Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[pandora-kernel.git] / drivers / macintosh / windfarm_pm91.c
1 /*
2  * Windfarm PowerMac thermal control. SMU based 1 CPU desktop control loops
3  *
4  * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
5  *                    <benh@kernel.crashing.org>
6  *
7  * Released under the term of the GNU GPL v2.
8  *
9  * The algorithm used is the PID control algorithm, used the same
10  * way the published Darwin code does, using the same values that
11  * are present in the Darwin 8.2 snapshot property lists (note however
12  * that none of the code has been re-used, it's a complete re-implementation
13  *
14  * The various control loops found in Darwin config file are:
15  *
16  * PowerMac9,1
17  * ===========
18  *
19  * Has 3 control loops: CPU fans is similar to PowerMac8,1 (though it doesn't
20  * try to play with other control loops fans). Drive bay is rather basic PID
21  * with one sensor and one fan. Slots area is a bit different as the Darwin
22  * driver is supposed to be capable of working in a special "AGP" mode which
23  * involves the presence of an AGP sensor and an AGP fan (possibly on the
24  * AGP card itself). I can't deal with that special mode as I don't have
25  * access to those additional sensor/fans for now (though ultimately, it would
26  * be possible to add sensor objects for them) so I'm only implementing the
27  * basic PCI slot control loop
28  */
29
30 #include <linux/types.h>
31 #include <linux/errno.h>
32 #include <linux/kernel.h>
33 #include <linux/delay.h>
34 #include <linux/slab.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/wait.h>
38 #include <linux/kmod.h>
39 #include <linux/device.h>
40 #include <linux/platform_device.h>
41 #include <asm/prom.h>
42 #include <asm/machdep.h>
43 #include <asm/io.h>
44 #include <asm/sections.h>
45 #include <asm/smu.h>
46
47 #include "windfarm.h"
48 #include "windfarm_pid.h"
49
50 #define VERSION "0.4"
51
52 #undef DEBUG
53
54 #ifdef DEBUG
55 #define DBG(args...)    printk(args)
56 #else
57 #define DBG(args...)    do { } while(0)
58 #endif
59
60 /* define this to force CPU overtemp to 74 degree, useful for testing
61  * the overtemp code
62  */
63 #undef HACKED_OVERTEMP
64
65 /* Controls & sensors */
66 static struct wf_sensor *sensor_cpu_power;
67 static struct wf_sensor *sensor_cpu_temp;
68 static struct wf_sensor *sensor_hd_temp;
69 static struct wf_sensor *sensor_slots_power;
70 static struct wf_control *fan_cpu_main;
71 static struct wf_control *fan_cpu_second;
72 static struct wf_control *fan_cpu_third;
73 static struct wf_control *fan_hd;
74 static struct wf_control *fan_slots;
75 static struct wf_control *cpufreq_clamp;
76
77 /* Set to kick the control loop into life */
78 static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
79
80 /* Failure handling.. could be nicer */
81 #define FAILURE_FAN             0x01
82 #define FAILURE_SENSOR          0x02
83 #define FAILURE_OVERTEMP        0x04
84
85 static unsigned int wf_smu_failure_state;
86 static int wf_smu_readjust, wf_smu_skipping;
87
88 /*
89  * ****** CPU Fans Control Loop ******
90  *
91  */
92
93
94 #define WF_SMU_CPU_FANS_INTERVAL        1
95 #define WF_SMU_CPU_FANS_MAX_HISTORY     16
96
97 /* State data used by the cpu fans control loop
98  */
99 struct wf_smu_cpu_fans_state {
100         int                     ticks;
101         s32                     cpu_setpoint;
102         struct wf_cpu_pid_state pid;
103 };
104
105 static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
106
107
108
109 /*
110  * ****** Drive Fan Control Loop ******
111  *
112  */
113
114 struct wf_smu_drive_fans_state {
115         int                     ticks;
116         s32                     setpoint;
117         struct wf_pid_state     pid;
118 };
119
120 static struct wf_smu_drive_fans_state *wf_smu_drive_fans;
121
122 /*
123  * ****** Slots Fan Control Loop ******
124  *
125  */
126
127 struct wf_smu_slots_fans_state {
128         int                     ticks;
129         s32                     setpoint;
130         struct wf_pid_state     pid;
131 };
132
133 static struct wf_smu_slots_fans_state *wf_smu_slots_fans;
134
135 /*
136  * ***** Implementation *****
137  *
138  */
139
140
141 static void wf_smu_create_cpu_fans(void)
142 {
143         struct wf_cpu_pid_param pid_param;
144         const struct smu_sdbp_header *hdr;
145         struct smu_sdbp_cpupiddata *piddata;
146         struct smu_sdbp_fvt *fvt;
147         s32 tmax, tdelta, maxpow, powadj;
148
149         /* First, locate the PID params in SMU SBD */
150         hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
151         if (hdr == 0) {
152                 printk(KERN_WARNING "windfarm: CPU PID fan config not found "
153                        "max fan speed\n");
154                 goto fail;
155         }
156         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
157
158         /* Get the FVT params for operating point 0 (the only supported one
159          * for now) in order to get tmax
160          */
161         hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
162         if (hdr) {
163                 fvt = (struct smu_sdbp_fvt *)&hdr[1];
164                 tmax = ((s32)fvt->maxtemp) << 16;
165         } else
166                 tmax = 0x5e0000; /* 94 degree default */
167
168         /* Alloc & initialize state */
169         wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
170                                   GFP_KERNEL);
171         if (wf_smu_cpu_fans == NULL)
172                 goto fail;
173         wf_smu_cpu_fans->ticks = 1;
174
175         /* Fill PID params */
176         pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
177         pid_param.history_len = piddata->history_len;
178         if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
179                 printk(KERN_WARNING "windfarm: History size overflow on "
180                        "CPU control loop (%d)\n", piddata->history_len);
181                 pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
182         }
183         pid_param.gd = piddata->gd;
184         pid_param.gp = piddata->gp;
185         pid_param.gr = piddata->gr / pid_param.history_len;
186
187         tdelta = ((s32)piddata->target_temp_delta) << 16;
188         maxpow = ((s32)piddata->max_power) << 16;
189         powadj = ((s32)piddata->power_adj) << 16;
190
191         pid_param.tmax = tmax;
192         pid_param.ttarget = tmax - tdelta;
193         pid_param.pmaxadj = maxpow - powadj;
194
195         pid_param.min = fan_cpu_main->ops->get_min(fan_cpu_main);
196         pid_param.max = fan_cpu_main->ops->get_max(fan_cpu_main);
197
198         wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
199
200         DBG("wf: CPU Fan control initialized.\n");
201         DBG("    ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
202             FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
203             pid_param.min, pid_param.max);
204
205         return;
206
207  fail:
208         printk(KERN_WARNING "windfarm: CPU fan config not found\n"
209                "for this machine model, max fan speed\n");
210
211         if (cpufreq_clamp)
212                 wf_control_set_max(cpufreq_clamp);
213         if (fan_cpu_main)
214                 wf_control_set_max(fan_cpu_main);
215 }
216
217 static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
218 {
219         s32 new_setpoint, temp, power;
220         int rc;
221
222         if (--st->ticks != 0) {
223                 if (wf_smu_readjust)
224                         goto readjust;
225                 return;
226         }
227         st->ticks = WF_SMU_CPU_FANS_INTERVAL;
228
229         rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
230         if (rc) {
231                 printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
232                        rc);
233                 wf_smu_failure_state |= FAILURE_SENSOR;
234                 return;
235         }
236
237         rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
238         if (rc) {
239                 printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
240                        rc);
241                 wf_smu_failure_state |= FAILURE_SENSOR;
242                 return;
243         }
244
245         DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
246             FIX32TOPRINT(temp), FIX32TOPRINT(power));
247
248 #ifdef HACKED_OVERTEMP
249         if (temp > 0x4a0000)
250                 wf_smu_failure_state |= FAILURE_OVERTEMP;
251 #else
252         if (temp > st->pid.param.tmax)
253                 wf_smu_failure_state |= FAILURE_OVERTEMP;
254 #endif
255         new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
256
257         DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
258
259         if (st->cpu_setpoint == new_setpoint)
260                 return;
261         st->cpu_setpoint = new_setpoint;
262  readjust:
263         if (fan_cpu_main && wf_smu_failure_state == 0) {
264                 rc = fan_cpu_main->ops->set_value(fan_cpu_main,
265                                                   st->cpu_setpoint);
266                 if (rc) {
267                         printk(KERN_WARNING "windfarm: CPU main fan"
268                                " error %d\n", rc);
269                         wf_smu_failure_state |= FAILURE_FAN;
270                 }
271         }
272         if (fan_cpu_second && wf_smu_failure_state == 0) {
273                 rc = fan_cpu_second->ops->set_value(fan_cpu_second,
274                                                     st->cpu_setpoint);
275                 if (rc) {
276                         printk(KERN_WARNING "windfarm: CPU second fan"
277                                " error %d\n", rc);
278                         wf_smu_failure_state |= FAILURE_FAN;
279                 }
280         }
281         if (fan_cpu_third && wf_smu_failure_state == 0) {
282                 rc = fan_cpu_main->ops->set_value(fan_cpu_third,
283                                                   st->cpu_setpoint);
284                 if (rc) {
285                         printk(KERN_WARNING "windfarm: CPU third fan"
286                                " error %d\n", rc);
287                         wf_smu_failure_state |= FAILURE_FAN;
288                 }
289         }
290 }
291
292 static void wf_smu_create_drive_fans(void)
293 {
294         struct wf_pid_param param = {
295                 .interval       = 5,
296                 .history_len    = 2,
297                 .gd             = 0x01e00000,
298                 .gp             = 0x00500000,
299                 .gr             = 0x00000000,
300                 .itarget        = 0x00200000,
301         };
302
303         /* Alloc & initialize state */
304         wf_smu_drive_fans = kmalloc(sizeof(struct wf_smu_drive_fans_state),
305                                         GFP_KERNEL);
306         if (wf_smu_drive_fans == NULL) {
307                 printk(KERN_WARNING "windfarm: Memory allocation error"
308                        " max fan speed\n");
309                 goto fail;
310         }
311         wf_smu_drive_fans->ticks = 1;
312
313         /* Fill PID params */
314         param.additive = (fan_hd->type == WF_CONTROL_RPM_FAN);
315         param.min = fan_hd->ops->get_min(fan_hd);
316         param.max = fan_hd->ops->get_max(fan_hd);
317         wf_pid_init(&wf_smu_drive_fans->pid, &param);
318
319         DBG("wf: Drive Fan control initialized.\n");
320         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
321             FIX32TOPRINT(param.itarget), param.min, param.max);
322         return;
323
324  fail:
325         if (fan_hd)
326                 wf_control_set_max(fan_hd);
327 }
328
329 static void wf_smu_drive_fans_tick(struct wf_smu_drive_fans_state *st)
330 {
331         s32 new_setpoint, temp;
332         int rc;
333
334         if (--st->ticks != 0) {
335                 if (wf_smu_readjust)
336                         goto readjust;
337                 return;
338         }
339         st->ticks = st->pid.param.interval;
340
341         rc = sensor_hd_temp->ops->get_value(sensor_hd_temp, &temp);
342         if (rc) {
343                 printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
344                        rc);
345                 wf_smu_failure_state |= FAILURE_SENSOR;
346                 return;
347         }
348
349         DBG("wf_smu: Drive Fans tick ! HD temp: %d.%03d\n",
350             FIX32TOPRINT(temp));
351
352         if (temp > (st->pid.param.itarget + 0x50000))
353                 wf_smu_failure_state |= FAILURE_OVERTEMP;
354
355         new_setpoint = wf_pid_run(&st->pid, temp);
356
357         DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
358
359         if (st->setpoint == new_setpoint)
360                 return;
361         st->setpoint = new_setpoint;
362  readjust:
363         if (fan_hd && wf_smu_failure_state == 0) {
364                 rc = fan_hd->ops->set_value(fan_hd, st->setpoint);
365                 if (rc) {
366                         printk(KERN_WARNING "windfarm: HD fan error %d\n",
367                                rc);
368                         wf_smu_failure_state |= FAILURE_FAN;
369                 }
370         }
371 }
372
373 static void wf_smu_create_slots_fans(void)
374 {
375         struct wf_pid_param param = {
376                 .interval       = 1,
377                 .history_len    = 8,
378                 .gd             = 0x00000000,
379                 .gp             = 0x00000000,
380                 .gr             = 0x00020000,
381                 .itarget        = 0x00000000
382         };
383
384         /* Alloc & initialize state */
385         wf_smu_slots_fans = kmalloc(sizeof(struct wf_smu_slots_fans_state),
386                                         GFP_KERNEL);
387         if (wf_smu_slots_fans == NULL) {
388                 printk(KERN_WARNING "windfarm: Memory allocation error"
389                        " max fan speed\n");
390                 goto fail;
391         }
392         wf_smu_slots_fans->ticks = 1;
393
394         /* Fill PID params */
395         param.additive = (fan_slots->type == WF_CONTROL_RPM_FAN);
396         param.min = fan_slots->ops->get_min(fan_slots);
397         param.max = fan_slots->ops->get_max(fan_slots);
398         wf_pid_init(&wf_smu_slots_fans->pid, &param);
399
400         DBG("wf: Slots Fan control initialized.\n");
401         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
402             FIX32TOPRINT(param.itarget), param.min, param.max);
403         return;
404
405  fail:
406         if (fan_slots)
407                 wf_control_set_max(fan_slots);
408 }
409
410 static void wf_smu_slots_fans_tick(struct wf_smu_slots_fans_state *st)
411 {
412         s32 new_setpoint, power;
413         int rc;
414
415         if (--st->ticks != 0) {
416                 if (wf_smu_readjust)
417                         goto readjust;
418                 return;
419         }
420         st->ticks = st->pid.param.interval;
421
422         rc = sensor_slots_power->ops->get_value(sensor_slots_power, &power);
423         if (rc) {
424                 printk(KERN_WARNING "windfarm: Slots power sensor error %d\n",
425                        rc);
426                 wf_smu_failure_state |= FAILURE_SENSOR;
427                 return;
428         }
429
430         DBG("wf_smu: Slots Fans tick ! Slots power: %d.%03d\n",
431             FIX32TOPRINT(power));
432
433 #if 0 /* Check what makes a good overtemp condition */
434         if (power > (st->pid.param.itarget + 0x50000))
435                 wf_smu_failure_state |= FAILURE_OVERTEMP;
436 #endif
437
438         new_setpoint = wf_pid_run(&st->pid, power);
439
440         DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
441
442         if (st->setpoint == new_setpoint)
443                 return;
444         st->setpoint = new_setpoint;
445  readjust:
446         if (fan_slots && wf_smu_failure_state == 0) {
447                 rc = fan_slots->ops->set_value(fan_slots, st->setpoint);
448                 if (rc) {
449                         printk(KERN_WARNING "windfarm: Slots fan error %d\n",
450                                rc);
451                         wf_smu_failure_state |= FAILURE_FAN;
452                 }
453         }
454 }
455
456
457 /*
458  * ****** Setup / Init / Misc ... ******
459  *
460  */
461
462 static void wf_smu_tick(void)
463 {
464         unsigned int last_failure = wf_smu_failure_state;
465         unsigned int new_failure;
466
467         if (!wf_smu_started) {
468                 DBG("wf: creating control loops !\n");
469                 wf_smu_create_drive_fans();
470                 wf_smu_create_slots_fans();
471                 wf_smu_create_cpu_fans();
472                 wf_smu_started = 1;
473         }
474
475         /* Skipping ticks */
476         if (wf_smu_skipping && --wf_smu_skipping)
477                 return;
478
479         wf_smu_failure_state = 0;
480         if (wf_smu_drive_fans)
481                 wf_smu_drive_fans_tick(wf_smu_drive_fans);
482         if (wf_smu_slots_fans)
483                 wf_smu_slots_fans_tick(wf_smu_slots_fans);
484         if (wf_smu_cpu_fans)
485                 wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
486
487         wf_smu_readjust = 0;
488         new_failure = wf_smu_failure_state & ~last_failure;
489
490         /* If entering failure mode, clamp cpufreq and ramp all
491          * fans to full speed.
492          */
493         if (wf_smu_failure_state && !last_failure) {
494                 if (cpufreq_clamp)
495                         wf_control_set_max(cpufreq_clamp);
496                 if (fan_cpu_main)
497                         wf_control_set_max(fan_cpu_main);
498                 if (fan_cpu_second)
499                         wf_control_set_max(fan_cpu_second);
500                 if (fan_cpu_third)
501                         wf_control_set_max(fan_cpu_third);
502                 if (fan_hd)
503                         wf_control_set_max(fan_hd);
504                 if (fan_slots)
505                         wf_control_set_max(fan_slots);
506         }
507
508         /* If leaving failure mode, unclamp cpufreq and readjust
509          * all fans on next iteration
510          */
511         if (!wf_smu_failure_state && last_failure) {
512                 if (cpufreq_clamp)
513                         wf_control_set_min(cpufreq_clamp);
514                 wf_smu_readjust = 1;
515         }
516
517         /* Overtemp condition detected, notify and start skipping a couple
518          * ticks to let the temperature go down
519          */
520         if (new_failure & FAILURE_OVERTEMP) {
521                 wf_set_overtemp();
522                 wf_smu_skipping = 2;
523         }
524
525         /* We only clear the overtemp condition if overtemp is cleared
526          * _and_ no other failure is present. Since a sensor error will
527          * clear the overtemp condition (can't measure temperature) at
528          * the control loop levels, but we don't want to keep it clear
529          * here in this case
530          */
531         if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
532                 wf_clear_overtemp();
533 }
534
535
536 static void wf_smu_new_control(struct wf_control *ct)
537 {
538         if (wf_smu_all_controls_ok)
539                 return;
540
541         if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-rear-fan-0")) {
542                 if (wf_get_control(ct) == 0)
543                         fan_cpu_main = ct;
544         }
545
546         if (fan_cpu_second == NULL && !strcmp(ct->name, "cpu-rear-fan-1")) {
547                 if (wf_get_control(ct) == 0)
548                         fan_cpu_second = ct;
549         }
550
551         if (fan_cpu_third == NULL && !strcmp(ct->name, "cpu-front-fan-0")) {
552                 if (wf_get_control(ct) == 0)
553                         fan_cpu_third = ct;
554         }
555
556         if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
557                 if (wf_get_control(ct) == 0)
558                         cpufreq_clamp = ct;
559         }
560
561         if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
562                 if (wf_get_control(ct) == 0)
563                         fan_hd = ct;
564         }
565
566         if (fan_slots == NULL && !strcmp(ct->name, "slots-fan")) {
567                 if (wf_get_control(ct) == 0)
568                         fan_slots = ct;
569         }
570
571         if (fan_cpu_main && (fan_cpu_second || fan_cpu_third) && fan_hd &&
572             fan_slots && cpufreq_clamp)
573                 wf_smu_all_controls_ok = 1;
574 }
575
576 static void wf_smu_new_sensor(struct wf_sensor *sr)
577 {
578         if (wf_smu_all_sensors_ok)
579                 return;
580
581         if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
582                 if (wf_get_sensor(sr) == 0)
583                         sensor_cpu_power = sr;
584         }
585
586         if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
587                 if (wf_get_sensor(sr) == 0)
588                         sensor_cpu_temp = sr;
589         }
590
591         if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
592                 if (wf_get_sensor(sr) == 0)
593                         sensor_hd_temp = sr;
594         }
595
596         if (sensor_slots_power == NULL && !strcmp(sr->name, "slots-power")) {
597                 if (wf_get_sensor(sr) == 0)
598                         sensor_slots_power = sr;
599         }
600
601         if (sensor_cpu_power && sensor_cpu_temp &&
602             sensor_hd_temp && sensor_slots_power)
603                 wf_smu_all_sensors_ok = 1;
604 }
605
606
607 static int wf_smu_notify(struct notifier_block *self,
608                                unsigned long event, void *data)
609 {
610         switch(event) {
611         case WF_EVENT_NEW_CONTROL:
612                 DBG("wf: new control %s detected\n",
613                     ((struct wf_control *)data)->name);
614                 wf_smu_new_control(data);
615                 wf_smu_readjust = 1;
616                 break;
617         case WF_EVENT_NEW_SENSOR:
618                 DBG("wf: new sensor %s detected\n",
619                     ((struct wf_sensor *)data)->name);
620                 wf_smu_new_sensor(data);
621                 break;
622         case WF_EVENT_TICK:
623                 if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
624                         wf_smu_tick();
625         }
626
627         return 0;
628 }
629
630 static struct notifier_block wf_smu_events = {
631         .notifier_call  = wf_smu_notify,
632 };
633
634 static int wf_init_pm(void)
635 {
636         printk(KERN_INFO "windfarm: Initializing for Desktop G5 model\n");
637
638         return 0;
639 }
640
641 static int wf_smu_probe(struct platform_device *ddev)
642 {
643         wf_register_client(&wf_smu_events);
644
645         return 0;
646 }
647
648 static int __devexit wf_smu_remove(struct platform_device *ddev)
649 {
650         wf_unregister_client(&wf_smu_events);
651
652         /* XXX We don't have yet a guarantee that our callback isn't
653          * in progress when returning from wf_unregister_client, so
654          * we add an arbitrary delay. I'll have to fix that in the core
655          */
656         msleep(1000);
657
658         /* Release all sensors */
659         /* One more crappy race: I don't think we have any guarantee here
660          * that the attribute callback won't race with the sensor beeing
661          * disposed of, and I'm not 100% certain what best way to deal
662          * with that except by adding locks all over... I'll do that
663          * eventually but heh, who ever rmmod this module anyway ?
664          */
665         if (sensor_cpu_power)
666                 wf_put_sensor(sensor_cpu_power);
667         if (sensor_cpu_temp)
668                 wf_put_sensor(sensor_cpu_temp);
669         if (sensor_hd_temp)
670                 wf_put_sensor(sensor_hd_temp);
671         if (sensor_slots_power)
672                 wf_put_sensor(sensor_slots_power);
673
674         /* Release all controls */
675         if (fan_cpu_main)
676                 wf_put_control(fan_cpu_main);
677         if (fan_cpu_second)
678                 wf_put_control(fan_cpu_second);
679         if (fan_cpu_third)
680                 wf_put_control(fan_cpu_third);
681         if (fan_hd)
682                 wf_put_control(fan_hd);
683         if (fan_slots)
684                 wf_put_control(fan_slots);
685         if (cpufreq_clamp)
686                 wf_put_control(cpufreq_clamp);
687
688         /* Destroy control loops state structures */
689         kfree(wf_smu_slots_fans);
690         kfree(wf_smu_drive_fans);
691         kfree(wf_smu_cpu_fans);
692
693         return 0;
694 }
695
696 static struct platform_driver wf_smu_driver = {
697         .probe = wf_smu_probe,
698         .remove = __devexit_p(wf_smu_remove),
699         .driver = {
700                 .name = "windfarm",
701                 .owner  = THIS_MODULE,
702         },
703 };
704
705
706 static int __init wf_smu_init(void)
707 {
708         int rc = -ENODEV;
709
710         if (of_machine_is_compatible("PowerMac9,1"))
711                 rc = wf_init_pm();
712
713         if (rc == 0) {
714 #ifdef MODULE
715                 request_module("windfarm_smu_controls");
716                 request_module("windfarm_smu_sensors");
717                 request_module("windfarm_lm75_sensor");
718                 request_module("windfarm_cpufreq_clamp");
719
720 #endif /* MODULE */
721                 platform_driver_register(&wf_smu_driver);
722         }
723
724         return rc;
725 }
726
727 static void __exit wf_smu_exit(void)
728 {
729
730         platform_driver_unregister(&wf_smu_driver);
731 }
732
733
734 module_init(wf_smu_init);
735 module_exit(wf_smu_exit);
736
737 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
738 MODULE_DESCRIPTION("Thermal control logic for PowerMac9,1");
739 MODULE_LICENSE("GPL");
740
741 MODULE_ALIAS("platform:windfarm");