KVM: MMU: Move set_pte() into guest paging mode independent code
[pandora-kernel.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "kvm.h"
22 #include "x86.h"
23
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30
31 #include <asm/page.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/io.h>
34
35 #undef MMU_DEBUG
36
37 #undef AUDIT
38
39 #ifdef AUDIT
40 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
41 #else
42 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
43 #endif
44
45 #ifdef MMU_DEBUG
46
47 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
48 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49
50 #else
51
52 #define pgprintk(x...) do { } while (0)
53 #define rmap_printk(x...) do { } while (0)
54
55 #endif
56
57 #if defined(MMU_DEBUG) || defined(AUDIT)
58 static int dbg = 1;
59 #endif
60
61 #ifndef MMU_DEBUG
62 #define ASSERT(x) do { } while (0)
63 #else
64 #define ASSERT(x)                                                       \
65         if (!(x)) {                                                     \
66                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
67                        __FILE__, __LINE__, #x);                         \
68         }
69 #endif
70
71 #define PT64_PT_BITS 9
72 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
73 #define PT32_PT_BITS 10
74 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
75
76 #define PT_WRITABLE_SHIFT 1
77
78 #define PT_PRESENT_MASK (1ULL << 0)
79 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
80 #define PT_USER_MASK (1ULL << 2)
81 #define PT_PWT_MASK (1ULL << 3)
82 #define PT_PCD_MASK (1ULL << 4)
83 #define PT_ACCESSED_MASK (1ULL << 5)
84 #define PT_DIRTY_MASK (1ULL << 6)
85 #define PT_PAGE_SIZE_MASK (1ULL << 7)
86 #define PT_PAT_MASK (1ULL << 7)
87 #define PT_GLOBAL_MASK (1ULL << 8)
88 #define PT64_NX_SHIFT 63
89 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
90
91 #define PT_PAT_SHIFT 7
92 #define PT_DIR_PAT_SHIFT 12
93 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
94
95 #define PT32_DIR_PSE36_SIZE 4
96 #define PT32_DIR_PSE36_SHIFT 13
97 #define PT32_DIR_PSE36_MASK \
98         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
99
100
101 #define PT_FIRST_AVAIL_BITS_SHIFT 9
102 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
103
104 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
105
106 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
107
108 #define PT64_LEVEL_BITS 9
109
110 #define PT64_LEVEL_SHIFT(level) \
111                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112
113 #define PT64_LEVEL_MASK(level) \
114                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
115
116 #define PT64_INDEX(address, level)\
117         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118
119
120 #define PT32_LEVEL_BITS 10
121
122 #define PT32_LEVEL_SHIFT(level) \
123                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124
125 #define PT32_LEVEL_MASK(level) \
126                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
127
128 #define PT32_INDEX(address, level)\
129         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
133 #define PT64_DIR_BASE_ADDR_MASK \
134         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
135
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139
140 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
141                         | PT64_NX_MASK)
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 #define ACC_EXEC_MASK    1
158 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
159 #define ACC_USER_MASK    PT_USER_MASK
160 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161
162 struct kvm_rmap_desc {
163         u64 *shadow_ptes[RMAP_EXT];
164         struct kvm_rmap_desc *more;
165 };
166
167 static struct kmem_cache *pte_chain_cache;
168 static struct kmem_cache *rmap_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170
171 static u64 __read_mostly shadow_trap_nonpresent_pte;
172 static u64 __read_mostly shadow_notrap_nonpresent_pte;
173
174 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175 {
176         shadow_trap_nonpresent_pte = trap_pte;
177         shadow_notrap_nonpresent_pte = notrap_pte;
178 }
179 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180
181 static int is_write_protection(struct kvm_vcpu *vcpu)
182 {
183         return vcpu->cr0 & X86_CR0_WP;
184 }
185
186 static int is_cpuid_PSE36(void)
187 {
188         return 1;
189 }
190
191 static int is_nx(struct kvm_vcpu *vcpu)
192 {
193         return vcpu->shadow_efer & EFER_NX;
194 }
195
196 static int is_present_pte(unsigned long pte)
197 {
198         return pte & PT_PRESENT_MASK;
199 }
200
201 static int is_shadow_present_pte(u64 pte)
202 {
203         pte &= ~PT_SHADOW_IO_MARK;
204         return pte != shadow_trap_nonpresent_pte
205                 && pte != shadow_notrap_nonpresent_pte;
206 }
207
208 static int is_writeble_pte(unsigned long pte)
209 {
210         return pte & PT_WRITABLE_MASK;
211 }
212
213 static int is_dirty_pte(unsigned long pte)
214 {
215         return pte & PT_DIRTY_MASK;
216 }
217
218 static int is_io_pte(unsigned long pte)
219 {
220         return pte & PT_SHADOW_IO_MARK;
221 }
222
223 static int is_rmap_pte(u64 pte)
224 {
225         return pte != shadow_trap_nonpresent_pte
226                 && pte != shadow_notrap_nonpresent_pte;
227 }
228
229 static gfn_t pse36_gfn_delta(u32 gpte)
230 {
231         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
232
233         return (gpte & PT32_DIR_PSE36_MASK) << shift;
234 }
235
236 static void set_shadow_pte(u64 *sptep, u64 spte)
237 {
238 #ifdef CONFIG_X86_64
239         set_64bit((unsigned long *)sptep, spte);
240 #else
241         set_64bit((unsigned long long *)sptep, spte);
242 #endif
243 }
244
245 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
246                                   struct kmem_cache *base_cache, int min)
247 {
248         void *obj;
249
250         if (cache->nobjs >= min)
251                 return 0;
252         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
253                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
254                 if (!obj)
255                         return -ENOMEM;
256                 cache->objects[cache->nobjs++] = obj;
257         }
258         return 0;
259 }
260
261 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
262 {
263         while (mc->nobjs)
264                 kfree(mc->objects[--mc->nobjs]);
265 }
266
267 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
268                                        int min)
269 {
270         struct page *page;
271
272         if (cache->nobjs >= min)
273                 return 0;
274         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
275                 page = alloc_page(GFP_KERNEL);
276                 if (!page)
277                         return -ENOMEM;
278                 set_page_private(page, 0);
279                 cache->objects[cache->nobjs++] = page_address(page);
280         }
281         return 0;
282 }
283
284 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
285 {
286         while (mc->nobjs)
287                 free_page((unsigned long)mc->objects[--mc->nobjs]);
288 }
289
290 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
291 {
292         int r;
293
294         kvm_mmu_free_some_pages(vcpu);
295         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
296                                    pte_chain_cache, 4);
297         if (r)
298                 goto out;
299         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
300                                    rmap_desc_cache, 1);
301         if (r)
302                 goto out;
303         r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
304         if (r)
305                 goto out;
306         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
307                                    mmu_page_header_cache, 4);
308 out:
309         return r;
310 }
311
312 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
313 {
314         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
315         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
316         mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
317         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
318 }
319
320 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
321                                     size_t size)
322 {
323         void *p;
324
325         BUG_ON(!mc->nobjs);
326         p = mc->objects[--mc->nobjs];
327         memset(p, 0, size);
328         return p;
329 }
330
331 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
332 {
333         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
334                                       sizeof(struct kvm_pte_chain));
335 }
336
337 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
338 {
339         kfree(pc);
340 }
341
342 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
343 {
344         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
345                                       sizeof(struct kvm_rmap_desc));
346 }
347
348 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
349 {
350         kfree(rd);
351 }
352
353 /*
354  * Take gfn and return the reverse mapping to it.
355  * Note: gfn must be unaliased before this function get called
356  */
357
358 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
359 {
360         struct kvm_memory_slot *slot;
361
362         slot = gfn_to_memslot(kvm, gfn);
363         return &slot->rmap[gfn - slot->base_gfn];
364 }
365
366 /*
367  * Reverse mapping data structures:
368  *
369  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
370  * that points to page_address(page).
371  *
372  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
373  * containing more mappings.
374  */
375 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
376 {
377         struct kvm_mmu_page *sp;
378         struct kvm_rmap_desc *desc;
379         unsigned long *rmapp;
380         int i;
381
382         if (!is_rmap_pte(*spte))
383                 return;
384         gfn = unalias_gfn(vcpu->kvm, gfn);
385         sp = page_header(__pa(spte));
386         sp->gfns[spte - sp->spt] = gfn;
387         rmapp = gfn_to_rmap(vcpu->kvm, gfn);
388         if (!*rmapp) {
389                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
390                 *rmapp = (unsigned long)spte;
391         } else if (!(*rmapp & 1)) {
392                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
393                 desc = mmu_alloc_rmap_desc(vcpu);
394                 desc->shadow_ptes[0] = (u64 *)*rmapp;
395                 desc->shadow_ptes[1] = spte;
396                 *rmapp = (unsigned long)desc | 1;
397         } else {
398                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
399                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
400                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
401                         desc = desc->more;
402                 if (desc->shadow_ptes[RMAP_EXT-1]) {
403                         desc->more = mmu_alloc_rmap_desc(vcpu);
404                         desc = desc->more;
405                 }
406                 for (i = 0; desc->shadow_ptes[i]; ++i)
407                         ;
408                 desc->shadow_ptes[i] = spte;
409         }
410 }
411
412 static void rmap_desc_remove_entry(unsigned long *rmapp,
413                                    struct kvm_rmap_desc *desc,
414                                    int i,
415                                    struct kvm_rmap_desc *prev_desc)
416 {
417         int j;
418
419         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
420                 ;
421         desc->shadow_ptes[i] = desc->shadow_ptes[j];
422         desc->shadow_ptes[j] = NULL;
423         if (j != 0)
424                 return;
425         if (!prev_desc && !desc->more)
426                 *rmapp = (unsigned long)desc->shadow_ptes[0];
427         else
428                 if (prev_desc)
429                         prev_desc->more = desc->more;
430                 else
431                         *rmapp = (unsigned long)desc->more | 1;
432         mmu_free_rmap_desc(desc);
433 }
434
435 static void rmap_remove(struct kvm *kvm, u64 *spte)
436 {
437         struct kvm_rmap_desc *desc;
438         struct kvm_rmap_desc *prev_desc;
439         struct kvm_mmu_page *sp;
440         struct page *page;
441         unsigned long *rmapp;
442         int i;
443
444         if (!is_rmap_pte(*spte))
445                 return;
446         sp = page_header(__pa(spte));
447         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
448         mark_page_accessed(page);
449         if (is_writeble_pte(*spte))
450                 kvm_release_page_dirty(page);
451         else
452                 kvm_release_page_clean(page);
453         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
454         if (!*rmapp) {
455                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
456                 BUG();
457         } else if (!(*rmapp & 1)) {
458                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
459                 if ((u64 *)*rmapp != spte) {
460                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
461                                spte, *spte);
462                         BUG();
463                 }
464                 *rmapp = 0;
465         } else {
466                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
467                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
468                 prev_desc = NULL;
469                 while (desc) {
470                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
471                                 if (desc->shadow_ptes[i] == spte) {
472                                         rmap_desc_remove_entry(rmapp,
473                                                                desc, i,
474                                                                prev_desc);
475                                         return;
476                                 }
477                         prev_desc = desc;
478                         desc = desc->more;
479                 }
480                 BUG();
481         }
482 }
483
484 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
485 {
486         struct kvm_rmap_desc *desc;
487         struct kvm_rmap_desc *prev_desc;
488         u64 *prev_spte;
489         int i;
490
491         if (!*rmapp)
492                 return NULL;
493         else if (!(*rmapp & 1)) {
494                 if (!spte)
495                         return (u64 *)*rmapp;
496                 return NULL;
497         }
498         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
499         prev_desc = NULL;
500         prev_spte = NULL;
501         while (desc) {
502                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
503                         if (prev_spte == spte)
504                                 return desc->shadow_ptes[i];
505                         prev_spte = desc->shadow_ptes[i];
506                 }
507                 desc = desc->more;
508         }
509         return NULL;
510 }
511
512 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
513 {
514         unsigned long *rmapp;
515         u64 *spte;
516
517         gfn = unalias_gfn(kvm, gfn);
518         rmapp = gfn_to_rmap(kvm, gfn);
519
520         spte = rmap_next(kvm, rmapp, NULL);
521         while (spte) {
522                 BUG_ON(!spte);
523                 BUG_ON(!(*spte & PT_PRESENT_MASK));
524                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
525                 if (is_writeble_pte(*spte))
526                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
527                 kvm_flush_remote_tlbs(kvm);
528                 spte = rmap_next(kvm, rmapp, spte);
529         }
530 }
531
532 #ifdef MMU_DEBUG
533 static int is_empty_shadow_page(u64 *spt)
534 {
535         u64 *pos;
536         u64 *end;
537
538         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
539                 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
540                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
541                                pos, *pos);
542                         return 0;
543                 }
544         return 1;
545 }
546 #endif
547
548 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
549 {
550         ASSERT(is_empty_shadow_page(sp->spt));
551         list_del(&sp->link);
552         __free_page(virt_to_page(sp->spt));
553         __free_page(virt_to_page(sp->gfns));
554         kfree(sp);
555         ++kvm->n_free_mmu_pages;
556 }
557
558 static unsigned kvm_page_table_hashfn(gfn_t gfn)
559 {
560         return gfn;
561 }
562
563 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
564                                                u64 *parent_pte)
565 {
566         struct kvm_mmu_page *sp;
567
568         if (!vcpu->kvm->n_free_mmu_pages)
569                 return NULL;
570
571         sp = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache, sizeof *sp);
572         sp->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
573         sp->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
574         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
575         list_add(&sp->link, &vcpu->kvm->active_mmu_pages);
576         ASSERT(is_empty_shadow_page(sp->spt));
577         sp->slot_bitmap = 0;
578         sp->multimapped = 0;
579         sp->parent_pte = parent_pte;
580         --vcpu->kvm->n_free_mmu_pages;
581         return sp;
582 }
583
584 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
585                                     struct kvm_mmu_page *sp, u64 *parent_pte)
586 {
587         struct kvm_pte_chain *pte_chain;
588         struct hlist_node *node;
589         int i;
590
591         if (!parent_pte)
592                 return;
593         if (!sp->multimapped) {
594                 u64 *old = sp->parent_pte;
595
596                 if (!old) {
597                         sp->parent_pte = parent_pte;
598                         return;
599                 }
600                 sp->multimapped = 1;
601                 pte_chain = mmu_alloc_pte_chain(vcpu);
602                 INIT_HLIST_HEAD(&sp->parent_ptes);
603                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
604                 pte_chain->parent_ptes[0] = old;
605         }
606         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
607                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
608                         continue;
609                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
610                         if (!pte_chain->parent_ptes[i]) {
611                                 pte_chain->parent_ptes[i] = parent_pte;
612                                 return;
613                         }
614         }
615         pte_chain = mmu_alloc_pte_chain(vcpu);
616         BUG_ON(!pte_chain);
617         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
618         pte_chain->parent_ptes[0] = parent_pte;
619 }
620
621 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
622                                        u64 *parent_pte)
623 {
624         struct kvm_pte_chain *pte_chain;
625         struct hlist_node *node;
626         int i;
627
628         if (!sp->multimapped) {
629                 BUG_ON(sp->parent_pte != parent_pte);
630                 sp->parent_pte = NULL;
631                 return;
632         }
633         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
634                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
635                         if (!pte_chain->parent_ptes[i])
636                                 break;
637                         if (pte_chain->parent_ptes[i] != parent_pte)
638                                 continue;
639                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
640                                 && pte_chain->parent_ptes[i + 1]) {
641                                 pte_chain->parent_ptes[i]
642                                         = pte_chain->parent_ptes[i + 1];
643                                 ++i;
644                         }
645                         pte_chain->parent_ptes[i] = NULL;
646                         if (i == 0) {
647                                 hlist_del(&pte_chain->link);
648                                 mmu_free_pte_chain(pte_chain);
649                                 if (hlist_empty(&sp->parent_ptes)) {
650                                         sp->multimapped = 0;
651                                         sp->parent_pte = NULL;
652                                 }
653                         }
654                         return;
655                 }
656         BUG();
657 }
658
659 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
660 {
661         unsigned index;
662         struct hlist_head *bucket;
663         struct kvm_mmu_page *sp;
664         struct hlist_node *node;
665
666         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
667         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
668         bucket = &kvm->mmu_page_hash[index];
669         hlist_for_each_entry(sp, node, bucket, hash_link)
670                 if (sp->gfn == gfn && !sp->role.metaphysical) {
671                         pgprintk("%s: found role %x\n",
672                                  __FUNCTION__, sp->role.word);
673                         return sp;
674                 }
675         return NULL;
676 }
677
678 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
679                                              gfn_t gfn,
680                                              gva_t gaddr,
681                                              unsigned level,
682                                              int metaphysical,
683                                              unsigned access,
684                                              u64 *parent_pte)
685 {
686         union kvm_mmu_page_role role;
687         unsigned index;
688         unsigned quadrant;
689         struct hlist_head *bucket;
690         struct kvm_mmu_page *sp;
691         struct hlist_node *node;
692
693         role.word = 0;
694         role.glevels = vcpu->mmu.root_level;
695         role.level = level;
696         role.metaphysical = metaphysical;
697         role.access = access;
698         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
699                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
700                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
701                 role.quadrant = quadrant;
702         }
703         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
704                  gfn, role.word);
705         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
706         bucket = &vcpu->kvm->mmu_page_hash[index];
707         hlist_for_each_entry(sp, node, bucket, hash_link)
708                 if (sp->gfn == gfn && sp->role.word == role.word) {
709                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
710                         pgprintk("%s: found\n", __FUNCTION__);
711                         return sp;
712                 }
713         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
714         if (!sp)
715                 return sp;
716         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
717         sp->gfn = gfn;
718         sp->role = role;
719         hlist_add_head(&sp->hash_link, bucket);
720         vcpu->mmu.prefetch_page(vcpu, sp);
721         if (!metaphysical)
722                 rmap_write_protect(vcpu->kvm, gfn);
723         return sp;
724 }
725
726 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
727                                          struct kvm_mmu_page *sp)
728 {
729         unsigned i;
730         u64 *pt;
731         u64 ent;
732
733         pt = sp->spt;
734
735         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
736                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
737                         if (is_shadow_present_pte(pt[i]))
738                                 rmap_remove(kvm, &pt[i]);
739                         pt[i] = shadow_trap_nonpresent_pte;
740                 }
741                 kvm_flush_remote_tlbs(kvm);
742                 return;
743         }
744
745         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
746                 ent = pt[i];
747
748                 pt[i] = shadow_trap_nonpresent_pte;
749                 if (!is_shadow_present_pte(ent))
750                         continue;
751                 ent &= PT64_BASE_ADDR_MASK;
752                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
753         }
754         kvm_flush_remote_tlbs(kvm);
755 }
756
757 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
758 {
759         mmu_page_remove_parent_pte(sp, parent_pte);
760 }
761
762 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
763 {
764         int i;
765
766         for (i = 0; i < KVM_MAX_VCPUS; ++i)
767                 if (kvm->vcpus[i])
768                         kvm->vcpus[i]->last_pte_updated = NULL;
769 }
770
771 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
772 {
773         u64 *parent_pte;
774
775         ++kvm->stat.mmu_shadow_zapped;
776         while (sp->multimapped || sp->parent_pte) {
777                 if (!sp->multimapped)
778                         parent_pte = sp->parent_pte;
779                 else {
780                         struct kvm_pte_chain *chain;
781
782                         chain = container_of(sp->parent_ptes.first,
783                                              struct kvm_pte_chain, link);
784                         parent_pte = chain->parent_ptes[0];
785                 }
786                 BUG_ON(!parent_pte);
787                 kvm_mmu_put_page(sp, parent_pte);
788                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
789         }
790         kvm_mmu_page_unlink_children(kvm, sp);
791         if (!sp->root_count) {
792                 hlist_del(&sp->hash_link);
793                 kvm_mmu_free_page(kvm, sp);
794         } else
795                 list_move(&sp->link, &kvm->active_mmu_pages);
796         kvm_mmu_reset_last_pte_updated(kvm);
797 }
798
799 /*
800  * Changing the number of mmu pages allocated to the vm
801  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
802  */
803 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
804 {
805         /*
806          * If we set the number of mmu pages to be smaller be than the
807          * number of actived pages , we must to free some mmu pages before we
808          * change the value
809          */
810
811         if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
812             kvm_nr_mmu_pages) {
813                 int n_used_mmu_pages = kvm->n_alloc_mmu_pages
814                                        - kvm->n_free_mmu_pages;
815
816                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
817                         struct kvm_mmu_page *page;
818
819                         page = container_of(kvm->active_mmu_pages.prev,
820                                             struct kvm_mmu_page, link);
821                         kvm_mmu_zap_page(kvm, page);
822                         n_used_mmu_pages--;
823                 }
824                 kvm->n_free_mmu_pages = 0;
825         }
826         else
827                 kvm->n_free_mmu_pages += kvm_nr_mmu_pages
828                                          - kvm->n_alloc_mmu_pages;
829
830         kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
831 }
832
833 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
834 {
835         unsigned index;
836         struct hlist_head *bucket;
837         struct kvm_mmu_page *sp;
838         struct hlist_node *node, *n;
839         int r;
840
841         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
842         r = 0;
843         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
844         bucket = &kvm->mmu_page_hash[index];
845         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
846                 if (sp->gfn == gfn && !sp->role.metaphysical) {
847                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
848                                  sp->role.word);
849                         kvm_mmu_zap_page(kvm, sp);
850                         r = 1;
851                 }
852         return r;
853 }
854
855 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
856 {
857         struct kvm_mmu_page *sp;
858
859         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
860                 pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
861                 kvm_mmu_zap_page(kvm, sp);
862         }
863 }
864
865 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
866 {
867         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
868         struct kvm_mmu_page *sp = page_header(__pa(pte));
869
870         __set_bit(slot, &sp->slot_bitmap);
871 }
872
873 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
874 {
875         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
876
877         if (gpa == UNMAPPED_GVA)
878                 return NULL;
879         return gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
880 }
881
882 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
883                          unsigned pt_access, unsigned pte_access,
884                          int user_fault, int write_fault, int dirty,
885                          int *ptwrite, gfn_t gfn)
886 {
887         u64 spte;
888         int was_rmapped = is_rmap_pte(*shadow_pte);
889         struct page *page;
890
891         pgprintk("%s: spte %llx gpte %llx access %x write_fault %d"
892                  " user_fault %d gfn %lx\n",
893                  __FUNCTION__, *shadow_pte, (u64)gpte, pt_access,
894                  write_fault, user_fault, gfn);
895
896         /*
897          * We don't set the accessed bit, since we sometimes want to see
898          * whether the guest actually used the pte (in order to detect
899          * demand paging).
900          */
901         spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
902         if (!dirty)
903                 pte_access &= ~ACC_WRITE_MASK;
904         if (!(pte_access & ACC_EXEC_MASK))
905                 spte |= PT64_NX_MASK;
906
907         page = gfn_to_page(vcpu->kvm, gfn);
908
909         spte |= PT_PRESENT_MASK;
910         if (pte_access & ACC_USER_MASK)
911                 spte |= PT_USER_MASK;
912
913         if (is_error_page(page)) {
914                 set_shadow_pte(shadow_pte,
915                                shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
916                 kvm_release_page_clean(page);
917                 return;
918         }
919
920         spte |= page_to_phys(page);
921
922         if ((pte_access & ACC_WRITE_MASK)
923             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
924                 struct kvm_mmu_page *shadow;
925
926                 spte |= PT_WRITABLE_MASK;
927                 if (user_fault) {
928                         mmu_unshadow(vcpu->kvm, gfn);
929                         goto unshadowed;
930                 }
931
932                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
933                 if (shadow) {
934                         pgprintk("%s: found shadow page for %lx, marking ro\n",
935                                  __FUNCTION__, gfn);
936                         pte_access &= ~ACC_WRITE_MASK;
937                         if (is_writeble_pte(spte)) {
938                                 spte &= ~PT_WRITABLE_MASK;
939                                 kvm_x86_ops->tlb_flush(vcpu);
940                         }
941                         if (write_fault)
942                                 *ptwrite = 1;
943                 }
944         }
945
946 unshadowed:
947
948         if (pte_access & ACC_WRITE_MASK)
949                 mark_page_dirty(vcpu->kvm, gfn);
950
951         pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
952         set_shadow_pte(shadow_pte, spte);
953         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
954         if (!was_rmapped) {
955                 rmap_add(vcpu, shadow_pte, gfn);
956                 if (!is_rmap_pte(*shadow_pte))
957                         kvm_release_page_clean(page);
958         }
959         else
960                 kvm_release_page_clean(page);
961         if (!ptwrite || !*ptwrite)
962                 vcpu->last_pte_updated = shadow_pte;
963 }
964
965 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
966 {
967 }
968
969 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, struct page *page)
970 {
971         int level = PT32E_ROOT_LEVEL;
972         hpa_t table_addr = vcpu->mmu.root_hpa;
973
974         for (; ; level--) {
975                 u32 index = PT64_INDEX(v, level);
976                 u64 *table;
977                 u64 pte;
978
979                 ASSERT(VALID_PAGE(table_addr));
980                 table = __va(table_addr);
981
982                 if (level == 1) {
983                         int was_rmapped;
984
985                         pte = table[index];
986                         was_rmapped = is_rmap_pte(pte);
987                         if (is_shadow_present_pte(pte) && is_writeble_pte(pte)) {
988                                 kvm_release_page_clean(page);
989                                 return 0;
990                         }
991                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
992                         page_header_update_slot(vcpu->kvm, table,
993                                                 v >> PAGE_SHIFT);
994                         table[index] = page_to_phys(page)
995                                 | PT_PRESENT_MASK | PT_WRITABLE_MASK
996                                 | PT_USER_MASK;
997                         if (!was_rmapped)
998                                 rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
999                         else
1000                                 kvm_release_page_clean(page);
1001
1002                         return 0;
1003                 }
1004
1005                 if (table[index] == shadow_trap_nonpresent_pte) {
1006                         struct kvm_mmu_page *new_table;
1007                         gfn_t pseudo_gfn;
1008
1009                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1010                                 >> PAGE_SHIFT;
1011                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1012                                                      v, level - 1,
1013                                                      1, ACC_ALL, &table[index]);
1014                         if (!new_table) {
1015                                 pgprintk("nonpaging_map: ENOMEM\n");
1016                                 kvm_release_page_clean(page);
1017                                 return -ENOMEM;
1018                         }
1019
1020                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1021                                 | PT_WRITABLE_MASK | PT_USER_MASK;
1022                 }
1023                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1024         }
1025 }
1026
1027 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1028                                     struct kvm_mmu_page *sp)
1029 {
1030         int i;
1031
1032         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1033                 sp->spt[i] = shadow_trap_nonpresent_pte;
1034 }
1035
1036 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1037 {
1038         int i;
1039         struct kvm_mmu_page *sp;
1040
1041         if (!VALID_PAGE(vcpu->mmu.root_hpa))
1042                 return;
1043 #ifdef CONFIG_X86_64
1044         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1045                 hpa_t root = vcpu->mmu.root_hpa;
1046
1047                 sp = page_header(root);
1048                 --sp->root_count;
1049                 vcpu->mmu.root_hpa = INVALID_PAGE;
1050                 return;
1051         }
1052 #endif
1053         for (i = 0; i < 4; ++i) {
1054                 hpa_t root = vcpu->mmu.pae_root[i];
1055
1056                 if (root) {
1057                         root &= PT64_BASE_ADDR_MASK;
1058                         sp = page_header(root);
1059                         --sp->root_count;
1060                 }
1061                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1062         }
1063         vcpu->mmu.root_hpa = INVALID_PAGE;
1064 }
1065
1066 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1067 {
1068         int i;
1069         gfn_t root_gfn;
1070         struct kvm_mmu_page *sp;
1071
1072         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
1073
1074 #ifdef CONFIG_X86_64
1075         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1076                 hpa_t root = vcpu->mmu.root_hpa;
1077
1078                 ASSERT(!VALID_PAGE(root));
1079                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1080                                       PT64_ROOT_LEVEL, 0, ACC_ALL, NULL);
1081                 root = __pa(sp->spt);
1082                 ++sp->root_count;
1083                 vcpu->mmu.root_hpa = root;
1084                 return;
1085         }
1086 #endif
1087         for (i = 0; i < 4; ++i) {
1088                 hpa_t root = vcpu->mmu.pae_root[i];
1089
1090                 ASSERT(!VALID_PAGE(root));
1091                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
1092                         if (!is_present_pte(vcpu->pdptrs[i])) {
1093                                 vcpu->mmu.pae_root[i] = 0;
1094                                 continue;
1095                         }
1096                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
1097                 } else if (vcpu->mmu.root_level == 0)
1098                         root_gfn = 0;
1099                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1100                                       PT32_ROOT_LEVEL, !is_paging(vcpu),
1101                                       ACC_ALL, NULL);
1102                 root = __pa(sp->spt);
1103                 ++sp->root_count;
1104                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
1105         }
1106         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
1107 }
1108
1109 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1110 {
1111         return vaddr;
1112 }
1113
1114 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1115                                 u32 error_code)
1116 {
1117         struct page *page;
1118         int r;
1119
1120         r = mmu_topup_memory_caches(vcpu);
1121         if (r)
1122                 return r;
1123
1124         ASSERT(vcpu);
1125         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
1126
1127         page = gfn_to_page(vcpu->kvm, gva >> PAGE_SHIFT);
1128
1129         if (is_error_page(page)) {
1130                 kvm_release_page_clean(page);
1131                 return 1;
1132         }
1133
1134         return nonpaging_map(vcpu, gva & PAGE_MASK, page);
1135 }
1136
1137 static void nonpaging_free(struct kvm_vcpu *vcpu)
1138 {
1139         mmu_free_roots(vcpu);
1140 }
1141
1142 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1143 {
1144         struct kvm_mmu *context = &vcpu->mmu;
1145
1146         context->new_cr3 = nonpaging_new_cr3;
1147         context->page_fault = nonpaging_page_fault;
1148         context->gva_to_gpa = nonpaging_gva_to_gpa;
1149         context->free = nonpaging_free;
1150         context->prefetch_page = nonpaging_prefetch_page;
1151         context->root_level = 0;
1152         context->shadow_root_level = PT32E_ROOT_LEVEL;
1153         context->root_hpa = INVALID_PAGE;
1154         return 0;
1155 }
1156
1157 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1158 {
1159         ++vcpu->stat.tlb_flush;
1160         kvm_x86_ops->tlb_flush(vcpu);
1161 }
1162
1163 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1164 {
1165         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
1166         mmu_free_roots(vcpu);
1167 }
1168
1169 static void inject_page_fault(struct kvm_vcpu *vcpu,
1170                               u64 addr,
1171                               u32 err_code)
1172 {
1173         kvm_inject_page_fault(vcpu, addr, err_code);
1174 }
1175
1176 static void paging_free(struct kvm_vcpu *vcpu)
1177 {
1178         nonpaging_free(vcpu);
1179 }
1180
1181 #define PTTYPE 64
1182 #include "paging_tmpl.h"
1183 #undef PTTYPE
1184
1185 #define PTTYPE 32
1186 #include "paging_tmpl.h"
1187 #undef PTTYPE
1188
1189 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1190 {
1191         struct kvm_mmu *context = &vcpu->mmu;
1192
1193         ASSERT(is_pae(vcpu));
1194         context->new_cr3 = paging_new_cr3;
1195         context->page_fault = paging64_page_fault;
1196         context->gva_to_gpa = paging64_gva_to_gpa;
1197         context->prefetch_page = paging64_prefetch_page;
1198         context->free = paging_free;
1199         context->root_level = level;
1200         context->shadow_root_level = level;
1201         context->root_hpa = INVALID_PAGE;
1202         return 0;
1203 }
1204
1205 static int paging64_init_context(struct kvm_vcpu *vcpu)
1206 {
1207         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1208 }
1209
1210 static int paging32_init_context(struct kvm_vcpu *vcpu)
1211 {
1212         struct kvm_mmu *context = &vcpu->mmu;
1213
1214         context->new_cr3 = paging_new_cr3;
1215         context->page_fault = paging32_page_fault;
1216         context->gva_to_gpa = paging32_gva_to_gpa;
1217         context->free = paging_free;
1218         context->prefetch_page = paging32_prefetch_page;
1219         context->root_level = PT32_ROOT_LEVEL;
1220         context->shadow_root_level = PT32E_ROOT_LEVEL;
1221         context->root_hpa = INVALID_PAGE;
1222         return 0;
1223 }
1224
1225 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1226 {
1227         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1228 }
1229
1230 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1231 {
1232         ASSERT(vcpu);
1233         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1234
1235         if (!is_paging(vcpu))
1236                 return nonpaging_init_context(vcpu);
1237         else if (is_long_mode(vcpu))
1238                 return paging64_init_context(vcpu);
1239         else if (is_pae(vcpu))
1240                 return paging32E_init_context(vcpu);
1241         else
1242                 return paging32_init_context(vcpu);
1243 }
1244
1245 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1246 {
1247         ASSERT(vcpu);
1248         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1249                 vcpu->mmu.free(vcpu);
1250                 vcpu->mmu.root_hpa = INVALID_PAGE;
1251         }
1252 }
1253
1254 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1255 {
1256         destroy_kvm_mmu(vcpu);
1257         return init_kvm_mmu(vcpu);
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1260
1261 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1262 {
1263         int r;
1264
1265         mutex_lock(&vcpu->kvm->lock);
1266         r = mmu_topup_memory_caches(vcpu);
1267         if (r)
1268                 goto out;
1269         mmu_alloc_roots(vcpu);
1270         kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1271         kvm_mmu_flush_tlb(vcpu);
1272 out:
1273         mutex_unlock(&vcpu->kvm->lock);
1274         return r;
1275 }
1276 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1277
1278 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1279 {
1280         mmu_free_roots(vcpu);
1281 }
1282
1283 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1284                                   struct kvm_mmu_page *sp,
1285                                   u64 *spte)
1286 {
1287         u64 pte;
1288         struct kvm_mmu_page *child;
1289
1290         pte = *spte;
1291         if (is_shadow_present_pte(pte)) {
1292                 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
1293                         rmap_remove(vcpu->kvm, spte);
1294                 else {
1295                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1296                         mmu_page_remove_parent_pte(child, spte);
1297                 }
1298         }
1299         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1300 }
1301
1302 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1303                                   struct kvm_mmu_page *sp,
1304                                   u64 *spte,
1305                                   const void *new, int bytes,
1306                                   int offset_in_pte)
1307 {
1308         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1309                 ++vcpu->kvm->stat.mmu_pde_zapped;
1310                 return;
1311         }
1312
1313         ++vcpu->kvm->stat.mmu_pte_updated;
1314         if (sp->role.glevels == PT32_ROOT_LEVEL)
1315                 paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1316         else
1317                 paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1318 }
1319
1320 static bool need_remote_flush(u64 old, u64 new)
1321 {
1322         if (!is_shadow_present_pte(old))
1323                 return false;
1324         if (!is_shadow_present_pte(new))
1325                 return true;
1326         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1327                 return true;
1328         old ^= PT64_NX_MASK;
1329         new ^= PT64_NX_MASK;
1330         return (old & ~new & PT64_PERM_MASK) != 0;
1331 }
1332
1333 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1334 {
1335         if (need_remote_flush(old, new))
1336                 kvm_flush_remote_tlbs(vcpu->kvm);
1337         else
1338                 kvm_mmu_flush_tlb(vcpu);
1339 }
1340
1341 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1342 {
1343         u64 *spte = vcpu->last_pte_updated;
1344
1345         return !!(spte && (*spte & PT_ACCESSED_MASK));
1346 }
1347
1348 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1349                        const u8 *new, int bytes)
1350 {
1351         gfn_t gfn = gpa >> PAGE_SHIFT;
1352         struct kvm_mmu_page *sp;
1353         struct hlist_node *node, *n;
1354         struct hlist_head *bucket;
1355         unsigned index;
1356         u64 entry;
1357         u64 *spte;
1358         unsigned offset = offset_in_page(gpa);
1359         unsigned pte_size;
1360         unsigned page_offset;
1361         unsigned misaligned;
1362         unsigned quadrant;
1363         int level;
1364         int flooded = 0;
1365         int npte;
1366
1367         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1368         ++vcpu->kvm->stat.mmu_pte_write;
1369         kvm_mmu_audit(vcpu, "pre pte write");
1370         if (gfn == vcpu->last_pt_write_gfn
1371             && !last_updated_pte_accessed(vcpu)) {
1372                 ++vcpu->last_pt_write_count;
1373                 if (vcpu->last_pt_write_count >= 3)
1374                         flooded = 1;
1375         } else {
1376                 vcpu->last_pt_write_gfn = gfn;
1377                 vcpu->last_pt_write_count = 1;
1378                 vcpu->last_pte_updated = NULL;
1379         }
1380         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1381         bucket = &vcpu->kvm->mmu_page_hash[index];
1382         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1383                 if (sp->gfn != gfn || sp->role.metaphysical)
1384                         continue;
1385                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1386                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1387                 misaligned |= bytes < 4;
1388                 if (misaligned || flooded) {
1389                         /*
1390                          * Misaligned accesses are too much trouble to fix
1391                          * up; also, they usually indicate a page is not used
1392                          * as a page table.
1393                          *
1394                          * If we're seeing too many writes to a page,
1395                          * it may no longer be a page table, or we may be
1396                          * forking, in which case it is better to unmap the
1397                          * page.
1398                          */
1399                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1400                                  gpa, bytes, sp->role.word);
1401                         kvm_mmu_zap_page(vcpu->kvm, sp);
1402                         ++vcpu->kvm->stat.mmu_flooded;
1403                         continue;
1404                 }
1405                 page_offset = offset;
1406                 level = sp->role.level;
1407                 npte = 1;
1408                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1409                         page_offset <<= 1;      /* 32->64 */
1410                         /*
1411                          * A 32-bit pde maps 4MB while the shadow pdes map
1412                          * only 2MB.  So we need to double the offset again
1413                          * and zap two pdes instead of one.
1414                          */
1415                         if (level == PT32_ROOT_LEVEL) {
1416                                 page_offset &= ~7; /* kill rounding error */
1417                                 page_offset <<= 1;
1418                                 npte = 2;
1419                         }
1420                         quadrant = page_offset >> PAGE_SHIFT;
1421                         page_offset &= ~PAGE_MASK;
1422                         if (quadrant != sp->role.quadrant)
1423                                 continue;
1424                 }
1425                 spte = &sp->spt[page_offset / sizeof(*spte)];
1426                 while (npte--) {
1427                         entry = *spte;
1428                         mmu_pte_write_zap_pte(vcpu, sp, spte);
1429                         mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
1430                                               page_offset & (pte_size - 1));
1431                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1432                         ++spte;
1433                 }
1434         }
1435         kvm_mmu_audit(vcpu, "post pte write");
1436 }
1437
1438 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1439 {
1440         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1441
1442         return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1443 }
1444
1445 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1446 {
1447         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1448                 struct kvm_mmu_page *sp;
1449
1450                 sp = container_of(vcpu->kvm->active_mmu_pages.prev,
1451                                   struct kvm_mmu_page, link);
1452                 kvm_mmu_zap_page(vcpu->kvm, sp);
1453                 ++vcpu->kvm->stat.mmu_recycled;
1454         }
1455 }
1456
1457 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1458 {
1459         int r;
1460         enum emulation_result er;
1461
1462         mutex_lock(&vcpu->kvm->lock);
1463         r = vcpu->mmu.page_fault(vcpu, cr2, error_code);
1464         if (r < 0)
1465                 goto out;
1466
1467         if (!r) {
1468                 r = 1;
1469                 goto out;
1470         }
1471
1472         r = mmu_topup_memory_caches(vcpu);
1473         if (r)
1474                 goto out;
1475
1476         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1477         mutex_unlock(&vcpu->kvm->lock);
1478
1479         switch (er) {
1480         case EMULATE_DONE:
1481                 return 1;
1482         case EMULATE_DO_MMIO:
1483                 ++vcpu->stat.mmio_exits;
1484                 return 0;
1485         case EMULATE_FAIL:
1486                 kvm_report_emulation_failure(vcpu, "pagetable");
1487                 return 1;
1488         default:
1489                 BUG();
1490         }
1491 out:
1492         mutex_unlock(&vcpu->kvm->lock);
1493         return r;
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1496
1497 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1498 {
1499         struct kvm_mmu_page *sp;
1500
1501         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1502                 sp = container_of(vcpu->kvm->active_mmu_pages.next,
1503                                   struct kvm_mmu_page, link);
1504                 kvm_mmu_zap_page(vcpu->kvm, sp);
1505         }
1506         free_page((unsigned long)vcpu->mmu.pae_root);
1507 }
1508
1509 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1510 {
1511         struct page *page;
1512         int i;
1513
1514         ASSERT(vcpu);
1515
1516         if (vcpu->kvm->n_requested_mmu_pages)
1517                 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
1518         else
1519                 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
1520         /*
1521          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1522          * Therefore we need to allocate shadow page tables in the first
1523          * 4GB of memory, which happens to fit the DMA32 zone.
1524          */
1525         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1526         if (!page)
1527                 goto error_1;
1528         vcpu->mmu.pae_root = page_address(page);
1529         for (i = 0; i < 4; ++i)
1530                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1531
1532         return 0;
1533
1534 error_1:
1535         free_mmu_pages(vcpu);
1536         return -ENOMEM;
1537 }
1538
1539 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1540 {
1541         ASSERT(vcpu);
1542         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1543
1544         return alloc_mmu_pages(vcpu);
1545 }
1546
1547 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1548 {
1549         ASSERT(vcpu);
1550         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1551
1552         return init_kvm_mmu(vcpu);
1553 }
1554
1555 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1556 {
1557         ASSERT(vcpu);
1558
1559         destroy_kvm_mmu(vcpu);
1560         free_mmu_pages(vcpu);
1561         mmu_free_memory_caches(vcpu);
1562 }
1563
1564 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1565 {
1566         struct kvm_mmu_page *sp;
1567
1568         list_for_each_entry(sp, &kvm->active_mmu_pages, link) {
1569                 int i;
1570                 u64 *pt;
1571
1572                 if (!test_bit(slot, &sp->slot_bitmap))
1573                         continue;
1574
1575                 pt = sp->spt;
1576                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1577                         /* avoid RMW */
1578                         if (pt[i] & PT_WRITABLE_MASK)
1579                                 pt[i] &= ~PT_WRITABLE_MASK;
1580         }
1581 }
1582
1583 void kvm_mmu_zap_all(struct kvm *kvm)
1584 {
1585         struct kvm_mmu_page *sp, *node;
1586
1587         list_for_each_entry_safe(sp, node, &kvm->active_mmu_pages, link)
1588                 kvm_mmu_zap_page(kvm, sp);
1589
1590         kvm_flush_remote_tlbs(kvm);
1591 }
1592
1593 void kvm_mmu_module_exit(void)
1594 {
1595         if (pte_chain_cache)
1596                 kmem_cache_destroy(pte_chain_cache);
1597         if (rmap_desc_cache)
1598                 kmem_cache_destroy(rmap_desc_cache);
1599         if (mmu_page_header_cache)
1600                 kmem_cache_destroy(mmu_page_header_cache);
1601 }
1602
1603 int kvm_mmu_module_init(void)
1604 {
1605         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1606                                             sizeof(struct kvm_pte_chain),
1607                                             0, 0, NULL);
1608         if (!pte_chain_cache)
1609                 goto nomem;
1610         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1611                                             sizeof(struct kvm_rmap_desc),
1612                                             0, 0, NULL);
1613         if (!rmap_desc_cache)
1614                 goto nomem;
1615
1616         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1617                                                   sizeof(struct kvm_mmu_page),
1618                                                   0, 0, NULL);
1619         if (!mmu_page_header_cache)
1620                 goto nomem;
1621
1622         return 0;
1623
1624 nomem:
1625         kvm_mmu_module_exit();
1626         return -ENOMEM;
1627 }
1628
1629 /*
1630  * Caculate mmu pages needed for kvm.
1631  */
1632 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1633 {
1634         int i;
1635         unsigned int nr_mmu_pages;
1636         unsigned int  nr_pages = 0;
1637
1638         for (i = 0; i < kvm->nmemslots; i++)
1639                 nr_pages += kvm->memslots[i].npages;
1640
1641         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1642         nr_mmu_pages = max(nr_mmu_pages,
1643                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1644
1645         return nr_mmu_pages;
1646 }
1647
1648 #ifdef AUDIT
1649
1650 static const char *audit_msg;
1651
1652 static gva_t canonicalize(gva_t gva)
1653 {
1654 #ifdef CONFIG_X86_64
1655         gva = (long long)(gva << 16) >> 16;
1656 #endif
1657         return gva;
1658 }
1659
1660 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1661                                 gva_t va, int level)
1662 {
1663         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1664         int i;
1665         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1666
1667         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1668                 u64 ent = pt[i];
1669
1670                 if (ent == shadow_trap_nonpresent_pte)
1671                         continue;
1672
1673                 va = canonicalize(va);
1674                 if (level > 1) {
1675                         if (ent == shadow_notrap_nonpresent_pte)
1676                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
1677                                        " in nonleaf level: levels %d gva %lx"
1678                                        " level %d pte %llx\n", audit_msg,
1679                                        vcpu->mmu.root_level, va, level, ent);
1680
1681                         audit_mappings_page(vcpu, ent, va, level - 1);
1682                 } else {
1683                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1684                         struct page *page = gpa_to_page(vcpu, gpa);
1685                         hpa_t hpa = page_to_phys(page);
1686
1687                         if (is_shadow_present_pte(ent)
1688                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1689                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
1690                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1691                                        audit_msg, vcpu->mmu.root_level,
1692                                        va, gpa, hpa, ent,
1693                                        is_shadow_present_pte(ent));
1694                         else if (ent == shadow_notrap_nonpresent_pte
1695                                  && !is_error_hpa(hpa))
1696                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
1697                                        " valid guest gva %lx\n", audit_msg, va);
1698                         kvm_release_page_clean(page);
1699
1700                 }
1701         }
1702 }
1703
1704 static void audit_mappings(struct kvm_vcpu *vcpu)
1705 {
1706         unsigned i;
1707
1708         if (vcpu->mmu.root_level == 4)
1709                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1710         else
1711                 for (i = 0; i < 4; ++i)
1712                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1713                                 audit_mappings_page(vcpu,
1714                                                     vcpu->mmu.pae_root[i],
1715                                                     i << 30,
1716                                                     2);
1717 }
1718
1719 static int count_rmaps(struct kvm_vcpu *vcpu)
1720 {
1721         int nmaps = 0;
1722         int i, j, k;
1723
1724         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1725                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1726                 struct kvm_rmap_desc *d;
1727
1728                 for (j = 0; j < m->npages; ++j) {
1729                         unsigned long *rmapp = &m->rmap[j];
1730
1731                         if (!*rmapp)
1732                                 continue;
1733                         if (!(*rmapp & 1)) {
1734                                 ++nmaps;
1735                                 continue;
1736                         }
1737                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1738                         while (d) {
1739                                 for (k = 0; k < RMAP_EXT; ++k)
1740                                         if (d->shadow_ptes[k])
1741                                                 ++nmaps;
1742                                         else
1743                                                 break;
1744                                 d = d->more;
1745                         }
1746                 }
1747         }
1748         return nmaps;
1749 }
1750
1751 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1752 {
1753         int nmaps = 0;
1754         struct kvm_mmu_page *sp;
1755         int i;
1756
1757         list_for_each_entry(sp, &vcpu->kvm->active_mmu_pages, link) {
1758                 u64 *pt = sp->spt;
1759
1760                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
1761                         continue;
1762
1763                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1764                         u64 ent = pt[i];
1765
1766                         if (!(ent & PT_PRESENT_MASK))
1767                                 continue;
1768                         if (!(ent & PT_WRITABLE_MASK))
1769                                 continue;
1770                         ++nmaps;
1771                 }
1772         }
1773         return nmaps;
1774 }
1775
1776 static void audit_rmap(struct kvm_vcpu *vcpu)
1777 {
1778         int n_rmap = count_rmaps(vcpu);
1779         int n_actual = count_writable_mappings(vcpu);
1780
1781         if (n_rmap != n_actual)
1782                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1783                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1784 }
1785
1786 static void audit_write_protection(struct kvm_vcpu *vcpu)
1787 {
1788         struct kvm_mmu_page *sp;
1789         struct kvm_memory_slot *slot;
1790         unsigned long *rmapp;
1791         gfn_t gfn;
1792
1793         list_for_each_entry(sp, &vcpu->kvm->active_mmu_pages, link) {
1794                 if (sp->role.metaphysical)
1795                         continue;
1796
1797                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
1798                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
1799                 rmapp = &slot->rmap[gfn - slot->base_gfn];
1800                 if (*rmapp)
1801                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1802                                " mappings: gfn %lx role %x\n",
1803                                __FUNCTION__, audit_msg, sp->gfn,
1804                                sp->role.word);
1805         }
1806 }
1807
1808 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1809 {
1810         int olddbg = dbg;
1811
1812         dbg = 0;
1813         audit_msg = msg;
1814         audit_rmap(vcpu);
1815         audit_write_protection(vcpu);
1816         audit_mappings(vcpu);
1817         dbg = olddbg;
1818 }
1819
1820 #endif