MAINTAINERS: update linux-can git repositories
[pandora-kernel.git] / drivers / i2c / busses / i2c-rk3x.c
1 /*
2  * Driver for I2C adapter in Rockchip RK3xxx SoC
3  *
4  * Max Schwarz <max.schwarz@online.de>
5  * based on the patches by Rockchip Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/io.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/spinlock.h>
23 #include <linux/clk.h>
24 #include <linux/wait.h>
25 #include <linux/mfd/syscon.h>
26 #include <linux/regmap.h>
27 #include <linux/math64.h>
28
29
30 /* Register Map */
31 #define REG_CON        0x00 /* control register */
32 #define REG_CLKDIV     0x04 /* clock divisor register */
33 #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
34 #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
35 #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
36 #define REG_MRXCNT     0x14 /* number of bytes to be received */
37 #define REG_IEN        0x18 /* interrupt enable */
38 #define REG_IPD        0x1c /* interrupt pending */
39 #define REG_FCNT       0x20 /* finished count */
40
41 /* Data buffer offsets */
42 #define TXBUFFER_BASE 0x100
43 #define RXBUFFER_BASE 0x200
44
45 /* REG_CON bits */
46 #define REG_CON_EN        BIT(0)
47 enum {
48         REG_CON_MOD_TX = 0,      /* transmit data */
49         REG_CON_MOD_REGISTER_TX, /* select register and restart */
50         REG_CON_MOD_RX,          /* receive data */
51         REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
52                                   * register addr */
53 };
54 #define REG_CON_MOD(mod)  ((mod) << 1)
55 #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
56 #define REG_CON_START     BIT(3)
57 #define REG_CON_STOP      BIT(4)
58 #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
59 #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
60
61 /* REG_MRXADDR bits */
62 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
63
64 /* REG_IEN/REG_IPD bits */
65 #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
66 #define REG_INT_BRF       BIT(1) /* a byte was received */
67 #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
68 #define REG_INT_MBRF      BIT(3) /* master data receive finished */
69 #define REG_INT_START     BIT(4) /* START condition generated */
70 #define REG_INT_STOP      BIT(5) /* STOP condition generated */
71 #define REG_INT_NAKRCV    BIT(6) /* NACK received */
72 #define REG_INT_ALL       0x7f
73
74 /* Constants */
75 #define WAIT_TIMEOUT      200 /* ms */
76 #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
77
78 enum rk3x_i2c_state {
79         STATE_IDLE,
80         STATE_START,
81         STATE_READ,
82         STATE_WRITE,
83         STATE_STOP
84 };
85
86 /**
87  * @grf_offset: offset inside the grf regmap for setting the i2c type
88  */
89 struct rk3x_i2c_soc_data {
90         int grf_offset;
91 };
92
93 struct rk3x_i2c {
94         struct i2c_adapter adap;
95         struct device *dev;
96         struct rk3x_i2c_soc_data *soc_data;
97
98         /* Hardware resources */
99         void __iomem *regs;
100         struct clk *clk;
101         struct notifier_block clk_rate_nb;
102
103         /* Settings */
104         unsigned int scl_frequency;
105
106         /* Synchronization & notification */
107         spinlock_t lock;
108         wait_queue_head_t wait;
109         bool busy;
110
111         /* Current message */
112         struct i2c_msg *msg;
113         u8 addr;
114         unsigned int mode;
115         bool is_last_msg;
116
117         /* I2C state machine */
118         enum rk3x_i2c_state state;
119         unsigned int processed; /* sent/received bytes */
120         int error;
121 };
122
123 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
124                               unsigned int offset)
125 {
126         writel(value, i2c->regs + offset);
127 }
128
129 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
130 {
131         return readl(i2c->regs + offset);
132 }
133
134 /* Reset all interrupt pending bits */
135 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
136 {
137         i2c_writel(i2c, REG_INT_ALL, REG_IPD);
138 }
139
140 /**
141  * Generate a START condition, which triggers a REG_INT_START interrupt.
142  */
143 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
144 {
145         u32 val;
146
147         rk3x_i2c_clean_ipd(i2c);
148         i2c_writel(i2c, REG_INT_START, REG_IEN);
149
150         /* enable adapter with correct mode, send START condition */
151         val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
152
153         /* if we want to react to NACK, set ACTACK bit */
154         if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
155                 val |= REG_CON_ACTACK;
156
157         i2c_writel(i2c, val, REG_CON);
158 }
159
160 /**
161  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
162  *
163  * @error: Error code to return in rk3x_i2c_xfer
164  */
165 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
166 {
167         unsigned int ctrl;
168
169         i2c->processed = 0;
170         i2c->msg = NULL;
171         i2c->error = error;
172
173         if (i2c->is_last_msg) {
174                 /* Enable stop interrupt */
175                 i2c_writel(i2c, REG_INT_STOP, REG_IEN);
176
177                 i2c->state = STATE_STOP;
178
179                 ctrl = i2c_readl(i2c, REG_CON);
180                 ctrl |= REG_CON_STOP;
181                 i2c_writel(i2c, ctrl, REG_CON);
182         } else {
183                 /* Signal rk3x_i2c_xfer to start the next message. */
184                 i2c->busy = false;
185                 i2c->state = STATE_IDLE;
186
187                 /*
188                  * The HW is actually not capable of REPEATED START. But we can
189                  * get the intended effect by resetting its internal state
190                  * and issuing an ordinary START.
191                  */
192                 i2c_writel(i2c, 0, REG_CON);
193
194                 /* signal that we are finished with the current msg */
195                 wake_up(&i2c->wait);
196         }
197 }
198
199 /**
200  * Setup a read according to i2c->msg
201  */
202 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
203 {
204         unsigned int len = i2c->msg->len - i2c->processed;
205         u32 con;
206
207         con = i2c_readl(i2c, REG_CON);
208
209         /*
210          * The hw can read up to 32 bytes at a time. If we need more than one
211          * chunk, send an ACK after the last byte of the current chunk.
212          */
213         if (len > 32) {
214                 len = 32;
215                 con &= ~REG_CON_LASTACK;
216         } else {
217                 con |= REG_CON_LASTACK;
218         }
219
220         /* make sure we are in plain RX mode if we read a second chunk */
221         if (i2c->processed != 0) {
222                 con &= ~REG_CON_MOD_MASK;
223                 con |= REG_CON_MOD(REG_CON_MOD_RX);
224         }
225
226         i2c_writel(i2c, con, REG_CON);
227         i2c_writel(i2c, len, REG_MRXCNT);
228 }
229
230 /**
231  * Fill the transmit buffer with data from i2c->msg
232  */
233 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
234 {
235         unsigned int i, j;
236         u32 cnt = 0;
237         u32 val;
238         u8 byte;
239
240         for (i = 0; i < 8; ++i) {
241                 val = 0;
242                 for (j = 0; j < 4; ++j) {
243                         if ((i2c->processed == i2c->msg->len) && (cnt != 0))
244                                 break;
245
246                         if (i2c->processed == 0 && cnt == 0)
247                                 byte = (i2c->addr & 0x7f) << 1;
248                         else
249                                 byte = i2c->msg->buf[i2c->processed++];
250
251                         val |= byte << (j * 8);
252                         cnt++;
253                 }
254
255                 i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
256
257                 if (i2c->processed == i2c->msg->len)
258                         break;
259         }
260
261         i2c_writel(i2c, cnt, REG_MTXCNT);
262 }
263
264
265 /* IRQ handlers for individual states */
266
267 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
268 {
269         if (!(ipd & REG_INT_START)) {
270                 rk3x_i2c_stop(i2c, -EIO);
271                 dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
272                 rk3x_i2c_clean_ipd(i2c);
273                 return;
274         }
275
276         /* ack interrupt */
277         i2c_writel(i2c, REG_INT_START, REG_IPD);
278
279         /* disable start bit */
280         i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
281
282         /* enable appropriate interrupts and transition */
283         if (i2c->mode == REG_CON_MOD_TX) {
284                 i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
285                 i2c->state = STATE_WRITE;
286                 rk3x_i2c_fill_transmit_buf(i2c);
287         } else {
288                 /* in any other case, we are going to be reading. */
289                 i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
290                 i2c->state = STATE_READ;
291                 rk3x_i2c_prepare_read(i2c);
292         }
293 }
294
295 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
296 {
297         if (!(ipd & REG_INT_MBTF)) {
298                 rk3x_i2c_stop(i2c, -EIO);
299                 dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
300                 rk3x_i2c_clean_ipd(i2c);
301                 return;
302         }
303
304         /* ack interrupt */
305         i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
306
307         /* are we finished? */
308         if (i2c->processed == i2c->msg->len)
309                 rk3x_i2c_stop(i2c, i2c->error);
310         else
311                 rk3x_i2c_fill_transmit_buf(i2c);
312 }
313
314 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
315 {
316         unsigned int i;
317         unsigned int len = i2c->msg->len - i2c->processed;
318         u32 uninitialized_var(val);
319         u8 byte;
320
321         /* we only care for MBRF here. */
322         if (!(ipd & REG_INT_MBRF))
323                 return;
324
325         /* ack interrupt */
326         i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
327
328         /* Can only handle a maximum of 32 bytes at a time */
329         if (len > 32)
330                 len = 32;
331
332         /* read the data from receive buffer */
333         for (i = 0; i < len; ++i) {
334                 if (i % 4 == 0)
335                         val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
336
337                 byte = (val >> ((i % 4) * 8)) & 0xff;
338                 i2c->msg->buf[i2c->processed++] = byte;
339         }
340
341         /* are we finished? */
342         if (i2c->processed == i2c->msg->len)
343                 rk3x_i2c_stop(i2c, i2c->error);
344         else
345                 rk3x_i2c_prepare_read(i2c);
346 }
347
348 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
349 {
350         unsigned int con;
351
352         if (!(ipd & REG_INT_STOP)) {
353                 rk3x_i2c_stop(i2c, -EIO);
354                 dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
355                 rk3x_i2c_clean_ipd(i2c);
356                 return;
357         }
358
359         /* ack interrupt */
360         i2c_writel(i2c, REG_INT_STOP, REG_IPD);
361
362         /* disable STOP bit */
363         con = i2c_readl(i2c, REG_CON);
364         con &= ~REG_CON_STOP;
365         i2c_writel(i2c, con, REG_CON);
366
367         i2c->busy = false;
368         i2c->state = STATE_IDLE;
369
370         /* signal rk3x_i2c_xfer that we are finished */
371         wake_up(&i2c->wait);
372 }
373
374 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
375 {
376         struct rk3x_i2c *i2c = dev_id;
377         unsigned int ipd;
378
379         spin_lock(&i2c->lock);
380
381         ipd = i2c_readl(i2c, REG_IPD);
382         if (i2c->state == STATE_IDLE) {
383                 dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
384                 rk3x_i2c_clean_ipd(i2c);
385                 goto out;
386         }
387
388         dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
389
390         /* Clean interrupt bits we don't care about */
391         ipd &= ~(REG_INT_BRF | REG_INT_BTF);
392
393         if (ipd & REG_INT_NAKRCV) {
394                 /*
395                  * We got a NACK in the last operation. Depending on whether
396                  * IGNORE_NAK is set, we have to stop the operation and report
397                  * an error.
398                  */
399                 i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
400
401                 ipd &= ~REG_INT_NAKRCV;
402
403                 if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
404                         rk3x_i2c_stop(i2c, -ENXIO);
405         }
406
407         /* is there anything left to handle? */
408         if ((ipd & REG_INT_ALL) == 0)
409                 goto out;
410
411         switch (i2c->state) {
412         case STATE_START:
413                 rk3x_i2c_handle_start(i2c, ipd);
414                 break;
415         case STATE_WRITE:
416                 rk3x_i2c_handle_write(i2c, ipd);
417                 break;
418         case STATE_READ:
419                 rk3x_i2c_handle_read(i2c, ipd);
420                 break;
421         case STATE_STOP:
422                 rk3x_i2c_handle_stop(i2c, ipd);
423                 break;
424         case STATE_IDLE:
425                 break;
426         }
427
428 out:
429         spin_unlock(&i2c->lock);
430         return IRQ_HANDLED;
431 }
432
433 /**
434  * Calculate divider values for desired SCL frequency
435  *
436  * @clk_rate: I2C input clock rate
437  * @scl_rate: Desired SCL rate
438  * @div_low: Divider output for low
439  * @div_high: Divider output for high
440  *
441  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
442  * a best-effort divider value is returned in divs. If the target rate is
443  * too high, we silently use the highest possible rate.
444  */
445 static int rk3x_i2c_calc_divs(unsigned long clk_rate, unsigned long scl_rate,
446                               unsigned long *div_low, unsigned long *div_high)
447 {
448         unsigned long min_low_ns, min_high_ns;
449         unsigned long max_data_hold_ns;
450         unsigned long data_hold_buffer_ns;
451         unsigned long max_low_ns, min_total_ns;
452
453         unsigned long clk_rate_khz, scl_rate_khz;
454
455         unsigned long min_low_div, min_high_div;
456         unsigned long max_low_div;
457
458         unsigned long min_div_for_hold, min_total_div;
459         unsigned long extra_div, extra_low_div, ideal_low_div;
460
461         int ret = 0;
462
463         /* Only support standard-mode and fast-mode */
464         if (WARN_ON(scl_rate > 400000))
465                 scl_rate = 400000;
466
467         /* prevent scl_rate_khz from becoming 0 */
468         if (WARN_ON(scl_rate < 1000))
469                 scl_rate = 1000;
470
471         /*
472          * min_low_ns:  The minimum number of ns we need to hold low
473          *              to meet i2c spec
474          * min_high_ns: The minimum number of ns we need to hold high
475          *              to meet i2c spec
476          * max_low_ns:  The maximum number of ns we can hold low
477          *              to meet i2c spec
478          *
479          * Note: max_low_ns should be (max data hold time * 2 - buffer)
480          *       This is because the i2c host on Rockchip holds the data line
481          *       for half the low time.
482          */
483         if (scl_rate <= 100000) {
484                 min_low_ns = 4700;
485                 min_high_ns = 4000;
486                 max_data_hold_ns = 3450;
487                 data_hold_buffer_ns = 50;
488         } else {
489                 min_low_ns = 1300;
490                 min_high_ns = 600;
491                 max_data_hold_ns = 900;
492                 data_hold_buffer_ns = 50;
493         }
494         max_low_ns = max_data_hold_ns * 2 - data_hold_buffer_ns;
495         min_total_ns = min_low_ns + min_high_ns;
496
497         /* Adjust to avoid overflow */
498         clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
499         scl_rate_khz = scl_rate / 1000;
500
501         /*
502          * We need the total div to be >= this number
503          * so we don't clock too fast.
504          */
505         min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
506
507         /* These are the min dividers needed for min hold times. */
508         min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
509         min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
510         min_div_for_hold = (min_low_div + min_high_div);
511
512         /*
513          * This is the maximum divider so we don't go over the max.
514          * We don't round up here (we round down) since this is a max.
515          */
516         max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
517
518         if (min_low_div > max_low_div) {
519                 WARN_ONCE(true,
520                           "Conflicting, min_low_div %lu, max_low_div %lu\n",
521                           min_low_div, max_low_div);
522                 max_low_div = min_low_div;
523         }
524
525         if (min_div_for_hold > min_total_div) {
526                 /*
527                  * Time needed to meet hold requirements is important.
528                  * Just use that.
529                  */
530                 *div_low = min_low_div;
531                 *div_high = min_high_div;
532         } else {
533                 /*
534                  * We've got to distribute some time among the low and high
535                  * so we don't run too fast.
536                  */
537                 extra_div = min_total_div - min_div_for_hold;
538
539                 /*
540                  * We'll try to split things up perfectly evenly,
541                  * biasing slightly towards having a higher div
542                  * for low (spend more time low).
543                  */
544                 ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
545                                              scl_rate_khz * 8 * min_total_ns);
546
547                 /* Don't allow it to go over the max */
548                 if (ideal_low_div > max_low_div)
549                         ideal_low_div = max_low_div;
550
551                 /*
552                  * Handle when the ideal low div is going to take up
553                  * more than we have.
554                  */
555                 if (ideal_low_div > min_low_div + extra_div)
556                         ideal_low_div = min_low_div + extra_div;
557
558                 /* Give low the "ideal" and give high whatever extra is left */
559                 extra_low_div = ideal_low_div - min_low_div;
560                 *div_low = ideal_low_div;
561                 *div_high = min_high_div + (extra_div - extra_low_div);
562         }
563
564         /*
565          * Adjust to the fact that the hardware has an implicit "+1".
566          * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
567          */
568         *div_low = *div_low - 1;
569         *div_high = *div_high - 1;
570
571         /* Maximum divider supported by hw is 0xffff */
572         if (*div_low > 0xffff) {
573                 *div_low = 0xffff;
574                 ret = -EINVAL;
575         }
576
577         if (*div_high > 0xffff) {
578                 *div_high = 0xffff;
579                 ret = -EINVAL;
580         }
581
582         return ret;
583 }
584
585 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
586 {
587         unsigned long div_low, div_high;
588         u64 t_low_ns, t_high_ns;
589         int ret;
590
591         ret = rk3x_i2c_calc_divs(clk_rate, i2c->scl_frequency, &div_low,
592                                  &div_high);
593
594         WARN_ONCE(ret != 0, "Could not reach SCL freq %u", i2c->scl_frequency);
595
596         clk_enable(i2c->clk);
597         i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
598         clk_disable(i2c->clk);
599
600         t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate);
601         t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate);
602         dev_dbg(i2c->dev,
603                 "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
604                 clk_rate / 1000,
605                 1000000000 / i2c->scl_frequency,
606                 t_low_ns, t_high_ns);
607 }
608
609 /**
610  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
611  * @nb:         Pointer to notifier block
612  * @event:      Notification reason
613  * @data:       Pointer to notification data object
614  *
615  * The callback checks whether a valid bus frequency can be generated after the
616  * change. If so, the change is acknowledged, otherwise the change is aborted.
617  * New dividers are written to the HW in the pre- or post change notification
618  * depending on the scaling direction.
619  *
620  * Code adapted from i2c-cadence.c.
621  *
622  * Return:      NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
623  *              to acknowedge the change, NOTIFY_DONE if the notification is
624  *              considered irrelevant.
625  */
626 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
627                                     event, void *data)
628 {
629         struct clk_notifier_data *ndata = data;
630         struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
631         unsigned long div_low, div_high;
632
633         switch (event) {
634         case PRE_RATE_CHANGE:
635                 if (rk3x_i2c_calc_divs(ndata->new_rate, i2c->scl_frequency,
636                                       &div_low, &div_high) != 0) {
637                         return NOTIFY_STOP;
638                 }
639
640                 /* scale up */
641                 if (ndata->new_rate > ndata->old_rate)
642                         rk3x_i2c_adapt_div(i2c, ndata->new_rate);
643
644                 return NOTIFY_OK;
645         case POST_RATE_CHANGE:
646                 /* scale down */
647                 if (ndata->new_rate < ndata->old_rate)
648                         rk3x_i2c_adapt_div(i2c, ndata->new_rate);
649                 return NOTIFY_OK;
650         case ABORT_RATE_CHANGE:
651                 /* scale up */
652                 if (ndata->new_rate > ndata->old_rate)
653                         rk3x_i2c_adapt_div(i2c, ndata->old_rate);
654                 return NOTIFY_OK;
655         default:
656                 return NOTIFY_DONE;
657         }
658 }
659
660 /**
661  * Setup I2C registers for an I2C operation specified by msgs, num.
662  *
663  * Must be called with i2c->lock held.
664  *
665  * @msgs: I2C msgs to process
666  * @num: Number of msgs
667  *
668  * returns: Number of I2C msgs processed or negative in case of error
669  */
670 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
671 {
672         u32 addr = (msgs[0].addr & 0x7f) << 1;
673         int ret = 0;
674
675         /*
676          * The I2C adapter can issue a small (len < 4) write packet before
677          * reading. This speeds up SMBus-style register reads.
678          * The MRXADDR/MRXRADDR hold the slave address and the slave register
679          * address in this case.
680          */
681
682         if (num >= 2 && msgs[0].len < 4 &&
683             !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
684                 u32 reg_addr = 0;
685                 int i;
686
687                 dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
688                         addr >> 1);
689
690                 /* Fill MRXRADDR with the register address(es) */
691                 for (i = 0; i < msgs[0].len; ++i) {
692                         reg_addr |= msgs[0].buf[i] << (i * 8);
693                         reg_addr |= REG_MRXADDR_VALID(i);
694                 }
695
696                 /* msgs[0] is handled by hw. */
697                 i2c->msg = &msgs[1];
698
699                 i2c->mode = REG_CON_MOD_REGISTER_TX;
700
701                 i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
702                 i2c_writel(i2c, reg_addr, REG_MRXRADDR);
703
704                 ret = 2;
705         } else {
706                 /*
707                  * We'll have to do it the boring way and process the msgs
708                  * one-by-one.
709                  */
710
711                 if (msgs[0].flags & I2C_M_RD) {
712                         addr |= 1; /* set read bit */
713
714                         /*
715                          * We have to transmit the slave addr first. Use
716                          * MOD_REGISTER_TX for that purpose.
717                          */
718                         i2c->mode = REG_CON_MOD_REGISTER_TX;
719                         i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
720                                    REG_MRXADDR);
721                         i2c_writel(i2c, 0, REG_MRXRADDR);
722                 } else {
723                         i2c->mode = REG_CON_MOD_TX;
724                 }
725
726                 i2c->msg = &msgs[0];
727
728                 ret = 1;
729         }
730
731         i2c->addr = msgs[0].addr;
732         i2c->busy = true;
733         i2c->state = STATE_START;
734         i2c->processed = 0;
735         i2c->error = 0;
736
737         rk3x_i2c_clean_ipd(i2c);
738
739         return ret;
740 }
741
742 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
743                          struct i2c_msg *msgs, int num)
744 {
745         struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
746         unsigned long timeout, flags;
747         int ret = 0;
748         int i;
749
750         spin_lock_irqsave(&i2c->lock, flags);
751
752         clk_enable(i2c->clk);
753
754         i2c->is_last_msg = false;
755
756         /*
757          * Process msgs. We can handle more than one message at once (see
758          * rk3x_i2c_setup()).
759          */
760         for (i = 0; i < num; i += ret) {
761                 ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
762
763                 if (ret < 0) {
764                         dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
765                         break;
766                 }
767
768                 if (i + ret >= num)
769                         i2c->is_last_msg = true;
770
771                 spin_unlock_irqrestore(&i2c->lock, flags);
772
773                 rk3x_i2c_start(i2c);
774
775                 timeout = wait_event_timeout(i2c->wait, !i2c->busy,
776                                              msecs_to_jiffies(WAIT_TIMEOUT));
777
778                 spin_lock_irqsave(&i2c->lock, flags);
779
780                 if (timeout == 0) {
781                         dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
782                                 i2c_readl(i2c, REG_IPD), i2c->state);
783
784                         /* Force a STOP condition without interrupt */
785                         i2c_writel(i2c, 0, REG_IEN);
786                         i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);
787
788                         i2c->state = STATE_IDLE;
789
790                         ret = -ETIMEDOUT;
791                         break;
792                 }
793
794                 if (i2c->error) {
795                         ret = i2c->error;
796                         break;
797                 }
798         }
799
800         clk_disable(i2c->clk);
801         spin_unlock_irqrestore(&i2c->lock, flags);
802
803         return ret;
804 }
805
806 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
807 {
808         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
809 }
810
811 static const struct i2c_algorithm rk3x_i2c_algorithm = {
812         .master_xfer            = rk3x_i2c_xfer,
813         .functionality          = rk3x_i2c_func,
814 };
815
816 static struct rk3x_i2c_soc_data soc_data[3] = {
817         { .grf_offset = 0x154 }, /* rk3066 */
818         { .grf_offset = 0x0a4 }, /* rk3188 */
819         { .grf_offset = -1 },    /* no I2C switching needed */
820 };
821
822 static const struct of_device_id rk3x_i2c_match[] = {
823         { .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] },
824         { .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] },
825         { .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] },
826         {},
827 };
828
829 static int rk3x_i2c_probe(struct platform_device *pdev)
830 {
831         struct device_node *np = pdev->dev.of_node;
832         const struct of_device_id *match;
833         struct rk3x_i2c *i2c;
834         struct resource *mem;
835         int ret = 0;
836         int bus_nr;
837         u32 value;
838         int irq;
839         unsigned long clk_rate;
840
841         i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
842         if (!i2c)
843                 return -ENOMEM;
844
845         match = of_match_node(rk3x_i2c_match, np);
846         i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
847
848         if (of_property_read_u32(pdev->dev.of_node, "clock-frequency",
849                                  &i2c->scl_frequency)) {
850                 dev_info(&pdev->dev, "using default SCL frequency: %d\n",
851                          DEFAULT_SCL_RATE);
852                 i2c->scl_frequency = DEFAULT_SCL_RATE;
853         }
854
855         if (i2c->scl_frequency == 0 || i2c->scl_frequency > 400 * 1000) {
856                 dev_warn(&pdev->dev, "invalid SCL frequency specified.\n");
857                 dev_warn(&pdev->dev, "using default SCL frequency: %d\n",
858                          DEFAULT_SCL_RATE);
859                 i2c->scl_frequency = DEFAULT_SCL_RATE;
860         }
861
862         strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
863         i2c->adap.owner = THIS_MODULE;
864         i2c->adap.algo = &rk3x_i2c_algorithm;
865         i2c->adap.retries = 3;
866         i2c->adap.dev.of_node = np;
867         i2c->adap.algo_data = i2c;
868         i2c->adap.dev.parent = &pdev->dev;
869
870         i2c->dev = &pdev->dev;
871
872         spin_lock_init(&i2c->lock);
873         init_waitqueue_head(&i2c->wait);
874
875         i2c->clk = devm_clk_get(&pdev->dev, NULL);
876         if (IS_ERR(i2c->clk)) {
877                 dev_err(&pdev->dev, "cannot get clock\n");
878                 return PTR_ERR(i2c->clk);
879         }
880
881         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
882         i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
883         if (IS_ERR(i2c->regs))
884                 return PTR_ERR(i2c->regs);
885
886         /* Try to set the I2C adapter number from dt */
887         bus_nr = of_alias_get_id(np, "i2c");
888
889         /*
890          * Switch to new interface if the SoC also offers the old one.
891          * The control bit is located in the GRF register space.
892          */
893         if (i2c->soc_data->grf_offset >= 0) {
894                 struct regmap *grf;
895
896                 grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
897                 if (IS_ERR(grf)) {
898                         dev_err(&pdev->dev,
899                                 "rk3x-i2c needs 'rockchip,grf' property\n");
900                         return PTR_ERR(grf);
901                 }
902
903                 if (bus_nr < 0) {
904                         dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
905                         return -EINVAL;
906                 }
907
908                 /* 27+i: write mask, 11+i: value */
909                 value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
910
911                 ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
912                 if (ret != 0) {
913                         dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
914                         return ret;
915                 }
916         }
917
918         /* IRQ setup */
919         irq = platform_get_irq(pdev, 0);
920         if (irq < 0) {
921                 dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
922                 return irq;
923         }
924
925         ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
926                                0, dev_name(&pdev->dev), i2c);
927         if (ret < 0) {
928                 dev_err(&pdev->dev, "cannot request IRQ\n");
929                 return ret;
930         }
931
932         platform_set_drvdata(pdev, i2c);
933
934         ret = clk_prepare(i2c->clk);
935         if (ret < 0) {
936                 dev_err(&pdev->dev, "Could not prepare clock\n");
937                 return ret;
938         }
939
940         i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
941         ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
942         if (ret != 0) {
943                 dev_err(&pdev->dev, "Unable to register clock notifier\n");
944                 goto err_clk;
945         }
946
947         clk_rate = clk_get_rate(i2c->clk);
948         rk3x_i2c_adapt_div(i2c, clk_rate);
949
950         ret = i2c_add_adapter(&i2c->adap);
951         if (ret < 0) {
952                 dev_err(&pdev->dev, "Could not register adapter\n");
953                 goto err_clk_notifier;
954         }
955
956         dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
957
958         return 0;
959
960 err_clk_notifier:
961         clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
962 err_clk:
963         clk_unprepare(i2c->clk);
964         return ret;
965 }
966
967 static int rk3x_i2c_remove(struct platform_device *pdev)
968 {
969         struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
970
971         i2c_del_adapter(&i2c->adap);
972
973         clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
974         clk_unprepare(i2c->clk);
975
976         return 0;
977 }
978
979 static struct platform_driver rk3x_i2c_driver = {
980         .probe   = rk3x_i2c_probe,
981         .remove  = rk3x_i2c_remove,
982         .driver  = {
983                 .name  = "rk3x-i2c",
984                 .of_match_table = rk3x_i2c_match,
985         },
986 };
987
988 module_platform_driver(rk3x_i2c_driver);
989
990 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
991 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
992 MODULE_LICENSE("GPL v2");