KVM: Add and use pr_unimpl for standard formatting of unimplemented features
[pandora-kernel.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 static cpumask_t cpus_hardware_enabled;
54
55 struct kvm_arch_ops *kvm_arch_ops;
56 struct kmem_cache *kvm_vcpu_cache;
57 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
58
59 static __read_mostly struct preempt_ops kvm_preempt_ops;
60
61 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
62
63 static struct kvm_stats_debugfs_item {
64         const char *name;
65         int offset;
66         struct dentry *dentry;
67 } debugfs_entries[] = {
68         { "pf_fixed", STAT_OFFSET(pf_fixed) },
69         { "pf_guest", STAT_OFFSET(pf_guest) },
70         { "tlb_flush", STAT_OFFSET(tlb_flush) },
71         { "invlpg", STAT_OFFSET(invlpg) },
72         { "exits", STAT_OFFSET(exits) },
73         { "io_exits", STAT_OFFSET(io_exits) },
74         { "mmio_exits", STAT_OFFSET(mmio_exits) },
75         { "signal_exits", STAT_OFFSET(signal_exits) },
76         { "irq_window", STAT_OFFSET(irq_window_exits) },
77         { "halt_exits", STAT_OFFSET(halt_exits) },
78         { "request_irq", STAT_OFFSET(request_irq_exits) },
79         { "irq_exits", STAT_OFFSET(irq_exits) },
80         { "light_exits", STAT_OFFSET(light_exits) },
81         { "efer_reload", STAT_OFFSET(efer_reload) },
82         { NULL }
83 };
84
85 static struct dentry *debugfs_dir;
86
87 #define MAX_IO_MSRS 256
88
89 #define CR0_RESERVED_BITS                                               \
90         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
91                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
92                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
93 #define CR4_RESERVED_BITS                                               \
94         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
95                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
96                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
97                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
98
99 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
100 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
101
102 #ifdef CONFIG_X86_64
103 // LDT or TSS descriptor in the GDT. 16 bytes.
104 struct segment_descriptor_64 {
105         struct segment_descriptor s;
106         u32 base_higher;
107         u32 pad_zero;
108 };
109
110 #endif
111
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113                            unsigned long arg);
114
115 unsigned long segment_base(u16 selector)
116 {
117         struct descriptor_table gdt;
118         struct segment_descriptor *d;
119         unsigned long table_base;
120         typedef unsigned long ul;
121         unsigned long v;
122
123         if (selector == 0)
124                 return 0;
125
126         asm ("sgdt %0" : "=m"(gdt));
127         table_base = gdt.base;
128
129         if (selector & 4) {           /* from ldt */
130                 u16 ldt_selector;
131
132                 asm ("sldt %0" : "=g"(ldt_selector));
133                 table_base = segment_base(ldt_selector);
134         }
135         d = (struct segment_descriptor *)(table_base + (selector & ~7));
136         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
137 #ifdef CONFIG_X86_64
138         if (d->system == 0
139             && (d->type == 2 || d->type == 9 || d->type == 11))
140                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
141 #endif
142         return v;
143 }
144 EXPORT_SYMBOL_GPL(segment_base);
145
146 static inline int valid_vcpu(int n)
147 {
148         return likely(n >= 0 && n < KVM_MAX_VCPUS);
149 }
150
151 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
152 {
153         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
154                 return;
155
156         vcpu->guest_fpu_loaded = 1;
157         fx_save(&vcpu->host_fx_image);
158         fx_restore(&vcpu->guest_fx_image);
159 }
160 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
161
162 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
163 {
164         if (!vcpu->guest_fpu_loaded)
165                 return;
166
167         vcpu->guest_fpu_loaded = 0;
168         fx_save(&vcpu->guest_fx_image);
169         fx_restore(&vcpu->host_fx_image);
170 }
171 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
172
173 /*
174  * Switches to specified vcpu, until a matching vcpu_put()
175  */
176 static void vcpu_load(struct kvm_vcpu *vcpu)
177 {
178         int cpu;
179
180         mutex_lock(&vcpu->mutex);
181         cpu = get_cpu();
182         preempt_notifier_register(&vcpu->preempt_notifier);
183         kvm_arch_ops->vcpu_load(vcpu, cpu);
184         put_cpu();
185 }
186
187 static void vcpu_put(struct kvm_vcpu *vcpu)
188 {
189         preempt_disable();
190         kvm_arch_ops->vcpu_put(vcpu);
191         preempt_notifier_unregister(&vcpu->preempt_notifier);
192         preempt_enable();
193         mutex_unlock(&vcpu->mutex);
194 }
195
196 static void ack_flush(void *_completed)
197 {
198         atomic_t *completed = _completed;
199
200         atomic_inc(completed);
201 }
202
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205         int i, cpu, needed;
206         cpumask_t cpus;
207         struct kvm_vcpu *vcpu;
208         atomic_t completed;
209
210         atomic_set(&completed, 0);
211         cpus_clear(cpus);
212         needed = 0;
213         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
214                 vcpu = kvm->vcpus[i];
215                 if (!vcpu)
216                         continue;
217                 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
218                         continue;
219                 cpu = vcpu->cpu;
220                 if (cpu != -1 && cpu != raw_smp_processor_id())
221                         if (!cpu_isset(cpu, cpus)) {
222                                 cpu_set(cpu, cpus);
223                                 ++needed;
224                         }
225         }
226
227         /*
228          * We really want smp_call_function_mask() here.  But that's not
229          * available, so ipi all cpus in parallel and wait for them
230          * to complete.
231          */
232         for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
233                 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
234         while (atomic_read(&completed) != needed) {
235                 cpu_relax();
236                 barrier();
237         }
238 }
239
240 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
241 {
242         struct page *page;
243         int r;
244
245         mutex_init(&vcpu->mutex);
246         vcpu->cpu = -1;
247         vcpu->mmu.root_hpa = INVALID_PAGE;
248         vcpu->kvm = kvm;
249         vcpu->vcpu_id = id;
250
251         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
252         if (!page) {
253                 r = -ENOMEM;
254                 goto fail;
255         }
256         vcpu->run = page_address(page);
257
258         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
259         if (!page) {
260                 r = -ENOMEM;
261                 goto fail_free_run;
262         }
263         vcpu->pio_data = page_address(page);
264
265         r = kvm_mmu_create(vcpu);
266         if (r < 0)
267                 goto fail_free_pio_data;
268
269         return 0;
270
271 fail_free_pio_data:
272         free_page((unsigned long)vcpu->pio_data);
273 fail_free_run:
274         free_page((unsigned long)vcpu->run);
275 fail:
276         return -ENOMEM;
277 }
278 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
279
280 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
281 {
282         kvm_mmu_destroy(vcpu);
283         free_page((unsigned long)vcpu->pio_data);
284         free_page((unsigned long)vcpu->run);
285 }
286 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
287
288 static struct kvm *kvm_create_vm(void)
289 {
290         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
291
292         if (!kvm)
293                 return ERR_PTR(-ENOMEM);
294
295         kvm_io_bus_init(&kvm->pio_bus);
296         mutex_init(&kvm->lock);
297         INIT_LIST_HEAD(&kvm->active_mmu_pages);
298         kvm_io_bus_init(&kvm->mmio_bus);
299         spin_lock(&kvm_lock);
300         list_add(&kvm->vm_list, &vm_list);
301         spin_unlock(&kvm_lock);
302         return kvm;
303 }
304
305 /*
306  * Free any memory in @free but not in @dont.
307  */
308 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
309                                   struct kvm_memory_slot *dont)
310 {
311         int i;
312
313         if (!dont || free->phys_mem != dont->phys_mem)
314                 if (free->phys_mem) {
315                         for (i = 0; i < free->npages; ++i)
316                                 if (free->phys_mem[i])
317                                         __free_page(free->phys_mem[i]);
318                         vfree(free->phys_mem);
319                 }
320
321         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
322                 vfree(free->dirty_bitmap);
323
324         free->phys_mem = NULL;
325         free->npages = 0;
326         free->dirty_bitmap = NULL;
327 }
328
329 static void kvm_free_physmem(struct kvm *kvm)
330 {
331         int i;
332
333         for (i = 0; i < kvm->nmemslots; ++i)
334                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
335 }
336
337 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
338 {
339         int i;
340
341         for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
342                 if (vcpu->pio.guest_pages[i]) {
343                         __free_page(vcpu->pio.guest_pages[i]);
344                         vcpu->pio.guest_pages[i] = NULL;
345                 }
346 }
347
348 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
349 {
350         vcpu_load(vcpu);
351         kvm_mmu_unload(vcpu);
352         vcpu_put(vcpu);
353 }
354
355 static void kvm_free_vcpus(struct kvm *kvm)
356 {
357         unsigned int i;
358
359         /*
360          * Unpin any mmu pages first.
361          */
362         for (i = 0; i < KVM_MAX_VCPUS; ++i)
363                 if (kvm->vcpus[i])
364                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
365         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
366                 if (kvm->vcpus[i]) {
367                         kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
368                         kvm->vcpus[i] = NULL;
369                 }
370         }
371
372 }
373
374 static void kvm_destroy_vm(struct kvm *kvm)
375 {
376         spin_lock(&kvm_lock);
377         list_del(&kvm->vm_list);
378         spin_unlock(&kvm_lock);
379         kvm_io_bus_destroy(&kvm->pio_bus);
380         kvm_io_bus_destroy(&kvm->mmio_bus);
381         kvm_free_vcpus(kvm);
382         kvm_free_physmem(kvm);
383         kfree(kvm);
384 }
385
386 static int kvm_vm_release(struct inode *inode, struct file *filp)
387 {
388         struct kvm *kvm = filp->private_data;
389
390         kvm_destroy_vm(kvm);
391         return 0;
392 }
393
394 static void inject_gp(struct kvm_vcpu *vcpu)
395 {
396         kvm_arch_ops->inject_gp(vcpu, 0);
397 }
398
399 /*
400  * Load the pae pdptrs.  Return true is they are all valid.
401  */
402 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
403 {
404         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
405         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
406         int i;
407         u64 *pdpt;
408         int ret;
409         struct page *page;
410         u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
411
412         mutex_lock(&vcpu->kvm->lock);
413         page = gfn_to_page(vcpu->kvm, pdpt_gfn);
414         if (!page) {
415                 ret = 0;
416                 goto out;
417         }
418
419         pdpt = kmap_atomic(page, KM_USER0);
420         memcpy(pdpte, pdpt+offset, sizeof(pdpte));
421         kunmap_atomic(pdpt, KM_USER0);
422
423         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
424                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
425                         ret = 0;
426                         goto out;
427                 }
428         }
429         ret = 1;
430
431         memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
432 out:
433         mutex_unlock(&vcpu->kvm->lock);
434
435         return ret;
436 }
437
438 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
439 {
440         if (cr0 & CR0_RESERVED_BITS) {
441                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
442                        cr0, vcpu->cr0);
443                 inject_gp(vcpu);
444                 return;
445         }
446
447         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
448                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
449                 inject_gp(vcpu);
450                 return;
451         }
452
453         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
454                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
455                        "and a clear PE flag\n");
456                 inject_gp(vcpu);
457                 return;
458         }
459
460         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
461 #ifdef CONFIG_X86_64
462                 if ((vcpu->shadow_efer & EFER_LME)) {
463                         int cs_db, cs_l;
464
465                         if (!is_pae(vcpu)) {
466                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
467                                        "in long mode while PAE is disabled\n");
468                                 inject_gp(vcpu);
469                                 return;
470                         }
471                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
472                         if (cs_l) {
473                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
474                                        "in long mode while CS.L == 1\n");
475                                 inject_gp(vcpu);
476                                 return;
477
478                         }
479                 } else
480 #endif
481                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
482                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
483                                "reserved bits\n");
484                         inject_gp(vcpu);
485                         return;
486                 }
487
488         }
489
490         kvm_arch_ops->set_cr0(vcpu, cr0);
491         vcpu->cr0 = cr0;
492
493         mutex_lock(&vcpu->kvm->lock);
494         kvm_mmu_reset_context(vcpu);
495         mutex_unlock(&vcpu->kvm->lock);
496         return;
497 }
498 EXPORT_SYMBOL_GPL(set_cr0);
499
500 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
501 {
502         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
503 }
504 EXPORT_SYMBOL_GPL(lmsw);
505
506 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
507 {
508         if (cr4 & CR4_RESERVED_BITS) {
509                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
510                 inject_gp(vcpu);
511                 return;
512         }
513
514         if (is_long_mode(vcpu)) {
515                 if (!(cr4 & X86_CR4_PAE)) {
516                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
517                                "in long mode\n");
518                         inject_gp(vcpu);
519                         return;
520                 }
521         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
522                    && !load_pdptrs(vcpu, vcpu->cr3)) {
523                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
524                 inject_gp(vcpu);
525                 return;
526         }
527
528         if (cr4 & X86_CR4_VMXE) {
529                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
530                 inject_gp(vcpu);
531                 return;
532         }
533         kvm_arch_ops->set_cr4(vcpu, cr4);
534         mutex_lock(&vcpu->kvm->lock);
535         kvm_mmu_reset_context(vcpu);
536         mutex_unlock(&vcpu->kvm->lock);
537 }
538 EXPORT_SYMBOL_GPL(set_cr4);
539
540 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
541 {
542         if (is_long_mode(vcpu)) {
543                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
544                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
545                         inject_gp(vcpu);
546                         return;
547                 }
548         } else {
549                 if (is_pae(vcpu)) {
550                         if (cr3 & CR3_PAE_RESERVED_BITS) {
551                                 printk(KERN_DEBUG
552                                        "set_cr3: #GP, reserved bits\n");
553                                 inject_gp(vcpu);
554                                 return;
555                         }
556                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
557                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
558                                        "reserved bits\n");
559                                 inject_gp(vcpu);
560                                 return;
561                         }
562                 } else {
563                         if (cr3 & CR3_NONPAE_RESERVED_BITS) {
564                                 printk(KERN_DEBUG
565                                        "set_cr3: #GP, reserved bits\n");
566                                 inject_gp(vcpu);
567                                 return;
568                         }
569                 }
570         }
571
572         mutex_lock(&vcpu->kvm->lock);
573         /*
574          * Does the new cr3 value map to physical memory? (Note, we
575          * catch an invalid cr3 even in real-mode, because it would
576          * cause trouble later on when we turn on paging anyway.)
577          *
578          * A real CPU would silently accept an invalid cr3 and would
579          * attempt to use it - with largely undefined (and often hard
580          * to debug) behavior on the guest side.
581          */
582         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
583                 inject_gp(vcpu);
584         else {
585                 vcpu->cr3 = cr3;
586                 vcpu->mmu.new_cr3(vcpu);
587         }
588         mutex_unlock(&vcpu->kvm->lock);
589 }
590 EXPORT_SYMBOL_GPL(set_cr3);
591
592 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
593 {
594         if (cr8 & CR8_RESERVED_BITS) {
595                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
596                 inject_gp(vcpu);
597                 return;
598         }
599         vcpu->cr8 = cr8;
600 }
601 EXPORT_SYMBOL_GPL(set_cr8);
602
603 void fx_init(struct kvm_vcpu *vcpu)
604 {
605         unsigned after_mxcsr_mask;
606
607         /* Initialize guest FPU by resetting ours and saving into guest's */
608         preempt_disable();
609         fx_save(&vcpu->host_fx_image);
610         fpu_init();
611         fx_save(&vcpu->guest_fx_image);
612         fx_restore(&vcpu->host_fx_image);
613         preempt_enable();
614
615         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
616         vcpu->guest_fx_image.mxcsr = 0x1f80;
617         memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
618                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
619 }
620 EXPORT_SYMBOL_GPL(fx_init);
621
622 /*
623  * Allocate some memory and give it an address in the guest physical address
624  * space.
625  *
626  * Discontiguous memory is allowed, mostly for framebuffers.
627  */
628 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
629                                           struct kvm_memory_region *mem)
630 {
631         int r;
632         gfn_t base_gfn;
633         unsigned long npages;
634         unsigned long i;
635         struct kvm_memory_slot *memslot;
636         struct kvm_memory_slot old, new;
637         int memory_config_version;
638
639         r = -EINVAL;
640         /* General sanity checks */
641         if (mem->memory_size & (PAGE_SIZE - 1))
642                 goto out;
643         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
644                 goto out;
645         if (mem->slot >= KVM_MEMORY_SLOTS)
646                 goto out;
647         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
648                 goto out;
649
650         memslot = &kvm->memslots[mem->slot];
651         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
652         npages = mem->memory_size >> PAGE_SHIFT;
653
654         if (!npages)
655                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
656
657 raced:
658         mutex_lock(&kvm->lock);
659
660         memory_config_version = kvm->memory_config_version;
661         new = old = *memslot;
662
663         new.base_gfn = base_gfn;
664         new.npages = npages;
665         new.flags = mem->flags;
666
667         /* Disallow changing a memory slot's size. */
668         r = -EINVAL;
669         if (npages && old.npages && npages != old.npages)
670                 goto out_unlock;
671
672         /* Check for overlaps */
673         r = -EEXIST;
674         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
675                 struct kvm_memory_slot *s = &kvm->memslots[i];
676
677                 if (s == memslot)
678                         continue;
679                 if (!((base_gfn + npages <= s->base_gfn) ||
680                       (base_gfn >= s->base_gfn + s->npages)))
681                         goto out_unlock;
682         }
683         /*
684          * Do memory allocations outside lock.  memory_config_version will
685          * detect any races.
686          */
687         mutex_unlock(&kvm->lock);
688
689         /* Deallocate if slot is being removed */
690         if (!npages)
691                 new.phys_mem = NULL;
692
693         /* Free page dirty bitmap if unneeded */
694         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
695                 new.dirty_bitmap = NULL;
696
697         r = -ENOMEM;
698
699         /* Allocate if a slot is being created */
700         if (npages && !new.phys_mem) {
701                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
702
703                 if (!new.phys_mem)
704                         goto out_free;
705
706                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
707                 for (i = 0; i < npages; ++i) {
708                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
709                                                      | __GFP_ZERO);
710                         if (!new.phys_mem[i])
711                                 goto out_free;
712                         set_page_private(new.phys_mem[i],0);
713                 }
714         }
715
716         /* Allocate page dirty bitmap if needed */
717         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
718                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
719
720                 new.dirty_bitmap = vmalloc(dirty_bytes);
721                 if (!new.dirty_bitmap)
722                         goto out_free;
723                 memset(new.dirty_bitmap, 0, dirty_bytes);
724         }
725
726         mutex_lock(&kvm->lock);
727
728         if (memory_config_version != kvm->memory_config_version) {
729                 mutex_unlock(&kvm->lock);
730                 kvm_free_physmem_slot(&new, &old);
731                 goto raced;
732         }
733
734         r = -EAGAIN;
735         if (kvm->busy)
736                 goto out_unlock;
737
738         if (mem->slot >= kvm->nmemslots)
739                 kvm->nmemslots = mem->slot + 1;
740
741         *memslot = new;
742         ++kvm->memory_config_version;
743
744         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
745         kvm_flush_remote_tlbs(kvm);
746
747         mutex_unlock(&kvm->lock);
748
749         kvm_free_physmem_slot(&old, &new);
750         return 0;
751
752 out_unlock:
753         mutex_unlock(&kvm->lock);
754 out_free:
755         kvm_free_physmem_slot(&new, &old);
756 out:
757         return r;
758 }
759
760 /*
761  * Get (and clear) the dirty memory log for a memory slot.
762  */
763 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
764                                       struct kvm_dirty_log *log)
765 {
766         struct kvm_memory_slot *memslot;
767         int r, i;
768         int n;
769         unsigned long any = 0;
770
771         mutex_lock(&kvm->lock);
772
773         /*
774          * Prevent changes to guest memory configuration even while the lock
775          * is not taken.
776          */
777         ++kvm->busy;
778         mutex_unlock(&kvm->lock);
779         r = -EINVAL;
780         if (log->slot >= KVM_MEMORY_SLOTS)
781                 goto out;
782
783         memslot = &kvm->memslots[log->slot];
784         r = -ENOENT;
785         if (!memslot->dirty_bitmap)
786                 goto out;
787
788         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
789
790         for (i = 0; !any && i < n/sizeof(long); ++i)
791                 any = memslot->dirty_bitmap[i];
792
793         r = -EFAULT;
794         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
795                 goto out;
796
797         /* If nothing is dirty, don't bother messing with page tables. */
798         if (any) {
799                 mutex_lock(&kvm->lock);
800                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
801                 kvm_flush_remote_tlbs(kvm);
802                 memset(memslot->dirty_bitmap, 0, n);
803                 mutex_unlock(&kvm->lock);
804         }
805
806         r = 0;
807
808 out:
809         mutex_lock(&kvm->lock);
810         --kvm->busy;
811         mutex_unlock(&kvm->lock);
812         return r;
813 }
814
815 /*
816  * Set a new alias region.  Aliases map a portion of physical memory into
817  * another portion.  This is useful for memory windows, for example the PC
818  * VGA region.
819  */
820 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
821                                          struct kvm_memory_alias *alias)
822 {
823         int r, n;
824         struct kvm_mem_alias *p;
825
826         r = -EINVAL;
827         /* General sanity checks */
828         if (alias->memory_size & (PAGE_SIZE - 1))
829                 goto out;
830         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
831                 goto out;
832         if (alias->slot >= KVM_ALIAS_SLOTS)
833                 goto out;
834         if (alias->guest_phys_addr + alias->memory_size
835             < alias->guest_phys_addr)
836                 goto out;
837         if (alias->target_phys_addr + alias->memory_size
838             < alias->target_phys_addr)
839                 goto out;
840
841         mutex_lock(&kvm->lock);
842
843         p = &kvm->aliases[alias->slot];
844         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
845         p->npages = alias->memory_size >> PAGE_SHIFT;
846         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
847
848         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
849                 if (kvm->aliases[n - 1].npages)
850                         break;
851         kvm->naliases = n;
852
853         kvm_mmu_zap_all(kvm);
854
855         mutex_unlock(&kvm->lock);
856
857         return 0;
858
859 out:
860         return r;
861 }
862
863 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
864 {
865         int i;
866         struct kvm_mem_alias *alias;
867
868         for (i = 0; i < kvm->naliases; ++i) {
869                 alias = &kvm->aliases[i];
870                 if (gfn >= alias->base_gfn
871                     && gfn < alias->base_gfn + alias->npages)
872                         return alias->target_gfn + gfn - alias->base_gfn;
873         }
874         return gfn;
875 }
876
877 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
878 {
879         int i;
880
881         for (i = 0; i < kvm->nmemslots; ++i) {
882                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
883
884                 if (gfn >= memslot->base_gfn
885                     && gfn < memslot->base_gfn + memslot->npages)
886                         return memslot;
887         }
888         return NULL;
889 }
890
891 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
892 {
893         gfn = unalias_gfn(kvm, gfn);
894         return __gfn_to_memslot(kvm, gfn);
895 }
896
897 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
898 {
899         struct kvm_memory_slot *slot;
900
901         gfn = unalias_gfn(kvm, gfn);
902         slot = __gfn_to_memslot(kvm, gfn);
903         if (!slot)
904                 return NULL;
905         return slot->phys_mem[gfn - slot->base_gfn];
906 }
907 EXPORT_SYMBOL_GPL(gfn_to_page);
908
909 /* WARNING: Does not work on aliased pages. */
910 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
911 {
912         struct kvm_memory_slot *memslot;
913
914         memslot = __gfn_to_memslot(kvm, gfn);
915         if (memslot && memslot->dirty_bitmap) {
916                 unsigned long rel_gfn = gfn - memslot->base_gfn;
917
918                 /* avoid RMW */
919                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
920                         set_bit(rel_gfn, memslot->dirty_bitmap);
921         }
922 }
923
924 int emulator_read_std(unsigned long addr,
925                              void *val,
926                              unsigned int bytes,
927                              struct kvm_vcpu *vcpu)
928 {
929         void *data = val;
930
931         while (bytes) {
932                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
933                 unsigned offset = addr & (PAGE_SIZE-1);
934                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
935                 unsigned long pfn;
936                 struct page *page;
937                 void *page_virt;
938
939                 if (gpa == UNMAPPED_GVA)
940                         return X86EMUL_PROPAGATE_FAULT;
941                 pfn = gpa >> PAGE_SHIFT;
942                 page = gfn_to_page(vcpu->kvm, pfn);
943                 if (!page)
944                         return X86EMUL_UNHANDLEABLE;
945                 page_virt = kmap_atomic(page, KM_USER0);
946
947                 memcpy(data, page_virt + offset, tocopy);
948
949                 kunmap_atomic(page_virt, KM_USER0);
950
951                 bytes -= tocopy;
952                 data += tocopy;
953                 addr += tocopy;
954         }
955
956         return X86EMUL_CONTINUE;
957 }
958 EXPORT_SYMBOL_GPL(emulator_read_std);
959
960 static int emulator_write_std(unsigned long addr,
961                               const void *val,
962                               unsigned int bytes,
963                               struct kvm_vcpu *vcpu)
964 {
965         pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
966         return X86EMUL_UNHANDLEABLE;
967 }
968
969 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
970                                                 gpa_t addr)
971 {
972         /*
973          * Note that its important to have this wrapper function because
974          * in the very near future we will be checking for MMIOs against
975          * the LAPIC as well as the general MMIO bus
976          */
977         return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
978 }
979
980 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
981                                                gpa_t addr)
982 {
983         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
984 }
985
986 static int emulator_read_emulated(unsigned long addr,
987                                   void *val,
988                                   unsigned int bytes,
989                                   struct kvm_vcpu *vcpu)
990 {
991         struct kvm_io_device *mmio_dev;
992         gpa_t                 gpa;
993
994         if (vcpu->mmio_read_completed) {
995                 memcpy(val, vcpu->mmio_data, bytes);
996                 vcpu->mmio_read_completed = 0;
997                 return X86EMUL_CONTINUE;
998         } else if (emulator_read_std(addr, val, bytes, vcpu)
999                    == X86EMUL_CONTINUE)
1000                 return X86EMUL_CONTINUE;
1001
1002         gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1003         if (gpa == UNMAPPED_GVA)
1004                 return X86EMUL_PROPAGATE_FAULT;
1005
1006         /*
1007          * Is this MMIO handled locally?
1008          */
1009         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1010         if (mmio_dev) {
1011                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1012                 return X86EMUL_CONTINUE;
1013         }
1014
1015         vcpu->mmio_needed = 1;
1016         vcpu->mmio_phys_addr = gpa;
1017         vcpu->mmio_size = bytes;
1018         vcpu->mmio_is_write = 0;
1019
1020         return X86EMUL_UNHANDLEABLE;
1021 }
1022
1023 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1024                                const void *val, int bytes)
1025 {
1026         struct page *page;
1027         void *virt;
1028
1029         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1030                 return 0;
1031         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1032         if (!page)
1033                 return 0;
1034         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1035         virt = kmap_atomic(page, KM_USER0);
1036         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1037         memcpy(virt + offset_in_page(gpa), val, bytes);
1038         kunmap_atomic(virt, KM_USER0);
1039         return 1;
1040 }
1041
1042 static int emulator_write_emulated_onepage(unsigned long addr,
1043                                            const void *val,
1044                                            unsigned int bytes,
1045                                            struct kvm_vcpu *vcpu)
1046 {
1047         struct kvm_io_device *mmio_dev;
1048         gpa_t                 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1049
1050         if (gpa == UNMAPPED_GVA) {
1051                 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1052                 return X86EMUL_PROPAGATE_FAULT;
1053         }
1054
1055         if (emulator_write_phys(vcpu, gpa, val, bytes))
1056                 return X86EMUL_CONTINUE;
1057
1058         /*
1059          * Is this MMIO handled locally?
1060          */
1061         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1062         if (mmio_dev) {
1063                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1064                 return X86EMUL_CONTINUE;
1065         }
1066
1067         vcpu->mmio_needed = 1;
1068         vcpu->mmio_phys_addr = gpa;
1069         vcpu->mmio_size = bytes;
1070         vcpu->mmio_is_write = 1;
1071         memcpy(vcpu->mmio_data, val, bytes);
1072
1073         return X86EMUL_CONTINUE;
1074 }
1075
1076 int emulator_write_emulated(unsigned long addr,
1077                                    const void *val,
1078                                    unsigned int bytes,
1079                                    struct kvm_vcpu *vcpu)
1080 {
1081         /* Crossing a page boundary? */
1082         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1083                 int rc, now;
1084
1085                 now = -addr & ~PAGE_MASK;
1086                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1087                 if (rc != X86EMUL_CONTINUE)
1088                         return rc;
1089                 addr += now;
1090                 val += now;
1091                 bytes -= now;
1092         }
1093         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1096
1097 static int emulator_cmpxchg_emulated(unsigned long addr,
1098                                      const void *old,
1099                                      const void *new,
1100                                      unsigned int bytes,
1101                                      struct kvm_vcpu *vcpu)
1102 {
1103         static int reported;
1104
1105         if (!reported) {
1106                 reported = 1;
1107                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1108         }
1109         return emulator_write_emulated(addr, new, bytes, vcpu);
1110 }
1111
1112 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1113 {
1114         return kvm_arch_ops->get_segment_base(vcpu, seg);
1115 }
1116
1117 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1118 {
1119         return X86EMUL_CONTINUE;
1120 }
1121
1122 int emulate_clts(struct kvm_vcpu *vcpu)
1123 {
1124         unsigned long cr0;
1125
1126         cr0 = vcpu->cr0 & ~X86_CR0_TS;
1127         kvm_arch_ops->set_cr0(vcpu, cr0);
1128         return X86EMUL_CONTINUE;
1129 }
1130
1131 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1132 {
1133         struct kvm_vcpu *vcpu = ctxt->vcpu;
1134
1135         switch (dr) {
1136         case 0 ... 3:
1137                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1138                 return X86EMUL_CONTINUE;
1139         default:
1140                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1141                 return X86EMUL_UNHANDLEABLE;
1142         }
1143 }
1144
1145 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1146 {
1147         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1148         int exception;
1149
1150         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1151         if (exception) {
1152                 /* FIXME: better handling */
1153                 return X86EMUL_UNHANDLEABLE;
1154         }
1155         return X86EMUL_CONTINUE;
1156 }
1157
1158 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1159 {
1160         static int reported;
1161         u8 opcodes[4];
1162         unsigned long rip = ctxt->vcpu->rip;
1163         unsigned long rip_linear;
1164
1165         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1166
1167         if (reported)
1168                 return;
1169
1170         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1171
1172         printk(KERN_ERR "emulation failed but !mmio_needed?"
1173                " rip %lx %02x %02x %02x %02x\n",
1174                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1175         reported = 1;
1176 }
1177
1178 struct x86_emulate_ops emulate_ops = {
1179         .read_std            = emulator_read_std,
1180         .write_std           = emulator_write_std,
1181         .read_emulated       = emulator_read_emulated,
1182         .write_emulated      = emulator_write_emulated,
1183         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1184 };
1185
1186 int emulate_instruction(struct kvm_vcpu *vcpu,
1187                         struct kvm_run *run,
1188                         unsigned long cr2,
1189                         u16 error_code)
1190 {
1191         struct x86_emulate_ctxt emulate_ctxt;
1192         int r;
1193         int cs_db, cs_l;
1194
1195         vcpu->mmio_fault_cr2 = cr2;
1196         kvm_arch_ops->cache_regs(vcpu);
1197
1198         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1199
1200         emulate_ctxt.vcpu = vcpu;
1201         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1202         emulate_ctxt.cr2 = cr2;
1203         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1204                 ? X86EMUL_MODE_REAL : cs_l
1205                 ? X86EMUL_MODE_PROT64 : cs_db
1206                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1207
1208         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1209                 emulate_ctxt.cs_base = 0;
1210                 emulate_ctxt.ds_base = 0;
1211                 emulate_ctxt.es_base = 0;
1212                 emulate_ctxt.ss_base = 0;
1213         } else {
1214                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1215                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1216                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1217                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1218         }
1219
1220         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1221         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1222
1223         vcpu->mmio_is_write = 0;
1224         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1225
1226         if ((r || vcpu->mmio_is_write) && run) {
1227                 run->exit_reason = KVM_EXIT_MMIO;
1228                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1229                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1230                 run->mmio.len = vcpu->mmio_size;
1231                 run->mmio.is_write = vcpu->mmio_is_write;
1232         }
1233
1234         if (r) {
1235                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1236                         return EMULATE_DONE;
1237                 if (!vcpu->mmio_needed) {
1238                         report_emulation_failure(&emulate_ctxt);
1239                         return EMULATE_FAIL;
1240                 }
1241                 return EMULATE_DO_MMIO;
1242         }
1243
1244         kvm_arch_ops->decache_regs(vcpu);
1245         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1246
1247         if (vcpu->mmio_is_write) {
1248                 vcpu->mmio_needed = 0;
1249                 return EMULATE_DO_MMIO;
1250         }
1251
1252         return EMULATE_DONE;
1253 }
1254 EXPORT_SYMBOL_GPL(emulate_instruction);
1255
1256 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1257 {
1258         if (vcpu->irq_summary)
1259                 return 1;
1260
1261         vcpu->run->exit_reason = KVM_EXIT_HLT;
1262         ++vcpu->stat.halt_exits;
1263         return 0;
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1266
1267 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1268 {
1269         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1270
1271         kvm_arch_ops->cache_regs(vcpu);
1272         ret = -KVM_EINVAL;
1273 #ifdef CONFIG_X86_64
1274         if (is_long_mode(vcpu)) {
1275                 nr = vcpu->regs[VCPU_REGS_RAX];
1276                 a0 = vcpu->regs[VCPU_REGS_RDI];
1277                 a1 = vcpu->regs[VCPU_REGS_RSI];
1278                 a2 = vcpu->regs[VCPU_REGS_RDX];
1279                 a3 = vcpu->regs[VCPU_REGS_RCX];
1280                 a4 = vcpu->regs[VCPU_REGS_R8];
1281                 a5 = vcpu->regs[VCPU_REGS_R9];
1282         } else
1283 #endif
1284         {
1285                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1286                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1287                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1288                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1289                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1290                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1291                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1292         }
1293         switch (nr) {
1294         default:
1295                 run->hypercall.nr = nr;
1296                 run->hypercall.args[0] = a0;
1297                 run->hypercall.args[1] = a1;
1298                 run->hypercall.args[2] = a2;
1299                 run->hypercall.args[3] = a3;
1300                 run->hypercall.args[4] = a4;
1301                 run->hypercall.args[5] = a5;
1302                 run->hypercall.ret = ret;
1303                 run->hypercall.longmode = is_long_mode(vcpu);
1304                 kvm_arch_ops->decache_regs(vcpu);
1305                 return 0;
1306         }
1307         vcpu->regs[VCPU_REGS_RAX] = ret;
1308         kvm_arch_ops->decache_regs(vcpu);
1309         return 1;
1310 }
1311 EXPORT_SYMBOL_GPL(kvm_hypercall);
1312
1313 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1314 {
1315         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1316 }
1317
1318 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1319 {
1320         struct descriptor_table dt = { limit, base };
1321
1322         kvm_arch_ops->set_gdt(vcpu, &dt);
1323 }
1324
1325 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1326 {
1327         struct descriptor_table dt = { limit, base };
1328
1329         kvm_arch_ops->set_idt(vcpu, &dt);
1330 }
1331
1332 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1333                    unsigned long *rflags)
1334 {
1335         lmsw(vcpu, msw);
1336         *rflags = kvm_arch_ops->get_rflags(vcpu);
1337 }
1338
1339 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1340 {
1341         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1342         switch (cr) {
1343         case 0:
1344                 return vcpu->cr0;
1345         case 2:
1346                 return vcpu->cr2;
1347         case 3:
1348                 return vcpu->cr3;
1349         case 4:
1350                 return vcpu->cr4;
1351         default:
1352                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1353                 return 0;
1354         }
1355 }
1356
1357 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1358                      unsigned long *rflags)
1359 {
1360         switch (cr) {
1361         case 0:
1362                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1363                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1364                 break;
1365         case 2:
1366                 vcpu->cr2 = val;
1367                 break;
1368         case 3:
1369                 set_cr3(vcpu, val);
1370                 break;
1371         case 4:
1372                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1373                 break;
1374         default:
1375                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1376         }
1377 }
1378
1379 /*
1380  * Register the para guest with the host:
1381  */
1382 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1383 {
1384         struct kvm_vcpu_para_state *para_state;
1385         hpa_t para_state_hpa, hypercall_hpa;
1386         struct page *para_state_page;
1387         unsigned char *hypercall;
1388         gpa_t hypercall_gpa;
1389
1390         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1391         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1392
1393         /*
1394          * Needs to be page aligned:
1395          */
1396         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1397                 goto err_gp;
1398
1399         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1400         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1401         if (is_error_hpa(para_state_hpa))
1402                 goto err_gp;
1403
1404         mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1405         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1406         para_state = kmap(para_state_page);
1407
1408         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1409         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1410
1411         para_state->host_version = KVM_PARA_API_VERSION;
1412         /*
1413          * We cannot support guests that try to register themselves
1414          * with a newer API version than the host supports:
1415          */
1416         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1417                 para_state->ret = -KVM_EINVAL;
1418                 goto err_kunmap_skip;
1419         }
1420
1421         hypercall_gpa = para_state->hypercall_gpa;
1422         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1423         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1424         if (is_error_hpa(hypercall_hpa)) {
1425                 para_state->ret = -KVM_EINVAL;
1426                 goto err_kunmap_skip;
1427         }
1428
1429         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1430         vcpu->para_state_page = para_state_page;
1431         vcpu->para_state_gpa = para_state_gpa;
1432         vcpu->hypercall_gpa = hypercall_gpa;
1433
1434         mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1435         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1436                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1437         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1438         kunmap_atomic(hypercall, KM_USER1);
1439
1440         para_state->ret = 0;
1441 err_kunmap_skip:
1442         kunmap(para_state_page);
1443         return 0;
1444 err_gp:
1445         return 1;
1446 }
1447
1448 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1449 {
1450         u64 data;
1451
1452         switch (msr) {
1453         case 0xc0010010: /* SYSCFG */
1454         case 0xc0010015: /* HWCR */
1455         case MSR_IA32_PLATFORM_ID:
1456         case MSR_IA32_P5_MC_ADDR:
1457         case MSR_IA32_P5_MC_TYPE:
1458         case MSR_IA32_MC0_CTL:
1459         case MSR_IA32_MCG_STATUS:
1460         case MSR_IA32_MCG_CAP:
1461         case MSR_IA32_MC0_MISC:
1462         case MSR_IA32_MC0_MISC+4:
1463         case MSR_IA32_MC0_MISC+8:
1464         case MSR_IA32_MC0_MISC+12:
1465         case MSR_IA32_MC0_MISC+16:
1466         case MSR_IA32_UCODE_REV:
1467         case MSR_IA32_PERF_STATUS:
1468         case MSR_IA32_EBL_CR_POWERON:
1469                 /* MTRR registers */
1470         case 0xfe:
1471         case 0x200 ... 0x2ff:
1472                 data = 0;
1473                 break;
1474         case 0xcd: /* fsb frequency */
1475                 data = 3;
1476                 break;
1477         case MSR_IA32_APICBASE:
1478                 data = vcpu->apic_base;
1479                 break;
1480         case MSR_IA32_MISC_ENABLE:
1481                 data = vcpu->ia32_misc_enable_msr;
1482                 break;
1483 #ifdef CONFIG_X86_64
1484         case MSR_EFER:
1485                 data = vcpu->shadow_efer;
1486                 break;
1487 #endif
1488         default:
1489                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1490                 return 1;
1491         }
1492         *pdata = data;
1493         return 0;
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1496
1497 /*
1498  * Reads an msr value (of 'msr_index') into 'pdata'.
1499  * Returns 0 on success, non-0 otherwise.
1500  * Assumes vcpu_load() was already called.
1501  */
1502 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1503 {
1504         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1505 }
1506
1507 #ifdef CONFIG_X86_64
1508
1509 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1510 {
1511         if (efer & EFER_RESERVED_BITS) {
1512                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1513                        efer);
1514                 inject_gp(vcpu);
1515                 return;
1516         }
1517
1518         if (is_paging(vcpu)
1519             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1520                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1521                 inject_gp(vcpu);
1522                 return;
1523         }
1524
1525         kvm_arch_ops->set_efer(vcpu, efer);
1526
1527         efer &= ~EFER_LMA;
1528         efer |= vcpu->shadow_efer & EFER_LMA;
1529
1530         vcpu->shadow_efer = efer;
1531 }
1532
1533 #endif
1534
1535 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1536 {
1537         switch (msr) {
1538 #ifdef CONFIG_X86_64
1539         case MSR_EFER:
1540                 set_efer(vcpu, data);
1541                 break;
1542 #endif
1543         case MSR_IA32_MC0_STATUS:
1544                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1545                        __FUNCTION__, data);
1546                 break;
1547         case MSR_IA32_MCG_STATUS:
1548                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1549                         __FUNCTION__, data);
1550                 break;
1551         case MSR_IA32_UCODE_REV:
1552         case MSR_IA32_UCODE_WRITE:
1553         case 0x200 ... 0x2ff: /* MTRRs */
1554                 break;
1555         case MSR_IA32_APICBASE:
1556                 vcpu->apic_base = data;
1557                 break;
1558         case MSR_IA32_MISC_ENABLE:
1559                 vcpu->ia32_misc_enable_msr = data;
1560                 break;
1561         /*
1562          * This is the 'probe whether the host is KVM' logic:
1563          */
1564         case MSR_KVM_API_MAGIC:
1565                 return vcpu_register_para(vcpu, data);
1566
1567         default:
1568                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1569                 return 1;
1570         }
1571         return 0;
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1574
1575 /*
1576  * Writes msr value into into the appropriate "register".
1577  * Returns 0 on success, non-0 otherwise.
1578  * Assumes vcpu_load() was already called.
1579  */
1580 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1581 {
1582         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1583 }
1584
1585 void kvm_resched(struct kvm_vcpu *vcpu)
1586 {
1587         if (!need_resched())
1588                 return;
1589         cond_resched();
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_resched);
1592
1593 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1594 {
1595         int i;
1596         u32 function;
1597         struct kvm_cpuid_entry *e, *best;
1598
1599         kvm_arch_ops->cache_regs(vcpu);
1600         function = vcpu->regs[VCPU_REGS_RAX];
1601         vcpu->regs[VCPU_REGS_RAX] = 0;
1602         vcpu->regs[VCPU_REGS_RBX] = 0;
1603         vcpu->regs[VCPU_REGS_RCX] = 0;
1604         vcpu->regs[VCPU_REGS_RDX] = 0;
1605         best = NULL;
1606         for (i = 0; i < vcpu->cpuid_nent; ++i) {
1607                 e = &vcpu->cpuid_entries[i];
1608                 if (e->function == function) {
1609                         best = e;
1610                         break;
1611                 }
1612                 /*
1613                  * Both basic or both extended?
1614                  */
1615                 if (((e->function ^ function) & 0x80000000) == 0)
1616                         if (!best || e->function > best->function)
1617                                 best = e;
1618         }
1619         if (best) {
1620                 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1621                 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1622                 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1623                 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1624         }
1625         kvm_arch_ops->decache_regs(vcpu);
1626         kvm_arch_ops->skip_emulated_instruction(vcpu);
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1629
1630 static int pio_copy_data(struct kvm_vcpu *vcpu)
1631 {
1632         void *p = vcpu->pio_data;
1633         void *q;
1634         unsigned bytes;
1635         int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1636
1637         q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1638                  PAGE_KERNEL);
1639         if (!q) {
1640                 free_pio_guest_pages(vcpu);
1641                 return -ENOMEM;
1642         }
1643         q += vcpu->pio.guest_page_offset;
1644         bytes = vcpu->pio.size * vcpu->pio.cur_count;
1645         if (vcpu->pio.in)
1646                 memcpy(q, p, bytes);
1647         else
1648                 memcpy(p, q, bytes);
1649         q -= vcpu->pio.guest_page_offset;
1650         vunmap(q);
1651         free_pio_guest_pages(vcpu);
1652         return 0;
1653 }
1654
1655 static int complete_pio(struct kvm_vcpu *vcpu)
1656 {
1657         struct kvm_pio_request *io = &vcpu->pio;
1658         long delta;
1659         int r;
1660
1661         kvm_arch_ops->cache_regs(vcpu);
1662
1663         if (!io->string) {
1664                 if (io->in)
1665                         memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1666                                io->size);
1667         } else {
1668                 if (io->in) {
1669                         r = pio_copy_data(vcpu);
1670                         if (r) {
1671                                 kvm_arch_ops->cache_regs(vcpu);
1672                                 return r;
1673                         }
1674                 }
1675
1676                 delta = 1;
1677                 if (io->rep) {
1678                         delta *= io->cur_count;
1679                         /*
1680                          * The size of the register should really depend on
1681                          * current address size.
1682                          */
1683                         vcpu->regs[VCPU_REGS_RCX] -= delta;
1684                 }
1685                 if (io->down)
1686                         delta = -delta;
1687                 delta *= io->size;
1688                 if (io->in)
1689                         vcpu->regs[VCPU_REGS_RDI] += delta;
1690                 else
1691                         vcpu->regs[VCPU_REGS_RSI] += delta;
1692         }
1693
1694         kvm_arch_ops->decache_regs(vcpu);
1695
1696         io->count -= io->cur_count;
1697         io->cur_count = 0;
1698
1699         if (!io->count)
1700                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1701         return 0;
1702 }
1703
1704 static void kernel_pio(struct kvm_io_device *pio_dev,
1705                        struct kvm_vcpu *vcpu,
1706                        void *pd)
1707 {
1708         /* TODO: String I/O for in kernel device */
1709
1710         if (vcpu->pio.in)
1711                 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1712                                   vcpu->pio.size,
1713                                   pd);
1714         else
1715                 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1716                                    vcpu->pio.size,
1717                                    pd);
1718 }
1719
1720 static void pio_string_write(struct kvm_io_device *pio_dev,
1721                              struct kvm_vcpu *vcpu)
1722 {
1723         struct kvm_pio_request *io = &vcpu->pio;
1724         void *pd = vcpu->pio_data;
1725         int i;
1726
1727         for (i = 0; i < io->cur_count; i++) {
1728                 kvm_iodevice_write(pio_dev, io->port,
1729                                    io->size,
1730                                    pd);
1731                 pd += io->size;
1732         }
1733 }
1734
1735 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1736                   int size, unsigned long count, int string, int down,
1737                   gva_t address, int rep, unsigned port)
1738 {
1739         unsigned now, in_page;
1740         int i, ret = 0;
1741         int nr_pages = 1;
1742         struct page *page;
1743         struct kvm_io_device *pio_dev;
1744
1745         vcpu->run->exit_reason = KVM_EXIT_IO;
1746         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1747         vcpu->run->io.size = size;
1748         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1749         vcpu->run->io.count = count;
1750         vcpu->run->io.port = port;
1751         vcpu->pio.count = count;
1752         vcpu->pio.cur_count = count;
1753         vcpu->pio.size = size;
1754         vcpu->pio.in = in;
1755         vcpu->pio.port = port;
1756         vcpu->pio.string = string;
1757         vcpu->pio.down = down;
1758         vcpu->pio.guest_page_offset = offset_in_page(address);
1759         vcpu->pio.rep = rep;
1760
1761         pio_dev = vcpu_find_pio_dev(vcpu, port);
1762         if (!string) {
1763                 kvm_arch_ops->cache_regs(vcpu);
1764                 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1765                 kvm_arch_ops->decache_regs(vcpu);
1766                 if (pio_dev) {
1767                         kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1768                         complete_pio(vcpu);
1769                         return 1;
1770                 }
1771                 return 0;
1772         }
1773
1774         if (!count) {
1775                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1776                 return 1;
1777         }
1778
1779         now = min(count, PAGE_SIZE / size);
1780
1781         if (!down)
1782                 in_page = PAGE_SIZE - offset_in_page(address);
1783         else
1784                 in_page = offset_in_page(address) + size;
1785         now = min(count, (unsigned long)in_page / size);
1786         if (!now) {
1787                 /*
1788                  * String I/O straddles page boundary.  Pin two guest pages
1789                  * so that we satisfy atomicity constraints.  Do just one
1790                  * transaction to avoid complexity.
1791                  */
1792                 nr_pages = 2;
1793                 now = 1;
1794         }
1795         if (down) {
1796                 /*
1797                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
1798                  */
1799                 pr_unimpl(vcpu, "guest string pio down\n");
1800                 inject_gp(vcpu);
1801                 return 1;
1802         }
1803         vcpu->run->io.count = now;
1804         vcpu->pio.cur_count = now;
1805
1806         for (i = 0; i < nr_pages; ++i) {
1807                 mutex_lock(&vcpu->kvm->lock);
1808                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1809                 if (page)
1810                         get_page(page);
1811                 vcpu->pio.guest_pages[i] = page;
1812                 mutex_unlock(&vcpu->kvm->lock);
1813                 if (!page) {
1814                         inject_gp(vcpu);
1815                         free_pio_guest_pages(vcpu);
1816                         return 1;
1817                 }
1818         }
1819
1820         if (!vcpu->pio.in) {
1821                 /* string PIO write */
1822                 ret = pio_copy_data(vcpu);
1823                 if (ret >= 0 && pio_dev) {
1824                         pio_string_write(pio_dev, vcpu);
1825                         complete_pio(vcpu);
1826                         if (vcpu->pio.count == 0)
1827                                 ret = 1;
1828                 }
1829         } else if (pio_dev)
1830                 pr_unimpl(vcpu, "no string pio read support yet, "
1831                        "port %x size %d count %ld\n",
1832                         port, size, count);
1833
1834         return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1837
1838 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1839 {
1840         int r;
1841         sigset_t sigsaved;
1842
1843         vcpu_load(vcpu);
1844
1845         if (vcpu->sigset_active)
1846                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1847
1848         /* re-sync apic's tpr */
1849         vcpu->cr8 = kvm_run->cr8;
1850
1851         if (vcpu->pio.cur_count) {
1852                 r = complete_pio(vcpu);
1853                 if (r)
1854                         goto out;
1855         }
1856
1857         if (vcpu->mmio_needed) {
1858                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1859                 vcpu->mmio_read_completed = 1;
1860                 vcpu->mmio_needed = 0;
1861                 r = emulate_instruction(vcpu, kvm_run,
1862                                         vcpu->mmio_fault_cr2, 0);
1863                 if (r == EMULATE_DO_MMIO) {
1864                         /*
1865                          * Read-modify-write.  Back to userspace.
1866                          */
1867                         r = 0;
1868                         goto out;
1869                 }
1870         }
1871
1872         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1873                 kvm_arch_ops->cache_regs(vcpu);
1874                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1875                 kvm_arch_ops->decache_regs(vcpu);
1876         }
1877
1878         r = kvm_arch_ops->run(vcpu, kvm_run);
1879
1880 out:
1881         if (vcpu->sigset_active)
1882                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1883
1884         vcpu_put(vcpu);
1885         return r;
1886 }
1887
1888 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1889                                    struct kvm_regs *regs)
1890 {
1891         vcpu_load(vcpu);
1892
1893         kvm_arch_ops->cache_regs(vcpu);
1894
1895         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1896         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1897         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1898         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1899         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1900         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1901         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1902         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1903 #ifdef CONFIG_X86_64
1904         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1905         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1906         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1907         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1908         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1909         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1910         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1911         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1912 #endif
1913
1914         regs->rip = vcpu->rip;
1915         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1916
1917         /*
1918          * Don't leak debug flags in case they were set for guest debugging
1919          */
1920         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1921                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1922
1923         vcpu_put(vcpu);
1924
1925         return 0;
1926 }
1927
1928 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1929                                    struct kvm_regs *regs)
1930 {
1931         vcpu_load(vcpu);
1932
1933         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1934         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1935         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1936         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1937         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1938         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1939         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1940         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1941 #ifdef CONFIG_X86_64
1942         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1943         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1944         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1945         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1946         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1947         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1948         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1949         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1950 #endif
1951
1952         vcpu->rip = regs->rip;
1953         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1954
1955         kvm_arch_ops->decache_regs(vcpu);
1956
1957         vcpu_put(vcpu);
1958
1959         return 0;
1960 }
1961
1962 static void get_segment(struct kvm_vcpu *vcpu,
1963                         struct kvm_segment *var, int seg)
1964 {
1965         return kvm_arch_ops->get_segment(vcpu, var, seg);
1966 }
1967
1968 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1969                                     struct kvm_sregs *sregs)
1970 {
1971         struct descriptor_table dt;
1972
1973         vcpu_load(vcpu);
1974
1975         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1976         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1977         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1978         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1979         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1980         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1981
1982         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1983         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1984
1985         kvm_arch_ops->get_idt(vcpu, &dt);
1986         sregs->idt.limit = dt.limit;
1987         sregs->idt.base = dt.base;
1988         kvm_arch_ops->get_gdt(vcpu, &dt);
1989         sregs->gdt.limit = dt.limit;
1990         sregs->gdt.base = dt.base;
1991
1992         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1993         sregs->cr0 = vcpu->cr0;
1994         sregs->cr2 = vcpu->cr2;
1995         sregs->cr3 = vcpu->cr3;
1996         sregs->cr4 = vcpu->cr4;
1997         sregs->cr8 = vcpu->cr8;
1998         sregs->efer = vcpu->shadow_efer;
1999         sregs->apic_base = vcpu->apic_base;
2000
2001         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2002                sizeof sregs->interrupt_bitmap);
2003
2004         vcpu_put(vcpu);
2005
2006         return 0;
2007 }
2008
2009 static void set_segment(struct kvm_vcpu *vcpu,
2010                         struct kvm_segment *var, int seg)
2011 {
2012         return kvm_arch_ops->set_segment(vcpu, var, seg);
2013 }
2014
2015 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2016                                     struct kvm_sregs *sregs)
2017 {
2018         int mmu_reset_needed = 0;
2019         int i;
2020         struct descriptor_table dt;
2021
2022         vcpu_load(vcpu);
2023
2024         dt.limit = sregs->idt.limit;
2025         dt.base = sregs->idt.base;
2026         kvm_arch_ops->set_idt(vcpu, &dt);
2027         dt.limit = sregs->gdt.limit;
2028         dt.base = sregs->gdt.base;
2029         kvm_arch_ops->set_gdt(vcpu, &dt);
2030
2031         vcpu->cr2 = sregs->cr2;
2032         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2033         vcpu->cr3 = sregs->cr3;
2034
2035         vcpu->cr8 = sregs->cr8;
2036
2037         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2038 #ifdef CONFIG_X86_64
2039         kvm_arch_ops->set_efer(vcpu, sregs->efer);
2040 #endif
2041         vcpu->apic_base = sregs->apic_base;
2042
2043         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2044
2045         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2046         kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2047
2048         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2049         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2050         if (!is_long_mode(vcpu) && is_pae(vcpu))
2051                 load_pdptrs(vcpu, vcpu->cr3);
2052
2053         if (mmu_reset_needed)
2054                 kvm_mmu_reset_context(vcpu);
2055
2056         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2057                sizeof vcpu->irq_pending);
2058         vcpu->irq_summary = 0;
2059         for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2060                 if (vcpu->irq_pending[i])
2061                         __set_bit(i, &vcpu->irq_summary);
2062
2063         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2064         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2065         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2066         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2067         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2068         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2069
2070         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2071         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2072
2073         vcpu_put(vcpu);
2074
2075         return 0;
2076 }
2077
2078 /*
2079  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2080  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2081  *
2082  * This list is modified at module load time to reflect the
2083  * capabilities of the host cpu.
2084  */
2085 static u32 msrs_to_save[] = {
2086         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2087         MSR_K6_STAR,
2088 #ifdef CONFIG_X86_64
2089         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2090 #endif
2091         MSR_IA32_TIME_STAMP_COUNTER,
2092 };
2093
2094 static unsigned num_msrs_to_save;
2095
2096 static u32 emulated_msrs[] = {
2097         MSR_IA32_MISC_ENABLE,
2098 };
2099
2100 static __init void kvm_init_msr_list(void)
2101 {
2102         u32 dummy[2];
2103         unsigned i, j;
2104
2105         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2106                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2107                         continue;
2108                 if (j < i)
2109                         msrs_to_save[j] = msrs_to_save[i];
2110                 j++;
2111         }
2112         num_msrs_to_save = j;
2113 }
2114
2115 /*
2116  * Adapt set_msr() to msr_io()'s calling convention
2117  */
2118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2119 {
2120         return kvm_set_msr(vcpu, index, *data);
2121 }
2122
2123 /*
2124  * Read or write a bunch of msrs. All parameters are kernel addresses.
2125  *
2126  * @return number of msrs set successfully.
2127  */
2128 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2129                     struct kvm_msr_entry *entries,
2130                     int (*do_msr)(struct kvm_vcpu *vcpu,
2131                                   unsigned index, u64 *data))
2132 {
2133         int i;
2134
2135         vcpu_load(vcpu);
2136
2137         for (i = 0; i < msrs->nmsrs; ++i)
2138                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2139                         break;
2140
2141         vcpu_put(vcpu);
2142
2143         return i;
2144 }
2145
2146 /*
2147  * Read or write a bunch of msrs. Parameters are user addresses.
2148  *
2149  * @return number of msrs set successfully.
2150  */
2151 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2152                   int (*do_msr)(struct kvm_vcpu *vcpu,
2153                                 unsigned index, u64 *data),
2154                   int writeback)
2155 {
2156         struct kvm_msrs msrs;
2157         struct kvm_msr_entry *entries;
2158         int r, n;
2159         unsigned size;
2160
2161         r = -EFAULT;
2162         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2163                 goto out;
2164
2165         r = -E2BIG;
2166         if (msrs.nmsrs >= MAX_IO_MSRS)
2167                 goto out;
2168
2169         r = -ENOMEM;
2170         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2171         entries = vmalloc(size);
2172         if (!entries)
2173                 goto out;
2174
2175         r = -EFAULT;
2176         if (copy_from_user(entries, user_msrs->entries, size))
2177                 goto out_free;
2178
2179         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2180         if (r < 0)
2181                 goto out_free;
2182
2183         r = -EFAULT;
2184         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2185                 goto out_free;
2186
2187         r = n;
2188
2189 out_free:
2190         vfree(entries);
2191 out:
2192         return r;
2193 }
2194
2195 /*
2196  * Translate a guest virtual address to a guest physical address.
2197  */
2198 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2199                                     struct kvm_translation *tr)
2200 {
2201         unsigned long vaddr = tr->linear_address;
2202         gpa_t gpa;
2203
2204         vcpu_load(vcpu);
2205         mutex_lock(&vcpu->kvm->lock);
2206         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2207         tr->physical_address = gpa;
2208         tr->valid = gpa != UNMAPPED_GVA;
2209         tr->writeable = 1;
2210         tr->usermode = 0;
2211         mutex_unlock(&vcpu->kvm->lock);
2212         vcpu_put(vcpu);
2213
2214         return 0;
2215 }
2216
2217 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2218                                     struct kvm_interrupt *irq)
2219 {
2220         if (irq->irq < 0 || irq->irq >= 256)
2221                 return -EINVAL;
2222         vcpu_load(vcpu);
2223
2224         set_bit(irq->irq, vcpu->irq_pending);
2225         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2226
2227         vcpu_put(vcpu);
2228
2229         return 0;
2230 }
2231
2232 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2233                                       struct kvm_debug_guest *dbg)
2234 {
2235         int r;
2236
2237         vcpu_load(vcpu);
2238
2239         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2240
2241         vcpu_put(vcpu);
2242
2243         return r;
2244 }
2245
2246 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2247                                     unsigned long address,
2248                                     int *type)
2249 {
2250         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2251         unsigned long pgoff;
2252         struct page *page;
2253
2254         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2255         if (pgoff == 0)
2256                 page = virt_to_page(vcpu->run);
2257         else if (pgoff == KVM_PIO_PAGE_OFFSET)
2258                 page = virt_to_page(vcpu->pio_data);
2259         else
2260                 return NOPAGE_SIGBUS;
2261         get_page(page);
2262         if (type != NULL)
2263                 *type = VM_FAULT_MINOR;
2264
2265         return page;
2266 }
2267
2268 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2269         .nopage = kvm_vcpu_nopage,
2270 };
2271
2272 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2273 {
2274         vma->vm_ops = &kvm_vcpu_vm_ops;
2275         return 0;
2276 }
2277
2278 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2279 {
2280         struct kvm_vcpu *vcpu = filp->private_data;
2281
2282         fput(vcpu->kvm->filp);
2283         return 0;
2284 }
2285
2286 static struct file_operations kvm_vcpu_fops = {
2287         .release        = kvm_vcpu_release,
2288         .unlocked_ioctl = kvm_vcpu_ioctl,
2289         .compat_ioctl   = kvm_vcpu_ioctl,
2290         .mmap           = kvm_vcpu_mmap,
2291 };
2292
2293 /*
2294  * Allocates an inode for the vcpu.
2295  */
2296 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2297 {
2298         int fd, r;
2299         struct inode *inode;
2300         struct file *file;
2301
2302         r = anon_inode_getfd(&fd, &inode, &file,
2303                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2304         if (r)
2305                 return r;
2306         atomic_inc(&vcpu->kvm->filp->f_count);
2307         return fd;
2308 }
2309
2310 /*
2311  * Creates some virtual cpus.  Good luck creating more than one.
2312  */
2313 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2314 {
2315         int r;
2316         struct kvm_vcpu *vcpu;
2317
2318         if (!valid_vcpu(n))
2319                 return -EINVAL;
2320
2321         vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2322         if (IS_ERR(vcpu))
2323                 return PTR_ERR(vcpu);
2324
2325         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2326
2327         /* We do fxsave: this must be aligned. */
2328         BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2329
2330         vcpu_load(vcpu);
2331         r = kvm_mmu_setup(vcpu);
2332         vcpu_put(vcpu);
2333         if (r < 0)
2334                 goto free_vcpu;
2335
2336         mutex_lock(&kvm->lock);
2337         if (kvm->vcpus[n]) {
2338                 r = -EEXIST;
2339                 mutex_unlock(&kvm->lock);
2340                 goto mmu_unload;
2341         }
2342         kvm->vcpus[n] = vcpu;
2343         mutex_unlock(&kvm->lock);
2344
2345         /* Now it's all set up, let userspace reach it */
2346         r = create_vcpu_fd(vcpu);
2347         if (r < 0)
2348                 goto unlink;
2349         return r;
2350
2351 unlink:
2352         mutex_lock(&kvm->lock);
2353         kvm->vcpus[n] = NULL;
2354         mutex_unlock(&kvm->lock);
2355
2356 mmu_unload:
2357         vcpu_load(vcpu);
2358         kvm_mmu_unload(vcpu);
2359         vcpu_put(vcpu);
2360
2361 free_vcpu:
2362         kvm_arch_ops->vcpu_free(vcpu);
2363         return r;
2364 }
2365
2366 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2367 {
2368         u64 efer;
2369         int i;
2370         struct kvm_cpuid_entry *e, *entry;
2371
2372         rdmsrl(MSR_EFER, efer);
2373         entry = NULL;
2374         for (i = 0; i < vcpu->cpuid_nent; ++i) {
2375                 e = &vcpu->cpuid_entries[i];
2376                 if (e->function == 0x80000001) {
2377                         entry = e;
2378                         break;
2379                 }
2380         }
2381         if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2382                 entry->edx &= ~(1 << 20);
2383                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2384         }
2385 }
2386
2387 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2388                                     struct kvm_cpuid *cpuid,
2389                                     struct kvm_cpuid_entry __user *entries)
2390 {
2391         int r;
2392
2393         r = -E2BIG;
2394         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2395                 goto out;
2396         r = -EFAULT;
2397         if (copy_from_user(&vcpu->cpuid_entries, entries,
2398                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2399                 goto out;
2400         vcpu->cpuid_nent = cpuid->nent;
2401         cpuid_fix_nx_cap(vcpu);
2402         return 0;
2403
2404 out:
2405         return r;
2406 }
2407
2408 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2409 {
2410         if (sigset) {
2411                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2412                 vcpu->sigset_active = 1;
2413                 vcpu->sigset = *sigset;
2414         } else
2415                 vcpu->sigset_active = 0;
2416         return 0;
2417 }
2418
2419 /*
2420  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
2421  * we have asm/x86/processor.h
2422  */
2423 struct fxsave {
2424         u16     cwd;
2425         u16     swd;
2426         u16     twd;
2427         u16     fop;
2428         u64     rip;
2429         u64     rdp;
2430         u32     mxcsr;
2431         u32     mxcsr_mask;
2432         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
2433 #ifdef CONFIG_X86_64
2434         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
2435 #else
2436         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
2437 #endif
2438 };
2439
2440 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2441 {
2442         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2443
2444         vcpu_load(vcpu);
2445
2446         memcpy(fpu->fpr, fxsave->st_space, 128);
2447         fpu->fcw = fxsave->cwd;
2448         fpu->fsw = fxsave->swd;
2449         fpu->ftwx = fxsave->twd;
2450         fpu->last_opcode = fxsave->fop;
2451         fpu->last_ip = fxsave->rip;
2452         fpu->last_dp = fxsave->rdp;
2453         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2454
2455         vcpu_put(vcpu);
2456
2457         return 0;
2458 }
2459
2460 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2461 {
2462         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2463
2464         vcpu_load(vcpu);
2465
2466         memcpy(fxsave->st_space, fpu->fpr, 128);
2467         fxsave->cwd = fpu->fcw;
2468         fxsave->swd = fpu->fsw;
2469         fxsave->twd = fpu->ftwx;
2470         fxsave->fop = fpu->last_opcode;
2471         fxsave->rip = fpu->last_ip;
2472         fxsave->rdp = fpu->last_dp;
2473         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2474
2475         vcpu_put(vcpu);
2476
2477         return 0;
2478 }
2479
2480 static long kvm_vcpu_ioctl(struct file *filp,
2481                            unsigned int ioctl, unsigned long arg)
2482 {
2483         struct kvm_vcpu *vcpu = filp->private_data;
2484         void __user *argp = (void __user *)arg;
2485         int r = -EINVAL;
2486
2487         switch (ioctl) {
2488         case KVM_RUN:
2489                 r = -EINVAL;
2490                 if (arg)
2491                         goto out;
2492                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2493                 break;
2494         case KVM_GET_REGS: {
2495                 struct kvm_regs kvm_regs;
2496
2497                 memset(&kvm_regs, 0, sizeof kvm_regs);
2498                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2499                 if (r)
2500                         goto out;
2501                 r = -EFAULT;
2502                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2503                         goto out;
2504                 r = 0;
2505                 break;
2506         }
2507         case KVM_SET_REGS: {
2508                 struct kvm_regs kvm_regs;
2509
2510                 r = -EFAULT;
2511                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2512                         goto out;
2513                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2514                 if (r)
2515                         goto out;
2516                 r = 0;
2517                 break;
2518         }
2519         case KVM_GET_SREGS: {
2520                 struct kvm_sregs kvm_sregs;
2521
2522                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2523                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2524                 if (r)
2525                         goto out;
2526                 r = -EFAULT;
2527                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2528                         goto out;
2529                 r = 0;
2530                 break;
2531         }
2532         case KVM_SET_SREGS: {
2533                 struct kvm_sregs kvm_sregs;
2534
2535                 r = -EFAULT;
2536                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2537                         goto out;
2538                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2539                 if (r)
2540                         goto out;
2541                 r = 0;
2542                 break;
2543         }
2544         case KVM_TRANSLATE: {
2545                 struct kvm_translation tr;
2546
2547                 r = -EFAULT;
2548                 if (copy_from_user(&tr, argp, sizeof tr))
2549                         goto out;
2550                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2551                 if (r)
2552                         goto out;
2553                 r = -EFAULT;
2554                 if (copy_to_user(argp, &tr, sizeof tr))
2555                         goto out;
2556                 r = 0;
2557                 break;
2558         }
2559         case KVM_INTERRUPT: {
2560                 struct kvm_interrupt irq;
2561
2562                 r = -EFAULT;
2563                 if (copy_from_user(&irq, argp, sizeof irq))
2564                         goto out;
2565                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2566                 if (r)
2567                         goto out;
2568                 r = 0;
2569                 break;
2570         }
2571         case KVM_DEBUG_GUEST: {
2572                 struct kvm_debug_guest dbg;
2573
2574                 r = -EFAULT;
2575                 if (copy_from_user(&dbg, argp, sizeof dbg))
2576                         goto out;
2577                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2578                 if (r)
2579                         goto out;
2580                 r = 0;
2581                 break;
2582         }
2583         case KVM_GET_MSRS:
2584                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2585                 break;
2586         case KVM_SET_MSRS:
2587                 r = msr_io(vcpu, argp, do_set_msr, 0);
2588                 break;
2589         case KVM_SET_CPUID: {
2590                 struct kvm_cpuid __user *cpuid_arg = argp;
2591                 struct kvm_cpuid cpuid;
2592
2593                 r = -EFAULT;
2594                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2595                         goto out;
2596                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2597                 if (r)
2598                         goto out;
2599                 break;
2600         }
2601         case KVM_SET_SIGNAL_MASK: {
2602                 struct kvm_signal_mask __user *sigmask_arg = argp;
2603                 struct kvm_signal_mask kvm_sigmask;
2604                 sigset_t sigset, *p;
2605
2606                 p = NULL;
2607                 if (argp) {
2608                         r = -EFAULT;
2609                         if (copy_from_user(&kvm_sigmask, argp,
2610                                            sizeof kvm_sigmask))
2611                                 goto out;
2612                         r = -EINVAL;
2613                         if (kvm_sigmask.len != sizeof sigset)
2614                                 goto out;
2615                         r = -EFAULT;
2616                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2617                                            sizeof sigset))
2618                                 goto out;
2619                         p = &sigset;
2620                 }
2621                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2622                 break;
2623         }
2624         case KVM_GET_FPU: {
2625                 struct kvm_fpu fpu;
2626
2627                 memset(&fpu, 0, sizeof fpu);
2628                 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2629                 if (r)
2630                         goto out;
2631                 r = -EFAULT;
2632                 if (copy_to_user(argp, &fpu, sizeof fpu))
2633                         goto out;
2634                 r = 0;
2635                 break;
2636         }
2637         case KVM_SET_FPU: {
2638                 struct kvm_fpu fpu;
2639
2640                 r = -EFAULT;
2641                 if (copy_from_user(&fpu, argp, sizeof fpu))
2642                         goto out;
2643                 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2644                 if (r)
2645                         goto out;
2646                 r = 0;
2647                 break;
2648         }
2649         default:
2650                 ;
2651         }
2652 out:
2653         return r;
2654 }
2655
2656 static long kvm_vm_ioctl(struct file *filp,
2657                            unsigned int ioctl, unsigned long arg)
2658 {
2659         struct kvm *kvm = filp->private_data;
2660         void __user *argp = (void __user *)arg;
2661         int r = -EINVAL;
2662
2663         switch (ioctl) {
2664         case KVM_CREATE_VCPU:
2665                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2666                 if (r < 0)
2667                         goto out;
2668                 break;
2669         case KVM_SET_MEMORY_REGION: {
2670                 struct kvm_memory_region kvm_mem;
2671
2672                 r = -EFAULT;
2673                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2674                         goto out;
2675                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2676                 if (r)
2677                         goto out;
2678                 break;
2679         }
2680         case KVM_GET_DIRTY_LOG: {
2681                 struct kvm_dirty_log log;
2682
2683                 r = -EFAULT;
2684                 if (copy_from_user(&log, argp, sizeof log))
2685                         goto out;
2686                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2687                 if (r)
2688                         goto out;
2689                 break;
2690         }
2691         case KVM_SET_MEMORY_ALIAS: {
2692                 struct kvm_memory_alias alias;
2693
2694                 r = -EFAULT;
2695                 if (copy_from_user(&alias, argp, sizeof alias))
2696                         goto out;
2697                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2698                 if (r)
2699                         goto out;
2700                 break;
2701         }
2702         default:
2703                 ;
2704         }
2705 out:
2706         return r;
2707 }
2708
2709 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2710                                   unsigned long address,
2711                                   int *type)
2712 {
2713         struct kvm *kvm = vma->vm_file->private_data;
2714         unsigned long pgoff;
2715         struct page *page;
2716
2717         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2718         page = gfn_to_page(kvm, pgoff);
2719         if (!page)
2720                 return NOPAGE_SIGBUS;
2721         get_page(page);
2722         if (type != NULL)
2723                 *type = VM_FAULT_MINOR;
2724
2725         return page;
2726 }
2727
2728 static struct vm_operations_struct kvm_vm_vm_ops = {
2729         .nopage = kvm_vm_nopage,
2730 };
2731
2732 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2733 {
2734         vma->vm_ops = &kvm_vm_vm_ops;
2735         return 0;
2736 }
2737
2738 static struct file_operations kvm_vm_fops = {
2739         .release        = kvm_vm_release,
2740         .unlocked_ioctl = kvm_vm_ioctl,
2741         .compat_ioctl   = kvm_vm_ioctl,
2742         .mmap           = kvm_vm_mmap,
2743 };
2744
2745 static int kvm_dev_ioctl_create_vm(void)
2746 {
2747         int fd, r;
2748         struct inode *inode;
2749         struct file *file;
2750         struct kvm *kvm;
2751
2752         kvm = kvm_create_vm();
2753         if (IS_ERR(kvm))
2754                 return PTR_ERR(kvm);
2755         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2756         if (r) {
2757                 kvm_destroy_vm(kvm);
2758                 return r;
2759         }
2760
2761         kvm->filp = file;
2762
2763         return fd;
2764 }
2765
2766 static long kvm_dev_ioctl(struct file *filp,
2767                           unsigned int ioctl, unsigned long arg)
2768 {
2769         void __user *argp = (void __user *)arg;
2770         long r = -EINVAL;
2771
2772         switch (ioctl) {
2773         case KVM_GET_API_VERSION:
2774                 r = -EINVAL;
2775                 if (arg)
2776                         goto out;
2777                 r = KVM_API_VERSION;
2778                 break;
2779         case KVM_CREATE_VM:
2780                 r = -EINVAL;
2781                 if (arg)
2782                         goto out;
2783                 r = kvm_dev_ioctl_create_vm();
2784                 break;
2785         case KVM_GET_MSR_INDEX_LIST: {
2786                 struct kvm_msr_list __user *user_msr_list = argp;
2787                 struct kvm_msr_list msr_list;
2788                 unsigned n;
2789
2790                 r = -EFAULT;
2791                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2792                         goto out;
2793                 n = msr_list.nmsrs;
2794                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2795                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2796                         goto out;
2797                 r = -E2BIG;
2798                 if (n < num_msrs_to_save)
2799                         goto out;
2800                 r = -EFAULT;
2801                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2802                                  num_msrs_to_save * sizeof(u32)))
2803                         goto out;
2804                 if (copy_to_user(user_msr_list->indices
2805                                  + num_msrs_to_save * sizeof(u32),
2806                                  &emulated_msrs,
2807                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2808                         goto out;
2809                 r = 0;
2810                 break;
2811         }
2812         case KVM_CHECK_EXTENSION:
2813                 /*
2814                  * No extensions defined at present.
2815                  */
2816                 r = 0;
2817                 break;
2818         case KVM_GET_VCPU_MMAP_SIZE:
2819                 r = -EINVAL;
2820                 if (arg)
2821                         goto out;
2822                 r = 2 * PAGE_SIZE;
2823                 break;
2824         default:
2825                 ;
2826         }
2827 out:
2828         return r;
2829 }
2830
2831 static struct file_operations kvm_chardev_ops = {
2832         .unlocked_ioctl = kvm_dev_ioctl,
2833         .compat_ioctl   = kvm_dev_ioctl,
2834 };
2835
2836 static struct miscdevice kvm_dev = {
2837         KVM_MINOR,
2838         "kvm",
2839         &kvm_chardev_ops,
2840 };
2841
2842 /*
2843  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2844  * cached on it.
2845  */
2846 static void decache_vcpus_on_cpu(int cpu)
2847 {
2848         struct kvm *vm;
2849         struct kvm_vcpu *vcpu;
2850         int i;
2851
2852         spin_lock(&kvm_lock);
2853         list_for_each_entry(vm, &vm_list, vm_list)
2854                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2855                         vcpu = vm->vcpus[i];
2856                         if (!vcpu)
2857                                 continue;
2858                         /*
2859                          * If the vcpu is locked, then it is running on some
2860                          * other cpu and therefore it is not cached on the
2861                          * cpu in question.
2862                          *
2863                          * If it's not locked, check the last cpu it executed
2864                          * on.
2865                          */
2866                         if (mutex_trylock(&vcpu->mutex)) {
2867                                 if (vcpu->cpu == cpu) {
2868                                         kvm_arch_ops->vcpu_decache(vcpu);
2869                                         vcpu->cpu = -1;
2870                                 }
2871                                 mutex_unlock(&vcpu->mutex);
2872                         }
2873                 }
2874         spin_unlock(&kvm_lock);
2875 }
2876
2877 static void hardware_enable(void *junk)
2878 {
2879         int cpu = raw_smp_processor_id();
2880
2881         if (cpu_isset(cpu, cpus_hardware_enabled))
2882                 return;
2883         cpu_set(cpu, cpus_hardware_enabled);
2884         kvm_arch_ops->hardware_enable(NULL);
2885 }
2886
2887 static void hardware_disable(void *junk)
2888 {
2889         int cpu = raw_smp_processor_id();
2890
2891         if (!cpu_isset(cpu, cpus_hardware_enabled))
2892                 return;
2893         cpu_clear(cpu, cpus_hardware_enabled);
2894         decache_vcpus_on_cpu(cpu);
2895         kvm_arch_ops->hardware_disable(NULL);
2896 }
2897
2898 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2899                            void *v)
2900 {
2901         int cpu = (long)v;
2902
2903         switch (val) {
2904         case CPU_DYING:
2905         case CPU_DYING_FROZEN:
2906                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2907                        cpu);
2908                 hardware_disable(NULL);
2909                 break;
2910         case CPU_UP_CANCELED:
2911         case CPU_UP_CANCELED_FROZEN:
2912                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2913                        cpu);
2914                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2915                 break;
2916         case CPU_ONLINE:
2917         case CPU_ONLINE_FROZEN:
2918                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2919                        cpu);
2920                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
2921                 break;
2922         }
2923         return NOTIFY_OK;
2924 }
2925
2926 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2927                        void *v)
2928 {
2929         if (val == SYS_RESTART) {
2930                 /*
2931                  * Some (well, at least mine) BIOSes hang on reboot if
2932                  * in vmx root mode.
2933                  */
2934                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2935                 on_each_cpu(hardware_disable, NULL, 0, 1);
2936         }
2937         return NOTIFY_OK;
2938 }
2939
2940 static struct notifier_block kvm_reboot_notifier = {
2941         .notifier_call = kvm_reboot,
2942         .priority = 0,
2943 };
2944
2945 void kvm_io_bus_init(struct kvm_io_bus *bus)
2946 {
2947         memset(bus, 0, sizeof(*bus));
2948 }
2949
2950 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2951 {
2952         int i;
2953
2954         for (i = 0; i < bus->dev_count; i++) {
2955                 struct kvm_io_device *pos = bus->devs[i];
2956
2957                 kvm_iodevice_destructor(pos);
2958         }
2959 }
2960
2961 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
2962 {
2963         int i;
2964
2965         for (i = 0; i < bus->dev_count; i++) {
2966                 struct kvm_io_device *pos = bus->devs[i];
2967
2968                 if (pos->in_range(pos, addr))
2969                         return pos;
2970         }
2971
2972         return NULL;
2973 }
2974
2975 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2976 {
2977         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2978
2979         bus->devs[bus->dev_count++] = dev;
2980 }
2981
2982 static struct notifier_block kvm_cpu_notifier = {
2983         .notifier_call = kvm_cpu_hotplug,
2984         .priority = 20, /* must be > scheduler priority */
2985 };
2986
2987 static u64 stat_get(void *_offset)
2988 {
2989         unsigned offset = (long)_offset;
2990         u64 total = 0;
2991         struct kvm *kvm;
2992         struct kvm_vcpu *vcpu;
2993         int i;
2994
2995         spin_lock(&kvm_lock);
2996         list_for_each_entry(kvm, &vm_list, vm_list)
2997                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2998                         vcpu = kvm->vcpus[i];
2999                         if (vcpu)
3000                                 total += *(u32 *)((void *)vcpu + offset);
3001                 }
3002         spin_unlock(&kvm_lock);
3003         return total;
3004 }
3005
3006 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3007
3008 static __init void kvm_init_debug(void)
3009 {
3010         struct kvm_stats_debugfs_item *p;
3011
3012         debugfs_dir = debugfs_create_dir("kvm", NULL);
3013         for (p = debugfs_entries; p->name; ++p)
3014                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3015                                                 (void *)(long)p->offset,
3016                                                 &stat_fops);
3017 }
3018
3019 static void kvm_exit_debug(void)
3020 {
3021         struct kvm_stats_debugfs_item *p;
3022
3023         for (p = debugfs_entries; p->name; ++p)
3024                 debugfs_remove(p->dentry);
3025         debugfs_remove(debugfs_dir);
3026 }
3027
3028 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3029 {
3030         hardware_disable(NULL);
3031         return 0;
3032 }
3033
3034 static int kvm_resume(struct sys_device *dev)
3035 {
3036         hardware_enable(NULL);
3037         return 0;
3038 }
3039
3040 static struct sysdev_class kvm_sysdev_class = {
3041         set_kset_name("kvm"),
3042         .suspend = kvm_suspend,
3043         .resume = kvm_resume,
3044 };
3045
3046 static struct sys_device kvm_sysdev = {
3047         .id = 0,
3048         .cls = &kvm_sysdev_class,
3049 };
3050
3051 hpa_t bad_page_address;
3052
3053 static inline
3054 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3055 {
3056         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3057 }
3058
3059 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3060 {
3061         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3062
3063         kvm_arch_ops->vcpu_load(vcpu, cpu);
3064 }
3065
3066 static void kvm_sched_out(struct preempt_notifier *pn,
3067                           struct task_struct *next)
3068 {
3069         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3070
3071         kvm_arch_ops->vcpu_put(vcpu);
3072 }
3073
3074 int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
3075                   struct module *module)
3076 {
3077         int r;
3078         int cpu;
3079
3080         if (kvm_arch_ops) {
3081                 printk(KERN_ERR "kvm: already loaded the other module\n");
3082                 return -EEXIST;
3083         }
3084
3085         if (!ops->cpu_has_kvm_support()) {
3086                 printk(KERN_ERR "kvm: no hardware support\n");
3087                 return -EOPNOTSUPP;
3088         }
3089         if (ops->disabled_by_bios()) {
3090                 printk(KERN_ERR "kvm: disabled by bios\n");
3091                 return -EOPNOTSUPP;
3092         }
3093
3094         kvm_arch_ops = ops;
3095
3096         r = kvm_arch_ops->hardware_setup();
3097         if (r < 0)
3098                 goto out;
3099
3100         for_each_online_cpu(cpu) {
3101                 smp_call_function_single(cpu,
3102                                 kvm_arch_ops->check_processor_compatibility,
3103                                 &r, 0, 1);
3104                 if (r < 0)
3105                         goto out_free_0;
3106         }
3107
3108         on_each_cpu(hardware_enable, NULL, 0, 1);
3109         r = register_cpu_notifier(&kvm_cpu_notifier);
3110         if (r)
3111                 goto out_free_1;
3112         register_reboot_notifier(&kvm_reboot_notifier);
3113
3114         r = sysdev_class_register(&kvm_sysdev_class);
3115         if (r)
3116                 goto out_free_2;
3117
3118         r = sysdev_register(&kvm_sysdev);
3119         if (r)
3120                 goto out_free_3;
3121
3122         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3123         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3124                                            __alignof__(struct kvm_vcpu), 0, 0);
3125         if (!kvm_vcpu_cache) {
3126                 r = -ENOMEM;
3127                 goto out_free_4;
3128         }
3129
3130         kvm_chardev_ops.owner = module;
3131
3132         r = misc_register(&kvm_dev);
3133         if (r) {
3134                 printk (KERN_ERR "kvm: misc device register failed\n");
3135                 goto out_free;
3136         }
3137
3138         kvm_preempt_ops.sched_in = kvm_sched_in;
3139         kvm_preempt_ops.sched_out = kvm_sched_out;
3140
3141         return r;
3142
3143 out_free:
3144         kmem_cache_destroy(kvm_vcpu_cache);
3145 out_free_4:
3146         sysdev_unregister(&kvm_sysdev);
3147 out_free_3:
3148         sysdev_class_unregister(&kvm_sysdev_class);
3149 out_free_2:
3150         unregister_reboot_notifier(&kvm_reboot_notifier);
3151         unregister_cpu_notifier(&kvm_cpu_notifier);
3152 out_free_1:
3153         on_each_cpu(hardware_disable, NULL, 0, 1);
3154 out_free_0:
3155         kvm_arch_ops->hardware_unsetup();
3156 out:
3157         kvm_arch_ops = NULL;
3158         return r;
3159 }
3160
3161 void kvm_exit_arch(void)
3162 {
3163         misc_deregister(&kvm_dev);
3164         kmem_cache_destroy(kvm_vcpu_cache);
3165         sysdev_unregister(&kvm_sysdev);
3166         sysdev_class_unregister(&kvm_sysdev_class);
3167         unregister_reboot_notifier(&kvm_reboot_notifier);
3168         unregister_cpu_notifier(&kvm_cpu_notifier);
3169         on_each_cpu(hardware_disable, NULL, 0, 1);
3170         kvm_arch_ops->hardware_unsetup();
3171         kvm_arch_ops = NULL;
3172 }
3173
3174 static __init int kvm_init(void)
3175 {
3176         static struct page *bad_page;
3177         int r;
3178
3179         r = kvm_mmu_module_init();
3180         if (r)
3181                 goto out4;
3182
3183         kvm_init_debug();
3184
3185         kvm_init_msr_list();
3186
3187         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3188                 r = -ENOMEM;
3189                 goto out;
3190         }
3191
3192         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3193         memset(__va(bad_page_address), 0, PAGE_SIZE);
3194
3195         return 0;
3196
3197 out:
3198         kvm_exit_debug();
3199         kvm_mmu_module_exit();
3200 out4:
3201         return r;
3202 }
3203
3204 static __exit void kvm_exit(void)
3205 {
3206         kvm_exit_debug();
3207         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3208         kvm_mmu_module_exit();
3209 }
3210
3211 module_init(kvm_init)
3212 module_exit(kvm_exit)
3213
3214 EXPORT_SYMBOL_GPL(kvm_init_arch);
3215 EXPORT_SYMBOL_GPL(kvm_exit_arch);