KVM: Add support for in-kernel PIC emulation
[pandora-kernel.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <linux/sched.h>
27
28 #include <asm/desc.h>
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 #define IOPM_ALLOC_ORDER 2
34 #define MSRPM_ALLOC_ORDER 1
35
36 #define DB_VECTOR 1
37 #define UD_VECTOR 6
38 #define GP_VECTOR 13
39
40 #define DR7_GD_MASK (1 << 13)
41 #define DR6_BD_MASK (1 << 13)
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define KVM_EFER_LMA (1 << 10)
47 #define KVM_EFER_LME (1 << 8)
48
49 #define SVM_FEATURE_NPT  (1 << 0)
50 #define SVM_FEATURE_LBRV (1 << 1)
51 #define SVM_DEATURE_SVML (1 << 2)
52
53 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
54 {
55         return container_of(vcpu, struct vcpu_svm, vcpu);
56 }
57
58 unsigned long iopm_base;
59 unsigned long msrpm_base;
60
61 struct kvm_ldttss_desc {
62         u16 limit0;
63         u16 base0;
64         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
65         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
66         u32 base3;
67         u32 zero1;
68 } __attribute__((packed));
69
70 struct svm_cpu_data {
71         int cpu;
72
73         u64 asid_generation;
74         u32 max_asid;
75         u32 next_asid;
76         struct kvm_ldttss_desc *tss_desc;
77
78         struct page *save_area;
79 };
80
81 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
82 static uint32_t svm_features;
83
84 struct svm_init_data {
85         int cpu;
86         int r;
87 };
88
89 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
90
91 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
92 #define MSRS_RANGE_SIZE 2048
93 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
94
95 #define MAX_INST_SIZE 15
96
97 static inline u32 svm_has(u32 feat)
98 {
99         return svm_features & feat;
100 }
101
102 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
103 {
104         int word_index = __ffs(vcpu->irq_summary);
105         int bit_index = __ffs(vcpu->irq_pending[word_index]);
106         int irq = word_index * BITS_PER_LONG + bit_index;
107
108         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
109         if (!vcpu->irq_pending[word_index])
110                 clear_bit(word_index, &vcpu->irq_summary);
111         return irq;
112 }
113
114 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
115 {
116         set_bit(irq, vcpu->irq_pending);
117         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
118 }
119
120 static inline void clgi(void)
121 {
122         asm volatile (SVM_CLGI);
123 }
124
125 static inline void stgi(void)
126 {
127         asm volatile (SVM_STGI);
128 }
129
130 static inline void invlpga(unsigned long addr, u32 asid)
131 {
132         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
133 }
134
135 static inline unsigned long kvm_read_cr2(void)
136 {
137         unsigned long cr2;
138
139         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
140         return cr2;
141 }
142
143 static inline void kvm_write_cr2(unsigned long val)
144 {
145         asm volatile ("mov %0, %%cr2" :: "r" (val));
146 }
147
148 static inline unsigned long read_dr6(void)
149 {
150         unsigned long dr6;
151
152         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
153         return dr6;
154 }
155
156 static inline void write_dr6(unsigned long val)
157 {
158         asm volatile ("mov %0, %%dr6" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr7(void)
162 {
163         unsigned long dr7;
164
165         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
166         return dr7;
167 }
168
169 static inline void write_dr7(unsigned long val)
170 {
171         asm volatile ("mov %0, %%dr7" :: "r" (val));
172 }
173
174 static inline void force_new_asid(struct kvm_vcpu *vcpu)
175 {
176         to_svm(vcpu)->asid_generation--;
177 }
178
179 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
180 {
181         force_new_asid(vcpu);
182 }
183
184 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
185 {
186         if (!(efer & KVM_EFER_LMA))
187                 efer &= ~KVM_EFER_LME;
188
189         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
190         vcpu->shadow_efer = efer;
191 }
192
193 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
194 {
195         struct vcpu_svm *svm = to_svm(vcpu);
196
197         svm->vmcb->control.event_inj =          SVM_EVTINJ_VALID |
198                                                 SVM_EVTINJ_VALID_ERR |
199                                                 SVM_EVTINJ_TYPE_EXEPT |
200                                                 GP_VECTOR;
201         svm->vmcb->control.event_inj_err = error_code;
202 }
203
204 static void inject_ud(struct kvm_vcpu *vcpu)
205 {
206         to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
207                                                 SVM_EVTINJ_TYPE_EXEPT |
208                                                 UD_VECTOR;
209 }
210
211 static int is_page_fault(uint32_t info)
212 {
213         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
214         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
215 }
216
217 static int is_external_interrupt(u32 info)
218 {
219         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
221 }
222
223 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
224 {
225         struct vcpu_svm *svm = to_svm(vcpu);
226
227         if (!svm->next_rip) {
228                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
229                 return;
230         }
231         if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) {
232                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
233                        __FUNCTION__,
234                        svm->vmcb->save.rip,
235                        svm->next_rip);
236         }
237
238         vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
239         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241         vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246         uint32_t eax, ebx, ecx, edx;
247
248         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249                 printk(KERN_INFO "has_svm: not amd\n");
250                 return 0;
251         }
252
253         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254         if (eax < SVM_CPUID_FUNC) {
255                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256                 return 0;
257         }
258
259         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261                 printk(KERN_DEBUG "has_svm: svm not available\n");
262                 return 0;
263         }
264         return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269         struct svm_cpu_data *svm_data
270                 = per_cpu(svm_data, raw_smp_processor_id());
271
272         if (svm_data) {
273                 uint64_t efer;
274
275                 wrmsrl(MSR_VM_HSAVE_PA, 0);
276                 rdmsrl(MSR_EFER, efer);
277                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279                 __free_page(svm_data->save_area);
280                 kfree(svm_data);
281         }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287         struct svm_cpu_data *svm_data;
288         uint64_t efer;
289 #ifdef CONFIG_X86_64
290         struct desc_ptr gdt_descr;
291 #else
292         struct Xgt_desc_struct gdt_descr;
293 #endif
294         struct desc_struct *gdt;
295         int me = raw_smp_processor_id();
296
297         if (!has_svm()) {
298                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299                 return;
300         }
301         svm_data = per_cpu(svm_data, me);
302
303         if (!svm_data) {
304                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305                        me);
306                 return;
307         }
308
309         svm_data->asid_generation = 1;
310         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311         svm_data->next_asid = svm_data->max_asid + 1;
312         svm_features = cpuid_edx(SVM_CPUID_FUNC);
313
314         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
315         gdt = (struct desc_struct *)gdt_descr.address;
316         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318         rdmsrl(MSR_EFER, efer);
319         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321         wrmsrl(MSR_VM_HSAVE_PA,
322                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327         struct svm_cpu_data *svm_data;
328         int r;
329
330         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331         if (!svm_data)
332                 return -ENOMEM;
333         svm_data->cpu = cpu;
334         svm_data->save_area = alloc_page(GFP_KERNEL);
335         r = -ENOMEM;
336         if (!svm_data->save_area)
337                 goto err_1;
338
339         per_cpu(svm_data, cpu) = svm_data;
340
341         return 0;
342
343 err_1:
344         kfree(svm_data);
345         return r;
346
347 }
348
349 static void set_msr_interception(u32 *msrpm, unsigned msr,
350                                  int read, int write)
351 {
352         int i;
353
354         for (i = 0; i < NUM_MSR_MAPS; i++) {
355                 if (msr >= msrpm_ranges[i] &&
356                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358                                           msrpm_ranges[i]) * 2;
359
360                         u32 *base = msrpm + (msr_offset / 32);
361                         u32 msr_shift = msr_offset % 32;
362                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363                         *base = (*base & ~(0x3 << msr_shift)) |
364                                 (mask << msr_shift);
365                         return;
366                 }
367         }
368         BUG();
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373         int cpu;
374         struct page *iopm_pages;
375         struct page *msrpm_pages;
376         void *iopm_va, *msrpm_va;
377         int r;
378
379         kvm_emulator_want_group7_invlpg();
380
381         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
382
383         if (!iopm_pages)
384                 return -ENOMEM;
385
386         iopm_va = page_address(iopm_pages);
387         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
388         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
389         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
390
391
392         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
393
394         r = -ENOMEM;
395         if (!msrpm_pages)
396                 goto err_1;
397
398         msrpm_va = page_address(msrpm_pages);
399         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
400         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
401
402 #ifdef CONFIG_X86_64
403         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
404         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
405         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
406         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
407         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
408         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
409 #endif
410         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
411         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
412         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
413         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
414
415         for_each_online_cpu(cpu) {
416                 r = svm_cpu_init(cpu);
417                 if (r)
418                         goto err_2;
419         }
420         return 0;
421
422 err_2:
423         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
424         msrpm_base = 0;
425 err_1:
426         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
427         iopm_base = 0;
428         return r;
429 }
430
431 static __exit void svm_hardware_unsetup(void)
432 {
433         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
434         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
435         iopm_base = msrpm_base = 0;
436 }
437
438 static void init_seg(struct vmcb_seg *seg)
439 {
440         seg->selector = 0;
441         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
442                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
443         seg->limit = 0xffff;
444         seg->base = 0;
445 }
446
447 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
448 {
449         seg->selector = 0;
450         seg->attrib = SVM_SELECTOR_P_MASK | type;
451         seg->limit = 0xffff;
452         seg->base = 0;
453 }
454
455 static void init_vmcb(struct vmcb *vmcb)
456 {
457         struct vmcb_control_area *control = &vmcb->control;
458         struct vmcb_save_area *save = &vmcb->save;
459
460         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
461                                         INTERCEPT_CR3_MASK |
462                                         INTERCEPT_CR4_MASK;
463
464         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
465                                         INTERCEPT_CR3_MASK |
466                                         INTERCEPT_CR4_MASK;
467
468         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
469                                         INTERCEPT_DR1_MASK |
470                                         INTERCEPT_DR2_MASK |
471                                         INTERCEPT_DR3_MASK;
472
473         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
474                                         INTERCEPT_DR1_MASK |
475                                         INTERCEPT_DR2_MASK |
476                                         INTERCEPT_DR3_MASK |
477                                         INTERCEPT_DR5_MASK |
478                                         INTERCEPT_DR7_MASK;
479
480         control->intercept_exceptions = 1 << PF_VECTOR;
481
482
483         control->intercept =    (1ULL << INTERCEPT_INTR) |
484                                 (1ULL << INTERCEPT_NMI) |
485                                 (1ULL << INTERCEPT_SMI) |
486                 /*
487                  * selective cr0 intercept bug?
488                  *      0:   0f 22 d8                mov    %eax,%cr3
489                  *      3:   0f 20 c0                mov    %cr0,%eax
490                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
491                  *      b:   0f 22 c0                mov    %eax,%cr0
492                  * set cr3 ->interception
493                  * get cr0 ->interception
494                  * set cr0 -> no interception
495                  */
496                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
497                                 (1ULL << INTERCEPT_CPUID) |
498                                 (1ULL << INTERCEPT_HLT) |
499                                 (1ULL << INTERCEPT_INVLPGA) |
500                                 (1ULL << INTERCEPT_IOIO_PROT) |
501                                 (1ULL << INTERCEPT_MSR_PROT) |
502                                 (1ULL << INTERCEPT_TASK_SWITCH) |
503                                 (1ULL << INTERCEPT_SHUTDOWN) |
504                                 (1ULL << INTERCEPT_VMRUN) |
505                                 (1ULL << INTERCEPT_VMMCALL) |
506                                 (1ULL << INTERCEPT_VMLOAD) |
507                                 (1ULL << INTERCEPT_VMSAVE) |
508                                 (1ULL << INTERCEPT_STGI) |
509                                 (1ULL << INTERCEPT_CLGI) |
510                                 (1ULL << INTERCEPT_SKINIT) |
511                                 (1ULL << INTERCEPT_MONITOR) |
512                                 (1ULL << INTERCEPT_MWAIT);
513
514         control->iopm_base_pa = iopm_base;
515         control->msrpm_base_pa = msrpm_base;
516         control->tsc_offset = 0;
517         control->int_ctl = V_INTR_MASKING_MASK;
518
519         init_seg(&save->es);
520         init_seg(&save->ss);
521         init_seg(&save->ds);
522         init_seg(&save->fs);
523         init_seg(&save->gs);
524
525         save->cs.selector = 0xf000;
526         /* Executable/Readable Code Segment */
527         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
528                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
529         save->cs.limit = 0xffff;
530         /*
531          * cs.base should really be 0xffff0000, but vmx can't handle that, so
532          * be consistent with it.
533          *
534          * Replace when we have real mode working for vmx.
535          */
536         save->cs.base = 0xf0000;
537
538         save->gdtr.limit = 0xffff;
539         save->idtr.limit = 0xffff;
540
541         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
542         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
543
544         save->efer = MSR_EFER_SVME_MASK;
545
546         save->dr6 = 0xffff0ff0;
547         save->dr7 = 0x400;
548         save->rflags = 2;
549         save->rip = 0x0000fff0;
550
551         /*
552          * cr0 val on cpu init should be 0x60000010, we enable cpu
553          * cache by default. the orderly way is to enable cache in bios.
554          */
555         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
556         save->cr4 = X86_CR4_PAE;
557         /* rdx = ?? */
558 }
559
560 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
561 {
562         struct vcpu_svm *svm;
563         struct page *page;
564         int err;
565
566         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
567         if (!svm) {
568                 err = -ENOMEM;
569                 goto out;
570         }
571
572         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
573         if (err)
574                 goto free_svm;
575
576         page = alloc_page(GFP_KERNEL);
577         if (!page) {
578                 err = -ENOMEM;
579                 goto uninit;
580         }
581
582         svm->vmcb = page_address(page);
583         clear_page(svm->vmcb);
584         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
585         svm->asid_generation = 0;
586         memset(svm->db_regs, 0, sizeof(svm->db_regs));
587         init_vmcb(svm->vmcb);
588
589         fx_init(&svm->vcpu);
590         svm->vcpu.fpu_active = 1;
591         svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
592         if (svm->vcpu.vcpu_id == 0)
593                 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
594
595         return &svm->vcpu;
596
597 uninit:
598         kvm_vcpu_uninit(&svm->vcpu);
599 free_svm:
600         kmem_cache_free(kvm_vcpu_cache, svm);
601 out:
602         return ERR_PTR(err);
603 }
604
605 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
606 {
607         struct vcpu_svm *svm = to_svm(vcpu);
608
609         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
610         kvm_vcpu_uninit(vcpu);
611         kmem_cache_free(kvm_vcpu_cache, svm);
612 }
613
614 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
615 {
616         struct vcpu_svm *svm = to_svm(vcpu);
617         int i;
618
619         if (unlikely(cpu != vcpu->cpu)) {
620                 u64 tsc_this, delta;
621
622                 /*
623                  * Make sure that the guest sees a monotonically
624                  * increasing TSC.
625                  */
626                 rdtscll(tsc_this);
627                 delta = vcpu->host_tsc - tsc_this;
628                 svm->vmcb->control.tsc_offset += delta;
629                 vcpu->cpu = cpu;
630         }
631
632         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
633                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
634 }
635
636 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
637 {
638         struct vcpu_svm *svm = to_svm(vcpu);
639         int i;
640
641         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
642                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
643
644         rdtscll(vcpu->host_tsc);
645 }
646
647 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
648 {
649 }
650
651 static void svm_cache_regs(struct kvm_vcpu *vcpu)
652 {
653         struct vcpu_svm *svm = to_svm(vcpu);
654
655         vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
656         vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
657         vcpu->rip = svm->vmcb->save.rip;
658 }
659
660 static void svm_decache_regs(struct kvm_vcpu *vcpu)
661 {
662         struct vcpu_svm *svm = to_svm(vcpu);
663         svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
664         svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
665         svm->vmcb->save.rip = vcpu->rip;
666 }
667
668 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
669 {
670         return to_svm(vcpu)->vmcb->save.rflags;
671 }
672
673 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
674 {
675         to_svm(vcpu)->vmcb->save.rflags = rflags;
676 }
677
678 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
679 {
680         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
681
682         switch (seg) {
683         case VCPU_SREG_CS: return &save->cs;
684         case VCPU_SREG_DS: return &save->ds;
685         case VCPU_SREG_ES: return &save->es;
686         case VCPU_SREG_FS: return &save->fs;
687         case VCPU_SREG_GS: return &save->gs;
688         case VCPU_SREG_SS: return &save->ss;
689         case VCPU_SREG_TR: return &save->tr;
690         case VCPU_SREG_LDTR: return &save->ldtr;
691         }
692         BUG();
693         return NULL;
694 }
695
696 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
697 {
698         struct vmcb_seg *s = svm_seg(vcpu, seg);
699
700         return s->base;
701 }
702
703 static void svm_get_segment(struct kvm_vcpu *vcpu,
704                             struct kvm_segment *var, int seg)
705 {
706         struct vmcb_seg *s = svm_seg(vcpu, seg);
707
708         var->base = s->base;
709         var->limit = s->limit;
710         var->selector = s->selector;
711         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
712         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
713         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
714         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
715         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
716         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
717         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
718         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
719         var->unusable = !var->present;
720 }
721
722 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
723 {
724         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
725
726         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
727         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
728 }
729
730 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
731 {
732         struct vcpu_svm *svm = to_svm(vcpu);
733
734         dt->limit = svm->vmcb->save.idtr.limit;
735         dt->base = svm->vmcb->save.idtr.base;
736 }
737
738 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
739 {
740         struct vcpu_svm *svm = to_svm(vcpu);
741
742         svm->vmcb->save.idtr.limit = dt->limit;
743         svm->vmcb->save.idtr.base = dt->base ;
744 }
745
746 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
747 {
748         struct vcpu_svm *svm = to_svm(vcpu);
749
750         dt->limit = svm->vmcb->save.gdtr.limit;
751         dt->base = svm->vmcb->save.gdtr.base;
752 }
753
754 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
755 {
756         struct vcpu_svm *svm = to_svm(vcpu);
757
758         svm->vmcb->save.gdtr.limit = dt->limit;
759         svm->vmcb->save.gdtr.base = dt->base ;
760 }
761
762 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
763 {
764 }
765
766 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
767 {
768         struct vcpu_svm *svm = to_svm(vcpu);
769
770 #ifdef CONFIG_X86_64
771         if (vcpu->shadow_efer & KVM_EFER_LME) {
772                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
773                         vcpu->shadow_efer |= KVM_EFER_LMA;
774                         svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
775                 }
776
777                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
778                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
779                         svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
780                 }
781         }
782 #endif
783         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
784                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
785                 vcpu->fpu_active = 1;
786         }
787
788         vcpu->cr0 = cr0;
789         cr0 |= X86_CR0_PG | X86_CR0_WP;
790         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
791         svm->vmcb->save.cr0 = cr0;
792 }
793
794 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
795 {
796        vcpu->cr4 = cr4;
797        to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
798 }
799
800 static void svm_set_segment(struct kvm_vcpu *vcpu,
801                             struct kvm_segment *var, int seg)
802 {
803         struct vcpu_svm *svm = to_svm(vcpu);
804         struct vmcb_seg *s = svm_seg(vcpu, seg);
805
806         s->base = var->base;
807         s->limit = var->limit;
808         s->selector = var->selector;
809         if (var->unusable)
810                 s->attrib = 0;
811         else {
812                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
813                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
814                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
815                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
816                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
817                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
818                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
819                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
820         }
821         if (seg == VCPU_SREG_CS)
822                 svm->vmcb->save.cpl
823                         = (svm->vmcb->save.cs.attrib
824                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
825
826 }
827
828 /* FIXME:
829
830         svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
831         svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
832
833 */
834
835 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
836 {
837         return -EOPNOTSUPP;
838 }
839
840 static void load_host_msrs(struct kvm_vcpu *vcpu)
841 {
842 #ifdef CONFIG_X86_64
843         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
844 #endif
845 }
846
847 static void save_host_msrs(struct kvm_vcpu *vcpu)
848 {
849 #ifdef CONFIG_X86_64
850         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
851 #endif
852 }
853
854 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
855 {
856         if (svm_data->next_asid > svm_data->max_asid) {
857                 ++svm_data->asid_generation;
858                 svm_data->next_asid = 1;
859                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
860         }
861
862         svm->vcpu.cpu = svm_data->cpu;
863         svm->asid_generation = svm_data->asid_generation;
864         svm->vmcb->control.asid = svm_data->next_asid++;
865 }
866
867 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
868 {
869         invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed?
870 }
871
872 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
873 {
874         return to_svm(vcpu)->db_regs[dr];
875 }
876
877 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
878                        int *exception)
879 {
880         struct vcpu_svm *svm = to_svm(vcpu);
881
882         *exception = 0;
883
884         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
885                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
886                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
887                 *exception = DB_VECTOR;
888                 return;
889         }
890
891         switch (dr) {
892         case 0 ... 3:
893                 svm->db_regs[dr] = value;
894                 return;
895         case 4 ... 5:
896                 if (vcpu->cr4 & X86_CR4_DE) {
897                         *exception = UD_VECTOR;
898                         return;
899                 }
900         case 7: {
901                 if (value & ~((1ULL << 32) - 1)) {
902                         *exception = GP_VECTOR;
903                         return;
904                 }
905                 svm->vmcb->save.dr7 = value;
906                 return;
907         }
908         default:
909                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
910                        __FUNCTION__, dr);
911                 *exception = UD_VECTOR;
912                 return;
913         }
914 }
915
916 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
917 {
918         u32 exit_int_info = svm->vmcb->control.exit_int_info;
919         struct kvm *kvm = svm->vcpu.kvm;
920         u64 fault_address;
921         u32 error_code;
922         enum emulation_result er;
923         int r;
924
925         if (!irqchip_in_kernel(kvm) &&
926                 is_external_interrupt(exit_int_info))
927                 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
928
929         mutex_lock(&kvm->lock);
930
931         fault_address  = svm->vmcb->control.exit_info_2;
932         error_code = svm->vmcb->control.exit_info_1;
933         r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
934         if (r < 0) {
935                 mutex_unlock(&kvm->lock);
936                 return r;
937         }
938         if (!r) {
939                 mutex_unlock(&kvm->lock);
940                 return 1;
941         }
942         er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
943                                  error_code);
944         mutex_unlock(&kvm->lock);
945
946         switch (er) {
947         case EMULATE_DONE:
948                 return 1;
949         case EMULATE_DO_MMIO:
950                 ++svm->vcpu.stat.mmio_exits;
951                 return 0;
952         case EMULATE_FAIL:
953                 vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__);
954                 break;
955         default:
956                 BUG();
957         }
958
959         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
960         return 0;
961 }
962
963 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
964 {
965         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
966         if (!(svm->vcpu.cr0 & X86_CR0_TS))
967                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
968         svm->vcpu.fpu_active = 1;
969
970         return 1;
971 }
972
973 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
974 {
975         /*
976          * VMCB is undefined after a SHUTDOWN intercept
977          * so reinitialize it.
978          */
979         clear_page(svm->vmcb);
980         init_vmcb(svm->vmcb);
981
982         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
983         return 0;
984 }
985
986 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
987 {
988         u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
989         int size, down, in, string, rep;
990         unsigned port;
991
992         ++svm->vcpu.stat.io_exits;
993
994         svm->next_rip = svm->vmcb->control.exit_info_2;
995
996         string = (io_info & SVM_IOIO_STR_MASK) != 0;
997
998         if (string) {
999                 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1000                         return 0;
1001                 return 1;
1002         }
1003
1004         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1005         port = io_info >> 16;
1006         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1007         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1008         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1009
1010         return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1011 }
1012
1013 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1014 {
1015         return 1;
1016 }
1017
1018 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1019 {
1020         svm->next_rip = svm->vmcb->save.rip + 1;
1021         skip_emulated_instruction(&svm->vcpu);
1022         return kvm_emulate_halt(&svm->vcpu);
1023 }
1024
1025 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1026 {
1027         svm->next_rip = svm->vmcb->save.rip + 3;
1028         skip_emulated_instruction(&svm->vcpu);
1029         return kvm_hypercall(&svm->vcpu, kvm_run);
1030 }
1031
1032 static int invalid_op_interception(struct vcpu_svm *svm,
1033                                    struct kvm_run *kvm_run)
1034 {
1035         inject_ud(&svm->vcpu);
1036         return 1;
1037 }
1038
1039 static int task_switch_interception(struct vcpu_svm *svm,
1040                                     struct kvm_run *kvm_run)
1041 {
1042         pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1043         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1044         return 0;
1045 }
1046
1047 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1048 {
1049         svm->next_rip = svm->vmcb->save.rip + 2;
1050         kvm_emulate_cpuid(&svm->vcpu);
1051         return 1;
1052 }
1053
1054 static int emulate_on_interception(struct vcpu_svm *svm,
1055                                    struct kvm_run *kvm_run)
1056 {
1057         if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE)
1058                 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1059         return 1;
1060 }
1061
1062 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1063 {
1064         struct vcpu_svm *svm = to_svm(vcpu);
1065
1066         switch (ecx) {
1067         case MSR_IA32_TIME_STAMP_COUNTER: {
1068                 u64 tsc;
1069
1070                 rdtscll(tsc);
1071                 *data = svm->vmcb->control.tsc_offset + tsc;
1072                 break;
1073         }
1074         case MSR_K6_STAR:
1075                 *data = svm->vmcb->save.star;
1076                 break;
1077 #ifdef CONFIG_X86_64
1078         case MSR_LSTAR:
1079                 *data = svm->vmcb->save.lstar;
1080                 break;
1081         case MSR_CSTAR:
1082                 *data = svm->vmcb->save.cstar;
1083                 break;
1084         case MSR_KERNEL_GS_BASE:
1085                 *data = svm->vmcb->save.kernel_gs_base;
1086                 break;
1087         case MSR_SYSCALL_MASK:
1088                 *data = svm->vmcb->save.sfmask;
1089                 break;
1090 #endif
1091         case MSR_IA32_SYSENTER_CS:
1092                 *data = svm->vmcb->save.sysenter_cs;
1093                 break;
1094         case MSR_IA32_SYSENTER_EIP:
1095                 *data = svm->vmcb->save.sysenter_eip;
1096                 break;
1097         case MSR_IA32_SYSENTER_ESP:
1098                 *data = svm->vmcb->save.sysenter_esp;
1099                 break;
1100         default:
1101                 return kvm_get_msr_common(vcpu, ecx, data);
1102         }
1103         return 0;
1104 }
1105
1106 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1107 {
1108         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1109         u64 data;
1110
1111         if (svm_get_msr(&svm->vcpu, ecx, &data))
1112                 svm_inject_gp(&svm->vcpu, 0);
1113         else {
1114                 svm->vmcb->save.rax = data & 0xffffffff;
1115                 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1116                 svm->next_rip = svm->vmcb->save.rip + 2;
1117                 skip_emulated_instruction(&svm->vcpu);
1118         }
1119         return 1;
1120 }
1121
1122 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1123 {
1124         struct vcpu_svm *svm = to_svm(vcpu);
1125
1126         switch (ecx) {
1127         case MSR_IA32_TIME_STAMP_COUNTER: {
1128                 u64 tsc;
1129
1130                 rdtscll(tsc);
1131                 svm->vmcb->control.tsc_offset = data - tsc;
1132                 break;
1133         }
1134         case MSR_K6_STAR:
1135                 svm->vmcb->save.star = data;
1136                 break;
1137 #ifdef CONFIG_X86_64
1138         case MSR_LSTAR:
1139                 svm->vmcb->save.lstar = data;
1140                 break;
1141         case MSR_CSTAR:
1142                 svm->vmcb->save.cstar = data;
1143                 break;
1144         case MSR_KERNEL_GS_BASE:
1145                 svm->vmcb->save.kernel_gs_base = data;
1146                 break;
1147         case MSR_SYSCALL_MASK:
1148                 svm->vmcb->save.sfmask = data;
1149                 break;
1150 #endif
1151         case MSR_IA32_SYSENTER_CS:
1152                 svm->vmcb->save.sysenter_cs = data;
1153                 break;
1154         case MSR_IA32_SYSENTER_EIP:
1155                 svm->vmcb->save.sysenter_eip = data;
1156                 break;
1157         case MSR_IA32_SYSENTER_ESP:
1158                 svm->vmcb->save.sysenter_esp = data;
1159                 break;
1160         default:
1161                 return kvm_set_msr_common(vcpu, ecx, data);
1162         }
1163         return 0;
1164 }
1165
1166 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1167 {
1168         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1169         u64 data = (svm->vmcb->save.rax & -1u)
1170                 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1171         svm->next_rip = svm->vmcb->save.rip + 2;
1172         if (svm_set_msr(&svm->vcpu, ecx, data))
1173                 svm_inject_gp(&svm->vcpu, 0);
1174         else
1175                 skip_emulated_instruction(&svm->vcpu);
1176         return 1;
1177 }
1178
1179 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1180 {
1181         if (svm->vmcb->control.exit_info_1)
1182                 return wrmsr_interception(svm, kvm_run);
1183         else
1184                 return rdmsr_interception(svm, kvm_run);
1185 }
1186
1187 static int interrupt_window_interception(struct vcpu_svm *svm,
1188                                    struct kvm_run *kvm_run)
1189 {
1190         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1191         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1192         /*
1193          * If the user space waits to inject interrupts, exit as soon as
1194          * possible
1195          */
1196         if (kvm_run->request_interrupt_window &&
1197             !svm->vcpu.irq_summary) {
1198                 ++svm->vcpu.stat.irq_window_exits;
1199                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1200                 return 0;
1201         }
1202
1203         return 1;
1204 }
1205
1206 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1207                                       struct kvm_run *kvm_run) = {
1208         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1209         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1210         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1211         /* for now: */
1212         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1213         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1214         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1215         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1216         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1217         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1218         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1219         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1220         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1221         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1222         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1223         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1224         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1225         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1226         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1227         [SVM_EXIT_INTR]                         = nop_on_interception,
1228         [SVM_EXIT_NMI]                          = nop_on_interception,
1229         [SVM_EXIT_SMI]                          = nop_on_interception,
1230         [SVM_EXIT_INIT]                         = nop_on_interception,
1231         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1232         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1233         [SVM_EXIT_CPUID]                        = cpuid_interception,
1234         [SVM_EXIT_HLT]                          = halt_interception,
1235         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1236         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1237         [SVM_EXIT_IOIO]                         = io_interception,
1238         [SVM_EXIT_MSR]                          = msr_interception,
1239         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1240         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1241         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1242         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1243         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1244         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1245         [SVM_EXIT_STGI]                         = invalid_op_interception,
1246         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1247         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1248         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1249         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1250 };
1251
1252
1253 static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1254 {
1255         u32 exit_code = svm->vmcb->control.exit_code;
1256
1257         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1258             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1259                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1260                        "exit_code 0x%x\n",
1261                        __FUNCTION__, svm->vmcb->control.exit_int_info,
1262                        exit_code);
1263
1264         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1265             || svm_exit_handlers[exit_code] == 0) {
1266                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1267                 kvm_run->hw.hardware_exit_reason = exit_code;
1268                 return 0;
1269         }
1270
1271         return svm_exit_handlers[exit_code](svm, kvm_run);
1272 }
1273
1274 static void reload_tss(struct kvm_vcpu *vcpu)
1275 {
1276         int cpu = raw_smp_processor_id();
1277
1278         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1279         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1280         load_TR_desc();
1281 }
1282
1283 static void pre_svm_run(struct vcpu_svm *svm)
1284 {
1285         int cpu = raw_smp_processor_id();
1286
1287         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1288
1289         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1290         if (svm->vcpu.cpu != cpu ||
1291             svm->asid_generation != svm_data->asid_generation)
1292                 new_asid(svm, svm_data);
1293 }
1294
1295
1296 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1297 {
1298         struct vmcb_control_area *control;
1299
1300         control = &svm->vmcb->control;
1301         control->int_vector = irq;
1302         control->int_ctl &= ~V_INTR_PRIO_MASK;
1303         control->int_ctl |= V_IRQ_MASK |
1304                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1305 }
1306
1307 static void svm_intr_assist(struct vcpu_svm *svm)
1308 {
1309         struct vmcb *vmcb = svm->vmcb;
1310         int intr_vector = -1;
1311
1312         if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1313             ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1314                 intr_vector = vmcb->control.exit_int_info &
1315                               SVM_EVTINJ_VEC_MASK;
1316                 vmcb->control.exit_int_info = 0;
1317                 svm_inject_irq(svm, intr_vector);
1318                 return;
1319         }
1320
1321         if (vmcb->control.int_ctl & V_IRQ_MASK)
1322                 return;
1323
1324         if (!kvm_cpu_has_interrupt(&svm->vcpu))
1325                 return;
1326
1327         if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1328             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1329             (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1330                 /* unable to deliver irq, set pending irq */
1331                 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1332                 svm_inject_irq(svm, 0x0);
1333                 return;
1334         }
1335         /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1336         intr_vector = kvm_cpu_get_interrupt(&svm->vcpu);
1337         svm_inject_irq(svm, intr_vector);
1338 }
1339
1340 static void kvm_reput_irq(struct vcpu_svm *svm)
1341 {
1342         struct kvm_vcpu *vcpu = &svm->vcpu;
1343         struct vmcb_control_area *control = &svm->vmcb->control;
1344
1345         if ((control->int_ctl & V_IRQ_MASK) && !irqchip_in_kernel(vcpu->kvm)) {
1346                 control->int_ctl &= ~V_IRQ_MASK;
1347                 push_irq(&svm->vcpu, control->int_vector);
1348         }
1349
1350         svm->vcpu.interrupt_window_open =
1351                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1352 }
1353
1354 static void svm_do_inject_vector(struct vcpu_svm *svm)
1355 {
1356         struct kvm_vcpu *vcpu = &svm->vcpu;
1357         int word_index = __ffs(vcpu->irq_summary);
1358         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1359         int irq = word_index * BITS_PER_LONG + bit_index;
1360
1361         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1362         if (!vcpu->irq_pending[word_index])
1363                 clear_bit(word_index, &vcpu->irq_summary);
1364         svm_inject_irq(svm, irq);
1365 }
1366
1367 static void do_interrupt_requests(struct vcpu_svm *svm,
1368                                        struct kvm_run *kvm_run)
1369 {
1370         struct vmcb_control_area *control = &svm->vmcb->control;
1371
1372         svm->vcpu.interrupt_window_open =
1373                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1374                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1375
1376         if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1377                 /*
1378                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1379                  */
1380                 svm_do_inject_vector(svm);
1381
1382         /*
1383          * Interrupts blocked.  Wait for unblock.
1384          */
1385         if (!svm->vcpu.interrupt_window_open &&
1386             (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) {
1387                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1388         } else
1389                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1390 }
1391
1392 static void post_kvm_run_save(struct vcpu_svm *svm,
1393                               struct kvm_run *kvm_run)
1394 {
1395         kvm_run->ready_for_interrupt_injection
1396                 = (svm->vcpu.interrupt_window_open &&
1397                    svm->vcpu.irq_summary == 0);
1398         kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1399         kvm_run->cr8 = svm->vcpu.cr8;
1400         kvm_run->apic_base = svm->vcpu.apic_base;
1401 }
1402
1403 /*
1404  * Check if userspace requested an interrupt window, and that the
1405  * interrupt window is open.
1406  *
1407  * No need to exit to userspace if we already have an interrupt queued.
1408  */
1409 static int dm_request_for_irq_injection(struct vcpu_svm *svm,
1410                                           struct kvm_run *kvm_run)
1411 {
1412         return (!svm->vcpu.irq_summary &&
1413                 kvm_run->request_interrupt_window &&
1414                 svm->vcpu.interrupt_window_open &&
1415                 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1416 }
1417
1418 static void save_db_regs(unsigned long *db_regs)
1419 {
1420         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1421         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1422         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1423         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1424 }
1425
1426 static void load_db_regs(unsigned long *db_regs)
1427 {
1428         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1429         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1430         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1431         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1432 }
1433
1434 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1435 {
1436         force_new_asid(vcpu);
1437 }
1438
1439 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1440 {
1441         struct vcpu_svm *svm = to_svm(vcpu);
1442         u16 fs_selector;
1443         u16 gs_selector;
1444         u16 ldt_selector;
1445         int r;
1446
1447 again:
1448         r = kvm_mmu_reload(vcpu);
1449         if (unlikely(r))
1450                 return r;
1451
1452         clgi();
1453
1454         if (signal_pending(current)) {
1455                 stgi();
1456                 ++vcpu->stat.signal_exits;
1457                 post_kvm_run_save(svm, kvm_run);
1458                 kvm_run->exit_reason = KVM_EXIT_INTR;
1459                 return -EINTR;
1460         }
1461
1462         if (irqchip_in_kernel(vcpu->kvm))
1463                 svm_intr_assist(svm);
1464         else if (!vcpu->mmio_read_completed)
1465                 do_interrupt_requests(svm, kvm_run);
1466
1467         vcpu->guest_mode = 1;
1468         if (vcpu->requests)
1469                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1470                     svm_flush_tlb(vcpu);
1471
1472         pre_svm_run(svm);
1473
1474         save_host_msrs(vcpu);
1475         fs_selector = read_fs();
1476         gs_selector = read_gs();
1477         ldt_selector = read_ldt();
1478         svm->host_cr2 = kvm_read_cr2();
1479         svm->host_dr6 = read_dr6();
1480         svm->host_dr7 = read_dr7();
1481         svm->vmcb->save.cr2 = vcpu->cr2;
1482
1483         if (svm->vmcb->save.dr7 & 0xff) {
1484                 write_dr7(0);
1485                 save_db_regs(svm->host_db_regs);
1486                 load_db_regs(svm->db_regs);
1487         }
1488
1489         if (vcpu->fpu_active) {
1490                 fx_save(&vcpu->host_fx_image);
1491                 fx_restore(&vcpu->guest_fx_image);
1492         }
1493
1494         asm volatile (
1495 #ifdef CONFIG_X86_64
1496                 "push %%rbx; push %%rcx; push %%rdx;"
1497                 "push %%rsi; push %%rdi; push %%rbp;"
1498                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1499                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1500 #else
1501                 "push %%ebx; push %%ecx; push %%edx;"
1502                 "push %%esi; push %%edi; push %%ebp;"
1503 #endif
1504
1505 #ifdef CONFIG_X86_64
1506                 "mov %c[rbx](%[svm]), %%rbx \n\t"
1507                 "mov %c[rcx](%[svm]), %%rcx \n\t"
1508                 "mov %c[rdx](%[svm]), %%rdx \n\t"
1509                 "mov %c[rsi](%[svm]), %%rsi \n\t"
1510                 "mov %c[rdi](%[svm]), %%rdi \n\t"
1511                 "mov %c[rbp](%[svm]), %%rbp \n\t"
1512                 "mov %c[r8](%[svm]),  %%r8  \n\t"
1513                 "mov %c[r9](%[svm]),  %%r9  \n\t"
1514                 "mov %c[r10](%[svm]), %%r10 \n\t"
1515                 "mov %c[r11](%[svm]), %%r11 \n\t"
1516                 "mov %c[r12](%[svm]), %%r12 \n\t"
1517                 "mov %c[r13](%[svm]), %%r13 \n\t"
1518                 "mov %c[r14](%[svm]), %%r14 \n\t"
1519                 "mov %c[r15](%[svm]), %%r15 \n\t"
1520 #else
1521                 "mov %c[rbx](%[svm]), %%ebx \n\t"
1522                 "mov %c[rcx](%[svm]), %%ecx \n\t"
1523                 "mov %c[rdx](%[svm]), %%edx \n\t"
1524                 "mov %c[rsi](%[svm]), %%esi \n\t"
1525                 "mov %c[rdi](%[svm]), %%edi \n\t"
1526                 "mov %c[rbp](%[svm]), %%ebp \n\t"
1527 #endif
1528
1529 #ifdef CONFIG_X86_64
1530                 /* Enter guest mode */
1531                 "push %%rax \n\t"
1532                 "mov %c[vmcb](%[svm]), %%rax \n\t"
1533                 SVM_VMLOAD "\n\t"
1534                 SVM_VMRUN "\n\t"
1535                 SVM_VMSAVE "\n\t"
1536                 "pop %%rax \n\t"
1537 #else
1538                 /* Enter guest mode */
1539                 "push %%eax \n\t"
1540                 "mov %c[vmcb](%[svm]), %%eax \n\t"
1541                 SVM_VMLOAD "\n\t"
1542                 SVM_VMRUN "\n\t"
1543                 SVM_VMSAVE "\n\t"
1544                 "pop %%eax \n\t"
1545 #endif
1546
1547                 /* Save guest registers, load host registers */
1548 #ifdef CONFIG_X86_64
1549                 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1550                 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1551                 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1552                 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1553                 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1554                 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1555                 "mov %%r8,  %c[r8](%[svm]) \n\t"
1556                 "mov %%r9,  %c[r9](%[svm]) \n\t"
1557                 "mov %%r10, %c[r10](%[svm]) \n\t"
1558                 "mov %%r11, %c[r11](%[svm]) \n\t"
1559                 "mov %%r12, %c[r12](%[svm]) \n\t"
1560                 "mov %%r13, %c[r13](%[svm]) \n\t"
1561                 "mov %%r14, %c[r14](%[svm]) \n\t"
1562                 "mov %%r15, %c[r15](%[svm]) \n\t"
1563
1564                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1565                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1566                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1567                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1568 #else
1569                 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1570                 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1571                 "mov %%edx, %c[rdx](%[svm]) \n\t"
1572                 "mov %%esi, %c[rsi](%[svm]) \n\t"
1573                 "mov %%edi, %c[rdi](%[svm]) \n\t"
1574                 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1575
1576                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1577                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1578 #endif
1579                 :
1580                 : [svm]"a"(svm),
1581                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1582                   [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
1583                   [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
1584                   [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
1585                   [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
1586                   [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
1587                   [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
1588 #ifdef CONFIG_X86_64
1589                   ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
1590                   [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
1591                   [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
1592                   [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
1593                   [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
1594                   [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
1595                   [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
1596                   [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
1597 #endif
1598                 : "cc", "memory" );
1599
1600         vcpu->guest_mode = 0;
1601
1602         if (vcpu->fpu_active) {
1603                 fx_save(&vcpu->guest_fx_image);
1604                 fx_restore(&vcpu->host_fx_image);
1605         }
1606
1607         if ((svm->vmcb->save.dr7 & 0xff))
1608                 load_db_regs(svm->host_db_regs);
1609
1610         vcpu->cr2 = svm->vmcb->save.cr2;
1611
1612         write_dr6(svm->host_dr6);
1613         write_dr7(svm->host_dr7);
1614         kvm_write_cr2(svm->host_cr2);
1615
1616         load_fs(fs_selector);
1617         load_gs(gs_selector);
1618         load_ldt(ldt_selector);
1619         load_host_msrs(vcpu);
1620
1621         reload_tss(vcpu);
1622
1623         /*
1624          * Profile KVM exit RIPs:
1625          */
1626         if (unlikely(prof_on == KVM_PROFILING))
1627                 profile_hit(KVM_PROFILING,
1628                         (void *)(unsigned long)svm->vmcb->save.rip);
1629
1630         stgi();
1631
1632         kvm_reput_irq(svm);
1633
1634         svm->next_rip = 0;
1635
1636         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1637                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1638                 kvm_run->fail_entry.hardware_entry_failure_reason
1639                         = svm->vmcb->control.exit_code;
1640                 post_kvm_run_save(svm, kvm_run);
1641                 return 0;
1642         }
1643
1644         r = handle_exit(svm, kvm_run);
1645         if (r > 0) {
1646                 if (dm_request_for_irq_injection(svm, kvm_run)) {
1647                         ++vcpu->stat.request_irq_exits;
1648                         post_kvm_run_save(svm, kvm_run);
1649                         kvm_run->exit_reason = KVM_EXIT_INTR;
1650                         return -EINTR;
1651                 }
1652                 kvm_resched(vcpu);
1653                 goto again;
1654         }
1655         post_kvm_run_save(svm, kvm_run);
1656         return r;
1657 }
1658
1659 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1660 {
1661         struct vcpu_svm *svm = to_svm(vcpu);
1662
1663         svm->vmcb->save.cr3 = root;
1664         force_new_asid(vcpu);
1665
1666         if (vcpu->fpu_active) {
1667                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1668                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1669                 vcpu->fpu_active = 0;
1670         }
1671 }
1672
1673 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1674                                   unsigned long  addr,
1675                                   uint32_t err_code)
1676 {
1677         struct vcpu_svm *svm = to_svm(vcpu);
1678         uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1679
1680         ++vcpu->stat.pf_guest;
1681
1682         if (is_page_fault(exit_int_info)) {
1683
1684                 svm->vmcb->control.event_inj_err = 0;
1685                 svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1686                                                 SVM_EVTINJ_VALID_ERR |
1687                                                 SVM_EVTINJ_TYPE_EXEPT |
1688                                                 DF_VECTOR;
1689                 return;
1690         }
1691         vcpu->cr2 = addr;
1692         svm->vmcb->save.cr2 = addr;
1693         svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1694                                         SVM_EVTINJ_VALID_ERR |
1695                                         SVM_EVTINJ_TYPE_EXEPT |
1696                                         PF_VECTOR;
1697         svm->vmcb->control.event_inj_err = err_code;
1698 }
1699
1700
1701 static int is_disabled(void)
1702 {
1703         u64 vm_cr;
1704
1705         rdmsrl(MSR_VM_CR, vm_cr);
1706         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1707                 return 1;
1708
1709         return 0;
1710 }
1711
1712 static void
1713 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1714 {
1715         /*
1716          * Patch in the VMMCALL instruction:
1717          */
1718         hypercall[0] = 0x0f;
1719         hypercall[1] = 0x01;
1720         hypercall[2] = 0xd9;
1721         hypercall[3] = 0xc3;
1722 }
1723
1724 static void svm_check_processor_compat(void *rtn)
1725 {
1726         *(int *)rtn = 0;
1727 }
1728
1729 static struct kvm_arch_ops svm_arch_ops = {
1730         .cpu_has_kvm_support = has_svm,
1731         .disabled_by_bios = is_disabled,
1732         .hardware_setup = svm_hardware_setup,
1733         .hardware_unsetup = svm_hardware_unsetup,
1734         .check_processor_compatibility = svm_check_processor_compat,
1735         .hardware_enable = svm_hardware_enable,
1736         .hardware_disable = svm_hardware_disable,
1737
1738         .vcpu_create = svm_create_vcpu,
1739         .vcpu_free = svm_free_vcpu,
1740
1741         .vcpu_load = svm_vcpu_load,
1742         .vcpu_put = svm_vcpu_put,
1743         .vcpu_decache = svm_vcpu_decache,
1744
1745         .set_guest_debug = svm_guest_debug,
1746         .get_msr = svm_get_msr,
1747         .set_msr = svm_set_msr,
1748         .get_segment_base = svm_get_segment_base,
1749         .get_segment = svm_get_segment,
1750         .set_segment = svm_set_segment,
1751         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1752         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1753         .set_cr0 = svm_set_cr0,
1754         .set_cr3 = svm_set_cr3,
1755         .set_cr4 = svm_set_cr4,
1756         .set_efer = svm_set_efer,
1757         .get_idt = svm_get_idt,
1758         .set_idt = svm_set_idt,
1759         .get_gdt = svm_get_gdt,
1760         .set_gdt = svm_set_gdt,
1761         .get_dr = svm_get_dr,
1762         .set_dr = svm_set_dr,
1763         .cache_regs = svm_cache_regs,
1764         .decache_regs = svm_decache_regs,
1765         .get_rflags = svm_get_rflags,
1766         .set_rflags = svm_set_rflags,
1767
1768         .invlpg = svm_invlpg,
1769         .tlb_flush = svm_flush_tlb,
1770         .inject_page_fault = svm_inject_page_fault,
1771
1772         .inject_gp = svm_inject_gp,
1773
1774         .run = svm_vcpu_run,
1775         .skip_emulated_instruction = skip_emulated_instruction,
1776         .patch_hypercall = svm_patch_hypercall,
1777 };
1778
1779 static int __init svm_init(void)
1780 {
1781         return kvm_init_arch(&svm_arch_ops, sizeof(struct vcpu_svm),
1782                               THIS_MODULE);
1783 }
1784
1785 static void __exit svm_exit(void)
1786 {
1787         kvm_exit_arch();
1788 }
1789
1790 module_init(svm_init)
1791 module_exit(svm_exit)