KVM: MMU: Selectively set PageDirty when releasing guest memory
[pandora-kernel.git] / drivers / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 /*
21  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22  * so the code in this file is compiled twice, once per pte size.
23  */
24
25 #if PTTYPE == 64
26         #define pt_element_t u64
27         #define guest_walker guest_walker64
28         #define FNAME(name) paging##64_##name
29         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30         #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33         #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34         #define PT_LEVEL_BITS PT64_LEVEL_BITS
35         #ifdef CONFIG_X86_64
36         #define PT_MAX_FULL_LEVELS 4
37         #else
38         #define PT_MAX_FULL_LEVELS 2
39         #endif
40 #elif PTTYPE == 32
41         #define pt_element_t u32
42         #define guest_walker guest_walker32
43         #define FNAME(name) paging##32_##name
44         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45         #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48         #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49         #define PT_LEVEL_BITS PT32_LEVEL_BITS
50         #define PT_MAX_FULL_LEVELS 2
51 #else
52         #error Invalid PTTYPE value
53 #endif
54
55 /*
56  * The guest_walker structure emulates the behavior of the hardware page
57  * table walker.
58  */
59 struct guest_walker {
60         int level;
61         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62         pt_element_t pte;
63         pt_element_t inherited_ar;
64         gfn_t gfn;
65         u32 error_code;
66 };
67
68 /*
69  * Fetch a guest pte for a guest virtual address
70  */
71 static int FNAME(walk_addr)(struct guest_walker *walker,
72                             struct kvm_vcpu *vcpu, gva_t addr,
73                             int write_fault, int user_fault, int fetch_fault)
74 {
75         pt_element_t pte;
76         gfn_t table_gfn;
77         unsigned index;
78         gpa_t pte_gpa;
79
80         pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
81         walker->level = vcpu->mmu.root_level;
82         pte = vcpu->cr3;
83 #if PTTYPE == 64
84         if (!is_long_mode(vcpu)) {
85                 pte = vcpu->pdptrs[(addr >> 30) & 3];
86                 if (!is_present_pte(pte))
87                         goto not_present;
88                 --walker->level;
89         }
90 #endif
91         ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
92                (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
93
94         walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
95
96         for (;;) {
97                 index = PT_INDEX(addr, walker->level);
98
99                 table_gfn = (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
100                 pte_gpa = table_gfn << PAGE_SHIFT;
101                 pte_gpa += index * sizeof(pt_element_t);
102                 walker->table_gfn[walker->level - 1] = table_gfn;
103                 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
104                          walker->level - 1, table_gfn);
105
106                 kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
107
108                 if (!is_present_pte(pte))
109                         goto not_present;
110
111                 if (write_fault && !is_writeble_pte(pte))
112                         if (user_fault || is_write_protection(vcpu))
113                                 goto access_error;
114
115                 if (user_fault && !(pte & PT_USER_MASK))
116                         goto access_error;
117
118 #if PTTYPE == 64
119                 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
120                         goto access_error;
121 #endif
122
123                 if (!(pte & PT_ACCESSED_MASK)) {
124                         mark_page_dirty(vcpu->kvm, table_gfn);
125                         pte |= PT_ACCESSED_MASK;
126                         kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
127                 }
128
129                 if (walker->level == PT_PAGE_TABLE_LEVEL) {
130                         walker->gfn = (pte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
131                         break;
132                 }
133
134                 if (walker->level == PT_DIRECTORY_LEVEL
135                     && (pte & PT_PAGE_SIZE_MASK)
136                     && (PTTYPE == 64 || is_pse(vcpu))) {
137                         walker->gfn = (pte & PT_DIR_BASE_ADDR_MASK)
138                                 >> PAGE_SHIFT;
139                         walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
140                         break;
141                 }
142
143                 walker->inherited_ar &= pte;
144                 --walker->level;
145         }
146
147         if (write_fault && !is_dirty_pte(pte)) {
148                 mark_page_dirty(vcpu->kvm, table_gfn);
149                 pte |= PT_DIRTY_MASK;
150                 kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
151                 kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
152         }
153
154         walker->pte = pte;
155         pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
156         return 1;
157
158 not_present:
159         walker->error_code = 0;
160         goto err;
161
162 access_error:
163         walker->error_code = PFERR_PRESENT_MASK;
164
165 err:
166         if (write_fault)
167                 walker->error_code |= PFERR_WRITE_MASK;
168         if (user_fault)
169                 walker->error_code |= PFERR_USER_MASK;
170         if (fetch_fault)
171                 walker->error_code |= PFERR_FETCH_MASK;
172         return 0;
173 }
174
175 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
176                                   u64 *shadow_pte,
177                                   gpa_t gaddr,
178                                   pt_element_t gpte,
179                                   u64 access_bits,
180                                   int user_fault,
181                                   int write_fault,
182                                   int *ptwrite,
183                                   struct guest_walker *walker,
184                                   gfn_t gfn)
185 {
186         hpa_t paddr;
187         int dirty = gpte & PT_DIRTY_MASK;
188         u64 spte;
189         int was_rmapped = is_rmap_pte(*shadow_pte);
190
191         pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
192                  " user_fault %d gfn %lx\n",
193                  __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
194                  write_fault, user_fault, gfn);
195
196         /*
197          * We don't set the accessed bit, since we sometimes want to see
198          * whether the guest actually used the pte (in order to detect
199          * demand paging).
200          */
201         spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
202         spte |= gpte & PT64_NX_MASK;
203         if (!dirty)
204                 access_bits &= ~PT_WRITABLE_MASK;
205
206         paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
207
208         spte |= PT_PRESENT_MASK;
209         if (access_bits & PT_USER_MASK)
210                 spte |= PT_USER_MASK;
211
212         if (is_error_hpa(paddr)) {
213                 set_shadow_pte(shadow_pte,
214                                shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
215                 kvm_release_page_clean(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
216                                        >> PAGE_SHIFT));
217                 return;
218         }
219
220         spte |= paddr;
221
222         if ((access_bits & PT_WRITABLE_MASK)
223             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
224                 struct kvm_mmu_page *shadow;
225
226                 spte |= PT_WRITABLE_MASK;
227                 if (user_fault) {
228                         mmu_unshadow(vcpu->kvm, gfn);
229                         goto unshadowed;
230                 }
231
232                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
233                 if (shadow) {
234                         pgprintk("%s: found shadow page for %lx, marking ro\n",
235                                  __FUNCTION__, gfn);
236                         access_bits &= ~PT_WRITABLE_MASK;
237                         if (is_writeble_pte(spte)) {
238                                 spte &= ~PT_WRITABLE_MASK;
239                                 kvm_x86_ops->tlb_flush(vcpu);
240                         }
241                         if (write_fault)
242                                 *ptwrite = 1;
243                 }
244         }
245
246 unshadowed:
247
248         if (access_bits & PT_WRITABLE_MASK)
249                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
250
251         pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
252         set_shadow_pte(shadow_pte, spte);
253         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
254         if (!was_rmapped) {
255                 rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
256                          >> PAGE_SHIFT);
257                 if (!is_rmap_pte(*shadow_pte)) {
258                         struct page *page;
259
260                         page = pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
261                                            >> PAGE_SHIFT);
262                         kvm_release_page_clean(page);
263                 }
264         }
265         else
266                 kvm_release_page_clean(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
267                                        >> PAGE_SHIFT));
268         if (!ptwrite || !*ptwrite)
269                 vcpu->last_pte_updated = shadow_pte;
270 }
271
272 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
273                            u64 *shadow_pte, u64 access_bits,
274                            int user_fault, int write_fault, int *ptwrite,
275                            struct guest_walker *walker, gfn_t gfn)
276 {
277         access_bits &= gpte;
278         FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
279                               gpte, access_bits, user_fault, write_fault,
280                               ptwrite, walker, gfn);
281 }
282
283 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
284                               u64 *spte, const void *pte, int bytes,
285                               int offset_in_pte)
286 {
287         pt_element_t gpte;
288
289         gpte = *(const pt_element_t *)pte;
290         if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
291                 if (!offset_in_pte && !is_present_pte(gpte))
292                         set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
293                 return;
294         }
295         if (bytes < sizeof(pt_element_t))
296                 return;
297         pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
298         FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
299                        0, NULL, NULL,
300                        (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
301 }
302
303 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
304                            u64 *shadow_pte, u64 access_bits,
305                            int user_fault, int write_fault, int *ptwrite,
306                            struct guest_walker *walker, gfn_t gfn)
307 {
308         gpa_t gaddr;
309
310         access_bits &= gpde;
311         gaddr = (gpa_t)gfn << PAGE_SHIFT;
312         if (PTTYPE == 32 && is_cpuid_PSE36())
313                 gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
314                         (32 - PT32_DIR_PSE36_SHIFT);
315         FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
316                               gpde, access_bits, user_fault, write_fault,
317                               ptwrite, walker, gfn);
318 }
319
320 /*
321  * Fetch a shadow pte for a specific level in the paging hierarchy.
322  */
323 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
324                          struct guest_walker *walker,
325                          int user_fault, int write_fault, int *ptwrite)
326 {
327         hpa_t shadow_addr;
328         int level;
329         u64 *shadow_ent;
330         u64 *prev_shadow_ent = NULL;
331
332         if (!is_present_pte(walker->pte))
333                 return NULL;
334
335         shadow_addr = vcpu->mmu.root_hpa;
336         level = vcpu->mmu.shadow_root_level;
337         if (level == PT32E_ROOT_LEVEL) {
338                 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
339                 shadow_addr &= PT64_BASE_ADDR_MASK;
340                 --level;
341         }
342
343         for (; ; level--) {
344                 u32 index = SHADOW_PT_INDEX(addr, level);
345                 struct kvm_mmu_page *shadow_page;
346                 u64 shadow_pte;
347                 int metaphysical;
348                 gfn_t table_gfn;
349                 unsigned hugepage_access = 0;
350
351                 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
352                 if (is_shadow_present_pte(*shadow_ent)) {
353                         if (level == PT_PAGE_TABLE_LEVEL)
354                                 break;
355                         shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
356                         prev_shadow_ent = shadow_ent;
357                         continue;
358                 }
359
360                 if (level == PT_PAGE_TABLE_LEVEL)
361                         break;
362
363                 if (level - 1 == PT_PAGE_TABLE_LEVEL
364                     && walker->level == PT_DIRECTORY_LEVEL) {
365                         metaphysical = 1;
366                         hugepage_access = walker->pte;
367                         hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
368                         if (!is_dirty_pte(walker->pte))
369                                 hugepage_access &= ~PT_WRITABLE_MASK;
370                         hugepage_access >>= PT_WRITABLE_SHIFT;
371                         if (walker->pte & PT64_NX_MASK)
372                                 hugepage_access |= (1 << 2);
373                         table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
374                                 >> PAGE_SHIFT;
375                 } else {
376                         metaphysical = 0;
377                         table_gfn = walker->table_gfn[level - 2];
378                 }
379                 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
380                                                metaphysical, hugepage_access,
381                                                shadow_ent);
382                 shadow_addr = __pa(shadow_page->spt);
383                 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
384                         | PT_WRITABLE_MASK | PT_USER_MASK;
385                 *shadow_ent = shadow_pte;
386                 prev_shadow_ent = shadow_ent;
387         }
388
389         if (walker->level == PT_DIRECTORY_LEVEL) {
390                 FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
391                                walker->inherited_ar, user_fault, write_fault,
392                                ptwrite, walker, walker->gfn);
393         } else {
394                 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
395                 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
396                                walker->inherited_ar, user_fault, write_fault,
397                                ptwrite, walker, walker->gfn);
398         }
399         return shadow_ent;
400 }
401
402 /*
403  * Page fault handler.  There are several causes for a page fault:
404  *   - there is no shadow pte for the guest pte
405  *   - write access through a shadow pte marked read only so that we can set
406  *     the dirty bit
407  *   - write access to a shadow pte marked read only so we can update the page
408  *     dirty bitmap, when userspace requests it
409  *   - mmio access; in this case we will never install a present shadow pte
410  *   - normal guest page fault due to the guest pte marked not present, not
411  *     writable, or not executable
412  *
413  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
414  *           a negative value on error.
415  */
416 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
417                                u32 error_code)
418 {
419         int write_fault = error_code & PFERR_WRITE_MASK;
420         int user_fault = error_code & PFERR_USER_MASK;
421         int fetch_fault = error_code & PFERR_FETCH_MASK;
422         struct guest_walker walker;
423         u64 *shadow_pte;
424         int write_pt = 0;
425         int r;
426
427         pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
428         kvm_mmu_audit(vcpu, "pre page fault");
429
430         r = mmu_topup_memory_caches(vcpu);
431         if (r)
432                 return r;
433
434         /*
435          * Look up the shadow pte for the faulting address.
436          */
437         r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
438                              fetch_fault);
439
440         /*
441          * The page is not mapped by the guest.  Let the guest handle it.
442          */
443         if (!r) {
444                 pgprintk("%s: guest page fault\n", __FUNCTION__);
445                 inject_page_fault(vcpu, addr, walker.error_code);
446                 vcpu->last_pt_write_count = 0; /* reset fork detector */
447                 return 0;
448         }
449
450         shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
451                                   &write_pt);
452         pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
453                  shadow_pte, *shadow_pte, write_pt);
454
455         if (!write_pt)
456                 vcpu->last_pt_write_count = 0; /* reset fork detector */
457
458         /*
459          * mmio: emulate if accessible, otherwise its a guest fault.
460          */
461         if (is_io_pte(*shadow_pte))
462                 return 1;
463
464         ++vcpu->stat.pf_fixed;
465         kvm_mmu_audit(vcpu, "post page fault (fixed)");
466
467         return write_pt;
468 }
469
470 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
471 {
472         struct guest_walker walker;
473         gpa_t gpa = UNMAPPED_GVA;
474         int r;
475
476         r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
477
478         if (r) {
479                 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
480                 gpa |= vaddr & ~PAGE_MASK;
481         }
482
483         return gpa;
484 }
485
486 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
487                                  struct kvm_mmu_page *sp)
488 {
489         int i;
490         pt_element_t *gpt;
491         struct page *page;
492
493         if (sp->role.metaphysical || PTTYPE == 32) {
494                 nonpaging_prefetch_page(vcpu, sp);
495                 return;
496         }
497
498         page = gfn_to_page(vcpu->kvm, sp->gfn);
499         gpt = kmap_atomic(page, KM_USER0);
500         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
501                 if (is_present_pte(gpt[i]))
502                         sp->spt[i] = shadow_trap_nonpresent_pte;
503                 else
504                         sp->spt[i] = shadow_notrap_nonpresent_pte;
505         kunmap_atomic(gpt, KM_USER0);
506         kvm_release_page_clean(page);
507 }
508
509 #undef pt_element_t
510 #undef guest_walker
511 #undef FNAME
512 #undef PT_BASE_ADDR_MASK
513 #undef PT_INDEX
514 #undef SHADOW_PT_INDEX
515 #undef PT_LEVEL_MASK
516 #undef PT_DIR_BASE_ADDR_MASK
517 #undef PT_LEVEL_BITS
518 #undef PT_MAX_FULL_LEVELS