KVM: Emulate hlt in the kernel
[pandora-kernel.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "irq.h"
21 #include "vmx.h"
22 #include "segment_descriptor.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/profile.h>
29 #include <linux/sched.h>
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
36
37 struct vmcs {
38         u32 revision_id;
39         u32 abort;
40         char data[0];
41 };
42
43 struct vcpu_vmx {
44         struct kvm_vcpu       vcpu;
45         int                   launched;
46         struct kvm_msr_entry *guest_msrs;
47         struct kvm_msr_entry *host_msrs;
48         int                   nmsrs;
49         int                   save_nmsrs;
50         int                   msr_offset_efer;
51 #ifdef CONFIG_X86_64
52         int                   msr_offset_kernel_gs_base;
53 #endif
54         struct vmcs          *vmcs;
55         struct {
56                 int           loaded;
57                 u16           fs_sel, gs_sel, ldt_sel;
58                 int           gs_ldt_reload_needed;
59                 int           fs_reload_needed;
60         }host_state;
61
62 };
63
64 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
65 {
66         return container_of(vcpu, struct vcpu_vmx, vcpu);
67 }
68
69 static int init_rmode_tss(struct kvm *kvm);
70
71 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
72 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
73
74 static struct page *vmx_io_bitmap_a;
75 static struct page *vmx_io_bitmap_b;
76
77 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
78
79 static struct vmcs_config {
80         int size;
81         int order;
82         u32 revision_id;
83         u32 pin_based_exec_ctrl;
84         u32 cpu_based_exec_ctrl;
85         u32 vmexit_ctrl;
86         u32 vmentry_ctrl;
87 } vmcs_config;
88
89 #define VMX_SEGMENT_FIELD(seg)                                  \
90         [VCPU_SREG_##seg] = {                                   \
91                 .selector = GUEST_##seg##_SELECTOR,             \
92                 .base = GUEST_##seg##_BASE,                     \
93                 .limit = GUEST_##seg##_LIMIT,                   \
94                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
95         }
96
97 static struct kvm_vmx_segment_field {
98         unsigned selector;
99         unsigned base;
100         unsigned limit;
101         unsigned ar_bytes;
102 } kvm_vmx_segment_fields[] = {
103         VMX_SEGMENT_FIELD(CS),
104         VMX_SEGMENT_FIELD(DS),
105         VMX_SEGMENT_FIELD(ES),
106         VMX_SEGMENT_FIELD(FS),
107         VMX_SEGMENT_FIELD(GS),
108         VMX_SEGMENT_FIELD(SS),
109         VMX_SEGMENT_FIELD(TR),
110         VMX_SEGMENT_FIELD(LDTR),
111 };
112
113 /*
114  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
115  * away by decrementing the array size.
116  */
117 static const u32 vmx_msr_index[] = {
118 #ifdef CONFIG_X86_64
119         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
120 #endif
121         MSR_EFER, MSR_K6_STAR,
122 };
123 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
124
125 static void load_msrs(struct kvm_msr_entry *e, int n)
126 {
127         int i;
128
129         for (i = 0; i < n; ++i)
130                 wrmsrl(e[i].index, e[i].data);
131 }
132
133 static void save_msrs(struct kvm_msr_entry *e, int n)
134 {
135         int i;
136
137         for (i = 0; i < n; ++i)
138                 rdmsrl(e[i].index, e[i].data);
139 }
140
141 static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
142 {
143         return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
144 }
145
146 static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
147 {
148         int efer_offset = vmx->msr_offset_efer;
149         return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
150                 msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
151 }
152
153 static inline int is_page_fault(u32 intr_info)
154 {
155         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156                              INTR_INFO_VALID_MASK)) ==
157                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
158 }
159
160 static inline int is_no_device(u32 intr_info)
161 {
162         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163                              INTR_INFO_VALID_MASK)) ==
164                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
165 }
166
167 static inline int is_external_interrupt(u32 intr_info)
168 {
169         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
170                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
171 }
172
173 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
174 {
175         int i;
176
177         for (i = 0; i < vmx->nmsrs; ++i)
178                 if (vmx->guest_msrs[i].index == msr)
179                         return i;
180         return -1;
181 }
182
183 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
184 {
185         int i;
186
187         i = __find_msr_index(vmx, msr);
188         if (i >= 0)
189                 return &vmx->guest_msrs[i];
190         return NULL;
191 }
192
193 static void vmcs_clear(struct vmcs *vmcs)
194 {
195         u64 phys_addr = __pa(vmcs);
196         u8 error;
197
198         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
199                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
200                       : "cc", "memory");
201         if (error)
202                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
203                        vmcs, phys_addr);
204 }
205
206 static void __vcpu_clear(void *arg)
207 {
208         struct vcpu_vmx *vmx = arg;
209         int cpu = raw_smp_processor_id();
210
211         if (vmx->vcpu.cpu == cpu)
212                 vmcs_clear(vmx->vmcs);
213         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
214                 per_cpu(current_vmcs, cpu) = NULL;
215         rdtscll(vmx->vcpu.host_tsc);
216 }
217
218 static void vcpu_clear(struct vcpu_vmx *vmx)
219 {
220         if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
221                 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
222                                          vmx, 0, 1);
223         else
224                 __vcpu_clear(vmx);
225         vmx->launched = 0;
226 }
227
228 static unsigned long vmcs_readl(unsigned long field)
229 {
230         unsigned long value;
231
232         asm volatile (ASM_VMX_VMREAD_RDX_RAX
233                       : "=a"(value) : "d"(field) : "cc");
234         return value;
235 }
236
237 static u16 vmcs_read16(unsigned long field)
238 {
239         return vmcs_readl(field);
240 }
241
242 static u32 vmcs_read32(unsigned long field)
243 {
244         return vmcs_readl(field);
245 }
246
247 static u64 vmcs_read64(unsigned long field)
248 {
249 #ifdef CONFIG_X86_64
250         return vmcs_readl(field);
251 #else
252         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
253 #endif
254 }
255
256 static noinline void vmwrite_error(unsigned long field, unsigned long value)
257 {
258         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
259                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
260         dump_stack();
261 }
262
263 static void vmcs_writel(unsigned long field, unsigned long value)
264 {
265         u8 error;
266
267         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
268                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
269         if (unlikely(error))
270                 vmwrite_error(field, value);
271 }
272
273 static void vmcs_write16(unsigned long field, u16 value)
274 {
275         vmcs_writel(field, value);
276 }
277
278 static void vmcs_write32(unsigned long field, u32 value)
279 {
280         vmcs_writel(field, value);
281 }
282
283 static void vmcs_write64(unsigned long field, u64 value)
284 {
285 #ifdef CONFIG_X86_64
286         vmcs_writel(field, value);
287 #else
288         vmcs_writel(field, value);
289         asm volatile ("");
290         vmcs_writel(field+1, value >> 32);
291 #endif
292 }
293
294 static void vmcs_clear_bits(unsigned long field, u32 mask)
295 {
296         vmcs_writel(field, vmcs_readl(field) & ~mask);
297 }
298
299 static void vmcs_set_bits(unsigned long field, u32 mask)
300 {
301         vmcs_writel(field, vmcs_readl(field) | mask);
302 }
303
304 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
305 {
306         u32 eb;
307
308         eb = 1u << PF_VECTOR;
309         if (!vcpu->fpu_active)
310                 eb |= 1u << NM_VECTOR;
311         if (vcpu->guest_debug.enabled)
312                 eb |= 1u << 1;
313         if (vcpu->rmode.active)
314                 eb = ~0;
315         vmcs_write32(EXCEPTION_BITMAP, eb);
316 }
317
318 static void reload_tss(void)
319 {
320 #ifndef CONFIG_X86_64
321
322         /*
323          * VT restores TR but not its size.  Useless.
324          */
325         struct descriptor_table gdt;
326         struct segment_descriptor *descs;
327
328         get_gdt(&gdt);
329         descs = (void *)gdt.base;
330         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
331         load_TR_desc();
332 #endif
333 }
334
335 static void load_transition_efer(struct vcpu_vmx *vmx)
336 {
337         u64 trans_efer;
338         int efer_offset = vmx->msr_offset_efer;
339
340         trans_efer = vmx->host_msrs[efer_offset].data;
341         trans_efer &= ~EFER_SAVE_RESTORE_BITS;
342         trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
343         wrmsrl(MSR_EFER, trans_efer);
344         vmx->vcpu.stat.efer_reload++;
345 }
346
347 static void vmx_save_host_state(struct vcpu_vmx *vmx)
348 {
349         if (vmx->host_state.loaded)
350                 return;
351
352         vmx->host_state.loaded = 1;
353         /*
354          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
355          * allow segment selectors with cpl > 0 or ti == 1.
356          */
357         vmx->host_state.ldt_sel = read_ldt();
358         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
359         vmx->host_state.fs_sel = read_fs();
360         if (!(vmx->host_state.fs_sel & 7)) {
361                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
362                 vmx->host_state.fs_reload_needed = 0;
363         } else {
364                 vmcs_write16(HOST_FS_SELECTOR, 0);
365                 vmx->host_state.fs_reload_needed = 1;
366         }
367         vmx->host_state.gs_sel = read_gs();
368         if (!(vmx->host_state.gs_sel & 7))
369                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
370         else {
371                 vmcs_write16(HOST_GS_SELECTOR, 0);
372                 vmx->host_state.gs_ldt_reload_needed = 1;
373         }
374
375 #ifdef CONFIG_X86_64
376         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
377         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
378 #else
379         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
380         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
381 #endif
382
383 #ifdef CONFIG_X86_64
384         if (is_long_mode(&vmx->vcpu)) {
385                 save_msrs(vmx->host_msrs +
386                           vmx->msr_offset_kernel_gs_base, 1);
387         }
388 #endif
389         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
390         if (msr_efer_need_save_restore(vmx))
391                 load_transition_efer(vmx);
392 }
393
394 static void vmx_load_host_state(struct vcpu_vmx *vmx)
395 {
396         unsigned long flags;
397
398         if (!vmx->host_state.loaded)
399                 return;
400
401         vmx->host_state.loaded = 0;
402         if (vmx->host_state.fs_reload_needed)
403                 load_fs(vmx->host_state.fs_sel);
404         if (vmx->host_state.gs_ldt_reload_needed) {
405                 load_ldt(vmx->host_state.ldt_sel);
406                 /*
407                  * If we have to reload gs, we must take care to
408                  * preserve our gs base.
409                  */
410                 local_irq_save(flags);
411                 load_gs(vmx->host_state.gs_sel);
412 #ifdef CONFIG_X86_64
413                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
414 #endif
415                 local_irq_restore(flags);
416         }
417         reload_tss();
418         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
419         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
420         if (msr_efer_need_save_restore(vmx))
421                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
422 }
423
424 /*
425  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
426  * vcpu mutex is already taken.
427  */
428 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
429 {
430         struct vcpu_vmx *vmx = to_vmx(vcpu);
431         u64 phys_addr = __pa(vmx->vmcs);
432         u64 tsc_this, delta;
433
434         if (vcpu->cpu != cpu)
435                 vcpu_clear(vmx);
436
437         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
438                 u8 error;
439
440                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
441                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
442                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
443                               : "cc");
444                 if (error)
445                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
446                                vmx->vmcs, phys_addr);
447         }
448
449         if (vcpu->cpu != cpu) {
450                 struct descriptor_table dt;
451                 unsigned long sysenter_esp;
452
453                 vcpu->cpu = cpu;
454                 /*
455                  * Linux uses per-cpu TSS and GDT, so set these when switching
456                  * processors.
457                  */
458                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
459                 get_gdt(&dt);
460                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
461
462                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
463                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
464
465                 /*
466                  * Make sure the time stamp counter is monotonous.
467                  */
468                 rdtscll(tsc_this);
469                 delta = vcpu->host_tsc - tsc_this;
470                 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
471         }
472 }
473
474 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
475 {
476         vmx_load_host_state(to_vmx(vcpu));
477         kvm_put_guest_fpu(vcpu);
478 }
479
480 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
481 {
482         if (vcpu->fpu_active)
483                 return;
484         vcpu->fpu_active = 1;
485         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
486         if (vcpu->cr0 & X86_CR0_TS)
487                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
488         update_exception_bitmap(vcpu);
489 }
490
491 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
492 {
493         if (!vcpu->fpu_active)
494                 return;
495         vcpu->fpu_active = 0;
496         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
497         update_exception_bitmap(vcpu);
498 }
499
500 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
501 {
502         vcpu_clear(to_vmx(vcpu));
503 }
504
505 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
506 {
507         return vmcs_readl(GUEST_RFLAGS);
508 }
509
510 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
511 {
512         vmcs_writel(GUEST_RFLAGS, rflags);
513 }
514
515 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
516 {
517         unsigned long rip;
518         u32 interruptibility;
519
520         rip = vmcs_readl(GUEST_RIP);
521         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
522         vmcs_writel(GUEST_RIP, rip);
523
524         /*
525          * We emulated an instruction, so temporary interrupt blocking
526          * should be removed, if set.
527          */
528         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
529         if (interruptibility & 3)
530                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
531                              interruptibility & ~3);
532         vcpu->interrupt_window_open = 1;
533 }
534
535 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
536 {
537         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
538                vmcs_readl(GUEST_RIP));
539         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
540         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
541                      GP_VECTOR |
542                      INTR_TYPE_EXCEPTION |
543                      INTR_INFO_DELIEVER_CODE_MASK |
544                      INTR_INFO_VALID_MASK);
545 }
546
547 /*
548  * Swap MSR entry in host/guest MSR entry array.
549  */
550 #ifdef CONFIG_X86_64
551 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
552 {
553         struct kvm_msr_entry tmp;
554
555         tmp = vmx->guest_msrs[to];
556         vmx->guest_msrs[to] = vmx->guest_msrs[from];
557         vmx->guest_msrs[from] = tmp;
558         tmp = vmx->host_msrs[to];
559         vmx->host_msrs[to] = vmx->host_msrs[from];
560         vmx->host_msrs[from] = tmp;
561 }
562 #endif
563
564 /*
565  * Set up the vmcs to automatically save and restore system
566  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
567  * mode, as fiddling with msrs is very expensive.
568  */
569 static void setup_msrs(struct vcpu_vmx *vmx)
570 {
571         int save_nmsrs;
572
573         save_nmsrs = 0;
574 #ifdef CONFIG_X86_64
575         if (is_long_mode(&vmx->vcpu)) {
576                 int index;
577
578                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
579                 if (index >= 0)
580                         move_msr_up(vmx, index, save_nmsrs++);
581                 index = __find_msr_index(vmx, MSR_LSTAR);
582                 if (index >= 0)
583                         move_msr_up(vmx, index, save_nmsrs++);
584                 index = __find_msr_index(vmx, MSR_CSTAR);
585                 if (index >= 0)
586                         move_msr_up(vmx, index, save_nmsrs++);
587                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
588                 if (index >= 0)
589                         move_msr_up(vmx, index, save_nmsrs++);
590                 /*
591                  * MSR_K6_STAR is only needed on long mode guests, and only
592                  * if efer.sce is enabled.
593                  */
594                 index = __find_msr_index(vmx, MSR_K6_STAR);
595                 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
596                         move_msr_up(vmx, index, save_nmsrs++);
597         }
598 #endif
599         vmx->save_nmsrs = save_nmsrs;
600
601 #ifdef CONFIG_X86_64
602         vmx->msr_offset_kernel_gs_base =
603                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
604 #endif
605         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
606 }
607
608 /*
609  * reads and returns guest's timestamp counter "register"
610  * guest_tsc = host_tsc + tsc_offset    -- 21.3
611  */
612 static u64 guest_read_tsc(void)
613 {
614         u64 host_tsc, tsc_offset;
615
616         rdtscll(host_tsc);
617         tsc_offset = vmcs_read64(TSC_OFFSET);
618         return host_tsc + tsc_offset;
619 }
620
621 /*
622  * writes 'guest_tsc' into guest's timestamp counter "register"
623  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
624  */
625 static void guest_write_tsc(u64 guest_tsc)
626 {
627         u64 host_tsc;
628
629         rdtscll(host_tsc);
630         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
631 }
632
633 /*
634  * Reads an msr value (of 'msr_index') into 'pdata'.
635  * Returns 0 on success, non-0 otherwise.
636  * Assumes vcpu_load() was already called.
637  */
638 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
639 {
640         u64 data;
641         struct kvm_msr_entry *msr;
642
643         if (!pdata) {
644                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
645                 return -EINVAL;
646         }
647
648         switch (msr_index) {
649 #ifdef CONFIG_X86_64
650         case MSR_FS_BASE:
651                 data = vmcs_readl(GUEST_FS_BASE);
652                 break;
653         case MSR_GS_BASE:
654                 data = vmcs_readl(GUEST_GS_BASE);
655                 break;
656         case MSR_EFER:
657                 return kvm_get_msr_common(vcpu, msr_index, pdata);
658 #endif
659         case MSR_IA32_TIME_STAMP_COUNTER:
660                 data = guest_read_tsc();
661                 break;
662         case MSR_IA32_SYSENTER_CS:
663                 data = vmcs_read32(GUEST_SYSENTER_CS);
664                 break;
665         case MSR_IA32_SYSENTER_EIP:
666                 data = vmcs_readl(GUEST_SYSENTER_EIP);
667                 break;
668         case MSR_IA32_SYSENTER_ESP:
669                 data = vmcs_readl(GUEST_SYSENTER_ESP);
670                 break;
671         default:
672                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
673                 if (msr) {
674                         data = msr->data;
675                         break;
676                 }
677                 return kvm_get_msr_common(vcpu, msr_index, pdata);
678         }
679
680         *pdata = data;
681         return 0;
682 }
683
684 /*
685  * Writes msr value into into the appropriate "register".
686  * Returns 0 on success, non-0 otherwise.
687  * Assumes vcpu_load() was already called.
688  */
689 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
690 {
691         struct vcpu_vmx *vmx = to_vmx(vcpu);
692         struct kvm_msr_entry *msr;
693         int ret = 0;
694
695         switch (msr_index) {
696 #ifdef CONFIG_X86_64
697         case MSR_EFER:
698                 ret = kvm_set_msr_common(vcpu, msr_index, data);
699                 if (vmx->host_state.loaded)
700                         load_transition_efer(vmx);
701                 break;
702         case MSR_FS_BASE:
703                 vmcs_writel(GUEST_FS_BASE, data);
704                 break;
705         case MSR_GS_BASE:
706                 vmcs_writel(GUEST_GS_BASE, data);
707                 break;
708 #endif
709         case MSR_IA32_SYSENTER_CS:
710                 vmcs_write32(GUEST_SYSENTER_CS, data);
711                 break;
712         case MSR_IA32_SYSENTER_EIP:
713                 vmcs_writel(GUEST_SYSENTER_EIP, data);
714                 break;
715         case MSR_IA32_SYSENTER_ESP:
716                 vmcs_writel(GUEST_SYSENTER_ESP, data);
717                 break;
718         case MSR_IA32_TIME_STAMP_COUNTER:
719                 guest_write_tsc(data);
720                 break;
721         default:
722                 msr = find_msr_entry(vmx, msr_index);
723                 if (msr) {
724                         msr->data = data;
725                         if (vmx->host_state.loaded)
726                                 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
727                         break;
728                 }
729                 ret = kvm_set_msr_common(vcpu, msr_index, data);
730         }
731
732         return ret;
733 }
734
735 /*
736  * Sync the rsp and rip registers into the vcpu structure.  This allows
737  * registers to be accessed by indexing vcpu->regs.
738  */
739 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
740 {
741         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
742         vcpu->rip = vmcs_readl(GUEST_RIP);
743 }
744
745 /*
746  * Syncs rsp and rip back into the vmcs.  Should be called after possible
747  * modification.
748  */
749 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
750 {
751         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
752         vmcs_writel(GUEST_RIP, vcpu->rip);
753 }
754
755 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
756 {
757         unsigned long dr7 = 0x400;
758         int old_singlestep;
759
760         old_singlestep = vcpu->guest_debug.singlestep;
761
762         vcpu->guest_debug.enabled = dbg->enabled;
763         if (vcpu->guest_debug.enabled) {
764                 int i;
765
766                 dr7 |= 0x200;  /* exact */
767                 for (i = 0; i < 4; ++i) {
768                         if (!dbg->breakpoints[i].enabled)
769                                 continue;
770                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
771                         dr7 |= 2 << (i*2);    /* global enable */
772                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
773                 }
774
775                 vcpu->guest_debug.singlestep = dbg->singlestep;
776         } else
777                 vcpu->guest_debug.singlestep = 0;
778
779         if (old_singlestep && !vcpu->guest_debug.singlestep) {
780                 unsigned long flags;
781
782                 flags = vmcs_readl(GUEST_RFLAGS);
783                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
784                 vmcs_writel(GUEST_RFLAGS, flags);
785         }
786
787         update_exception_bitmap(vcpu);
788         vmcs_writel(GUEST_DR7, dr7);
789
790         return 0;
791 }
792
793 static __init int cpu_has_kvm_support(void)
794 {
795         unsigned long ecx = cpuid_ecx(1);
796         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
797 }
798
799 static __init int vmx_disabled_by_bios(void)
800 {
801         u64 msr;
802
803         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
804         return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
805                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
806             == MSR_IA32_FEATURE_CONTROL_LOCKED;
807         /* locked but not enabled */
808 }
809
810 static void hardware_enable(void *garbage)
811 {
812         int cpu = raw_smp_processor_id();
813         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
814         u64 old;
815
816         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
817         if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
818                     MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
819             != (MSR_IA32_FEATURE_CONTROL_LOCKED |
820                 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
821                 /* enable and lock */
822                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
823                        MSR_IA32_FEATURE_CONTROL_LOCKED |
824                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
825         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
826         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
827                       : "memory", "cc");
828 }
829
830 static void hardware_disable(void *garbage)
831 {
832         asm volatile (ASM_VMX_VMXOFF : : : "cc");
833 }
834
835 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
836                                       u32 msr, u32* result)
837 {
838         u32 vmx_msr_low, vmx_msr_high;
839         u32 ctl = ctl_min | ctl_opt;
840
841         rdmsr(msr, vmx_msr_low, vmx_msr_high);
842
843         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
844         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
845
846         /* Ensure minimum (required) set of control bits are supported. */
847         if (ctl_min & ~ctl)
848                 return -EIO;
849
850         *result = ctl;
851         return 0;
852 }
853
854 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
855 {
856         u32 vmx_msr_low, vmx_msr_high;
857         u32 min, opt;
858         u32 _pin_based_exec_control = 0;
859         u32 _cpu_based_exec_control = 0;
860         u32 _vmexit_control = 0;
861         u32 _vmentry_control = 0;
862
863         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
864         opt = 0;
865         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
866                                 &_pin_based_exec_control) < 0)
867                 return -EIO;
868
869         min = CPU_BASED_HLT_EXITING |
870 #ifdef CONFIG_X86_64
871               CPU_BASED_CR8_LOAD_EXITING |
872               CPU_BASED_CR8_STORE_EXITING |
873 #endif
874               CPU_BASED_USE_IO_BITMAPS |
875               CPU_BASED_MOV_DR_EXITING |
876               CPU_BASED_USE_TSC_OFFSETING;
877         opt = 0;
878         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
879                                 &_cpu_based_exec_control) < 0)
880                 return -EIO;
881
882         min = 0;
883 #ifdef CONFIG_X86_64
884         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
885 #endif
886         opt = 0;
887         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
888                                 &_vmexit_control) < 0)
889                 return -EIO;
890
891         min = opt = 0;
892         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
893                                 &_vmentry_control) < 0)
894                 return -EIO;
895
896         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
897
898         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
899         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
900                 return -EIO;
901
902 #ifdef CONFIG_X86_64
903         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
904         if (vmx_msr_high & (1u<<16))
905                 return -EIO;
906 #endif
907
908         /* Require Write-Back (WB) memory type for VMCS accesses. */
909         if (((vmx_msr_high >> 18) & 15) != 6)
910                 return -EIO;
911
912         vmcs_conf->size = vmx_msr_high & 0x1fff;
913         vmcs_conf->order = get_order(vmcs_config.size);
914         vmcs_conf->revision_id = vmx_msr_low;
915
916         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
917         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
918         vmcs_conf->vmexit_ctrl         = _vmexit_control;
919         vmcs_conf->vmentry_ctrl        = _vmentry_control;
920
921         return 0;
922 }
923
924 static struct vmcs *alloc_vmcs_cpu(int cpu)
925 {
926         int node = cpu_to_node(cpu);
927         struct page *pages;
928         struct vmcs *vmcs;
929
930         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
931         if (!pages)
932                 return NULL;
933         vmcs = page_address(pages);
934         memset(vmcs, 0, vmcs_config.size);
935         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
936         return vmcs;
937 }
938
939 static struct vmcs *alloc_vmcs(void)
940 {
941         return alloc_vmcs_cpu(raw_smp_processor_id());
942 }
943
944 static void free_vmcs(struct vmcs *vmcs)
945 {
946         free_pages((unsigned long)vmcs, vmcs_config.order);
947 }
948
949 static void free_kvm_area(void)
950 {
951         int cpu;
952
953         for_each_online_cpu(cpu)
954                 free_vmcs(per_cpu(vmxarea, cpu));
955 }
956
957 static __init int alloc_kvm_area(void)
958 {
959         int cpu;
960
961         for_each_online_cpu(cpu) {
962                 struct vmcs *vmcs;
963
964                 vmcs = alloc_vmcs_cpu(cpu);
965                 if (!vmcs) {
966                         free_kvm_area();
967                         return -ENOMEM;
968                 }
969
970                 per_cpu(vmxarea, cpu) = vmcs;
971         }
972         return 0;
973 }
974
975 static __init int hardware_setup(void)
976 {
977         if (setup_vmcs_config(&vmcs_config) < 0)
978                 return -EIO;
979         return alloc_kvm_area();
980 }
981
982 static __exit void hardware_unsetup(void)
983 {
984         free_kvm_area();
985 }
986
987 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
988 {
989         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
990
991         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
992                 vmcs_write16(sf->selector, save->selector);
993                 vmcs_writel(sf->base, save->base);
994                 vmcs_write32(sf->limit, save->limit);
995                 vmcs_write32(sf->ar_bytes, save->ar);
996         } else {
997                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
998                         << AR_DPL_SHIFT;
999                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1000         }
1001 }
1002
1003 static void enter_pmode(struct kvm_vcpu *vcpu)
1004 {
1005         unsigned long flags;
1006
1007         vcpu->rmode.active = 0;
1008
1009         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1010         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1011         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1012
1013         flags = vmcs_readl(GUEST_RFLAGS);
1014         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
1015         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1016         vmcs_writel(GUEST_RFLAGS, flags);
1017
1018         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1019                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1020
1021         update_exception_bitmap(vcpu);
1022
1023         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1024         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1025         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1026         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1027
1028         vmcs_write16(GUEST_SS_SELECTOR, 0);
1029         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1030
1031         vmcs_write16(GUEST_CS_SELECTOR,
1032                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1033         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1034 }
1035
1036 static gva_t rmode_tss_base(struct kvm* kvm)
1037 {
1038         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1039         return base_gfn << PAGE_SHIFT;
1040 }
1041
1042 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1043 {
1044         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1045
1046         save->selector = vmcs_read16(sf->selector);
1047         save->base = vmcs_readl(sf->base);
1048         save->limit = vmcs_read32(sf->limit);
1049         save->ar = vmcs_read32(sf->ar_bytes);
1050         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1051         vmcs_write32(sf->limit, 0xffff);
1052         vmcs_write32(sf->ar_bytes, 0xf3);
1053 }
1054
1055 static void enter_rmode(struct kvm_vcpu *vcpu)
1056 {
1057         unsigned long flags;
1058
1059         vcpu->rmode.active = 1;
1060
1061         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1062         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1063
1064         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1065         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1066
1067         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1068         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1069
1070         flags = vmcs_readl(GUEST_RFLAGS);
1071         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
1072
1073         flags |= IOPL_MASK | X86_EFLAGS_VM;
1074
1075         vmcs_writel(GUEST_RFLAGS, flags);
1076         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1077         update_exception_bitmap(vcpu);
1078
1079         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1080         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1081         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1082
1083         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1084         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1085         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1086                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1087         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1088
1089         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1090         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1091         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1092         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1093
1094         init_rmode_tss(vcpu->kvm);
1095 }
1096
1097 #ifdef CONFIG_X86_64
1098
1099 static void enter_lmode(struct kvm_vcpu *vcpu)
1100 {
1101         u32 guest_tr_ar;
1102
1103         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1104         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1105                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1106                        __FUNCTION__);
1107                 vmcs_write32(GUEST_TR_AR_BYTES,
1108                              (guest_tr_ar & ~AR_TYPE_MASK)
1109                              | AR_TYPE_BUSY_64_TSS);
1110         }
1111
1112         vcpu->shadow_efer |= EFER_LMA;
1113
1114         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1115         vmcs_write32(VM_ENTRY_CONTROLS,
1116                      vmcs_read32(VM_ENTRY_CONTROLS)
1117                      | VM_ENTRY_IA32E_MODE);
1118 }
1119
1120 static void exit_lmode(struct kvm_vcpu *vcpu)
1121 {
1122         vcpu->shadow_efer &= ~EFER_LMA;
1123
1124         vmcs_write32(VM_ENTRY_CONTROLS,
1125                      vmcs_read32(VM_ENTRY_CONTROLS)
1126                      & ~VM_ENTRY_IA32E_MODE);
1127 }
1128
1129 #endif
1130
1131 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1132 {
1133         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1134         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1135 }
1136
1137 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1138 {
1139         vmx_fpu_deactivate(vcpu);
1140
1141         if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1142                 enter_pmode(vcpu);
1143
1144         if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1145                 enter_rmode(vcpu);
1146
1147 #ifdef CONFIG_X86_64
1148         if (vcpu->shadow_efer & EFER_LME) {
1149                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1150                         enter_lmode(vcpu);
1151                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1152                         exit_lmode(vcpu);
1153         }
1154 #endif
1155
1156         vmcs_writel(CR0_READ_SHADOW, cr0);
1157         vmcs_writel(GUEST_CR0,
1158                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1159         vcpu->cr0 = cr0;
1160
1161         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1162                 vmx_fpu_activate(vcpu);
1163 }
1164
1165 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1166 {
1167         vmcs_writel(GUEST_CR3, cr3);
1168         if (vcpu->cr0 & X86_CR0_PE)
1169                 vmx_fpu_deactivate(vcpu);
1170 }
1171
1172 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1173 {
1174         vmcs_writel(CR4_READ_SHADOW, cr4);
1175         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1176                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1177         vcpu->cr4 = cr4;
1178 }
1179
1180 #ifdef CONFIG_X86_64
1181
1182 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1183 {
1184         struct vcpu_vmx *vmx = to_vmx(vcpu);
1185         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1186
1187         vcpu->shadow_efer = efer;
1188         if (efer & EFER_LMA) {
1189                 vmcs_write32(VM_ENTRY_CONTROLS,
1190                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1191                                      VM_ENTRY_IA32E_MODE);
1192                 msr->data = efer;
1193
1194         } else {
1195                 vmcs_write32(VM_ENTRY_CONTROLS,
1196                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1197                                      ~VM_ENTRY_IA32E_MODE);
1198
1199                 msr->data = efer & ~EFER_LME;
1200         }
1201         setup_msrs(vmx);
1202 }
1203
1204 #endif
1205
1206 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1207 {
1208         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1209
1210         return vmcs_readl(sf->base);
1211 }
1212
1213 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1214                             struct kvm_segment *var, int seg)
1215 {
1216         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1217         u32 ar;
1218
1219         var->base = vmcs_readl(sf->base);
1220         var->limit = vmcs_read32(sf->limit);
1221         var->selector = vmcs_read16(sf->selector);
1222         ar = vmcs_read32(sf->ar_bytes);
1223         if (ar & AR_UNUSABLE_MASK)
1224                 ar = 0;
1225         var->type = ar & 15;
1226         var->s = (ar >> 4) & 1;
1227         var->dpl = (ar >> 5) & 3;
1228         var->present = (ar >> 7) & 1;
1229         var->avl = (ar >> 12) & 1;
1230         var->l = (ar >> 13) & 1;
1231         var->db = (ar >> 14) & 1;
1232         var->g = (ar >> 15) & 1;
1233         var->unusable = (ar >> 16) & 1;
1234 }
1235
1236 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1237 {
1238         u32 ar;
1239
1240         if (var->unusable)
1241                 ar = 1 << 16;
1242         else {
1243                 ar = var->type & 15;
1244                 ar |= (var->s & 1) << 4;
1245                 ar |= (var->dpl & 3) << 5;
1246                 ar |= (var->present & 1) << 7;
1247                 ar |= (var->avl & 1) << 12;
1248                 ar |= (var->l & 1) << 13;
1249                 ar |= (var->db & 1) << 14;
1250                 ar |= (var->g & 1) << 15;
1251         }
1252         if (ar == 0) /* a 0 value means unusable */
1253                 ar = AR_UNUSABLE_MASK;
1254
1255         return ar;
1256 }
1257
1258 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1259                             struct kvm_segment *var, int seg)
1260 {
1261         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1262         u32 ar;
1263
1264         if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1265                 vcpu->rmode.tr.selector = var->selector;
1266                 vcpu->rmode.tr.base = var->base;
1267                 vcpu->rmode.tr.limit = var->limit;
1268                 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1269                 return;
1270         }
1271         vmcs_writel(sf->base, var->base);
1272         vmcs_write32(sf->limit, var->limit);
1273         vmcs_write16(sf->selector, var->selector);
1274         if (vcpu->rmode.active && var->s) {
1275                 /*
1276                  * Hack real-mode segments into vm86 compatibility.
1277                  */
1278                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1279                         vmcs_writel(sf->base, 0xf0000);
1280                 ar = 0xf3;
1281         } else
1282                 ar = vmx_segment_access_rights(var);
1283         vmcs_write32(sf->ar_bytes, ar);
1284 }
1285
1286 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1287 {
1288         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1289
1290         *db = (ar >> 14) & 1;
1291         *l = (ar >> 13) & 1;
1292 }
1293
1294 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1295 {
1296         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1297         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1298 }
1299
1300 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1301 {
1302         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1303         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1304 }
1305
1306 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1307 {
1308         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1309         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1310 }
1311
1312 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1313 {
1314         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1315         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1316 }
1317
1318 static int init_rmode_tss(struct kvm* kvm)
1319 {
1320         struct page *p1, *p2, *p3;
1321         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1322         char *page;
1323
1324         p1 = gfn_to_page(kvm, fn++);
1325         p2 = gfn_to_page(kvm, fn++);
1326         p3 = gfn_to_page(kvm, fn);
1327
1328         if (!p1 || !p2 || !p3) {
1329                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1330                 return 0;
1331         }
1332
1333         page = kmap_atomic(p1, KM_USER0);
1334         clear_page(page);
1335         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1336         kunmap_atomic(page, KM_USER0);
1337
1338         page = kmap_atomic(p2, KM_USER0);
1339         clear_page(page);
1340         kunmap_atomic(page, KM_USER0);
1341
1342         page = kmap_atomic(p3, KM_USER0);
1343         clear_page(page);
1344         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1345         kunmap_atomic(page, KM_USER0);
1346
1347         return 1;
1348 }
1349
1350 static void seg_setup(int seg)
1351 {
1352         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1353
1354         vmcs_write16(sf->selector, 0);
1355         vmcs_writel(sf->base, 0);
1356         vmcs_write32(sf->limit, 0xffff);
1357         vmcs_write32(sf->ar_bytes, 0x93);
1358 }
1359
1360 /*
1361  * Sets up the vmcs for emulated real mode.
1362  */
1363 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1364 {
1365         u32 host_sysenter_cs;
1366         u32 junk;
1367         unsigned long a;
1368         struct descriptor_table dt;
1369         int i;
1370         int ret = 0;
1371         unsigned long kvm_vmx_return;
1372         u64 msr;
1373
1374         if (!init_rmode_tss(vmx->vcpu.kvm)) {
1375                 ret = -ENOMEM;
1376                 goto out;
1377         }
1378
1379         vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1380         set_cr8(&vmx->vcpu, 0);
1381         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1382         if (vmx->vcpu.vcpu_id == 0)
1383                 msr |= MSR_IA32_APICBASE_BSP;
1384         kvm_set_apic_base(&vmx->vcpu, msr);
1385
1386         fx_init(&vmx->vcpu);
1387
1388         /*
1389          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1390          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1391          */
1392         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1393         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1394         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1395         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1396
1397         seg_setup(VCPU_SREG_DS);
1398         seg_setup(VCPU_SREG_ES);
1399         seg_setup(VCPU_SREG_FS);
1400         seg_setup(VCPU_SREG_GS);
1401         seg_setup(VCPU_SREG_SS);
1402
1403         vmcs_write16(GUEST_TR_SELECTOR, 0);
1404         vmcs_writel(GUEST_TR_BASE, 0);
1405         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1406         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1407
1408         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1409         vmcs_writel(GUEST_LDTR_BASE, 0);
1410         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1411         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1412
1413         vmcs_write32(GUEST_SYSENTER_CS, 0);
1414         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1415         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1416
1417         vmcs_writel(GUEST_RFLAGS, 0x02);
1418         vmcs_writel(GUEST_RIP, 0xfff0);
1419         vmcs_writel(GUEST_RSP, 0);
1420
1421         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1422         vmcs_writel(GUEST_DR7, 0x400);
1423
1424         vmcs_writel(GUEST_GDTR_BASE, 0);
1425         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1426
1427         vmcs_writel(GUEST_IDTR_BASE, 0);
1428         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1429
1430         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1431         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1432         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1433
1434         /* I/O */
1435         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1436         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1437
1438         guest_write_tsc(0);
1439
1440         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1441
1442         /* Special registers */
1443         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1444
1445         /* Control */
1446         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1447                 vmcs_config.pin_based_exec_ctrl);
1448         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1449                 vmcs_config.cpu_based_exec_ctrl);
1450
1451         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1452         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1453         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1454
1455         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1456         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1457         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1458
1459         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1460         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1461         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1462         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1463         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1464         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1465 #ifdef CONFIG_X86_64
1466         rdmsrl(MSR_FS_BASE, a);
1467         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1468         rdmsrl(MSR_GS_BASE, a);
1469         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1470 #else
1471         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1472         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1473 #endif
1474
1475         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1476
1477         get_idt(&dt);
1478         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1479
1480         asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1481         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1482         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1483         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1484         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1485
1486         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1487         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1488         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1489         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1490         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1491         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1492
1493         for (i = 0; i < NR_VMX_MSR; ++i) {
1494                 u32 index = vmx_msr_index[i];
1495                 u32 data_low, data_high;
1496                 u64 data;
1497                 int j = vmx->nmsrs;
1498
1499                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1500                         continue;
1501                 if (wrmsr_safe(index, data_low, data_high) < 0)
1502                         continue;
1503                 data = data_low | ((u64)data_high << 32);
1504                 vmx->host_msrs[j].index = index;
1505                 vmx->host_msrs[j].reserved = 0;
1506                 vmx->host_msrs[j].data = data;
1507                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1508                 ++vmx->nmsrs;
1509         }
1510
1511         setup_msrs(vmx);
1512
1513         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1514
1515         /* 22.2.1, 20.8.1 */
1516         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1517
1518         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1519
1520 #ifdef CONFIG_X86_64
1521         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1522         vmcs_writel(TPR_THRESHOLD, 0);
1523 #endif
1524
1525         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1526         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1527
1528         vmx->vcpu.cr0 = 0x60000010;
1529         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1530         vmx_set_cr4(&vmx->vcpu, 0);
1531 #ifdef CONFIG_X86_64
1532         vmx_set_efer(&vmx->vcpu, 0);
1533 #endif
1534         vmx_fpu_activate(&vmx->vcpu);
1535         update_exception_bitmap(&vmx->vcpu);
1536
1537         return 0;
1538
1539 out:
1540         return ret;
1541 }
1542
1543 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1544 {
1545         u16 ent[2];
1546         u16 cs;
1547         u16 ip;
1548         unsigned long flags;
1549         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1550         u16 sp =  vmcs_readl(GUEST_RSP);
1551         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1552
1553         if (sp > ss_limit || sp < 6 ) {
1554                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1555                             __FUNCTION__,
1556                             vmcs_readl(GUEST_RSP),
1557                             vmcs_readl(GUEST_SS_BASE),
1558                             vmcs_read32(GUEST_SS_LIMIT));
1559                 return;
1560         }
1561
1562         if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1563                                                         X86EMUL_CONTINUE) {
1564                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1565                 return;
1566         }
1567
1568         flags =  vmcs_readl(GUEST_RFLAGS);
1569         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1570         ip =  vmcs_readl(GUEST_RIP);
1571
1572
1573         if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1574             emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1575             emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1576                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1577                 return;
1578         }
1579
1580         vmcs_writel(GUEST_RFLAGS, flags &
1581                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1582         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1583         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1584         vmcs_writel(GUEST_RIP, ent[0]);
1585         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1586 }
1587
1588 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1589 {
1590         if (vcpu->rmode.active) {
1591                 inject_rmode_irq(vcpu, irq);
1592                 return;
1593         }
1594         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1595                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1596 }
1597
1598 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1599 {
1600         int word_index = __ffs(vcpu->irq_summary);
1601         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1602         int irq = word_index * BITS_PER_LONG + bit_index;
1603
1604         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1605         if (!vcpu->irq_pending[word_index])
1606                 clear_bit(word_index, &vcpu->irq_summary);
1607         vmx_inject_irq(vcpu, irq);
1608 }
1609
1610
1611 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1612                                        struct kvm_run *kvm_run)
1613 {
1614         u32 cpu_based_vm_exec_control;
1615
1616         vcpu->interrupt_window_open =
1617                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1618                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1619
1620         if (vcpu->interrupt_window_open &&
1621             vcpu->irq_summary &&
1622             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1623                 /*
1624                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1625                  */
1626                 kvm_do_inject_irq(vcpu);
1627
1628         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1629         if (!vcpu->interrupt_window_open &&
1630             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1631                 /*
1632                  * Interrupts blocked.  Wait for unblock.
1633                  */
1634                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1635         else
1636                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1637         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1638 }
1639
1640 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1641 {
1642         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1643
1644         set_debugreg(dbg->bp[0], 0);
1645         set_debugreg(dbg->bp[1], 1);
1646         set_debugreg(dbg->bp[2], 2);
1647         set_debugreg(dbg->bp[3], 3);
1648
1649         if (dbg->singlestep) {
1650                 unsigned long flags;
1651
1652                 flags = vmcs_readl(GUEST_RFLAGS);
1653                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1654                 vmcs_writel(GUEST_RFLAGS, flags);
1655         }
1656 }
1657
1658 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1659                                   int vec, u32 err_code)
1660 {
1661         if (!vcpu->rmode.active)
1662                 return 0;
1663
1664         /*
1665          * Instruction with address size override prefix opcode 0x67
1666          * Cause the #SS fault with 0 error code in VM86 mode.
1667          */
1668         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1669                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1670                         return 1;
1671         return 0;
1672 }
1673
1674 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1675 {
1676         u32 intr_info, error_code;
1677         unsigned long cr2, rip;
1678         u32 vect_info;
1679         enum emulation_result er;
1680         int r;
1681
1682         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1683         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1684
1685         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1686                                                 !is_page_fault(intr_info)) {
1687                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1688                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1689         }
1690
1691         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1692                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1693                 set_bit(irq, vcpu->irq_pending);
1694                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1695         }
1696
1697         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1698                 asm ("int $2");
1699                 return 1;
1700         }
1701
1702         if (is_no_device(intr_info)) {
1703                 vmx_fpu_activate(vcpu);
1704                 return 1;
1705         }
1706
1707         error_code = 0;
1708         rip = vmcs_readl(GUEST_RIP);
1709         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1710                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1711         if (is_page_fault(intr_info)) {
1712                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1713
1714                 mutex_lock(&vcpu->kvm->lock);
1715                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1716                 if (r < 0) {
1717                         mutex_unlock(&vcpu->kvm->lock);
1718                         return r;
1719                 }
1720                 if (!r) {
1721                         mutex_unlock(&vcpu->kvm->lock);
1722                         return 1;
1723                 }
1724
1725                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1726                 mutex_unlock(&vcpu->kvm->lock);
1727
1728                 switch (er) {
1729                 case EMULATE_DONE:
1730                         return 1;
1731                 case EMULATE_DO_MMIO:
1732                         ++vcpu->stat.mmio_exits;
1733                         return 0;
1734                  case EMULATE_FAIL:
1735                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1736                         break;
1737                 default:
1738                         BUG();
1739                 }
1740         }
1741
1742         if (vcpu->rmode.active &&
1743             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1744                                                                 error_code)) {
1745                 if (vcpu->halt_request) {
1746                         vcpu->halt_request = 0;
1747                         return kvm_emulate_halt(vcpu);
1748                 }
1749                 return 1;
1750         }
1751
1752         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1753                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1754                 return 0;
1755         }
1756         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1757         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1758         kvm_run->ex.error_code = error_code;
1759         return 0;
1760 }
1761
1762 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1763                                      struct kvm_run *kvm_run)
1764 {
1765         ++vcpu->stat.irq_exits;
1766         return 1;
1767 }
1768
1769 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1770 {
1771         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1772         return 0;
1773 }
1774
1775 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1776 {
1777         u64 exit_qualification;
1778         int size, down, in, string, rep;
1779         unsigned port;
1780
1781         ++vcpu->stat.io_exits;
1782         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1783         string = (exit_qualification & 16) != 0;
1784
1785         if (string) {
1786                 if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1787                         return 0;
1788                 return 1;
1789         }
1790
1791         size = (exit_qualification & 7) + 1;
1792         in = (exit_qualification & 8) != 0;
1793         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1794         rep = (exit_qualification & 32) != 0;
1795         port = exit_qualification >> 16;
1796
1797         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1798 }
1799
1800 static void
1801 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1802 {
1803         /*
1804          * Patch in the VMCALL instruction:
1805          */
1806         hypercall[0] = 0x0f;
1807         hypercall[1] = 0x01;
1808         hypercall[2] = 0xc1;
1809         hypercall[3] = 0xc3;
1810 }
1811
1812 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1813 {
1814         u64 exit_qualification;
1815         int cr;
1816         int reg;
1817
1818         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1819         cr = exit_qualification & 15;
1820         reg = (exit_qualification >> 8) & 15;
1821         switch ((exit_qualification >> 4) & 3) {
1822         case 0: /* mov to cr */
1823                 switch (cr) {
1824                 case 0:
1825                         vcpu_load_rsp_rip(vcpu);
1826                         set_cr0(vcpu, vcpu->regs[reg]);
1827                         skip_emulated_instruction(vcpu);
1828                         return 1;
1829                 case 3:
1830                         vcpu_load_rsp_rip(vcpu);
1831                         set_cr3(vcpu, vcpu->regs[reg]);
1832                         skip_emulated_instruction(vcpu);
1833                         return 1;
1834                 case 4:
1835                         vcpu_load_rsp_rip(vcpu);
1836                         set_cr4(vcpu, vcpu->regs[reg]);
1837                         skip_emulated_instruction(vcpu);
1838                         return 1;
1839                 case 8:
1840                         vcpu_load_rsp_rip(vcpu);
1841                         set_cr8(vcpu, vcpu->regs[reg]);
1842                         skip_emulated_instruction(vcpu);
1843                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1844                         return 0;
1845                 };
1846                 break;
1847         case 2: /* clts */
1848                 vcpu_load_rsp_rip(vcpu);
1849                 vmx_fpu_deactivate(vcpu);
1850                 vcpu->cr0 &= ~X86_CR0_TS;
1851                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1852                 vmx_fpu_activate(vcpu);
1853                 skip_emulated_instruction(vcpu);
1854                 return 1;
1855         case 1: /*mov from cr*/
1856                 switch (cr) {
1857                 case 3:
1858                         vcpu_load_rsp_rip(vcpu);
1859                         vcpu->regs[reg] = vcpu->cr3;
1860                         vcpu_put_rsp_rip(vcpu);
1861                         skip_emulated_instruction(vcpu);
1862                         return 1;
1863                 case 8:
1864                         vcpu_load_rsp_rip(vcpu);
1865                         vcpu->regs[reg] = get_cr8(vcpu);
1866                         vcpu_put_rsp_rip(vcpu);
1867                         skip_emulated_instruction(vcpu);
1868                         return 1;
1869                 }
1870                 break;
1871         case 3: /* lmsw */
1872                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1873
1874                 skip_emulated_instruction(vcpu);
1875                 return 1;
1876         default:
1877                 break;
1878         }
1879         kvm_run->exit_reason = 0;
1880         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1881                (int)(exit_qualification >> 4) & 3, cr);
1882         return 0;
1883 }
1884
1885 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1886 {
1887         u64 exit_qualification;
1888         unsigned long val;
1889         int dr, reg;
1890
1891         /*
1892          * FIXME: this code assumes the host is debugging the guest.
1893          *        need to deal with guest debugging itself too.
1894          */
1895         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1896         dr = exit_qualification & 7;
1897         reg = (exit_qualification >> 8) & 15;
1898         vcpu_load_rsp_rip(vcpu);
1899         if (exit_qualification & 16) {
1900                 /* mov from dr */
1901                 switch (dr) {
1902                 case 6:
1903                         val = 0xffff0ff0;
1904                         break;
1905                 case 7:
1906                         val = 0x400;
1907                         break;
1908                 default:
1909                         val = 0;
1910                 }
1911                 vcpu->regs[reg] = val;
1912         } else {
1913                 /* mov to dr */
1914         }
1915         vcpu_put_rsp_rip(vcpu);
1916         skip_emulated_instruction(vcpu);
1917         return 1;
1918 }
1919
1920 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1921 {
1922         kvm_emulate_cpuid(vcpu);
1923         return 1;
1924 }
1925
1926 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1927 {
1928         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1929         u64 data;
1930
1931         if (vmx_get_msr(vcpu, ecx, &data)) {
1932                 vmx_inject_gp(vcpu, 0);
1933                 return 1;
1934         }
1935
1936         /* FIXME: handling of bits 32:63 of rax, rdx */
1937         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1938         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1939         skip_emulated_instruction(vcpu);
1940         return 1;
1941 }
1942
1943 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1944 {
1945         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1946         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1947                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1948
1949         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1950                 vmx_inject_gp(vcpu, 0);
1951                 return 1;
1952         }
1953
1954         skip_emulated_instruction(vcpu);
1955         return 1;
1956 }
1957
1958 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1959                               struct kvm_run *kvm_run)
1960 {
1961         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1962         kvm_run->cr8 = get_cr8(vcpu);
1963         kvm_run->apic_base = kvm_get_apic_base(vcpu);
1964         if (irqchip_in_kernel(vcpu->kvm))
1965                 kvm_run->ready_for_interrupt_injection = 1;
1966         else
1967                 kvm_run->ready_for_interrupt_injection =
1968                                         (vcpu->interrupt_window_open &&
1969                                          vcpu->irq_summary == 0);
1970 }
1971
1972 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1973                                    struct kvm_run *kvm_run)
1974 {
1975         u32 cpu_based_vm_exec_control;
1976
1977         /* clear pending irq */
1978         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1979         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1980         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1981         /*
1982          * If the user space waits to inject interrupts, exit as soon as
1983          * possible
1984          */
1985         if (kvm_run->request_interrupt_window &&
1986             !vcpu->irq_summary) {
1987                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1988                 ++vcpu->stat.irq_window_exits;
1989                 return 0;
1990         }
1991         return 1;
1992 }
1993
1994 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1995 {
1996         skip_emulated_instruction(vcpu);
1997         return kvm_emulate_halt(vcpu);
1998 }
1999
2000 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2001 {
2002         skip_emulated_instruction(vcpu);
2003         return kvm_hypercall(vcpu, kvm_run);
2004 }
2005
2006 /*
2007  * The exit handlers return 1 if the exit was handled fully and guest execution
2008  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2009  * to be done to userspace and return 0.
2010  */
2011 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2012                                       struct kvm_run *kvm_run) = {
2013         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2014         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2015         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2016         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2017         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2018         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2019         [EXIT_REASON_CPUID]                   = handle_cpuid,
2020         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2021         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2022         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2023         [EXIT_REASON_HLT]                     = handle_halt,
2024         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2025 };
2026
2027 static const int kvm_vmx_max_exit_handlers =
2028         ARRAY_SIZE(kvm_vmx_exit_handlers);
2029
2030 /*
2031  * The guest has exited.  See if we can fix it or if we need userspace
2032  * assistance.
2033  */
2034 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2035 {
2036         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2037         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2038
2039         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2040                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2041                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2042                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2043         if (exit_reason < kvm_vmx_max_exit_handlers
2044             && kvm_vmx_exit_handlers[exit_reason])
2045                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2046         else {
2047                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2048                 kvm_run->hw.hardware_exit_reason = exit_reason;
2049         }
2050         return 0;
2051 }
2052
2053 /*
2054  * Check if userspace requested an interrupt window, and that the
2055  * interrupt window is open.
2056  *
2057  * No need to exit to userspace if we already have an interrupt queued.
2058  */
2059 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2060                                           struct kvm_run *kvm_run)
2061 {
2062         return (!vcpu->irq_summary &&
2063                 kvm_run->request_interrupt_window &&
2064                 vcpu->interrupt_window_open &&
2065                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2066 }
2067
2068 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2069 {
2070 }
2071
2072 static void enable_irq_window(struct kvm_vcpu *vcpu)
2073 {
2074         u32 cpu_based_vm_exec_control;
2075
2076         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2077         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2078         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2079 }
2080
2081 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2082 {
2083         u32 idtv_info_field, intr_info_field;
2084         int has_ext_irq, interrupt_window_open;
2085
2086         has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2087         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2088         idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2089         if (intr_info_field & INTR_INFO_VALID_MASK) {
2090                 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2091                         /* TODO: fault when IDT_Vectoring */
2092                         printk(KERN_ERR "Fault when IDT_Vectoring\n");
2093                 }
2094                 if (has_ext_irq)
2095                         enable_irq_window(vcpu);
2096                 return;
2097         }
2098         if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2099                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2100                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2101                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2102
2103                 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2104                         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2105                                 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2106                 if (unlikely(has_ext_irq))
2107                         enable_irq_window(vcpu);
2108                 return;
2109         }
2110         if (!has_ext_irq)
2111                 return;
2112         interrupt_window_open =
2113                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2114                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2115         if (interrupt_window_open)
2116                 vmx_inject_irq(vcpu, kvm_cpu_get_interrupt(vcpu));
2117         else
2118                 enable_irq_window(vcpu);
2119 }
2120
2121 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2122 {
2123         struct vcpu_vmx *vmx = to_vmx(vcpu);
2124         u8 fail;
2125         int r;
2126
2127 preempted:
2128         if (vcpu->guest_debug.enabled)
2129                 kvm_guest_debug_pre(vcpu);
2130
2131 again:
2132         r = kvm_mmu_reload(vcpu);
2133         if (unlikely(r))
2134                 goto out;
2135
2136         preempt_disable();
2137
2138         vmx_save_host_state(vmx);
2139         kvm_load_guest_fpu(vcpu);
2140
2141         /*
2142          * Loading guest fpu may have cleared host cr0.ts
2143          */
2144         vmcs_writel(HOST_CR0, read_cr0());
2145
2146         local_irq_disable();
2147
2148         if (signal_pending(current)) {
2149                 local_irq_enable();
2150                 preempt_enable();
2151                 r = -EINTR;
2152                 kvm_run->exit_reason = KVM_EXIT_INTR;
2153                 ++vcpu->stat.signal_exits;
2154                 goto out;
2155         }
2156
2157         if (irqchip_in_kernel(vcpu->kvm))
2158                 vmx_intr_assist(vcpu);
2159         else if (!vcpu->mmio_read_completed)
2160                 do_interrupt_requests(vcpu, kvm_run);
2161
2162         vcpu->guest_mode = 1;
2163         if (vcpu->requests)
2164                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2165                     vmx_flush_tlb(vcpu);
2166
2167         asm (
2168                 /* Store host registers */
2169 #ifdef CONFIG_X86_64
2170                 "push %%rax; push %%rbx; push %%rdx;"
2171                 "push %%rsi; push %%rdi; push %%rbp;"
2172                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
2173                 "push %%r12; push %%r13; push %%r14; push %%r15;"
2174                 "push %%rcx \n\t"
2175                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2176 #else
2177                 "pusha; push %%ecx \n\t"
2178                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2179 #endif
2180                 /* Check if vmlaunch of vmresume is needed */
2181                 "cmp $0, %1 \n\t"
2182                 /* Load guest registers.  Don't clobber flags. */
2183 #ifdef CONFIG_X86_64
2184                 "mov %c[cr2](%3), %%rax \n\t"
2185                 "mov %%rax, %%cr2 \n\t"
2186                 "mov %c[rax](%3), %%rax \n\t"
2187                 "mov %c[rbx](%3), %%rbx \n\t"
2188                 "mov %c[rdx](%3), %%rdx \n\t"
2189                 "mov %c[rsi](%3), %%rsi \n\t"
2190                 "mov %c[rdi](%3), %%rdi \n\t"
2191                 "mov %c[rbp](%3), %%rbp \n\t"
2192                 "mov %c[r8](%3),  %%r8  \n\t"
2193                 "mov %c[r9](%3),  %%r9  \n\t"
2194                 "mov %c[r10](%3), %%r10 \n\t"
2195                 "mov %c[r11](%3), %%r11 \n\t"
2196                 "mov %c[r12](%3), %%r12 \n\t"
2197                 "mov %c[r13](%3), %%r13 \n\t"
2198                 "mov %c[r14](%3), %%r14 \n\t"
2199                 "mov %c[r15](%3), %%r15 \n\t"
2200                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2201 #else
2202                 "mov %c[cr2](%3), %%eax \n\t"
2203                 "mov %%eax,   %%cr2 \n\t"
2204                 "mov %c[rax](%3), %%eax \n\t"
2205                 "mov %c[rbx](%3), %%ebx \n\t"
2206                 "mov %c[rdx](%3), %%edx \n\t"
2207                 "mov %c[rsi](%3), %%esi \n\t"
2208                 "mov %c[rdi](%3), %%edi \n\t"
2209                 "mov %c[rbp](%3), %%ebp \n\t"
2210                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2211 #endif
2212                 /* Enter guest mode */
2213                 "jne .Llaunched \n\t"
2214                 ASM_VMX_VMLAUNCH "\n\t"
2215                 "jmp .Lkvm_vmx_return \n\t"
2216                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2217                 ".Lkvm_vmx_return: "
2218                 /* Save guest registers, load host registers, keep flags */
2219 #ifdef CONFIG_X86_64
2220                 "xchg %3,     (%%rsp) \n\t"
2221                 "mov %%rax, %c[rax](%3) \n\t"
2222                 "mov %%rbx, %c[rbx](%3) \n\t"
2223                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2224                 "mov %%rdx, %c[rdx](%3) \n\t"
2225                 "mov %%rsi, %c[rsi](%3) \n\t"
2226                 "mov %%rdi, %c[rdi](%3) \n\t"
2227                 "mov %%rbp, %c[rbp](%3) \n\t"
2228                 "mov %%r8,  %c[r8](%3) \n\t"
2229                 "mov %%r9,  %c[r9](%3) \n\t"
2230                 "mov %%r10, %c[r10](%3) \n\t"
2231                 "mov %%r11, %c[r11](%3) \n\t"
2232                 "mov %%r12, %c[r12](%3) \n\t"
2233                 "mov %%r13, %c[r13](%3) \n\t"
2234                 "mov %%r14, %c[r14](%3) \n\t"
2235                 "mov %%r15, %c[r15](%3) \n\t"
2236                 "mov %%cr2, %%rax   \n\t"
2237                 "mov %%rax, %c[cr2](%3) \n\t"
2238                 "mov (%%rsp), %3 \n\t"
2239
2240                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
2241                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
2242                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
2243                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
2244 #else
2245                 "xchg %3, (%%esp) \n\t"
2246                 "mov %%eax, %c[rax](%3) \n\t"
2247                 "mov %%ebx, %c[rbx](%3) \n\t"
2248                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2249                 "mov %%edx, %c[rdx](%3) \n\t"
2250                 "mov %%esi, %c[rsi](%3) \n\t"
2251                 "mov %%edi, %c[rdi](%3) \n\t"
2252                 "mov %%ebp, %c[rbp](%3) \n\t"
2253                 "mov %%cr2, %%eax  \n\t"
2254                 "mov %%eax, %c[cr2](%3) \n\t"
2255                 "mov (%%esp), %3 \n\t"
2256
2257                 "pop %%ecx; popa \n\t"
2258 #endif
2259                 "setbe %0 \n\t"
2260               : "=q" (fail)
2261               : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2262                 "c"(vcpu),
2263                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2264                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2265                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2266                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2267                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2268                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2269                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2270 #ifdef CONFIG_X86_64
2271                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2272                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2273                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2274                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2275                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2276                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2277                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2278                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2279 #endif
2280                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2281               : "cc", "memory" );
2282
2283         vcpu->guest_mode = 0;
2284         local_irq_enable();
2285
2286         ++vcpu->stat.exits;
2287
2288         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2289
2290         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2291         vmx->launched = 1;
2292
2293         preempt_enable();
2294
2295         if (unlikely(fail)) {
2296                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2297                 kvm_run->fail_entry.hardware_entry_failure_reason
2298                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2299                 r = 0;
2300                 goto out;
2301         }
2302         /*
2303          * Profile KVM exit RIPs:
2304          */
2305         if (unlikely(prof_on == KVM_PROFILING))
2306                 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2307
2308         r = kvm_handle_exit(kvm_run, vcpu);
2309         if (r > 0) {
2310                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2311                         r = -EINTR;
2312                         kvm_run->exit_reason = KVM_EXIT_INTR;
2313                         ++vcpu->stat.request_irq_exits;
2314                         goto out;
2315                 }
2316                 if (!need_resched()) {
2317                         ++vcpu->stat.light_exits;
2318                         goto again;
2319                 }
2320         }
2321
2322 out:
2323         if (r > 0) {
2324                 kvm_resched(vcpu);
2325                 goto preempted;
2326         }
2327
2328         post_kvm_run_save(vcpu, kvm_run);
2329         return r;
2330 }
2331
2332 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2333                                   unsigned long addr,
2334                                   u32 err_code)
2335 {
2336         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2337
2338         ++vcpu->stat.pf_guest;
2339
2340         if (is_page_fault(vect_info)) {
2341                 printk(KERN_DEBUG "inject_page_fault: "
2342                        "double fault 0x%lx @ 0x%lx\n",
2343                        addr, vmcs_readl(GUEST_RIP));
2344                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2345                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2346                              DF_VECTOR |
2347                              INTR_TYPE_EXCEPTION |
2348                              INTR_INFO_DELIEVER_CODE_MASK |
2349                              INTR_INFO_VALID_MASK);
2350                 return;
2351         }
2352         vcpu->cr2 = addr;
2353         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2354         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2355                      PF_VECTOR |
2356                      INTR_TYPE_EXCEPTION |
2357                      INTR_INFO_DELIEVER_CODE_MASK |
2358                      INTR_INFO_VALID_MASK);
2359
2360 }
2361
2362 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2363 {
2364         struct vcpu_vmx *vmx = to_vmx(vcpu);
2365
2366         if (vmx->vmcs) {
2367                 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2368                 free_vmcs(vmx->vmcs);
2369                 vmx->vmcs = NULL;
2370         }
2371 }
2372
2373 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2374 {
2375         struct vcpu_vmx *vmx = to_vmx(vcpu);
2376
2377         vmx_free_vmcs(vcpu);
2378         kfree(vmx->host_msrs);
2379         kfree(vmx->guest_msrs);
2380         kvm_vcpu_uninit(vcpu);
2381         kmem_cache_free(kvm_vcpu_cache, vmx);
2382 }
2383
2384 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2385 {
2386         int err;
2387         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2388         int cpu;
2389
2390         if (!vmx)
2391                 return ERR_PTR(-ENOMEM);
2392
2393         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2394         if (err)
2395                 goto free_vcpu;
2396
2397         if (irqchip_in_kernel(kvm)) {
2398                 err = kvm_create_lapic(&vmx->vcpu);
2399                 if (err < 0)
2400                         goto free_vcpu;
2401         }
2402
2403         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2404         if (!vmx->guest_msrs) {
2405                 err = -ENOMEM;
2406                 goto uninit_vcpu;
2407         }
2408
2409         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2410         if (!vmx->host_msrs)
2411                 goto free_guest_msrs;
2412
2413         vmx->vmcs = alloc_vmcs();
2414         if (!vmx->vmcs)
2415                 goto free_msrs;
2416
2417         vmcs_clear(vmx->vmcs);
2418
2419         cpu = get_cpu();
2420         vmx_vcpu_load(&vmx->vcpu, cpu);
2421         err = vmx_vcpu_setup(vmx);
2422         vmx_vcpu_put(&vmx->vcpu);
2423         put_cpu();
2424         if (err)
2425                 goto free_vmcs;
2426
2427         return &vmx->vcpu;
2428
2429 free_vmcs:
2430         free_vmcs(vmx->vmcs);
2431 free_msrs:
2432         kfree(vmx->host_msrs);
2433 free_guest_msrs:
2434         kfree(vmx->guest_msrs);
2435 uninit_vcpu:
2436         kvm_vcpu_uninit(&vmx->vcpu);
2437 free_vcpu:
2438         kmem_cache_free(kvm_vcpu_cache, vmx);
2439         return ERR_PTR(err);
2440 }
2441
2442 static void __init vmx_check_processor_compat(void *rtn)
2443 {
2444         struct vmcs_config vmcs_conf;
2445
2446         *(int *)rtn = 0;
2447         if (setup_vmcs_config(&vmcs_conf) < 0)
2448                 *(int *)rtn = -EIO;
2449         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2450                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2451                                 smp_processor_id());
2452                 *(int *)rtn = -EIO;
2453         }
2454 }
2455
2456 static struct kvm_arch_ops vmx_arch_ops = {
2457         .cpu_has_kvm_support = cpu_has_kvm_support,
2458         .disabled_by_bios = vmx_disabled_by_bios,
2459         .hardware_setup = hardware_setup,
2460         .hardware_unsetup = hardware_unsetup,
2461         .check_processor_compatibility = vmx_check_processor_compat,
2462         .hardware_enable = hardware_enable,
2463         .hardware_disable = hardware_disable,
2464
2465         .vcpu_create = vmx_create_vcpu,
2466         .vcpu_free = vmx_free_vcpu,
2467
2468         .vcpu_load = vmx_vcpu_load,
2469         .vcpu_put = vmx_vcpu_put,
2470         .vcpu_decache = vmx_vcpu_decache,
2471
2472         .set_guest_debug = set_guest_debug,
2473         .get_msr = vmx_get_msr,
2474         .set_msr = vmx_set_msr,
2475         .get_segment_base = vmx_get_segment_base,
2476         .get_segment = vmx_get_segment,
2477         .set_segment = vmx_set_segment,
2478         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2479         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2480         .set_cr0 = vmx_set_cr0,
2481         .set_cr3 = vmx_set_cr3,
2482         .set_cr4 = vmx_set_cr4,
2483 #ifdef CONFIG_X86_64
2484         .set_efer = vmx_set_efer,
2485 #endif
2486         .get_idt = vmx_get_idt,
2487         .set_idt = vmx_set_idt,
2488         .get_gdt = vmx_get_gdt,
2489         .set_gdt = vmx_set_gdt,
2490         .cache_regs = vcpu_load_rsp_rip,
2491         .decache_regs = vcpu_put_rsp_rip,
2492         .get_rflags = vmx_get_rflags,
2493         .set_rflags = vmx_set_rflags,
2494
2495         .tlb_flush = vmx_flush_tlb,
2496         .inject_page_fault = vmx_inject_page_fault,
2497
2498         .inject_gp = vmx_inject_gp,
2499
2500         .run = vmx_vcpu_run,
2501         .skip_emulated_instruction = skip_emulated_instruction,
2502         .patch_hypercall = vmx_patch_hypercall,
2503 };
2504
2505 static int __init vmx_init(void)
2506 {
2507         void *iova;
2508         int r;
2509
2510         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2511         if (!vmx_io_bitmap_a)
2512                 return -ENOMEM;
2513
2514         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2515         if (!vmx_io_bitmap_b) {
2516                 r = -ENOMEM;
2517                 goto out;
2518         }
2519
2520         /*
2521          * Allow direct access to the PC debug port (it is often used for I/O
2522          * delays, but the vmexits simply slow things down).
2523          */
2524         iova = kmap(vmx_io_bitmap_a);
2525         memset(iova, 0xff, PAGE_SIZE);
2526         clear_bit(0x80, iova);
2527         kunmap(vmx_io_bitmap_a);
2528
2529         iova = kmap(vmx_io_bitmap_b);
2530         memset(iova, 0xff, PAGE_SIZE);
2531         kunmap(vmx_io_bitmap_b);
2532
2533         r = kvm_init_arch(&vmx_arch_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2534         if (r)
2535                 goto out1;
2536
2537         return 0;
2538
2539 out1:
2540         __free_page(vmx_io_bitmap_b);
2541 out:
2542         __free_page(vmx_io_bitmap_a);
2543         return r;
2544 }
2545
2546 static void __exit vmx_exit(void)
2547 {
2548         __free_page(vmx_io_bitmap_b);
2549         __free_page(vmx_io_bitmap_a);
2550
2551         kvm_exit_arch();
2552 }
2553
2554 module_init(vmx_init)
2555 module_exit(vmx_exit)