Pull cpuidle into release branch
[pandora-kernel.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "irq.h"
21 #include "vmx.h"
22 #include "segment_descriptor.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 struct vmcs {
37         u32 revision_id;
38         u32 abort;
39         char data[0];
40 };
41
42 struct vcpu_vmx {
43         struct kvm_vcpu       vcpu;
44         int                   launched;
45         u8                    fail;
46         struct kvm_msr_entry *guest_msrs;
47         struct kvm_msr_entry *host_msrs;
48         int                   nmsrs;
49         int                   save_nmsrs;
50         int                   msr_offset_efer;
51 #ifdef CONFIG_X86_64
52         int                   msr_offset_kernel_gs_base;
53 #endif
54         struct vmcs          *vmcs;
55         struct {
56                 int           loaded;
57                 u16           fs_sel, gs_sel, ldt_sel;
58                 int           gs_ldt_reload_needed;
59                 int           fs_reload_needed;
60         }host_state;
61
62 };
63
64 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
65 {
66         return container_of(vcpu, struct vcpu_vmx, vcpu);
67 }
68
69 static int init_rmode_tss(struct kvm *kvm);
70
71 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
72 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
73
74 static struct page *vmx_io_bitmap_a;
75 static struct page *vmx_io_bitmap_b;
76
77 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
78
79 static struct vmcs_config {
80         int size;
81         int order;
82         u32 revision_id;
83         u32 pin_based_exec_ctrl;
84         u32 cpu_based_exec_ctrl;
85         u32 vmexit_ctrl;
86         u32 vmentry_ctrl;
87 } vmcs_config;
88
89 #define VMX_SEGMENT_FIELD(seg)                                  \
90         [VCPU_SREG_##seg] = {                                   \
91                 .selector = GUEST_##seg##_SELECTOR,             \
92                 .base = GUEST_##seg##_BASE,                     \
93                 .limit = GUEST_##seg##_LIMIT,                   \
94                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
95         }
96
97 static struct kvm_vmx_segment_field {
98         unsigned selector;
99         unsigned base;
100         unsigned limit;
101         unsigned ar_bytes;
102 } kvm_vmx_segment_fields[] = {
103         VMX_SEGMENT_FIELD(CS),
104         VMX_SEGMENT_FIELD(DS),
105         VMX_SEGMENT_FIELD(ES),
106         VMX_SEGMENT_FIELD(FS),
107         VMX_SEGMENT_FIELD(GS),
108         VMX_SEGMENT_FIELD(SS),
109         VMX_SEGMENT_FIELD(TR),
110         VMX_SEGMENT_FIELD(LDTR),
111 };
112
113 /*
114  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
115  * away by decrementing the array size.
116  */
117 static const u32 vmx_msr_index[] = {
118 #ifdef CONFIG_X86_64
119         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
120 #endif
121         MSR_EFER, MSR_K6_STAR,
122 };
123 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
124
125 static void load_msrs(struct kvm_msr_entry *e, int n)
126 {
127         int i;
128
129         for (i = 0; i < n; ++i)
130                 wrmsrl(e[i].index, e[i].data);
131 }
132
133 static void save_msrs(struct kvm_msr_entry *e, int n)
134 {
135         int i;
136
137         for (i = 0; i < n; ++i)
138                 rdmsrl(e[i].index, e[i].data);
139 }
140
141 static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
142 {
143         return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
144 }
145
146 static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
147 {
148         int efer_offset = vmx->msr_offset_efer;
149         return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
150                 msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
151 }
152
153 static inline int is_page_fault(u32 intr_info)
154 {
155         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156                              INTR_INFO_VALID_MASK)) ==
157                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
158 }
159
160 static inline int is_no_device(u32 intr_info)
161 {
162         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163                              INTR_INFO_VALID_MASK)) ==
164                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
165 }
166
167 static inline int is_external_interrupt(u32 intr_info)
168 {
169         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
170                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
171 }
172
173 static inline int cpu_has_vmx_tpr_shadow(void)
174 {
175         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
176 }
177
178 static inline int vm_need_tpr_shadow(struct kvm *kvm)
179 {
180         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
181 }
182
183 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
184 {
185         int i;
186
187         for (i = 0; i < vmx->nmsrs; ++i)
188                 if (vmx->guest_msrs[i].index == msr)
189                         return i;
190         return -1;
191 }
192
193 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
194 {
195         int i;
196
197         i = __find_msr_index(vmx, msr);
198         if (i >= 0)
199                 return &vmx->guest_msrs[i];
200         return NULL;
201 }
202
203 static void vmcs_clear(struct vmcs *vmcs)
204 {
205         u64 phys_addr = __pa(vmcs);
206         u8 error;
207
208         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
209                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
210                       : "cc", "memory");
211         if (error)
212                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
213                        vmcs, phys_addr);
214 }
215
216 static void __vcpu_clear(void *arg)
217 {
218         struct vcpu_vmx *vmx = arg;
219         int cpu = raw_smp_processor_id();
220
221         if (vmx->vcpu.cpu == cpu)
222                 vmcs_clear(vmx->vmcs);
223         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
224                 per_cpu(current_vmcs, cpu) = NULL;
225         rdtscll(vmx->vcpu.host_tsc);
226 }
227
228 static void vcpu_clear(struct vcpu_vmx *vmx)
229 {
230         if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
231                 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
232                                          vmx, 0, 1);
233         else
234                 __vcpu_clear(vmx);
235         vmx->launched = 0;
236 }
237
238 static unsigned long vmcs_readl(unsigned long field)
239 {
240         unsigned long value;
241
242         asm volatile (ASM_VMX_VMREAD_RDX_RAX
243                       : "=a"(value) : "d"(field) : "cc");
244         return value;
245 }
246
247 static u16 vmcs_read16(unsigned long field)
248 {
249         return vmcs_readl(field);
250 }
251
252 static u32 vmcs_read32(unsigned long field)
253 {
254         return vmcs_readl(field);
255 }
256
257 static u64 vmcs_read64(unsigned long field)
258 {
259 #ifdef CONFIG_X86_64
260         return vmcs_readl(field);
261 #else
262         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
263 #endif
264 }
265
266 static noinline void vmwrite_error(unsigned long field, unsigned long value)
267 {
268         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
269                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
270         dump_stack();
271 }
272
273 static void vmcs_writel(unsigned long field, unsigned long value)
274 {
275         u8 error;
276
277         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
278                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
279         if (unlikely(error))
280                 vmwrite_error(field, value);
281 }
282
283 static void vmcs_write16(unsigned long field, u16 value)
284 {
285         vmcs_writel(field, value);
286 }
287
288 static void vmcs_write32(unsigned long field, u32 value)
289 {
290         vmcs_writel(field, value);
291 }
292
293 static void vmcs_write64(unsigned long field, u64 value)
294 {
295 #ifdef CONFIG_X86_64
296         vmcs_writel(field, value);
297 #else
298         vmcs_writel(field, value);
299         asm volatile ("");
300         vmcs_writel(field+1, value >> 32);
301 #endif
302 }
303
304 static void vmcs_clear_bits(unsigned long field, u32 mask)
305 {
306         vmcs_writel(field, vmcs_readl(field) & ~mask);
307 }
308
309 static void vmcs_set_bits(unsigned long field, u32 mask)
310 {
311         vmcs_writel(field, vmcs_readl(field) | mask);
312 }
313
314 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
315 {
316         u32 eb;
317
318         eb = 1u << PF_VECTOR;
319         if (!vcpu->fpu_active)
320                 eb |= 1u << NM_VECTOR;
321         if (vcpu->guest_debug.enabled)
322                 eb |= 1u << 1;
323         if (vcpu->rmode.active)
324                 eb = ~0;
325         vmcs_write32(EXCEPTION_BITMAP, eb);
326 }
327
328 static void reload_tss(void)
329 {
330 #ifndef CONFIG_X86_64
331
332         /*
333          * VT restores TR but not its size.  Useless.
334          */
335         struct descriptor_table gdt;
336         struct segment_descriptor *descs;
337
338         get_gdt(&gdt);
339         descs = (void *)gdt.base;
340         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
341         load_TR_desc();
342 #endif
343 }
344
345 static void load_transition_efer(struct vcpu_vmx *vmx)
346 {
347         u64 trans_efer;
348         int efer_offset = vmx->msr_offset_efer;
349
350         trans_efer = vmx->host_msrs[efer_offset].data;
351         trans_efer &= ~EFER_SAVE_RESTORE_BITS;
352         trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
353         wrmsrl(MSR_EFER, trans_efer);
354         vmx->vcpu.stat.efer_reload++;
355 }
356
357 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
358 {
359         struct vcpu_vmx *vmx = to_vmx(vcpu);
360
361         if (vmx->host_state.loaded)
362                 return;
363
364         vmx->host_state.loaded = 1;
365         /*
366          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
367          * allow segment selectors with cpl > 0 or ti == 1.
368          */
369         vmx->host_state.ldt_sel = read_ldt();
370         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
371         vmx->host_state.fs_sel = read_fs();
372         if (!(vmx->host_state.fs_sel & 7)) {
373                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
374                 vmx->host_state.fs_reload_needed = 0;
375         } else {
376                 vmcs_write16(HOST_FS_SELECTOR, 0);
377                 vmx->host_state.fs_reload_needed = 1;
378         }
379         vmx->host_state.gs_sel = read_gs();
380         if (!(vmx->host_state.gs_sel & 7))
381                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
382         else {
383                 vmcs_write16(HOST_GS_SELECTOR, 0);
384                 vmx->host_state.gs_ldt_reload_needed = 1;
385         }
386
387 #ifdef CONFIG_X86_64
388         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
389         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
390 #else
391         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
392         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
393 #endif
394
395 #ifdef CONFIG_X86_64
396         if (is_long_mode(&vmx->vcpu)) {
397                 save_msrs(vmx->host_msrs +
398                           vmx->msr_offset_kernel_gs_base, 1);
399         }
400 #endif
401         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
402         if (msr_efer_need_save_restore(vmx))
403                 load_transition_efer(vmx);
404 }
405
406 static void vmx_load_host_state(struct vcpu_vmx *vmx)
407 {
408         unsigned long flags;
409
410         if (!vmx->host_state.loaded)
411                 return;
412
413         vmx->host_state.loaded = 0;
414         if (vmx->host_state.fs_reload_needed)
415                 load_fs(vmx->host_state.fs_sel);
416         if (vmx->host_state.gs_ldt_reload_needed) {
417                 load_ldt(vmx->host_state.ldt_sel);
418                 /*
419                  * If we have to reload gs, we must take care to
420                  * preserve our gs base.
421                  */
422                 local_irq_save(flags);
423                 load_gs(vmx->host_state.gs_sel);
424 #ifdef CONFIG_X86_64
425                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
426 #endif
427                 local_irq_restore(flags);
428         }
429         reload_tss();
430         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
431         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
432         if (msr_efer_need_save_restore(vmx))
433                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
434 }
435
436 /*
437  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
438  * vcpu mutex is already taken.
439  */
440 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
441 {
442         struct vcpu_vmx *vmx = to_vmx(vcpu);
443         u64 phys_addr = __pa(vmx->vmcs);
444         u64 tsc_this, delta;
445
446         if (vcpu->cpu != cpu) {
447                 vcpu_clear(vmx);
448                 kvm_migrate_apic_timer(vcpu);
449         }
450
451         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
452                 u8 error;
453
454                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
455                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
456                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
457                               : "cc");
458                 if (error)
459                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
460                                vmx->vmcs, phys_addr);
461         }
462
463         if (vcpu->cpu != cpu) {
464                 struct descriptor_table dt;
465                 unsigned long sysenter_esp;
466
467                 vcpu->cpu = cpu;
468                 /*
469                  * Linux uses per-cpu TSS and GDT, so set these when switching
470                  * processors.
471                  */
472                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
473                 get_gdt(&dt);
474                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
475
476                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
477                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
478
479                 /*
480                  * Make sure the time stamp counter is monotonous.
481                  */
482                 rdtscll(tsc_this);
483                 delta = vcpu->host_tsc - tsc_this;
484                 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
485         }
486 }
487
488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
489 {
490         vmx_load_host_state(to_vmx(vcpu));
491         kvm_put_guest_fpu(vcpu);
492 }
493
494 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
495 {
496         if (vcpu->fpu_active)
497                 return;
498         vcpu->fpu_active = 1;
499         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
500         if (vcpu->cr0 & X86_CR0_TS)
501                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
502         update_exception_bitmap(vcpu);
503 }
504
505 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
506 {
507         if (!vcpu->fpu_active)
508                 return;
509         vcpu->fpu_active = 0;
510         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
511         update_exception_bitmap(vcpu);
512 }
513
514 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
515 {
516         vcpu_clear(to_vmx(vcpu));
517 }
518
519 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
520 {
521         return vmcs_readl(GUEST_RFLAGS);
522 }
523
524 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
525 {
526         if (vcpu->rmode.active)
527                 rflags |= IOPL_MASK | X86_EFLAGS_VM;
528         vmcs_writel(GUEST_RFLAGS, rflags);
529 }
530
531 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
532 {
533         unsigned long rip;
534         u32 interruptibility;
535
536         rip = vmcs_readl(GUEST_RIP);
537         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
538         vmcs_writel(GUEST_RIP, rip);
539
540         /*
541          * We emulated an instruction, so temporary interrupt blocking
542          * should be removed, if set.
543          */
544         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
545         if (interruptibility & 3)
546                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
547                              interruptibility & ~3);
548         vcpu->interrupt_window_open = 1;
549 }
550
551 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
552 {
553         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
554                vmcs_readl(GUEST_RIP));
555         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
556         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
557                      GP_VECTOR |
558                      INTR_TYPE_EXCEPTION |
559                      INTR_INFO_DELIEVER_CODE_MASK |
560                      INTR_INFO_VALID_MASK);
561 }
562
563 /*
564  * Swap MSR entry in host/guest MSR entry array.
565  */
566 #ifdef CONFIG_X86_64
567 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
568 {
569         struct kvm_msr_entry tmp;
570
571         tmp = vmx->guest_msrs[to];
572         vmx->guest_msrs[to] = vmx->guest_msrs[from];
573         vmx->guest_msrs[from] = tmp;
574         tmp = vmx->host_msrs[to];
575         vmx->host_msrs[to] = vmx->host_msrs[from];
576         vmx->host_msrs[from] = tmp;
577 }
578 #endif
579
580 /*
581  * Set up the vmcs to automatically save and restore system
582  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
583  * mode, as fiddling with msrs is very expensive.
584  */
585 static void setup_msrs(struct vcpu_vmx *vmx)
586 {
587         int save_nmsrs;
588
589         save_nmsrs = 0;
590 #ifdef CONFIG_X86_64
591         if (is_long_mode(&vmx->vcpu)) {
592                 int index;
593
594                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
595                 if (index >= 0)
596                         move_msr_up(vmx, index, save_nmsrs++);
597                 index = __find_msr_index(vmx, MSR_LSTAR);
598                 if (index >= 0)
599                         move_msr_up(vmx, index, save_nmsrs++);
600                 index = __find_msr_index(vmx, MSR_CSTAR);
601                 if (index >= 0)
602                         move_msr_up(vmx, index, save_nmsrs++);
603                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
604                 if (index >= 0)
605                         move_msr_up(vmx, index, save_nmsrs++);
606                 /*
607                  * MSR_K6_STAR is only needed on long mode guests, and only
608                  * if efer.sce is enabled.
609                  */
610                 index = __find_msr_index(vmx, MSR_K6_STAR);
611                 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
612                         move_msr_up(vmx, index, save_nmsrs++);
613         }
614 #endif
615         vmx->save_nmsrs = save_nmsrs;
616
617 #ifdef CONFIG_X86_64
618         vmx->msr_offset_kernel_gs_base =
619                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
620 #endif
621         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
622 }
623
624 /*
625  * reads and returns guest's timestamp counter "register"
626  * guest_tsc = host_tsc + tsc_offset    -- 21.3
627  */
628 static u64 guest_read_tsc(void)
629 {
630         u64 host_tsc, tsc_offset;
631
632         rdtscll(host_tsc);
633         tsc_offset = vmcs_read64(TSC_OFFSET);
634         return host_tsc + tsc_offset;
635 }
636
637 /*
638  * writes 'guest_tsc' into guest's timestamp counter "register"
639  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
640  */
641 static void guest_write_tsc(u64 guest_tsc)
642 {
643         u64 host_tsc;
644
645         rdtscll(host_tsc);
646         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
647 }
648
649 /*
650  * Reads an msr value (of 'msr_index') into 'pdata'.
651  * Returns 0 on success, non-0 otherwise.
652  * Assumes vcpu_load() was already called.
653  */
654 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
655 {
656         u64 data;
657         struct kvm_msr_entry *msr;
658
659         if (!pdata) {
660                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
661                 return -EINVAL;
662         }
663
664         switch (msr_index) {
665 #ifdef CONFIG_X86_64
666         case MSR_FS_BASE:
667                 data = vmcs_readl(GUEST_FS_BASE);
668                 break;
669         case MSR_GS_BASE:
670                 data = vmcs_readl(GUEST_GS_BASE);
671                 break;
672         case MSR_EFER:
673                 return kvm_get_msr_common(vcpu, msr_index, pdata);
674 #endif
675         case MSR_IA32_TIME_STAMP_COUNTER:
676                 data = guest_read_tsc();
677                 break;
678         case MSR_IA32_SYSENTER_CS:
679                 data = vmcs_read32(GUEST_SYSENTER_CS);
680                 break;
681         case MSR_IA32_SYSENTER_EIP:
682                 data = vmcs_readl(GUEST_SYSENTER_EIP);
683                 break;
684         case MSR_IA32_SYSENTER_ESP:
685                 data = vmcs_readl(GUEST_SYSENTER_ESP);
686                 break;
687         default:
688                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
689                 if (msr) {
690                         data = msr->data;
691                         break;
692                 }
693                 return kvm_get_msr_common(vcpu, msr_index, pdata);
694         }
695
696         *pdata = data;
697         return 0;
698 }
699
700 /*
701  * Writes msr value into into the appropriate "register".
702  * Returns 0 on success, non-0 otherwise.
703  * Assumes vcpu_load() was already called.
704  */
705 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
706 {
707         struct vcpu_vmx *vmx = to_vmx(vcpu);
708         struct kvm_msr_entry *msr;
709         int ret = 0;
710
711         switch (msr_index) {
712 #ifdef CONFIG_X86_64
713         case MSR_EFER:
714                 ret = kvm_set_msr_common(vcpu, msr_index, data);
715                 if (vmx->host_state.loaded)
716                         load_transition_efer(vmx);
717                 break;
718         case MSR_FS_BASE:
719                 vmcs_writel(GUEST_FS_BASE, data);
720                 break;
721         case MSR_GS_BASE:
722                 vmcs_writel(GUEST_GS_BASE, data);
723                 break;
724 #endif
725         case MSR_IA32_SYSENTER_CS:
726                 vmcs_write32(GUEST_SYSENTER_CS, data);
727                 break;
728         case MSR_IA32_SYSENTER_EIP:
729                 vmcs_writel(GUEST_SYSENTER_EIP, data);
730                 break;
731         case MSR_IA32_SYSENTER_ESP:
732                 vmcs_writel(GUEST_SYSENTER_ESP, data);
733                 break;
734         case MSR_IA32_TIME_STAMP_COUNTER:
735                 guest_write_tsc(data);
736                 break;
737         default:
738                 msr = find_msr_entry(vmx, msr_index);
739                 if (msr) {
740                         msr->data = data;
741                         if (vmx->host_state.loaded)
742                                 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
743                         break;
744                 }
745                 ret = kvm_set_msr_common(vcpu, msr_index, data);
746         }
747
748         return ret;
749 }
750
751 /*
752  * Sync the rsp and rip registers into the vcpu structure.  This allows
753  * registers to be accessed by indexing vcpu->regs.
754  */
755 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
756 {
757         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
758         vcpu->rip = vmcs_readl(GUEST_RIP);
759 }
760
761 /*
762  * Syncs rsp and rip back into the vmcs.  Should be called after possible
763  * modification.
764  */
765 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
766 {
767         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
768         vmcs_writel(GUEST_RIP, vcpu->rip);
769 }
770
771 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
772 {
773         unsigned long dr7 = 0x400;
774         int old_singlestep;
775
776         old_singlestep = vcpu->guest_debug.singlestep;
777
778         vcpu->guest_debug.enabled = dbg->enabled;
779         if (vcpu->guest_debug.enabled) {
780                 int i;
781
782                 dr7 |= 0x200;  /* exact */
783                 for (i = 0; i < 4; ++i) {
784                         if (!dbg->breakpoints[i].enabled)
785                                 continue;
786                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
787                         dr7 |= 2 << (i*2);    /* global enable */
788                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
789                 }
790
791                 vcpu->guest_debug.singlestep = dbg->singlestep;
792         } else
793                 vcpu->guest_debug.singlestep = 0;
794
795         if (old_singlestep && !vcpu->guest_debug.singlestep) {
796                 unsigned long flags;
797
798                 flags = vmcs_readl(GUEST_RFLAGS);
799                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
800                 vmcs_writel(GUEST_RFLAGS, flags);
801         }
802
803         update_exception_bitmap(vcpu);
804         vmcs_writel(GUEST_DR7, dr7);
805
806         return 0;
807 }
808
809 static int vmx_get_irq(struct kvm_vcpu *vcpu)
810 {
811         u32 idtv_info_field;
812
813         idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
814         if (idtv_info_field & INTR_INFO_VALID_MASK) {
815                 if (is_external_interrupt(idtv_info_field))
816                         return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
817                 else
818                         printk("pending exception: not handled yet\n");
819         }
820         return -1;
821 }
822
823 static __init int cpu_has_kvm_support(void)
824 {
825         unsigned long ecx = cpuid_ecx(1);
826         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
827 }
828
829 static __init int vmx_disabled_by_bios(void)
830 {
831         u64 msr;
832
833         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
834         return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
835                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
836             == MSR_IA32_FEATURE_CONTROL_LOCKED;
837         /* locked but not enabled */
838 }
839
840 static void hardware_enable(void *garbage)
841 {
842         int cpu = raw_smp_processor_id();
843         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
844         u64 old;
845
846         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
847         if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
848                     MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
849             != (MSR_IA32_FEATURE_CONTROL_LOCKED |
850                 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
851                 /* enable and lock */
852                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
853                        MSR_IA32_FEATURE_CONTROL_LOCKED |
854                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
855         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
856         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
857                       : "memory", "cc");
858 }
859
860 static void hardware_disable(void *garbage)
861 {
862         asm volatile (ASM_VMX_VMXOFF : : : "cc");
863 }
864
865 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
866                                       u32 msr, u32* result)
867 {
868         u32 vmx_msr_low, vmx_msr_high;
869         u32 ctl = ctl_min | ctl_opt;
870
871         rdmsr(msr, vmx_msr_low, vmx_msr_high);
872
873         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
874         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
875
876         /* Ensure minimum (required) set of control bits are supported. */
877         if (ctl_min & ~ctl)
878                 return -EIO;
879
880         *result = ctl;
881         return 0;
882 }
883
884 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
885 {
886         u32 vmx_msr_low, vmx_msr_high;
887         u32 min, opt;
888         u32 _pin_based_exec_control = 0;
889         u32 _cpu_based_exec_control = 0;
890         u32 _vmexit_control = 0;
891         u32 _vmentry_control = 0;
892
893         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
894         opt = 0;
895         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
896                                 &_pin_based_exec_control) < 0)
897                 return -EIO;
898
899         min = CPU_BASED_HLT_EXITING |
900 #ifdef CONFIG_X86_64
901               CPU_BASED_CR8_LOAD_EXITING |
902               CPU_BASED_CR8_STORE_EXITING |
903 #endif
904               CPU_BASED_USE_IO_BITMAPS |
905               CPU_BASED_MOV_DR_EXITING |
906               CPU_BASED_USE_TSC_OFFSETING;
907 #ifdef CONFIG_X86_64
908         opt = CPU_BASED_TPR_SHADOW;
909 #else
910         opt = 0;
911 #endif
912         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
913                                 &_cpu_based_exec_control) < 0)
914                 return -EIO;
915 #ifdef CONFIG_X86_64
916         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
917                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
918                                            ~CPU_BASED_CR8_STORE_EXITING;
919 #endif
920
921         min = 0;
922 #ifdef CONFIG_X86_64
923         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
924 #endif
925         opt = 0;
926         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
927                                 &_vmexit_control) < 0)
928                 return -EIO;
929
930         min = opt = 0;
931         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
932                                 &_vmentry_control) < 0)
933                 return -EIO;
934
935         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
936
937         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
938         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
939                 return -EIO;
940
941 #ifdef CONFIG_X86_64
942         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
943         if (vmx_msr_high & (1u<<16))
944                 return -EIO;
945 #endif
946
947         /* Require Write-Back (WB) memory type for VMCS accesses. */
948         if (((vmx_msr_high >> 18) & 15) != 6)
949                 return -EIO;
950
951         vmcs_conf->size = vmx_msr_high & 0x1fff;
952         vmcs_conf->order = get_order(vmcs_config.size);
953         vmcs_conf->revision_id = vmx_msr_low;
954
955         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
956         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
957         vmcs_conf->vmexit_ctrl         = _vmexit_control;
958         vmcs_conf->vmentry_ctrl        = _vmentry_control;
959
960         return 0;
961 }
962
963 static struct vmcs *alloc_vmcs_cpu(int cpu)
964 {
965         int node = cpu_to_node(cpu);
966         struct page *pages;
967         struct vmcs *vmcs;
968
969         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
970         if (!pages)
971                 return NULL;
972         vmcs = page_address(pages);
973         memset(vmcs, 0, vmcs_config.size);
974         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
975         return vmcs;
976 }
977
978 static struct vmcs *alloc_vmcs(void)
979 {
980         return alloc_vmcs_cpu(raw_smp_processor_id());
981 }
982
983 static void free_vmcs(struct vmcs *vmcs)
984 {
985         free_pages((unsigned long)vmcs, vmcs_config.order);
986 }
987
988 static void free_kvm_area(void)
989 {
990         int cpu;
991
992         for_each_online_cpu(cpu)
993                 free_vmcs(per_cpu(vmxarea, cpu));
994 }
995
996 static __init int alloc_kvm_area(void)
997 {
998         int cpu;
999
1000         for_each_online_cpu(cpu) {
1001                 struct vmcs *vmcs;
1002
1003                 vmcs = alloc_vmcs_cpu(cpu);
1004                 if (!vmcs) {
1005                         free_kvm_area();
1006                         return -ENOMEM;
1007                 }
1008
1009                 per_cpu(vmxarea, cpu) = vmcs;
1010         }
1011         return 0;
1012 }
1013
1014 static __init int hardware_setup(void)
1015 {
1016         if (setup_vmcs_config(&vmcs_config) < 0)
1017                 return -EIO;
1018         return alloc_kvm_area();
1019 }
1020
1021 static __exit void hardware_unsetup(void)
1022 {
1023         free_kvm_area();
1024 }
1025
1026 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1027 {
1028         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1029
1030         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1031                 vmcs_write16(sf->selector, save->selector);
1032                 vmcs_writel(sf->base, save->base);
1033                 vmcs_write32(sf->limit, save->limit);
1034                 vmcs_write32(sf->ar_bytes, save->ar);
1035         } else {
1036                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1037                         << AR_DPL_SHIFT;
1038                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1039         }
1040 }
1041
1042 static void enter_pmode(struct kvm_vcpu *vcpu)
1043 {
1044         unsigned long flags;
1045
1046         vcpu->rmode.active = 0;
1047
1048         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1049         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1050         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1051
1052         flags = vmcs_readl(GUEST_RFLAGS);
1053         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
1054         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1055         vmcs_writel(GUEST_RFLAGS, flags);
1056
1057         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1058                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1059
1060         update_exception_bitmap(vcpu);
1061
1062         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1063         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1064         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1065         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1066
1067         vmcs_write16(GUEST_SS_SELECTOR, 0);
1068         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1069
1070         vmcs_write16(GUEST_CS_SELECTOR,
1071                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1072         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1073 }
1074
1075 static gva_t rmode_tss_base(struct kvm* kvm)
1076 {
1077         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1078         return base_gfn << PAGE_SHIFT;
1079 }
1080
1081 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1082 {
1083         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1084
1085         save->selector = vmcs_read16(sf->selector);
1086         save->base = vmcs_readl(sf->base);
1087         save->limit = vmcs_read32(sf->limit);
1088         save->ar = vmcs_read32(sf->ar_bytes);
1089         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1090         vmcs_write32(sf->limit, 0xffff);
1091         vmcs_write32(sf->ar_bytes, 0xf3);
1092 }
1093
1094 static void enter_rmode(struct kvm_vcpu *vcpu)
1095 {
1096         unsigned long flags;
1097
1098         vcpu->rmode.active = 1;
1099
1100         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1101         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1102
1103         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1104         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1105
1106         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1107         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1108
1109         flags = vmcs_readl(GUEST_RFLAGS);
1110         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
1111
1112         flags |= IOPL_MASK | X86_EFLAGS_VM;
1113
1114         vmcs_writel(GUEST_RFLAGS, flags);
1115         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1116         update_exception_bitmap(vcpu);
1117
1118         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1119         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1120         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1121
1122         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1123         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1124         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1125                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1126         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1127
1128         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1129         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1130         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1131         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1132
1133         kvm_mmu_reset_context(vcpu);
1134         init_rmode_tss(vcpu->kvm);
1135 }
1136
1137 #ifdef CONFIG_X86_64
1138
1139 static void enter_lmode(struct kvm_vcpu *vcpu)
1140 {
1141         u32 guest_tr_ar;
1142
1143         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1144         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1145                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1146                        __FUNCTION__);
1147                 vmcs_write32(GUEST_TR_AR_BYTES,
1148                              (guest_tr_ar & ~AR_TYPE_MASK)
1149                              | AR_TYPE_BUSY_64_TSS);
1150         }
1151
1152         vcpu->shadow_efer |= EFER_LMA;
1153
1154         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1155         vmcs_write32(VM_ENTRY_CONTROLS,
1156                      vmcs_read32(VM_ENTRY_CONTROLS)
1157                      | VM_ENTRY_IA32E_MODE);
1158 }
1159
1160 static void exit_lmode(struct kvm_vcpu *vcpu)
1161 {
1162         vcpu->shadow_efer &= ~EFER_LMA;
1163
1164         vmcs_write32(VM_ENTRY_CONTROLS,
1165                      vmcs_read32(VM_ENTRY_CONTROLS)
1166                      & ~VM_ENTRY_IA32E_MODE);
1167 }
1168
1169 #endif
1170
1171 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1172 {
1173         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1174         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1175 }
1176
1177 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1178 {
1179         vmx_fpu_deactivate(vcpu);
1180
1181         if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1182                 enter_pmode(vcpu);
1183
1184         if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1185                 enter_rmode(vcpu);
1186
1187 #ifdef CONFIG_X86_64
1188         if (vcpu->shadow_efer & EFER_LME) {
1189                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1190                         enter_lmode(vcpu);
1191                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1192                         exit_lmode(vcpu);
1193         }
1194 #endif
1195
1196         vmcs_writel(CR0_READ_SHADOW, cr0);
1197         vmcs_writel(GUEST_CR0,
1198                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1199         vcpu->cr0 = cr0;
1200
1201         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1202                 vmx_fpu_activate(vcpu);
1203 }
1204
1205 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1206 {
1207         vmcs_writel(GUEST_CR3, cr3);
1208         if (vcpu->cr0 & X86_CR0_PE)
1209                 vmx_fpu_deactivate(vcpu);
1210 }
1211
1212 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1213 {
1214         vmcs_writel(CR4_READ_SHADOW, cr4);
1215         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1216                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1217         vcpu->cr4 = cr4;
1218 }
1219
1220 #ifdef CONFIG_X86_64
1221
1222 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1223 {
1224         struct vcpu_vmx *vmx = to_vmx(vcpu);
1225         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1226
1227         vcpu->shadow_efer = efer;
1228         if (efer & EFER_LMA) {
1229                 vmcs_write32(VM_ENTRY_CONTROLS,
1230                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1231                                      VM_ENTRY_IA32E_MODE);
1232                 msr->data = efer;
1233
1234         } else {
1235                 vmcs_write32(VM_ENTRY_CONTROLS,
1236                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1237                                      ~VM_ENTRY_IA32E_MODE);
1238
1239                 msr->data = efer & ~EFER_LME;
1240         }
1241         setup_msrs(vmx);
1242 }
1243
1244 #endif
1245
1246 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1247 {
1248         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1249
1250         return vmcs_readl(sf->base);
1251 }
1252
1253 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1254                             struct kvm_segment *var, int seg)
1255 {
1256         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1257         u32 ar;
1258
1259         var->base = vmcs_readl(sf->base);
1260         var->limit = vmcs_read32(sf->limit);
1261         var->selector = vmcs_read16(sf->selector);
1262         ar = vmcs_read32(sf->ar_bytes);
1263         if (ar & AR_UNUSABLE_MASK)
1264                 ar = 0;
1265         var->type = ar & 15;
1266         var->s = (ar >> 4) & 1;
1267         var->dpl = (ar >> 5) & 3;
1268         var->present = (ar >> 7) & 1;
1269         var->avl = (ar >> 12) & 1;
1270         var->l = (ar >> 13) & 1;
1271         var->db = (ar >> 14) & 1;
1272         var->g = (ar >> 15) & 1;
1273         var->unusable = (ar >> 16) & 1;
1274 }
1275
1276 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1277 {
1278         u32 ar;
1279
1280         if (var->unusable)
1281                 ar = 1 << 16;
1282         else {
1283                 ar = var->type & 15;
1284                 ar |= (var->s & 1) << 4;
1285                 ar |= (var->dpl & 3) << 5;
1286                 ar |= (var->present & 1) << 7;
1287                 ar |= (var->avl & 1) << 12;
1288                 ar |= (var->l & 1) << 13;
1289                 ar |= (var->db & 1) << 14;
1290                 ar |= (var->g & 1) << 15;
1291         }
1292         if (ar == 0) /* a 0 value means unusable */
1293                 ar = AR_UNUSABLE_MASK;
1294
1295         return ar;
1296 }
1297
1298 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1299                             struct kvm_segment *var, int seg)
1300 {
1301         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1302         u32 ar;
1303
1304         if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1305                 vcpu->rmode.tr.selector = var->selector;
1306                 vcpu->rmode.tr.base = var->base;
1307                 vcpu->rmode.tr.limit = var->limit;
1308                 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1309                 return;
1310         }
1311         vmcs_writel(sf->base, var->base);
1312         vmcs_write32(sf->limit, var->limit);
1313         vmcs_write16(sf->selector, var->selector);
1314         if (vcpu->rmode.active && var->s) {
1315                 /*
1316                  * Hack real-mode segments into vm86 compatibility.
1317                  */
1318                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1319                         vmcs_writel(sf->base, 0xf0000);
1320                 ar = 0xf3;
1321         } else
1322                 ar = vmx_segment_access_rights(var);
1323         vmcs_write32(sf->ar_bytes, ar);
1324 }
1325
1326 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1327 {
1328         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1329
1330         *db = (ar >> 14) & 1;
1331         *l = (ar >> 13) & 1;
1332 }
1333
1334 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1335 {
1336         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1337         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1338 }
1339
1340 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1341 {
1342         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1343         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1344 }
1345
1346 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1347 {
1348         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1349         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1350 }
1351
1352 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1353 {
1354         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1355         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1356 }
1357
1358 static int init_rmode_tss(struct kvm* kvm)
1359 {
1360         struct page *p1, *p2, *p3;
1361         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1362         char *page;
1363
1364         p1 = gfn_to_page(kvm, fn++);
1365         p2 = gfn_to_page(kvm, fn++);
1366         p3 = gfn_to_page(kvm, fn);
1367
1368         if (!p1 || !p2 || !p3) {
1369                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1370                 return 0;
1371         }
1372
1373         page = kmap_atomic(p1, KM_USER0);
1374         clear_page(page);
1375         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1376         kunmap_atomic(page, KM_USER0);
1377
1378         page = kmap_atomic(p2, KM_USER0);
1379         clear_page(page);
1380         kunmap_atomic(page, KM_USER0);
1381
1382         page = kmap_atomic(p3, KM_USER0);
1383         clear_page(page);
1384         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1385         kunmap_atomic(page, KM_USER0);
1386
1387         return 1;
1388 }
1389
1390 static void seg_setup(int seg)
1391 {
1392         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1393
1394         vmcs_write16(sf->selector, 0);
1395         vmcs_writel(sf->base, 0);
1396         vmcs_write32(sf->limit, 0xffff);
1397         vmcs_write32(sf->ar_bytes, 0x93);
1398 }
1399
1400 /*
1401  * Sets up the vmcs for emulated real mode.
1402  */
1403 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1404 {
1405         u32 host_sysenter_cs;
1406         u32 junk;
1407         unsigned long a;
1408         struct descriptor_table dt;
1409         int i;
1410         int ret = 0;
1411         unsigned long kvm_vmx_return;
1412         u64 msr;
1413         u32 exec_control;
1414
1415         if (!init_rmode_tss(vmx->vcpu.kvm)) {
1416                 ret = -ENOMEM;
1417                 goto out;
1418         }
1419
1420         vmx->vcpu.rmode.active = 0;
1421
1422         vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1423         set_cr8(&vmx->vcpu, 0);
1424         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1425         if (vmx->vcpu.vcpu_id == 0)
1426                 msr |= MSR_IA32_APICBASE_BSP;
1427         kvm_set_apic_base(&vmx->vcpu, msr);
1428
1429         fx_init(&vmx->vcpu);
1430
1431         /*
1432          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1433          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1434          */
1435         if (vmx->vcpu.vcpu_id == 0) {
1436                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1437                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1438         } else {
1439                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1440                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1441         }
1442         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1443         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1444
1445         seg_setup(VCPU_SREG_DS);
1446         seg_setup(VCPU_SREG_ES);
1447         seg_setup(VCPU_SREG_FS);
1448         seg_setup(VCPU_SREG_GS);
1449         seg_setup(VCPU_SREG_SS);
1450
1451         vmcs_write16(GUEST_TR_SELECTOR, 0);
1452         vmcs_writel(GUEST_TR_BASE, 0);
1453         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1454         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1455
1456         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1457         vmcs_writel(GUEST_LDTR_BASE, 0);
1458         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1459         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1460
1461         vmcs_write32(GUEST_SYSENTER_CS, 0);
1462         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1463         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1464
1465         vmcs_writel(GUEST_RFLAGS, 0x02);
1466         if (vmx->vcpu.vcpu_id == 0)
1467                 vmcs_writel(GUEST_RIP, 0xfff0);
1468         else
1469                 vmcs_writel(GUEST_RIP, 0);
1470         vmcs_writel(GUEST_RSP, 0);
1471
1472         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1473         vmcs_writel(GUEST_DR7, 0x400);
1474
1475         vmcs_writel(GUEST_GDTR_BASE, 0);
1476         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1477
1478         vmcs_writel(GUEST_IDTR_BASE, 0);
1479         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1480
1481         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1482         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1483         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1484
1485         /* I/O */
1486         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1487         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1488
1489         guest_write_tsc(0);
1490
1491         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1492
1493         /* Special registers */
1494         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1495
1496         /* Control */
1497         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1498                 vmcs_config.pin_based_exec_ctrl);
1499
1500         exec_control = vmcs_config.cpu_based_exec_ctrl;
1501         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1502                 exec_control &= ~CPU_BASED_TPR_SHADOW;
1503 #ifdef CONFIG_X86_64
1504                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1505                                 CPU_BASED_CR8_LOAD_EXITING;
1506 #endif
1507         }
1508         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1509
1510         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1511         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1512         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1513
1514         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1515         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1516         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1517
1518         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1519         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1520         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1521         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1522         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1523         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1524 #ifdef CONFIG_X86_64
1525         rdmsrl(MSR_FS_BASE, a);
1526         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1527         rdmsrl(MSR_GS_BASE, a);
1528         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1529 #else
1530         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1531         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1532 #endif
1533
1534         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1535
1536         get_idt(&dt);
1537         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1538
1539         asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1540         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1541         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1542         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1543         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1544
1545         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1546         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1547         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1548         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1549         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1550         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1551
1552         for (i = 0; i < NR_VMX_MSR; ++i) {
1553                 u32 index = vmx_msr_index[i];
1554                 u32 data_low, data_high;
1555                 u64 data;
1556                 int j = vmx->nmsrs;
1557
1558                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1559                         continue;
1560                 if (wrmsr_safe(index, data_low, data_high) < 0)
1561                         continue;
1562                 data = data_low | ((u64)data_high << 32);
1563                 vmx->host_msrs[j].index = index;
1564                 vmx->host_msrs[j].reserved = 0;
1565                 vmx->host_msrs[j].data = data;
1566                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1567                 ++vmx->nmsrs;
1568         }
1569
1570         setup_msrs(vmx);
1571
1572         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1573
1574         /* 22.2.1, 20.8.1 */
1575         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1576
1577         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1578
1579 #ifdef CONFIG_X86_64
1580         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1581         if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1582                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1583                              page_to_phys(vmx->vcpu.apic->regs_page));
1584         vmcs_write32(TPR_THRESHOLD, 0);
1585 #endif
1586
1587         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1588         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1589
1590         vmx->vcpu.cr0 = 0x60000010;
1591         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1592         vmx_set_cr4(&vmx->vcpu, 0);
1593 #ifdef CONFIG_X86_64
1594         vmx_set_efer(&vmx->vcpu, 0);
1595 #endif
1596         vmx_fpu_activate(&vmx->vcpu);
1597         update_exception_bitmap(&vmx->vcpu);
1598
1599         return 0;
1600
1601 out:
1602         return ret;
1603 }
1604
1605 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1606 {
1607         struct vcpu_vmx *vmx = to_vmx(vcpu);
1608
1609         vmx_vcpu_setup(vmx);
1610 }
1611
1612 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1613 {
1614         u16 ent[2];
1615         u16 cs;
1616         u16 ip;
1617         unsigned long flags;
1618         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1619         u16 sp =  vmcs_readl(GUEST_RSP);
1620         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1621
1622         if (sp > ss_limit || sp < 6 ) {
1623                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1624                             __FUNCTION__,
1625                             vmcs_readl(GUEST_RSP),
1626                             vmcs_readl(GUEST_SS_BASE),
1627                             vmcs_read32(GUEST_SS_LIMIT));
1628                 return;
1629         }
1630
1631         if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1632                                                         X86EMUL_CONTINUE) {
1633                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1634                 return;
1635         }
1636
1637         flags =  vmcs_readl(GUEST_RFLAGS);
1638         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1639         ip =  vmcs_readl(GUEST_RIP);
1640
1641
1642         if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1643             emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1644             emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1645                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1646                 return;
1647         }
1648
1649         vmcs_writel(GUEST_RFLAGS, flags &
1650                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1651         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1652         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1653         vmcs_writel(GUEST_RIP, ent[0]);
1654         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1655 }
1656
1657 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1658 {
1659         if (vcpu->rmode.active) {
1660                 inject_rmode_irq(vcpu, irq);
1661                 return;
1662         }
1663         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1664                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1665 }
1666
1667 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1668 {
1669         int word_index = __ffs(vcpu->irq_summary);
1670         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1671         int irq = word_index * BITS_PER_LONG + bit_index;
1672
1673         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1674         if (!vcpu->irq_pending[word_index])
1675                 clear_bit(word_index, &vcpu->irq_summary);
1676         vmx_inject_irq(vcpu, irq);
1677 }
1678
1679
1680 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1681                                        struct kvm_run *kvm_run)
1682 {
1683         u32 cpu_based_vm_exec_control;
1684
1685         vcpu->interrupt_window_open =
1686                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1687                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1688
1689         if (vcpu->interrupt_window_open &&
1690             vcpu->irq_summary &&
1691             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1692                 /*
1693                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1694                  */
1695                 kvm_do_inject_irq(vcpu);
1696
1697         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1698         if (!vcpu->interrupt_window_open &&
1699             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1700                 /*
1701                  * Interrupts blocked.  Wait for unblock.
1702                  */
1703                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1704         else
1705                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1706         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1707 }
1708
1709 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1710 {
1711         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1712
1713         set_debugreg(dbg->bp[0], 0);
1714         set_debugreg(dbg->bp[1], 1);
1715         set_debugreg(dbg->bp[2], 2);
1716         set_debugreg(dbg->bp[3], 3);
1717
1718         if (dbg->singlestep) {
1719                 unsigned long flags;
1720
1721                 flags = vmcs_readl(GUEST_RFLAGS);
1722                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1723                 vmcs_writel(GUEST_RFLAGS, flags);
1724         }
1725 }
1726
1727 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1728                                   int vec, u32 err_code)
1729 {
1730         if (!vcpu->rmode.active)
1731                 return 0;
1732
1733         /*
1734          * Instruction with address size override prefix opcode 0x67
1735          * Cause the #SS fault with 0 error code in VM86 mode.
1736          */
1737         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1738                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1739                         return 1;
1740         return 0;
1741 }
1742
1743 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1744 {
1745         u32 intr_info, error_code;
1746         unsigned long cr2, rip;
1747         u32 vect_info;
1748         enum emulation_result er;
1749         int r;
1750
1751         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1752         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1753
1754         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1755                                                 !is_page_fault(intr_info)) {
1756                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1757                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1758         }
1759
1760         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1761                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1762                 set_bit(irq, vcpu->irq_pending);
1763                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1764         }
1765
1766         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1767                 return 1;  /* already handled by vmx_vcpu_run() */
1768
1769         if (is_no_device(intr_info)) {
1770                 vmx_fpu_activate(vcpu);
1771                 return 1;
1772         }
1773
1774         error_code = 0;
1775         rip = vmcs_readl(GUEST_RIP);
1776         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1777                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1778         if (is_page_fault(intr_info)) {
1779                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1780
1781                 mutex_lock(&vcpu->kvm->lock);
1782                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1783                 if (r < 0) {
1784                         mutex_unlock(&vcpu->kvm->lock);
1785                         return r;
1786                 }
1787                 if (!r) {
1788                         mutex_unlock(&vcpu->kvm->lock);
1789                         return 1;
1790                 }
1791
1792                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1793                 mutex_unlock(&vcpu->kvm->lock);
1794
1795                 switch (er) {
1796                 case EMULATE_DONE:
1797                         return 1;
1798                 case EMULATE_DO_MMIO:
1799                         ++vcpu->stat.mmio_exits;
1800                         return 0;
1801                  case EMULATE_FAIL:
1802                         kvm_report_emulation_failure(vcpu, "pagetable");
1803                         break;
1804                 default:
1805                         BUG();
1806                 }
1807         }
1808
1809         if (vcpu->rmode.active &&
1810             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1811                                                                 error_code)) {
1812                 if (vcpu->halt_request) {
1813                         vcpu->halt_request = 0;
1814                         return kvm_emulate_halt(vcpu);
1815                 }
1816                 return 1;
1817         }
1818
1819         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1820                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1821                 return 0;
1822         }
1823         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1824         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1825         kvm_run->ex.error_code = error_code;
1826         return 0;
1827 }
1828
1829 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1830                                      struct kvm_run *kvm_run)
1831 {
1832         ++vcpu->stat.irq_exits;
1833         return 1;
1834 }
1835
1836 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1837 {
1838         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1839         return 0;
1840 }
1841
1842 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1843 {
1844         unsigned long exit_qualification;
1845         int size, down, in, string, rep;
1846         unsigned port;
1847
1848         ++vcpu->stat.io_exits;
1849         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1850         string = (exit_qualification & 16) != 0;
1851
1852         if (string) {
1853                 if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1854                         return 0;
1855                 return 1;
1856         }
1857
1858         size = (exit_qualification & 7) + 1;
1859         in = (exit_qualification & 8) != 0;
1860         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1861         rep = (exit_qualification & 32) != 0;
1862         port = exit_qualification >> 16;
1863
1864         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1865 }
1866
1867 static void
1868 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1869 {
1870         /*
1871          * Patch in the VMCALL instruction:
1872          */
1873         hypercall[0] = 0x0f;
1874         hypercall[1] = 0x01;
1875         hypercall[2] = 0xc1;
1876         hypercall[3] = 0xc3;
1877 }
1878
1879 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1880 {
1881         unsigned long exit_qualification;
1882         int cr;
1883         int reg;
1884
1885         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1886         cr = exit_qualification & 15;
1887         reg = (exit_qualification >> 8) & 15;
1888         switch ((exit_qualification >> 4) & 3) {
1889         case 0: /* mov to cr */
1890                 switch (cr) {
1891                 case 0:
1892                         vcpu_load_rsp_rip(vcpu);
1893                         set_cr0(vcpu, vcpu->regs[reg]);
1894                         skip_emulated_instruction(vcpu);
1895                         return 1;
1896                 case 3:
1897                         vcpu_load_rsp_rip(vcpu);
1898                         set_cr3(vcpu, vcpu->regs[reg]);
1899                         skip_emulated_instruction(vcpu);
1900                         return 1;
1901                 case 4:
1902                         vcpu_load_rsp_rip(vcpu);
1903                         set_cr4(vcpu, vcpu->regs[reg]);
1904                         skip_emulated_instruction(vcpu);
1905                         return 1;
1906                 case 8:
1907                         vcpu_load_rsp_rip(vcpu);
1908                         set_cr8(vcpu, vcpu->regs[reg]);
1909                         skip_emulated_instruction(vcpu);
1910                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1911                         return 0;
1912                 };
1913                 break;
1914         case 2: /* clts */
1915                 vcpu_load_rsp_rip(vcpu);
1916                 vmx_fpu_deactivate(vcpu);
1917                 vcpu->cr0 &= ~X86_CR0_TS;
1918                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1919                 vmx_fpu_activate(vcpu);
1920                 skip_emulated_instruction(vcpu);
1921                 return 1;
1922         case 1: /*mov from cr*/
1923                 switch (cr) {
1924                 case 3:
1925                         vcpu_load_rsp_rip(vcpu);
1926                         vcpu->regs[reg] = vcpu->cr3;
1927                         vcpu_put_rsp_rip(vcpu);
1928                         skip_emulated_instruction(vcpu);
1929                         return 1;
1930                 case 8:
1931                         vcpu_load_rsp_rip(vcpu);
1932                         vcpu->regs[reg] = get_cr8(vcpu);
1933                         vcpu_put_rsp_rip(vcpu);
1934                         skip_emulated_instruction(vcpu);
1935                         return 1;
1936                 }
1937                 break;
1938         case 3: /* lmsw */
1939                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1940
1941                 skip_emulated_instruction(vcpu);
1942                 return 1;
1943         default:
1944                 break;
1945         }
1946         kvm_run->exit_reason = 0;
1947         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1948                (int)(exit_qualification >> 4) & 3, cr);
1949         return 0;
1950 }
1951
1952 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1953 {
1954         unsigned long exit_qualification;
1955         unsigned long val;
1956         int dr, reg;
1957
1958         /*
1959          * FIXME: this code assumes the host is debugging the guest.
1960          *        need to deal with guest debugging itself too.
1961          */
1962         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1963         dr = exit_qualification & 7;
1964         reg = (exit_qualification >> 8) & 15;
1965         vcpu_load_rsp_rip(vcpu);
1966         if (exit_qualification & 16) {
1967                 /* mov from dr */
1968                 switch (dr) {
1969                 case 6:
1970                         val = 0xffff0ff0;
1971                         break;
1972                 case 7:
1973                         val = 0x400;
1974                         break;
1975                 default:
1976                         val = 0;
1977                 }
1978                 vcpu->regs[reg] = val;
1979         } else {
1980                 /* mov to dr */
1981         }
1982         vcpu_put_rsp_rip(vcpu);
1983         skip_emulated_instruction(vcpu);
1984         return 1;
1985 }
1986
1987 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1988 {
1989         kvm_emulate_cpuid(vcpu);
1990         return 1;
1991 }
1992
1993 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1994 {
1995         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1996         u64 data;
1997
1998         if (vmx_get_msr(vcpu, ecx, &data)) {
1999                 vmx_inject_gp(vcpu, 0);
2000                 return 1;
2001         }
2002
2003         /* FIXME: handling of bits 32:63 of rax, rdx */
2004         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2005         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2006         skip_emulated_instruction(vcpu);
2007         return 1;
2008 }
2009
2010 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2011 {
2012         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2013         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2014                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2015
2016         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2017                 vmx_inject_gp(vcpu, 0);
2018                 return 1;
2019         }
2020
2021         skip_emulated_instruction(vcpu);
2022         return 1;
2023 }
2024
2025 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2026                                       struct kvm_run *kvm_run)
2027 {
2028         return 1;
2029 }
2030
2031 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2032                                    struct kvm_run *kvm_run)
2033 {
2034         u32 cpu_based_vm_exec_control;
2035
2036         /* clear pending irq */
2037         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2038         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2039         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2040         /*
2041          * If the user space waits to inject interrupts, exit as soon as
2042          * possible
2043          */
2044         if (kvm_run->request_interrupt_window &&
2045             !vcpu->irq_summary) {
2046                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2047                 ++vcpu->stat.irq_window_exits;
2048                 return 0;
2049         }
2050         return 1;
2051 }
2052
2053 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2054 {
2055         skip_emulated_instruction(vcpu);
2056         return kvm_emulate_halt(vcpu);
2057 }
2058
2059 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2060 {
2061         skip_emulated_instruction(vcpu);
2062         return kvm_hypercall(vcpu, kvm_run);
2063 }
2064
2065 /*
2066  * The exit handlers return 1 if the exit was handled fully and guest execution
2067  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2068  * to be done to userspace and return 0.
2069  */
2070 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2071                                       struct kvm_run *kvm_run) = {
2072         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2073         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2074         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2075         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2076         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2077         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2078         [EXIT_REASON_CPUID]                   = handle_cpuid,
2079         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2080         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2081         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2082         [EXIT_REASON_HLT]                     = handle_halt,
2083         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2084         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold
2085 };
2086
2087 static const int kvm_vmx_max_exit_handlers =
2088         ARRAY_SIZE(kvm_vmx_exit_handlers);
2089
2090 /*
2091  * The guest has exited.  See if we can fix it or if we need userspace
2092  * assistance.
2093  */
2094 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2095 {
2096         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2097         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2098         struct vcpu_vmx *vmx = to_vmx(vcpu);
2099
2100         if (unlikely(vmx->fail)) {
2101                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2102                 kvm_run->fail_entry.hardware_entry_failure_reason
2103                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2104                 return 0;
2105         }
2106
2107         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2108                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2109                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2110                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2111         if (exit_reason < kvm_vmx_max_exit_handlers
2112             && kvm_vmx_exit_handlers[exit_reason])
2113                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2114         else {
2115                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2116                 kvm_run->hw.hardware_exit_reason = exit_reason;
2117         }
2118         return 0;
2119 }
2120
2121 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2122 {
2123 }
2124
2125 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2126 {
2127         int max_irr, tpr;
2128
2129         if (!vm_need_tpr_shadow(vcpu->kvm))
2130                 return;
2131
2132         if (!kvm_lapic_enabled(vcpu) ||
2133             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2134                 vmcs_write32(TPR_THRESHOLD, 0);
2135                 return;
2136         }
2137
2138         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2139         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2140 }
2141
2142 static void enable_irq_window(struct kvm_vcpu *vcpu)
2143 {
2144         u32 cpu_based_vm_exec_control;
2145
2146         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2147         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2148         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2149 }
2150
2151 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2152 {
2153         u32 idtv_info_field, intr_info_field;
2154         int has_ext_irq, interrupt_window_open;
2155         int vector;
2156
2157         kvm_inject_pending_timer_irqs(vcpu);
2158         update_tpr_threshold(vcpu);
2159
2160         has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2161         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2162         idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2163         if (intr_info_field & INTR_INFO_VALID_MASK) {
2164                 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2165                         /* TODO: fault when IDT_Vectoring */
2166                         printk(KERN_ERR "Fault when IDT_Vectoring\n");
2167                 }
2168                 if (has_ext_irq)
2169                         enable_irq_window(vcpu);
2170                 return;
2171         }
2172         if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2173                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2174                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2175                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2176
2177                 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2178                         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179                                 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2180                 if (unlikely(has_ext_irq))
2181                         enable_irq_window(vcpu);
2182                 return;
2183         }
2184         if (!has_ext_irq)
2185                 return;
2186         interrupt_window_open =
2187                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2188                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2189         if (interrupt_window_open) {
2190                 vector = kvm_cpu_get_interrupt(vcpu);
2191                 vmx_inject_irq(vcpu, vector);
2192                 kvm_timer_intr_post(vcpu, vector);
2193         } else
2194                 enable_irq_window(vcpu);
2195 }
2196
2197 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2198 {
2199         struct vcpu_vmx *vmx = to_vmx(vcpu);
2200         u32 intr_info;
2201
2202         /*
2203          * Loading guest fpu may have cleared host cr0.ts
2204          */
2205         vmcs_writel(HOST_CR0, read_cr0());
2206
2207         asm (
2208                 /* Store host registers */
2209 #ifdef CONFIG_X86_64
2210                 "push %%rax; push %%rbx; push %%rdx;"
2211                 "push %%rsi; push %%rdi; push %%rbp;"
2212                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
2213                 "push %%r12; push %%r13; push %%r14; push %%r15;"
2214                 "push %%rcx \n\t"
2215                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2216 #else
2217                 "pusha; push %%ecx \n\t"
2218                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2219 #endif
2220                 /* Check if vmlaunch of vmresume is needed */
2221                 "cmp $0, %1 \n\t"
2222                 /* Load guest registers.  Don't clobber flags. */
2223 #ifdef CONFIG_X86_64
2224                 "mov %c[cr2](%3), %%rax \n\t"
2225                 "mov %%rax, %%cr2 \n\t"
2226                 "mov %c[rax](%3), %%rax \n\t"
2227                 "mov %c[rbx](%3), %%rbx \n\t"
2228                 "mov %c[rdx](%3), %%rdx \n\t"
2229                 "mov %c[rsi](%3), %%rsi \n\t"
2230                 "mov %c[rdi](%3), %%rdi \n\t"
2231                 "mov %c[rbp](%3), %%rbp \n\t"
2232                 "mov %c[r8](%3),  %%r8  \n\t"
2233                 "mov %c[r9](%3),  %%r9  \n\t"
2234                 "mov %c[r10](%3), %%r10 \n\t"
2235                 "mov %c[r11](%3), %%r11 \n\t"
2236                 "mov %c[r12](%3), %%r12 \n\t"
2237                 "mov %c[r13](%3), %%r13 \n\t"
2238                 "mov %c[r14](%3), %%r14 \n\t"
2239                 "mov %c[r15](%3), %%r15 \n\t"
2240                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2241 #else
2242                 "mov %c[cr2](%3), %%eax \n\t"
2243                 "mov %%eax,   %%cr2 \n\t"
2244                 "mov %c[rax](%3), %%eax \n\t"
2245                 "mov %c[rbx](%3), %%ebx \n\t"
2246                 "mov %c[rdx](%3), %%edx \n\t"
2247                 "mov %c[rsi](%3), %%esi \n\t"
2248                 "mov %c[rdi](%3), %%edi \n\t"
2249                 "mov %c[rbp](%3), %%ebp \n\t"
2250                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2251 #endif
2252                 /* Enter guest mode */
2253                 "jne .Llaunched \n\t"
2254                 ASM_VMX_VMLAUNCH "\n\t"
2255                 "jmp .Lkvm_vmx_return \n\t"
2256                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2257                 ".Lkvm_vmx_return: "
2258                 /* Save guest registers, load host registers, keep flags */
2259 #ifdef CONFIG_X86_64
2260                 "xchg %3,     (%%rsp) \n\t"
2261                 "mov %%rax, %c[rax](%3) \n\t"
2262                 "mov %%rbx, %c[rbx](%3) \n\t"
2263                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2264                 "mov %%rdx, %c[rdx](%3) \n\t"
2265                 "mov %%rsi, %c[rsi](%3) \n\t"
2266                 "mov %%rdi, %c[rdi](%3) \n\t"
2267                 "mov %%rbp, %c[rbp](%3) \n\t"
2268                 "mov %%r8,  %c[r8](%3) \n\t"
2269                 "mov %%r9,  %c[r9](%3) \n\t"
2270                 "mov %%r10, %c[r10](%3) \n\t"
2271                 "mov %%r11, %c[r11](%3) \n\t"
2272                 "mov %%r12, %c[r12](%3) \n\t"
2273                 "mov %%r13, %c[r13](%3) \n\t"
2274                 "mov %%r14, %c[r14](%3) \n\t"
2275                 "mov %%r15, %c[r15](%3) \n\t"
2276                 "mov %%cr2, %%rax   \n\t"
2277                 "mov %%rax, %c[cr2](%3) \n\t"
2278                 "mov (%%rsp), %3 \n\t"
2279
2280                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
2281                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
2282                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
2283                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
2284 #else
2285                 "xchg %3, (%%esp) \n\t"
2286                 "mov %%eax, %c[rax](%3) \n\t"
2287                 "mov %%ebx, %c[rbx](%3) \n\t"
2288                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2289                 "mov %%edx, %c[rdx](%3) \n\t"
2290                 "mov %%esi, %c[rsi](%3) \n\t"
2291                 "mov %%edi, %c[rdi](%3) \n\t"
2292                 "mov %%ebp, %c[rbp](%3) \n\t"
2293                 "mov %%cr2, %%eax  \n\t"
2294                 "mov %%eax, %c[cr2](%3) \n\t"
2295                 "mov (%%esp), %3 \n\t"
2296
2297                 "pop %%ecx; popa \n\t"
2298 #endif
2299                 "setbe %0 \n\t"
2300               : "=q" (vmx->fail)
2301               : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2302                 "c"(vcpu),
2303                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2304                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2305                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2306                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2307                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2308                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2309                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2310 #ifdef CONFIG_X86_64
2311                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2312                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2313                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2314                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2315                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2316                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2317                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2318                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2319 #endif
2320                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2321               : "cc", "memory" );
2322
2323         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2324
2325         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2326         vmx->launched = 1;
2327
2328         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2329
2330         /* We need to handle NMIs before interrupts are enabled */
2331         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2332                 asm("int $2");
2333 }
2334
2335 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2336                                   unsigned long addr,
2337                                   u32 err_code)
2338 {
2339         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2340
2341         ++vcpu->stat.pf_guest;
2342
2343         if (is_page_fault(vect_info)) {
2344                 printk(KERN_DEBUG "inject_page_fault: "
2345                        "double fault 0x%lx @ 0x%lx\n",
2346                        addr, vmcs_readl(GUEST_RIP));
2347                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2348                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2349                              DF_VECTOR |
2350                              INTR_TYPE_EXCEPTION |
2351                              INTR_INFO_DELIEVER_CODE_MASK |
2352                              INTR_INFO_VALID_MASK);
2353                 return;
2354         }
2355         vcpu->cr2 = addr;
2356         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2357         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2358                      PF_VECTOR |
2359                      INTR_TYPE_EXCEPTION |
2360                      INTR_INFO_DELIEVER_CODE_MASK |
2361                      INTR_INFO_VALID_MASK);
2362
2363 }
2364
2365 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2366 {
2367         struct vcpu_vmx *vmx = to_vmx(vcpu);
2368
2369         if (vmx->vmcs) {
2370                 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2371                 free_vmcs(vmx->vmcs);
2372                 vmx->vmcs = NULL;
2373         }
2374 }
2375
2376 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2377 {
2378         struct vcpu_vmx *vmx = to_vmx(vcpu);
2379
2380         vmx_free_vmcs(vcpu);
2381         kfree(vmx->host_msrs);
2382         kfree(vmx->guest_msrs);
2383         kvm_vcpu_uninit(vcpu);
2384         kmem_cache_free(kvm_vcpu_cache, vmx);
2385 }
2386
2387 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2388 {
2389         int err;
2390         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2391         int cpu;
2392
2393         if (!vmx)
2394                 return ERR_PTR(-ENOMEM);
2395
2396         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2397         if (err)
2398                 goto free_vcpu;
2399
2400         if (irqchip_in_kernel(kvm)) {
2401                 err = kvm_create_lapic(&vmx->vcpu);
2402                 if (err < 0)
2403                         goto free_vcpu;
2404         }
2405
2406         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2407         if (!vmx->guest_msrs) {
2408                 err = -ENOMEM;
2409                 goto uninit_vcpu;
2410         }
2411
2412         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2413         if (!vmx->host_msrs)
2414                 goto free_guest_msrs;
2415
2416         vmx->vmcs = alloc_vmcs();
2417         if (!vmx->vmcs)
2418                 goto free_msrs;
2419
2420         vmcs_clear(vmx->vmcs);
2421
2422         cpu = get_cpu();
2423         vmx_vcpu_load(&vmx->vcpu, cpu);
2424         err = vmx_vcpu_setup(vmx);
2425         vmx_vcpu_put(&vmx->vcpu);
2426         put_cpu();
2427         if (err)
2428                 goto free_vmcs;
2429
2430         return &vmx->vcpu;
2431
2432 free_vmcs:
2433         free_vmcs(vmx->vmcs);
2434 free_msrs:
2435         kfree(vmx->host_msrs);
2436 free_guest_msrs:
2437         kfree(vmx->guest_msrs);
2438 uninit_vcpu:
2439         kvm_vcpu_uninit(&vmx->vcpu);
2440 free_vcpu:
2441         kmem_cache_free(kvm_vcpu_cache, vmx);
2442         return ERR_PTR(err);
2443 }
2444
2445 static void __init vmx_check_processor_compat(void *rtn)
2446 {
2447         struct vmcs_config vmcs_conf;
2448
2449         *(int *)rtn = 0;
2450         if (setup_vmcs_config(&vmcs_conf) < 0)
2451                 *(int *)rtn = -EIO;
2452         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2453                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2454                                 smp_processor_id());
2455                 *(int *)rtn = -EIO;
2456         }
2457 }
2458
2459 static struct kvm_x86_ops vmx_x86_ops = {
2460         .cpu_has_kvm_support = cpu_has_kvm_support,
2461         .disabled_by_bios = vmx_disabled_by_bios,
2462         .hardware_setup = hardware_setup,
2463         .hardware_unsetup = hardware_unsetup,
2464         .check_processor_compatibility = vmx_check_processor_compat,
2465         .hardware_enable = hardware_enable,
2466         .hardware_disable = hardware_disable,
2467
2468         .vcpu_create = vmx_create_vcpu,
2469         .vcpu_free = vmx_free_vcpu,
2470         .vcpu_reset = vmx_vcpu_reset,
2471
2472         .prepare_guest_switch = vmx_save_host_state,
2473         .vcpu_load = vmx_vcpu_load,
2474         .vcpu_put = vmx_vcpu_put,
2475         .vcpu_decache = vmx_vcpu_decache,
2476
2477         .set_guest_debug = set_guest_debug,
2478         .guest_debug_pre = kvm_guest_debug_pre,
2479         .get_msr = vmx_get_msr,
2480         .set_msr = vmx_set_msr,
2481         .get_segment_base = vmx_get_segment_base,
2482         .get_segment = vmx_get_segment,
2483         .set_segment = vmx_set_segment,
2484         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2485         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2486         .set_cr0 = vmx_set_cr0,
2487         .set_cr3 = vmx_set_cr3,
2488         .set_cr4 = vmx_set_cr4,
2489 #ifdef CONFIG_X86_64
2490         .set_efer = vmx_set_efer,
2491 #endif
2492         .get_idt = vmx_get_idt,
2493         .set_idt = vmx_set_idt,
2494         .get_gdt = vmx_get_gdt,
2495         .set_gdt = vmx_set_gdt,
2496         .cache_regs = vcpu_load_rsp_rip,
2497         .decache_regs = vcpu_put_rsp_rip,
2498         .get_rflags = vmx_get_rflags,
2499         .set_rflags = vmx_set_rflags,
2500
2501         .tlb_flush = vmx_flush_tlb,
2502         .inject_page_fault = vmx_inject_page_fault,
2503
2504         .inject_gp = vmx_inject_gp,
2505
2506         .run = vmx_vcpu_run,
2507         .handle_exit = kvm_handle_exit,
2508         .skip_emulated_instruction = skip_emulated_instruction,
2509         .patch_hypercall = vmx_patch_hypercall,
2510         .get_irq = vmx_get_irq,
2511         .set_irq = vmx_inject_irq,
2512         .inject_pending_irq = vmx_intr_assist,
2513         .inject_pending_vectors = do_interrupt_requests,
2514 };
2515
2516 static int __init vmx_init(void)
2517 {
2518         void *iova;
2519         int r;
2520
2521         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2522         if (!vmx_io_bitmap_a)
2523                 return -ENOMEM;
2524
2525         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2526         if (!vmx_io_bitmap_b) {
2527                 r = -ENOMEM;
2528                 goto out;
2529         }
2530
2531         /*
2532          * Allow direct access to the PC debug port (it is often used for I/O
2533          * delays, but the vmexits simply slow things down).
2534          */
2535         iova = kmap(vmx_io_bitmap_a);
2536         memset(iova, 0xff, PAGE_SIZE);
2537         clear_bit(0x80, iova);
2538         kunmap(vmx_io_bitmap_a);
2539
2540         iova = kmap(vmx_io_bitmap_b);
2541         memset(iova, 0xff, PAGE_SIZE);
2542         kunmap(vmx_io_bitmap_b);
2543
2544         r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2545         if (r)
2546                 goto out1;
2547
2548         return 0;
2549
2550 out1:
2551         __free_page(vmx_io_bitmap_b);
2552 out:
2553         __free_page(vmx_io_bitmap_a);
2554         return r;
2555 }
2556
2557 static void __exit vmx_exit(void)
2558 {
2559         __free_page(vmx_io_bitmap_b);
2560         __free_page(vmx_io_bitmap_a);
2561
2562         kvm_exit_x86();
2563 }
2564
2565 module_init(vmx_init)
2566 module_exit(vmx_exit)