KVM: X86 emulator: fix 'push reg' writeback
[pandora-kernel.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "kvm.h"
22
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28
29 #include <asm/page.h>
30 #include <asm/cmpxchg.h>
31
32 #undef MMU_DEBUG
33
34 #undef AUDIT
35
36 #ifdef AUDIT
37 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
38 #else
39 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
40 #endif
41
42 #ifdef MMU_DEBUG
43
44 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
45 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
46
47 #else
48
49 #define pgprintk(x...) do { } while (0)
50 #define rmap_printk(x...) do { } while (0)
51
52 #endif
53
54 #if defined(MMU_DEBUG) || defined(AUDIT)
55 static int dbg = 1;
56 #endif
57
58 #ifndef MMU_DEBUG
59 #define ASSERT(x) do { } while (0)
60 #else
61 #define ASSERT(x)                                                       \
62         if (!(x)) {                                                     \
63                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
64                        __FILE__, __LINE__, #x);                         \
65         }
66 #endif
67
68 #define PT64_PT_BITS 9
69 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
70 #define PT32_PT_BITS 10
71 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
72
73 #define PT_WRITABLE_SHIFT 1
74
75 #define PT_PRESENT_MASK (1ULL << 0)
76 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
77 #define PT_USER_MASK (1ULL << 2)
78 #define PT_PWT_MASK (1ULL << 3)
79 #define PT_PCD_MASK (1ULL << 4)
80 #define PT_ACCESSED_MASK (1ULL << 5)
81 #define PT_DIRTY_MASK (1ULL << 6)
82 #define PT_PAGE_SIZE_MASK (1ULL << 7)
83 #define PT_PAT_MASK (1ULL << 7)
84 #define PT_GLOBAL_MASK (1ULL << 8)
85 #define PT64_NX_MASK (1ULL << 63)
86
87 #define PT_PAT_SHIFT 7
88 #define PT_DIR_PAT_SHIFT 12
89 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
90
91 #define PT32_DIR_PSE36_SIZE 4
92 #define PT32_DIR_PSE36_SHIFT 13
93 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
94
95
96 #define PT_FIRST_AVAIL_BITS_SHIFT 9
97 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
98
99 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
100
101 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
102
103 #define PT64_LEVEL_BITS 9
104
105 #define PT64_LEVEL_SHIFT(level) \
106                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
107
108 #define PT64_LEVEL_MASK(level) \
109                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
110
111 #define PT64_INDEX(address, level)\
112         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
113
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
119
120 #define PT32_LEVEL_MASK(level) \
121                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
122
123 #define PT32_INDEX(address, level)\
124         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
125
126
127 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
128 #define PT64_DIR_BASE_ADDR_MASK \
129         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134
135
136 #define PFERR_PRESENT_MASK (1U << 0)
137 #define PFERR_WRITE_MASK (1U << 1)
138 #define PFERR_USER_MASK (1U << 2)
139 #define PFERR_FETCH_MASK (1U << 4)
140
141 #define PT64_ROOT_LEVEL 4
142 #define PT32_ROOT_LEVEL 2
143 #define PT32E_ROOT_LEVEL 3
144
145 #define PT_DIRECTORY_LEVEL 2
146 #define PT_PAGE_TABLE_LEVEL 1
147
148 #define RMAP_EXT 4
149
150 struct kvm_rmap_desc {
151         u64 *shadow_ptes[RMAP_EXT];
152         struct kvm_rmap_desc *more;
153 };
154
155 static struct kmem_cache *pte_chain_cache;
156 static struct kmem_cache *rmap_desc_cache;
157 static struct kmem_cache *mmu_page_header_cache;
158
159 static int is_write_protection(struct kvm_vcpu *vcpu)
160 {
161         return vcpu->cr0 & X86_CR0_WP;
162 }
163
164 static int is_cpuid_PSE36(void)
165 {
166         return 1;
167 }
168
169 static int is_nx(struct kvm_vcpu *vcpu)
170 {
171         return vcpu->shadow_efer & EFER_NX;
172 }
173
174 static int is_present_pte(unsigned long pte)
175 {
176         return pte & PT_PRESENT_MASK;
177 }
178
179 static int is_writeble_pte(unsigned long pte)
180 {
181         return pte & PT_WRITABLE_MASK;
182 }
183
184 static int is_io_pte(unsigned long pte)
185 {
186         return pte & PT_SHADOW_IO_MARK;
187 }
188
189 static int is_rmap_pte(u64 pte)
190 {
191         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
192                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
193 }
194
195 static void set_shadow_pte(u64 *sptep, u64 spte)
196 {
197 #ifdef CONFIG_X86_64
198         set_64bit((unsigned long *)sptep, spte);
199 #else
200         set_64bit((unsigned long long *)sptep, spte);
201 #endif
202 }
203
204 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
205                                   struct kmem_cache *base_cache, int min,
206                                   gfp_t gfp_flags)
207 {
208         void *obj;
209
210         if (cache->nobjs >= min)
211                 return 0;
212         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
213                 obj = kmem_cache_zalloc(base_cache, gfp_flags);
214                 if (!obj)
215                         return -ENOMEM;
216                 cache->objects[cache->nobjs++] = obj;
217         }
218         return 0;
219 }
220
221 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
222 {
223         while (mc->nobjs)
224                 kfree(mc->objects[--mc->nobjs]);
225 }
226
227 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
228                                        int min, gfp_t gfp_flags)
229 {
230         struct page *page;
231
232         if (cache->nobjs >= min)
233                 return 0;
234         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
235                 page = alloc_page(gfp_flags);
236                 if (!page)
237                         return -ENOMEM;
238                 set_page_private(page, 0);
239                 cache->objects[cache->nobjs++] = page_address(page);
240         }
241         return 0;
242 }
243
244 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
245 {
246         while (mc->nobjs)
247                 free_page((unsigned long)mc->objects[--mc->nobjs]);
248 }
249
250 static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
251 {
252         int r;
253
254         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
255                                    pte_chain_cache, 4, gfp_flags);
256         if (r)
257                 goto out;
258         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
259                                    rmap_desc_cache, 1, gfp_flags);
260         if (r)
261                 goto out;
262         r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 4, gfp_flags);
263         if (r)
264                 goto out;
265         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
266                                    mmu_page_header_cache, 4, gfp_flags);
267 out:
268         return r;
269 }
270
271 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
272 {
273         int r;
274
275         r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
276         kvm_mmu_free_some_pages(vcpu);
277         if (r < 0) {
278                 mutex_unlock(&vcpu->kvm->lock);
279                 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
280                 mutex_lock(&vcpu->kvm->lock);
281         }
282         return r;
283 }
284
285 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
286 {
287         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
288         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
289         mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
290         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
291 }
292
293 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
294                                     size_t size)
295 {
296         void *p;
297
298         BUG_ON(!mc->nobjs);
299         p = mc->objects[--mc->nobjs];
300         memset(p, 0, size);
301         return p;
302 }
303
304 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
305 {
306         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
307                                       sizeof(struct kvm_pte_chain));
308 }
309
310 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
311 {
312         kfree(pc);
313 }
314
315 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
316 {
317         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
318                                       sizeof(struct kvm_rmap_desc));
319 }
320
321 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
322 {
323         kfree(rd);
324 }
325
326 /*
327  * Reverse mapping data structures:
328  *
329  * If page->private bit zero is zero, then page->private points to the
330  * shadow page table entry that points to page_address(page).
331  *
332  * If page->private bit zero is one, (then page->private & ~1) points
333  * to a struct kvm_rmap_desc containing more mappings.
334  */
335 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
336 {
337         struct page *page;
338         struct kvm_rmap_desc *desc;
339         int i;
340
341         if (!is_rmap_pte(*spte))
342                 return;
343         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
344         if (!page_private(page)) {
345                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
346                 set_page_private(page,(unsigned long)spte);
347         } else if (!(page_private(page) & 1)) {
348                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
349                 desc = mmu_alloc_rmap_desc(vcpu);
350                 desc->shadow_ptes[0] = (u64 *)page_private(page);
351                 desc->shadow_ptes[1] = spte;
352                 set_page_private(page,(unsigned long)desc | 1);
353         } else {
354                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
355                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
356                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
357                         desc = desc->more;
358                 if (desc->shadow_ptes[RMAP_EXT-1]) {
359                         desc->more = mmu_alloc_rmap_desc(vcpu);
360                         desc = desc->more;
361                 }
362                 for (i = 0; desc->shadow_ptes[i]; ++i)
363                         ;
364                 desc->shadow_ptes[i] = spte;
365         }
366 }
367
368 static void rmap_desc_remove_entry(struct page *page,
369                                    struct kvm_rmap_desc *desc,
370                                    int i,
371                                    struct kvm_rmap_desc *prev_desc)
372 {
373         int j;
374
375         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
376                 ;
377         desc->shadow_ptes[i] = desc->shadow_ptes[j];
378         desc->shadow_ptes[j] = NULL;
379         if (j != 0)
380                 return;
381         if (!prev_desc && !desc->more)
382                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
383         else
384                 if (prev_desc)
385                         prev_desc->more = desc->more;
386                 else
387                         set_page_private(page,(unsigned long)desc->more | 1);
388         mmu_free_rmap_desc(desc);
389 }
390
391 static void rmap_remove(u64 *spte)
392 {
393         struct page *page;
394         struct kvm_rmap_desc *desc;
395         struct kvm_rmap_desc *prev_desc;
396         int i;
397
398         if (!is_rmap_pte(*spte))
399                 return;
400         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
401         if (!page_private(page)) {
402                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
403                 BUG();
404         } else if (!(page_private(page) & 1)) {
405                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
406                 if ((u64 *)page_private(page) != spte) {
407                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
408                                spte, *spte);
409                         BUG();
410                 }
411                 set_page_private(page,0);
412         } else {
413                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
414                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
415                 prev_desc = NULL;
416                 while (desc) {
417                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
418                                 if (desc->shadow_ptes[i] == spte) {
419                                         rmap_desc_remove_entry(page,
420                                                                desc, i,
421                                                                prev_desc);
422                                         return;
423                                 }
424                         prev_desc = desc;
425                         desc = desc->more;
426                 }
427                 BUG();
428         }
429 }
430
431 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
432 {
433         struct kvm *kvm = vcpu->kvm;
434         struct page *page;
435         struct kvm_rmap_desc *desc;
436         u64 *spte;
437
438         page = gfn_to_page(kvm, gfn);
439         BUG_ON(!page);
440
441         while (page_private(page)) {
442                 if (!(page_private(page) & 1))
443                         spte = (u64 *)page_private(page);
444                 else {
445                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
446                         spte = desc->shadow_ptes[0];
447                 }
448                 BUG_ON(!spte);
449                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
450                        != page_to_pfn(page));
451                 BUG_ON(!(*spte & PT_PRESENT_MASK));
452                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
453                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
454                 rmap_remove(spte);
455                 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
456                 kvm_flush_remote_tlbs(vcpu->kvm);
457         }
458 }
459
460 #ifdef MMU_DEBUG
461 static int is_empty_shadow_page(u64 *spt)
462 {
463         u64 *pos;
464         u64 *end;
465
466         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
467                 if (*pos != 0) {
468                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
469                                pos, *pos);
470                         return 0;
471                 }
472         return 1;
473 }
474 #endif
475
476 static void kvm_mmu_free_page(struct kvm *kvm,
477                               struct kvm_mmu_page *page_head)
478 {
479         ASSERT(is_empty_shadow_page(page_head->spt));
480         list_del(&page_head->link);
481         __free_page(virt_to_page(page_head->spt));
482         kfree(page_head);
483         ++kvm->n_free_mmu_pages;
484 }
485
486 static unsigned kvm_page_table_hashfn(gfn_t gfn)
487 {
488         return gfn;
489 }
490
491 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
492                                                u64 *parent_pte)
493 {
494         struct kvm_mmu_page *page;
495
496         if (!vcpu->kvm->n_free_mmu_pages)
497                 return NULL;
498
499         page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
500                                       sizeof *page);
501         page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
502         set_page_private(virt_to_page(page->spt), (unsigned long)page);
503         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
504         ASSERT(is_empty_shadow_page(page->spt));
505         page->slot_bitmap = 0;
506         page->multimapped = 0;
507         page->parent_pte = parent_pte;
508         --vcpu->kvm->n_free_mmu_pages;
509         return page;
510 }
511
512 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
513                                     struct kvm_mmu_page *page, u64 *parent_pte)
514 {
515         struct kvm_pte_chain *pte_chain;
516         struct hlist_node *node;
517         int i;
518
519         if (!parent_pte)
520                 return;
521         if (!page->multimapped) {
522                 u64 *old = page->parent_pte;
523
524                 if (!old) {
525                         page->parent_pte = parent_pte;
526                         return;
527                 }
528                 page->multimapped = 1;
529                 pte_chain = mmu_alloc_pte_chain(vcpu);
530                 INIT_HLIST_HEAD(&page->parent_ptes);
531                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
532                 pte_chain->parent_ptes[0] = old;
533         }
534         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
535                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
536                         continue;
537                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
538                         if (!pte_chain->parent_ptes[i]) {
539                                 pte_chain->parent_ptes[i] = parent_pte;
540                                 return;
541                         }
542         }
543         pte_chain = mmu_alloc_pte_chain(vcpu);
544         BUG_ON(!pte_chain);
545         hlist_add_head(&pte_chain->link, &page->parent_ptes);
546         pte_chain->parent_ptes[0] = parent_pte;
547 }
548
549 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
550                                        u64 *parent_pte)
551 {
552         struct kvm_pte_chain *pte_chain;
553         struct hlist_node *node;
554         int i;
555
556         if (!page->multimapped) {
557                 BUG_ON(page->parent_pte != parent_pte);
558                 page->parent_pte = NULL;
559                 return;
560         }
561         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
562                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
563                         if (!pte_chain->parent_ptes[i])
564                                 break;
565                         if (pte_chain->parent_ptes[i] != parent_pte)
566                                 continue;
567                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
568                                 && pte_chain->parent_ptes[i + 1]) {
569                                 pte_chain->parent_ptes[i]
570                                         = pte_chain->parent_ptes[i + 1];
571                                 ++i;
572                         }
573                         pte_chain->parent_ptes[i] = NULL;
574                         if (i == 0) {
575                                 hlist_del(&pte_chain->link);
576                                 mmu_free_pte_chain(pte_chain);
577                                 if (hlist_empty(&page->parent_ptes)) {
578                                         page->multimapped = 0;
579                                         page->parent_pte = NULL;
580                                 }
581                         }
582                         return;
583                 }
584         BUG();
585 }
586
587 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
588                                                 gfn_t gfn)
589 {
590         unsigned index;
591         struct hlist_head *bucket;
592         struct kvm_mmu_page *page;
593         struct hlist_node *node;
594
595         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
596         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
597         bucket = &vcpu->kvm->mmu_page_hash[index];
598         hlist_for_each_entry(page, node, bucket, hash_link)
599                 if (page->gfn == gfn && !page->role.metaphysical) {
600                         pgprintk("%s: found role %x\n",
601                                  __FUNCTION__, page->role.word);
602                         return page;
603                 }
604         return NULL;
605 }
606
607 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
608                                              gfn_t gfn,
609                                              gva_t gaddr,
610                                              unsigned level,
611                                              int metaphysical,
612                                              unsigned hugepage_access,
613                                              u64 *parent_pte)
614 {
615         union kvm_mmu_page_role role;
616         unsigned index;
617         unsigned quadrant;
618         struct hlist_head *bucket;
619         struct kvm_mmu_page *page;
620         struct hlist_node *node;
621
622         role.word = 0;
623         role.glevels = vcpu->mmu.root_level;
624         role.level = level;
625         role.metaphysical = metaphysical;
626         role.hugepage_access = hugepage_access;
627         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
628                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
629                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
630                 role.quadrant = quadrant;
631         }
632         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
633                  gfn, role.word);
634         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
635         bucket = &vcpu->kvm->mmu_page_hash[index];
636         hlist_for_each_entry(page, node, bucket, hash_link)
637                 if (page->gfn == gfn && page->role.word == role.word) {
638                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
639                         pgprintk("%s: found\n", __FUNCTION__);
640                         return page;
641                 }
642         page = kvm_mmu_alloc_page(vcpu, parent_pte);
643         if (!page)
644                 return page;
645         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
646         page->gfn = gfn;
647         page->role = role;
648         hlist_add_head(&page->hash_link, bucket);
649         if (!metaphysical)
650                 rmap_write_protect(vcpu, gfn);
651         return page;
652 }
653
654 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
655                                          struct kvm_mmu_page *page)
656 {
657         unsigned i;
658         u64 *pt;
659         u64 ent;
660
661         pt = page->spt;
662
663         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
664                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
665                         if (pt[i] & PT_PRESENT_MASK)
666                                 rmap_remove(&pt[i]);
667                         pt[i] = 0;
668                 }
669                 kvm_flush_remote_tlbs(kvm);
670                 return;
671         }
672
673         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
674                 ent = pt[i];
675
676                 pt[i] = 0;
677                 if (!(ent & PT_PRESENT_MASK))
678                         continue;
679                 ent &= PT64_BASE_ADDR_MASK;
680                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
681         }
682         kvm_flush_remote_tlbs(kvm);
683 }
684
685 static void kvm_mmu_put_page(struct kvm_mmu_page *page,
686                              u64 *parent_pte)
687 {
688         mmu_page_remove_parent_pte(page, parent_pte);
689 }
690
691 static void kvm_mmu_zap_page(struct kvm *kvm,
692                              struct kvm_mmu_page *page)
693 {
694         u64 *parent_pte;
695
696         while (page->multimapped || page->parent_pte) {
697                 if (!page->multimapped)
698                         parent_pte = page->parent_pte;
699                 else {
700                         struct kvm_pte_chain *chain;
701
702                         chain = container_of(page->parent_ptes.first,
703                                              struct kvm_pte_chain, link);
704                         parent_pte = chain->parent_ptes[0];
705                 }
706                 BUG_ON(!parent_pte);
707                 kvm_mmu_put_page(page, parent_pte);
708                 set_shadow_pte(parent_pte, 0);
709         }
710         kvm_mmu_page_unlink_children(kvm, page);
711         if (!page->root_count) {
712                 hlist_del(&page->hash_link);
713                 kvm_mmu_free_page(kvm, page);
714         } else
715                 list_move(&page->link, &kvm->active_mmu_pages);
716 }
717
718 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
719 {
720         unsigned index;
721         struct hlist_head *bucket;
722         struct kvm_mmu_page *page;
723         struct hlist_node *node, *n;
724         int r;
725
726         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
727         r = 0;
728         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
729         bucket = &vcpu->kvm->mmu_page_hash[index];
730         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
731                 if (page->gfn == gfn && !page->role.metaphysical) {
732                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
733                                  page->role.word);
734                         kvm_mmu_zap_page(vcpu->kvm, page);
735                         r = 1;
736                 }
737         return r;
738 }
739
740 static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
741 {
742         struct kvm_mmu_page *page;
743
744         while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
745                 pgprintk("%s: zap %lx %x\n",
746                          __FUNCTION__, gfn, page->role.word);
747                 kvm_mmu_zap_page(vcpu->kvm, page);
748         }
749 }
750
751 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
752 {
753         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
754         struct kvm_mmu_page *page_head = page_header(__pa(pte));
755
756         __set_bit(slot, &page_head->slot_bitmap);
757 }
758
759 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
760 {
761         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
762
763         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
764 }
765
766 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
767 {
768         struct page *page;
769
770         ASSERT((gpa & HPA_ERR_MASK) == 0);
771         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
772         if (!page)
773                 return gpa | HPA_ERR_MASK;
774         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
775                 | (gpa & (PAGE_SIZE-1));
776 }
777
778 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
779 {
780         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
781
782         if (gpa == UNMAPPED_GVA)
783                 return UNMAPPED_GVA;
784         return gpa_to_hpa(vcpu, gpa);
785 }
786
787 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
788 {
789         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
790
791         if (gpa == UNMAPPED_GVA)
792                 return NULL;
793         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
794 }
795
796 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
797 {
798 }
799
800 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
801 {
802         int level = PT32E_ROOT_LEVEL;
803         hpa_t table_addr = vcpu->mmu.root_hpa;
804
805         for (; ; level--) {
806                 u32 index = PT64_INDEX(v, level);
807                 u64 *table;
808                 u64 pte;
809
810                 ASSERT(VALID_PAGE(table_addr));
811                 table = __va(table_addr);
812
813                 if (level == 1) {
814                         pte = table[index];
815                         if (is_present_pte(pte) && is_writeble_pte(pte))
816                                 return 0;
817                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
818                         page_header_update_slot(vcpu->kvm, table, v);
819                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
820                                                                 PT_USER_MASK;
821                         rmap_add(vcpu, &table[index]);
822                         return 0;
823                 }
824
825                 if (table[index] == 0) {
826                         struct kvm_mmu_page *new_table;
827                         gfn_t pseudo_gfn;
828
829                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
830                                 >> PAGE_SHIFT;
831                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
832                                                      v, level - 1,
833                                                      1, 0, &table[index]);
834                         if (!new_table) {
835                                 pgprintk("nonpaging_map: ENOMEM\n");
836                                 return -ENOMEM;
837                         }
838
839                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
840                                 | PT_WRITABLE_MASK | PT_USER_MASK;
841                 }
842                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
843         }
844 }
845
846 static void mmu_free_roots(struct kvm_vcpu *vcpu)
847 {
848         int i;
849         struct kvm_mmu_page *page;
850
851         if (!VALID_PAGE(vcpu->mmu.root_hpa))
852                 return;
853 #ifdef CONFIG_X86_64
854         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
855                 hpa_t root = vcpu->mmu.root_hpa;
856
857                 page = page_header(root);
858                 --page->root_count;
859                 vcpu->mmu.root_hpa = INVALID_PAGE;
860                 return;
861         }
862 #endif
863         for (i = 0; i < 4; ++i) {
864                 hpa_t root = vcpu->mmu.pae_root[i];
865
866                 if (root) {
867                         root &= PT64_BASE_ADDR_MASK;
868                         page = page_header(root);
869                         --page->root_count;
870                 }
871                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
872         }
873         vcpu->mmu.root_hpa = INVALID_PAGE;
874 }
875
876 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
877 {
878         int i;
879         gfn_t root_gfn;
880         struct kvm_mmu_page *page;
881
882         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
883
884 #ifdef CONFIG_X86_64
885         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
886                 hpa_t root = vcpu->mmu.root_hpa;
887
888                 ASSERT(!VALID_PAGE(root));
889                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
890                                         PT64_ROOT_LEVEL, 0, 0, NULL);
891                 root = __pa(page->spt);
892                 ++page->root_count;
893                 vcpu->mmu.root_hpa = root;
894                 return;
895         }
896 #endif
897         for (i = 0; i < 4; ++i) {
898                 hpa_t root = vcpu->mmu.pae_root[i];
899
900                 ASSERT(!VALID_PAGE(root));
901                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
902                         if (!is_present_pte(vcpu->pdptrs[i])) {
903                                 vcpu->mmu.pae_root[i] = 0;
904                                 continue;
905                         }
906                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
907                 } else if (vcpu->mmu.root_level == 0)
908                         root_gfn = 0;
909                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
910                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
911                                         0, NULL);
912                 root = __pa(page->spt);
913                 ++page->root_count;
914                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
915         }
916         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
917 }
918
919 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
920 {
921         return vaddr;
922 }
923
924 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
925                                u32 error_code)
926 {
927         gpa_t addr = gva;
928         hpa_t paddr;
929         int r;
930
931         r = mmu_topup_memory_caches(vcpu);
932         if (r)
933                 return r;
934
935         ASSERT(vcpu);
936         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
937
938
939         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
940
941         if (is_error_hpa(paddr))
942                 return 1;
943
944         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
945 }
946
947 static void nonpaging_free(struct kvm_vcpu *vcpu)
948 {
949         mmu_free_roots(vcpu);
950 }
951
952 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
953 {
954         struct kvm_mmu *context = &vcpu->mmu;
955
956         context->new_cr3 = nonpaging_new_cr3;
957         context->page_fault = nonpaging_page_fault;
958         context->gva_to_gpa = nonpaging_gva_to_gpa;
959         context->free = nonpaging_free;
960         context->root_level = 0;
961         context->shadow_root_level = PT32E_ROOT_LEVEL;
962         context->root_hpa = INVALID_PAGE;
963         return 0;
964 }
965
966 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
967 {
968         ++vcpu->stat.tlb_flush;
969         kvm_arch_ops->tlb_flush(vcpu);
970 }
971
972 static void paging_new_cr3(struct kvm_vcpu *vcpu)
973 {
974         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
975         mmu_free_roots(vcpu);
976 }
977
978 static void inject_page_fault(struct kvm_vcpu *vcpu,
979                               u64 addr,
980                               u32 err_code)
981 {
982         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
983 }
984
985 static void paging_free(struct kvm_vcpu *vcpu)
986 {
987         nonpaging_free(vcpu);
988 }
989
990 #define PTTYPE 64
991 #include "paging_tmpl.h"
992 #undef PTTYPE
993
994 #define PTTYPE 32
995 #include "paging_tmpl.h"
996 #undef PTTYPE
997
998 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
999 {
1000         struct kvm_mmu *context = &vcpu->mmu;
1001
1002         ASSERT(is_pae(vcpu));
1003         context->new_cr3 = paging_new_cr3;
1004         context->page_fault = paging64_page_fault;
1005         context->gva_to_gpa = paging64_gva_to_gpa;
1006         context->free = paging_free;
1007         context->root_level = level;
1008         context->shadow_root_level = level;
1009         context->root_hpa = INVALID_PAGE;
1010         return 0;
1011 }
1012
1013 static int paging64_init_context(struct kvm_vcpu *vcpu)
1014 {
1015         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1016 }
1017
1018 static int paging32_init_context(struct kvm_vcpu *vcpu)
1019 {
1020         struct kvm_mmu *context = &vcpu->mmu;
1021
1022         context->new_cr3 = paging_new_cr3;
1023         context->page_fault = paging32_page_fault;
1024         context->gva_to_gpa = paging32_gva_to_gpa;
1025         context->free = paging_free;
1026         context->root_level = PT32_ROOT_LEVEL;
1027         context->shadow_root_level = PT32E_ROOT_LEVEL;
1028         context->root_hpa = INVALID_PAGE;
1029         return 0;
1030 }
1031
1032 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1033 {
1034         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1035 }
1036
1037 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1038 {
1039         ASSERT(vcpu);
1040         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1041
1042         if (!is_paging(vcpu))
1043                 return nonpaging_init_context(vcpu);
1044         else if (is_long_mode(vcpu))
1045                 return paging64_init_context(vcpu);
1046         else if (is_pae(vcpu))
1047                 return paging32E_init_context(vcpu);
1048         else
1049                 return paging32_init_context(vcpu);
1050 }
1051
1052 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1053 {
1054         ASSERT(vcpu);
1055         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1056                 vcpu->mmu.free(vcpu);
1057                 vcpu->mmu.root_hpa = INVALID_PAGE;
1058         }
1059 }
1060
1061 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1062 {
1063         destroy_kvm_mmu(vcpu);
1064         return init_kvm_mmu(vcpu);
1065 }
1066
1067 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1068 {
1069         int r;
1070
1071         mutex_lock(&vcpu->kvm->lock);
1072         r = mmu_topup_memory_caches(vcpu);
1073         if (r)
1074                 goto out;
1075         mmu_alloc_roots(vcpu);
1076         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1077         kvm_mmu_flush_tlb(vcpu);
1078 out:
1079         mutex_unlock(&vcpu->kvm->lock);
1080         return r;
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1083
1084 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1085 {
1086         mmu_free_roots(vcpu);
1087 }
1088
1089 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1090                                   struct kvm_mmu_page *page,
1091                                   u64 *spte)
1092 {
1093         u64 pte;
1094         struct kvm_mmu_page *child;
1095
1096         pte = *spte;
1097         if (is_present_pte(pte)) {
1098                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1099                         rmap_remove(spte);
1100                 else {
1101                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1102                         mmu_page_remove_parent_pte(child, spte);
1103                 }
1104         }
1105         *spte = 0;
1106         kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1110                                   struct kvm_mmu_page *page,
1111                                   u64 *spte,
1112                                   const void *new, int bytes)
1113 {
1114         if (page->role.level != PT_PAGE_TABLE_LEVEL)
1115                 return;
1116
1117         if (page->role.glevels == PT32_ROOT_LEVEL)
1118                 paging32_update_pte(vcpu, page, spte, new, bytes);
1119         else
1120                 paging64_update_pte(vcpu, page, spte, new, bytes);
1121 }
1122
1123 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1124                        const u8 *new, int bytes)
1125 {
1126         gfn_t gfn = gpa >> PAGE_SHIFT;
1127         struct kvm_mmu_page *page;
1128         struct hlist_node *node, *n;
1129         struct hlist_head *bucket;
1130         unsigned index;
1131         u64 *spte;
1132         unsigned offset = offset_in_page(gpa);
1133         unsigned pte_size;
1134         unsigned page_offset;
1135         unsigned misaligned;
1136         unsigned quadrant;
1137         int level;
1138         int flooded = 0;
1139         int npte;
1140
1141         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1142         if (gfn == vcpu->last_pt_write_gfn) {
1143                 ++vcpu->last_pt_write_count;
1144                 if (vcpu->last_pt_write_count >= 3)
1145                         flooded = 1;
1146         } else {
1147                 vcpu->last_pt_write_gfn = gfn;
1148                 vcpu->last_pt_write_count = 1;
1149         }
1150         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1151         bucket = &vcpu->kvm->mmu_page_hash[index];
1152         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1153                 if (page->gfn != gfn || page->role.metaphysical)
1154                         continue;
1155                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1156                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1157                 misaligned |= bytes < 4;
1158                 if (misaligned || flooded) {
1159                         /*
1160                          * Misaligned accesses are too much trouble to fix
1161                          * up; also, they usually indicate a page is not used
1162                          * as a page table.
1163                          *
1164                          * If we're seeing too many writes to a page,
1165                          * it may no longer be a page table, or we may be
1166                          * forking, in which case it is better to unmap the
1167                          * page.
1168                          */
1169                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1170                                  gpa, bytes, page->role.word);
1171                         kvm_mmu_zap_page(vcpu->kvm, page);
1172                         continue;
1173                 }
1174                 page_offset = offset;
1175                 level = page->role.level;
1176                 npte = 1;
1177                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1178                         page_offset <<= 1;      /* 32->64 */
1179                         /*
1180                          * A 32-bit pde maps 4MB while the shadow pdes map
1181                          * only 2MB.  So we need to double the offset again
1182                          * and zap two pdes instead of one.
1183                          */
1184                         if (level == PT32_ROOT_LEVEL) {
1185                                 page_offset &= ~7; /* kill rounding error */
1186                                 page_offset <<= 1;
1187                                 npte = 2;
1188                         }
1189                         quadrant = page_offset >> PAGE_SHIFT;
1190                         page_offset &= ~PAGE_MASK;
1191                         if (quadrant != page->role.quadrant)
1192                                 continue;
1193                 }
1194                 spte = &page->spt[page_offset / sizeof(*spte)];
1195                 while (npte--) {
1196                         mmu_pte_write_zap_pte(vcpu, page, spte);
1197                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
1198                         ++spte;
1199                 }
1200         }
1201 }
1202
1203 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1204 {
1205         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1206
1207         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1208 }
1209
1210 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1211 {
1212         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1213                 struct kvm_mmu_page *page;
1214
1215                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1216                                     struct kvm_mmu_page, link);
1217                 kvm_mmu_zap_page(vcpu->kvm, page);
1218         }
1219 }
1220
1221 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1222 {
1223         struct kvm_mmu_page *page;
1224
1225         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1226                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1227                                     struct kvm_mmu_page, link);
1228                 kvm_mmu_zap_page(vcpu->kvm, page);
1229         }
1230         free_page((unsigned long)vcpu->mmu.pae_root);
1231 }
1232
1233 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1234 {
1235         struct page *page;
1236         int i;
1237
1238         ASSERT(vcpu);
1239
1240         vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
1241
1242         /*
1243          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1244          * Therefore we need to allocate shadow page tables in the first
1245          * 4GB of memory, which happens to fit the DMA32 zone.
1246          */
1247         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1248         if (!page)
1249                 goto error_1;
1250         vcpu->mmu.pae_root = page_address(page);
1251         for (i = 0; i < 4; ++i)
1252                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1253
1254         return 0;
1255
1256 error_1:
1257         free_mmu_pages(vcpu);
1258         return -ENOMEM;
1259 }
1260
1261 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1262 {
1263         ASSERT(vcpu);
1264         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1265
1266         return alloc_mmu_pages(vcpu);
1267 }
1268
1269 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1270 {
1271         ASSERT(vcpu);
1272         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1273
1274         return init_kvm_mmu(vcpu);
1275 }
1276
1277 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1278 {
1279         ASSERT(vcpu);
1280
1281         destroy_kvm_mmu(vcpu);
1282         free_mmu_pages(vcpu);
1283         mmu_free_memory_caches(vcpu);
1284 }
1285
1286 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1287 {
1288         struct kvm_mmu_page *page;
1289
1290         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1291                 int i;
1292                 u64 *pt;
1293
1294                 if (!test_bit(slot, &page->slot_bitmap))
1295                         continue;
1296
1297                 pt = page->spt;
1298                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1299                         /* avoid RMW */
1300                         if (pt[i] & PT_WRITABLE_MASK) {
1301                                 rmap_remove(&pt[i]);
1302                                 pt[i] &= ~PT_WRITABLE_MASK;
1303                         }
1304         }
1305 }
1306
1307 void kvm_mmu_zap_all(struct kvm *kvm)
1308 {
1309         struct kvm_mmu_page *page, *node;
1310
1311         list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
1312                 kvm_mmu_zap_page(kvm, page);
1313
1314         kvm_flush_remote_tlbs(kvm);
1315 }
1316
1317 void kvm_mmu_module_exit(void)
1318 {
1319         if (pte_chain_cache)
1320                 kmem_cache_destroy(pte_chain_cache);
1321         if (rmap_desc_cache)
1322                 kmem_cache_destroy(rmap_desc_cache);
1323         if (mmu_page_header_cache)
1324                 kmem_cache_destroy(mmu_page_header_cache);
1325 }
1326
1327 int kvm_mmu_module_init(void)
1328 {
1329         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1330                                             sizeof(struct kvm_pte_chain),
1331                                             0, 0, NULL);
1332         if (!pte_chain_cache)
1333                 goto nomem;
1334         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1335                                             sizeof(struct kvm_rmap_desc),
1336                                             0, 0, NULL);
1337         if (!rmap_desc_cache)
1338                 goto nomem;
1339
1340         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1341                                                   sizeof(struct kvm_mmu_page),
1342                                                   0, 0, NULL);
1343         if (!mmu_page_header_cache)
1344                 goto nomem;
1345
1346         return 0;
1347
1348 nomem:
1349         kvm_mmu_module_exit();
1350         return -ENOMEM;
1351 }
1352
1353 #ifdef AUDIT
1354
1355 static const char *audit_msg;
1356
1357 static gva_t canonicalize(gva_t gva)
1358 {
1359 #ifdef CONFIG_X86_64
1360         gva = (long long)(gva << 16) >> 16;
1361 #endif
1362         return gva;
1363 }
1364
1365 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1366                                 gva_t va, int level)
1367 {
1368         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1369         int i;
1370         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1371
1372         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1373                 u64 ent = pt[i];
1374
1375                 if (!(ent & PT_PRESENT_MASK))
1376                         continue;
1377
1378                 va = canonicalize(va);
1379                 if (level > 1)
1380                         audit_mappings_page(vcpu, ent, va, level - 1);
1381                 else {
1382                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1383                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1384
1385                         if ((ent & PT_PRESENT_MASK)
1386                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1387                                 printk(KERN_ERR "audit error: (%s) levels %d"
1388                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1389                                        audit_msg, vcpu->mmu.root_level,
1390                                        va, gpa, hpa, ent);
1391                 }
1392         }
1393 }
1394
1395 static void audit_mappings(struct kvm_vcpu *vcpu)
1396 {
1397         unsigned i;
1398
1399         if (vcpu->mmu.root_level == 4)
1400                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1401         else
1402                 for (i = 0; i < 4; ++i)
1403                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1404                                 audit_mappings_page(vcpu,
1405                                                     vcpu->mmu.pae_root[i],
1406                                                     i << 30,
1407                                                     2);
1408 }
1409
1410 static int count_rmaps(struct kvm_vcpu *vcpu)
1411 {
1412         int nmaps = 0;
1413         int i, j, k;
1414
1415         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1416                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1417                 struct kvm_rmap_desc *d;
1418
1419                 for (j = 0; j < m->npages; ++j) {
1420                         struct page *page = m->phys_mem[j];
1421
1422                         if (!page->private)
1423                                 continue;
1424                         if (!(page->private & 1)) {
1425                                 ++nmaps;
1426                                 continue;
1427                         }
1428                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1429                         while (d) {
1430                                 for (k = 0; k < RMAP_EXT; ++k)
1431                                         if (d->shadow_ptes[k])
1432                                                 ++nmaps;
1433                                         else
1434                                                 break;
1435                                 d = d->more;
1436                         }
1437                 }
1438         }
1439         return nmaps;
1440 }
1441
1442 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1443 {
1444         int nmaps = 0;
1445         struct kvm_mmu_page *page;
1446         int i;
1447
1448         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1449                 u64 *pt = page->spt;
1450
1451                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1452                         continue;
1453
1454                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1455                         u64 ent = pt[i];
1456
1457                         if (!(ent & PT_PRESENT_MASK))
1458                                 continue;
1459                         if (!(ent & PT_WRITABLE_MASK))
1460                                 continue;
1461                         ++nmaps;
1462                 }
1463         }
1464         return nmaps;
1465 }
1466
1467 static void audit_rmap(struct kvm_vcpu *vcpu)
1468 {
1469         int n_rmap = count_rmaps(vcpu);
1470         int n_actual = count_writable_mappings(vcpu);
1471
1472         if (n_rmap != n_actual)
1473                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1474                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1475 }
1476
1477 static void audit_write_protection(struct kvm_vcpu *vcpu)
1478 {
1479         struct kvm_mmu_page *page;
1480
1481         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1482                 hfn_t hfn;
1483                 struct page *pg;
1484
1485                 if (page->role.metaphysical)
1486                         continue;
1487
1488                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1489                         >> PAGE_SHIFT;
1490                 pg = pfn_to_page(hfn);
1491                 if (pg->private)
1492                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1493                                " mappings: gfn %lx role %x\n",
1494                                __FUNCTION__, audit_msg, page->gfn,
1495                                page->role.word);
1496         }
1497 }
1498
1499 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1500 {
1501         int olddbg = dbg;
1502
1503         dbg = 0;
1504         audit_msg = msg;
1505         audit_rmap(vcpu);
1506         audit_write_protection(vcpu);
1507         audit_mappings(vcpu);
1508         dbg = olddbg;
1509 }
1510
1511 #endif