KVM: Allow not-present guest page faults to bypass kvm
[pandora-kernel.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "kvm.h"
22
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28
29 #include <asm/page.h>
30 #include <asm/cmpxchg.h>
31
32 #undef MMU_DEBUG
33
34 #undef AUDIT
35
36 #ifdef AUDIT
37 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
38 #else
39 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
40 #endif
41
42 #ifdef MMU_DEBUG
43
44 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
45 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
46
47 #else
48
49 #define pgprintk(x...) do { } while (0)
50 #define rmap_printk(x...) do { } while (0)
51
52 #endif
53
54 #if defined(MMU_DEBUG) || defined(AUDIT)
55 static int dbg = 1;
56 #endif
57
58 #ifndef MMU_DEBUG
59 #define ASSERT(x) do { } while (0)
60 #else
61 #define ASSERT(x)                                                       \
62         if (!(x)) {                                                     \
63                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
64                        __FILE__, __LINE__, #x);                         \
65         }
66 #endif
67
68 #define PT64_PT_BITS 9
69 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
70 #define PT32_PT_BITS 10
71 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
72
73 #define PT_WRITABLE_SHIFT 1
74
75 #define PT_PRESENT_MASK (1ULL << 0)
76 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
77 #define PT_USER_MASK (1ULL << 2)
78 #define PT_PWT_MASK (1ULL << 3)
79 #define PT_PCD_MASK (1ULL << 4)
80 #define PT_ACCESSED_MASK (1ULL << 5)
81 #define PT_DIRTY_MASK (1ULL << 6)
82 #define PT_PAGE_SIZE_MASK (1ULL << 7)
83 #define PT_PAT_MASK (1ULL << 7)
84 #define PT_GLOBAL_MASK (1ULL << 8)
85 #define PT64_NX_MASK (1ULL << 63)
86
87 #define PT_PAT_SHIFT 7
88 #define PT_DIR_PAT_SHIFT 12
89 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
90
91 #define PT32_DIR_PSE36_SIZE 4
92 #define PT32_DIR_PSE36_SHIFT 13
93 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
94
95
96 #define PT_FIRST_AVAIL_BITS_SHIFT 9
97 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
98
99 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
100
101 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
102
103 #define PT64_LEVEL_BITS 9
104
105 #define PT64_LEVEL_SHIFT(level) \
106                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
107
108 #define PT64_LEVEL_MASK(level) \
109                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
110
111 #define PT64_INDEX(address, level)\
112         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
113
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
119
120 #define PT32_LEVEL_MASK(level) \
121                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
122
123 #define PT32_INDEX(address, level)\
124         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
125
126
127 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
128 #define PT64_DIR_BASE_ADDR_MASK \
129         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134
135
136 #define PFERR_PRESENT_MASK (1U << 0)
137 #define PFERR_WRITE_MASK (1U << 1)
138 #define PFERR_USER_MASK (1U << 2)
139 #define PFERR_FETCH_MASK (1U << 4)
140
141 #define PT64_ROOT_LEVEL 4
142 #define PT32_ROOT_LEVEL 2
143 #define PT32E_ROOT_LEVEL 3
144
145 #define PT_DIRECTORY_LEVEL 2
146 #define PT_PAGE_TABLE_LEVEL 1
147
148 #define RMAP_EXT 4
149
150 struct kvm_rmap_desc {
151         u64 *shadow_ptes[RMAP_EXT];
152         struct kvm_rmap_desc *more;
153 };
154
155 static struct kmem_cache *pte_chain_cache;
156 static struct kmem_cache *rmap_desc_cache;
157 static struct kmem_cache *mmu_page_header_cache;
158
159 static u64 __read_mostly shadow_trap_nonpresent_pte;
160 static u64 __read_mostly shadow_notrap_nonpresent_pte;
161
162 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
163 {
164         shadow_trap_nonpresent_pte = trap_pte;
165         shadow_notrap_nonpresent_pte = notrap_pte;
166 }
167 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
168
169 static int is_write_protection(struct kvm_vcpu *vcpu)
170 {
171         return vcpu->cr0 & X86_CR0_WP;
172 }
173
174 static int is_cpuid_PSE36(void)
175 {
176         return 1;
177 }
178
179 static int is_nx(struct kvm_vcpu *vcpu)
180 {
181         return vcpu->shadow_efer & EFER_NX;
182 }
183
184 static int is_present_pte(unsigned long pte)
185 {
186         return pte & PT_PRESENT_MASK;
187 }
188
189 static int is_shadow_present_pte(u64 pte)
190 {
191         pte &= ~PT_SHADOW_IO_MARK;
192         return pte != shadow_trap_nonpresent_pte
193                 && pte != shadow_notrap_nonpresent_pte;
194 }
195
196 static int is_writeble_pte(unsigned long pte)
197 {
198         return pte & PT_WRITABLE_MASK;
199 }
200
201 static int is_io_pte(unsigned long pte)
202 {
203         return pte & PT_SHADOW_IO_MARK;
204 }
205
206 static int is_rmap_pte(u64 pte)
207 {
208         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
209                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
210 }
211
212 static void set_shadow_pte(u64 *sptep, u64 spte)
213 {
214 #ifdef CONFIG_X86_64
215         set_64bit((unsigned long *)sptep, spte);
216 #else
217         set_64bit((unsigned long long *)sptep, spte);
218 #endif
219 }
220
221 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
222                                   struct kmem_cache *base_cache, int min)
223 {
224         void *obj;
225
226         if (cache->nobjs >= min)
227                 return 0;
228         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
229                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
230                 if (!obj)
231                         return -ENOMEM;
232                 cache->objects[cache->nobjs++] = obj;
233         }
234         return 0;
235 }
236
237 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
238 {
239         while (mc->nobjs)
240                 kfree(mc->objects[--mc->nobjs]);
241 }
242
243 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
244                                        int min)
245 {
246         struct page *page;
247
248         if (cache->nobjs >= min)
249                 return 0;
250         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
251                 page = alloc_page(GFP_KERNEL);
252                 if (!page)
253                         return -ENOMEM;
254                 set_page_private(page, 0);
255                 cache->objects[cache->nobjs++] = page_address(page);
256         }
257         return 0;
258 }
259
260 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
261 {
262         while (mc->nobjs)
263                 free_page((unsigned long)mc->objects[--mc->nobjs]);
264 }
265
266 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
267 {
268         int r;
269
270         kvm_mmu_free_some_pages(vcpu);
271         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
272                                    pte_chain_cache, 4);
273         if (r)
274                 goto out;
275         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
276                                    rmap_desc_cache, 1);
277         if (r)
278                 goto out;
279         r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 4);
280         if (r)
281                 goto out;
282         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
283                                    mmu_page_header_cache, 4);
284 out:
285         return r;
286 }
287
288 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
289 {
290         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
291         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
292         mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
293         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
294 }
295
296 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
297                                     size_t size)
298 {
299         void *p;
300
301         BUG_ON(!mc->nobjs);
302         p = mc->objects[--mc->nobjs];
303         memset(p, 0, size);
304         return p;
305 }
306
307 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
308 {
309         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
310                                       sizeof(struct kvm_pte_chain));
311 }
312
313 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
314 {
315         kfree(pc);
316 }
317
318 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
319 {
320         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
321                                       sizeof(struct kvm_rmap_desc));
322 }
323
324 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
325 {
326         kfree(rd);
327 }
328
329 /*
330  * Reverse mapping data structures:
331  *
332  * If page->private bit zero is zero, then page->private points to the
333  * shadow page table entry that points to page_address(page).
334  *
335  * If page->private bit zero is one, (then page->private & ~1) points
336  * to a struct kvm_rmap_desc containing more mappings.
337  */
338 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
339 {
340         struct page *page;
341         struct kvm_rmap_desc *desc;
342         int i;
343
344         if (!is_rmap_pte(*spte))
345                 return;
346         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
347         if (!page_private(page)) {
348                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
349                 set_page_private(page,(unsigned long)spte);
350         } else if (!(page_private(page) & 1)) {
351                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
352                 desc = mmu_alloc_rmap_desc(vcpu);
353                 desc->shadow_ptes[0] = (u64 *)page_private(page);
354                 desc->shadow_ptes[1] = spte;
355                 set_page_private(page,(unsigned long)desc | 1);
356         } else {
357                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
358                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
359                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
360                         desc = desc->more;
361                 if (desc->shadow_ptes[RMAP_EXT-1]) {
362                         desc->more = mmu_alloc_rmap_desc(vcpu);
363                         desc = desc->more;
364                 }
365                 for (i = 0; desc->shadow_ptes[i]; ++i)
366                         ;
367                 desc->shadow_ptes[i] = spte;
368         }
369 }
370
371 static void rmap_desc_remove_entry(struct page *page,
372                                    struct kvm_rmap_desc *desc,
373                                    int i,
374                                    struct kvm_rmap_desc *prev_desc)
375 {
376         int j;
377
378         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
379                 ;
380         desc->shadow_ptes[i] = desc->shadow_ptes[j];
381         desc->shadow_ptes[j] = NULL;
382         if (j != 0)
383                 return;
384         if (!prev_desc && !desc->more)
385                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
386         else
387                 if (prev_desc)
388                         prev_desc->more = desc->more;
389                 else
390                         set_page_private(page,(unsigned long)desc->more | 1);
391         mmu_free_rmap_desc(desc);
392 }
393
394 static void rmap_remove(u64 *spte)
395 {
396         struct page *page;
397         struct kvm_rmap_desc *desc;
398         struct kvm_rmap_desc *prev_desc;
399         int i;
400
401         if (!is_rmap_pte(*spte))
402                 return;
403         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
404         if (!page_private(page)) {
405                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
406                 BUG();
407         } else if (!(page_private(page) & 1)) {
408                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
409                 if ((u64 *)page_private(page) != spte) {
410                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
411                                spte, *spte);
412                         BUG();
413                 }
414                 set_page_private(page,0);
415         } else {
416                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
417                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
418                 prev_desc = NULL;
419                 while (desc) {
420                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
421                                 if (desc->shadow_ptes[i] == spte) {
422                                         rmap_desc_remove_entry(page,
423                                                                desc, i,
424                                                                prev_desc);
425                                         return;
426                                 }
427                         prev_desc = desc;
428                         desc = desc->more;
429                 }
430                 BUG();
431         }
432 }
433
434 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
435 {
436         struct kvm *kvm = vcpu->kvm;
437         struct page *page;
438         struct kvm_rmap_desc *desc;
439         u64 *spte;
440
441         page = gfn_to_page(kvm, gfn);
442         BUG_ON(!page);
443
444         while (page_private(page)) {
445                 if (!(page_private(page) & 1))
446                         spte = (u64 *)page_private(page);
447                 else {
448                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
449                         spte = desc->shadow_ptes[0];
450                 }
451                 BUG_ON(!spte);
452                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
453                        != page_to_pfn(page));
454                 BUG_ON(!(*spte & PT_PRESENT_MASK));
455                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
456                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
457                 rmap_remove(spte);
458                 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
459                 kvm_flush_remote_tlbs(vcpu->kvm);
460         }
461 }
462
463 #ifdef MMU_DEBUG
464 static int is_empty_shadow_page(u64 *spt)
465 {
466         u64 *pos;
467         u64 *end;
468
469         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
470                 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
471                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
472                                pos, *pos);
473                         return 0;
474                 }
475         return 1;
476 }
477 #endif
478
479 static void kvm_mmu_free_page(struct kvm *kvm,
480                               struct kvm_mmu_page *page_head)
481 {
482         ASSERT(is_empty_shadow_page(page_head->spt));
483         list_del(&page_head->link);
484         __free_page(virt_to_page(page_head->spt));
485         kfree(page_head);
486         ++kvm->n_free_mmu_pages;
487 }
488
489 static unsigned kvm_page_table_hashfn(gfn_t gfn)
490 {
491         return gfn;
492 }
493
494 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
495                                                u64 *parent_pte)
496 {
497         struct kvm_mmu_page *page;
498
499         if (!vcpu->kvm->n_free_mmu_pages)
500                 return NULL;
501
502         page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
503                                       sizeof *page);
504         page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
505         set_page_private(virt_to_page(page->spt), (unsigned long)page);
506         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
507         ASSERT(is_empty_shadow_page(page->spt));
508         page->slot_bitmap = 0;
509         page->multimapped = 0;
510         page->parent_pte = parent_pte;
511         --vcpu->kvm->n_free_mmu_pages;
512         return page;
513 }
514
515 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
516                                     struct kvm_mmu_page *page, u64 *parent_pte)
517 {
518         struct kvm_pte_chain *pte_chain;
519         struct hlist_node *node;
520         int i;
521
522         if (!parent_pte)
523                 return;
524         if (!page->multimapped) {
525                 u64 *old = page->parent_pte;
526
527                 if (!old) {
528                         page->parent_pte = parent_pte;
529                         return;
530                 }
531                 page->multimapped = 1;
532                 pte_chain = mmu_alloc_pte_chain(vcpu);
533                 INIT_HLIST_HEAD(&page->parent_ptes);
534                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
535                 pte_chain->parent_ptes[0] = old;
536         }
537         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
538                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
539                         continue;
540                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
541                         if (!pte_chain->parent_ptes[i]) {
542                                 pte_chain->parent_ptes[i] = parent_pte;
543                                 return;
544                         }
545         }
546         pte_chain = mmu_alloc_pte_chain(vcpu);
547         BUG_ON(!pte_chain);
548         hlist_add_head(&pte_chain->link, &page->parent_ptes);
549         pte_chain->parent_ptes[0] = parent_pte;
550 }
551
552 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
553                                        u64 *parent_pte)
554 {
555         struct kvm_pte_chain *pte_chain;
556         struct hlist_node *node;
557         int i;
558
559         if (!page->multimapped) {
560                 BUG_ON(page->parent_pte != parent_pte);
561                 page->parent_pte = NULL;
562                 return;
563         }
564         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
565                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
566                         if (!pte_chain->parent_ptes[i])
567                                 break;
568                         if (pte_chain->parent_ptes[i] != parent_pte)
569                                 continue;
570                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
571                                 && pte_chain->parent_ptes[i + 1]) {
572                                 pte_chain->parent_ptes[i]
573                                         = pte_chain->parent_ptes[i + 1];
574                                 ++i;
575                         }
576                         pte_chain->parent_ptes[i] = NULL;
577                         if (i == 0) {
578                                 hlist_del(&pte_chain->link);
579                                 mmu_free_pte_chain(pte_chain);
580                                 if (hlist_empty(&page->parent_ptes)) {
581                                         page->multimapped = 0;
582                                         page->parent_pte = NULL;
583                                 }
584                         }
585                         return;
586                 }
587         BUG();
588 }
589
590 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
591                                                 gfn_t gfn)
592 {
593         unsigned index;
594         struct hlist_head *bucket;
595         struct kvm_mmu_page *page;
596         struct hlist_node *node;
597
598         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
599         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
600         bucket = &vcpu->kvm->mmu_page_hash[index];
601         hlist_for_each_entry(page, node, bucket, hash_link)
602                 if (page->gfn == gfn && !page->role.metaphysical) {
603                         pgprintk("%s: found role %x\n",
604                                  __FUNCTION__, page->role.word);
605                         return page;
606                 }
607         return NULL;
608 }
609
610 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
611                                              gfn_t gfn,
612                                              gva_t gaddr,
613                                              unsigned level,
614                                              int metaphysical,
615                                              unsigned hugepage_access,
616                                              u64 *parent_pte)
617 {
618         union kvm_mmu_page_role role;
619         unsigned index;
620         unsigned quadrant;
621         struct hlist_head *bucket;
622         struct kvm_mmu_page *page;
623         struct hlist_node *node;
624
625         role.word = 0;
626         role.glevels = vcpu->mmu.root_level;
627         role.level = level;
628         role.metaphysical = metaphysical;
629         role.hugepage_access = hugepage_access;
630         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
631                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
632                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
633                 role.quadrant = quadrant;
634         }
635         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
636                  gfn, role.word);
637         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
638         bucket = &vcpu->kvm->mmu_page_hash[index];
639         hlist_for_each_entry(page, node, bucket, hash_link)
640                 if (page->gfn == gfn && page->role.word == role.word) {
641                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
642                         pgprintk("%s: found\n", __FUNCTION__);
643                         return page;
644                 }
645         page = kvm_mmu_alloc_page(vcpu, parent_pte);
646         if (!page)
647                 return page;
648         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
649         page->gfn = gfn;
650         page->role = role;
651         hlist_add_head(&page->hash_link, bucket);
652         vcpu->mmu.prefetch_page(vcpu, page);
653         if (!metaphysical)
654                 rmap_write_protect(vcpu, gfn);
655         return page;
656 }
657
658 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
659                                          struct kvm_mmu_page *page)
660 {
661         unsigned i;
662         u64 *pt;
663         u64 ent;
664
665         pt = page->spt;
666
667         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
668                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
669                         if (is_shadow_present_pte(pt[i]))
670                                 rmap_remove(&pt[i]);
671                         pt[i] = shadow_trap_nonpresent_pte;
672                 }
673                 kvm_flush_remote_tlbs(kvm);
674                 return;
675         }
676
677         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
678                 ent = pt[i];
679
680                 pt[i] = shadow_trap_nonpresent_pte;
681                 if (!is_shadow_present_pte(ent))
682                         continue;
683                 ent &= PT64_BASE_ADDR_MASK;
684                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
685         }
686         kvm_flush_remote_tlbs(kvm);
687 }
688
689 static void kvm_mmu_put_page(struct kvm_mmu_page *page,
690                              u64 *parent_pte)
691 {
692         mmu_page_remove_parent_pte(page, parent_pte);
693 }
694
695 static void kvm_mmu_zap_page(struct kvm *kvm,
696                              struct kvm_mmu_page *page)
697 {
698         u64 *parent_pte;
699
700         while (page->multimapped || page->parent_pte) {
701                 if (!page->multimapped)
702                         parent_pte = page->parent_pte;
703                 else {
704                         struct kvm_pte_chain *chain;
705
706                         chain = container_of(page->parent_ptes.first,
707                                              struct kvm_pte_chain, link);
708                         parent_pte = chain->parent_ptes[0];
709                 }
710                 BUG_ON(!parent_pte);
711                 kvm_mmu_put_page(page, parent_pte);
712                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
713         }
714         kvm_mmu_page_unlink_children(kvm, page);
715         if (!page->root_count) {
716                 hlist_del(&page->hash_link);
717                 kvm_mmu_free_page(kvm, page);
718         } else
719                 list_move(&page->link, &kvm->active_mmu_pages);
720 }
721
722 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
723 {
724         unsigned index;
725         struct hlist_head *bucket;
726         struct kvm_mmu_page *page;
727         struct hlist_node *node, *n;
728         int r;
729
730         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
731         r = 0;
732         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
733         bucket = &vcpu->kvm->mmu_page_hash[index];
734         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
735                 if (page->gfn == gfn && !page->role.metaphysical) {
736                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
737                                  page->role.word);
738                         kvm_mmu_zap_page(vcpu->kvm, page);
739                         r = 1;
740                 }
741         return r;
742 }
743
744 static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
745 {
746         struct kvm_mmu_page *page;
747
748         while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
749                 pgprintk("%s: zap %lx %x\n",
750                          __FUNCTION__, gfn, page->role.word);
751                 kvm_mmu_zap_page(vcpu->kvm, page);
752         }
753 }
754
755 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
756 {
757         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
758         struct kvm_mmu_page *page_head = page_header(__pa(pte));
759
760         __set_bit(slot, &page_head->slot_bitmap);
761 }
762
763 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
764 {
765         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
766
767         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
768 }
769
770 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
771 {
772         struct page *page;
773
774         ASSERT((gpa & HPA_ERR_MASK) == 0);
775         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
776         if (!page)
777                 return gpa | HPA_ERR_MASK;
778         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
779                 | (gpa & (PAGE_SIZE-1));
780 }
781
782 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
783 {
784         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
785
786         if (gpa == UNMAPPED_GVA)
787                 return UNMAPPED_GVA;
788         return gpa_to_hpa(vcpu, gpa);
789 }
790
791 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
792 {
793         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
794
795         if (gpa == UNMAPPED_GVA)
796                 return NULL;
797         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
798 }
799
800 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
801 {
802 }
803
804 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
805 {
806         int level = PT32E_ROOT_LEVEL;
807         hpa_t table_addr = vcpu->mmu.root_hpa;
808
809         for (; ; level--) {
810                 u32 index = PT64_INDEX(v, level);
811                 u64 *table;
812                 u64 pte;
813
814                 ASSERT(VALID_PAGE(table_addr));
815                 table = __va(table_addr);
816
817                 if (level == 1) {
818                         pte = table[index];
819                         if (is_shadow_present_pte(pte) && is_writeble_pte(pte))
820                                 return 0;
821                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
822                         page_header_update_slot(vcpu->kvm, table, v);
823                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
824                                                                 PT_USER_MASK;
825                         rmap_add(vcpu, &table[index]);
826                         return 0;
827                 }
828
829                 if (table[index] == shadow_trap_nonpresent_pte) {
830                         struct kvm_mmu_page *new_table;
831                         gfn_t pseudo_gfn;
832
833                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
834                                 >> PAGE_SHIFT;
835                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
836                                                      v, level - 1,
837                                                      1, 0, &table[index]);
838                         if (!new_table) {
839                                 pgprintk("nonpaging_map: ENOMEM\n");
840                                 return -ENOMEM;
841                         }
842
843                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
844                                 | PT_WRITABLE_MASK | PT_USER_MASK;
845                 }
846                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
847         }
848 }
849
850 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
851                                     struct kvm_mmu_page *sp)
852 {
853         int i;
854
855         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
856                 sp->spt[i] = shadow_trap_nonpresent_pte;
857 }
858
859 static void mmu_free_roots(struct kvm_vcpu *vcpu)
860 {
861         int i;
862         struct kvm_mmu_page *page;
863
864         if (!VALID_PAGE(vcpu->mmu.root_hpa))
865                 return;
866 #ifdef CONFIG_X86_64
867         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
868                 hpa_t root = vcpu->mmu.root_hpa;
869
870                 page = page_header(root);
871                 --page->root_count;
872                 vcpu->mmu.root_hpa = INVALID_PAGE;
873                 return;
874         }
875 #endif
876         for (i = 0; i < 4; ++i) {
877                 hpa_t root = vcpu->mmu.pae_root[i];
878
879                 if (root) {
880                         root &= PT64_BASE_ADDR_MASK;
881                         page = page_header(root);
882                         --page->root_count;
883                 }
884                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
885         }
886         vcpu->mmu.root_hpa = INVALID_PAGE;
887 }
888
889 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
890 {
891         int i;
892         gfn_t root_gfn;
893         struct kvm_mmu_page *page;
894
895         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
896
897 #ifdef CONFIG_X86_64
898         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
899                 hpa_t root = vcpu->mmu.root_hpa;
900
901                 ASSERT(!VALID_PAGE(root));
902                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
903                                         PT64_ROOT_LEVEL, 0, 0, NULL);
904                 root = __pa(page->spt);
905                 ++page->root_count;
906                 vcpu->mmu.root_hpa = root;
907                 return;
908         }
909 #endif
910         for (i = 0; i < 4; ++i) {
911                 hpa_t root = vcpu->mmu.pae_root[i];
912
913                 ASSERT(!VALID_PAGE(root));
914                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
915                         if (!is_present_pte(vcpu->pdptrs[i])) {
916                                 vcpu->mmu.pae_root[i] = 0;
917                                 continue;
918                         }
919                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
920                 } else if (vcpu->mmu.root_level == 0)
921                         root_gfn = 0;
922                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
923                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
924                                         0, NULL);
925                 root = __pa(page->spt);
926                 ++page->root_count;
927                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
928         }
929         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
930 }
931
932 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
933 {
934         return vaddr;
935 }
936
937 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
938                                u32 error_code)
939 {
940         gpa_t addr = gva;
941         hpa_t paddr;
942         int r;
943
944         r = mmu_topup_memory_caches(vcpu);
945         if (r)
946                 return r;
947
948         ASSERT(vcpu);
949         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
950
951
952         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
953
954         if (is_error_hpa(paddr))
955                 return 1;
956
957         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
958 }
959
960 static void nonpaging_free(struct kvm_vcpu *vcpu)
961 {
962         mmu_free_roots(vcpu);
963 }
964
965 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
966 {
967         struct kvm_mmu *context = &vcpu->mmu;
968
969         context->new_cr3 = nonpaging_new_cr3;
970         context->page_fault = nonpaging_page_fault;
971         context->gva_to_gpa = nonpaging_gva_to_gpa;
972         context->free = nonpaging_free;
973         context->prefetch_page = nonpaging_prefetch_page;
974         context->root_level = 0;
975         context->shadow_root_level = PT32E_ROOT_LEVEL;
976         context->root_hpa = INVALID_PAGE;
977         return 0;
978 }
979
980 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
981 {
982         ++vcpu->stat.tlb_flush;
983         kvm_x86_ops->tlb_flush(vcpu);
984 }
985
986 static void paging_new_cr3(struct kvm_vcpu *vcpu)
987 {
988         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
989         mmu_free_roots(vcpu);
990 }
991
992 static void inject_page_fault(struct kvm_vcpu *vcpu,
993                               u64 addr,
994                               u32 err_code)
995 {
996         kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
997 }
998
999 static void paging_free(struct kvm_vcpu *vcpu)
1000 {
1001         nonpaging_free(vcpu);
1002 }
1003
1004 #define PTTYPE 64
1005 #include "paging_tmpl.h"
1006 #undef PTTYPE
1007
1008 #define PTTYPE 32
1009 #include "paging_tmpl.h"
1010 #undef PTTYPE
1011
1012 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1013 {
1014         struct kvm_mmu *context = &vcpu->mmu;
1015
1016         ASSERT(is_pae(vcpu));
1017         context->new_cr3 = paging_new_cr3;
1018         context->page_fault = paging64_page_fault;
1019         context->gva_to_gpa = paging64_gva_to_gpa;
1020         context->prefetch_page = paging64_prefetch_page;
1021         context->free = paging_free;
1022         context->root_level = level;
1023         context->shadow_root_level = level;
1024         context->root_hpa = INVALID_PAGE;
1025         return 0;
1026 }
1027
1028 static int paging64_init_context(struct kvm_vcpu *vcpu)
1029 {
1030         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1031 }
1032
1033 static int paging32_init_context(struct kvm_vcpu *vcpu)
1034 {
1035         struct kvm_mmu *context = &vcpu->mmu;
1036
1037         context->new_cr3 = paging_new_cr3;
1038         context->page_fault = paging32_page_fault;
1039         context->gva_to_gpa = paging32_gva_to_gpa;
1040         context->free = paging_free;
1041         context->prefetch_page = paging32_prefetch_page;
1042         context->root_level = PT32_ROOT_LEVEL;
1043         context->shadow_root_level = PT32E_ROOT_LEVEL;
1044         context->root_hpa = INVALID_PAGE;
1045         return 0;
1046 }
1047
1048 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1049 {
1050         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1051 }
1052
1053 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1054 {
1055         ASSERT(vcpu);
1056         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1057
1058         if (!is_paging(vcpu))
1059                 return nonpaging_init_context(vcpu);
1060         else if (is_long_mode(vcpu))
1061                 return paging64_init_context(vcpu);
1062         else if (is_pae(vcpu))
1063                 return paging32E_init_context(vcpu);
1064         else
1065                 return paging32_init_context(vcpu);
1066 }
1067
1068 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1069 {
1070         ASSERT(vcpu);
1071         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1072                 vcpu->mmu.free(vcpu);
1073                 vcpu->mmu.root_hpa = INVALID_PAGE;
1074         }
1075 }
1076
1077 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1078 {
1079         destroy_kvm_mmu(vcpu);
1080         return init_kvm_mmu(vcpu);
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1083
1084 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1085 {
1086         int r;
1087
1088         mutex_lock(&vcpu->kvm->lock);
1089         r = mmu_topup_memory_caches(vcpu);
1090         if (r)
1091                 goto out;
1092         mmu_alloc_roots(vcpu);
1093         kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1094         kvm_mmu_flush_tlb(vcpu);
1095 out:
1096         mutex_unlock(&vcpu->kvm->lock);
1097         return r;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1100
1101 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1102 {
1103         mmu_free_roots(vcpu);
1104 }
1105
1106 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1107                                   struct kvm_mmu_page *page,
1108                                   u64 *spte)
1109 {
1110         u64 pte;
1111         struct kvm_mmu_page *child;
1112
1113         pte = *spte;
1114         if (is_shadow_present_pte(pte)) {
1115                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1116                         rmap_remove(spte);
1117                 else {
1118                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1119                         mmu_page_remove_parent_pte(child, spte);
1120                 }
1121         }
1122         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1123         kvm_flush_remote_tlbs(vcpu->kvm);
1124 }
1125
1126 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1127                                   struct kvm_mmu_page *page,
1128                                   u64 *spte,
1129                                   const void *new, int bytes,
1130                                   int offset_in_pte)
1131 {
1132         if (page->role.level != PT_PAGE_TABLE_LEVEL)
1133                 return;
1134
1135         if (page->role.glevels == PT32_ROOT_LEVEL)
1136                 paging32_update_pte(vcpu, page, spte, new, bytes,
1137                                     offset_in_pte);
1138         else
1139                 paging64_update_pte(vcpu, page, spte, new, bytes,
1140                                     offset_in_pte);
1141 }
1142
1143 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1144                        const u8 *new, int bytes)
1145 {
1146         gfn_t gfn = gpa >> PAGE_SHIFT;
1147         struct kvm_mmu_page *page;
1148         struct hlist_node *node, *n;
1149         struct hlist_head *bucket;
1150         unsigned index;
1151         u64 *spte;
1152         unsigned offset = offset_in_page(gpa);
1153         unsigned pte_size;
1154         unsigned page_offset;
1155         unsigned misaligned;
1156         unsigned quadrant;
1157         int level;
1158         int flooded = 0;
1159         int npte;
1160
1161         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1162         kvm_mmu_audit(vcpu, "pre pte write");
1163         if (gfn == vcpu->last_pt_write_gfn) {
1164                 ++vcpu->last_pt_write_count;
1165                 if (vcpu->last_pt_write_count >= 3)
1166                         flooded = 1;
1167         } else {
1168                 vcpu->last_pt_write_gfn = gfn;
1169                 vcpu->last_pt_write_count = 1;
1170         }
1171         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1172         bucket = &vcpu->kvm->mmu_page_hash[index];
1173         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1174                 if (page->gfn != gfn || page->role.metaphysical)
1175                         continue;
1176                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1177                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1178                 misaligned |= bytes < 4;
1179                 if (misaligned || flooded) {
1180                         /*
1181                          * Misaligned accesses are too much trouble to fix
1182                          * up; also, they usually indicate a page is not used
1183                          * as a page table.
1184                          *
1185                          * If we're seeing too many writes to a page,
1186                          * it may no longer be a page table, or we may be
1187                          * forking, in which case it is better to unmap the
1188                          * page.
1189                          */
1190                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1191                                  gpa, bytes, page->role.word);
1192                         kvm_mmu_zap_page(vcpu->kvm, page);
1193                         continue;
1194                 }
1195                 page_offset = offset;
1196                 level = page->role.level;
1197                 npte = 1;
1198                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1199                         page_offset <<= 1;      /* 32->64 */
1200                         /*
1201                          * A 32-bit pde maps 4MB while the shadow pdes map
1202                          * only 2MB.  So we need to double the offset again
1203                          * and zap two pdes instead of one.
1204                          */
1205                         if (level == PT32_ROOT_LEVEL) {
1206                                 page_offset &= ~7; /* kill rounding error */
1207                                 page_offset <<= 1;
1208                                 npte = 2;
1209                         }
1210                         quadrant = page_offset >> PAGE_SHIFT;
1211                         page_offset &= ~PAGE_MASK;
1212                         if (quadrant != page->role.quadrant)
1213                                 continue;
1214                 }
1215                 spte = &page->spt[page_offset / sizeof(*spte)];
1216                 while (npte--) {
1217                         mmu_pte_write_zap_pte(vcpu, page, spte);
1218                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
1219                                               page_offset & (pte_size - 1));
1220                         ++spte;
1221                 }
1222         }
1223         kvm_mmu_audit(vcpu, "post pte write");
1224 }
1225
1226 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1227 {
1228         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1229
1230         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1231 }
1232
1233 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1234 {
1235         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1236                 struct kvm_mmu_page *page;
1237
1238                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1239                                     struct kvm_mmu_page, link);
1240                 kvm_mmu_zap_page(vcpu->kvm, page);
1241         }
1242 }
1243
1244 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1245 {
1246         struct kvm_mmu_page *page;
1247
1248         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1249                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1250                                     struct kvm_mmu_page, link);
1251                 kvm_mmu_zap_page(vcpu->kvm, page);
1252         }
1253         free_page((unsigned long)vcpu->mmu.pae_root);
1254 }
1255
1256 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1257 {
1258         struct page *page;
1259         int i;
1260
1261         ASSERT(vcpu);
1262
1263         vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
1264
1265         /*
1266          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1267          * Therefore we need to allocate shadow page tables in the first
1268          * 4GB of memory, which happens to fit the DMA32 zone.
1269          */
1270         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1271         if (!page)
1272                 goto error_1;
1273         vcpu->mmu.pae_root = page_address(page);
1274         for (i = 0; i < 4; ++i)
1275                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1276
1277         return 0;
1278
1279 error_1:
1280         free_mmu_pages(vcpu);
1281         return -ENOMEM;
1282 }
1283
1284 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1285 {
1286         ASSERT(vcpu);
1287         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1288
1289         return alloc_mmu_pages(vcpu);
1290 }
1291
1292 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1293 {
1294         ASSERT(vcpu);
1295         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1296
1297         return init_kvm_mmu(vcpu);
1298 }
1299
1300 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1301 {
1302         ASSERT(vcpu);
1303
1304         destroy_kvm_mmu(vcpu);
1305         free_mmu_pages(vcpu);
1306         mmu_free_memory_caches(vcpu);
1307 }
1308
1309 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1310 {
1311         struct kvm_mmu_page *page;
1312
1313         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1314                 int i;
1315                 u64 *pt;
1316
1317                 if (!test_bit(slot, &page->slot_bitmap))
1318                         continue;
1319
1320                 pt = page->spt;
1321                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1322                         /* avoid RMW */
1323                         if (pt[i] & PT_WRITABLE_MASK) {
1324                                 rmap_remove(&pt[i]);
1325                                 pt[i] &= ~PT_WRITABLE_MASK;
1326                         }
1327         }
1328 }
1329
1330 void kvm_mmu_zap_all(struct kvm *kvm)
1331 {
1332         struct kvm_mmu_page *page, *node;
1333
1334         list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
1335                 kvm_mmu_zap_page(kvm, page);
1336
1337         kvm_flush_remote_tlbs(kvm);
1338 }
1339
1340 void kvm_mmu_module_exit(void)
1341 {
1342         if (pte_chain_cache)
1343                 kmem_cache_destroy(pte_chain_cache);
1344         if (rmap_desc_cache)
1345                 kmem_cache_destroy(rmap_desc_cache);
1346         if (mmu_page_header_cache)
1347                 kmem_cache_destroy(mmu_page_header_cache);
1348 }
1349
1350 int kvm_mmu_module_init(void)
1351 {
1352         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1353                                             sizeof(struct kvm_pte_chain),
1354                                             0, 0, NULL);
1355         if (!pte_chain_cache)
1356                 goto nomem;
1357         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1358                                             sizeof(struct kvm_rmap_desc),
1359                                             0, 0, NULL);
1360         if (!rmap_desc_cache)
1361                 goto nomem;
1362
1363         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1364                                                   sizeof(struct kvm_mmu_page),
1365                                                   0, 0, NULL);
1366         if (!mmu_page_header_cache)
1367                 goto nomem;
1368
1369         return 0;
1370
1371 nomem:
1372         kvm_mmu_module_exit();
1373         return -ENOMEM;
1374 }
1375
1376 #ifdef AUDIT
1377
1378 static const char *audit_msg;
1379
1380 static gva_t canonicalize(gva_t gva)
1381 {
1382 #ifdef CONFIG_X86_64
1383         gva = (long long)(gva << 16) >> 16;
1384 #endif
1385         return gva;
1386 }
1387
1388 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1389                                 gva_t va, int level)
1390 {
1391         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1392         int i;
1393         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1394
1395         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1396                 u64 ent = pt[i];
1397
1398                 if (ent == shadow_trap_nonpresent_pte)
1399                         continue;
1400
1401                 va = canonicalize(va);
1402                 if (level > 1) {
1403                         if (ent == shadow_notrap_nonpresent_pte)
1404                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
1405                                        " in nonleaf level: levels %d gva %lx"
1406                                        " level %d pte %llx\n", audit_msg,
1407                                        vcpu->mmu.root_level, va, level, ent);
1408
1409                         audit_mappings_page(vcpu, ent, va, level - 1);
1410                 } else {
1411                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1412                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1413
1414                         if (is_shadow_present_pte(ent)
1415                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1416                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
1417                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1418                                        audit_msg, vcpu->mmu.root_level,
1419                                        va, gpa, hpa, ent, is_shadow_present_pte(ent));
1420                         else if (ent == shadow_notrap_nonpresent_pte
1421                                  && !is_error_hpa(hpa))
1422                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
1423                                        " valid guest gva %lx\n", audit_msg, va);
1424
1425                 }
1426         }
1427 }
1428
1429 static void audit_mappings(struct kvm_vcpu *vcpu)
1430 {
1431         unsigned i;
1432
1433         if (vcpu->mmu.root_level == 4)
1434                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1435         else
1436                 for (i = 0; i < 4; ++i)
1437                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1438                                 audit_mappings_page(vcpu,
1439                                                     vcpu->mmu.pae_root[i],
1440                                                     i << 30,
1441                                                     2);
1442 }
1443
1444 static int count_rmaps(struct kvm_vcpu *vcpu)
1445 {
1446         int nmaps = 0;
1447         int i, j, k;
1448
1449         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1450                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1451                 struct kvm_rmap_desc *d;
1452
1453                 for (j = 0; j < m->npages; ++j) {
1454                         struct page *page = m->phys_mem[j];
1455
1456                         if (!page->private)
1457                                 continue;
1458                         if (!(page->private & 1)) {
1459                                 ++nmaps;
1460                                 continue;
1461                         }
1462                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1463                         while (d) {
1464                                 for (k = 0; k < RMAP_EXT; ++k)
1465                                         if (d->shadow_ptes[k])
1466                                                 ++nmaps;
1467                                         else
1468                                                 break;
1469                                 d = d->more;
1470                         }
1471                 }
1472         }
1473         return nmaps;
1474 }
1475
1476 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1477 {
1478         int nmaps = 0;
1479         struct kvm_mmu_page *page;
1480         int i;
1481
1482         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1483                 u64 *pt = page->spt;
1484
1485                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1486                         continue;
1487
1488                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1489                         u64 ent = pt[i];
1490
1491                         if (!(ent & PT_PRESENT_MASK))
1492                                 continue;
1493                         if (!(ent & PT_WRITABLE_MASK))
1494                                 continue;
1495                         ++nmaps;
1496                 }
1497         }
1498         return nmaps;
1499 }
1500
1501 static void audit_rmap(struct kvm_vcpu *vcpu)
1502 {
1503         int n_rmap = count_rmaps(vcpu);
1504         int n_actual = count_writable_mappings(vcpu);
1505
1506         if (n_rmap != n_actual)
1507                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1508                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1509 }
1510
1511 static void audit_write_protection(struct kvm_vcpu *vcpu)
1512 {
1513         struct kvm_mmu_page *page;
1514
1515         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1516                 hfn_t hfn;
1517                 struct page *pg;
1518
1519                 if (page->role.metaphysical)
1520                         continue;
1521
1522                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1523                         >> PAGE_SHIFT;
1524                 pg = pfn_to_page(hfn);
1525                 if (pg->private)
1526                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1527                                " mappings: gfn %lx role %x\n",
1528                                __FUNCTION__, audit_msg, page->gfn,
1529                                page->role.word);
1530         }
1531 }
1532
1533 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1534 {
1535         int olddbg = dbg;
1536
1537         dbg = 0;
1538         audit_msg = msg;
1539         audit_rmap(vcpu);
1540         audit_write_protection(vcpu);
1541         audit_mappings(vcpu);
1542         dbg = olddbg;
1543 }
1544
1545 #endif