KVM: MMU: Remove cr0.wp tricks
[pandora-kernel.git] / drivers / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 /*
21  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22  * so the code in this file is compiled twice, once per pte size.
23  */
24
25 #if PTTYPE == 64
26         #define pt_element_t u64
27         #define guest_walker guest_walker64
28         #define FNAME(name) paging##64_##name
29         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30         #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33         #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34         #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35         #ifdef CONFIG_X86_64
36         #define PT_MAX_FULL_LEVELS 4
37         #else
38         #define PT_MAX_FULL_LEVELS 2
39         #endif
40 #elif PTTYPE == 32
41         #define pt_element_t u32
42         #define guest_walker guest_walker32
43         #define FNAME(name) paging##32_##name
44         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45         #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48         #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49         #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
50         #define PT_MAX_FULL_LEVELS 2
51 #else
52         #error Invalid PTTYPE value
53 #endif
54
55 /*
56  * The guest_walker structure emulates the behavior of the hardware page
57  * table walker.
58  */
59 struct guest_walker {
60         int level;
61         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62         pt_element_t *table;
63         pt_element_t *ptep;
64         pt_element_t inherited_ar;
65         gfn_t gfn;
66         u32 error_code;
67 };
68
69 /*
70  * Fetch a guest pte for a guest virtual address
71  */
72 static int FNAME(walk_addr)(struct guest_walker *walker,
73                             struct kvm_vcpu *vcpu, gva_t addr,
74                             int write_fault, int user_fault, int fetch_fault)
75 {
76         hpa_t hpa;
77         struct kvm_memory_slot *slot;
78         pt_element_t *ptep;
79         pt_element_t root;
80         gfn_t table_gfn;
81
82         pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
83         walker->level = vcpu->mmu.root_level;
84         walker->table = NULL;
85         root = vcpu->cr3;
86 #if PTTYPE == 64
87         if (!is_long_mode(vcpu)) {
88                 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
89                 root = *walker->ptep;
90                 if (!(root & PT_PRESENT_MASK))
91                         goto not_present;
92                 --walker->level;
93         }
94 #endif
95         table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
96         walker->table_gfn[walker->level - 1] = table_gfn;
97         pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
98                  walker->level - 1, table_gfn);
99         slot = gfn_to_memslot(vcpu->kvm, table_gfn);
100         hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
101         walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
102
103         ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
104                (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
105
106         walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
107
108         for (;;) {
109                 int index = PT_INDEX(addr, walker->level);
110                 hpa_t paddr;
111
112                 ptep = &walker->table[index];
113                 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
114                        ((unsigned long)ptep & PAGE_MASK));
115
116                 if (!is_present_pte(*ptep))
117                         goto not_present;
118
119                 if (write_fault && !is_writeble_pte(*ptep))
120                         if (user_fault || is_write_protection(vcpu))
121                                 goto access_error;
122
123                 if (user_fault && !(*ptep & PT_USER_MASK))
124                         goto access_error;
125
126 #if PTTYPE == 64
127                 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
128                         goto access_error;
129 #endif
130
131                 if (!(*ptep & PT_ACCESSED_MASK)) {
132                         mark_page_dirty(vcpu->kvm, table_gfn);
133                         *ptep |= PT_ACCESSED_MASK;
134                 }
135
136                 if (walker->level == PT_PAGE_TABLE_LEVEL) {
137                         walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
138                                 >> PAGE_SHIFT;
139                         break;
140                 }
141
142                 if (walker->level == PT_DIRECTORY_LEVEL
143                     && (*ptep & PT_PAGE_SIZE_MASK)
144                     && (PTTYPE == 64 || is_pse(vcpu))) {
145                         walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
146                                 >> PAGE_SHIFT;
147                         walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
148                         break;
149                 }
150
151                 walker->inherited_ar &= walker->table[index];
152                 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
153                 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
154                 kunmap_atomic(walker->table, KM_USER0);
155                 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
156                                             KM_USER0);
157                 --walker->level;
158                 walker->table_gfn[walker->level - 1 ] = table_gfn;
159                 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
160                          walker->level - 1, table_gfn);
161         }
162         walker->ptep = ptep;
163         pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
164         return 1;
165
166 not_present:
167         walker->error_code = 0;
168         goto err;
169
170 access_error:
171         walker->error_code = PFERR_PRESENT_MASK;
172
173 err:
174         if (write_fault)
175                 walker->error_code |= PFERR_WRITE_MASK;
176         if (user_fault)
177                 walker->error_code |= PFERR_USER_MASK;
178         if (fetch_fault)
179                 walker->error_code |= PFERR_FETCH_MASK;
180         return 0;
181 }
182
183 static void FNAME(release_walker)(struct guest_walker *walker)
184 {
185         if (walker->table)
186                 kunmap_atomic(walker->table, KM_USER0);
187 }
188
189 static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
190                                         struct guest_walker *walker)
191 {
192         mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
193 }
194
195 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
196                                   u64 *shadow_pte,
197                                   gpa_t gaddr,
198                                   pt_element_t *gpte,
199                                   u64 access_bits,
200                                   int user_fault,
201                                   int write_fault,
202                                   int *ptwrite,
203                                   struct guest_walker *walker,
204                                   gfn_t gfn)
205 {
206         hpa_t paddr;
207         int dirty = *gpte & PT_DIRTY_MASK;
208         u64 spte = *shadow_pte;
209         int was_rmapped = is_rmap_pte(spte);
210
211         pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
212                  " user_fault %d gfn %lx\n",
213                  __FUNCTION__, spte, (u64)*gpte, access_bits,
214                  write_fault, user_fault, gfn);
215
216         if (write_fault && !dirty) {
217                 *gpte |= PT_DIRTY_MASK;
218                 dirty = 1;
219                 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
220         }
221
222         spte |= *gpte & PT_PTE_COPY_MASK;
223         spte |= access_bits << PT_SHADOW_BITS_OFFSET;
224         if (!dirty)
225                 access_bits &= ~PT_WRITABLE_MASK;
226
227         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
228
229         spte |= PT_PRESENT_MASK;
230         if (access_bits & PT_USER_MASK)
231                 spte |= PT_USER_MASK;
232
233         if (is_error_hpa(paddr)) {
234                 spte |= gaddr;
235                 spte |= PT_SHADOW_IO_MARK;
236                 spte &= ~PT_PRESENT_MASK;
237                 set_shadow_pte(shadow_pte, spte);
238                 return;
239         }
240
241         spte |= paddr;
242
243         if ((access_bits & PT_WRITABLE_MASK)
244             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
245                 struct kvm_mmu_page *shadow;
246
247                 spte |= PT_WRITABLE_MASK;
248                 if (user_fault) {
249                         mmu_unshadow(vcpu, gfn);
250                         goto unshadowed;
251                 }
252
253                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
254                 if (shadow) {
255                         pgprintk("%s: found shadow page for %lx, marking ro\n",
256                                  __FUNCTION__, gfn);
257                         access_bits &= ~PT_WRITABLE_MASK;
258                         if (is_writeble_pte(spte)) {
259                                 spte &= ~PT_WRITABLE_MASK;
260                                 kvm_arch_ops->tlb_flush(vcpu);
261                         }
262                         if (write_fault)
263                                 *ptwrite = 1;
264                 }
265         }
266
267 unshadowed:
268
269         if (access_bits & PT_WRITABLE_MASK)
270                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
271
272         set_shadow_pte(shadow_pte, spte);
273         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
274         if (!was_rmapped)
275                 rmap_add(vcpu, shadow_pte);
276 }
277
278 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
279                            u64 *shadow_pte, u64 access_bits,
280                            int user_fault, int write_fault, int *ptwrite,
281                            struct guest_walker *walker, gfn_t gfn)
282 {
283         access_bits &= *gpte;
284         FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
285                               gpte, access_bits, user_fault, write_fault,
286                               ptwrite, walker, gfn);
287 }
288
289 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
290                               u64 *spte, const void *pte, int bytes)
291 {
292         pt_element_t gpte;
293
294         if (bytes < sizeof(pt_element_t))
295                 return;
296         gpte = *(const pt_element_t *)pte;
297         if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
298                 return;
299         pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
300         FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
301                        0, NULL, NULL,
302                        (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
303 }
304
305 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
306                            u64 *shadow_pte, u64 access_bits,
307                            int user_fault, int write_fault, int *ptwrite,
308                            struct guest_walker *walker, gfn_t gfn)
309 {
310         gpa_t gaddr;
311
312         access_bits &= *gpde;
313         gaddr = (gpa_t)gfn << PAGE_SHIFT;
314         if (PTTYPE == 32 && is_cpuid_PSE36())
315                 gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
316                         (32 - PT32_DIR_PSE36_SHIFT);
317         FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
318                               gpde, access_bits, user_fault, write_fault,
319                               ptwrite, walker, gfn);
320 }
321
322 /*
323  * Fetch a shadow pte for a specific level in the paging hierarchy.
324  */
325 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
326                          struct guest_walker *walker,
327                          int user_fault, int write_fault, int *ptwrite)
328 {
329         hpa_t shadow_addr;
330         int level;
331         u64 *shadow_ent;
332         u64 *prev_shadow_ent = NULL;
333         pt_element_t *guest_ent = walker->ptep;
334
335         if (!is_present_pte(*guest_ent))
336                 return NULL;
337
338         shadow_addr = vcpu->mmu.root_hpa;
339         level = vcpu->mmu.shadow_root_level;
340         if (level == PT32E_ROOT_LEVEL) {
341                 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
342                 shadow_addr &= PT64_BASE_ADDR_MASK;
343                 --level;
344         }
345
346         for (; ; level--) {
347                 u32 index = SHADOW_PT_INDEX(addr, level);
348                 struct kvm_mmu_page *shadow_page;
349                 u64 shadow_pte;
350                 int metaphysical;
351                 gfn_t table_gfn;
352                 unsigned hugepage_access = 0;
353
354                 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
355                 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
356                         if (level == PT_PAGE_TABLE_LEVEL)
357                                 break;
358                         shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
359                         prev_shadow_ent = shadow_ent;
360                         continue;
361                 }
362
363                 if (level == PT_PAGE_TABLE_LEVEL)
364                         break;
365
366                 if (level - 1 == PT_PAGE_TABLE_LEVEL
367                     && walker->level == PT_DIRECTORY_LEVEL) {
368                         metaphysical = 1;
369                         hugepage_access = *guest_ent;
370                         hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
371                         hugepage_access >>= PT_WRITABLE_SHIFT;
372                         table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
373                                 >> PAGE_SHIFT;
374                 } else {
375                         metaphysical = 0;
376                         table_gfn = walker->table_gfn[level - 2];
377                 }
378                 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
379                                                metaphysical, hugepage_access,
380                                                shadow_ent);
381                 shadow_addr = __pa(shadow_page->spt);
382                 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
383                         | PT_WRITABLE_MASK | PT_USER_MASK;
384                 *shadow_ent = shadow_pte;
385                 prev_shadow_ent = shadow_ent;
386         }
387
388         if (walker->level == PT_DIRECTORY_LEVEL) {
389                 if (prev_shadow_ent)
390                         *prev_shadow_ent |= PT_SHADOW_PS_MARK;
391                 FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
392                                walker->inherited_ar, user_fault, write_fault,
393                                ptwrite, walker, walker->gfn);
394         } else {
395                 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
396                 FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
397                                walker->inherited_ar, user_fault, write_fault,
398                                ptwrite, walker, walker->gfn);
399         }
400         return shadow_ent;
401 }
402
403 /*
404  * Page fault handler.  There are several causes for a page fault:
405  *   - there is no shadow pte for the guest pte
406  *   - write access through a shadow pte marked read only so that we can set
407  *     the dirty bit
408  *   - write access to a shadow pte marked read only so we can update the page
409  *     dirty bitmap, when userspace requests it
410  *   - mmio access; in this case we will never install a present shadow pte
411  *   - normal guest page fault due to the guest pte marked not present, not
412  *     writable, or not executable
413  *
414  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
415  *           a negative value on error.
416  */
417 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
418                                u32 error_code)
419 {
420         int write_fault = error_code & PFERR_WRITE_MASK;
421         int user_fault = error_code & PFERR_USER_MASK;
422         int fetch_fault = error_code & PFERR_FETCH_MASK;
423         struct guest_walker walker;
424         u64 *shadow_pte;
425         int write_pt = 0;
426         int r;
427
428         pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
429         kvm_mmu_audit(vcpu, "pre page fault");
430
431         r = mmu_topup_memory_caches(vcpu);
432         if (r)
433                 return r;
434
435         /*
436          * Look up the shadow pte for the faulting address.
437          */
438         r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
439                              fetch_fault);
440
441         /*
442          * The page is not mapped by the guest.  Let the guest handle it.
443          */
444         if (!r) {
445                 pgprintk("%s: guest page fault\n", __FUNCTION__);
446                 inject_page_fault(vcpu, addr, walker.error_code);
447                 FNAME(release_walker)(&walker);
448                 vcpu->last_pt_write_count = 0; /* reset fork detector */
449                 return 0;
450         }
451
452         shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
453                                   &write_pt);
454         pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
455                  shadow_pte, *shadow_pte, write_pt);
456
457         FNAME(release_walker)(&walker);
458
459         if (!write_pt)
460                 vcpu->last_pt_write_count = 0; /* reset fork detector */
461
462         /*
463          * mmio: emulate if accessible, otherwise its a guest fault.
464          */
465         if (is_io_pte(*shadow_pte))
466                 return 1;
467
468         ++vcpu->stat.pf_fixed;
469         kvm_mmu_audit(vcpu, "post page fault (fixed)");
470
471         return write_pt;
472 }
473
474 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
475 {
476         struct guest_walker walker;
477         gpa_t gpa = UNMAPPED_GVA;
478         int r;
479
480         r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
481
482         if (r) {
483                 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
484                 gpa |= vaddr & ~PAGE_MASK;
485         }
486
487         FNAME(release_walker)(&walker);
488         return gpa;
489 }
490
491 #undef pt_element_t
492 #undef guest_walker
493 #undef FNAME
494 #undef PT_BASE_ADDR_MASK
495 #undef PT_INDEX
496 #undef SHADOW_PT_INDEX
497 #undef PT_LEVEL_MASK
498 #undef PT_PTE_COPY_MASK
499 #undef PT_NON_PTE_COPY_MASK
500 #undef PT_DIR_BASE_ADDR_MASK
501 #undef PT_MAX_FULL_LEVELS