ide: remove CONFIG_IDEPCI_SHARE_IRQ config option
[pandora-kernel.git] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34  *      Conventional PIO operations for ATA devices
35  */
36
37 static u8 ide_inb (unsigned long port)
38 {
39         return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44         return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49         insw(port, addr, count);
50 }
51
52 static void ide_insl (unsigned long port, void *addr, u32 count)
53 {
54         insl(port, addr, count);
55 }
56
57 static void ide_outb (u8 val, unsigned long port)
58 {
59         outb(val, port);
60 }
61
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63 {
64         outb(addr, port);
65 }
66
67 static void ide_outw (u16 val, unsigned long port)
68 {
69         outw(val, port);
70 }
71
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
73 {
74         outsw(port, addr, count);
75 }
76
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
78 {
79         outsl(port, addr, count);
80 }
81
82 void default_hwif_iops (ide_hwif_t *hwif)
83 {
84         hwif->OUTB      = ide_outb;
85         hwif->OUTBSYNC  = ide_outbsync;
86         hwif->OUTW      = ide_outw;
87         hwif->OUTSW     = ide_outsw;
88         hwif->OUTSL     = ide_outsl;
89         hwif->INB       = ide_inb;
90         hwif->INW       = ide_inw;
91         hwif->INSW      = ide_insw;
92         hwif->INSL      = ide_insl;
93 }
94
95 /*
96  *      MMIO operations, typically used for SATA controllers
97  */
98
99 static u8 ide_mm_inb (unsigned long port)
100 {
101         return (u8) readb((void __iomem *) port);
102 }
103
104 static u16 ide_mm_inw (unsigned long port)
105 {
106         return (u16) readw((void __iomem *) port);
107 }
108
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110 {
111         __ide_mm_insw((void __iomem *) port, addr, count);
112 }
113
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115 {
116         __ide_mm_insl((void __iomem *) port, addr, count);
117 }
118
119 static void ide_mm_outb (u8 value, unsigned long port)
120 {
121         writeb(value, (void __iomem *) port);
122 }
123
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125 {
126         writeb(value, (void __iomem *) port);
127 }
128
129 static void ide_mm_outw (u16 value, unsigned long port)
130 {
131         writew(value, (void __iomem *) port);
132 }
133
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135 {
136         __ide_mm_outsw((void __iomem *) port, addr, count);
137 }
138
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140 {
141         __ide_mm_outsl((void __iomem *) port, addr, count);
142 }
143
144 void default_hwif_mmiops (ide_hwif_t *hwif)
145 {
146         hwif->OUTB      = ide_mm_outb;
147         /* Most systems will need to override OUTBSYNC, alas however
148            this one is controller specific! */
149         hwif->OUTBSYNC  = ide_mm_outbsync;
150         hwif->OUTW      = ide_mm_outw;
151         hwif->OUTSW     = ide_mm_outsw;
152         hwif->OUTSL     = ide_mm_outsl;
153         hwif->INB       = ide_mm_inb;
154         hwif->INW       = ide_mm_inw;
155         hwif->INSW      = ide_mm_insw;
156         hwif->INSL      = ide_mm_insl;
157 }
158
159 EXPORT_SYMBOL(default_hwif_mmiops);
160
161 u32 ide_read_24 (ide_drive_t *drive)
162 {
163         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166         return (hcyl<<16)|(lcyl<<8)|sect;
167 }
168
169 void SELECT_DRIVE (ide_drive_t *drive)
170 {
171         if (HWIF(drive)->selectproc)
172                 HWIF(drive)->selectproc(drive);
173         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174 }
175
176 EXPORT_SYMBOL(SELECT_DRIVE);
177
178 void SELECT_INTERRUPT (ide_drive_t *drive)
179 {
180         if (HWIF(drive)->intrproc)
181                 HWIF(drive)->intrproc(drive);
182         else
183                 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184 }
185
186 void SELECT_MASK (ide_drive_t *drive, int mask)
187 {
188         if (HWIF(drive)->maskproc)
189                 HWIF(drive)->maskproc(drive, mask);
190 }
191
192 void QUIRK_LIST (ide_drive_t *drive)
193 {
194         if (HWIF(drive)->quirkproc)
195                 drive->quirk_list = HWIF(drive)->quirkproc(drive);
196 }
197
198 /*
199  * Some localbus EIDE interfaces require a special access sequence
200  * when using 32-bit I/O instructions to transfer data.  We call this
201  * the "vlb_sync" sequence, which consists of three successive reads
202  * of the sector count register location, with interrupts disabled
203  * to ensure that the reads all happen together.
204  */
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206 {
207         (void) HWIF(drive)->INB(port);
208         (void) HWIF(drive)->INB(port);
209         (void) HWIF(drive)->INB(port);
210 }
211
212 /*
213  * This is used for most PIO data transfers *from* the IDE interface
214  */
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216 {
217         ide_hwif_t *hwif        = HWIF(drive);
218         u8 io_32bit             = drive->io_32bit;
219
220         if (io_32bit) {
221                 if (io_32bit & 2) {
222                         unsigned long flags;
223                         local_irq_save(flags);
224                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
225                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
226                         local_irq_restore(flags);
227                 } else
228                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
229         } else {
230                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231         }
232 }
233
234 /*
235  * This is used for most PIO data transfers *to* the IDE interface
236  */
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238 {
239         ide_hwif_t *hwif        = HWIF(drive);
240         u8 io_32bit             = drive->io_32bit;
241
242         if (io_32bit) {
243                 if (io_32bit & 2) {
244                         unsigned long flags;
245                         local_irq_save(flags);
246                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
247                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248                         local_irq_restore(flags);
249                 } else
250                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251         } else {
252                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253         }
254 }
255
256 /*
257  * The following routines are mainly used by the ATAPI drivers.
258  *
259  * These routines will round up any request for an odd number of bytes,
260  * so if an odd bytecount is specified, be sure that there's at least one
261  * extra byte allocated for the buffer.
262  */
263
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265 {
266         ide_hwif_t *hwif = HWIF(drive);
267
268         ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270         if (MACH_IS_ATARI || MACH_IS_Q40) {
271                 /* Atari has a byte-swapped IDE interface */
272                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273                 return;
274         }
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276         hwif->ata_input_data(drive, buffer, bytecount / 4);
277         if ((bytecount & 0x03) >= 2)
278                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279 }
280
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282 {
283         ide_hwif_t *hwif = HWIF(drive);
284
285         ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287         if (MACH_IS_ATARI || MACH_IS_Q40) {
288                 /* Atari has a byte-swapped IDE interface */
289                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290                 return;
291         }
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293         hwif->ata_output_data(drive, buffer, bytecount / 4);
294         if ((bytecount & 0x03) >= 2)
295                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296 }
297
298 void default_hwif_transport(ide_hwif_t *hwif)
299 {
300         hwif->ata_input_data            = ata_input_data;
301         hwif->ata_output_data           = ata_output_data;
302         hwif->atapi_input_bytes         = atapi_input_bytes;
303         hwif->atapi_output_bytes        = atapi_output_bytes;
304 }
305
306 void ide_fix_driveid (struct hd_driveid *id)
307 {
308 #ifndef __LITTLE_ENDIAN
309 # ifdef __BIG_ENDIAN
310         int i;
311         u16 *stringcast;
312
313         id->config         = __le16_to_cpu(id->config);
314         id->cyls           = __le16_to_cpu(id->cyls);
315         id->reserved2      = __le16_to_cpu(id->reserved2);
316         id->heads          = __le16_to_cpu(id->heads);
317         id->track_bytes    = __le16_to_cpu(id->track_bytes);
318         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
319         id->sectors        = __le16_to_cpu(id->sectors);
320         id->vendor0        = __le16_to_cpu(id->vendor0);
321         id->vendor1        = __le16_to_cpu(id->vendor1);
322         id->vendor2        = __le16_to_cpu(id->vendor2);
323         stringcast = (u16 *)&id->serial_no[0];
324         for (i = 0; i < (20/2); i++)
325                 stringcast[i] = __le16_to_cpu(stringcast[i]);
326         id->buf_type       = __le16_to_cpu(id->buf_type);
327         id->buf_size       = __le16_to_cpu(id->buf_size);
328         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
329         stringcast = (u16 *)&id->fw_rev[0];
330         for (i = 0; i < (8/2); i++)
331                 stringcast[i] = __le16_to_cpu(stringcast[i]);
332         stringcast = (u16 *)&id->model[0];
333         for (i = 0; i < (40/2); i++)
334                 stringcast[i] = __le16_to_cpu(stringcast[i]);
335         id->dword_io       = __le16_to_cpu(id->dword_io);
336         id->reserved50     = __le16_to_cpu(id->reserved50);
337         id->field_valid    = __le16_to_cpu(id->field_valid);
338         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
339         id->cur_heads      = __le16_to_cpu(id->cur_heads);
340         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
341         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
342         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
343         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
344         id->dma_1word      = __le16_to_cpu(id->dma_1word);
345         id->dma_mword      = __le16_to_cpu(id->dma_mword);
346         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
347         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
348         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
349         id->eide_pio       = __le16_to_cpu(id->eide_pio);
350         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
351         for (i = 0; i < 2; ++i)
352                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
353         for (i = 0; i < 4; ++i)
354                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
355         id->queue_depth    = __le16_to_cpu(id->queue_depth);
356         for (i = 0; i < 4; ++i)
357                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
358         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
359         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
360         id->command_set_1  = __le16_to_cpu(id->command_set_1);
361         id->command_set_2  = __le16_to_cpu(id->command_set_2);
362         id->cfsse          = __le16_to_cpu(id->cfsse);
363         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
364         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
365         id->csf_default    = __le16_to_cpu(id->csf_default);
366         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
367         id->trseuc         = __le16_to_cpu(id->trseuc);
368         id->trsEuc         = __le16_to_cpu(id->trsEuc);
369         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
370         id->mprc           = __le16_to_cpu(id->mprc);
371         id->hw_config      = __le16_to_cpu(id->hw_config);
372         id->acoustic       = __le16_to_cpu(id->acoustic);
373         id->msrqs          = __le16_to_cpu(id->msrqs);
374         id->sxfert         = __le16_to_cpu(id->sxfert);
375         id->sal            = __le16_to_cpu(id->sal);
376         id->spg            = __le32_to_cpu(id->spg);
377         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
378         for (i = 0; i < 22; i++)
379                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
380         id->last_lun       = __le16_to_cpu(id->last_lun);
381         id->word127        = __le16_to_cpu(id->word127);
382         id->dlf            = __le16_to_cpu(id->dlf);
383         id->csfo           = __le16_to_cpu(id->csfo);
384         for (i = 0; i < 26; i++)
385                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
386         id->word156        = __le16_to_cpu(id->word156);
387         for (i = 0; i < 3; i++)
388                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
389         id->cfa_power      = __le16_to_cpu(id->cfa_power);
390         for (i = 0; i < 14; i++)
391                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
392         for (i = 0; i < 31; i++)
393                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
394         for (i = 0; i < 48; i++)
395                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
396         id->integrity_word  = __le16_to_cpu(id->integrity_word);
397 # else
398 #  error "Please fix <asm/byteorder.h>"
399 # endif
400 #endif
401 }
402
403 /*
404  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
405  * removing leading/trailing blanks and compressing internal blanks.
406  * It is primarily used to tidy up the model name/number fields as
407  * returned by the WIN_[P]IDENTIFY commands.
408  */
409
410 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
411 {
412         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
413
414         if (byteswap) {
415                 /* convert from big-endian to host byte order */
416                 for (p = end ; p != s;) {
417                         unsigned short *pp = (unsigned short *) (p -= 2);
418                         *pp = ntohs(*pp);
419                 }
420         }
421         /* strip leading blanks */
422         while (s != end && *s == ' ')
423                 ++s;
424         /* compress internal blanks and strip trailing blanks */
425         while (s != end && *s) {
426                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
427                         *p++ = *(s-1);
428         }
429         /* wipe out trailing garbage */
430         while (p != end)
431                 *p++ = '\0';
432 }
433
434 EXPORT_SYMBOL(ide_fixstring);
435
436 /*
437  * Needed for PCI irq sharing
438  */
439 int drive_is_ready (ide_drive_t *drive)
440 {
441         ide_hwif_t *hwif        = HWIF(drive);
442         u8 stat                 = 0;
443
444         if (drive->waiting_for_dma)
445                 return hwif->ide_dma_test_irq(drive);
446
447 #if 0
448         /* need to guarantee 400ns since last command was issued */
449         udelay(1);
450 #endif
451
452         /*
453          * We do a passive status test under shared PCI interrupts on
454          * cards that truly share the ATA side interrupt, but may also share
455          * an interrupt with another pci card/device.  We make no assumptions
456          * about possible isa-pnp and pci-pnp issues yet.
457          */
458         if (IDE_CONTROL_REG)
459                 stat = hwif->INB(IDE_ALTSTATUS_REG);
460         else
461                 /* Note: this may clear a pending IRQ!! */
462                 stat = hwif->INB(IDE_STATUS_REG);
463
464         if (stat & BUSY_STAT)
465                 /* drive busy:  definitely not interrupting */
466                 return 0;
467
468         /* drive ready: *might* be interrupting */
469         return 1;
470 }
471
472 EXPORT_SYMBOL(drive_is_ready);
473
474 /*
475  * This routine busy-waits for the drive status to be not "busy".
476  * It then checks the status for all of the "good" bits and none
477  * of the "bad" bits, and if all is okay it returns 0.  All other
478  * cases return error -- caller may then invoke ide_error().
479  *
480  * This routine should get fixed to not hog the cpu during extra long waits..
481  * That could be done by busy-waiting for the first jiffy or two, and then
482  * setting a timer to wake up at half second intervals thereafter,
483  * until timeout is achieved, before timing out.
484  */
485 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
486 {
487         ide_hwif_t *hwif = drive->hwif;
488         unsigned long flags;
489         int i;
490         u8 stat;
491
492         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
493         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
494                 local_irq_set(flags);
495                 timeout += jiffies;
496                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
497                         if (time_after(jiffies, timeout)) {
498                                 /*
499                                  * One last read after the timeout in case
500                                  * heavy interrupt load made us not make any
501                                  * progress during the timeout..
502                                  */
503                                 stat = hwif->INB(IDE_STATUS_REG);
504                                 if (!(stat & BUSY_STAT))
505                                         break;
506
507                                 local_irq_restore(flags);
508                                 *rstat = stat;
509                                 return -EBUSY;
510                         }
511                 }
512                 local_irq_restore(flags);
513         }
514         /*
515          * Allow status to settle, then read it again.
516          * A few rare drives vastly violate the 400ns spec here,
517          * so we'll wait up to 10usec for a "good" status
518          * rather than expensively fail things immediately.
519          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
520          */
521         for (i = 0; i < 10; i++) {
522                 udelay(1);
523                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
524                         *rstat = stat;
525                         return 0;
526                 }
527         }
528         *rstat = stat;
529         return -EFAULT;
530 }
531
532 /*
533  * In case of error returns error value after doing "*startstop = ide_error()".
534  * The caller should return the updated value of "startstop" in this case,
535  * "startstop" is unchanged when the function returns 0.
536  */
537 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
538 {
539         int err;
540         u8 stat;
541
542         /* bail early if we've exceeded max_failures */
543         if (drive->max_failures && (drive->failures > drive->max_failures)) {
544                 *startstop = ide_stopped;
545                 return 1;
546         }
547
548         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
549
550         if (err) {
551                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
552                 *startstop = ide_error(drive, s, stat);
553         }
554
555         return err;
556 }
557
558 EXPORT_SYMBOL(ide_wait_stat);
559
560 /**
561  *      ide_in_drive_list       -       look for drive in black/white list
562  *      @id: drive identifier
563  *      @drive_table: list to inspect
564  *
565  *      Look for a drive in the blacklist and the whitelist tables
566  *      Returns 1 if the drive is found in the table.
567  */
568
569 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
570 {
571         for ( ; drive_table->id_model; drive_table++)
572                 if ((!strcmp(drive_table->id_model, id->model)) &&
573                     (!drive_table->id_firmware ||
574                      strstr(id->fw_rev, drive_table->id_firmware)))
575                         return 1;
576         return 0;
577 }
578
579 EXPORT_SYMBOL_GPL(ide_in_drive_list);
580
581 /*
582  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
583  * We list them here and depend on the device side cable detection for them.
584  *
585  * Some optical devices with the buggy firmwares have the same problem.
586  */
587 static const struct drive_list_entry ivb_list[] = {
588         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
589         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
590         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
591         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
592         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
593         { NULL                          , NULL          }
594 };
595
596 /*
597  *  All hosts that use the 80c ribbon must use!
598  *  The name is derived from upper byte of word 93 and the 80c ribbon.
599  */
600 u8 eighty_ninty_three (ide_drive_t *drive)
601 {
602         ide_hwif_t *hwif = drive->hwif;
603         struct hd_driveid *id = drive->id;
604         int ivb = ide_in_drive_list(id, ivb_list);
605
606         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
607                 return 1;
608
609         if (ivb)
610                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
611                                   drive->name);
612
613         if (ide_dev_is_sata(id) && !ivb)
614                 return 1;
615
616         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
617                 goto no_80w;
618
619         /*
620          * FIXME:
621          * - force bit13 (80c cable present) check also for !ivb devices
622          *   (unless the slave device is pre-ATA3)
623          */
624         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
625                 return 1;
626
627 no_80w:
628         if (drive->udma33_warned == 1)
629                 return 0;
630
631         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
632                             "limiting max speed to UDMA33\n",
633                             drive->name,
634                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
635
636         drive->udma33_warned = 1;
637
638         return 0;
639 }
640
641 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
642 {
643         if (args->tf.command == WIN_SETFEATURES &&
644             args->tf.lbal > XFER_UDMA_2 &&
645             args->tf.feature == SETFEATURES_XFER) {
646                 if (eighty_ninty_three(drive) == 0) {
647                         printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
648                                             "be set\n", drive->name);
649                         return 1;
650                 }
651         }
652
653         return 0;
654 }
655
656 /*
657  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
658  * 1 : Safe to update drive->id DMA registers.
659  * 0 : OOPs not allowed.
660  */
661 int set_transfer (ide_drive_t *drive, ide_task_t *args)
662 {
663         if (args->tf.command == WIN_SETFEATURES &&
664             args->tf.lbal >= XFER_SW_DMA_0 &&
665             args->tf.feature == SETFEATURES_XFER &&
666             (drive->id->dma_ultra ||
667              drive->id->dma_mword ||
668              drive->id->dma_1word))
669                 return 1;
670
671         return 0;
672 }
673
674 #ifdef CONFIG_BLK_DEV_IDEDMA
675 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
676 {
677         if (!drive->crc_count)
678                 return drive->current_speed;
679         drive->crc_count = 0;
680
681         switch(drive->current_speed) {
682                 case XFER_UDMA_7:       return XFER_UDMA_6;
683                 case XFER_UDMA_6:       return XFER_UDMA_5;
684                 case XFER_UDMA_5:       return XFER_UDMA_4;
685                 case XFER_UDMA_4:       return XFER_UDMA_3;
686                 case XFER_UDMA_3:       return XFER_UDMA_2;
687                 case XFER_UDMA_2:       return XFER_UDMA_1;
688                 case XFER_UDMA_1:       return XFER_UDMA_0;
689                         /*
690                          * OOPS we do not goto non Ultra DMA modes
691                          * without iCRC's available we force
692                          * the system to PIO and make the user
693                          * invoke the ATA-1 ATA-2 DMA modes.
694                          */
695                 case XFER_UDMA_0:
696                 default:                return XFER_PIO_4;
697         }
698 }
699 #endif /* CONFIG_BLK_DEV_IDEDMA */
700
701 int ide_driveid_update(ide_drive_t *drive)
702 {
703         ide_hwif_t *hwif = drive->hwif;
704         struct hd_driveid *id;
705         unsigned long timeout, flags;
706
707         /*
708          * Re-read drive->id for possible DMA mode
709          * change (copied from ide-probe.c)
710          */
711
712         SELECT_MASK(drive, 1);
713         if (IDE_CONTROL_REG)
714                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
715         msleep(50);
716         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
717         timeout = jiffies + WAIT_WORSTCASE;
718         do {
719                 if (time_after(jiffies, timeout)) {
720                         SELECT_MASK(drive, 0);
721                         return 0;       /* drive timed-out */
722                 }
723                 msleep(50);     /* give drive a breather */
724         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
725         msleep(50);     /* wait for IRQ and DRQ_STAT */
726         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
727                 SELECT_MASK(drive, 0);
728                 printk("%s: CHECK for good STATUS\n", drive->name);
729                 return 0;
730         }
731         local_irq_save(flags);
732         SELECT_MASK(drive, 0);
733         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
734         if (!id) {
735                 local_irq_restore(flags);
736                 return 0;
737         }
738         ata_input_data(drive, id, SECTOR_WORDS);
739         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
740         local_irq_enable();
741         local_irq_restore(flags);
742         ide_fix_driveid(id);
743         if (id) {
744                 drive->id->dma_ultra = id->dma_ultra;
745                 drive->id->dma_mword = id->dma_mword;
746                 drive->id->dma_1word = id->dma_1word;
747                 /* anything more ? */
748                 kfree(id);
749
750                 if (drive->using_dma && ide_id_dma_bug(drive))
751                         ide_dma_off(drive);
752         }
753
754         return 1;
755 }
756
757 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
758 {
759         ide_hwif_t *hwif = drive->hwif;
760         int error = 0;
761         u8 stat;
762
763 //      while (HWGROUP(drive)->busy)
764 //              msleep(50);
765
766 #ifdef CONFIG_BLK_DEV_IDEDMA
767         if (hwif->ide_dma_on)   /* check if host supports DMA */
768                 hwif->dma_host_off(drive);
769 #endif
770
771         /* Skip setting PIO flow-control modes on pre-EIDE drives */
772         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
773                 goto skip;
774
775         /*
776          * Don't use ide_wait_cmd here - it will
777          * attempt to set_geometry and recalibrate,
778          * but for some reason these don't work at
779          * this point (lost interrupt).
780          */
781         /*
782          * Select the drive, and issue the SETFEATURES command
783          */
784         disable_irq_nosync(hwif->irq);
785         
786         /*
787          *      FIXME: we race against the running IRQ here if
788          *      this is called from non IRQ context. If we use
789          *      disable_irq() we hang on the error path. Work
790          *      is needed.
791          */
792          
793         udelay(1);
794         SELECT_DRIVE(drive);
795         SELECT_MASK(drive, 0);
796         udelay(1);
797         if (IDE_CONTROL_REG)
798                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
799         hwif->OUTB(speed, IDE_NSECTOR_REG);
800         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
801         hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
802         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
803                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
804
805         error = __ide_wait_stat(drive, drive->ready_stat,
806                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
807                                 WAIT_CMD, &stat);
808
809         SELECT_MASK(drive, 0);
810
811         enable_irq(hwif->irq);
812
813         if (error) {
814                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
815                 return error;
816         }
817
818         drive->id->dma_ultra &= ~0xFF00;
819         drive->id->dma_mword &= ~0x0F00;
820         drive->id->dma_1word &= ~0x0F00;
821
822  skip:
823 #ifdef CONFIG_BLK_DEV_IDEDMA
824         if (speed >= XFER_SW_DMA_0)
825                 hwif->dma_host_on(drive);
826         else if (hwif->ide_dma_on)      /* check if host supports DMA */
827                 hwif->dma_off_quietly(drive);
828 #endif
829
830         switch(speed) {
831                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
832                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
833                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
834                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
835                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
836                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
837                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
838                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
839                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
840                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
841                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
842                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
843                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
844                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
845                 default: break;
846         }
847         if (!drive->init_speed)
848                 drive->init_speed = speed;
849         drive->current_speed = speed;
850         return error;
851 }
852
853 /*
854  * This should get invoked any time we exit the driver to
855  * wait for an interrupt response from a drive.  handler() points
856  * at the appropriate code to handle the next interrupt, and a
857  * timer is started to prevent us from waiting forever in case
858  * something goes wrong (see the ide_timer_expiry() handler later on).
859  *
860  * See also ide_execute_command
861  */
862 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
863                       unsigned int timeout, ide_expiry_t *expiry)
864 {
865         ide_hwgroup_t *hwgroup = HWGROUP(drive);
866
867         if (hwgroup->handler != NULL) {
868                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
869                         "old=%p, new=%p\n",
870                         drive->name, hwgroup->handler, handler);
871         }
872         hwgroup->handler        = handler;
873         hwgroup->expiry         = expiry;
874         hwgroup->timer.expires  = jiffies + timeout;
875         hwgroup->req_gen_timer = hwgroup->req_gen;
876         add_timer(&hwgroup->timer);
877 }
878
879 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
880                       unsigned int timeout, ide_expiry_t *expiry)
881 {
882         unsigned long flags;
883         spin_lock_irqsave(&ide_lock, flags);
884         __ide_set_handler(drive, handler, timeout, expiry);
885         spin_unlock_irqrestore(&ide_lock, flags);
886 }
887
888 EXPORT_SYMBOL(ide_set_handler);
889  
890 /**
891  *      ide_execute_command     -       execute an IDE command
892  *      @drive: IDE drive to issue the command against
893  *      @command: command byte to write
894  *      @handler: handler for next phase
895  *      @timeout: timeout for command
896  *      @expiry:  handler to run on timeout
897  *
898  *      Helper function to issue an IDE command. This handles the
899  *      atomicity requirements, command timing and ensures that the 
900  *      handler and IRQ setup do not race. All IDE command kick off
901  *      should go via this function or do equivalent locking.
902  */
903
904 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
905                          unsigned timeout, ide_expiry_t *expiry)
906 {
907         unsigned long flags;
908         ide_hwgroup_t *hwgroup = HWGROUP(drive);
909         ide_hwif_t *hwif = HWIF(drive);
910         
911         spin_lock_irqsave(&ide_lock, flags);
912         
913         BUG_ON(hwgroup->handler);
914         hwgroup->handler        = handler;
915         hwgroup->expiry         = expiry;
916         hwgroup->timer.expires  = jiffies + timeout;
917         hwgroup->req_gen_timer = hwgroup->req_gen;
918         add_timer(&hwgroup->timer);
919         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
920         /* Drive takes 400nS to respond, we must avoid the IRQ being
921            serviced before that. 
922            
923            FIXME: we could skip this delay with care on non shared
924            devices 
925         */
926         ndelay(400);
927         spin_unlock_irqrestore(&ide_lock, flags);
928 }
929
930 EXPORT_SYMBOL(ide_execute_command);
931
932
933 /* needed below */
934 static ide_startstop_t do_reset1 (ide_drive_t *, int);
935
936 /*
937  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
938  * during an atapi drive reset operation. If the drive has not yet responded,
939  * and we have not yet hit our maximum waiting time, then the timer is restarted
940  * for another 50ms.
941  */
942 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
943 {
944         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
945         ide_hwif_t *hwif        = HWIF(drive);
946         u8 stat;
947
948         SELECT_DRIVE(drive);
949         udelay (10);
950
951         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
952                 printk("%s: ATAPI reset complete\n", drive->name);
953         } else {
954                 if (time_before(jiffies, hwgroup->poll_timeout)) {
955                         BUG_ON(HWGROUP(drive)->handler != NULL);
956                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
957                         /* continue polling */
958                         return ide_started;
959                 }
960                 /* end of polling */
961                 hwgroup->polling = 0;
962                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
963                                 drive->name, stat);
964                 /* do it the old fashioned way */
965                 return do_reset1(drive, 1);
966         }
967         /* done polling */
968         hwgroup->polling = 0;
969         hwgroup->resetting = 0;
970         return ide_stopped;
971 }
972
973 /*
974  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
975  * during an ide reset operation. If the drives have not yet responded,
976  * and we have not yet hit our maximum waiting time, then the timer is restarted
977  * for another 50ms.
978  */
979 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
980 {
981         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
982         ide_hwif_t *hwif        = HWIF(drive);
983         u8 tmp;
984
985         if (hwif->reset_poll != NULL) {
986                 if (hwif->reset_poll(drive)) {
987                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
988                                 hwif->name, drive->name);
989                         return ide_stopped;
990                 }
991         }
992
993         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
994                 if (time_before(jiffies, hwgroup->poll_timeout)) {
995                         BUG_ON(HWGROUP(drive)->handler != NULL);
996                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
997                         /* continue polling */
998                         return ide_started;
999                 }
1000                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1001                 drive->failures++;
1002         } else  {
1003                 printk("%s: reset: ", hwif->name);
1004                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1005                         printk("success\n");
1006                         drive->failures = 0;
1007                 } else {
1008                         drive->failures++;
1009                         printk("master: ");
1010                         switch (tmp & 0x7f) {
1011                                 case 1: printk("passed");
1012                                         break;
1013                                 case 2: printk("formatter device error");
1014                                         break;
1015                                 case 3: printk("sector buffer error");
1016                                         break;
1017                                 case 4: printk("ECC circuitry error");
1018                                         break;
1019                                 case 5: printk("controlling MPU error");
1020                                         break;
1021                                 default:printk("error (0x%02x?)", tmp);
1022                         }
1023                         if (tmp & 0x80)
1024                                 printk("; slave: failed");
1025                         printk("\n");
1026                 }
1027         }
1028         hwgroup->polling = 0;   /* done polling */
1029         hwgroup->resetting = 0; /* done reset attempt */
1030         return ide_stopped;
1031 }
1032
1033 static void check_dma_crc(ide_drive_t *drive)
1034 {
1035 #ifdef CONFIG_BLK_DEV_IDEDMA
1036         if (drive->crc_count) {
1037                 drive->hwif->dma_off_quietly(drive);
1038                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1039                 if (drive->current_speed >= XFER_SW_DMA_0)
1040                         (void) HWIF(drive)->ide_dma_on(drive);
1041         } else
1042                 ide_dma_off(drive);
1043 #endif
1044 }
1045
1046 static void ide_disk_pre_reset(ide_drive_t *drive)
1047 {
1048         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1049
1050         drive->special.all = 0;
1051         drive->special.b.set_geometry = legacy;
1052         drive->special.b.recalibrate  = legacy;
1053         if (OK_TO_RESET_CONTROLLER)
1054                 drive->mult_count = 0;
1055         if (!drive->keep_settings && !drive->using_dma)
1056                 drive->mult_req = 0;
1057         if (drive->mult_req != drive->mult_count)
1058                 drive->special.b.set_multmode = 1;
1059 }
1060
1061 static void pre_reset(ide_drive_t *drive)
1062 {
1063         if (drive->media == ide_disk)
1064                 ide_disk_pre_reset(drive);
1065         else
1066                 drive->post_reset = 1;
1067
1068         if (!drive->keep_settings) {
1069                 if (drive->using_dma) {
1070                         check_dma_crc(drive);
1071                 } else {
1072                         drive->unmask = 0;
1073                         drive->io_32bit = 0;
1074                 }
1075                 return;
1076         }
1077         if (drive->using_dma)
1078                 check_dma_crc(drive);
1079
1080         if (HWIF(drive)->pre_reset != NULL)
1081                 HWIF(drive)->pre_reset(drive);
1082
1083         if (drive->current_speed != 0xff)
1084                 drive->desired_speed = drive->current_speed;
1085         drive->current_speed = 0xff;
1086 }
1087
1088 /*
1089  * do_reset1() attempts to recover a confused drive by resetting it.
1090  * Unfortunately, resetting a disk drive actually resets all devices on
1091  * the same interface, so it can really be thought of as resetting the
1092  * interface rather than resetting the drive.
1093  *
1094  * ATAPI devices have their own reset mechanism which allows them to be
1095  * individually reset without clobbering other devices on the same interface.
1096  *
1097  * Unfortunately, the IDE interface does not generate an interrupt to let
1098  * us know when the reset operation has finished, so we must poll for this.
1099  * Equally poor, though, is the fact that this may a very long time to complete,
1100  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1101  * we set a timer to poll at 50ms intervals.
1102  */
1103 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1104 {
1105         unsigned int unit;
1106         unsigned long flags;
1107         ide_hwif_t *hwif;
1108         ide_hwgroup_t *hwgroup;
1109         
1110         spin_lock_irqsave(&ide_lock, flags);
1111         hwif = HWIF(drive);
1112         hwgroup = HWGROUP(drive);
1113
1114         /* We must not reset with running handlers */
1115         BUG_ON(hwgroup->handler != NULL);
1116
1117         /* For an ATAPI device, first try an ATAPI SRST. */
1118         if (drive->media != ide_disk && !do_not_try_atapi) {
1119                 hwgroup->resetting = 1;
1120                 pre_reset(drive);
1121                 SELECT_DRIVE(drive);
1122                 udelay (20);
1123                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1124                 ndelay(400);
1125                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1126                 hwgroup->polling = 1;
1127                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1128                 spin_unlock_irqrestore(&ide_lock, flags);
1129                 return ide_started;
1130         }
1131
1132         /*
1133          * First, reset any device state data we were maintaining
1134          * for any of the drives on this interface.
1135          */
1136         for (unit = 0; unit < MAX_DRIVES; ++unit)
1137                 pre_reset(&hwif->drives[unit]);
1138
1139 #if OK_TO_RESET_CONTROLLER
1140         if (!IDE_CONTROL_REG) {
1141                 spin_unlock_irqrestore(&ide_lock, flags);
1142                 return ide_stopped;
1143         }
1144
1145         hwgroup->resetting = 1;
1146         /*
1147          * Note that we also set nIEN while resetting the device,
1148          * to mask unwanted interrupts from the interface during the reset.
1149          * However, due to the design of PC hardware, this will cause an
1150          * immediate interrupt due to the edge transition it produces.
1151          * This single interrupt gives us a "fast poll" for drives that
1152          * recover from reset very quickly, saving us the first 50ms wait time.
1153          */
1154         /* set SRST and nIEN */
1155         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1156         /* more than enough time */
1157         udelay(10);
1158         if (drive->quirk_list == 2) {
1159                 /* clear SRST and nIEN */
1160                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1161         } else {
1162                 /* clear SRST, leave nIEN */
1163                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1164         }
1165         /* more than enough time */
1166         udelay(10);
1167         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1168         hwgroup->polling = 1;
1169         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1170
1171         /*
1172          * Some weird controller like resetting themselves to a strange
1173          * state when the disks are reset this way. At least, the Winbond
1174          * 553 documentation says that
1175          */
1176         if (hwif->resetproc != NULL) {
1177                 hwif->resetproc(drive);
1178         }
1179         
1180 #endif  /* OK_TO_RESET_CONTROLLER */
1181
1182         spin_unlock_irqrestore(&ide_lock, flags);
1183         return ide_started;
1184 }
1185
1186 /*
1187  * ide_do_reset() is the entry point to the drive/interface reset code.
1188  */
1189
1190 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1191 {
1192         return do_reset1(drive, 0);
1193 }
1194
1195 EXPORT_SYMBOL(ide_do_reset);
1196
1197 /*
1198  * ide_wait_not_busy() waits for the currently selected device on the hwif
1199  * to report a non-busy status, see comments in probe_hwif().
1200  */
1201 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1202 {
1203         u8 stat = 0;
1204
1205         while(timeout--) {
1206                 /*
1207                  * Turn this into a schedule() sleep once I'm sure
1208                  * about locking issues (2.5 work ?).
1209                  */
1210                 mdelay(1);
1211                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1212                 if ((stat & BUSY_STAT) == 0)
1213                         return 0;
1214                 /*
1215                  * Assume a value of 0xff means nothing is connected to
1216                  * the interface and it doesn't implement the pull-down
1217                  * resistor on D7.
1218                  */
1219                 if (stat == 0xff)
1220                         return -ENODEV;
1221                 touch_softlockup_watchdog();
1222                 touch_nmi_watchdog();
1223         }
1224         return -EBUSY;
1225 }
1226
1227 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1228