->ti, argv[0],
212                                             dm_table_get_mode(rs->ti->table),
213                                             &rs->dev[i].meta_dev);
214                         rs->ti->error = "RAID metadata device lookup failure";
215                         if (ret)
216                                 return ret;
217
218                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
219                         if (!rs->dev[i].rdev.sb_page)
220                                 return -ENOMEM;
221                 }
222
223                 if (!strcmp(argv[1], "-")) {
224                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
225                             (!rs->dev[i].rdev.recovery_offset)) {
226                                 rs->ti->error = "Drive designated for rebuild not specified";
227                                 return -EINVAL;
228                         }
229
230                         rs->ti->error = "No data device supplied with metadata device";
231                         if (rs->dev[i].meta_dev)
232                                 return -EINVAL;
233
234                         continue;
235                 }
236
237                 ret = dm_get_device(rs->ti, argv[1],
238                                     dm_table_get_mode(rs->ti->table),
239                                     &rs->dev[i].data_dev);
240                 if (ret) {
241                         rs->ti->error = "RAID device lookup failure";
242                         return ret;
243                 }
244
245                 if (rs->dev[i].meta_dev) {
246                         metadata_available = 1;
247                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
248                 }
249                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
250                 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
251                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
252                         rebuild++;
253         }
254
255         if (metadata_available) {
256                 rs->md.external = 0;
257                 rs->md.persistent = 1;
258                 rs->md.major_version = 2;
259         } else if (rebuild && !rs->md.recovery_cp) {
260                 /*
261                  * Without metadata, we will not be able to tell if the array
262                  * is in-sync or not - we must assume it is not.  Therefore,
263                  * it is impossible to rebuild a drive.
264                  *
265                  * Even if there is metadata, the on-disk information may
266                  * indicate that the array is not in-sync and it will then
267                  * fail at that time.
268                  *
269                  * User could specify 'nosync' option if desperate.
270                  */
271                 DMERR("Unable to rebuild drive while array is not in-sync");
272                 rs->ti->error = "RAID device lookup failure";
273                 return -EINVAL;
274         }
275
276         return 0;
277 }
278
279 /*
280  * validate_region_size
281  * @rs
282  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
283  *
284  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
285  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
286  *
287  * Returns: 0 on success, -EINVAL on failure.
288  */
289 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
290 {
291         unsigned long min_region_size = rs->ti->len / (1 << 21);
292
293         if (!region_size) {
294                 /*
295                  * Choose a reasonable default.  All figures in sectors.
296                  */
297                 if (min_region_size > (1 << 13)) {
298                         /* If not a power of 2, make it the next power of 2 */
299                         if (min_region_size & (min_region_size - 1))
300                                 region_size = 1 << fls(region_size);
301                         DMINFO("Choosing default region size of %lu sectors",
302                                region_size);
303                 } else {
304                         DMINFO("Choosing default region size of 4MiB");
305                         region_size = 1 << 13; /* sectors */
306                 }
307         } else {
308                 /*
309                  * Validate user-supplied value.
310                  */
311                 if (region_size > rs->ti->len) {
312                         rs->ti->error = "Supplied region size is too large";
313                         return -EINVAL;
314                 }
315
316                 if (region_size < min_region_size) {
317                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
318                               region_size, min_region_size);
319                         rs->ti->error = "Supplied region size is too small";
320                         return -EINVAL;
321                 }
322
323                 if (!is_power_of_2(region_size)) {
324                         rs->ti->error = "Region size is not a power of 2";
325                         return -EINVAL;
326                 }
327
328                 if (region_size < rs->md.chunk_sectors) {
329                         rs->ti->error = "Region size is smaller than the chunk size";
330                         return -EINVAL;
331                 }
332         }
333
334         /*
335          * Convert sectors to bytes.
336          */
337         rs->md.bitmap_info.chunksize = (region_size << 9);
338
339         return 0;
340 }
341
342 /*
343  * validate_rebuild_devices
344  * @rs
345  *
346  * Determine if the devices specified for rebuild can result in a valid
347  * usable array that is capable of rebuilding the given devices.
348  *
349  * Returns: 0 on success, -EINVAL on failure.
350  */
351 static int validate_rebuild_devices(struct raid_set *rs)
352 {
353         unsigned i, rebuild_cnt = 0;
354         unsigned rebuilds_per_group, copies, d;
355
356         if (!(rs->print_flags & DMPF_REBUILD))
357                 return 0;
358
359         for (i = 0; i < rs->md.raid_disks; i++)
360                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
361                         rebuild_cnt++;
362
363         switch (rs->raid_type->level) {
364         case 1:
365                 if (rebuild_cnt >= rs->md.raid_disks)
366                         goto too_many;
367                 break;
368         case 4:
369         case 5:
370         case 6:
371                 if (rebuild_cnt > rs->raid_type->parity_devs)
372                         goto too_many;
373                 break;
374         case 10:
375                 copies = raid10_md_layout_to_copies(rs->md.layout);
376                 if (rebuild_cnt < copies)
377                         break;
378
379                 /*
380                  * It is possible to have a higher rebuild count for RAID10,
381                  * as long as the failed devices occur in different mirror
382                  * groups (i.e. different stripes).
383                  *
384                  * Right now, we only allow for "near" copies.  When other
385                  * formats are added, we will have to check those too.
386                  *
387                  * When checking "near" format, make sure no adjacent devices
388                  * have failed beyond what can be handled.  In addition to the
389                  * simple case where the number of devices is a multiple of the
390                  * number of copies, we must also handle cases where the number
391                  * of devices is not a multiple of the number of copies.
392                  * E.g.    dev1 dev2 dev3 dev4 dev5
393                  *          A    A    B    B    C
394                  *          C    D    D    E    E
395                  */
396                 rebuilds_per_group = 0;
397                 for (i = 0; i < rs->md.raid_disks * copies; i++) {
398                         d = i % rs->md.raid_disks;
399                         if (!test_bit(In_sync, &rs->dev[d].rdev.flags) &&
400                             (++rebuilds_per_group >= copies))
401                                 goto too_many;
402                         if (!((i + 1) % copies))
403                                 rebuilds_per_group = 0;
404                 }
405                 break;
406         default:
407                 DMERR("The rebuild parameter is not supported for %s",
408                       rs->raid_type->name);
409                 rs->ti->error = "Rebuild not supported for this RAID type";
410                 return -EINVAL;
411         }
412
413         return 0;
414
415 too_many:
416         rs->ti->error = "Too many rebuild devices specified";
417         return -EINVAL;
418 }
419
420 /*
421  * Possible arguments are...
422  *      <chunk_size> [optional_args]
423  *
424  * Argument definitions
425  *    <chunk_size>                      The number of sectors per disk that
426  *                                      will form the "stripe"
427  *    [[no]sync]                        Force or prevent recovery of the
428  *                                      entire array
429  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
430  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
431  *                                      clear bits
432  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
433  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
434  *    [write_mostly <idx>]              Indicate a write mostly drive via index
435  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
436  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
437  *    [region_size <sectors>]           Defines granularity of bitmap
438  *
439  * RAID10-only options:
440  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
441  *    [raid10_format <near>]            Layout algorithm.  (Default: near)
442  */
443 static int parse_raid_params(struct raid_set *rs, char **argv,
444                              unsigned num_raid_params)
445 {
446         char *raid10_format = "near";
447         unsigned raid10_copies = 2;
448         unsigned i;
449         unsigned long value, region_size = 0;
450         sector_t sectors_per_dev = rs->ti->len;
451         sector_t max_io_len;
452         char *key;
453
454         /*
455          * First, parse the in-order required arguments
456          * "chunk_size" is the only argument of this type.
457          */
458         if ((strict_strtoul(argv[0], 10, &value) < 0)) {
459                 rs->ti->error = "Bad chunk size";
460                 return -EINVAL;
461         } else if (rs->raid_type->level == 1) {
462                 if (value)
463                         DMERR("Ignoring chunk size parameter for RAID 1");
464                 value = 0;
465         } else if (!is_power_of_2(value)) {
466                 rs->ti->error = "Chunk size must be a power of 2";
467                 return -EINVAL;
468         } else if (value < 8) {
469                 rs->ti->error = "Chunk size value is too small";
470                 return -EINVAL;
471         }
472
473         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
474         argv++;
475         num_raid_params--;
476
477         /*
478          * We set each individual device as In_sync with a completed
479          * 'recovery_offset'.  If there has been a device failure or
480          * replacement then one of the following cases applies:
481          *
482          *   1) User specifies 'rebuild'.
483          *      - Device is reset when param is read.
484          *   2) A new device is supplied.
485          *      - No matching superblock found, resets device.
486          *   3) Device failure was transient and returns on reload.
487          *      - Failure noticed, resets device for bitmap replay.
488          *   4) Device hadn't completed recovery after previous failure.
489          *      - Superblock is read and overrides recovery_offset.
490          *
491          * What is found in the superblocks of the devices is always
492          * authoritative, unless 'rebuild' or '[no]sync' was specified.
493          */
494         for (i = 0; i < rs->md.raid_disks; i++) {
495                 set_bit(In_sync, &rs->dev[i].rdev.flags);
496                 rs->dev[i].rdev.recovery_offset = MaxSector;
497         }
498
499         /*
500          * Second, parse the unordered optional arguments
501          */
502         for (i = 0; i < num_raid_params; i++) {
503                 if (!strcasecmp(argv[i], "nosync")) {
504                         rs->md.recovery_cp = MaxSector;
505                         rs->print_flags |= DMPF_NOSYNC;
506                         continue;
507                 }
508                 if (!strcasecmp(argv[i], "sync")) {
509                         rs->md.recovery_cp = 0;
510                         rs->print_flags |= DMPF_SYNC;
511                         continue;
512                 }
513
514                 /* The rest of the optional arguments come in key/value pairs */
515                 if ((i + 1) >= num_raid_params) {
516                         rs->ti->error = "Wrong number of raid parameters given";
517                         return -EINVAL;
518                 }
519
520                 key = argv[i++];
521
522                 /* Parameters that take a string value are checked here. */
523                 if (!strcasecmp(key, "raid10_format")) {
524                         if (rs->raid_type->level != 10) {
525                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
526                                 return -EINVAL;
527                         }
528                         if (strcmp("near", argv[i])) {
529                                 rs->ti->error = "Invalid 'raid10_format' value given";
530                                 return -EINVAL;
531                         }
532                         raid10_format = argv[i];
533                         rs->print_flags |= DMPF_RAID10_FORMAT;
534                         continue;
535                 }
536
537                 if (strict_strtoul(argv[i], 10, &value) < 0) {
538                         rs->ti->error = "Bad numerical argument given in raid params";
539                         return -EINVAL;
540                 }
541
542                 /* Parameters that take a numeric value are checked here */
543                 if (!strcasecmp(key, "rebuild")) {
544                         if (value >= rs->md.raid_disks) {
545                                 rs->ti->error = "Invalid rebuild index given";
546                                 return -EINVAL;
547                         }
548                         clear_bit(In_sync, &rs->dev[value].rdev.flags);
549                         rs->dev[value].rdev.recovery_offset = 0;
550                         rs->print_flags |= DMPF_REBUILD;
551                 } else if (!strcasecmp(key, "write_mostly")) {
552                         if (rs->raid_type->level != 1) {
553                                 rs->ti->error = "write_mostly option is only valid for RAID1";
554                                 return -EINVAL;
555                         }
556                         if (value >= rs->md.raid_disks) {
557                                 rs->ti->error = "Invalid write_mostly drive index given";
558                                 return -EINVAL;
559                         }
560                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
561                 } else if (!strcasecmp(key, "max_write_behind")) {
562                         if (rs->raid_type->level != 1) {
563                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
564                                 return -EINVAL;
565                         }
566                         rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
567
568                         /*
569                          * In device-mapper, we specify things in sectors, but
570                          * MD records this value in kB
571                          */
572                         value /= 2;
573                         if (value > COUNTER_MAX) {
574                                 rs->ti->error = "Max write-behind limit out of range";
575                                 return -EINVAL;
576                         }
577                         rs->md.bitmap_info.max_write_behind = value;
578                 } else if (!strcasecmp(key, "daemon_sleep")) {
579                         rs->print_flags |= DMPF_DAEMON_SLEEP;
580                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
581                                 rs->ti->error = "daemon sleep period out of range";
582                                 return -EINVAL;
583                         }
584                         rs->md.bitmap_info.daemon_sleep = value;
585                 } else if (!strcasecmp(key, "stripe_cache")) {
586                         rs->print_flags |= DMPF_STRIPE_CACHE;
587
588                         /*
589                          * In device-mapper, we specify things in sectors, but
590                          * MD records this value in kB
591                          */
592                         value /= 2;
593
594                         if ((rs->raid_type->level != 5) &&
595                             (rs->raid_type->level != 6)) {
596                                 rs->ti->error = "Inappropriate argument: stripe_cache";
597                                 return -EINVAL;
598                         }
599                         if (raid5_set_cache_size(&rs->md, (int)value)) {
600                                 rs->ti->error = "Bad stripe_cache size";
601                                 return -EINVAL;
602                         }
603                 } else if (!strcasecmp(key, "min_recovery_rate")) {
604                         rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
605                         if (value > INT_MAX) {
606                                 rs->ti->error = "min_recovery_rate out of range";
607                                 return -EINVAL;
608                         }
609                         rs->md.sync_speed_min = (int)value;
610                 } else if (!strcasecmp(key, "max_recovery_rate")) {
611                         rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
612                         if (value > INT_MAX) {
613                                 rs->ti->error = "max_recovery_rate out of range";
614                                 return -EINVAL;
615                         }
616                         rs->md.sync_speed_max = (int)value;
617                 } else if (!strcasecmp(key, "region_size")) {
618                         rs->print_flags |= DMPF_REGION_SIZE;
619                         region_size = value;
620                 } else if (!strcasecmp(key, "raid10_copies") &&
621                            (rs->raid_type->level == 10)) {
622                         if ((value < 2) || (value > 0xFF)) {
623                                 rs->ti->error = "Bad value for 'raid10_copies'";
624                                 return -EINVAL;
625                         }
626                         rs->print_flags |= DMPF_RAID10_COPIES;
627                         raid10_copies = value;
628                 } else {
629                         DMERR("Unable to parse RAID parameter: %s", key);
630                         rs->ti->error = "Unable to parse RAID parameters";
631                         return -EINVAL;
632                 }
633         }
634
635         if (validate_region_size(rs, region_size))
636                 return -EINVAL;
637
638         if (rs->md.chunk_sectors)
639                 max_io_len = rs->md.chunk_sectors;
640         else
641                 max_io_len = region_size;
642
643         if (dm_set_target_max_io_len(rs->ti, max_io_len))
644                 return -EINVAL;
645
646         if (rs->raid_type->level == 10) {
647                 if (raid10_copies > rs->md.raid_disks) {
648                         rs->ti->error = "Not enough devices to satisfy specification";
649                         return -EINVAL;
650                 }
651
652                 /* (Len * #mirrors) / #devices */
653                 sectors_per_dev = rs->ti->len * raid10_copies;
654                 sector_div(sectors_per_dev, rs->md.raid_disks);
655
656                 rs->md.layout = raid10_format_to_md_layout(raid10_format,
657                                                            raid10_copies);
658                 rs->md.new_layout = rs->md.layout;
659         } else if ((rs->raid_type->level > 1) &&
660                    sector_div(sectors_per_dev,
661                               (rs->md.raid_disks - rs->raid_type->parity_devs))) {
662                 rs->ti->error = "Target length not divisible by number of data devices";
663                 return -EINVAL;
664         }
665         rs->md.dev_sectors = sectors_per_dev;
666
667         if (validate_rebuild_devices(rs))
668                 return -EINVAL;
669
670         /* Assume there are no metadata devices until the drives are parsed */
671         rs->md.persistent = 0;
672         rs->md.external = 1;
673
674         return 0;
675 }
676
677 static void do_table_event(struct work_struct *ws)
678 {
679         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
680
681         dm_table_event(rs->ti->table);
682 }
683
684 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
685 {
686         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
687
688         if (rs->raid_type->level == 1)
689                 return md_raid1_congested(&rs->md, bits);
690
691         if (rs->raid_type->level == 10)
692                 return md_raid10_congested(&rs->md, bits);
693
694         return md_raid5_congested(&rs->md, bits);
695 }
696
697 /*
698  * This structure is never routinely used by userspace, unlike md superblocks.
699  * Devices with this superblock should only ever be accessed via device-mapper.
700  */
701 #define DM_RAID_MAGIC 0x64526D44
702 struct dm_raid_superblock {
703         __le32 magic;           /* "DmRd" */
704         __le32 features;        /* Used to indicate possible future changes */
705
706         __le32 num_devices;     /* Number of devices in this array. (Max 64) */
707         __le32 array_position;  /* The position of this drive in the array */
708
709         __le64 events;          /* Incremented by md when superblock updated */
710         __le64 failed_devices;  /* Bit field of devices to indicate failures */
711
712         /*
713          * This offset tracks the progress of the repair or replacement of
714          * an individual drive.
715          */
716         __le64 disk_recovery_offset;
717
718         /*
719          * This offset tracks the progress of the initial array
720          * synchronisation/parity calculation.
721          */
722         __le64 array_resync_offset;
723
724         /*
725          * RAID characteristics
726          */
727         __le32 level;
728         __le32 layout;
729         __le32 stripe_sectors;
730
731         __u8 pad[452];          /* Round struct to 512 bytes. */
732                                 /* Always set to 0 when writing. */
733 } __packed;
734
735 static int read_disk_sb(struct md_rdev *rdev, int size)
736 {
737         BUG_ON(!rdev->sb_page);
738
739         if (rdev->sb_loaded)
740                 return 0;
741
742         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
743                 DMERR("Failed to read superblock of device at position %d",
744                       rdev->raid_disk);
745                 md_error(rdev->mddev, rdev);
746                 return -EINVAL;
747         }
748
749         rdev->sb_loaded = 1;
750
751         return 0;
752 }
753
754 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
755 {
756         int i;
757         uint64_t failed_devices;
758         struct dm_raid_superblock *sb;
759         struct raid_set *rs = container_of(mddev, struct raid_set, md);
760
761         sb = page_address(rdev->sb_page);
762         failed_devices = le64_to_cpu(sb->failed_devices);
763
764         for (i = 0; i < mddev->raid_disks; i++)
765                 if (!rs->dev[i].data_dev ||
766                     test_bit(Faulty, &(rs->dev[i].rdev.flags)))
767                         failed_devices |= (1ULL << i);
768
769         memset(sb, 0, sizeof(*sb));
770
771         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
772         sb->features = cpu_to_le32(0);  /* No features yet */
773
774         sb->num_devices = cpu_to_le32(mddev->raid_disks);
775         sb->array_position = cpu_to_le32(rdev->raid_disk);
776
777         sb->events = cpu_to_le64(mddev->events);
778         sb->failed_devices = cpu_to_le64(failed_devices);
779
780         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
781         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
782
783         sb->level = cpu_to_le32(mddev->level);
784         sb->layout = cpu_to_le32(mddev->layout);
785         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
786 }
787
788 /*
789  * super_load
790  *
791  * This function creates a superblock if one is not found on the device
792  * and will decide which superblock to use if there's a choice.
793  *
794  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
795  */
796 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
797 {
798         int ret;
799         struct dm_raid_superblock *sb;
800         struct dm_raid_superblock *refsb;
801         uint64_t events_sb, events_refsb;
802
803         rdev->sb_start = 0;
804         rdev->sb_size = sizeof(*sb);
805
806         ret = read_disk_sb(rdev, rdev->sb_size);
807         if (ret)
808                 return ret;
809
810         sb = page_address(rdev->sb_page);
811
812         /*
813          * Two cases that we want to write new superblocks and rebuild:
814          * 1) New device (no matching magic number)
815          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
816          */
817         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
818             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
819                 super_sync(rdev->mddev, rdev);
820
821                 set_bit(FirstUse, &rdev->flags);
822
823                 /* Force writing of superblocks to disk */
824                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
825
826                 /* Any superblock is better than none, choose that if given */
827                 return refdev ? 0 : 1;
828         }
829
830         if (!refdev)
831                 return 1;
832
833         events_sb = le64_to_cpu(sb->events);
834
835         refsb = page_address(refdev->sb_page);
836         events_refsb = le64_to_cpu(refsb->events);
837
838         return (events_sb > events_refsb) ? 1 : 0;
839 }
840
841 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
842 {
843         int role;
844         struct raid_set *rs = container_of(mddev, struct raid_set, md);
845         uint64_t events_sb;
846         uint64_t failed_devices;
847         struct dm_raid_superblock *sb;
848         uint32_t new_devs = 0;
849         uint32_t rebuilds = 0;
850         struct md_rdev *r;
851         struct dm_raid_superblock *sb2;
852
853         sb = page_address(rdev->sb_page);
854         events_sb = le64_to_cpu(sb->events);
855         failed_devices = le64_to_cpu(sb->failed_devices);
856
857         /*
858          * Initialise to 1 if this is a new superblock.
859          */
860         mddev->events = events_sb ? : 1;
861
862         /*
863          * Reshaping is not currently allowed
864          */
865         if ((le32_to_cpu(sb->level) != mddev->level) ||
866             (le32_to_cpu(sb->layout) != mddev->layout) ||
867             (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
868                 DMERR("Reshaping arrays not yet supported.");
869                 return -EINVAL;
870         }
871
872         /* We can only change the number of devices in RAID1 right now */
873         if ((rs->raid_type->level != 1) &&
874             (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
875                 DMERR("Reshaping arrays not yet supported.");
876                 return -EINVAL;
877         }
878
879         if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
880                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
881
882         /*
883          * During load, we set FirstUse if a new superblock was written.
884          * There are two reasons we might not have a superblock:
885          * 1) The array is brand new - in which case, all of the
886          *    devices must have their In_sync bit set.  Also,
887          *    recovery_cp must be 0, unless forced.
888          * 2) This is a new device being added to an old array
889          *    and the new device needs to be rebuilt - in which
890          *    case the In_sync bit will /not/ be set and
891          *    recovery_cp must be MaxSector.
892          */
893         rdev_for_each(r, mddev) {
894                 if (!test_bit(In_sync, &r->flags)) {
895                         DMINFO("Device %d specified for rebuild: "
896                                "Clearing superblock", r->raid_disk);
897                         rebuilds++;
898                 } else if (test_bit(FirstUse, &r->flags))
899                         new_devs++;
900         }
901
902         if (!rebuilds) {
903                 if (new_devs == mddev->raid_disks) {
904                         DMINFO("Superblocks created for new array");
905                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
906                 } else if (new_devs) {
907                         DMERR("New device injected "
908                               "into existing array without 'rebuild' "
909                               "parameter specified");
910                         return -EINVAL;
911                 }
912         } else if (new_devs) {
913                 DMERR("'rebuild' devices cannot be "
914                       "injected into an array with other first-time devices");
915                 return -EINVAL;
916         } else if (mddev->recovery_cp != MaxSector) {
917                 DMERR("'rebuild' specified while array is not in-sync");
918                 return -EINVAL;
919         }
920
921         /*
922          * Now we set the Faulty bit for those devices that are
923          * recorded in the superblock as failed.
924          */
925         rdev_for_each(r, mddev) {
926                 if (!r->sb_page)
927                         continue;
928                 sb2 = page_address(r->sb_page);
929                 sb2->failed_devices = 0;
930
931                 /*
932                  * Check for any device re-ordering.
933                  */
934                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
935                         role = le32_to_cpu(sb2->array_position);
936                         if (role != r->raid_disk) {
937                                 if (rs->raid_type->level != 1) {
938                                         rs->ti->error = "Cannot change device "
939                                                 "positions in RAID array";
940                                         return -EINVAL;
941                                 }
942                                 DMINFO("RAID1 device #%d now at position #%d",
943                                        role, r->raid_disk);
944                         }
945
946                         /*
947                          * Partial recovery is performed on
948                          * returning failed devices.
949                          */
950                         if (failed_devices & (1 << role))
951                                 set_bit(Faulty, &r->flags);
952                 }
953         }
954
955         return 0;
956 }
957
958 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
959 {
960         struct dm_raid_superblock *sb = page_address(rdev->sb_page);
961
962         /*
963          * If mddev->events is not set, we know we have not yet initialized
964          * the array.
965          */
966         if (!mddev->events && super_init_validation(mddev, rdev))
967                 return -EINVAL;
968
969         mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
970         rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
971         if (!test_bit(FirstUse, &rdev->flags)) {
972                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
973                 if (rdev->recovery_offset != MaxSector)
974                         clear_bit(In_sync, &rdev->flags);
975         }
976
977         /*
978          * If a device comes back, set it as not In_sync and no longer faulty.
979          */
980         if (test_bit(Faulty, &rdev->flags)) {
981                 clear_bit(Faulty, &rdev->flags);
982                 clear_bit(In_sync, &rdev->flags);
983                 rdev->saved_raid_disk = rdev->raid_disk;
984                 rdev->recovery_offset = 0;
985         }
986
987         clear_bit(FirstUse, &rdev->flags);
988
989         return 0;
990 }
991
992 /*
993  * Analyse superblocks and select the freshest.
994  */
995 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
996 {
997         int ret;
998         unsigned redundancy = 0;
999         struct raid_dev *dev;
1000         struct md_rdev *rdev, *tmp, *freshest;
1001         struct mddev *mddev = &rs->md;
1002
1003         switch (rs->raid_type->level) {
1004         case 1:
1005                 redundancy = rs->md.raid_disks - 1;
1006                 break;
1007         case 4:
1008         case 5:
1009         case 6:
1010                 redundancy = rs->raid_type->parity_devs;
1011                 break;
1012         case 10:
1013                 redundancy = raid10_md_layout_to_copies(mddev->layout) - 1;
1014                 break;
1015         default:
1016                 ti->error = "Unknown RAID type";
1017                 return -EINVAL;
1018         }
1019
1020         freshest = NULL;
1021         rdev_for_each_safe(rdev, tmp, mddev) {
1022                 /*
1023                  * Skipping super_load due to DMPF_SYNC will cause
1024                  * the array to undergo initialization again as
1025                  * though it were new.  This is the intended effect
1026                  * of the "sync" directive.
1027                  *
1028                  * When reshaping capability is added, we must ensure
1029                  * that the "sync" directive is disallowed during the
1030                  * reshape.
1031                  */
1032                 if (rs->print_flags & DMPF_SYNC)
1033                         continue;
1034
1035                 if (!rdev->meta_bdev)
1036                         continue;
1037
1038                 ret = super_load(rdev, freshest);
1039
1040                 switch (ret) {
1041                 case 1:
1042                         freshest = rdev;
1043                         break;
1044                 case 0:
1045                         break;
1046                 default:
1047                         dev = container_of(rdev, struct raid_dev, rdev);
1048                         if (redundancy--) {
1049                                 if (dev->meta_dev)
1050                                         dm_put_device(ti, dev->meta_dev);
1051
1052                                 dev->meta_dev = NULL;
1053                                 rdev->meta_bdev = NULL;
1054
1055                                 if (rdev->sb_page)
1056                                         put_page(rdev->sb_page);
1057
1058                                 rdev->sb_page = NULL;
1059
1060                                 rdev->sb_loaded = 0;
1061
1062                                 /*
1063                                  * We might be able to salvage the data device
1064                                  * even though the meta device has failed.  For
1065                                  * now, we behave as though '- -' had been
1066                                  * set for this device in the table.
1067                                  */
1068                                 if (dev->data_dev)
1069                                         dm_put_device(ti, dev->data_dev);
1070
1071                                 dev->data_dev = NULL;
1072                                 rdev->bdev = NULL;
1073
1074                                 list_del(&rdev->same_set);
1075
1076                                 continue;
1077                         }
1078                         ti->error = "Failed to load superblock";
1079                         return ret;
1080                 }
1081         }
1082
1083         if (!freshest)
1084                 return 0;
1085
1086         /*
1087          * Validation of the freshest device provides the source of
1088          * validation for the remaining devices.
1089          */
1090         ti->error = "Unable to assemble array: Invalid superblocks";
1091         if (super_validate(mddev, freshest))
1092                 return -EINVAL;
1093
1094         rdev_for_each(rdev, mddev)
1095                 if ((rdev != freshest) && super_validate(mddev, rdev))
1096                         return -EINVAL;
1097
1098         return 0;
1099 }
1100
1101 /*
1102  * Construct a RAID4/5/6 mapping:
1103  * Args:
1104  *      <raid_type> <#raid_params> <raid_params>                \
1105  *      <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1106  *
1107  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1108  * details on possible <raid_params>.
1109  */
1110 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1111 {
1112         int ret;
1113         struct raid_type *rt;
1114         unsigned long num_raid_params, num_raid_devs;
1115         struct raid_set *rs = NULL;
1116
1117         /* Must have at least <raid_type> <#raid_params> */
1118         if (argc < 2) {
1119                 ti->error = "Too few arguments";
1120                 return -EINVAL;
1121         }
1122
1123         /* raid type */
1124         rt = get_raid_type(argv[0]);
1125         if (!rt) {
1126                 ti->error = "Unrecognised raid_type";
1127                 return -EINVAL;
1128         }
1129         argc--;
1130         argv++;
1131
1132         /* number of RAID parameters */
1133         if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
1134                 ti->error = "Cannot understand number of RAID parameters";
1135                 return -EINVAL;
1136         }
1137         argc--;
1138         argv++;
1139
1140         /* Skip over RAID params for now and find out # of devices */
1141         if (num_raid_params + 1 > argc) {
1142                 ti->error = "Arguments do not agree with counts given";
1143                 return -EINVAL;
1144         }
1145
1146         if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1147             (num_raid_devs >= INT_MAX)) {
1148                 ti->error = "Cannot understand number of raid devices";
1149                 return -EINVAL;
1150         }
1151
1152         rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1153         if (IS_ERR(rs))
1154                 return PTR_ERR(rs);
1155
1156         ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1157         if (ret)
1158                 goto bad;
1159
1160         ret = -EINVAL;
1161
1162         argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1163         argv += num_raid_params + 1;
1164
1165         if (argc != (num_raid_devs * 2)) {
1166                 ti->error = "Supplied RAID devices does not match the count given";
1167                 goto bad;
1168         }
1169
1170         ret = dev_parms(rs, argv);
1171         if (ret)
1172                 goto bad;
1173
1174         rs->md.sync_super = super_sync;
1175         ret = analyse_superblocks(ti, rs);
1176         if (ret)
1177                 goto bad;
1178
1179         INIT_WORK(&rs->md.event_work, do_table_event);
1180         ti->private = rs;
1181         ti->num_flush_requests = 1;
1182
1183         mutex_lock(&rs->md.reconfig_mutex);
1184         ret = md_run(&rs->md);
1185         rs->md.in_sync = 0; /* Assume already marked dirty */
1186         mutex_unlock(&rs->md.reconfig_mutex);
1187
1188         if (ret) {
1189                 ti->error = "Fail to run raid array";
1190                 goto bad;
1191         }
1192
1193         if (ti->len != rs->md.array_sectors) {
1194                 ti->error = "Array size does not match requested target length";
1195                 ret = -EINVAL;
1196                 goto size_mismatch;
1197         }
1198         rs->callbacks.congested_fn = raid_is_congested;
1199         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1200
1201         mddev_suspend(&rs->md);
1202         return 0;
1203
1204 size_mismatch:
1205         md_stop(&rs->md);
1206 bad:
1207         context_free(rs);
1208
1209         return ret;
1210 }
1211
1212 static void raid_dtr(struct dm_target *ti)
1213 {
1214         struct raid_set *rs = ti->private;
1215
1216         list_del_init(&rs->callbacks.list);
1217         md_stop(&rs->md);
1218         context_free(rs);
1219 }
1220
1221 static int raid_map(struct dm_target *ti, struct bio *bio)
1222 {
1223         struct raid_set *rs = ti->private;
1224         struct mddev *mddev = &rs->md;
1225
1226         mddev->pers->make_request(mddev, bio);
1227
1228         return DM_MAPIO_SUBMITTED;
1229 }
1230
1231 static int raid_status(struct dm_target *ti, status_type_t type,
1232                        unsigned status_flags, char *result, unsigned maxlen)
1233 {
1234         struct raid_set *rs = ti->private;
1235         unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1236         unsigned sz = 0;
1237         int i, array_in_sync = 0;
1238         sector_t sync;
1239
1240         switch (type) {
1241         case STATUSTYPE_INFO:
1242                 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1243
1244                 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1245                         sync = rs->md.curr_resync_completed;
1246                 else
1247                         sync = rs->md.recovery_cp;
1248
1249                 if (sync >= rs->md.resync_max_sectors) {
1250                         array_in_sync = 1;
1251                         sync = rs->md.resync_max_sectors;
1252                 } else {
1253                         /*
1254                          * The array may be doing an initial sync, or it may
1255                          * be rebuilding individual components.  If all the
1256                          * devices are In_sync, then it is the array that is
1257                          * being initialized.
1258                          */
1259                         for (i = 0; i < rs->md.raid_disks; i++)
1260                                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1261                                         array_in_sync = 1;
1262                 }
1263                 /*
1264                  * Status characters:
1265                  *  'D' = Dead/Failed device
1266                  *  'a' = Alive but not in-sync
1267                  *  'A' = Alive and in-sync
1268                  */
1269                 for (i = 0; i < rs->md.raid_disks; i++) {
1270                         if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1271                                 DMEMIT("D");
1272                         else if (!array_in_sync ||
1273                                  !test_bit(In_sync, &rs->dev[i].rdev.flags))
1274                                 DMEMIT("a");
1275                         else
1276                                 DMEMIT("A");
1277                 }
1278
1279                 /*
1280                  * In-sync ratio:
1281                  *  The in-sync ratio shows the progress of:
1282                  *   - Initializing the array
1283                  *   - Rebuilding a subset of devices of the array
1284                  *  The user can distinguish between the two by referring
1285                  *  to the status characters.
1286                  */
1287                 DMEMIT(" %llu/%llu",
1288                        (unsigned long long) sync,
1289                        (unsigned long long) rs->md.resync_max_sectors);
1290
1291                 break;
1292         case STATUSTYPE_TABLE:
1293                 /* The string you would use to construct this array */
1294                 for (i = 0; i < rs->md.raid_disks; i++) {
1295                         if ((rs->print_flags & DMPF_REBUILD) &&
1296                             rs->dev[i].data_dev &&
1297                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1298                                 raid_param_cnt += 2; /* for rebuilds */
1299                         if (rs->dev[i].data_dev &&
1300                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1301                                 raid_param_cnt += 2;
1302                 }
1303
1304                 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1305                 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1306                         raid_param_cnt--;
1307
1308                 DMEMIT("%s %u %u", rs->raid_type->name,
1309                        raid_param_cnt, rs->md.chunk_sectors);
1310
1311                 if ((rs->print_flags & DMPF_SYNC) &&
1312                     (rs->md.recovery_cp == MaxSector))
1313                         DMEMIT(" sync");
1314                 if (rs->print_flags & DMPF_NOSYNC)
1315                         DMEMIT(" nosync");
1316
1317                 for (i = 0; i < rs->md.raid_disks; i++)
1318                         if ((rs->print_flags & DMPF_REBUILD) &&
1319                             rs->dev[i].data_dev &&
1320                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1321                                 DMEMIT(" rebuild %u", i);
1322
1323                 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1324                         DMEMIT(" daemon_sleep %lu",
1325                                rs->md.bitmap_info.daemon_sleep);
1326
1327                 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1328                         DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1329
1330                 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1331                         DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1332
1333                 for (i = 0; i < rs->md.raid_disks; i++)
1334                         if (rs->dev[i].data_dev &&
1335                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1336                                 DMEMIT(" write_mostly %u", i);
1337
1338                 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1339                         DMEMIT(" max_write_behind %lu",
1340                                rs->md.bitmap_info.max_write_behind);
1341
1342                 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1343                         struct r5conf *conf = rs->md.private;
1344
1345                         /* convert from kiB to sectors */
1346                         DMEMIT(" stripe_cache %d",
1347                                conf ? conf->max_nr_stripes * 2 : 0);
1348                 }
1349
1350                 if (rs->print_flags & DMPF_REGION_SIZE)
1351                         DMEMIT(" region_size %lu",
1352                                rs->md.bitmap_info.chunksize >> 9);
1353
1354                 if (rs->print_flags & DMPF_RAID10_COPIES)
1355                         DMEMIT(" raid10_copies %u",
1356                                raid10_md_layout_to_copies(rs->md.layout));
1357
1358                 if (rs->print_flags & DMPF_RAID10_FORMAT)
1359                         DMEMIT(" raid10_format near");
1360
1361                 DMEMIT(" %d", rs->md.raid_disks);
1362                 for (i = 0; i < rs->md.raid_disks; i++) {
1363                         if (rs->dev[i].meta_dev)
1364                                 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1365                         else
1366                                 DMEMIT(" -");
1367
1368                         if (rs->dev[i].data_dev)
1369                                 DMEMIT(" %s", rs->dev[i].data_dev->name);
1370                         else
1371                                 DMEMIT(" -");
1372                 }
1373         }
1374
1375         return 0;
1376 }
1377
1378 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1379 {
1380         struct raid_set *rs = ti->private;
1381         unsigned i;
1382         int ret = 0;
1383
1384         for (i = 0; !ret && i < rs->md.raid_disks; i++)
1385                 if (rs->dev[i].data_dev)
1386                         ret = fn(ti,
1387                                  rs->dev[i].data_dev,
1388                                  0, /* No offset on data devs */
1389                                  rs->md.dev_sectors,
1390                                  data);
1391
1392         return ret;
1393 }
1394
1395 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1396 {
1397         struct raid_set *rs = ti->private;
1398         unsigned chunk_size = rs->md.chunk_sectors << 9;
1399         struct r5conf *conf = rs->md.private;
1400
1401         blk_limits_io_min(limits, chunk_size);
1402         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1403 }
1404
1405 static void raid_presuspend(struct dm_target *ti)
1406 {
1407         struct raid_set *rs = ti->private;
1408
1409         md_stop_writes(&rs->md);
1410 }
1411
1412 static void raid_postsuspend(struct dm_target *ti)
1413 {
1414         struct raid_set *rs = ti->private;
1415
1416         mddev_suspend(&rs->md);
1417 }
1418
1419 static void raid_resume(struct dm_target *ti)
1420 {
1421         struct raid_set *rs = ti->private;
1422
1423         set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1424         if (!rs->bitmap_loaded) {
1425                 bitmap_load(&rs->md);
1426                 rs->bitmap_loaded = 1;
1427         }
1428
1429         clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1430         mddev_resume(&rs->md);
1431 }
1432
1433 static struct target_type raid_target = {
1434         .name = "raid",
1435         .version = {1, 4, 0},
1436         .module = THIS_MODULE,
1437         .ctr = raid_ctr,
1438         .dtr = raid_dtr,
1439         .map = raid_map,
1440         .status = raid_status,
1441         .iterate_devices = raid_iterate_devices,
1442         .io_hints = raid_io_hints,
1443         .presuspend = raid_presuspend,
1444         .postsuspend = raid_postsuspend,
1445         .resume = raid_resume,
1446 };
1447
1448 static int __init dm_raid_init(void)
1449 {
1450         return dm_register_target(&raid_target);
1451 }
1452
1453 static void __exit dm_raid_exit(void)
1454 {
1455         dm_unregister_target(&raid_target);
1456 }
1457
1458 module_init(dm_raid_init);
1459 module_exit(dm_raid_exit);
1460
1461 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1462 MODULE_ALIAS("dm-raid1");
1463 MODULE_ALIAS("dm-raid10");
1464 MODULE_ALIAS("dm-raid4");
1465 MODULE_ALIAS("dm-raid5");
1466 MODULE_ALIAS("dm-raid6");
1467 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1468 MODULE_LICENSE("GPL");